WO2016047485A1 - 工作機械及びこの工作機械の制御装置 - Google Patents
工作機械及びこの工作機械の制御装置 Download PDFInfo
- Publication number
- WO2016047485A1 WO2016047485A1 PCT/JP2015/076008 JP2015076008W WO2016047485A1 WO 2016047485 A1 WO2016047485 A1 WO 2016047485A1 JP 2015076008 W JP2015076008 W JP 2015076008W WO 2016047485 A1 WO2016047485 A1 WO 2016047485A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cutting tool
- workpiece
- tool
- cutting
- amplitude
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B5/00—Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor
- B23B5/08—Turning-machines or devices specially adapted for particular work; Accessories specially adapted therefor for turning axles, bars, rods, tubes, rolls, i.e. shaft-turning lathes, roll lathes; Centreless turning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q15/00—Automatic control or regulation of feed movement, cutting velocity or position of tool or work
- B23Q15/007—Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
- B23Q15/0075—Controlling reciprocating movement, e.g. for planing-machine
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B1/00—Methods for turning or working essentially requiring the use of turning-machines; Use of auxiliary equipment in connection with such methods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B25/00—Accessories or auxiliary equipment for turning-machines
- B23B25/02—Arrangements for chip-breaking in turning-machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B29/00—Holders for non-rotary cutting tools; Boring bars or boring heads; Accessories for tool holders
- B23B29/04—Tool holders for a single cutting tool
- B23B29/12—Special arrangements on tool holders
- B23B29/125—Vibratory toolholders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q15/00—Automatic control or regulation of feed movement, cutting velocity or position of tool or work
- B23Q15/007—Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
- B23Q15/013—Control or regulation of feed movement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q15/00—Automatic control or regulation of feed movement, cutting velocity or position of tool or work
- B23Q15/007—Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
- B23Q15/12—Adaptive control, i.e. adjusting itself to have a performance which is optimum according to a preassigned criterion
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/4093—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2250/00—Compensating adverse effects during turning, boring or drilling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2270/00—Details of turning, boring or drilling machines, processes or tools not otherwise provided for
- B23B2270/30—Chip guiding or removal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S82/00—Turning
- Y10S82/904—Vibrating method or tool
Definitions
- the present invention relates to a machine tool that processes a workpiece while sequentially cutting chips at the time of cutting, and a control device for the machine tool.
- a work holding means for holding a work
- a tool post for holding a cutting tool for cutting the work
- a predetermined tool for feeding the cutting tool to the work by relative movement of the work holding means and the tool post.
- a feeding means that feeds the workpiece in a direction
- a vibrating means that relatively vibrates the work holding means and the tool post so that the cutting tool is fed in the machining feeding direction while reciprocally vibrating along the machining feeding direction.
- a rotating means for rotating the workpiece and the cutting tool relatively, accompanied by relative rotation between the workpiece and the cutting tool, and the reciprocating vibration of the cutting tool relative to the workpiece in the machining feed direction.
- a machine tool in which the cutting tool cuts the workpiece by a feed operation is known (for example, see Patent Document 1).
- the above-described conventional machine tool is simply configured to cut the workpiece while reciprocatingly vibrating, and has not been considered until the cutting is finished at a predetermined cutting tool machining stop position. Will continue to vibrate and exceed the predetermined cutting tool machining stop position on the workpiece.
- the present invention solves the problems of the prior art as described above, that is, the object of the present invention is to avoid the problem that the cutting tool cuts a workpiece beyond a predetermined cutting tool processing stop position. And a control device for the machine tool.
- the invention according to claim 1 is a workpiece holding means for holding a work, a tool post for holding a cutting tool for cutting the work, and a relative movement of the work holding means and the tool rest with respect to the work.
- the cutting tool is a machine tool for cutting the workpiece by the feeding operation accompanied with the reciprocating vibration to the machine, and controls the amplitude of the reciprocating vibration by the vibration means.
- Amplitude control means and when the cutting tool reaches a predetermined cutting tool machining stop position on the workpiece in the machining feed direction, the amplitude control means causes the vibration along with the feed operation in the machining feed direction.
- the vibration means in addition to the configuration of the machine tool described in claim 1, includes a cutting part at the time of the reciprocating vibration and a cutting part at the time of the backward movement.
- the workpiece holding means and the tool post are relatively vibrated so that they overlap, and the vibration means and the amplitude control means are provided with a cutting portion when the reciprocating vibration moves forward and a cutting operation when returning.
- the above-described problem is solved by being linked so as to reduce the amplitude of the reciprocating vibration while maintaining the overlap with the portion.
- the amplitude control means is configured such that the cutting tool during the forward movement reaches the cutting tool machining stop position.
- the reduction of the amplitude is started, the position of the cutting tool when switching from the forward movement to the backward movement is maintained on the cutting tool processing stop position, and the position of the cutting tool when switching from the backward movement to the forward movement is determined.
- the invention according to claim 4 is configured such that the amplitude control means is set to an arbitrary predetermined position before the cutting tool machining stop position in the workpiece.
- the amplitude starts to decrease, so that the position of the cutting tool when switching from the forward movement to the backward movement reaches the cutting tool processing stop position, and the reciprocating vibration ends.
- the invention according to claim 5 is configured such that the amplitude control means is set so that the cutting tool is at the cutting tool processing stop position. And the reciprocating vibration is performed by the vibration means so that the cutting tool cuts the workpiece while the cutting tool is maintained at the cutting tool machining stop position after the reciprocating vibration is performed by decreasing the amplitude a predetermined number of times.
- the invention according to claim 6 is a workpiece holding means for holding a work, a tool rest for holding a cutting tool for cutting the work, and a relative movement between the work holding means and the tool rest relative to the work.
- a control device of a machine tool in which the cutting tool cuts the workpiece by the feed operation accompanied by the reciprocating vibration in the machining feed direction of the tool the vibration Amplitude control means for controlling the amplitude of reciprocating vibration by the step, and when the cutting tool reaches a predetermined cutting tool machining stop position on the workpiece in the machining feed direction, the amplitude control means moves in the machining feed direction.
- the cutting tool cuts the workpiece beyond the cutting tool processing stop position by reducing the amplitude of the reciprocating vibration by the vibration control means before the cutting tool processing stop position. It is possible to avoid malfunctions that occur. Furthermore, since the amplitude of the reciprocating vibration is reduced, the cutting surface of the workpiece by vibration cutting can be adjusted as the cutting tool processing stop position is approached.
- the amplitude control means starts to decrease the amplitude when the cutting tool in the forward movement reaches the cutting tool machining stop position, and recovers from the forward movement.
- the position of the cutting tool when switching to movement is maintained on the cutting tool processing stop position, and the amplitude is decreased by sequentially changing the position of the cutting tool when switching from backward movement to forward movement. it can.
- the amplitude control means starts to decrease the amplitude when the cutting tool reaches an arbitrary predetermined position before the cutting tool machining stop position in the workpiece, like the machine tool of the invention according to claim 4. Then, the amplitude can be reduced so that the position of the cutting tool when switching from the forward movement to the backward movement reaches the cutting tool machining stop position and the reciprocating vibration is finished.
- a wavy cutting surface by reciprocal vibration at the cutting tool machining stop position Can be flattened.
- the machine tool control device of the invention of claim 6 can obtain the same effect as the effect of the invention of claim 1.
- the figure which shows the outline of the machine tool of 1st Example of this invention Schematic which shows the relationship between the cutting tool of 1st Example of this invention, and a workpiece
- the machine tool of the present invention and the control device for the machine tool include amplitude control means for controlling the amplitude of reciprocating vibration by the vibration means, and the cutting tool reaches a predetermined cutting tool machining stop position on the workpiece in the machining feed direction.
- the amplitude control means is configured to reduce the amplitude of the reciprocating vibration by the vibration means in accordance with the feeding operation in the machining feed direction, the cutting tool cuts the workpiece beyond the cutting tool machining stop position.
- the concrete embodiment may be any.
- FIG. 1 is a diagram showing an outline of a machine tool 100 including a control device C according to the first embodiment of the present invention.
- the machine tool 100 includes a main shaft 110 and a cutting tool table 130A.
- a chuck 120 is provided at the tip of the main shaft 110.
- the workpiece W is held on the spindle 110 via the chuck 120, and the spindle 110 is configured as a workpiece holding means for holding the workpiece.
- the main shaft 110 is supported by the main shaft 110A so as to be rotationally driven by the power of a main shaft motor (not shown).
- a main spindle motor a conventionally known built-in motor formed between the main spindle 110A and the main spindle 110 in the main spindle 110A can be considered.
- the headstock 110A is mounted on the bed side of the machine tool 100 so as to be movable in the Z-axis direction, which is the axial direction of the main shaft 110, by the Z-axis direction feed mechanism 160.
- the spindle 110 is moved in the Z-axis direction by the Z-axis direction feed mechanism 160 via the spindle stock 110A.
- the Z-axis direction feed mechanism 160 constitutes a main shaft moving mechanism that moves the main shaft 110 in the Z-axis direction.
- the Z-axis direction feed mechanism 160 includes a base 161 integrated with a fixed side of the Z-axis direction feed mechanism 160 such as the bed, and a Z-axis direction guide rail 162 provided on the base 161 and extending in the Z-axis direction. Yes.
- a Z-axis direction feed table 163 is slidably supported on the Z-axis direction guide rail 162 via a Z-axis direction guide 164.
- a mover 165a of the linear servo motor 165 is provided on the Z-axis direction feed table 163 side, and a stator 165b of the linear servo motor 165 is provided on the base 161 side.
- the headstock 110 ⁇ / b> A is mounted on the Z-axis direction feed table 163, and the Z-axis direction feed table 163 is driven to move in the Z-axis direction by driving the linear servo motor 165. As the Z-axis direction feed table 163 moves, the headstock 110A moves in the Z-axis direction, and the spindle 110 moves in the Z-axis direction.
- a cutting tool 130 such as a cutting tool for turning the workpiece W is mounted on the cutting tool base 130A.
- the cutting tool base 130A constitutes a tool post for holding the cutting tool 130.
- the cutting tool base 130A is moved to the bed side of the machine tool 100 by an X-axis direction feed mechanism 150 and a Y-axis direction feed mechanism (not shown), an X-axis direction orthogonal to the Z-axis direction, and the Z-axis direction and the X-axis direction. It is provided so as to be movable in the Y-axis direction orthogonal to.
- the X-axis direction feed mechanism 150 and the Y-axis direction feed mechanism constitute a tool post moving mechanism that moves the cutting tool base 130A in the X-axis direction and the Y-axis direction with respect to the main shaft 110.
- the X-axis direction feed mechanism 150 includes a base 151 that is integral with the fixed side of the X-axis direction feed mechanism 150, and an X-axis direction guide rail 152 that is provided on the base 151 and extends in the X-axis direction.
- An X-axis direction feed table 153 is slidably supported on the X-axis direction guide rail 152 via an X-axis direction guide 154.
- a mover 155a of the linear servo motor 155 is provided on the X-axis direction feed table 153 side, and a stator 155b of the linear servo motor 155 is provided on the base 151 side.
- the X-axis direction feed table 153 is driven to move in the X-axis direction.
- the Y-axis direction feed mechanism is a structure in which the X-axis direction feed mechanism 150 is arranged in the Y-axis direction and has the same structure as the X-axis direction feed mechanism 150. Therefore, illustration and detailed description of the structure are omitted. To do.
- an X-axis direction feed mechanism 150 is mounted on the bed side via a Y-axis direction feed mechanism (not shown), and a cutting tool table 130A is mounted on the X-axis direction feed table 153.
- the cutting tool base 130A moves in the X-axis direction by the movement drive of the X-axis direction feed table 153, and the Y-axis direction feed mechanism operates in the same manner as the X-axis direction feed mechanism 150 in the Y-axis direction. To move in the Y-axis direction.
- a Y-axis direction feed mechanism (not shown) may be mounted on the bed side via the X-axis direction feed mechanism 150, and the cutting tool base 130A may be mounted on the Y-axis direction feed mechanism side. Since the structure in which the cutting tool base 130A is moved in the X-axis direction and the Y-axis direction by the X-axis direction feed mechanism 150 and the X-axis direction feed mechanism 150 is conventionally known, detailed description and illustration are omitted.
- the turret moving mechanism (X-axis direction feeding mechanism 150 and Y-axis direction feeding mechanism) and the main shaft moving mechanism (Z-axis direction feeding mechanism 160) cooperate to provide an X-axis direction feeding mechanism 150 and a Y-axis direction feeding mechanism.
- the cutting tool table 130A is mounted on the cutting tool table 130A by the movement of the cutting tool table 130A in the X-axis direction and the Y-axis direction due to the movement of the main shaft table 110A (main shaft 110) in the Z-axis direction by the Z-axis direction feed mechanism 160.
- the cutting tool 130 is fed relative to the workpiece W in an arbitrary machining feed direction.
- the cutting tool 130 is moved with respect to the workpiece W by feeding means composed of the spindle moving mechanism (Z-axis direction feeding mechanism 160) and the tool post moving mechanism (X-axis direction feeding mechanism 150 and Y-axis direction feeding mechanism).
- the workpiece W is cut into an arbitrary shape by the cutting tool 130 as shown in FIG.
- both the headstock 110A and the cutting tool base 130A are configured to move, but the headstock 110A is fixed so as not to move to the bed side of the machine tool 100, and the tool post is moved.
- the mechanism may be configured to move the cutting tool base 130A in the X-axis direction, the Y-axis direction, and the Z-axis direction.
- the feeding means is composed of a tool post moving mechanism that moves the cutting tool base 130A in the X-axis direction, the Y-axis direction, and the Z-axis direction, and is fixedly positioned and rotated relative to the main spindle 110.
- the cutting tool base 130A may be fixed so as not to move to the bed side of the machine tool 100, and the spindle moving mechanism may be configured to move the spindle base 110A in the X axis direction, the Y axis direction, and the Z axis direction.
- the feed means is composed of a spindle stock moving mechanism that moves the spindle stock 110A in the X-axis direction, the Y-axis direction, and the Z-axis direction.
- the X-axis direction feed mechanism 150, the Y-axis direction feed mechanism, and the Z-axis direction feed mechanism 160 are configured to be driven by a linear servo motor.
- a linear servo motor conventionally known ball screws and servos are used. It can also be driven by a motor.
- the rotating means for relatively rotating the workpiece W and the cutting tool 130 is constituted by the main shaft motor such as the built-in motor, and the relative rotation between the work W and the cutting tool 130 is performed by the main shaft 110. This is done by rotational drive.
- the workpiece W is rotated with respect to the cutting tool 130.
- the cutting tool 130 may be rotated with respect to the workpiece W.
- a rotary tool such as a drill can be considered as the cutting tool 130.
- the rotation of the main shaft 110, the Z-axis direction feed mechanism 160, the X-axis direction feed mechanism 150, and the Y-axis direction feed mechanism are driven and controlled by a control unit C1 included in the control device C.
- the control unit C1 is set in advance so as to control the head stock 110A or the cutting tool base 130A to move in the respective directions while reciprocatingly oscillating along the corresponding moving directions using the respective feeding mechanisms as vibration means. ing.
- each feed mechanism is controlled by the control unit C ⁇ b> 1 to move the spindle 110 or the cutting tool base 130 ⁇ / b> A forward (forward) by a predetermined advance amount in one reciprocating vibration, and then move to a predetermined position.
- the machine tool 100 is configured such that the cutting tool 130 is fed in the machining feed direction while reciprocally oscillating along the machining feed direction by the Z-axis direction feeding mechanism 160, the X-axis direction feeding mechanism 150, and the Y-axis direction feeding mechanism. Process W.
- the head stock 110A (main shaft 110) or the cutting tool base 130A (cutting tool 130) moves while reciprocatingly oscillating, and the cutting tool 130 cuts the workpiece W into a predetermined shape.
- the peripheral surface of the workpiece W is cut as shown in FIG.
- the phase of the peripheral shape of the workpiece W turned by the n + 1-th rotation (n is an integer equal to or greater than 1) cutting tool 130 is opposite to the phase of the shape turned by the n-th cutting tool 130. It becomes a phase relationship.
- the cutting part at the time of forward movement of the cutting tool 130 at the nth rotation and the cutting part at the time of backward movement at the (n + 1) th rotation partially overlap, and the cutting part at the (n + 1) th rotation of the peripheral surface of the workpiece, A portion that has already been cut is included in the nth rotation, and in this portion, an idling operation occurs in which the cutting tool 130 performs idle cutting without cutting the workpiece W during the cutting. Chips generated from the workpiece W at the time of cutting are sequentially divided by the idling motion.
- the machine tool 100 can smoothly perform external cutting of the workpiece W and the like while cutting off chips by reciprocating vibration along the cutting feed direction of the cutting tool 130.
- the n + 1-th cut portion of the work peripheral surface includes a portion that has been cut at the n-th turn.
- the trajectory of the cutting tool 130 during the backward movement at the (n + 1) th rotation of the work peripheral surface only needs to reach the position of the trajectory of the cutting tool 130 at the nth rotation of the work peripheral surface.
- the phases of the shapes turned by the cutting tool 130 in the (n + 1) th rotation and the nth rotation of the workpiece W do not have to coincide with each other (the same phase), and it is not always necessary to reverse 180 degrees.
- Processing by the cutting tool 130 is performed by a movement command to a predetermined coordinate position with respect to the cutting tool 130, and the cutting tool 130 moves to a coordinate position (cutting tool processing stop position) designated by the movement command and stops. .
- the cutting when the cutting tool 130 reaches the cutting tool processing stop position will be described. As shown in FIG. 4, as the workpiece W rotates, the cutting tool 130 is fed in the machining feed direction while reciprocatingly vibrating along the machining feed direction, so that the workpiece W is cut and the workpiece W is rotated five times. It is assumed that the cutting tool 130 reaches the cutting tool processing stop position when the eye moves forward.
- control unit C1 functions as an amplitude control unit, and in the cutting process from the first rotation to the fourth rotation, the control unit C1 performs a reciprocating motion while maintaining a predetermined amplitude in advance.
- the amplitude of the reciprocating vibration by the vibrating means starts to decrease at the rotation, and the position of the cutting tool 130 when switching from the forward movement to the backward movement is maintained on the cutting tool processing stop position, and when switching from the backward movement to the forward movement
- the cutting operations of the sixth and seventh rotations are executed while the amplitude is decreased by sequentially changing the positions of the cutting tools 130.
- the trajectory of the cutting tool 130 at the time of backward movement in the cutting operation of the (n + 1) th rotation reaches the position of the trajectory of the cutting tool 130 in the cutting operation of the nth rotation, and cutting is performed in the processing feed direction.
- the amplitude of the reciprocating vibration by the vibration means is reduced with the feeding operation.
- the vibration means controls the amplitude control means while cutting the workpiece W by oscillating so that the cutting portion at the time of reciprocating vibration and the cutting portion at the time of backward movement overlap each other.
- the part C1 reduces the amplitude of the reciprocating vibration by the vibration means in accordance with the feeding operation in the machining feed direction. Accordingly, the amplitude is reduced while the chips are sequentially divided.
- the reciprocating vibration by the vibration means is stopped by the control of the control unit C1 so that the cutting tool 130 cuts the workpiece W while being maintained at the cutting tool processing stop position. Thereby, the cutting surface in the cutting tool processing stop position of the workpiece
- work W can be prepared.
- the vibration frequency of the reciprocating vibration from the first rotation to the seventh rotation shown in FIG. 4 is made constant, the locus of the cutting tool 130 during the backward movement at the (n + 1) th rotation of the workpiece circumferential surface is n of the workpiece circumferential surface.
- the vibration frequency may not be constant as long as it reaches the position of the locus of the cutting tool 130 at the rotation.
- the machine tool 100 according to the first embodiment of the present invention and the control device C for the machine tool 100 thus obtained include the control unit C1 which is also an amplitude control means for controlling the amplitude of the reciprocating vibration by the vibration means. And when the cutting tool 130 reaches the cutting tool machining stop position on the workpiece W, the control unit C1 as the amplitude control means reduces the amplitude of the reciprocating vibration along with the feeding operation in the machining feeding direction. As a result, by reducing the amplitude of the reciprocating vibration, it becomes possible to avoid the trouble that the cutting tool cuts the workpiece beyond the cutting tool machining stop position. The cutting surface in W can be adjusted.
- control unit C1 as the amplitude control means starts the reduction of the amplitude when the cutting tool 130 at the time of forward movement reaches the cutting tool machining stop position, and performs cutting when switching from the forward movement to the backward movement.
- the position of the tool 130 is maintained on the cutting tool processing stop position, and the amplitude can be reduced by sequentially changing the position of the cutting tool 130 when switching from backward movement to forward movement.
- control unit C1 as the amplitude control unit is configured so that the cutting tool 130 reaches the cutting tool processing stop position, the amplitude is decreased a predetermined number of times, and the reciprocating vibration is performed.
- the vibration means By stopping the reciprocating vibration by the vibration means so as to cut the workpiece W while being maintained at the cutting tool machining stop position, the wavy cutting surface by the reciprocating vibration at the cutting tool machining stop position can be made flat. it can.
- the second embodiment when the cutting tool 130 reaches an arbitrary predetermined position before reaching the cutting tool machining stop position by the control of the control unit C1 as the amplitude control means.
- the position of the cutting tool 130 at the time of switching from the forward movement at the end of the seventh rotation to the backward movement is executed while the decrease in the amplitude is started and the fifth to seventh rotations are performed while the amplitude is decreased.
- the amplitude is decreased so that the reciprocating vibration is finished upon reaching the cutting tool processing stop position.
- the cutting tool 130 cuts the workpiece W in a state where the position of the cutting tool 130 is the cutting tool processing stop position and the reciprocating vibration is finished.
- the machine tool 100 according to the second embodiment of the present invention and the control device C for the machine tool 100 obtained in this way are arranged such that the control unit C1 as the amplitude control means is provided from the cutting tool machining stop position on the workpiece W.
- the control unit C1 as the amplitude control means is provided from the cutting tool machining stop position on the workpiece W.
- the amplitude starts to decrease, and the position of the cutting tool 130 when switching from the forward movement to the backward movement reaches the cutting tool processing stop position.
- the forward movement as a relative movement at a predetermined first speed and the speed in the machining feed direction as a relative movement at a second speed slower than the first speed instead of the backward movement are zero. It can also be a vibration that repeatedly stops and stops.
- the relative movement at the second speed instead of the backward movement, the movement at the speed slower than the first speed in the same direction as the forward movement direction at the first speed in the machining feed direction may be repeated.
- the main shaft 110 and the cutting tool base 130A are relatively repetitively moved by repeating the relative movement along the machining feed direction at the first speed and the second speed different from each other, one repetitive movement is performed.
- the amplitude of one repetitive movement is reduced as described above so that the maximum movement position of the cutting tool 130 during the forward movement does not exceed the cutting tool machining stop position.
- the chips are easily divided so that the chips are broken at the portion where the width of the chips generated from the workpiece W becomes narrow.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Turning (AREA)
- Automatic Control Of Machine Tools (AREA)
- Numerical Control (AREA)
Abstract
Description
さらに、往復振動の振幅が小さくなるため、切削工具加工停止位置に近づくにつれて振動切削によるワークにおける切削加工面を整えることができる。
工作機械100は、主軸110と、切削工具台130Aとを備えている。
主軸110の先端にはチャック120が設けられている。
チャック120を介して主軸110にワークWが保持され、主軸110は、ワークを保持するワーク保持手段として構成されている。
主軸110は、図示しない主軸モータの動力によって回転駆動されるように主軸台110Aに支持されている。
前記主軸モータとして主軸台110A内において、主軸台110Aと主軸110との間に形成される従来公知のビルトインモータ等が考えられる。
主軸110は、主軸台110Aを介してZ軸方向送り機構160によって、前記Z軸方向に移動する。
Z軸方向送り機構160は、主軸110をZ軸方向に移動させる主軸移動機構を構成している。
Z軸方向ガイドレール162に、Z軸方向ガイド164を介してZ軸方向送りテーブル163がスライド自在に支持されている。
Z軸方向送りテーブル163側にリニアサーボモータ165の可動子165aが設けられ、ベース161側にリニアサーボモータ165の固定子165bが設けられている。
Z軸方向送りテーブル163の移動によって主軸台110AがZ軸方向に移動し、主軸110のZ軸方向への移動が行われる。
切削工具台130Aは、切削工具130を保持する刃物台を構成している。
切削工具台130Aは、工作機械100のベッド側に、X軸方向送り機構150及び図示しないY軸方向送り機構によって、前記Z軸方向に直交するX軸方向と、前記Z軸方向及びX軸方向に直交するY軸方向とに移動自在に設けられている。
X軸方向送り機構150とY軸方向送り機構とによって、切削工具台130Aを主軸110に対して前記X軸方向及びY軸方向に移動させる刃物台移動機構が構成されている。
X軸方向ガイドレール152に、X軸方向ガイド154を介してX軸方向送りテーブル153がスライド自在に支持されている。
リニアサーボモータ155の駆動によってX軸方向送りテーブル153が、X軸方向に移動駆動される。
なお、Y軸方向送り機構は、X軸方向送り機構150をY軸方向に配置したものであり、X軸方向送り機構150と同様の構造であるため、図示及び構造についての詳細な説明は割愛する。
切削工具台130Aは、X軸方向送りテーブル153の移動駆動によってX軸方向に移動し、Y軸方向送り機構が、Y軸方向に対して、X軸方向送り機構150と同様の動作をすることによって、Y軸方向に移動する。
この場合、前記送り手段が、切削工具台130AをX軸方向、Y軸方向、Z軸方向に移動させる刃物台移動機構から構成され、固定的に位置決めされて回転駆動される主軸110に対して、切削工具台130Aを移動させることによって、切削工具130をワークWに対して加工送り動作させることができる。
この場合、前記送り手段が、主軸台110AをX軸方向、Y軸方向、Z軸方向に移動させる主軸台移動機構から構成され、固定的に位置決めされる切削工具台130Aに対して、主軸台110Aを移動させることによって、切削工具130をワークWに対して加工送り動作させることができる。
本実施例では、切削工具130に対してワークWを回転させる構成としたが、ワークWに対して切削工具130を回転させる構成としてもよい。
この場合、切削工具130としてドリル等の回転工具が考えられる。
制御部C1は、各送り機構を振動手段として、各々対応する移動方向に沿って往復振動させながら、主軸台110A又は切削工具台130Aを各々の方向に移動させるように制御するように予め設定されている。
工作機械100は、Z軸方向送り機構160、X軸方向送り機構150、Y軸方向送り機構により、切削工具130が加工送り方向に沿った往復振動しながら加工送り方向に送られることによって、ワークWの加工を行う。
図4に示されるように、ワークWの1回転当たりの主軸台110A(主軸110)又は切削工具台130Aの振動数Nが、3.5回(振動数N=3.5)を例に説明する。
これにより、n回転目の切削工具130の往動時の切削加工部分と、n+1回転目の復動時の切削加工部分とが一部重複し、ワーク周面のn+1回転目の切削部分に、n回転目に切削済みの部分が含まれ、この部分では、切削中に切削工具130が、ワークWに対して何ら切削を行わずに空削りする、空振り動作が生じる。
切削加工時にワークWから生じる切屑は、前記空振り動作によって順次分断される。
工作機械100は、切削工具130の切削送り方向に沿った往復振動によって切屑を分断しながら、ワークWの外形切削加工等を円滑に行うことができる。
言い換えると、ワーク周面のn+1回転目における復動時の切削工具130の軌跡が、ワーク周面のn回転目における切削工具130の軌跡の位置まで到達すればよい。
図4に示されるように、n+1回転目とn回転目のワークWにおける切削工具130により旋削される形状の位相が一致(同位相)とならなければよく、必ずしも180度反転させる必要はない。
切削工具130が切削工具加工停止位置に到達する際の切削加工について説明する。
図4に示すように、ワークWの回転に伴い、切削工具130が、加工送り方向に沿った往復振動しながら加工送り方向へ送られることによって、ワークWを切削加工し、ワークWの5回転目の往動時に切削工具130が切削工具加工停止位置に到達するものとする。
このとき、制御部C1が振幅制御手段として機能し、制御部C1の制御により、1回転目から4回転目の切削加工では、予め定められた所定の振幅を維持して往復運動を行い、5回転目で前記振動手段による往復振動の振幅の減少を開始し、往動から復動に切り替わるときの切削工具130の位置を切削工具加工停止位置上に維持し、復動から往動に切り替わるときの切削工具130の位置を順次変更することによって前記振幅を減少させながら6回転目および7回転目の切削加工を実行する。
言い換えると振動手段が、前記往復振動の往動時の切削加工部分と復動時の切削加工部分とが重複するように振動させてワークWの切削加工をしながら、前記振幅制御手段である制御部C1が、加工送り方向への送り動作に伴って前記振動手段による往復振動の振幅を減少させる。
これにより、切屑が順次分断されながら前記振幅が小さくなる。
その後、最後の8回転目では、制御部C1の制御により、切削工具130が切削工具加工停止位置で維持されたままワークWを切削するように、前記振動手段による往復振動を停止させる。
これにより、ワークWの切削工具加工停止位置における切削加工面を整えることができる。
図5に示すように、第2実施例では、前記振幅制御手段としての制御部C1の制御により、切削工具加工停止位置に到達するより手前の任意の所定位置に切削工具130が到達したときに、前記振幅の減少を開始して前記振幅を減少させながら5回転目~7回転目の切削加工を実行し、7回転目の終わりの往動から復動に切り替わるときの切削工具130の位置が前記切削工具加工停止位置上に達して前記往復振動が終了するように前記振幅を減少させる。
8回転目では、切削工具130の位置が前記切削工具加工停止位置であって前記往復振動が終了した状態で切削工具130がワークWを切削加工する。
この場合、互いに異なる第1速度と第2速度での前記加工送り方向に沿った前記相対移動を繰り返して主軸110と切削工具台130Aとを相対的に反復的移動させる際、1反復的移動の往動時の切削工具130の最大移動位置が、前記切削工具加工停止位置を越えないように、1反復的移動の振幅を前記のように減少させる。
上記いずれの場合も、ワークWから生じる切屑の幅が狭くなる箇所で、切粉が折れるように分断されやすくなる。
110 ・・・ 主軸
110A・・・ 主軸台
120 ・・・ チャック
130 ・・・ 切削工具
130A・・・ 切削工具台
150 ・・・ X軸方向送り機構
151 ・・・ ベース
152 ・・・ X軸方向ガイドレール
153 ・・・ X軸方向送りテーブル
154 ・・・ X軸方向ガイド
155 ・・・ リニアサーボモータ
155a・・・ 可動子
155b・・・ 固定子
160 ・・・ Z軸方向送り機構
161 ・・・ ベース
162 ・・・ Z軸方向ガイドレール
163 ・・・ Z軸方向送りテーブル
164 ・・・ Z軸方向ガイド
165 ・・・ リニアサーボモータ
165a・・・ 可動子
165b・・・ 固定子
C ・・・ 制御装置
C1 ・・・ 制御部
W ・・・ ワーク
Claims (6)
- ワークを保持するワーク保持手段と、前記ワークを切削加工する切削工具を保持する刃物台と、前記ワーク保持手段と前記刃物台との相対移動によってワークに対して切削工具を所定の加工送り方向に送り動作させる送り手段と、前記切削工具が前記加工送り方向に沿って往復振動しながら加工送り方向に送られるように、前記ワーク保持手段と前記刃物台とを相対的に振動させる振動手段と、前記ワークと前記切削工具を相対的に回転させる回転手段とを備え、
前記ワークと前記切削工具との相対回転と、前記ワークに対する前記切削工具の前記加工送り方向への前記往復振動を伴う送り動作とによって、前記切削工具が前記ワークを切削加工する工作機械であって、
前記振動手段による往復振動の振幅を制御する振幅制御手段を備え、
前記切削工具が前記加工送り方向におけるワーク上の所定の切削工具加工停止位置に到達する際、前記振幅制御手段が、前記加工送り方向への送り動作に伴って前記振動手段による往復振動の振幅を減少させる構成とした工作機械。 - 前記振動手段が、前記往復振動の往動時の切削加工部分と復動時の切削加工部分とが重複するように、前記ワーク保持手段と前記刃物台とを相対的に振動させ、
前記振動手段と前記振幅制御手段とが、前記往復振動の往動時の切削加工部分と復動時の切削加工部分との重複を維持して、前記往復振動の振幅を減少させるように連係された請求項1の工作機械。 - 前記振幅制御手段を、前記往動時の切削工具が切削工具加工停止位置に到達したときに、前記振幅の減少を開始し、往動から復動に切り替わるときの切削工具の位置を前記切削工具加工停止位置上に維持し、復動から往動に切り替わるときの切削工具の位置を順次変更することによって前記振幅を減少させる構成とした請求項1又は請求項2に記載の工作機械。
- 前記振幅制御手段を、前記ワークにおける前記切削工具加工停止位置より手前の任意の所定位置に前記切削工具が到達したときに、前記振幅の減少を開始し、往動から復動に切り替わるときの切削工具の位置が前記切削工具加工停止位置上に達して前記往復振動が終了するように前記振幅を減少させる構成とした請求項1又は請求項2に記載の工作機械。
- 前記振幅制御手段を、前記切削工具が前記切削工具加工停止位置に到達し、所定回数前記振幅を減少させて前記往復振動が行われた後、前記切削工具が前記切削工具加工停止位置で維持されたまま前記ワークを切削するように、前記振動手段による往復振動を停止させる構成とした請求項1乃至請求項4のいずれか1つに記載の工作機械。
- ワークを保持するワーク保持手段と、前記ワークを切削加工する切削工具を保持する刃物台と、前記ワーク保持手段と前記刃物台との相対移動によってワークに対して切削工具を所定の加工送り方向に送り動作させる送り手段と、前記切削工具が前記加工送り方向に沿って往復振動しながら加工送り方向に送られるように、前記ワーク保持手段と前記刃物台とを相対的に振動させる振動手段と、前記ワークと前記切削工具を相対的に回転させる回転手段とを備えた工作機械に設けられ、
前記ワークと前記切削工具との相対回転と、前記ワークに対する前記切削工具の前記加工送り方向への前記往復振動を伴う送り動作とによって、前記切削工具が前記ワークを切削加工する工作機械の制御装置であって、
前記振動手段による往復振動の振幅を制御する振幅制御手段を備え、
前記切削工具が前記加工送り方向におけるワーク上の所定の切削工具加工停止位置に到達する際、前記振幅制御手段が、前記加工送り方向への送り動作に伴って前記振動手段による往復振動の振幅を減少させる構成とした工作機械の制御装置。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/512,989 US11338404B2 (en) | 2014-09-22 | 2015-09-14 | Machine tool and control apparatus of the machine tool |
KR1020177010761A KR102183278B1 (ko) | 2014-09-22 | 2015-09-14 | 공작기계 및 이 공작기계의 제어장치 |
ES15843568T ES2813968T3 (es) | 2014-09-22 | 2015-09-14 | Máquina herramienta y aparato de conrol de la máquina herramienta |
CN201580051234.1A CN106687237B (zh) | 2014-09-22 | 2015-09-14 | 机床以及该机床的控制装置 |
EP15843568.5A EP3199271B1 (en) | 2014-09-22 | 2015-09-14 | Machine tool and control device for machine tool |
JP2016550111A JP6297711B2 (ja) | 2014-09-22 | 2015-09-14 | 工作機械及びこの工作機械の制御装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014192950 | 2014-09-22 | ||
JP2014-192950 | 2014-09-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016047485A1 true WO2016047485A1 (ja) | 2016-03-31 |
Family
ID=55581012
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/076008 WO2016047485A1 (ja) | 2014-09-22 | 2015-09-14 | 工作機械及びこの工作機械の制御装置 |
Country Status (8)
Country | Link |
---|---|
US (1) | US11338404B2 (ja) |
EP (1) | EP3199271B1 (ja) |
JP (1) | JP6297711B2 (ja) |
KR (1) | KR102183278B1 (ja) |
CN (1) | CN106687237B (ja) |
ES (1) | ES2813968T3 (ja) |
TW (1) | TWI657889B (ja) |
WO (1) | WO2016047485A1 (ja) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180055838A (ko) * | 2015-09-24 | 2018-05-25 | 시티즌 도케이 가부시키가이샤 | 공작 기계의 제어 장치 및 이 제어 장치를 구비한 공작 기계 |
DE102018002566A1 (de) | 2017-04-04 | 2018-10-04 | Fanuc Corporation | Steuervorrichtung für eine Osziilationschneiden durchführende Werkzeugmaschine |
DE102018002784A1 (de) | 2017-04-14 | 2018-10-18 | Fanuc Corporation | Steuervorrichtung für Werkzeugmaschine, die Oszillationsschneiden durchführt |
DE102018003051A1 (de) | 2017-04-20 | 2018-10-25 | Fanuc Corporation | Steuervorrichtung für eine Werkzeugmaschine, die Vibrationsschneiden durchführt |
JP2018181110A (ja) * | 2017-04-18 | 2018-11-15 | ファナック株式会社 | 揺動切削を行う工作機械の制御装置 |
JP2018181103A (ja) * | 2017-04-18 | 2018-11-15 | ファナック株式会社 | 揺動切削を行う工作機械の制御装置 |
JP2019028597A (ja) * | 2017-07-27 | 2019-02-21 | ファナック株式会社 | 揺動切削を行う工作機械の制御装置 |
WO2019073907A1 (ja) | 2017-10-13 | 2019-04-18 | シチズン時計株式会社 | 工作機械 |
US10503141B2 (en) | 2017-05-16 | 2019-12-10 | Fanuc Corporation | Display device and machining system for oscillation cutting |
JP2020144588A (ja) * | 2019-03-06 | 2020-09-10 | ファナック株式会社 | 工作機械の制御装置 |
DE112021004064T5 (de) | 2020-07-29 | 2023-05-17 | Fanuc Corporation | Werkzeugmaschinen-Steuervorrichtung |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6991774B2 (ja) * | 2017-08-01 | 2022-01-13 | シチズン時計株式会社 | 工作機械の制御装置および工作機械 |
WO2019054329A1 (ja) * | 2017-09-12 | 2019-03-21 | シチズン時計株式会社 | 工作機械 |
US11491672B2 (en) * | 2018-09-21 | 2022-11-08 | Dexerials Corporation | Microfabrication device, microfabrication method, transfer mold, and transfer object |
JP7264643B2 (ja) * | 2019-01-10 | 2023-04-25 | シチズン時計株式会社 | 工作機械の制御装置および工作機械 |
JP7131454B2 (ja) * | 2019-03-27 | 2022-09-06 | ブラザー工業株式会社 | 数値制御装置、工作機械、制御プログラム、及び記憶媒体 |
JP7214568B2 (ja) * | 2019-05-29 | 2023-01-30 | シチズン時計株式会社 | 工作機械及びこの工作機械の制御装置 |
US11148208B2 (en) * | 2020-02-03 | 2021-10-19 | The Boeing Company | Vibration assisted drilling system and method of use |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61252056A (ja) * | 1985-04-30 | 1986-11-10 | Canon Inc | 振動研摩加工法 |
JP2001150201A (ja) * | 1999-11-22 | 2001-06-05 | Mitsubishi Materials Corp | 振動工具による切削方法及び切削装置 |
JP2002103101A (ja) * | 2000-09-22 | 2002-04-09 | Matsushita Electric Ind Co Ltd | 切屑分断化旋削方法及びその装置 |
JP2006312223A (ja) * | 2005-05-09 | 2006-11-16 | Toyota Motor Corp | 切削加工装置、及び方法 |
WO2014125569A1 (ja) * | 2013-02-12 | 2014-08-21 | 三菱電機株式会社 | 数値制御装置 |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3174404A (en) * | 1959-06-15 | 1965-03-23 | Textron Inc | Method and apparatus for cutting material |
US3699719A (en) * | 1971-01-25 | 1972-10-24 | Nicholas Rozdilsky | Ultrasonic machining |
JPS5033929B2 (ja) | 1973-10-19 | 1975-11-05 | ||
JPS5715626A (en) * | 1980-06-24 | 1982-01-27 | Pilot Pen Co Ltd:The | Accurate thread vibration cutting lathe |
GB2170135B (en) * | 1985-01-28 | 1988-09-01 | Bergsmann App Ludwig | Method of and apparatus for chip-cutting of workpieces |
DE3563922D1 (en) * | 1985-04-09 | 1988-09-01 | Hegenscheidt Gmbh Wilhelm | Method to obtain broken chips during the machining of work pieces, and device therefor |
JPH0463668A (ja) * | 1990-07-03 | 1992-02-28 | Brother Ind Ltd | 超音波加工機の振幅制御装置 |
JP3088537B2 (ja) * | 1991-12-11 | 2000-09-18 | 株式会社不二越 | 高硬度材の孔の仕上げ加工方法及び加工装置 |
US5582085A (en) * | 1994-11-09 | 1996-12-10 | Coburn Optical Industries, Inc. | Dynamic infeed control with workpiece oscillation for segmenting swarf in a lathe application |
JPH1015701A (ja) * | 1996-07-04 | 1998-01-20 | Mitsubishi Materials Corp | 振動バイトによる切削方法 |
JP4539499B2 (ja) * | 2004-11-09 | 2010-09-08 | 株式会社デンソー | 振動加工装置及び振動加工方法 |
US7234379B2 (en) * | 2005-06-28 | 2007-06-26 | Ingvar Claesson | Device and a method for preventing or reducing vibrations in a cutting tool |
US7508116B2 (en) * | 2005-09-07 | 2009-03-24 | Panasonic Corporation | Method and apparatus for vibration machining with two independent axes |
US8240234B2 (en) * | 2007-10-16 | 2012-08-14 | University Of North Carolina At Charlotte | Methods and systems for chip breaking in turning applications using CNC toolpaths |
JP4942839B2 (ja) * | 2010-09-10 | 2012-05-30 | 株式会社牧野フライス製作所 | びびり振動検出方法及びびびり振動回避方法、並びに工作機械 |
DE102011077568B4 (de) * | 2011-06-15 | 2023-12-07 | Dmg Mori Ultrasonic Lasertec Gmbh | Werkzeugmaschine, Werkstückbearbeitungsverfahren |
JP5033929B1 (ja) * | 2011-11-10 | 2012-09-26 | ハリキ精工株式会社 | 工作機械 |
JP5908342B2 (ja) * | 2012-05-17 | 2016-04-26 | オークマ株式会社 | 工作機械の加工振動抑制方法及び加工振動抑制装置 |
CN202639335U (zh) * | 2012-07-02 | 2013-01-02 | 赵显华 | 超声波振动车削装置 |
ES2956678T3 (es) * | 2014-08-29 | 2023-12-26 | Citizen Watch Co Ltd | Método para mecanizar una pieza de trabajo mediante una máquina herramienta |
JP6470085B2 (ja) * | 2015-03-26 | 2019-02-13 | シチズン時計株式会社 | 工作機械及びこの工作機械の制御装置 |
CN108025411B (zh) * | 2015-09-10 | 2020-03-06 | 西铁城时计株式会社 | 机床的控制装置以及机床 |
US10610993B2 (en) * | 2015-09-24 | 2020-04-07 | Citizen Watch Co., Ltd. | Machine tool control device and machine tool equipped with said control device |
KR102623128B1 (ko) * | 2015-09-24 | 2024-01-11 | 시티즌 도케이 가부시키가이샤 | 공작 기계의 제어 장치 및 이 제어 장치를 구비한 공작 기계 |
-
2015
- 2015-09-14 TW TW104130290A patent/TWI657889B/zh active
- 2015-09-14 KR KR1020177010761A patent/KR102183278B1/ko active IP Right Grant
- 2015-09-14 JP JP2016550111A patent/JP6297711B2/ja active Active
- 2015-09-14 EP EP15843568.5A patent/EP3199271B1/en active Active
- 2015-09-14 CN CN201580051234.1A patent/CN106687237B/zh active Active
- 2015-09-14 WO PCT/JP2015/076008 patent/WO2016047485A1/ja active Application Filing
- 2015-09-14 US US15/512,989 patent/US11338404B2/en active Active
- 2015-09-14 ES ES15843568T patent/ES2813968T3/es active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61252056A (ja) * | 1985-04-30 | 1986-11-10 | Canon Inc | 振動研摩加工法 |
JP2001150201A (ja) * | 1999-11-22 | 2001-06-05 | Mitsubishi Materials Corp | 振動工具による切削方法及び切削装置 |
JP2002103101A (ja) * | 2000-09-22 | 2002-04-09 | Matsushita Electric Ind Co Ltd | 切屑分断化旋削方法及びその装置 |
JP2006312223A (ja) * | 2005-05-09 | 2006-11-16 | Toyota Motor Corp | 切削加工装置、及び方法 |
WO2014125569A1 (ja) * | 2013-02-12 | 2014-08-21 | 三菱電機株式会社 | 数値制御装置 |
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102623129B1 (ko) | 2015-09-24 | 2024-01-11 | 시티즌 도케이 가부시키가이샤 | 공작 기계의 제어 장치 및 이 제어 장치를 구비한 공작 기계 |
KR20180055838A (ko) * | 2015-09-24 | 2018-05-25 | 시티즌 도케이 가부시키가이샤 | 공작 기계의 제어 장치 및 이 제어 장치를 구비한 공작 기계 |
US10286513B2 (en) | 2017-04-04 | 2019-05-14 | Fanuc Corporation | Control device for machine tool performing oscillation cutting |
DE102018002566A1 (de) | 2017-04-04 | 2018-10-04 | Fanuc Corporation | Steuervorrichtung für eine Osziilationschneiden durchführende Werkzeugmaschine |
DE102018002566B4 (de) | 2017-04-04 | 2019-10-24 | Fanuc Corporation | Steuervorrichtung für eine Oszillationschneiden durchführende Werkzeugmaschine |
JP2018180633A (ja) * | 2017-04-04 | 2018-11-15 | ファナック株式会社 | 揺動切削を行う工作機械の制御装置 |
DE102018002784B4 (de) | 2017-04-14 | 2020-04-23 | Fanuc Corporation | Steuervorrichtung für Werkzeugmaschine, die Oszillationsschneiden durchführt |
DE102018002784A1 (de) | 2017-04-14 | 2018-10-18 | Fanuc Corporation | Steuervorrichtung für Werkzeugmaschine, die Oszillationsschneiden durchführt |
US10503140B2 (en) | 2017-04-14 | 2019-12-10 | Fanuc Corporation | Control device for machine tool performing oscillation cutting |
JP2018180990A (ja) * | 2017-04-14 | 2018-11-15 | ファナック株式会社 | 揺動切削を行う工作機械の制御装置 |
US10434614B2 (en) | 2017-04-18 | 2019-10-08 | Fanuc Corporation | Control device for machine tool performing oscillation cutting |
US10471563B2 (en) | 2017-04-18 | 2019-11-12 | Fanuc Corporation | Control device for machine tool performing oscillation cutting |
JP2018181110A (ja) * | 2017-04-18 | 2018-11-15 | ファナック株式会社 | 揺動切削を行う工作機械の制御装置 |
JP2018181103A (ja) * | 2017-04-18 | 2018-11-15 | ファナック株式会社 | 揺動切削を行う工作機械の制御装置 |
DE102018003051B4 (de) * | 2017-04-20 | 2020-12-17 | Fanuc Corporation | Steuervorrichtung für eine Werkzeugmaschine, die Vibrationsschneiden durchführt |
JP2018181210A (ja) * | 2017-04-20 | 2018-11-15 | ファナック株式会社 | 揺動切削を行う工作機械の制御装置 |
CN108723890B (zh) * | 2017-04-20 | 2020-01-21 | 发那科株式会社 | 进行摇摆切割的机床的控制装置 |
CN108723890A (zh) * | 2017-04-20 | 2018-11-02 | 发那科株式会社 | 进行摇摆切割的机床的控制装置 |
US10503139B2 (en) | 2017-04-20 | 2019-12-10 | Fanuc Corporation | Control device for machine tool performing oscillation cutting |
DE102018003051A1 (de) | 2017-04-20 | 2018-10-25 | Fanuc Corporation | Steuervorrichtung für eine Werkzeugmaschine, die Vibrationsschneiden durchführt |
US10503141B2 (en) | 2017-05-16 | 2019-12-10 | Fanuc Corporation | Display device and machining system for oscillation cutting |
US10509387B2 (en) | 2017-07-27 | 2019-12-17 | Fanuc Corporation | Control device for machine tool performing oscillation cutting |
JP2019028597A (ja) * | 2017-07-27 | 2019-02-21 | ファナック株式会社 | 揺動切削を行う工作機械の制御装置 |
JPWO2019073907A1 (ja) * | 2017-10-13 | 2020-09-17 | シチズン時計株式会社 | 工作機械 |
WO2019073907A1 (ja) | 2017-10-13 | 2019-04-18 | シチズン時計株式会社 | 工作機械 |
US11224952B2 (en) | 2017-10-13 | 2022-01-18 | Citizen Watch Co., Ltd. | Machine tool |
JP7140771B2 (ja) | 2017-10-13 | 2022-09-21 | シチズン時計株式会社 | 工作機械 |
JP2020144588A (ja) * | 2019-03-06 | 2020-09-10 | ファナック株式会社 | 工作機械の制御装置 |
DE112021004064T5 (de) | 2020-07-29 | 2023-05-17 | Fanuc Corporation | Werkzeugmaschinen-Steuervorrichtung |
Also Published As
Publication number | Publication date |
---|---|
CN106687237A (zh) | 2017-05-17 |
US20170297159A1 (en) | 2017-10-19 |
EP3199271A4 (en) | 2018-06-06 |
TW201611941A (en) | 2016-04-01 |
ES2813968T3 (es) | 2021-03-25 |
KR20170058421A (ko) | 2017-05-26 |
EP3199271A1 (en) | 2017-08-02 |
TWI657889B (zh) | 2019-05-01 |
EP3199271B1 (en) | 2020-08-12 |
JPWO2016047485A1 (ja) | 2017-07-06 |
US11338404B2 (en) | 2022-05-24 |
KR102183278B1 (ko) | 2020-11-26 |
JP6297711B2 (ja) | 2018-03-20 |
CN106687237B (zh) | 2018-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016047485A1 (ja) | 工作機械及びこの工作機械の制御装置 | |
JP7304315B2 (ja) | 工作機械及びこの工作機械の制御装置 | |
JP7096227B2 (ja) | 工作機械及びこの工作機械の制御装置 | |
JP6470085B2 (ja) | 工作機械及びこの工作機械の制御装置 | |
WO2015146946A1 (ja) | 工作機械の制御装置及びこの制御装置を備えた工作機械 | |
JP6289766B2 (ja) | 工作機械の制御装置、工作機械 | |
WO2017051745A1 (ja) | 工作機械の制御装置及びこの制御装置を備えた工作機械 | |
CN108025413B (zh) | 机床的控制装置以及具备该控制装置的机床 | |
JP7214568B2 (ja) | 工作機械及びこの工作機械の制御装置 | |
WO2016152768A1 (ja) | 工作機械及びこの工作機械の制御装置 | |
US11517991B2 (en) | Machine tool including vibration restriction means | |
JP6517061B2 (ja) | 工作機械及びこの工作機械の制御装置 | |
CN111149068B (zh) | 机床 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15843568 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016550111 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015843568 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015843568 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15512989 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20177010761 Country of ref document: KR Kind code of ref document: A |