WO2016051830A1 - 電熱装置 - Google Patents

電熱装置 Download PDF

Info

Publication number
WO2016051830A1
WO2016051830A1 PCT/JP2015/059893 JP2015059893W WO2016051830A1 WO 2016051830 A1 WO2016051830 A1 WO 2016051830A1 JP 2015059893 W JP2015059893 W JP 2015059893W WO 2016051830 A1 WO2016051830 A1 WO 2016051830A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
heater
unit
heating
heat
Prior art date
Application number
PCT/JP2015/059893
Other languages
English (en)
French (fr)
Inventor
川口 博文
橋本 靜生
Original Assignee
富士インパルス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士インパルス株式会社 filed Critical 富士インパルス株式会社
Priority to CN201580051594.1A priority Critical patent/CN107073832B/zh
Priority to US15/516,117 priority patent/US11173671B2/en
Priority to EP15846762.1A priority patent/EP3202556B1/en
Publication of WO2016051830A1 publication Critical patent/WO2016051830A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/004Preventing sticking together, e.g. of some areas of the parts to be joined
    • B29C66/0042Preventing sticking together, e.g. of some areas of the parts to be joined of the joining tool and the parts to be joined
    • B29C66/0044Preventing sticking together, e.g. of some areas of the parts to be joined of the joining tool and the parts to be joined using a separating sheet, e.g. fixed on the joining tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/20Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools with direct contact, e.g. using "mirror"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/18Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using heated tools
    • B29C65/22Heated wire resistive ribbon, resistive band or resistive strip
    • B29C65/221Heated wire resistive ribbon, resistive band or resistive strip characterised by the type of heated wire, resistive ribbon, band or strip
    • B29C65/224Heated wire resistive ribbon, resistive band or resistive strip characterised by the type of heated wire, resistive ribbon, band or strip being a resistive ribbon, a resistive band or a resistive strip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/43Joining a relatively small portion of the surface of said articles
    • B29C66/431Joining the articles to themselves
    • B29C66/4312Joining the articles to themselves for making flat seams in tubular or hollow articles, e.g. transversal seams
    • B29C66/43121Closing the ends of tubular or hollow single articles, e.g. closing the ends of bags
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8122General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the composition of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8145General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/81457General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the constructional aspects of the pressing elements, e.g. of the welding jaws or clamps comprising a block or layer of deformable material, e.g. sponge, foam, rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/818General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps
    • B29C66/8183General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps characterised by the thermal conducting constructional aspects
    • B29C66/81831General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps characterised by the thermal conducting constructional aspects of the welding jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/818General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps
    • B29C66/8187General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps characterised by the electrical insulating constructional aspects
    • B29C66/81871General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps characterised by the electrical insulating constructional aspects of the welding jaws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8324Joining or pressing tools pivoting around one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/84Specific machine types or machines suitable for specific applications
    • B29C66/849Packaging machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91231Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the joining tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9141Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature
    • B29C66/91411Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the temperature of the parts to be joined, e.g. the joining process taking the temperature of the parts to be joined into account
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/914Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux
    • B29C66/9161Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux
    • B29C66/91651Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by controlling or regulating the temperature, the heat or the thermal flux by controlling or regulating the heat or the thermal flux, i.e. the heat flux by controlling or regulating the heat generated by Joule heating or induction heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/919Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
    • B29C66/9192Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams
    • B29C66/91951Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges in explicit relation to another variable, e.g. temperature diagrams in explicit relation to time, e.g. temperature-time diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B51/00Devices for, or methods of, sealing or securing package folds or closures; Devices for gathering or twisting wrappers, or necks of bags
    • B65B51/10Applying or generating heat or pressure or combinations thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/0014Devices wherein the heating current flows through particular resistances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/38Impulse heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/822Transmission mechanisms
    • B29C66/8227Transmission mechanisms using springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/91Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
    • B29C66/912Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux
    • B29C66/9121Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature
    • B29C66/91221Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux by measuring the temperature, the heat or the thermal flux by measuring the temperature of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/90Measuring or controlling the joining process
    • B29C66/94Measuring or controlling the joining process by measuring or controlling the time
    • B29C66/944Measuring or controlling the joining process by measuring or controlling the time by controlling or regulating the time
    • B29C66/9441Measuring or controlling the joining process by measuring or controlling the time by controlling or regulating the time the time being controlled or regulated as a function of another parameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65BMACHINES, APPARATUS OR DEVICES FOR, OR METHODS OF, PACKAGING ARTICLES OR MATERIALS; UNPACKING
    • B65B51/00Devices for, or methods of, sealing or securing package folds or closures; Devices for gathering or twisting wrappers, or necks of bags
    • B65B51/10Applying or generating heat or pressure or combinations thereof
    • B65B2051/105Heat seal temperature control

Definitions

  • the present invention relates to an electric heating device provided with a pair of seal portions that seal with an object interposed therebetween.
  • an electric heating device including a pair of sealing portions that seal with an object interposed therebetween
  • an electric heating device including a heater that generates heat when energized and a temperature measurement unit that continuously measures the temperature of the heater
  • Patent Document 1 the heater is energized so that the temperature measured by the temperature measuring unit becomes a predetermined temperature.
  • an object of the present invention is to provide an electric heating device capable of improving the seal quality.
  • An electric heating device includes a pair of seal portions that seal with an object interposed therebetween, and at least one of the pair of seal portions includes a heater that generates heat when energized. Based on a pre-heating temperature that is at least one of the object, the heater, and the heat radiating part before the heater generates heat, and a heat radiating part that conducts heat and releases the heat, And a controller that controls electric energy to be supplied, wherein the controller calculates the temperature of the object based on the pre-heating temperature and the electric energy supplied to the heater.
  • the electric heating device may include a temperature detection unit that detects the pre-heating temperature.
  • the seal part having the heater includes a support part that supports the heater and constitutes at least a part of the heat dissipation part
  • the temperature detection part includes a temperature sensor
  • the temperature The sensor may be arranged in contact with the support part so as to detect the pre-heating temperature of the support part, and may be arranged apart from the heater.
  • control unit is based on a preheating temperature detected by the temperature detection unit in a state where energization to the heater is stopped and the pair of seal portions sandwich the object.
  • the electric energy supplied to the heater may be controlled and the temperature of the object may be calculated.
  • control unit supplies the heater based on a pre-heating temperature detected by the temperature detection unit after a predetermined time elapses with the pair of sealing units sandwiching the object.
  • the structure of controlling the electric energy to calculate and calculating the temperature of the said target object may be sufficient.
  • the temperature detection unit detects a pre-heating temperature of at least one of the heater and the heat dissipation unit, and the control unit converts the pre-heating temperature and the electric energy supplied to the heater. Based on the calculation of the temperature of the heater and the heat radiating unit, the control unit, after stopping the energization to the heater, the calculated temperature of the heater and the heat radiating unit become the same temperature, The structure of stopping the calculation of the temperature of a heater and the said thermal radiation part may be sufficient.
  • the temperature detection unit detects a pre-heating temperature of at least one of the heater and the heat dissipation unit, and the control unit converts the pre-heating temperature and the electric energy supplied to the heater. Based on the temperature of the heater and the heat dissipating unit, and the control unit detects the temperature detected by the temperature detecting unit when the energization of the heater is resumed after the energization of the heater is stopped.
  • a configuration in which the calculated temperatures of the heater and the heat radiating unit are corrected based on the pre-heating temperature may be employed.
  • the temperature detection unit detects a pre-heating temperature of at least one of the heater and the heat dissipation unit, and the control unit converts the pre-heating temperature and the electric energy supplied to the heater. Based on this, the temperature of the heater and the heat radiating unit is calculated, and further, the control unit stops energization of the heater and then the heater and the heat radiating unit until the calculated temperature becomes the same temperature. It may be configured to maintain the stop of energization of the.
  • the electric heating device includes an information input unit to which information is input, and the control unit calculates a pre-heating temperature at the first sealing based on information input to the information input unit, and The control unit continuously calculates the temperature of the heater and the heat dissipating unit when repeatedly energizing the heater and stopping the energization, and calculates the pre-heating temperature at the second and subsequent seals.
  • the structure of calculating based on the calculation temperature of a thermal radiation part may be sufficient.
  • the control unit has a calendar function, calculates a pre-heating temperature at the first sealing based on the calendar function, and the control unit supplies power to the heater and When repeatedly stopping the energization, the temperature of the heater and the heat radiating unit is continuously calculated, and the pre-heating temperature at the second and subsequent sealing is calculated based on the calculated temperature of the heater and the heat radiating unit.
  • the structure of may be used.
  • the electric heating device according to the present invention has an excellent effect of improving the seal quality.
  • FIG. 1 is an overall side view of an electric heating apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a main part of a pair of seal portions according to the embodiment.
  • FIG. 3 is a block diagram of the electric heating apparatus according to the embodiment.
  • FIG. 4 is a diagram illustrating a cross-sectional view of a main part of a pair of seal portions according to the embodiment and a calculated temperature of each component.
  • FIG. 5 is a flowchart of the sealing method of the electric heating apparatus according to the embodiment.
  • FIG. 6 is a diagram for explaining a sealing method of the electric heating apparatus according to the embodiment, and is a diagram showing calculated temperatures of respective parts.
  • FIG. 7 is a flowchart of the sealing method of the electric heating apparatus according to the embodiment.
  • FIG. 1 is an overall side view of an electric heating apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a main part of a pair of seal portions according to the
  • FIG. 8 is a diagram for explaining the sealing method of the electric heating apparatus according to the embodiment, and is a diagram showing calculated temperatures of the respective parts.
  • FIG. 9 is a view for explaining another sealing method of the electric heating apparatus according to the embodiment and is a view showing the actual temperature of the object.
  • FIG. 10 is a diagram for explaining a sealing method of the electric heating device according to the comparative example, and is a diagram illustrating the actual temperature of the object.
  • FIG. 11 is a flowchart of a sealing method for an electric heating device according to another embodiment.
  • FIG. 12 is a block diagram of an electric heating device according to still another embodiment.
  • FIG. 13 is a block diagram of an electric heating apparatus according to still another embodiment.
  • the electric heating device is a heat sealer, specifically, an impulse heat sealer.
  • the electric heating device 1 includes an apparatus main body 2 and a movable body 3 that is movable with respect to the apparatus main body 2, so that an object to be sealed (for example, polyethylene) And a pair of seal portions 4 and 5 that seal the object 100 that is a packaging material or the like.
  • an object to be sealed for example, polyethylene
  • a pair of seal portions 4 and 5 that seal the object 100 that is a packaging material or the like.
  • One of the pair of seal portions 4 and 5 is called a first seal portion 4, and the other is called a second seal portion 5.
  • the electric heating apparatus 1 includes a driving unit 6 that moves the movable body 3, a mounting base 7 that is fixed to the apparatus main body 2 and on which the object 100 is mounted, and a pair of seal parts 4 and 5 press the object 100. And a pressure changing unit 8 for changing the pressure to be applied.
  • the electric heating apparatus 1 receives an instruction input unit 9 to which an instruction to perform sealing is input and settings for sealing the object 100 (for example, set temperature, heating intensity, type of the object 100, etc.). And a setting input unit 10.
  • the electric heating device 1 includes a temperature detection unit 11 that detects a temperature, and a control unit 12 that performs each control of the device.
  • the electric heating device 1 includes an energy supply unit 13 that is connected to a power source 200 and supplies electric energy to each unit of the device.
  • the apparatus main body 2 fixes the first seal portion 4.
  • the movable body 3 is formed in a long shape.
  • the base end portion of the movable body 3 is rotatably attached to the apparatus main body 2, and the distal end portion of the movable body 3 fixes the second seal portion 5. Therefore, when the movable body 3 is rotated around the base end portion by the drive unit 6, the pair of seal portions 4 and 5 are brought into contact with and separated from each other.
  • the first seal portion 4 includes a heater 41 that generates heat when energized and a support portion 42 that supports the heater 41 in order to heat and melt the object 100. .
  • the heater 41 is formed in a belt shape.
  • the heater 41 is formed of a conductive heat generating material that generates heat when impulse current is applied (a large current flows instantaneously).
  • the heater 41 is made of nichrome.
  • the thickness dimension of the heater 41 (the vertical dimension in FIG. 2) is 0.1 mm.
  • the support portion 42 is configured such that the heat of the heater 41 is conducted through the insulating portion 43 and the heat is released to the outside.
  • the support portion 42 is made of metal (for example, aluminum).
  • the height dimension of the support portion 42 (the vertical dimension in FIG. 2) is 42 mm.
  • the electric heating device 1 includes a heat radiating unit 14 that conducts heat from the heater 41 and releases the heat.
  • the support part 42 constitutes at least a part of the heat dissipation part 14.
  • the heat radiating unit 14 includes a support unit 42 and the apparatus main body 2.
  • the insulating portion 43 is configured to electrically insulate the heater 41 and the support portion 42 and to conduct heat of the heater 41 to the support portion 42.
  • the insulating portion 43 is a glass tape.
  • the thickness dimension of the insulating portion 43 (the vertical dimension in FIG. 2) is 0.1 mm.
  • the covering portion 44 is configured to protect the heater 41 and to easily peel the first seal portion 4 and the object 100.
  • the covering portion 44 is a fluororesin tape.
  • the thickness dimension of the covering portion 44 (the vertical dimension in FIG. 2) is 0.1 mm.
  • the second seal part 5 includes an elastic part 51 disposed so as to face the first seal part 4 and a seal body part 52 that supports the elastic part 51.
  • the elastic part 51 is made of silicon rubber
  • the seal body part 52 is made of metal (for example, aluminum).
  • the thickness dimension (vertical dimension in FIG. 2) of the elastic part 51 is 4 mm
  • the height dimension (vertical dimension in FIG. 2) of the seal body part 52 is 42 mm.
  • the temperature detection unit 11 includes a temperature sensor 11a that measures temperature, and a signal line 11b that transmits data measured by the temperature sensor 11a to the control unit 12.
  • the temperature sensor 11 a is disposed in contact with the support portion 42 and is separated from the heater 41 so as to detect the temperature of the support portion 42. Further, the temperature sensor 11 a is accommodated in an accommodating portion 42 a provided inside the support portion 42 and is disposed inside the support portion 42.
  • the control unit 12 includes a storage unit 12a that stores various data, and a calculation unit 12b that calculates based on the data stored in the storage unit 12a.
  • the control unit 12 includes a drive control unit 12 c that controls the operation of the drive unit 6, and an energy control unit 12 d that controls electrical energy supplied from the energy supply unit 13 to the heater 41.
  • the calculation unit 12b is a detection temperature before heating of the support unit 42 detected by the temperature detection unit 11 (temperature before the heater 41 generates heat) T0b (see FIGS. 6 and 8) and data stored in the storage unit 12a. Based on the above, electric energy (for example, current value, energization time, etc.) to be supplied to the heater 41 is calculated so that the object 100 has a desired set temperature Ts (see FIG. 6).
  • the energy control unit 12d controls the electrical energy supplied from the energy supply unit 13 to the heater 41 based on the electrical energy calculated by the calculation unit 12b.
  • the pre-heating detection temperature T0b is detected by the temperature detection unit 11 in a state where energization to the heater 41 is stopped and the pair of seal portions 4 and 5 sandwich the object 100.
  • This is the temperature of the support portion 42.
  • the detection temperature T0b before heating is a predetermined time (hereinafter referred to as “detection standby time”) P1 (see FIGS. 6 and 8) in a state where the pair of seal portions 4 and 5 sandwich the object 100. It is the temperature of the support part 42 detected by the temperature detection part 11 after elapses.
  • the calculation unit 12b calculates the temperatures of the heater 41, the support unit 42, and the object 100 based on the pre-heating detection temperature T0b and the electric energy supplied to the heater 41. Therefore, the calculation unit 12b calculates the electric energy (for example, current value, energization time, etc.) supplied to the heater 41 so that the calculated temperature T3 of the object 100 becomes the desired set temperature Ts.
  • the electric energy for example, current value, energization time, etc.
  • the calculation unit 12b calculates the calculation temperature T1 of the heater 41, the calculation temperature T2 of the support unit 42, and the calculation temperature T3 of the object 100 as follows.
  • T0a the pre-heating temperature of the heater 41 (in this embodiment, the pre-heating calculation temperature of the heater 41 calculated by the calculation unit 12b)
  • ⁇ T11 temperature change based on the amount of heat generated by the heater 41
  • ⁇ T12 temperature change based on the amount of heat conducted by the heater 41 to the support portion 42
  • ⁇ T13 temperature change based on the amount of heat conducted by the heater 41 to the object 100
  • ⁇ T14 Temperature change based on the amount of heat conducted by the heater 41 to the outside air
  • T0b Temperature before heating of the support part 42 (in this embodiment, detection temperature before heating of the support part 42 detected by the temperature detection part 11)
  • ⁇ T21 temperature change based on the amount of heat conducted by the support 42 from the heater 41
  • ⁇ T22 temperature change based on the amount of heat conducted by the support 42 to the apparatus body 2
  • ⁇ T23 the amount of heat conducted by the support 42 to the outside air Temperature change based on
  • T0c Temperature before heating of the object 100 (in this embodiment, calculation temperature before heating of the object 100 calculated by the calculation unit 12b)
  • ⁇ T31 temperature change based on the amount of heat conducted by the object 100 from the heater 41
  • ⁇ T32 temperature change based on the amount of heat conducted by the object 100 to the second seal part 5
  • ⁇ T33 the object 100 conducted to the outside air Temperature change based on the amount of heat generated
  • the calculation unit 12b calculates the temperature changes of ⁇ T11 to ⁇ T13, ⁇ T21 to ⁇ T22, and ⁇ T31 to ⁇ T32, the resistance value of the heater 41 stored in the storage unit 12a, the thermal conductivity of each component, and the like. Is calculated based on the theoretical data, and each temperature change of ⁇ T14, ⁇ T23, and ⁇ T33 is calculated based on the actual measurement data stored in the storage unit 12a. In addition, the calculating part 12b may calculate all the data based on theoretical data, and may calculate all the data based on measured data.
  • the insulating part 43, the covering part 44, and the elastic part 51 have small thickness dimensions, the heat capacity of the parts 43, 44, and 51 hardly exists. Therefore, in order to prevent the calculation from becoming complicated and to make a practical device, the influence of the respective parts 43, 44, 51 can be ignored. As a result, the temperature changes ⁇ T12, ⁇ T13, ⁇ T21, ⁇ T31, and ⁇ T32 caused by heat conduction through the respective portions 43, 44, and 51 are theoretical data derived from the assumption that the respective portions 43, 44, and 51 are not present. It is calculated by.
  • the calculating part 12b may calculate the temperature of the apparatus main body 2 and the 2nd seal
  • the calculation unit 12b may calculate the calculation temperature T4 of the seal main body 52 of the second seal unit 5 as follows.
  • the influence of the elastic part 51 can be disregarded below, it calculates with the theoretical data derived
  • T0d Temperature before heating of the seal body 52 (in this embodiment, the calculated temperature before heating of the seal body 52 calculated by the calculator 12b)
  • ⁇ T41 temperature change based on the amount of heat conducted by the seal body 52 from the object 100
  • ⁇ T42 temperature change based on the amount of heat conducted by the seal body 52 to the movable body 3
  • ⁇ T43 the seal body 52 moves to the outside air Temperature change based on the amount of heat conducted
  • the calculation temperatures T1 to T4 of the respective components 41, 42, 100, and 52 are individually calculated. Thereby, the temperature of each structure 41, 42, 100, 52 can be correctly calculated with respect to the temperature of each structure 41, 42, 100, 52 which is different, respectively. Therefore, the object 100 is sealed at the set temperature Ts by controlling the electric energy supplied to the heater 41 so that the calculated temperature T3 of the object 100 becomes the desired set temperature Ts.
  • the calculation unit 12b is configured such that the calculated temperatures T1 and T2 of the heater 41 and the support unit 42 become the same temperature, so that the heater 41 and the support unit 42 are.
  • the calculation of the calculation temperatures T1, T2 is stopped. This is because the temperature of the heater 41 and the support part 42 are the same, and the temperature detection part 11 detects the pre-heating detection temperature T0b of the support part 42 at the start of the next seal, thereby heating the heater 41. This is because the pre-calculated temperature T0a can inevitably be detected.
  • the calculating part 12b stops the calculation of the calculation temperature T3 of the target object 100 when the seal to the target object 100 is completed and the pair of seal parts 4 and 5 release the clamping of the target object 100.
  • the next sealing may be started before the calculated temperatures T1 and T2 of the heater 41 and the support portion 42 become the same temperature.
  • the control unit 12 corrects the calculated temperatures T1 and T2 of the heater 41 and the support unit 42 based on the pre-heating detection temperature T0b of the support unit 42 detected by the temperature detection unit 11.
  • control part 12 correct
  • the configuration of the electric heating device 1 according to the present embodiment is as described above. Next, a sealing method using the electric heating device 1 according to the present embodiment will be described with reference to FIGS.
  • the control unit 12 starts calculation of the calculation temperatures T1 to T3 of the heater 41, the support unit 42, and the object 100 (temperature calculation start step S4), and electric energy is supplied to the heater 41. 41 generates heat and the object 100 is heated (heating step S5, time t10 to t20 in FIG. 6).
  • the control unit 12 calculates the calculated temperatures T1 to T3 of the heater 41, the support unit 42, and the target object 100 based on the pre-heating temperatures T0a to T0c and the energy supplied to the heater 41, and the target object.
  • the electric energy supplied to the heater 41 is controlled so that 100 becomes the set temperature Ts.
  • the control unit 12 stops the calculation of the calculation temperature T3 of the object 100.
  • the second seal will be described. Specifically, after the heater 41 and the support portion 42 are sufficiently cooled, the first case where the second sealing is started, and before the heater 41 and the support portion 42 are sufficiently cooled, the second time. There is a second case where the seal is started.
  • the control part 12 stops the calculation of the calculation temperatures T1 and T2 of the heater 41 and the support part 42 (temperature calculation stop step S9, time t40 in FIG. 6).
  • the process is repeated from the clamping step S1 (time t50 in FIG. 6) as in the first sealing.
  • the temperature detection step S3 time t60 in FIG. 6
  • the actual temperature of the support portion 42 is detected as the pre-heating detection temperature T0b
  • the actual temperature of the support unit 42 in such a state is detected by the temperature detection unit 11 as the pre-heating detection temperature T0b. It is detected (temperature detection step S13, time t32 in FIG. 8).
  • the control unit 12 continues the calculation of the calculated temperatures T1 and T2 of the heater 41 and the support unit 42, the detected temperature T0 of the support unit 42 detected by the temperature condition and the temperature of the support unit 42 The calculated temperature T2 is compared (S14).
  • the calculated temperature T2 of the support section 42 is calculated from the calculated temperature T2a calculated by the control section 12, and the detected temperature T0b before heating of the support section 42 detected by the temperature detection section 11. It is corrected to.
  • the pre-heating calculation temperature T0c of the object 100 is calculated by the control unit 12 based on the pre-heating calculation temperature T0a of the heater 41 and the pre-heating detection temperature T0b of the support unit 42. Thereafter, the heating step S5, the cooling step 6, and the nipping release step S7 (see FIG. 5) are performed as in the first sealing. The third and subsequent seals are repeated in the same manner as the second seal.
  • the heating step S5 includes a first heating step S5a and a second heating step S5b.
  • the control unit 12 controls the electric energy supplied to the heater 41 so that the object 100 becomes the set temperature Ts.
  • the control part 12 controls the electrical energy supplied to the heater 41 so that the target object 100 is maintained by preset temperature Ts.
  • the control unit 12 transmits the temperature change ⁇ T ⁇ b> 31 based on the amount of heat conducted from the heater 41 and the object 100 to the second seal unit 5 in the above formula 3.
  • the electric energy supplied to the heater 41 is decreased, and the temperature of the heater 41 is lower than the predetermined temperature.
  • the actual temperature T30 of the object 100 is set in the second heating step S5b as shown in FIG. Is not stable.
  • the electric heating apparatus 1 not only the object 100 can be set to the set temperature Ts but also the object 100 can be maintained at the set temperature Ts.
  • the electric heating apparatus 1 includes the pair of seal portions 4 and 5 that seal the object 100 with the object 100 interposed therebetween, and at least one of the pair of seal portions 4 and 5 (specifically, the first 1 in the electric heating device 1 including the heater 41 that generates heat when energized, the heat of the heater 41 is conducted, and the heat dissipating unit 14 that releases the heat and before the heater 41 generates heat.
  • T0b which is the temperature of at least one of the object 100, the heater 41, and the heat dissipating part 14 (specifically, the support part 42 of the heat dissipating part 14) in the heater 41
  • a controller 12 for controlling the electric energy to be supplied The controller 12 controls the object 100 based on the pre-heating temperature T0b and the electric energy supplied to the heater 41. And calculates the degree.
  • the control unit 12 includes at least one of the object 100, the heater 41, and the heat radiating unit 14 before the heater 41 generates heat (specifically, the support unit 42 of the heat radiating unit 14).
  • the electric energy supplied to the heater 41 is controlled based on the pre-heating temperature T0b which is the temperature.
  • the control unit 12 calculates the temperature of the object 100 based on the pre-heating temperature T0b and the electric energy supplied to the heater 41. Thereby, since the temperature of the target object 100 can be directly controlled, the target object 100 can be set to the desired temperature Ts. Therefore, the seal quality can be improved.
  • the electric heating device 1 includes a temperature detection unit 11 that detects the pre-heating temperature T0b.
  • the control unit 12 controls the electric energy supplied to the heater 41 based on the accurate pre-heating temperature T0b, and the object 100 Calculate the temperature.
  • the target object 100 can be accurately set to the desired temperature Ts, the seal quality can be further improved.
  • the seal portion (specifically, the first seal portion 4) having the heater 41 supports the heater 41 and at least one of the heat radiating portions 14.
  • the temperature detection unit 11 includes a temperature sensor 11a, and the temperature sensor 11a is disposed in contact with the support unit 42 so as to detect a pre-heating temperature T0b of the support unit 42.
  • the heater 41 is disposed apart from the heater 41.
  • the temperature sensor 11 a is disposed in contact with the support portion 42. Thereby, since the temperature T0b before the heating of the support part 42 which comprises at least one part of the thermal radiation part 14 can be detected, the temperature T0b before the heating of the thermal radiation part 14 can be detected. Furthermore, since the temperature sensor 11a is disposed apart from the heater 41, the problem that occurs in the configuration in which the temperature sensor 11a is in contact with the heater 41 can be solved.
  • the efficiency of heat radiation at the location of the heater 41 in contact with the temperature sensor 11a is lowered. Further, for example, it is possible to eliminate the temperature sensor 11a from being attached to the sealed portion of the object 100. In addition, for example, since the temperature sensor 11a measures the temperature of the support portion 42 that does not reach a higher temperature than the heater 41, the frequency of failure of the temperature sensor 11a due to high heat can be reduced.
  • control unit 12 is in a state where the energization to the heater 41 is stopped and the pair of seal portions 4 and 5 sandwich the object 100. Based on the pre-heating temperature T0b detected by the temperature detector 11, the electric energy supplied to the heater 41 is controlled and the temperature of the object 100 is calculated.
  • the temperature detection unit 11 determines the pre-heating temperature T0b of at least one of the object 100, the heater 41, and the heat radiating unit 14 (specifically, the support unit 42 of the heat radiating unit 14) at a certain temperature. ,To detect.
  • Preheating temperatures T0a and T0c can also be accurately detected. Therefore, since the target object 100 can be accurately set to the desired temperature Ts, the sealing quality can be further improved.
  • control unit 12 is configured such that the predetermined time (detection standby time P1) elapses with the pair of seal portions 4 and 5 sandwiching the object 100. Based on the pre-heating temperature T0b detected by the temperature detector 11, the electric energy supplied to the heater 41 is controlled and the temperature of the object 100 is calculated.
  • the object 100, the heater 41, and the heat dissipation unit 14 are By conducting heat with each other, the temperature is surely fixed.
  • the temperature detection part 11 is the temperature before a heating of at least 1 (specifically, the support part 42 of the heat radiating part 14) among the target object 100, the heater 41, and the heat radiating part 14 which became reliably constant temperature. T0b is detected.
  • the pre-heating temperature T0b of the part (the support part 42 of the heat radiating part 14) directly detected by the temperature detection part 11 but also the part (the object 100 and the heater 41) not directly detected by the temperature detection part 11
  • the pre-heating temperatures T0a and T0c can also be detected more accurately. Therefore, since the target object 100 can be more accurately set to the desired temperature Ts, the sealing quality can be further improved.
  • the temperature detection unit 11 is configured to heat at least one of the heater 41 and the heat dissipation unit 14 (specifically, the support unit 42 of the heat dissipation unit 14). Detecting the temperature T0b, the control unit 12 calculates the temperature of the heater 41 and the heat radiating unit 14 (support unit 42) based on the pre-heating temperature T0b and the electric energy supplied to the heater 41, Further, after the energization of the heater 41 is stopped, the control unit 12 causes the calculated temperatures T1 and T2 of the heater 41 and the heat radiating unit 14 (support unit 42) to be the same temperature, so that the heater 41 and The calculation of the temperature of the heat radiating part 14 (support part 42) is stopped.
  • the control unit 12 After stopping energization of the heater 41, the control unit 12 causes the calculated temperatures T ⁇ b> 1 and T ⁇ b> 2 of the heater 41 and the heat radiating unit 14 (support unit 42) to be the same temperature, so that the heater 41 and The calculation of the temperature of the heat radiation part 14 (support part 42) is stopped. Thereby, the calculation load of the control part 12 can be reduced.
  • the temperature detection unit 11 is configured to heat at least one of the heater 41 and the heat dissipation unit 14 (specifically, the support unit 42 of the heat dissipation unit 14). Detecting the temperature T0b, the control unit 12 calculates the temperature of the heater 41 and the heat radiating unit 14 (support unit 42) based on the pre-heating temperature T0b and the electric energy supplied to the heater 41, Further, when the energization to the heater 41 is resumed after the energization to the heater 41 is stopped, the control unit 12 based on the pre-heating temperature T0b detected by the temperature detection unit 11. And the calculation temperatures T1 and T2 of the heat radiating section 14 (support section 42) are corrected.
  • the control unit 12 when stopping energization to the heater 41 and restarting energization to the heater 41, based on the preheating temperature T0b detected by the temperature detection unit 11, The calculated temperatures T1 and T2 of the heat radiating section 14 (support section 42) are corrected. As a result, even when the calculated temperatures T1 and T2 are different from the actual temperatures, the calculated temperatures T1 and T2 can be made accurate.
  • the controller 12 stops energizing the heater 41 the calculated temperatures T1 and T2 of the heater 41 and the heat radiating unit 14 (supporting part 42) are When the energization to the heater 41 is resumed before the same temperature is reached, the calculation of the heater 41 and the heat radiating unit 14 (support unit 42) is performed based on the pre-heating temperature T0b detected by the temperature detecting unit 11. The temperatures T1 and T2 are corrected.
  • FIG. 11 the parts denoted by the same reference numerals as those in FIGS. 1 to 10 represent elements having substantially the same configuration or substantially the same function (action) as in the first embodiment. Do not repeat.
  • the electric heating device 1 according to the present embodiment is different from the electric heating device 1 according to the first embodiment in that the calculation temperature correction step S ⁇ b> 15 is not provided.
  • the calculation temperature correction step S ⁇ b> 15 is not provided.
  • N a state where the heater 41 and the support portion 42 are not sufficiently cooled
  • Y the instruction input portion 9
  • S16 it is output to the outside that the seal cannot be made (sealing is being prepared)
  • the control unit 12 maintains the energization stop of the heater 41 until the calculated temperatures T ⁇ b> 1 and T ⁇ b> 2 of the heater 41 and the support unit 42 become the same temperature.
  • the calculated temperature T1 of the heater 41 and the calculated temperature T2 of the support portion 42 are usually about 2 to 5 seconds (even at most after the energization of the heater 41 is stopped). In about 10 seconds), the same temperature is reached. Therefore, even if such control is performed, there is almost no influence on the production efficiency.
  • the electric heating device 1 according to the present embodiment may be configured to include, for example, an output unit (for example, an indicator lamp) that outputs visually, or includes an output unit (for example, a buzzer) that outputs audibly. It may be configured as follows.
  • the temperature detection unit 11 heats at least one of the heater 41 and the heat dissipation unit 14 (specifically, the support unit 42 of the heat dissipation unit 14).
  • the control unit 12 calculates the temperatures of the heater 41 and the heat radiating unit 14 (support unit 42) based on the pre-temperature T0b. Furthermore, after the controller 12 stops energizing the heater 41, the control unit 12 supplies the heater 41 with the calculated temperatures T 1 and T 2 of the heater 41 and the heat radiating unit 14 (support unit 42) until they reach the same temperature. Keep the power off of the.
  • the control unit 12 supplies the heater 41 with the calculated temperatures T ⁇ b> 1 and T ⁇ b> 2 of the heater 41 and the heat radiating unit 14 (support unit 42) until they reach the same temperature. Maintain power off.
  • the temperature detection unit 11 determines the pre-heating temperature T0b of at least one of the heater 41 and the heat dissipation unit 14 (specifically, the support unit 42 of the heat dissipation unit 14). ,To detect.
  • the heater 41 and the heat radiating part 14 are at a constant temperature, not only the temperature T0b before heating of the part (the support part 42 of the heat radiating part 14) directly detected by the temperature detecting part 11, but also the temperature detecting part
  • the pre-heating temperatures T0a and T0c of the part (object 100 and heater 41) that 11 does not directly detect can also be detected more accurately. Therefore, since the target object 100 can be more accurately set to the desired temperature Ts, the sealing quality can be further improved.
  • FIG. 12 the portions denoted by the same reference numerals as those in FIGS. 1 to 10 represent elements having substantially the same configuration or substantially the same function (action) as those in the first embodiment, and the description thereof is as follows. Do not repeat.
  • the electric heating device 1 does not include the temperature detection unit 11 and includes the information input unit 15 as compared with the electric heating device 1 according to the first embodiment. It is different in point.
  • the calculation unit 12b continuously calculates the temperatures of the heater 41 and the heat radiating unit 14 (for example, the support unit 42) when energizing the heater 41 and stopping the energization are repeated. Then, the calculation unit 12b calculates pre-heating temperatures T0a to T0c at the second and subsequent seals based on the calculated temperatures T1 and T2 of the heater 41 and the heat dissipation unit 14 (for example, the support unit 42). In addition, the calculation part 12b is calculating the temperature of the target object 100, when sealing the target object 100. FIG.
  • the information input unit 15 may be a temperature input unit to which temperatures such as the outside air temperature, the sealer ambient temperature, and the room temperature are input.
  • the calculation unit 12b calculates the pre-heating temperatures T0a to T0c at the first sealing based on the input temperature.
  • the calculation unit 12b may use the input temperature as it is as the pre-heating temperatures T0a to T0c at the time of the first sealing, and the temperature obtained by performing a predetermined calculation on the input temperature at the time of the first sealing.
  • the pre-heating temperatures T0a to T0c may be used.
  • the information input unit 15 may be a time input unit into which a time such as a date and a date is input.
  • the storage unit 12a stores information on the relationship between time and preheating temperatures T0a to T0c
  • the calculation unit 12b stores information stored in the storage unit 12a and the information input unit 15. Based on the input time (month, day, date, etc.), preheating temperatures T0a to T0c at the first sealing are calculated.
  • the information input unit 15 may be manually input by an operator. In such a configuration, for example, a numeric keypad, a keyboard, and the like can be given. Further, in the electric heating apparatus 1 according to the present embodiment, the information input unit 15 may be configured to automatically input information by wire or wireless. In such a configuration, for example, a receiving device that can receive information such as the Internet by wire or wireless may be used.
  • the electric heating device 1 includes the information input unit 15 to which information is input, and the control unit 12 performs the initial sealing based on the information input to the information input unit 15.
  • the pre-heating temperatures T0a to T0c are calculated, and the control unit 12 further repeats energization of the heater 41 and stop of energization of the heater 41 and the heat dissipation unit 14 (for example, the support unit 42).
  • the temperature is continuously calculated, and the pre-heating temperatures T0a to T0c at the second and subsequent sealing are calculated based on the calculated temperatures T1 and T2 of the heater 41 and the heat radiating unit 14 (for example, the support unit 42).
  • the control unit 12 calculates the pre-heating temperatures T0a to T0c at the first sealing based on information input to the information input unit 15. Then, the control unit 12 controls the electric energy supplied to the heater 41 and calculates the temperature of the object 100 based on the pre-heating temperatures T0a to T0c.
  • control unit 12 calculates the preheating temperatures T0a to T0c at the second and subsequent seals based on the calculated temperatures T1 and T2 of the heater 41 and the heat radiating unit 14 (for example, the support unit 42), and before the heating. Based on the temperatures T0a to T0c, the electric energy supplied to the heater 41 is controlled and the temperature of the object 100 is calculated. Therefore, a device that actually detects the temperature (for example, the temperature detection unit 11 according to the first and second embodiments) is not necessary.
  • FIG. 13 the parts denoted by the same reference numerals as those in FIGS. 1 to 10 represent elements having substantially the same configuration or substantially the same function (action) as those in the first embodiment. Do not repeat.
  • the electric heating device 1 according to the present embodiment does not include the temperature detection unit 11 and the control unit 12 includes a calendar function as compared with the electric heating device 1 according to the first embodiment. Is different.
  • the control unit 12 includes a calendar function unit 12e having a calendar function.
  • Calculating unit 12b calculates pre-heating temperatures T0a to T0c at the first sealing based on the calendar function of calendar function unit 12e.
  • the storage unit 12a stores information on the relationship between the time and the pre-heating temperatures T0a to T0c, and the calendar function unit 12e outputs the current time (month, day, date, etc.) for calculation.
  • the unit 12b calculates pre-heating temperatures T0a to T0c at the first sealing based on the information stored in the storage unit 12a and the current time output by the calendar function unit 12e.
  • the calculation unit 12b continuously calculates the temperatures of the heater 41 and the heat radiating unit 14 (for example, the support unit 42) when energizing the heater 41 and stopping the energization are repeated. Then, the calculation unit 12b calculates pre-heating temperatures T0a to T0c at the second and subsequent seals based on the calculated temperatures T1 and T2 of the heater 41 and the heat dissipation unit 14 (for example, the support unit 42). In addition, the calculation part 12b is calculating the temperature of the target object 100, when sealing the target object 100. FIG.
  • the control unit 12 includes a calendar function, calculates the pre-heating temperatures T0a to T0c at the first sealing based on the calendar function, The controller 12 continuously calculates the temperatures of the heater 41 and the heat dissipating part 14 (for example, the support part 42) when energizing the heater 41 and stopping the energization, and the second and subsequent times.
  • the pre-heating temperatures T0a to T0c at the time of sealing are calculated based on the calculated temperatures T1 and T2 of the heater 41 and the heat radiating section 14 (for example, the support section 42).
  • the controller 12 having the calendar function calculates the pre-heating temperatures T0a to T0c at the first sealing based on the calendar function. Then, the control unit 12 controls the electric energy supplied to the heater 41 and calculates the temperature of the object 100 based on the pre-heating temperatures T0a to T0c.
  • control unit 12 calculates the preheating temperatures T0a to T0c at the second and subsequent seals based on the calculated temperatures T1 and T2 of the heater 41 and the heat radiating unit 14 (for example, the support unit 42), and before the heating. Based on the temperatures T0a to T0c, the electric energy supplied to the heater 41 is controlled and the temperature of the object 100 is calculated. Therefore, a device that actually detects the temperature (for example, the temperature detection unit 11 according to the first and second embodiments) is not necessary.
  • the electric heating device is not limited to the configuration of the above-described embodiment, and is not limited to the above-described effects.
  • the electric heating device can be variously modified without departing from the gist of the present invention.
  • the configurations and methods of the plurality of embodiments described above may be arbitrarily adopted and combined (the configurations and methods according to one embodiment may be combined with the configurations and methods according to the other embodiments).
  • only one seal portion (first seal portion) 4 of the pair of seal portions 4 and 5 includes the heater 41.
  • the electric heating device is not limited to such a configuration.
  • the structure that the both seal parts 4 and 5 are equipped with the heater 41 among a pair of seal parts 4 and 5 may be sufficient.
  • the electric heating device is not limited to such a configuration.
  • the electric heating device may be configured such that only the first seal portion 4 is movable, or may be configured such that both the pair of seal portions 4 and 5 are movable.
  • the control unit 12 calculates the temperatures of the heater 41, the heat radiating unit 14 (supporting unit 42), and the object 100 based on the above formulas 1 to 3. This is the configuration.
  • the electric heating device is not limited to such a configuration.
  • the control unit 12 calculates the calculation temperature T1 of the heater 41 and the calculation of the seal body 52 of the second seal unit 5.
  • a configuration in which the calculated temperature T3 of the object 100 is calculated based on the temperature T4 may be employed.
  • control unit 12 may calculate the temperature of the object 100 based on the following formula 1a, the above formula 2, the following formula 3a, and the following formula 4a.
  • the influence of the object 100 is ignored, and the calculation is performed using theoretical data derived as the object 100 not existing.
  • T1 T0a + ⁇ T11 ⁇ T12 ⁇ T13a ⁇ T14 (Formula 1a)
  • ⁇ T13a temperature change based on the amount of heat conducted by the heater 41 to the seal body 52
  • T3 T4 + (T1-T4) ⁇ ⁇ (Formula 3a)
  • 0 to 100%, and is a coefficient determined by the thickness and material of the object 100.
  • T4 T0d + ⁇ T41a ⁇ T42 ⁇ T43 (Formula 4a)
  • ⁇ T41a temperature change based on the amount of heat conducted from the heater 41 to the seal body 52
  • the temperature detection unit 11 is configured to detect the temperature of the support unit 42 that constitutes the heat dissipation unit 14.
  • the electric heating device is not limited to such a configuration.
  • the temperature detection unit 11 may be configured to detect the temperature of the object 100, the temperature detection unit 11 may be configured to detect the temperature of the heater 41, and the temperature detection may be performed.
  • the part 11 may be configured to detect the temperature of the apparatus main body 2 constituting the heat radiating part 14.
  • the control unit 12 has passed a predetermined time (detection waiting time) P1 with the pair of seal portions 4 and 5 sandwiching the object 100.
  • the electric energy supplied to the heater 41 is controlled based on the temperature detected by the temperature detecting unit 11 later.
  • the electric heating device is not limited to such a configuration.
  • the control unit 12 controls the electrical energy supplied to the heater 41 based on the temperature detected by the temperature detection unit 11 immediately after the pair of seal units 4 and 5 sandwich the object 100.
  • the structure of calculating the temperature of the target object 100 may be sufficient.
  • the control unit 12 controls the electric energy supplied to the heater 41 based on the temperature detected by the temperature detection unit 11 before the pair of seal units 4 and 5 sandwich the target object 100, and the target object 100. The temperature may be calculated.
  • the control unit 12 stops the energization of the heater 41, and then calculates the calculated temperatures T1, T2 of the heater 41 and the heat radiating unit 14 (support unit 42). When the temperature reaches the same temperature, the calculation of the temperatures of the heater 41 and the heat radiating unit 14 is stopped.
  • the electric heating device is not limited to such a configuration.
  • the control unit 12 may prevent the heater 41 and the heat radiating unit 14 (the heating unit 41 and the heat radiating unit 14 (supporting unit 42) from having the calculated temperatures T1 and T2 become the same temperature.
  • a configuration in which the calculation of the temperature of the support portion 42) is continued may be employed.
  • the control unit 12 calculates the calculated temperature T1 of the heater 41 and the heat radiating unit 12 (support unit 42) based on the preheating temperature T0b detected by the temperature detection unit 11. , T2 may be corrected.
  • SYMBOLS 1 Electric heating apparatus, 2 ... Apparatus main body, 3 ... Movable body, 4 ... 1st seal

Abstract

 電熱装置は、ヒータが発熱する前における対象物、ヒータ、及び放熱部のうち少なくとも一つの温度である加熱前温度に基づいて、ヒータに供給する電気エネルギを制御する制御部を備え、制御部は、加熱前温度とヒータに供給する電気エネルギとに基づいて、対象物の温度を演算する。

Description

電熱装置
 本発明は、対象物を挟んでシールする一対のシール部を備える電熱装置に関する。
 従来、対象物を挟んでシールする一対のシール部を備える電熱装置として、通電されることにより発熱するヒータと、ヒータの温度を連続して測定する温度測定部とを備える電熱装置が、知られている(例えば、特許文献1)。該電熱装置は、温度測定部で測定する温度が所定の温度となるように、ヒータを通電している。
 ところで、特許文献1に係る電熱装置においては、対象物が一対のシール部で挟まれるため、対象物がヒータで加熱されて対象物の温度が上昇する際に、一対のシール部で挟まれた対象物の部分(例えば、被シール部分)の正確な温度を測定することができない。したがって、好ましい状態で対象物をシールできない場合もあった。
日本国特開平6-59749号公報
 よって、本発明は、斯かる事情に鑑み、シール品質の向上を図ることができる電熱装置を提供することを課題とする。
 本発明に係る電熱装置は、対象物を挟んでシールする一対のシール部を備え、前記一対のシール部のうち少なくとも一方は、通電されることにより発熱するヒータを備える電熱装置において、前記ヒータの熱が伝導され、該熱を放出する放熱部と、前記ヒータが発熱する前における前記対象物、前記ヒータ、及び前記放熱部のうち少なくとも一つの温度である加熱前温度に基づいて、前記ヒータに供給する電気エネルギを制御する制御部と、を備え、前記制御部は、前記加熱前温度と前記ヒータに供給する電気エネルギとに基づいて、前記対象物の温度を演算することを特徴とする。
 また、電熱装置は、前記加熱前温度を検出する温度検出部を備える、という構成でもよい。
 また、電熱装置においては、前記ヒータを有する前記シール部は、前記ヒータを支持し且つ前記放熱部の少なくとも一部を構成する支持部を備え、前記温度検出部は、温度センサを備え、前記温度センサは、前記支持部の加熱前温度を検出すべく前記支持部に接して配置されると共に、前記ヒータとは離間して配置される、という構成でもよい。
 また、電熱装置においては、前記制御部は、前記ヒータへの通電が停止された状態で且つ前記一対のシール部が前記対象物を挟んだ状態で前記温度検出部が検出した加熱前温度に基づいて、前記ヒータに供給する電気エネルギを制御し且つ前記対象物の温度を演算する、という構成でもよい。
 また、電熱装置においては、前記制御部は、前記一対のシール部が前記対象物を挟んだ状態で所定時間を経過した後に前記温度検出部が検出した加熱前温度に基づいて、前記ヒータに供給する電気エネルギを制御し且つ前記対象物の温度を演算する、という構成でもよい。
 また、電熱装置においては、前記温度検出部は、前記ヒータ及び前記放熱部のうち少なくとも一つの加熱前温度を検出し、前記制御部は、前記加熱前温度と前記ヒータに供給する電気エネルギとに基づいて、前記ヒータ及び前記放熱部の温度を演算し、さらに、前記制御部は、前記ヒータへの通電を停止した後、前記ヒータ及び前記放熱部の演算温度が同じ温度になることで、前記ヒータ及び前記放熱部の温度の演算を停止する、という構成でもよい。
 また、電熱装置においては、前記温度検出部は、前記ヒータ及び前記放熱部のうち少なくとも一つの加熱前温度を検出し、前記制御部は、前記加熱前温度と前記ヒータに供給する電気エネルギとに基づいて、前記ヒータ及び前記放熱部の温度を演算し、さらに、前記制御部は、前記ヒータへの通電を停止した後に前記ヒータへの通電を再開する場合に、前記温度検出部が検出する前記加熱前温度に基づいて、前記ヒータ及び前記放熱部の演算温度を補正する、という構成でもよい。
 また、電熱装置においては、前記温度検出部は、前記ヒータ及び前記放熱部のうち少なくとも一つの加熱前温度を検出し、前記制御部は、前記加熱前温度と前記ヒータに供給する電気エネルギとに基づいて、前記ヒータ及び前記放熱部の温度を演算し、さらに、前記制御部は、前記ヒータへの通電を停止した後、前記ヒータ及び前記放熱部の演算温度が同じ温度になるまで、前記ヒータへの通電の停止を維持する、という構成でもよい。
 また、電熱装置は、情報が入力される情報入力部を備え、前記制御部は、前記情報入力部に入力される情報に基づいて、初回のシール時の加熱前温度を演算し、さらに、前記制御部は、前記ヒータへの通電及び該通電の停止を繰り返す際に、前記ヒータ及び前記放熱部の温度を連続して演算すると共に、二回目以降のシール時の加熱前温度を前記ヒータ及び前記放熱部の演算温度に基づいて演算する、という構成でもよい。
 また、電熱装置においては、前記制御部は、カレンダー機能を備えており、前記カレンダー機能に基づいて初回のシール時の加熱前温度を演算し、さらに、前記制御部は、前記ヒータへの通電及び該通電の停止を繰り返す際に、前記ヒータ及び前記放熱部の温度を連続して演算すると共に、二回目以降のシール時の加熱前温度を前記ヒータ及び前記放熱部の演算温度に基づいて演算する、という構成でもよい。
 以上の如く、本発明に係る電熱装置は、シール品質の向上を図ることができるという優れた効果を奏する。
図1は、本発明の一実施形態に係る電熱装置の全体側面図である。 図2は、同実施形態に係る一対のシール部の要部断面図である。 図3は、同実施形態に係る電熱装置のブロック図である。 図4は、同実施形態に係る一対のシール部の要部断面図と各構成の演算温度とを示す図である。 図5は、同実施形態に係る電熱装置のシール方法のフローチャートである。 図6は、同実施形態に係る電熱装置のシール方法を説明する図であって、各部の演算温度を示す図である。 図7は、同実施形態に係る電熱装置のシール方法のフローチャートである。 図8は、同実施形態に係る電熱装置のシール方法を説明する図であって、各部の演算温度を示す図である。 図9は、同実施形態に係る電熱装置の別なシール方法を説明する図であって、対象物の実温度を示す図である。 図10は、比較例に係る電熱装置のシール方法を説明する図であって、対象物の実温度を示す図である。 図11は、他の実施形態に係る電熱装置のシール方法のフローチャートである。 図12は、さらに他の実施形態に係る電熱装置のブロック図である。 図13は、さらに他の実施形態に係る電熱装置のブロック図である。
<第1実施形態>
 以下、本発明に係る電熱装置における第1の実施形態について、図1~図10を参酌して説明する。本実施形態においては、電熱装置は、ヒートシーラ、具体的には、インパルス式ヒートシーラとしている。
 図1に示すように、本実施形態に係る電熱装置1は、装置本体2と、装置本体2に対して可動する可動体3と、互いに接離することで、被シール物(例えば、ポリエチレンの包材等)である対象物100を挟んでシールする一対のシール部4,5とを備えている。一対のシール部4,5のうち、一方は、第1のシール部4と呼ばれ、他方は、第2のシール部5と呼ばれる。
 電熱装置1は、可動体3を可動させる駆動部6と、装置本体2に固定され、対象物100を載置するための載置台7と、一対のシール部4,5が対象物100を押圧する圧力を変更させる圧力変更部8とを備えている。また、電熱装置1は、シールを行う指示が入力される指示入力部9と、対象物100をシールするための設定(例えば、設定温度、加熱強度、対象物100の種類等)が入力される設定入力部10とを備えている。
 電熱装置1は、温度を検出する温度検出部11と、装置の各制御を行う制御部12とを備えている。また、電熱装置1は、電源200に接続されて装置の各部に電気エネルギを供給するエネルギ供給部13を備えている。
 装置本体2は、第1のシール部4を固定している。また、可動体3は、長尺に形成されている。そして、可動体3の基端部は、装置本体2に回動可能に取り付けられていると共に、可動体3の先端部は、第2のシール部5を固定している。したがって、駆動部6により、可動体3が基端部を中心にして回動することで、一対のシール部4,5が接離する。
 図2に示すように、第1のシール部4は、対象物100を加熱して溶融すべく、通電されることにより発熱するヒータ41と、ヒータ41を支持する支持部42とを備えている。また、第1のシール部4は、ヒータ41と支持部42とを電気的に絶縁すべく、ヒータ41と支持部42との間に配置される絶縁部43と、ヒータ41を外側から被覆する被覆部44とを備えている。
 ヒータ41は、帯状に形成されている。そして、ヒータ41は、インパルス通電される(瞬間的に大電流を流す)ことにより発熱する導電性発熱材で形成されている。本実施形態においては、ヒータ41は、ニクロムで形成されている。例えば、ヒータ41の厚み寸法(図2の上下方向の寸法)は、0.1mmである。
 支持部42は、ヒータ41の熱が絶縁部43を経由して伝導され、該熱を外部に放出するように構成されている。本実施形態においては、支持部42は、金属(例えばアルミ)で形成されている。例えば、支持部42の高さ寸法(図2の上下方向の寸法)は、42mmである。
 なお、電熱装置1は、ヒータ41の熱が伝導されて且つ該熱を放出する放熱部14を備えている。そして、支持部42は、放熱部14の少なくとも一部を構成している。本実施形態においては、放熱部14は、支持部42及び装置本体2で構成されている。
 絶縁部43は、ヒータ41と支持部42とを電気的に絶縁すると共に、ヒータ41の熱を支持部42に伝導するように、構成されている。本実施形態においては、絶縁部43は、ガラステープとしている。例えば、絶縁部43の厚み寸法(図2の上下方向の寸法)は、0.1mmである。
 被覆部44は、ヒータ41を保護し且つ第1のシール部4と対象物100とを容易に剥離できるように、構成されている。本実施形態においては、被覆部44は、フッ素樹脂テープとしている。例えば、被覆部44の厚み寸法(図2の上下方向の寸法)は、0.1mmである。
 第2のシール部5は、第1のシール部4と対面するように配置される弾性部51と、弾性部51を支持するシール本体部52とを備えている。本実施形態においては、弾性部51は、シリコンゴムとしており、シール本体部52は、金属(例えば、アルミ)としている。例えば、弾性部51の厚み寸法(図2の上下方向の寸法)は、4mmであり、シール本体部52の高さ寸法(図2の上下方向の寸法)は、42mmである。
 温度検出部11は、温度を測定する温度センサ11aと、温度センサ11aで測定したデータを制御部12に送信する信号線11bとを備えている。温度センサ11aは、支持部42の温度を検出すべく、支持部42に接して配置されていると共に、ヒータ41とは離間して配置されている。また、温度センサ11aは、支持部42の内部に設けられる収容部42aに収容され、支持部42の内部に配置されている。
 制御部12は、図3に示すように、各種データを記憶する記憶部12aと、記憶部12aで記憶されるデータに基づいて演算する演算部12bとを備えている。また、制御部12は、駆動部6の動作を制御する駆動制御部12cと、エネルギ供給部13からヒータ41に供給される電気エネルギを制御するエネルギ制御部12dとを備えている。
 演算部12bは、温度検出部11で検出する支持部42の加熱前検出温度(ヒータ41が発熱する前の温度)T0b(図6及び図8参照)と記憶部12aで記憶しているデータとに基づいて、対象物100が所望の設定温度Ts(図6参照)となるように、ヒータ41に供給する電気エネルギ(例えば、電流値、通電時間等)を演算する。そして、エネルギ制御部12dは、演算部12bで演算した電気エネルギに基づいて、エネルギ供給部13からヒータ41に供給される電気エネルギを制御している。
 本実施形態においては、加熱前検出温度T0bは、ヒータ41への通電が停止された状態で且つ一対のシール部4,5が対象物100を挟んだ状態で、温度検出部11で検出される支持部42の温度である。具体的には、加熱前検出温度T0bは、一対のシール部4,5が対象物100を挟んだ状態で所定時間(以下、「検出待機時間」という)P1(図6及び図8参照)を経過した後に、温度検出部11で検出される支持部42の温度である。
 また、演算部12bは、加熱前検出温度T0bとヒータ41に供給する電気エネルギとに基づいて、ヒータ41、支持部42、及び対象物100の温度を演算する。したがって、演算部12bは、対象物100の演算温度T3が所望の設定温度Tsとなるように、ヒータ41に供給する電気エネルギ(例えば、電流値、通電時間等)を演算している。
 本実施形態においては、演算部12bは、ヒータ41の演算温度T1、支持部42の演算温度T2、及び対象物100の演算温度T3を、それぞれ以下のように演算している。
(ヒータ41の演算温度T1)
 T1 = T0a+ΔT11-ΔT12-ΔT13-ΔT14   …(式1)
 ここで、T0a、ΔT11~ΔT14は、以下の通りである。
・T0a :ヒータ41の加熱前温度(本実施形態においては、演算部12bが演算するヒータ41の加熱前演算温度)
・ΔT11:ヒータ41が発熱する熱量に基づく温度変化
・ΔT12:ヒータ41が支持部42へ伝導する熱量に基づく温度変化
・ΔT13:ヒータ41が対象物100へ伝導する熱量に基づく温度変化
・ΔT14:ヒータ41が外気等へ伝導する熱量に基づく温度変化
(支持部42の演算温度T2)
 T2 = T0b+ΔT21-ΔT22-ΔT23   …(式2)
 ここで、T0b、ΔT21~ΔT23は、以下の通りである。
・T0b :支持部42の加熱前温度(本実施形態においては、温度検出部11が検出する支持部42の加熱前検出温度)
・ΔT21:支持部42がヒータ41から伝導される熱量に基づく温度変化
・ΔT22:支持部42が装置本体2へ伝導する熱量に基づく温度変化
・ΔT23:支持部42が外気等へ伝導する熱量に基づく温度変化
(対象物100の演算温度T3)
 T3 = T0c+ΔT31-ΔT32-ΔT33   …(式3)
 ここで、T0c、ΔT31~ΔT33は、以下の通りである。
・T0c :対象物100の加熱前温度(本実施形態においては、演算部12bが演算する対象物100の加熱前演算温度)
・ΔT31:対象物100がヒータ41から伝導される熱量に基づく温度変化
・ΔT32:対象物100が第2のシール部5へ伝導する熱量に基づく温度変化
・ΔT33:対象物100が外気等へ伝導する熱量に基づく温度変化
 本実施形態においては、演算部12bは、ΔT11~ΔT13、ΔT21~ΔT22、及びΔT31~ΔT32の各温度変化を、記憶部12aで記憶されているヒータ41の抵抗値及び各構成の熱伝導率等による理論データに基づいて演算し、ΔT14、ΔT23、及びΔT33の各温度変化を、記憶部12aで記憶されている実測データに基づいて演算している。なお、演算部12bは、全てのデータを理論データに基づいて算出してもよく、また、全てのデータを実測データに基づいて算出してもよい。
 本実施形態においては、絶縁部43、被覆部44、弾性部51の厚み寸法が小さいため、該各部43,44,51の熱容量が殆ど無い。したがって、演算が複雑になるのを防止して、実用的な装置とするために、該各部43,44,51の影響を無視することができる。これにより、該各部43,44,51を経由する熱伝導に起因する温度変化ΔT12,ΔT13,ΔT21,ΔT31,ΔT32は、該各部43,44,51が存在していないものとして導き出された理論データで演算されている。
 なお、演算部12bは、同様に、例えば、装置本体2、第2のシール部5の温度を演算してもよい。例えば、演算部12bは、第2のシール部5のシール本体部52の演算温度T4を、以下のように演算してもよい。なお、以下は、弾性部51の影響が無視できるため、弾性部51が存在していないものとして導き出された理論データで演算している。
(シール本体部52の演算温度T4)
 T4 = T0d+ΔT41-ΔT42-ΔT43   …(式4)
 ここで、T0d、ΔT41~ΔT43は、以下の通りである。
・T0d :シール本体部52の加熱前温度(本実施形態においては、演算部12bが演算するシール本体部52の加熱前演算温度)
・ΔT41:シール本体部52が対象物100から伝導される熱量に基づく温度変化
・ΔT42:シール本体部52が可動体3へ伝導する熱量に基づく温度変化
・ΔT43:シール本体部52が外気等へ伝導する熱量に基づく温度変化
 このように、図4に示すように、各構成41,42,100,52の演算温度T1~T4が個別に演算されている。これにより、それぞれ異なっている各構成41,42,100,52の温度に対して、各構成41,42,100,52の温度を正確に演算することができる。したがって、対象物100の演算温度T3が所望の設定温度Tsとなるように、ヒータ41に供給する電気エネルギが制御されることで、対象物100は、設定温度Tsでシールされる。
 演算部12bは、対象100へのシールが完了し、ヒータ41への通電を停止した後、ヒータ41及び支持部42の演算温度T1,T2が同じ温度になることで、ヒータ41及び支持部42の演算温度T1,T2の演算を停止する。これは、ヒータ41及び支持部42の温度が同じになっているため、次回のシールの開始時に、支持部42の加熱前検出温度T0bを温度検出部11で検出することにより、ヒータ41の加熱前演算温度T0aも必然的に検出することができるためである。
 即ち、温度検出部11で検出した支持部42の加熱前の温度は、当然に、支持部42の加熱前検出温度T0bになるが、当該温度は、ヒータ41の加熱前演算温度T0aにもなる(T0a=T0b)ためである。なお、演算部12bは、対象物100へのシールが完了し、一対のシール部4,5が対象物100の挟持を解除することで、対象物100の演算温度T3の演算を停止する。
 ところで、ヒータ41及び支持部42の演算温度T1,T2が同じ温度になる前に、次回のシールが開始される場合もある。斯かる場合においては、制御部12は、温度検出部11が検出する支持部42の加熱前検出温度T0bに基づいて、ヒータ41及び支持部42の演算温度T1,T2を補正する。
 なお、詳細は後述するが(図8参照)、制御部12は、支持部42の演算温度T2を、温度検出部11が検出する支持部42の加熱前検出温度T0bに補正する。そして、制御部12は、当該補正に基づいて、ヒータ41の演算温度T1の加熱前演算温度T0aを補正する。
 本実施形態に係る電熱装置1の構成については以上の通りであり、次に、本実施形態に係る電熱装置1を用いたシール方法について、図5~図8を参酌して説明する。
 まず、初回のシールについて、図5及び図6を参酌して説明する。
 一対のシール部4,5の間に対象物100が配置され、指示入力部9にシールを行う指示が入力されると、一対のシール部4,5が対象物100を挟持する(挟持工程S1、図6の時間t0)。その後、検出待機時間P1(例えば、0.2秒間)が経過する(S2の「Y」)ことにより、斯かる状態の支持部42の実温度が加熱前検出温度T0bとして検出される(温度検出工程S3、図6の時間t10)。
 このとき、検出待機時間P1が経過しているため、ヒータ41、支持部42、及び対象物100は、互いに熱伝導し合い、一定の温度(同じ温度、又はシール品質に影響しない略同じ温度)になっている。これにより、検出された支持部42の該加熱前検出温度T0bは、ヒータ41及び対象物100の加熱前演算温度T0a,T0cにもなる(T0a=T0b=T0c)。
 そして、制御部12が、ヒータ41、支持部42、及び対象物100の演算温度T1~T3の演算を開始する(温度演算開始工程S4)と共に、電気エネルギがヒータ41に供給されるため、ヒータ41が発熱し、対象物100が加熱される(加熱工程S5、図6の時間t10~t20)。このとき、制御部12は、加熱前温度T0a~T0cとヒータ41に供給されるエネルギに基づいて、ヒータ41、支持部42、及び対象物100の演算温度T1~T3を演算すると共に、対象物100が設定温度Tsとなるように、ヒータ41に供給する電気エネルギを制御している。
 対象物100を設定温度Tsにする電気エネルギがヒータ41に供給された後、ヒータ41への通電が停止される。これにより、ヒータ41、支持部42、及び対象物100は、放熱されるため、それぞれ冷却される(冷却工程S6、図6の時間t20~t30)。その後、一対のシール部4,5が離反することで、対象物100の挟持が解除され(挟持解除工程S7、図6の時間t30)、初回のシールが完了する。このとき、制御部12は、対象物100の演算温度T3の演算を停止する。
 次に、2回目のシールについて説明する。具体的には、ヒータ41及び支持部42が充分に冷却された後に、2回目のシールが開始される第1の場合と、ヒータ41及び支持部42が充分に冷却される前に、2回目のシールが開始される第2の場合とがある。
 第1の場合においては、図5及び図6に示すように、ヒータ41及び支持部42が充分に冷却されるため、ヒータ41の演算温度T1と支持部42の演算温度T2とが同じ温度になる(S8の「Y」)。これにより、制御部12は、ヒータ41及び支持部42の演算温度T1,T2の演算を停止する(温度演算停止工程S9、図6の時間t40)。
 斯かる場合においては、その後、指示入力部9にシールを行う指示が入力されると、初回のシール時と同じように、挟持工程S1(図6の時間t50)から繰り返される。なお、温度検出工程S3(図6の時間t60)においては、支持部42の実温度が加熱前検出温度T0bとして検出され、検出された支持部42の該加熱前検出温度T0bが、ヒータ41及び対象物100の加熱前演算温度T0a,T0cにもなる(T0a=T0b=T0c)。
 第2の場合においては、ヒータ41及び支持部42が充分に冷却されていない状態で(S8の「N」)、指示入力部9にシールを行う指示が入力される(S10の「Y」)。斯かる場合においては、図7及び図8に示すように、一対のシール部4,5が対象物100を挟持する(挟持工程S11、図8の時間t31)。なお、図8における時間t40は、図6における時間t40に相当する時間を示している。
 その後、検出待機時間P1(例えば、0.2秒間)が経過する(S12の「Y」)ことにより、斯かる状態の支持部42の実温度が、加熱前検出温度T0bとして温度検出部11により検出される(温度検出工程S13、図8の時間t32)。ここで、制御部12がヒータ41及び支持部42の演算温度T1,T2の演算を継続しているため、温度件洲粒が検出した支持部42の加熱前検出温度T0と、支持部42の演算温度T2とが比較される(S14)。
 まず、温度検出部11が検出した支持部42の加熱前検出温度T0bと、制御部12が演算した支持部42の演算温度T2とが、同じ温度である場合(S14の「Y」)は、ヒータ41及び支持部42の演算温度T1,T2は、補正されない。そして、初回のシール時と同じように、加熱工程S5、冷却工程6、挟持解除工程S7(図5参照)が行われる。
 反対に、温度検出部11が検出した支持部42の加熱前検出温度T0bと、制御部12が演算した支持部42の演算温度T2とが、異なる温度である場合(S14の「N」)は、ヒータ41及び支持部42の演算温度T1,T2が補正される(演算温度補正工程S15、図8の時間t32)。該補正の方法の一例が、図8に示されているが、斯かる方法に限られず、他の補正の方法が採用されてもよい。
 図8に示す補正の方法においては、まず、支持部42の演算温度T2は、制御部12が演算していた演算温度T2aを、温度検出部11が検出した支持部42の加熱前検出温度T0bに補正される。そして、ヒータ41の演算温度T1は、制御部12が演算していた演算温度T1aを、支持部42の温度差ΔTa(=T0-T2a)に基づいて、加熱前演算温度T0a(=T1a+ΔTa)に補正される。
 また、対象物100の加熱前演算温度T0cは、制御部12により、ヒータ41の加熱前演算温度T0a及び支持部42の加熱前検出温度T0bに基づいて、演算される。その後は、初回のシール時と同じように、加熱工程S5、冷却工程6、挟持解除工程S7(図5参照)が行われる。なお、3回目以降のシールは、斯かる2回目のシールと同様に繰り返される。
 次に、本実施形態に係る電熱装置1を用いた別のシール方法について、図9及び図10を参酌して説明する。
 電熱装置1の別のシール方法においては、図9に示すように、加熱工程S5は、第1の加熱工程S5aと、第2の加熱工程S5bとを備えている。第1の加熱工程S5aにおいては、上記したシール方法と同様に、制御部12は、対象物100が設定温度Tsとなるように、ヒータ41に供給する電気エネルギを制御する。また、第2の加熱工程S5bにおいては、制御部12は、対象物100が設定温度Tsで維持されるように、ヒータ41に供給する電気エネルギを制御する。
 例えば、第2の加熱工程S5bにおいて、制御部12は、上記式3において、対象物100がヒータ41から伝導される熱量に基づく温度変化ΔT31と、対象物100が第2のシール部5へ伝導する熱量に基づく温度変化ΔT32及び対象物100が外気等へ伝導する熱量に基づく温度変化ΔT33の和とが、等しくなる(ΔT31=ΔT32+ΔT33)ように、ヒータ41に供給する電気エネルギを制御している。したがって、図9に示すように、第2の加熱工程S5bにおいて、対象物100の実温度T30は、安定する。
 それに対して、例えば、ヒータ41の温度を連続して測定し、ヒータ41の温度が所定温度より高い場合には、ヒータ41に供給する電気エネルギを減少させ、ヒータ41の温度が所定温度より低い場合には、ヒータ41に供給する電気エネルギを増加させるという比較例に係る電熱装置のシール方法においては、図10に示すように、第2の加熱工程S5bにおいて、対象物100の実温度T30は、安定しない。このように、本実施形態に係る電熱装置1によれば、対象物100を設定温度Tsにするだけでなく、対象物100を設定温度Tsで維持することもできる。
 以上により、本実施形態に係る電熱装置1は、対象物100を挟んでシールする一対のシール部4,5を備え、前記一対のシール部4,5のうち少なくとも一方(具体的には、第1のシール部4)は、通電されることにより発熱するヒータ41を備える電熱装置1において、前記ヒータ41の熱が伝導され、該熱を放出する放熱部14と、前記ヒータ41が発熱する前における前記対象物100、前記ヒータ41、及び前記放熱部14のうち少なくとも一つ(具体的には、放熱部14の支持部42)の温度である加熱前温度T0bに基づいて、前記ヒータ41に供給する電気エネルギを制御する制御部12と、を備え、前記制御部12は、前記加熱前温度T0bと前記ヒータ41に供給する電気エネルギとに基づいて、前記対象物100の温度を演算する。
 斯かる構成によれば、制御部12は、ヒータ41が発熱する前における対象物100、ヒータ41、及び放熱部14のうち少なくとも一つ(具体的には、放熱部14の支持部42)の温度である加熱前温度T0bに基づいて、ヒータ41に供給する電気エネルギを制御する。そして、制御部12は、加熱前温度T0bとヒータ41に供給する電気エネルギとに基づいて、対象物100の温度を演算している。これにより、対象物100の温度を直接的に制御することができるため、対象物100を所望の温度Tsにすることができる。したがって、シール品質の向上を図ることができる。
 また、本実施形態に係る電熱装置1は、前記加熱前温度T0bを検出する温度検出部11を備える。
 斯かる構成によれば、温度検出部11が加熱前温度T0bを検出するため、制御部12は、正確な加熱前温度T0bに基づいて、ヒータ41に供給する電気エネルギを制御し、対象物100の温度を演算する。これにより、対象物100を正確に所望の温度Tsにすることができるため、シール品質のさらなる向上を図ることができる。
 また、本実施形態に係る電熱装置1においては、前記ヒータ41を有する前記シール部(具体的には、第1のシール部4)は、前記ヒータ41を支持し且つ前記放熱部14の少なくとも一部を構成する支持部42を備え、前記温度検出部11は、温度センサ11aを備え、前記温度センサ11aは、前記支持部42の加熱前温度T0bを検出すべく前記支持部42に接して配置されると共に、前記ヒータ41とは離間して配置される。
 斯かる構成によれば、温度センサ11aは、支持部42に接して配置されている。これにより、放熱部14の少なくとも一部を構成している支持部42の加熱前温度T0bを検出できるため、放熱部14の加熱前温度T0bを検出することができる。さらに、温度センサ11aは、ヒータ41と離間して配置されているため、温度センサ11aがヒータ41と接している構成で発生する問題を解消することができる。
 例えば、温度センサ11aが接しているヒータ41の箇所の放熱の効率が低下することを解消できる。また、例えば、対象物100の被シール部分に、温度センサ11aの形が付くことを解消できる。また、例えば、温度センサ11aがヒータ41よりも高温にならない支持部42の温度を測るため、高熱に起因する温度センサ11aの故障の発生頻度を低減させることができる。
 また、本実施形態に係る電熱装置1においては、前記制御部12は、前記ヒータ41への通電が停止された状態で且つ前記一対のシール部4,5が前記対象物100を挟んだ状態で前記温度検出部11が検出した加熱前温度T0bに基づいて、前記ヒータ41に供給する電気エネルギを制御し且つ前記対象物100の温度を演算する。
 斯かる構成によれば、ヒータ41への通電が停止された状態で、一対のシール部4,5が対象物100を挟むことにより、対象物100、ヒータ41、及び放熱部14は、お互いに熱伝導することで、一定の温度(同じ温度、又は、略同じ温度)になる。そして、温度検出部11は、一定の温度になった対象物100、ヒータ41、及び放熱部14のうち少なくとも一つ(具体的には、放熱部14の支持部42)の加熱前温度T0bを、検出する。
 これにより、温度検出部11が直接に検出する部分(放熱部14の支持部42)の加熱前温度T0bだけでなく、温度検出部11が直接に検出しない部分(対象物100及びヒータ41)の加熱前温度T0a,T0cも正確に検出することができる。したがって、対象物100を正確に所望の温度Tsにすることができるため、シール品質の向上をさらに図ることができる。
 また、本実施形態に係る電熱装置1においては、前記制御部12は、前記一対のシール部4,5が前記対象物100を挟んだ状態で所定時間(検出待機時間P1)を経過した後に前記温度検出部11が検出した加熱前温度T0bに基づいて、前記ヒータ41に供給する電気エネルギを制御し且つ前記対象物100の温度を演算する。
 斯かる構成によれば、一対のシール部4,5が対象物100を挟んだ状態で所定時間(検出待機時間P1)を経過した後においては、対象物100、ヒータ41、及び放熱部14は、お互いに熱伝導することで、確実に一定の温度になる。そして、温度検出部11は、確実に一定の温度になった対象物100、ヒータ41、及び放熱部14のうち少なくとも一つ(具体的には、放熱部14の支持部42)の加熱前温度T0bを、検出する。
 これにより、温度検出部11が直接に検出する部分(放熱部14の支持部42)の加熱前温度T0bだけでなく、温度検出部11が直接に検出しない部分(対象物100及びヒータ41)の加熱前温度T0a,T0cもさらに正確に検出することができる。したがって、対象物100をさらに正確に所望の温度Tsにすることができるため、シール品質の向上をさらに図ることができる。
 また、本実施形態に係る電熱装置1においては、前記温度検出部11は、前記ヒータ41及び前記放熱部14のうち少なくとも一つ(具体的には、放熱部14の支持部42)の加熱前温度T0bを検出し、前記制御部12は、前記加熱前温度T0bと前記ヒータ41に供給する電気エネルギとに基づいて、前記ヒータ41及び前記放熱部14(支持部42)の温度を演算し、さらに、前記制御部12は、前記ヒータ41への通電を停止した後、前記ヒータ41及び前記放熱部14(支持部42)の演算温度T1,T2が同じ温度になることで、前記ヒータ41及び前記放熱部14(支持部42)の温度の演算を停止する。
 斯かる構成によれば、制御部12は、ヒータ41への通電を停止した後、ヒータ41及び放熱部14(支持部42)の演算温度T1,T2が同じ温度になることで、ヒータ41及び放熱部14(支持部42)の温度の演算を停止する。これにより、制御部12の演算負荷を低減することができる。
 また、本実施形態に係る電熱装置1においては、前記温度検出部11は、前記ヒータ41及び前記放熱部14のうち少なくとも一つ(具体的には、放熱部14の支持部42)の加熱前温度T0bを検出し、前記制御部12は、前記加熱前温度T0bと前記ヒータ41に供給する電気エネルギとに基づいて、前記ヒータ41及び前記放熱部14(支持部42)の温度を演算し、さらに、前記制御部12は、前記ヒータ41への通電を停止した後に前記ヒータ41への通電を再開する場合に、前記温度検出部11が検出する前記加熱前温度T0bに基づいて、前記ヒータ41及び前記放熱部14(支持部42)の演算温度T1,T2を補正する。
 斯かる構成によれば、制御部12は、ヒータ41への通電を停止した後にヒータ41への通電を再開する場合に、温度検出部11が検出する加熱前温度T0bに基づいて、ヒータ41及び放熱部14(支持部42)の演算温度T1,T2を補正する。これにより、演算温度T1,T2が実際の温度と異なっていた場合でも、演算温度T1,T2を正確な温度にすることができる。
 また、本実施形態に係る電熱装置1においては、前記制御部12は、前記ヒータ41への通電を停止した後、前記ヒータ41及び前記放熱部14(支持部42)の演算温度T1,T2が同じ温度になる前に前記ヒータ41への通電を再開する場合に、前記温度検出部11が検出する前記加熱前温度T0bに基づいて、前記ヒータ41及び前記放熱部14(支持部42)の演算温度T1,T2を補正する。
<第2実施形態>
 次に、電熱装置における第2の実施形態について、図11を参酌して説明する。なお、図11において、図1~図10の符号と同一の符号を付した部分は、第1実施形態と略同様の構成又は略同様の機能(作用)を有する要素を表し、その説明は、繰り返さない。
 本実施形態に係る電熱装置1は、図11に示すように、第1実施形態に係る電熱装置1に対して、演算温度補正工程S15を備えていない点で相違している。図11に示すように、ヒータ41及び支持部42が充分に冷却されていない状態で(S8の「N」)、指示入力部9にシールを行う指示が入力される(S10の「Y」)と、シールができない状態(シール準備中)であることが外部に出力される(S16)。
 そして、ヒータ41の演算温度T1と支持部42の演算温度T2とが同じ温度になる(S8の「Y」)まで、シールができない状態にする。このように、制御部12は、ヒータ41への通電を停止した後、ヒータ41及び支持部42の演算温度T1,T2が同じ温度になるまで、ヒータ41への通電の停止を維持する。
 なお、電熱装置1においては、一般的に、ヒータ41の演算温度T1と支持部42の演算温度T2とは、ヒータ41の通電を停止した後、通常、2秒~5秒程度(長くても、10秒程度)で、同じ温度になる。したがって、斯かる制御を行ったとしても、生産効率に与える影響は殆どない。本実施形態に係る電熱装置1は、例えば、視覚的に出力する出力部(例えば、表示灯)を備える、という構成でもよく、また、聴覚的に出力する出力部(例えば、ブザー)を備える、という構成でもよい。
 以上より、本実施形態に係る電熱装置1においては、前記温度検出部11は、前記ヒータ41及び前記放熱部14のうち少なくとも一つ(具体的には、放熱部14の支持部42)の加熱前温度T0bを検出し、前記制御部12は、前記加熱前温度T0bと前記ヒータ41に供給する電気エネルギとに基づいて、前記ヒータ41及び前記放熱部14(支持部42)の温度を演算し、さらに、前記制御部12は、前記ヒータ41への通電を停止した後、前記ヒータ41及び前記放熱部14(支持部42)の演算温度T1,T2が同じ温度になるまで、前記ヒータ41への通電の停止を維持する。
 斯かる構成によれば、制御部12は、ヒータ41への通電を停止した後、ヒータ41及び放熱部14(支持部42)の演算温度T1,T2が同じ温度になるまで、ヒータ41への通電の停止を維持する。そして、ヒータ41への通電を再開する際に、温度検出部11は、ヒータ41及び放熱部14のうち少なくとも一つ(具体的には、放熱部14の支持部42)の加熱前温度T0bを、検出する。
 このとき、ヒータ41及び放熱部14が一定の温度になっているため、温度検出部11が直接に検出する部分(放熱部14の支持部42)の加熱前温度T0bだけでなく、温度検出部11が直接に検出しない部分(対象物100及びヒータ41)の加熱前温度T0a,T0cもさらに正確に検出することができる。したがって、対象物100をさらに正確に所望の温度Tsにすることができるため、シール品質の向上をさらに図ることができる。
<第3実施形態>
 次に、電熱装置における第3の実施形態について、図12を参酌して説明する。なお、図12において、図1~図10の符号と同一の符号を付した部分は、第1実施形態と略同様の構成又は略同様の機能(作用)を有する要素を表し、その説明は、繰り返さない。
 本実施形態に係る電熱装置1は、図12に示すように、第1実施形態に係る電熱装置1に対して、温度検出部11を備えておらず、また、情報入力部15を備えている点で相違している。そして、演算部12bは、情報入力部15に入力される情報に基づいて、初回のシール時の加熱前温度T0a~T0c(T0a=T0b=T0c)を演算する。
 また、演算部12bは、ヒータ41への通電及び該通電の停止を繰り返す際に、ヒータ41及び放熱部14(例えば、支持部42)の温度を連続して演算する。そして、演算部12bは、二回目以降のシール時の加熱前温度T0a~T0cをヒータ41及び放熱部14(例えば、支持部42)の演算温度T1,T2に基づいて演算する。なお、演算部12bは、対象物100をシールする際は、対象物100の温度も演算している。
 本実施形態に係る電熱装置1においては、情報入力部15は、外気温度、シーラ周辺温度、及び部屋温度等の温度が入力される温度入力部であってもよい。斯かる構成においては、演算部12bは、入力された温度に基づいて、初回のシール時の加熱前温度T0a~T0cを演算する。例えば、演算部12bは、入力された温度をそのまま初回のシール時の加熱前温度T0a~T0cとしてもよく、また、入力された温度に対して所定の演算を行った温度を、初回のシール時の加熱前温度T0a~T0cとしてもよい。
 また、本実施形態に係る電熱装置1においては、情報入力部15は、月日、日時等の時間が入力される時間入力部であってもよい。斯かる構成においては、記憶部12aは、時間と加熱前温度T0a~T0cとの関係の情報を記憶しており、演算部12bは、記憶部12aで記憶している情報と情報入力部15に入力された時間(月日、日時等)とに基づいて、初回のシール時の加熱前温度T0a~T0cを演算する。
 なお、本実施形態に係る電熱装置1においては、情報入力部15は、作業者に手動で入力される構成であってもよい。斯かる構成においては、例えば、テンキーやキーボード等が挙げられる。また、本実施形態に係る電熱装置1においては、情報入力部15は、有線や無線で情報が自動で入力される構成であってもよい。斯かる構成においては、例えば、有線や無線でインターネット等の情報を受信できる受信装置等が挙げられる。
 以上より、本実施形態に係る電熱装置1は、情報が入力される情報入力部15を備え、前記制御部12は、前記情報入力部15に入力される情報に基づいて、初回のシール時の加熱前温度T0a~T0cを演算し、さらに、前記制御部12は、前記ヒータ41への通電及び該通電の停止を繰り返す際に、前記ヒータ41及び前記放熱部14(例えば、支持部42)の温度を連続して演算すると共に、二回目以降のシール時の加熱前温度T0a~T0cを前記ヒータ41及び前記放熱部14(例えば、支持部42)の演算温度T1,T2に基づいて演算する。
 斯かる構成によれば、制御部12は、情報入力部15に入力される情報に基づいて、初回のシール時の加熱前温度T0a~T0cを演算する。そして、制御部12は、当該加熱前温度T0a~T0cに基づいて、ヒータ41に供給する電気エネルギを制御し且つ対象物100の温度を演算する。
 しかも、制御部12は、二回目以降のシール時の加熱前温度T0a~T0cをヒータ41及び放熱部14(例えば、支持部42)の演算温度T1,T2に基づいて演算すると共に、当該加熱前温度T0a~T0cに基づいて、ヒータ41に供給する電気エネルギを制御し且つ対象物100の温度を演算する。したがって、実際に温度を検出する装置(例えば、第1及び第2実施形態に係る温度検出部11)が必要ない。
<第4実施形態>
 次に、電熱装置における第4の実施形態について、図13を参酌して説明する。なお、図13において、図1~図10の符号と同一の符号を付した部分は、第1実施形態と略同様の構成又は略同様の機能(作用)を有する要素を表し、その説明は、繰り返さない。
 本実施形態に係る電熱装置1は、図13に示すように、第1実施形態に係る電熱装置1に対して、温度検出部11を備えておらず、また、制御部12がカレンダー機能を備えている点で相違している。制御部12は、カレンダー機能を有するカレンダー機能部12eを備えている。
 演算部12bは、カレンダー機能部12eのカレンダー機能に基づいて、初回のシール時の加熱前温度T0a~T0cを演算する。具体的には、記憶部12aは、時間と加熱前温度T0a~T0cとの関係の情報を記憶しており、カレンダー機能部12eは、現在の時間(月日、日時等)を出力し、演算部12bは、記憶部12aで記憶している情報とカレンダー機能部12eが出力した現在の時間とに基づいて、初回のシール時の加熱前温度T0a~T0cを演算する。
 また、演算部12bは、ヒータ41への通電及び該通電の停止を繰り返す際に、ヒータ41及び放熱部14(例えば、支持部42)の温度を連続して演算する。そして、演算部12bは、二回目以降のシール時の加熱前温度T0a~T0cをヒータ41及び放熱部14(例えば、支持部42)の演算温度T1,T2に基づいて演算する。なお、演算部12bは、対象物100をシールする際は、対象物100の温度も演算している。
 以上より、本実施形態に係る電熱装置1においては、前記制御部12は、カレンダー機能を備えており、前記カレンダー機能に基づいて初回のシール時の加熱前温度T0a~T0cを演算し、さらに、前記制御部12は、前記ヒータ41への通電及び該通電の停止を繰り返す際に、前記ヒータ41及び前記放熱部14(例えば、支持部42)の温度を連続して演算すると共に、二回目以降のシール時の加熱前温度T0a~T0cを前記ヒータ41及び前記放熱部14(例えば、支持部42)の演算温度T1,T2に基づいて演算する。
 斯かる構成によれば、カレンダー機能を備える制御部12は、カレンダー機能に基づいて初回のシール時の加熱前温度T0a~T0cを演算する。そして、制御部12は、当該加熱前温度T0a~T0cに基づいて、ヒータ41に供給する電気エネルギを制御し且つ対象物100の温度を演算する。
 しかも、制御部12は、二回目以降のシール時の加熱前温度T0a~T0cをヒータ41及び放熱部14(例えば、支持部42)の演算温度T1,T2に基づいて演算すると共に、当該加熱前温度T0a~T0cに基づいて、ヒータ41に供給する電気エネルギを制御し且つ対象物100の温度を演算する。したがって、実際に温度を検出する装置(例えば、第1及び第2実施形態に係る温度検出部11)が必要ない。
 なお、電熱装置は、上記した実施形態の構成に限定されるものではなく、また、上記した作用効果に限定されるものではない。また、電熱装置は、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、上記した複数の実施形態の各構成や各方法等を任意に採用して組み合わせてもよく(1つの実施形態に係る各構成や各方法等を他の実施形態に係る構成や方法等に適用してもよく)、さらに、下記する各種の変更例に係る構成や方法等を任意に選択して、上記した実施形態に係る構成や方法等に採用してもよいことは勿論である。
 上記実施形態に係る電熱装置1においては、一対のシール部4,5のうち一方のシール部(第1のシール部)4のみが、ヒータ41を備えている、という構成である。しかしながら、電熱装置は、斯かる構成に限られない。例えば、電熱装置においては、一対のシール部4,5のうち両方のシール部4,5が、ヒータ41を備えている、という構成でもよい。
 また、上記実施形態に係る電熱装置1においては、第2のシール部5のみが可動である、という構成である。しかしながら、電熱装置は、斯かる構成に限られない。例えば、電熱装置においては、第1のシール部4のみが可動である、という構成でもよく、また、一対のシール部4,5の両方が可動である、という構成でもよい。
 また、上記実施形態に係る電熱装置1においては、制御部12は、上記式1~式3に基づいて、ヒータ41、放熱部14(支持部42)、及び対象物100の温度を演算する、という構成である。しかしながら、電熱装置は、斯かる構成に限られない。例えば、電熱装置においては、対象物100の厚み寸法が小さく熱容量が殆ど無いことを考慮し、制御部12は、ヒータ41の演算温度T1と、第2のシール部5のシール本体部52の演算温度T4とに基づいて、対象物100の演算温度T3を演算する、という構成でもよい。
 一例として、制御部12は、下記式1a、上記式2、下記式3a、下記式4aに基づいて、対象物100の温度を演算してもよい。なお、下記式1a及び下記式4aにおいては、対象物100の影響を無視し、対象物100が存在していないものとして導き出された理論データで演算されている。
(ヒータ41の演算温度T1)
 T1 = T0a+ΔT11-ΔT12-ΔT13a-ΔT14   …(式1a)
 ここで、ΔT13aは、以下の通りであり、それ以外の符号は、上記式1と同じである。
・ΔT13a:ヒータ41がシール本体部52へ伝導する熱量に基づく温度変化
(対象物100の演算温度T3)
 T3 = T4+(T1-T4)×α   …(式3a)
 ここで、αは、0~100%であって、対象物100の厚みや材質によって決まる係数である。
(シール本体部52の演算温度T4)
 T4 = T0d+ΔT41a-ΔT42-ΔT43   …(式4a)
 ここで、ΔT41aは、以下の通りであり、それ以外の符号は、上記式4と同じである。
・ΔT41a:シール本体部52がヒータ41から伝導される熱量に基づく温度変化
 また、上記第1及び第2実施形態に係る電熱装置1においては、温度検出部11は、放熱部14を構成する支持部42の温度を検出する、という構成である。しかしながら、電熱装置は、斯かる構成に限られない。例えば、電熱装置においては、温度検出部11は、対象物100の温度を検出する、という構成でもよく、温度検出部11は、ヒータ41の温度を検出する、という構成でもよく、また、温度検出部11は、放熱部14を構成する装置本体2の温度を検出する、という構成でもよい。
 また、上記第1及び第2実施形態に係る電熱装置1においては、制御部12は、一対のシール部4,5が対象物100を挟んだ状態で所定時間(検出待機時間)P1を経過した後に温度検出部11が検出した温度に基づいて、ヒータ41に供給する電気エネルギを制御する、という構成である。しかしながら、電熱装置は、斯かる構成に限られない。
 例えば、電熱装置においては、制御部12は、一対のシール部4,5が対象物100を挟んで直ぐに温度検出部11が検出した温度に基づいて、ヒータ41に供給する電気エネルギを制御し且つ対象物100の温度を演算する、という構成でもよい。また、例えば、制御部12は、一対のシール部4,5が対象物100を挟む前に温度検出部11が検出した温度に基づいて、ヒータ41に供給する電気エネルギを制御し且つ対象物100の温度を演算する、という構成でもよい。
 また、上記第1及び第2実施形態に係る電熱装置1においては、制御部12は、ヒータ41への通電を停止した後、ヒータ41及び放熱部14(支持部42)の演算温度T1,T2が同じ温度になることで、ヒータ41及び放熱部14の温度の演算を停止する、という構成である。しかしながら、電熱装置は、斯かる構成に限られない。
 例えば、制御部12は、ヒータ41への通電を停止した後、ヒータ41及び放熱部14(支持部42)の演算温度T1,T2が同じ温度になった場合でも、ヒータ41及び放熱部14(支持部42)の温度の演算を続ける、という構成でもよい。さらに、その後、制御部12は、ヒータ41への通電を再開する場合に、温度検出部11が検出する加熱前温度T0bに基づいて、ヒータ41及び放熱部12(支持部42)の演算温度T1,T2を補正する、という構成でもよい。
 1…電熱装置、2…装置本体、3…可動体、4…第1のシール部、5…第2のシール部、6…駆動部、7…載置台、8…圧力変更部、9…指示入力部、10…設定入力部、11…温度検出部、11a…温度センサ、11b…信号線、12…制御部、12a…記憶部、12b…演算部、12c…駆動制御部、12d…エネルギ制御部、12e…カレンダー機能部、13…エネルギ供給部、14…放熱部、15…情報入力部、41…ヒータ、42…支持部、42a…収容部、43…絶縁部、44…被覆部、51…弾性部、52…シール本体部、100…対象物、200…電源
 

Claims (10)

  1.  対象物を挟んでシールする一対のシール部を備え、
     前記一対のシール部のうち少なくとも一方は、通電されることにより発熱するヒータを備える電熱装置において、
     前記ヒータの熱が伝導され、該熱を放出する放熱部と、
     前記ヒータが発熱する前における前記対象物、前記ヒータ、及び前記放熱部のうち少なくとも一つの温度である加熱前温度に基づいて、前記ヒータに供給する電気エネルギを制御する制御部と、を備え、
     前記制御部は、前記加熱前温度と前記ヒータに供給する電気エネルギとに基づいて、前記対象物の温度を演算することを特徴とする電熱装置。
  2.  前記加熱前温度を検出する温度検出部を備える請求項1に記載の電熱装置。
  3.  前記ヒータを有する前記シール部は、前記ヒータを支持し且つ前記放熱部の少なくとも一部を構成する支持部を備え、
     前記温度検出部は、温度センサを備え、
     前記温度センサは、前記支持部の加熱前温度を検出すべく前記支持部に接して配置されると共に、前記ヒータとは離間して配置される請求項1又は2に記載の電熱装置。
  4.  前記制御部は、前記ヒータへの通電が停止された状態で且つ前記一対のシール部が前記対象物を挟んだ状態で前記温度検出部が検出した加熱前温度に基づいて、前記ヒータに供給する電気エネルギを制御し且つ前記対象物の温度を演算する請求項2又は3に記載の電熱装置。
  5.  前記制御部は、前記一対のシール部が前記対象物を挟んだ状態で所定時間を経過した後に前記温度検出部が検出した加熱前温度に基づいて、前記ヒータに供給する電気エネルギを制御し且つ前記対象物の温度を演算する請求項4に記載の電熱装置。
  6.  前記温度検出部は、前記ヒータ及び前記放熱部のうち少なくとも一つの加熱前温度を検出し、
     前記制御部は、前記加熱前温度と前記ヒータに供給する電気エネルギとに基づいて、前記ヒータ及び前記放熱部の温度を演算し、さらに、
     前記制御部は、前記ヒータへの通電を停止した後、前記ヒータ及び前記放熱部の演算温度が同じ温度になることで、前記ヒータ及び前記放熱部の温度の演算を停止する請求項2~5に記載の電熱装置。
  7.  前記温度検出部は、前記ヒータ及び前記放熱部のうち少なくとも一つの加熱前温度を検出し、
     前記制御部は、前記加熱前温度と前記ヒータに供給する電気エネルギとに基づいて、前記ヒータ及び前記放熱部の温度を演算し、さらに、
     前記制御部は、前記ヒータへの通電を停止した後に前記ヒータへの通電を再開する場合に、前記温度検出部が検出する前記加熱前温度に基づいて、前記ヒータ及び前記放熱部の演算温度を補正する請求項2~6の何れか1項に記載の電熱装置。
  8.  前記温度検出部は、前記ヒータ及び前記放熱部のうち少なくとも一つの加熱前温度を検出し、
     前記制御部は、前記加熱前温度と前記ヒータに供給する電気エネルギとに基づいて、前記ヒータ及び前記放熱部の温度を演算し、さらに、
     前記制御部は、前記ヒータへの通電を停止した後、前記ヒータ及び前記放熱部の演算温度が同じ温度になるまで、前記ヒータへの通電の停止を維持する請求項2~7の何れか1項に記載の電熱装置。
  9.  情報が入力される情報入力部を備え、
     前記制御部は、前記情報入力部に入力される情報に基づいて、初回のシール時の加熱前温度を演算し、さらに、
     前記制御部は、前記ヒータへの通電及び該通電の停止を繰り返す際に、前記ヒータ及び前記放熱部の温度を連続して演算すると共に、二回目以降のシール時の加熱前温度を前記ヒータ及び前記放熱部の演算温度に基づいて演算する請求項1に記載の電熱装置。
  10.  前記制御部は、カレンダー機能を備えており、前記カレンダー機能に基づいて初回のシール時の加熱前温度を演算し、さらに、
     前記制御部は、前記ヒータへの通電及び該通電の停止を繰り返す際に、前記ヒータ及び前記放熱部の温度を連続して演算すると共に、二回目以降のシール時の加熱前温度を前記ヒータ及び前記放熱部の演算温度に基づいて演算する請求項1に記載の電熱装置。
     
PCT/JP2015/059893 2014-10-03 2015-03-30 電熱装置 WO2016051830A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580051594.1A CN107073832B (zh) 2014-10-03 2015-03-30 电热装置
US15/516,117 US11173671B2 (en) 2014-10-03 2015-03-30 Electric heating device
EP15846762.1A EP3202556B1 (en) 2014-10-03 2015-03-30 Electric heating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014204762A JP5837972B1 (ja) 2014-10-03 2014-10-03 電熱装置
JP2014-204762 2014-10-03

Publications (1)

Publication Number Publication Date
WO2016051830A1 true WO2016051830A1 (ja) 2016-04-07

Family

ID=54933253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059893 WO2016051830A1 (ja) 2014-10-03 2015-03-30 電熱装置

Country Status (5)

Country Link
US (1) US11173671B2 (ja)
EP (1) EP3202556B1 (ja)
JP (1) JP5837972B1 (ja)
CN (1) CN107073832B (ja)
WO (1) WO2016051830A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106217847A (zh) * 2016-07-15 2016-12-14 杭州丙甲科技有限公司 用于缓冲气垫机的温度补偿方法
WO2018144520A1 (en) * 2017-01-31 2018-08-09 Heat Seal Llc Packaging machine

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11034474B2 (en) * 2016-10-31 2021-06-15 Ross Industries, Inc. Dual purpose seal head assembly, tray sealing system, and method therefor
JP7061372B2 (ja) * 2019-01-31 2022-04-28 富士インパルス株式会社 シール装置
JP6598279B1 (ja) 2019-07-10 2019-10-30 一夫 菱沼 界面温度センサを設けたヒートシーラ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100008A (ja) * 1997-09-24 1999-04-13 Max Co Ltd インパルスシール装置におけるシールヒータの温度管理装置
JP2003045613A (ja) * 2001-07-30 2003-02-14 Matsushita Electric Ind Co Ltd 熱圧着装置
JP2005007845A (ja) * 2003-06-20 2005-01-13 Kazuo Hishinuma ヒートシール条件のシミュレーション方法
JP2013112371A (ja) * 2011-11-29 2013-06-10 Chuo Univ シール条件算出装置、及びシール条件算出方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1520556A (en) * 1975-11-05 1978-08-09 Windmoeller & Hoelscher Apparatus for regulating the temperature of electrically heated welding bands
US4170449A (en) * 1978-01-12 1979-10-09 Shuman Jack N Clamping frame for plastic forming apparatus
US4292118A (en) * 1980-05-08 1981-09-29 Ihor Wyslotsky Impulse heat generation and sealer apparatus
JPH0659749A (ja) 1992-08-06 1994-03-04 Toyo Jidoki Co Ltd インパルスシール装置の温度制御方法
US5991319A (en) * 1997-11-21 1999-11-23 Trw Inc. Mirror failure detector for high power lasers
WO2006074062A2 (en) * 2004-12-30 2006-07-13 E.I. Dupont De Nemours And Company Encapsulation tool and methods
JP4545079B2 (ja) * 2005-10-19 2010-09-15 トヨタ自動車株式会社 熱可塑性樹脂部材のレーザ溶着方法およびレーザ溶着装置
JP2007111926A (ja) * 2005-10-19 2007-05-10 Toyota Motor Corp 熱可塑性樹脂部材のレーザ溶着方法およびレーザ溶着装置
JP5646458B2 (ja) * 2009-04-10 2014-12-24 坂本 篤信 インパルスシーラーのセラミックスでカバーされたヒーター
US20140196405A1 (en) 2013-01-14 2014-07-17 Sunbeam Products, Inc. Vacuum Sealer with a Retractable Heater Bar

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100008A (ja) * 1997-09-24 1999-04-13 Max Co Ltd インパルスシール装置におけるシールヒータの温度管理装置
JP2003045613A (ja) * 2001-07-30 2003-02-14 Matsushita Electric Ind Co Ltd 熱圧着装置
JP2005007845A (ja) * 2003-06-20 2005-01-13 Kazuo Hishinuma ヒートシール条件のシミュレーション方法
JP2013112371A (ja) * 2011-11-29 2013-06-10 Chuo Univ シール条件算出装置、及びシール条件算出方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106217847A (zh) * 2016-07-15 2016-12-14 杭州丙甲科技有限公司 用于缓冲气垫机的温度补偿方法
CN106217847B (zh) * 2016-07-15 2019-03-26 杭州丙甲科技有限公司 用于缓冲气垫机的温度补偿方法
WO2018144520A1 (en) * 2017-01-31 2018-08-09 Heat Seal Llc Packaging machine
US11292210B2 (en) 2017-01-31 2022-04-05 Heat Seal Llc Packaging machine

Also Published As

Publication number Publication date
CN107073832B (zh) 2019-07-05
JP5837972B1 (ja) 2015-12-24
US11173671B2 (en) 2021-11-16
EP3202556A1 (en) 2017-08-09
JP2016076019A (ja) 2016-05-12
US20170305071A1 (en) 2017-10-26
EP3202556A4 (en) 2017-12-20
EP3202556B1 (en) 2018-09-26
CN107073832A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
JP5837972B1 (ja) 電熱装置
WO2013065175A1 (ja) 通電拡散接合装置及び方法
JP6759024B2 (ja) 定着装置
JP2010061938A5 (ja) プラズマ温度制御装置
US11577474B2 (en) Heat sealer provided with interfacial temperature sensor
JP2004319953A (ja) ヒータ検査装置及びそれを搭載した半導体製造装置
JP4890633B2 (ja) 通電拡散接合装置及び方法
KR20170049575A (ko) 스태빌라이저 제조 장치 및 그 방법
JP4834749B2 (ja) 画像形成装置
JP2007212893A (ja) 定着装置の温度制御方法及びこれを用いた定着装置、画像形成装置
JP2013140787A (ja) 電池温度検出手段の取付状態判定方法、及び電池温度検出手段の取付状態判定装置
JP2016137505A (ja) 抵抗溶接電源装置
JP4549266B2 (ja) インパルス式ベルトシーラ
JP6769532B2 (ja) 熱処理装置
JP2007030422A (ja) 加熱ヘッド及び熱溶着装置
JP4430957B2 (ja) 定着装置の異常検出方法
JP5762609B2 (ja) 加熱装置および検出温度の補正方法
JP2009216550A (ja) 加熱検知用サーミスタの補正値検査方法および加熱検知用サーミスタを備えた装置の制御方法
JP2005112374A (ja) 加熱封止包装機、及び加熱封止包装方法
JP2015226958A (ja) 加工装置および加工方法
JP4429202B2 (ja) ヒートシール装置
JP2009007059A (ja) ヒートシーラー
JP2023071386A (ja) 熱シール装置および制御方法。
JP6407061B2 (ja) サーマルプリンタおよびその制御方法
JP2008249944A (ja) 画像形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846762

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15516117

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015846762

Country of ref document: EP