JP2018181210A - 揺動切削を行う工作機械の制御装置 - Google Patents

揺動切削を行う工作機械の制御装置 Download PDF

Info

Publication number
JP2018181210A
JP2018181210A JP2017083919A JP2017083919A JP2018181210A JP 2018181210 A JP2018181210 A JP 2018181210A JP 2017083919 A JP2017083919 A JP 2017083919A JP 2017083919 A JP2017083919 A JP 2017083919A JP 2018181210 A JP2018181210 A JP 2018181210A
Authority
JP
Japan
Prior art keywords
command
unit
swing
rocking
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017083919A
Other languages
English (en)
Other versions
JP6503002B2 (ja
Inventor
勇作 於保
Yusaku Obo
勇作 於保
健太 山本
Kenta Yamamoto
健太 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP2017083919A priority Critical patent/JP6503002B2/ja
Priority to CN201810289365.9A priority patent/CN108723890B/zh
Priority to DE102018003051.3A priority patent/DE102018003051B4/de
Priority to US15/952,265 priority patent/US10503139B2/en
Publication of JP2018181210A publication Critical patent/JP2018181210A/ja
Application granted granted Critical
Publication of JP6503002B2 publication Critical patent/JP6503002B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/182Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by the machine tool function, e.g. thread cutting, cam making, tool direction control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/12Adaptive control, i.e. adjusting itself to have a performance which is optimum according to a preassigned criterion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/14Control or regulation of the orientation of the tool with respect to the work
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31263Imbedded learning for planner, executor, monitor, controller and evaluator
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37372Position and speed
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/45Nc applications
    • G05B2219/45044Cutting

Abstract

【課題】学習制御を適用している場合であっても、追従性を高める。【解決手段】工作機械(10)の制御装置(20)は、送り軸(M1、M2)の揺動指令を作成する揺動指令作成部(23)と、位置指令と送り軸の検出位置との間の位置偏差に揺動指令を加算して合成指令を作成する第一加算部(24)と、合成指令を正規化する正規化部(25)と、揺動指令から求める揺動位相と正規化された合成指令とに基づいて、合成指令の補正量を求めて合成指令に加算する学習制御部(26)と、学習制御部からの出力を逆正規化する逆正規化部(27)と、逆正規化部により逆正規化された出力を合成指令に加算する第二加算部(28)とを含む。【選択図】図1

Description

本発明は、揺動切削を行う工作機械の制御装置に関する。
工作機械の工具によりワークを加工する際に切屑が連続して発生すると、切屑が工具に絡まる場合がある。このため、ワークを断続切削するように工具を揺動させる技術が知られている(例えば特許文献1、特許文献2参照)。
ところが、特許文献1および特許文献2では所定の加工停止位置で切削加工を終了することまでは考慮されていない。従って、切削工具が揺動し続けて所定の加工停止位置を越えてしまうという問題が生じる。このため、特許文献3には、「前記切削工具が前記加工送り方向におけるワーク上の所定の切削工具加工停止位置に到達する際、前記振幅制御手段が、前記加工送り方向への送り動作に伴って前記振動手段による往復振動の振幅を減少させる」ことが開示されている。
特許第5033929号公報 特許第5139592号公報 国際公開第2016/047485号
ところが、断続切削に学習制御を適用している場合には、揺動運動の振幅を加工停止位置近傍で小さくしたとしても、振幅は即時に追従して小さくならない。このため、切削工具が加工停止位置を越えるという問題を解決できない場合がある。また、ワークの形状によっては、ワークの加工停止位置近傍において、ワークに切込みが生じる可能性もある。
それゆえ、学習制御を適用している場合であっても、追従性を高めることのできる工作機械の制御装置が望まれている。
本開示の1番目の態様によれば、ワークおよび工具を前記ワークの中心軸線まわりに相対的に回転させる主軸と、前記ワークの外周面または内周面の母線に沿って前記工具および前記ワークを相対的に送る少なくとも一つの送り軸とを備えた工作機械を制御する制御装置であって、前記ワークおよび前記工具の相対的な回転速度ならびに前記工具および前記ワークの相対的な送り速度に基づいて、前記少なくとも一つの送り軸の位置指令を作成する位置指令作成部と、前記回転速度および前記位置指令に基づいて、前記回転速度に対して正の非整数倍になるように且つ前記工具が前記ワークを断続切削するように、前記少なくとも一つの送り軸の揺動指令を作成する揺動指令作成部と、前記位置指令と前記少なくとも一つの送り軸の実位置との差である位置偏差に前記揺動指令を加算して得られる合成指令を作成する第一加算部と、前記合成指令を正規化する正規化部と、前記揺動指令から求める揺動位相と正規化された合成指令とに基づいて、前記合成指令の補正量を求めて前記合成指令に加算する学習制御部と、該学習制御部からの出力を逆正規化する逆正規化部と、該逆正規化部により逆正規化された出力を前記合成指令に加算する第二加算部とを具備する、制御装置が提供される。
1番目の態様においては、合成指令を代表値、例えば位置指令で正規化して学習制御部へ入力し、また、学習制御部からの出力を代表値、例えば位置指令で逆正規化している。このため、学習制御部への入力時の代表値が出力時の代表値と異なる場合であっても、出力時の代表値で逆正規化しているので、代表値、例えば位置指令の変化に容易に追従することができる。従って、学習制御を適用している場合であっても、追従性を高めることができる。
添付図面に示される本発明の典型的な実施形態の詳細な説明から、本発明のこれら目的、特徴および利点ならびに他の目的、特徴および利点がさらに明解になるであろう。
第一の実施形態に基づく制御装置を含むシステムの図である。 第一のワークの断面図である。 第二のワークの断面図である。 第三のワークの断面図である。 第四のワークの断面図である。 典型的な実施形態に基づく制御装置の動作を示すフローチャートである。 第二の実施形態に基づく制御装置を含むシステムの図である。 送り量と回転角度との関係を示す図である。 従来技術における時間と工具の位置との関係を示す図である。 第一の実施形態における時間と工具の位置との関係を示す図である。
以下、添付図面を参照して本発明の実施形態を説明する。以下の図面において同様の部材には同様の参照符号が付けられている。理解を容易にするために、これら図面は縮尺を適宜変更している。また、図面に示される形態は本発明を実施するための一つの例であり、本発明は図示された形態に限定されるものではない。
図1は第一の実施形態に基づく制御装置を含むシステムの図である。図1に示されるように、システム1は、工作機械10と、工作機械10を制御する制御装置20と、制御装置20に接続された上位制御装置30とを含んでいる。工作機械10は工具11を有しており、工具11は、少なくとも部分的に回転軸線Oまわりに回転対称なワークWの外周面または内周面を切削加工する。また、図1などにおいては、ワークWの回転軸線をZ軸、Z軸に対して垂直な軸線をX軸としている。
工作機械10の主軸M0はワークWをその回転軸線Oまわりに回転させる。さらに、工作機械10の送り軸M1は工具11をワークWの母線に沿って送る。なお、後述するように、二つ以上の送り軸M1、M2が工具11をワークWの母線に沿って送る構成であってもよい。
主軸M0は主軸回転機構と該回転機構を駆動するサーボモータを含むものである。同様に、送り軸M1、M2は工具11の送り機構と該送り機構を駆動するサーボモータとを含むものである。そして、送り軸M1、M2は主軸M0と協調動作しつつ工具11を送ってワークWを切削加工するものとする。なお、主軸M0および送り軸M1、M2の必要トルクは、切削負荷を除けばイナーシャと指令の角加速度より推定できるが、主軸M0、送り軸M1、M2の位置およびトルクを検出するための位置検出部T0、T1、T2がそれぞれ備えられていても良い。位置検出部T0、T1、T2はエンコーダであってもよい。
上位制御装置30は例えばPLC(Programmable Logic Controller)であるが、これに限定されるものではない。上位制御装置30は、ワークWの加工条件、例えばワークWを回転させる主軸M0の回転速度、例えば回転速度指令Vcおよび工具11を送る送り軸M1、M2の位置指令Pcを作成する。言い換えれば、上位制御装置30は、ワークWおよび工具11の相対的な回転速度ならびに工具11およびワークWの相対的な送り速度に基づいて、少なくとも一つの送り軸M1、M2の位置指令を作成する位置指令作成部としての役目を果たす。位置指令Pcは単位時間当たりの位置指令であるので、位置指令Pcは一種の速度指令でありうる。主軸M0の回転速度として回転速度検出値を使用しても良い。以下においては、主軸M0の回転速度は回転速度指令Vcであるものとする。
制御装置20はCPU、メモリなどを備えたデジタルコンピュータであるが、これに限定されるものではない。制御装置20は、主軸M0の回転速度および少なくとも一つの送り軸M1、M2の位置指令Pcに基づいて、回転速度に対して正の非整数倍になるように且つ工具11がワークWを断続切削するように、少なくとも一つの送り軸M1、M2の揺動指令を作成する揺動指令作成部23を含んでいる。揺動指令は揺動周波数と揺動振幅とを含んでいる。回転速度は、主軸M0の回転速度指令Vcでも回転速度実際値でもよい。
なお、断続切削とは、工具11が周期的にワークWに接触およびワークWから離間しながらワークWを切削加工することを意味し、揺動切削または振動切削ともいう。また、図1においてはワークWが回転すると共に工具11がワークWに対して揺動するようになっているが、工具11が回転すると共にワークWが工具11に対して揺動する構成であってもよい。
さらに、制御装置20は、位置指令Pcと位置検出部T1、T2により検出された少なくとも一つの送り軸M1、M2の検出位置Pd(実位置)との間の差である位置偏差ΔPに揺動指令を加算して得られる合成指令Scを作成する第一加算部24を含んでいる。さらに、制御装置20は、揺動指令が加算された後の位置偏差ΔPである合成指令Scを正規化する正規化部25と、揺動指令から求める揺動位相と正規化された合成指令Sc'とに基づいて、合成指令Scの補正量を求めて合成指令Scに加算する学習制御部26とを含んでいる。
学習制御部26は、揺動指令から求める揺動位相と正規化された合成指令とに基づいて補正量を繰返し求め、合成指令を補正することで、周期的な動作に対する追従性を向上させている。学習制御とは、1学習周期前までの積算偏差により移動指令を補正することで、周期的な指令への追従性を向上させる制御である。
さらに、制御装置20は学習制御部26からの出力を逆正規化する逆正規化部27と、逆正規化部27により逆正規化された出力を合成指令Scに加算する第二加算部28とを含んでいる。さらに、制御装置20は、逆正規化された出力が加算された合成指令Sc''に基づいて、送り軸M1、M2のための速度指令およびトルク指令を作成して、送り軸M1、M2に供給する位置速度制御部29を含んでいる。制御装置20のCPUは、揺動指令作成部23、第一加算部24、正規化部25、学習制御部26、逆正規化部27、第二加算部28および位置速度制御部29としての役目を果たす。
図2A〜図2Dは第一〜第四のワークの断面図である。図2Aに示されるワークWは円筒形状部分W1と、円筒形状部分W1に結合されたフランジW2とを含んでいる。円筒形状部分W1とフランジW2との間には、断面が略直角なコーナ部Qが形成されている。これに対し、図2Bに示されるワークWにおいては、円筒形状部分W1とフランジW2との間のコーナ部Qの断面は円弧状である。
さらに、図2Cに示されるワークWは、円筒形状部分W1と、フランジW2と、円筒形状部分W1およびフランジW2の間に配置されたテーパ部分W3とを含んでいる。円筒形状部分W1とテーパ部分W3との間、およびテーパ部分W3とフランジW2との間には断面が鈍角のコーナ部Qがそれぞれ形成されている。また、図2Dに示されるワークWは円筒形状であり、その端面には円錐台状凹部W4が形成されている。凹部W4の底部と内周面との間には断面が鈍角のコーナ部Qが形成されている。
図2A〜図2Dに示されるワークWの円筒形状部分W1、テーパ部分W3および円錐台状凹部W4は回転軸線Oまわりに回転対称である。つまり、図2A〜図2Dに示されるワークWは回転軸線Oまわりに回転対称な一部分を含んでいる。そして、ワークWのコーナ部Qは回転軸線Oに沿った断面においてワークWの半径方向最外方部分よりも半径方向内側に存在しており、これらコーナ部Qは、半径方向最外方部分に連続していない。言い換えれば、ワークWは、回転軸線Oに沿った断面において、段部を有している。
図1に示される工具11は、図2A〜図2Cに示される円筒形状部分W1およびテーパ部分W3の外周面、ならびに図2Dに示される円錐台状凹部W4の内周面を切削加工するものとする。なお、フランジW2は必ずしも回転対称である必要はなく、半径方向に単に延びる突出部がフランジW2の代わりに備えられていてもよい。また、円筒形状部分W1の代わりに、テーパ部分が設けられていても良い。
図3は典型的な実施形態に基づく制御装置の動作を示すフローチャートである。理解を容易にする目的で、工具11はワークWの円筒形状部分W1のみの外周面を切削加工する場合について説明する。図3に示される処理は所定の制御周期毎に繰返し実施されるものとする。
はじめに、図3のステップS11において、揺動指令作成部23は、上位制御装置30から供給された位置指令Pcと主軸回転速度指令Vcとに基づいて、送り軸M1の揺動指令を作成する。図1に示される例においては、工具11は回転軸線Oに平行な直線のみに沿って揺動するので、送り軸M1のためだけの揺動指令が作成される。
ここで、図4は第二の実施形態に基づく制御装置を含む他のシステムの図である。図4に示される例においては、テーパ部分W3がフランジW2に結合されている。配置されている。この場合には、工具11はテーパ部分W3の母線に沿って斜方向に揺動してテーパ部分W3の外周面を切削加工するようになっている。工具11はX方向およびZ方向の合成方向に移動するので、工具11を移動させるために二つの送り軸M1、M2が必要とされる。この場合には、ステップS11においては、二つの送り軸M1、M2のための揺動指令がそれぞれ作成されるものとする。なお、さらに多数の送り軸により工具11を送る構成であっても本発明の範囲に含まれる。また、このような場合には、各送り軸毎に、図示される構成が存在するものとする。
以下においては、図1に示されるように工具11がワークWの円筒形状部分W1のみの外周面を切削加工する場合について説明する。ただし、以下の説明は、図2A〜図2D、図4に示される場合にも概ね同様に適用されることが理解されるだろう。
図5は送り量と回転角度との関係を示す図である。図5における横軸はワークWの回転角度を示し、縦軸はワークWの中心軸線の方向(すなわち、Z軸方向)における工具11の送り量を示している。図5には斜方向に延びる複数の直線状破線C1、C2、C3…が示されている。図5から分かるように、破線C1と縦軸との間の交点の縦軸座標は、次の破線C2の開始点における縦軸座標に相当する。同様に、破線C2と縦軸との間の交点の縦軸座標は、次の破線C3の開始点における縦軸座標に相当する。これら複数の直線状破線C1、C2、C3…は揺動指令が無い場合においてワークW上における工具11の軌跡を示している。一方、図5に示される曲線A1、A2、A3…は、揺動指令がある場合においてワークW上における工具11の軌跡を示している。つまり、破線C1、C2、C3等は、揺動指令が加算される前の位置指令(元の指令値)のみを示し、曲線A1、A2、A3等は、揺動指令が加算された後の位置指令(合成指令)を示しているものとする。よって、曲線A1、A2、A3は、破線C1、C2、C3により表される各位置指令に余弦波状の揺動指令を加算して得られる指令を示している。
また、曲線A1はワークWの第一回転目における工具11の軌跡であり、曲線A2はワークWの第二回転目における工具11の軌跡であり、曲線A3はワークWの第三回転目における工具11の軌跡である。簡潔にする目的で、ワークWの第四回転目以降の工具11の軌跡は図示を省略している。これら曲線A1、A2、A3は破線C1、C2、C3を基準軸線とする余弦波に縦軸方向の送り量を加算したものであり、ワークWの回転速度(回転数)に対して正の非整数倍の揺動周波数を有している。
図3のステップS11において、揺動指令作成部23は以下のようにして揺動指令を作成する。はじめに、上位制御装置30において、送り軸M1の位置指令Pcの破線C1、C2、C3が決定される。揺動指令作成部23は、破線C1、C2、C3の各々を基準軸線とする曲線A1、A2、A3のような指令を生成するため、余弦波状の揺動指令における揺動周波数を決定する。後述する式(1)におけるS/60×I の項による値が揺動周波数となる。
上記の揺動周波数を決定する場合、図5に示されるように、或る破線、例えば破線C2を基準軸線とする余弦波状の曲線A2の初期位相は、一つ前の破線、例えば破線C1を基準軸線とする余弦波状の曲線A1に対して半周期ズレるのが好ましい。その理由は、半周期ズレた場合には、揺動指令の揺動振幅を最小限にでき、その結果、最も効率的に切屑を細断できるためである。
次いで、揺動指令作成部23は、破線C1、C2、C3の各々を基準軸線とする曲線A1、A2、A3のような指令を生成するため、前述した揺動指令の揺動振幅を決定する。後述する式(1)におけるK×F/2 の項による値が揺動振幅となる。図5に示される曲線A1と曲線A2とは、回転角度が約0度の箇所B1と回転角度が約240度の箇所B2とにおいて互いに重なっている。図5から分かるように箇所B1、B2においては破線C1に対する曲線A1の最大値は、破線C2に対する曲線A2の最小値よりも大きい。言い換えれば、揺動指令作成部23は、前の曲線A1と後の曲線A2とが部分的に互いに重なるように揺動振幅を決定するのが望ましい。なお、曲線A1、A2、A3においては、送り速度が一定のため、各揺動指令の揺動振幅もすべて同じとなる。
この重なり箇所B1、B2においては、工具11が曲線A2の軌跡で加工しているときに工具11がワークWから離間するのでワークWは加工されない。本実施形態においては、このような重なり箇所が周期的に発生するので、いわゆる断続切削を行うことができる。図5に示される例においては、曲線A2に従った動作により切屑が箇所B1、B2においてそれぞれ発生することとなる。つまり、第二回転目の曲線A2においては二つの切屑が発生する。このような断続切削が周期的に行われるので振動切削が可能となる。
さらに、破線C3に対して形成される曲線A3は曲線A1と同じ形状である。曲線A2と曲線A3とは、回転角度が約120°の箇所B3と約360°の箇所B4において重なっている。曲線A3に従った動作により切屑が箇所B3、B4においてそれぞれ発生することとなる。つまり、第三回転目の曲線A3においては二つの切屑が発生する。以降、ワーク一回転毎に二つの切屑が発生する。ただし、一回転目では切屑は発生しない。
このようにして揺動周波数と揺動振幅とを定めることにより、揺動指令作成部23は揺動指令を作成する(ステップS11)。例えば、図5に示された曲線A1、A2、A3等のような工具11の軌跡を得るための揺動指令は、次式のように表される。
揺動指令=(K×F/2)×cos(2π×S/60×I×t)−(K×F/2) ・・・式(1)
式(1)において、Kは揺動振幅倍率、FはワークWの一回転当たりの工具11の移動量、すなわち毎回転送り量[mm/rev]、SはワークWの中心軸線まわりの回転速度[min-1],or [rpm]、Iは揺動周波数倍率、である。ここで、前述の揺動周波数は式(1)におけるS/60×I の項に相当し、前述の揺動振幅は式(1)におけるK×F/2 の項に相当する。但し、揺動振幅倍率Kは1以上の数とし、揺動周波数倍率Iはゼロより大きい非整数とする(例えば0.5、0.8、1.2、1.5、1.9、2.3、又は2.5、…等の正の非整数)。揺動振幅倍率Kおよび揺動周波数倍率Iは定数である(図5の例では、Iは1.5である)。
揺動周波数倍率Iを整数としない理由は、ワークWの中心軸線まわりの回転数と全く同じになる揺動周波数の場合には、前述した重なり箇所B1、B2、B3、B4等を発生させることができず、揺動切削による切屑の細断効果が得られなくなるからである。
また、式(1)によると、揺動指令は、位置指令を示す各破線C1、C2、C3を基準軸線とする余弦波に対して(K×F/2)の項がオフセット値として減じられた指令となっている。このことにより、位置指令に揺動指令を加算して得られる指令値に基づく工具11の位置軌跡を、工具11の加工送り方向において位置指令による位置を上限として制御することができる。そのため、図5の曲線A1、A2、A3等は、破線C1、C2、C3等を+Z軸方向(すなわち、工具11の加工送り方向)において超えないようになっている。
さらに、式(1)で表されるような揺動指令とすることで、図5の曲線A1から分かるように、工具11の加工開始点(横軸の0°の位置)で工具11の送り方向に初めから大きな揺動指令が出ないようにしている。
なお、揺動揺動周波数と揺動振幅とを定める際に調整される各パラメータ(式(1)におけるK、I)の初期値は、工作機械10の稼働前に上位制御装置30に記憶されているものとする。ワークWの回転速度Vcは、上位制御装置30に加工条件として事前に記憶されている。毎回転送り量Fは、その回転速度Vcと上位制御装置30が作成した位置指令とから求められる。
次いで、図3のステップS12においては、位置検出部T1が送り軸M1の実位置を検出位置Pdとして検出する。次いで、ステップS13においては、位置指令Pcと検出位置Pdとの間の位置偏差ΔPを算出する。そして、ステップS14においては、第一加算部24において位置偏差ΔPに揺動指令を加算して合成指令Scを作成する。
その後、ステップS15においては、正規化部25が、揺動指令が加算された後の位置偏差ΔPである合成指令Scを代表値により正規化する。代表値は、ワークWの被切削部位の形状に応じて異なる。図1に示されるように工具11が円筒形状部分W1の外周面を切削する場合には、代表値は位置指令Pcである。
図4に示されるように工具11がテーパ部分W3の外周面を切削する場合には、代表値は位置指令Pcであってもよく、主軸回転速度指令Vcまたは主軸回転速度実際値であってもよい。その理由は、主軸回転速度指令Vc等は、円筒形状部分W1を切削するときには一定であるものの、テーパ部分W3を切削するときにはその切削位置におけるテーパ部分W3の回転半径に応じて変化するためである。
具体的には、切削位置におけるテーパ部分W3の周方向速度が一定になるように、主軸回転速度指令Vc等は変化する。従って、テーパ部分W3の回転半径が大きくなるにつれて、主軸回転速度指令Vc等は小さくなる。図2Dに示されるように円錐台状凹部W4の内周面を切削する場合も同様である。あるいは、位置指令Pcおよび主軸回転速度指令Vc等の両方で、または位置指令Pcおよび主軸回転速度指令Vc等の積で合成指令Scを正規化するようにしてもよい。
なお、正規化の一つの手法においては、例えば代表値としての位置指令Pcを用いて合成指令Scを除算する。あるいは、二乗平均平方根が1になるように比例変換してもよく、あるいは、平均が0、分散が1になるように線形変換してもよい。このように正規化された合成指令Sc'は単位系に依存しない。そして、正規化された合成指令Sc'は学習制御部26に供給される。
ところで、工具11の駆動機構部にバックラッシが在る場合やその駆動機構部の剛性が低い場合には、サーボの応答性を向上させるために制御ゲインを高く設定すると振動が発生し、工具11の位置精度が安定しないことがある。例えば、曲線A1、A2、A3等に対応した指令値に基づいて主軸M0および送り軸M1を駆動したとしても、工具11の実位置は曲線A1、A2、A3等に完全には追従しない場合がある。この場合、図5に示される重なり箇所B1、B2、B3、B4等において工具11の実位置が曲線A1、A2、A3等のような指令値と一致しないと、断続切削が起きず、その結果、切屑が良好に形成されなくなる。
このため、本実施形態では、図3のステップS16に示されるように、学習制御を用いて揺動指令への追従性を向上させる。学習制御は「繰返しパターンの決まった周期指令」への追従性を向上する制御方式であり、1周期目より2周期目、2周期目より3周期目……と周期が進むにつれて位置偏差を減少させることができる。具体的には、ワークWおよび工具11の所定数の揺動周期分の位置偏差を学習し補正量とすることにより、揺動指令による周期的な位置偏差の増加を抑制する。
その結果、工具11の実位置は、指令値の曲線A1、A2、A3等に次第に近づくようになり、最終的には指令値の曲線A1、A2、A3等に一致する。この場合には、指令値の曲線A1、A2、A3等は前述の重なり箇所B1、B2、B3、B4等を有することとなるので、断続切削が確実に起こり、細断化された切屑を確実に形成することができる。
また、揺動指令を学習の対象とするため、学習帯域は揺動指令の揺動周波数に依存することとなる。学習制御を行うための学習帯域には上限があり、揺動周波数が上限を超えた場合、学習は収束せず位置偏差が残ってしまう。結果、切屑が良好に形成されないことになる。したがって、本実施形態においては、学習制御を実施することが可能な範囲内で、最適な揺動周波数および揺動振幅を求める必要がある。
具体的には、トルクの低減手法と同様、後述するように切屑の長さを調整する(長くする)ことで、揺動指令の揺動周波数を低く抑えることができ、学習帯域に収めることができる。もちろん、加工条件の変更が可能であるなら、送り速度を低減しても良い。
また、本実施形態の揺動切削においては、最適な揺動周波数および揺動振幅を求めているので、必要トルクを最小化できる。その一方、必要最小化できたとしても、トルク飽和は起こりえる現象であり、避ける必要がある。さらに、学習制御を適用するとトルクは増大し、より飽和しやすい傾向にある。したがって、本実施形態においては、トルク飽和を起こさない範囲内で、最適な揺動周波数および揺動振幅を求める必要がある。
具体的には、後述するように切屑の長さを調整する(長くする)ことで、揺動指令の揺動周波数を低く抑えることができ必要トルクを低減できる。もちろん、加工条件の変更が可能であるなら、送り速度を低減しても良い。
ところで、揺動振幅は可能な限り小さいのが好ましく、揺動周波数が低い場合には、より長い切屑が形成される。その際、主軸M0および送り軸M1、M2に要求されるトルクも小さくて済む。これに対し、揺動振幅が大きい場合には、送り軸M1、M2等に要求されるトルクも大きくなる。揺動周波数が高い場合には、切屑の長さは短くなり、送り軸M1、M2等に要求されるトルクも大きくなる。
操作者が所望長さの切屑を望んでいる場合には、操作者は切屑の所望の長さを揺動指令作成部23に入力する。これにより、揺動指令作成部23は切屑の所望長さに基づいて揺動周波数と揺動振幅とを作成する。例えば短い切屑が要求される場合にはワークWが傷付くのを避けられ、長い切屑が要求される場合にはトルクおよび学習帯域を抑えて工具11へかかる負荷を低減できるとともに学習を収束しやすくする。
再び図3を参照すると、ステップS16においては、学習制御部26が学習制御を前述したように実施する。学習制御部26からの出力は逆正規化部27に供給される。ステップS17においては、学習制御部26からの出力が逆正規化部27において逆正規化される。
当然のことながら、逆正規化に使用される代表値は、正規化部25で使用された代表値と同様である。例えば正規化部25において代表値として位置指令Pcが使用されていた場合には、逆正規化部27においても位置指令Pcが使用される。同様に、正規化部25において代表値として位置指令Pcおよび主軸回転速度指令Vc等の積が使用されていた場合には、逆正規化部27においても位置指令Pcおよび主軸回転速度指令Vc等の積が使用される。
そして、ステップS18においては、第二加算部28は、逆正規化された学習制御の出力を補正量として、合成指令Scに加算する。その後、位置速度制御部29は、逆正規化された出力が加算された合成指令Sc''に基づいて、速度指令およびトルク指令を生成して、送り軸M1に供給する。このような指令に基づいて、送り軸M1が制御される。
図6Aおよび図6Bは、それぞれ従来技術および第一の実施形態における時間と工具の位置との関係を示す図である。これら図面において、横軸は時間(秒)を示しており、縦軸は工具または送り軸M1の位置(mm)を示している。縦軸は図1および図4に示されるZ方向に対応する。
また、破線は位置指令Pcを示しており、正弦波状の実線曲線は合成指令Sc''を示している。ただし、図6Aに示される合成指令Sc''の実線曲線は正規化部25および逆正規化部27による処理を受けていない。さらに、正弦波状の破線曲線は検出位置Pdを示している。なお、従来技術においては、正規化部25および逆正規化部27を使用していない点で前述した実施形態とは主に異なる。
これら図面において、円筒形状部分W1の終端位置Pzを示す直線が位置が50mmの箇所に示されている。終端位置Pzは円筒形状部分W1とフランジW2との間のコーナ部Qに対応する。
図6Aおよび図6Bにおいては、合成指令Sc''は終端位置Pzを越えないように作成されている。しかしながら、図6Aに示されるように従来技術においては検出位置Pdの曲線は終端位置Pzよりも局所的に大きくなっている。このような場合には、工具11が終端位置Pzを越えて局所的に移動するので、円筒形状部分W1に結合されたフランジW2に切込みが形成されることになる。従って、従来技術においては、合成指令Sc''に対する検出位置Pdの追従性が低いといえる。
図6Bに示される第一の実施形態においては、正規化部25および逆正規化部27による処理を受けている。図6B等から分かるように、終端位置Pzの直前においては、位置指令Pcの変化率は徐々に小さくなる。言い換えれば、終端位置Pzの直前においては、学習制御部26からの出力が逆正規化部27に供給されるときの位置指令Pcの値は、合成指令Sc'が学習制御部26に入力されるときの位置指令Pcの値よりも小さい。
前述したように、学習制御部26は、補正量を求めて記憶し、1揺動周期後または所定数の揺動周期後の合成指令Scにその補正量を適用している。そして、逆正規化部27においては、学習制御部26からの出力(補正量)が逆正規化部27に供給されるときの位置指令Pcの値を用いて前述した出力を逆正規化している。
従って、学習制御部26からの出力は、学習制御部26からの出力(補正量)が逆正規化部27に供給されるときの位置指令Pcの値に合うように適切に修正される。その結果、学習制御を適用している場合であっても、追従性を高められる。このため、図6Bに示されるように、検出位置Pdの曲線は終端位置Pzよりも大きくなることはなく、従って、フランジW2に切込みが形成されるのを防止できる。
前述したようにテーパ部分W3を有するワークWを切削する場合には、位置指令PCおよび/または主軸回転速度指令Vcを用いて合成指令Sc'が正規化される。従って、ステップS18において学習制御部26からの出力(補正量)が逆正規化部27に供給されるときの位置指令Pcおよび/または主軸回転速度指令Vcの値を用いて出力(補正量)が逆正規化される。
前述したように、位置指令PCおよび/または主軸回転速度指令Vcの値は、合成指令Scが学習制御部26に入力されるときと、学習制御部26からの出力が逆正規化部27に供給されるときとで異なりうる。第二の実施形態においては、学習制御部から出力されるときの位置指令Pcおよび/または主軸回転速度Vcの値に合わせて、出力を修正でき、追従性を高められる。さらに、位置指令Pcおよび主軸回転速度Vcの両方で、または位置指令Pcおよび主軸回転速度Vcの積で正規化した場合には、追従性をさらに高められるのが分かるであろう。
本開示の態様
1番目の態様によれば、ワーク(W)および工具(11)を前記ワークの中心軸線まわりに相対的に回転させる主軸(M0)と、前記ワークの外周面または内周面の母線に沿って前記工具および前記ワークを相対的に送る少なくとも一つの送り軸(M1、M2)とを備えた工作機械(10)を制御する制御装置(20)であって、前記ワークおよび前記工具の相対的な回転速度ならびに前記工具および前記ワークの相対的な送り速度に基づいて、前記少なくとも一つの送り軸の位置指令を作成する位置指令作成部(30)と、前記回転速度および前記位置指令に基づいて、前記回転速度に対して正の非整数倍になるように且つ前記工具が前記ワークを断続切削するように、前記少なくとも一つの送り軸の揺動指令を作成する揺動指令作成部(23)と、前記位置指令と前記少なくとも一つの送り軸の実位置との差である位置偏差に前記揺動指令を加算して得られる合成指令を作成する第一加算部(24)と、前記合成指令を正規化する正規化部(25)と、前記揺動指令から求める揺動位相と正規化された合成指令とに基づいて、前記合成指令の補正量を求めて前記合成指令に加算する学習制御部(26)と、該学習制御部からの出力を逆正規化する逆正規化部(27)と、該逆正規化部により逆正規化された出力を前記合成指令に加算する第二加算部(28)とを具備する、制御装置が提供される。
2番目の態様によれば、1番目の態様において、前記揺動指令作成部は、前記回転速度から前記揺動指令の前記揺動周波数を算出すると共に、前記位置指令から前記揺動指令の揺動振幅を算出する。
3番目の態様によれば、1番目または2番目の態様において、前記正規化部は、前記位置指令および前記回転速度のうちの少なくとも一方を用いて、前記合成指令を正規化する。
4番目の態様によれば、3番目の態様において、前記逆正規化部は、前記正規化部の用いた前記位置指令および前記回転速度のうち少なくとも一つを用いて、前記学習制御部の出力を逆正規化する。
5番目の態様によれば、1番目から4番目のいずれかの態様において、前記揺動指令作成部は、余弦波の基準軸線に対して前記揺動振幅がオフセット値として減じられた前記揺動指令を作成する。
6番目の態様によれば、1番目から5番目のいずれかの態様において、前記揺動指令作成部は、前記回転速度に基づいて、前記ワークまたは前記工具が一回転する毎に半周期ずつズレるように前記揺動指令の揺動周波数を作成すると共に、前記送り速度に基づいて前記揺動指令の前記揺動振幅を作成する。
7番目の態様によれば、1番目から6番目のいずれかの態様において、前記揺動指令作成部は、前記少なくとも一つの送り軸のトルクが所定値を越えないように、前記揺動周波数と前記揺動振幅とを作成する。
8番目の態様によれば、1番目から7番目のいずれかの態様において、前記揺動指令作成部は、前記学習制御の制御帯域に基づいて、学習が収束するように前記揺動周波数と前記揺動振幅とを作成する。
9番目の態様によれば、1番目から8番目のいずれかの態様において、前記揺動指令作成部は、前記工具が前記ワークを加工することにより生じる切屑の所望長さに基づいて前記揺動周波数と前記揺動振幅とを作成する。
10番目の態様によれば、1番目から9番目のいずれかの態様において、前記ワークは少なくとも部分的に回転対称であり、前記ワークは少なくとも部分的に回転対称であり、前記回転軸線に沿った断面において段部を有している。
態様の効果
1番目の態様においては、合成指令を代表値、例えば位置指令で正規化して学習制御部へ入力し、また、学習制御部からの出力を代表値、例えば位置指令で逆正規化している。このため、学習制御部への入力時の代表値が出力時の代表値と異なる場合であっても、出力時の代表値で逆正規化しているので、代表値の変化に容易に追従することができる。代表値は例えば位置指令である。従って、学習制御を適用している場合であっても、追従性を高めることができる。
2番目の態様においては、揺動周波数および揺動振幅を適切に求められる。
3番目の態様においては、ワークが円筒形部分を有する場合には位置指令で正規化する。このため、学習制御部に入力されるときの位置指令と学習制御部から出力されるときの位置指令とが異なる場合であっても、学習制御部から出力されるときの位置指令に合わせて、出力を修正でき、追従性を高められる。さらに、ワークが円錐形または円錐台形部分を有する場合には位置指令および/または主軸回転速度で正規化する。このため、学習制御部に入力されるときの位置指令および/または主軸回転速度と学習制御部から出力されるときの位置指令および/または主軸回転速度とが異なる場合であっても、学習制御部から出力されるときの位置指令および/または主軸回転速度に合わせて、出力を修正でき、追従性を高められる。位置指令および主軸回転速度の両方で正規化した場合には、追従性をさらに高められる。
4番目の態様においては、正規化部で用いた代表値と同じ代表値で逆正規化しているので、学習制御部からの出力を適切に逆正規化できる。
10番目の態様においては、ワークに切込みが形成されるのを防止することができる。
典型的な実施形態を用いて本発明を説明したが、当業者であれば、本発明の範囲から逸脱することなしに、前述した変更および種々の他の変更、省略、追加を行うことができるのを理解できるであろう。
10 工作機械
11 工具
20 制御装置
23 揺動指令作成部
24 第一加算部
25 正規化部
26 学習制御部
27 逆正規化部
28 第二加算部
29 位置速度制御部
30 上位制御装置
M0 主軸
M1、M2 送り軸
M1、M2 送り軸
O 回転軸線
Q コーナ部
W ワーク
W1 円筒形状部分
W2 フランジ
W3 テーパ部分
W4 円錐台状凹部

Claims (10)

  1. ワークおよび工具を前記ワークの中心軸線まわりに相対的に回転させる主軸と、
    前記ワークの外周面または内周面の母線に沿って前記工具および前記ワークを相対的に送る少なくとも一つの送り軸とを備えた工作機械を制御する制御装置であって、
    前記ワークおよび前記工具の相対的な回転速度ならびに前記工具および前記ワークの相対的な送り速度に基づいて、前記少なくとも一つの送り軸の位置指令を作成する位置指令作成部と、
    前記回転速度および前記位置指令に基づいて、前記回転速度に対して正の非整数倍になるように且つ前記工具が前記ワークを断続切削するように、前記少なくとも一つの送り軸の揺動指令を作成する揺動指令作成部と、
    前記位置指令と前記少なくとも一つの送り軸の実位置との差である位置偏差に前記揺動指令を加算して得られる合成指令を作成する第一加算部と、
    前記合成指令を正規化する正規化部と、
    前記揺動指令から求める揺動位相と正規化された合成指令とに基づいて、前記合成指令の補正量を求めて前記合成指令に加算する学習制御部と、
    該学習制御部からの出力を逆正規化する逆正規化部と、
    該逆正規化部により逆正規化された出力を前記合成指令に加算する第二加算部とを具備する、制御装置。
  2. 前記揺動指令作成部は、前記回転速度から前記揺動指令の前記揺動周波数を算出すると共に、前記位置指令から前記揺動指令の揺動振幅を算出する、請求項1に記載の制御装置。
  3. 前記正規化部は、前記位置指令および前記回転速度のうちの少なくとも一方を用いて、前記合成指令を正規化する、請求項1または2に記載の制御装置。
  4. 前記逆正規化部は、前記正規化部の用いた前記位置指令および前記回転速度のうち少なくとも一つを用いて、前記学習制御部の出力を逆正規化する、請求項3に記載の制御装置。
  5. 前記揺動指令作成部は、余弦波の基準軸線に対して前記揺動振幅がオフセット値として減じられた前記揺動指令を作成する、請求項1から4のいずれか一項に記載の制御装置。
  6. 前記揺動指令作成部は、前記回転速度に基づいて、前記ワークまたは前記工具が一回転する毎に半周期ずつズレるように前記揺動指令の揺動周波数を作成すると共に、前記送り速度に基づいて前記揺動指令の前記揺動振幅を作成する、請求項1から5のいずれか一項に記載の制御装置。
  7. 前記揺動指令作成部は、前記少なくとも一つの送り軸のトルクが所定値を越えないように、前記揺動周波数と前記揺動振幅とを作成する、請求項1から6のいずれか一項に記載の制御装置。
  8. 前記揺動指令作成部は、前記学習制御の制御帯域に基づいて、学習が収束するように前記揺動周波数と前記揺動振幅とを作成する、請求項1から7のいずれか一項に記載の制御装置。
  9. 前記揺動指令作成部は、前記工具が前記ワークを加工することにより生じる切屑の所望長さに基づいて前記揺動周波数と前記揺動振幅とを作成する、請求項1から8のいずれか一項に記載の制御装置。
  10. 前記ワークは少なくとも部分的に回転対称であり、前記回転軸線に沿った断面において段部を有している、請求項1から9のいずれか一項に記載の制御装置。
JP2017083919A 2017-04-20 2017-04-20 揺動切削を行う工作機械の制御装置 Active JP6503002B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017083919A JP6503002B2 (ja) 2017-04-20 2017-04-20 揺動切削を行う工作機械の制御装置
CN201810289365.9A CN108723890B (zh) 2017-04-20 2018-04-03 进行摇摆切割的机床的控制装置
DE102018003051.3A DE102018003051B4 (de) 2017-04-20 2018-04-13 Steuervorrichtung für eine Werkzeugmaschine, die Vibrationsschneiden durchführt
US15/952,265 US10503139B2 (en) 2017-04-20 2018-04-13 Control device for machine tool performing oscillation cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017083919A JP6503002B2 (ja) 2017-04-20 2017-04-20 揺動切削を行う工作機械の制御装置

Publications (2)

Publication Number Publication Date
JP2018181210A true JP2018181210A (ja) 2018-11-15
JP6503002B2 JP6503002B2 (ja) 2019-04-17

Family

ID=63714670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017083919A Active JP6503002B2 (ja) 2017-04-20 2017-04-20 揺動切削を行う工作機械の制御装置

Country Status (4)

Country Link
US (1) US10503139B2 (ja)
JP (1) JP6503002B2 (ja)
CN (1) CN108723890B (ja)
DE (1) DE102018003051B4 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6984790B1 (ja) * 2020-10-21 2021-12-22 三菱電機株式会社 数値制御装置及び数値制御方法
WO2022025057A1 (ja) * 2020-07-29 2022-02-03 ファナック株式会社 工作機械の制御装置
WO2022202850A1 (ja) * 2021-03-26 2022-09-29 ファナック株式会社 サーボ制御装置
WO2022202852A1 (ja) * 2021-03-26 2022-09-29 ファナック株式会社 サーボ制御装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6599920B2 (ja) * 2017-04-18 2019-10-30 ファナック株式会社 揺動切削を行う工作機械の制御装置
JP7022096B2 (ja) * 2019-03-28 2022-02-17 ファナック株式会社 サーボ制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047485A1 (ja) * 2014-09-22 2016-03-31 シチズンホールディングス株式会社 工作機械及びこの工作機械の制御装置
JP2017056515A (ja) * 2015-09-16 2017-03-23 ファナック株式会社 複数軸を備えた工作機械の制御装置
JP2018041275A (ja) * 2016-09-07 2018-03-15 ファナック株式会社 工作機械の制御装置、制御方法及びコンピュータプログラム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT331439B (de) 1973-07-24 1976-08-25 Voest Ag Strangfuhrung fur eine stranggiessanlage
JPS5139592A (ja) 1974-10-01 1976-04-02 Asahi Carbon Co Ltd Haadokeikaabonburatsukuno seizoho
DE59108557D1 (de) * 1991-10-16 1997-03-27 Abb Patent Gmbh Wissensbasierte steuer- und regeleinrichtung
DE59208303D1 (de) * 1991-11-25 1997-05-07 Siemens Ag Verfahren zur regelung für dynamische systeme n-ter ordnung
JP4283214B2 (ja) 2004-12-16 2009-06-24 ファナック株式会社 機械先端点の制御装置
JP2008068364A (ja) * 2006-09-14 2008-03-27 Ricoh Co Ltd 振動切削加工装置及び振動切削加工方法
US9421657B2 (en) * 2011-09-14 2016-08-23 Jtekt Corporation Machining control apparatus and machining control method thereof
JP5033929B1 (ja) * 2011-11-10 2012-09-26 ハリキ精工株式会社 工作機械
JP5139592B1 (ja) 2012-09-12 2013-02-06 ハリキ精工株式会社 工作機械
BR112015019038B1 (pt) 2013-02-12 2021-08-03 Mitsubishi Electric Corporation Dispositivo de controle numérico pelo qual usinagem é realizada
ES2724984T3 (es) * 2014-03-26 2019-09-18 Citizen Watch Co Ltd Dispositivo de control para una máquina herramienta y máquina herramienta provista de dicho dispositivo de control
JP6417231B2 (ja) * 2015-02-04 2018-10-31 オークマ株式会社 位置制御装置
JP6063016B1 (ja) * 2015-09-29 2017-01-18 ファナック株式会社 電動機に対する動作指令を学習する機械学習方法および機械学習装置並びに該機械学習装置を備えた工作機械

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047485A1 (ja) * 2014-09-22 2016-03-31 シチズンホールディングス株式会社 工作機械及びこの工作機械の制御装置
JP2017056515A (ja) * 2015-09-16 2017-03-23 ファナック株式会社 複数軸を備えた工作機械の制御装置
JP2018041275A (ja) * 2016-09-07 2018-03-15 ファナック株式会社 工作機械の制御装置、制御方法及びコンピュータプログラム

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022025057A1 (ja) * 2020-07-29 2022-02-03 ファナック株式会社 工作機械の制御装置
JP7473654B2 (ja) 2020-07-29 2024-04-23 ファナック株式会社 工作機械の制御装置
JP6984790B1 (ja) * 2020-10-21 2021-12-22 三菱電機株式会社 数値制御装置及び数値制御方法
WO2022085114A1 (ja) * 2020-10-21 2022-04-28 三菱電機株式会社 数値制御装置及び数値制御方法
WO2022202850A1 (ja) * 2021-03-26 2022-09-29 ファナック株式会社 サーボ制御装置
WO2022202852A1 (ja) * 2021-03-26 2022-09-29 ファナック株式会社 サーボ制御装置

Also Published As

Publication number Publication date
CN108723890A (zh) 2018-11-02
DE102018003051A1 (de) 2018-10-25
US20180307196A1 (en) 2018-10-25
JP6503002B2 (ja) 2019-04-17
DE102018003051B4 (de) 2020-12-17
CN108723890B (zh) 2020-01-21
US10503139B2 (en) 2019-12-10

Similar Documents

Publication Publication Date Title
JP6503002B2 (ja) 揺動切削を行う工作機械の制御装置
CN108693835B (zh) 进行摆动切削的机床的控制装置
JP6595537B2 (ja) 揺動切削を行う工作機械の制御装置
JP6503000B2 (ja) 揺動切削を行う工作機械の制御装置
JP6721307B2 (ja) 複数軸を備えた工作機械の制御装置
CN110695762B (zh) 机床的控制装置
JP6503001B2 (ja) 揺動切削を行う工作機械の制御装置
JP6499709B2 (ja) 揺動切削を行う工作機械の制御装置
US11285576B2 (en) Servo controller
US10967474B2 (en) Servo controller for determining an estimated position deviation and compensating a position deviation with the estimated position deviation
US10514673B2 (en) Control device for machine tool performing oscillation cutting
JP2018120643A (ja) 複数軸を備えた工作機械の制御装置
WO2022269751A1 (ja) 工作機械の制御装置
US11453094B2 (en) Servo controller
JP2020074214A (ja) 複数軸を備えた工作機械の制御装置

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180904

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190322

R150 Certificate of patent or registration of utility model

Ref document number: 6503002

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150