WO2016047395A1 - 筒型防振装置 - Google Patents

筒型防振装置 Download PDF

Info

Publication number
WO2016047395A1
WO2016047395A1 PCT/JP2015/074879 JP2015074879W WO2016047395A1 WO 2016047395 A1 WO2016047395 A1 WO 2016047395A1 JP 2015074879 W JP2015074879 W JP 2015074879W WO 2016047395 A1 WO2016047395 A1 WO 2016047395A1
Authority
WO
WIPO (PCT)
Prior art keywords
flange portion
cylindrical
vibration isolator
press
axial direction
Prior art date
Application number
PCT/JP2015/074879
Other languages
English (en)
French (fr)
Inventor
祐樹 八幡
Original Assignee
住友理工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友理工株式会社 filed Critical 住友理工株式会社
Priority to CN201580032825.4A priority Critical patent/CN106460986B/zh
Publication of WO2016047395A1 publication Critical patent/WO2016047395A1/ja
Priority to US15/226,644 priority patent/US9976619B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/3842Method of assembly, production or treatment; Mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/38Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type
    • F16F1/3863Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers with a sleeve of elastic material between a rigid outer sleeve and a rigid inner sleeve or pin, i.e. bushing-type characterised by the rigid sleeves or pin, e.g. of non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/08Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with rubber springs ; with springs made of rubber and metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2226/00Manufacturing; Treatments
    • F16F2226/04Assembly or fixing methods; methods to form or fashion parts
    • F16F2226/045Press-fitting

Definitions

  • the present invention relates to a cylindrical vibration isolator used for, for example, a member mount or a suspension bush of an automobile.
  • a cylindrical vibration isolator is known as a type of anti-vibration support body or anti-vibration coupling body that is interposed between members constituting a vibration transmission system and that mutually anti-vibrates and connects these members.
  • the inner shaft member is inserted into the outer cylinder member, and the inner shaft member and the outer cylinder member are elastically connected to each other by the main rubber elastic body disposed between the radial directions. It is applied to member mounts and suspension bushes of automobiles.
  • the outer cylindrical member has a structure in which a flange portion that extends in the direction perpendicular to the axis and projects to the outer peripheral side is provided at one end in the axial direction. Can also be employed.
  • the flange portion comes into contact with the axial end surface of the assembly member, thereby defining the press-fit end of the outer cylinder member with respect to the assembly member. It has come to be.
  • FIG. 8A shows a cylindrical vibration isolator 100 having a conventional structure corresponding to Patent Document 1.
  • FIG. This cylindrical vibration isolator 100 has a structure in which an inner shaft member 102 and a synthetic resin outer cylinder member 104 which are coaxially arranged are elastically connected by a main rubber elastic body 106.
  • a flange portion 108 is provided at one end in the axial direction of 104, and the outer cylinder member 104 is press-fitted and attached to a sleeve 110 as an assembly member.
  • the outer cylinder member 104 formed of synthetic resin may be employed, the outer cylinder member 104 may be damaged at the projecting proximal end portion of the flange portion 108 when being press-fitted to the sleeve 110. That is, when the outer cylinder member 104 is mounted on the sleeve 110, the outer cylinder member 104 is deformed by press-fitting, so that the stress due to the diameter acts on the protruding proximal end portion of the flange portion 108 of the outer cylinder member 104. . Further, as shown in FIG.
  • the flange portion 108 is inclined forward (inward in the axial direction) in the press-fitting direction toward the outer periphery due to the reduced diameter of the outer cylindrical member 104, and the inclined flange portion 108 is The sleeve 110 is pressed against the axial end surface of the sleeve 110 extending in the perpendicular direction.
  • the flange portion 108 is deformed in the direction of decreasing the inclination angle, and the stress due to the deformation acts on the protruding proximal end portion of the flange portion 108 in the outer cylindrical member 104.
  • the present invention has been made in the background of the above-mentioned circumstances, and the problem to be solved is that when the outer cylinder member made of synthetic resin is press-fitted to an assembly member such as a sleeve, the outer cylinder member is damaged.
  • An object of the present invention is to provide a cylindrical vibration isolator having a novel structure that can be avoided.
  • the inner shaft member is disposed in an inserted state with respect to the outer cylindrical member made of synthetic resin, and the inner shaft member and the outer cylindrical member are elastically connected to each other by the main rubber elastic body.
  • a flange portion that protrudes to the outer peripheral side is provided at one end portion in the axial direction of the outer cylindrical member, and a shaft is provided on the outer peripheral side from the protruding base end of the flange portion. It is characterized in that a thick part having a larger directional dimension is provided.
  • the assembly member into which the outer cylinder member is press-fitted and the jig for pushing the outer cylinder member into the assembly member are flanged.
  • the relative positions of the assembly member and the jig are defined, and the press-fit end of the outer cylinder member to the assembly member is defined. Therefore, the pushing force at the time of press-fitting is prevented from directly acting on the protruding base end portion of the flange portion where stress is intensively applied, and durability is improved.
  • the outer cylinder member when the outer cylinder member is press-fitted into the assembly member, the outer cylinder member is reduced in diameter, and the flange portion provided at the press-fitting rear end is deformed so as to be inclined toward the press-fitting tip side toward the outer peripheral side.
  • the approaching displacement amount of the assembly member and the jig is limited by the thick portion, so that the axial end surface of the assembly member is separated from the axial inner surface of the protruding proximal end portion of the flange portion in the axial direction. Be positioned.
  • the boundary between the press-fitted portion and the non-press-fitted portion of the outer cylindrical member to which the stress due to the reduced diameter acts intensively is the protrusion base of the flange portion where the stress due to the tilting of the flange portion during press fitting is concentrated. Since the axial position is set away from the end portion, it is possible to prevent the projecting proximal end portion of the flange portion from being damaged by stress concentration.
  • a second aspect of the present invention is the cylindrical vibration damping device described in the first aspect, wherein the outer cylindrical member is assembled by press-fitting into a mounting hole of the assembly member.
  • the flange portion is brought into contact with the assembly member at a position where the thick wall portion is provided, and a protruding base of the flange portion is located on the inner peripheral side of the contact portion between the flange portion and the assembly member.
  • a gap is left between the end portion and the opening side end surface of the mounting hole in the assembly member.
  • the approaching displacement amount of the assembly member and the jig is limited by the thick wall portion of the flange portion, so that the protruding proximal end of the flange portion in the press-fit mounting state of the outer cylindrical member into the mounting hole A gap is left between the portion and the opening side end surface of the mounting hole in the assembly member. Therefore, the stress due to the change in the angle of the flange portion and the stress due to the reduced diameter at the time of press-fitting of the outer cylinder member are exerted on positions separated from each other in the press-fitting direction, and the durability is improved by dispersing the stress. .
  • the flange portion is formed with an outward protrusion that protrudes in the axially outer surface, and the flange portion The portion where the outward projection is formed is the thick portion.
  • the assembly member of the outer cylinder member since the relative displacement amount in the approaching direction is limited by the indirect contact between the assembly member and the jig via the outward projection, the assembly member of the outer cylinder member When the flange portion that is inclined and deformed at the time of press-fitting is pushed back to reduce the inclination angle when the press-fitting is completed, the amount of deformation due to the push-back is reduced. Therefore, the stress acting on the proximal end of the flange portion due to the deformation caused by the pushing back is relieved, and damage or breakage at the proximal end portion of the flange portion is avoided.
  • the thick portion is continuously provided over the entire circumference of the flange portion. It is what.
  • the thick part is continuously sandwiched between the assembly member and the jig over the entire circumference, so that the relative position of the assembly member and the jig is While being more stably defined, stress concentration on the periphery of the flange portion is avoided, and further improvement in durability can be expected.
  • the thick portion is continuous from the protruding base end portion of the flange portion to the outer peripheral side. And the axial dimension of the thick wall portion is gradually increased toward the outer peripheral side.
  • the thick portion continuously from the protruding base end portion of the flange portion to the outer peripheral side, a sudden change in thickness is prevented in the protruding direction of the flange portion, Since stress concentration is avoided, durability can be improved. Moreover, by adopting a structure in which the axial dimension of the thick wall portion gradually changes in the radial direction, the stress can be distributed more advantageously, and excellent durability can be realized.
  • a fillet portion is formed on the inner surface in the axial direction of the protruding base end portion of the flange portion. It is what.
  • the protruding proximal end portion of the flange portion is reinforced by thickening and reinforcing the protruding proximal end portion of the flange portion, which is likely to cause damage due to stress concentration, by forming the fillet portion. Damage in the is prevented.
  • a buffer rubber is fixed to an outer surface in the axial direction of the flange portion.
  • the flange portion abuts against a mating member such as a vehicle body attached to the inner shaft member via the buffer rubber, so that the inner shaft member and the outer cylinder member are relatively relative to each other in the axial direction.
  • a stopper effect for limiting the amount of displacement can be obtained while reducing the hitting sound and impact by the buffer rubber.
  • the flange portion is pushed by the jig through the cushioning rubber, so that damage to the flange portion due to the direct contact of the jig is avoided and the pushing by the jig is performed. The force is distributed over a wide range of the flange portion via the cushion rubber.
  • the flange portion of the outer tubular member is formed when the outer tubular member is press-fitted into the mounting hole of the assembly member by forming the thick portion having a large axial dimension in the flange portion of the outer tubular member.
  • the relative position between the jig for pushing the part and the assembly member is defined by indirect contact between the assembly member and the thick part of the jig. Therefore, the stress acting locally on the outer cylinder member is reduced, and the durability is improved.
  • FIG. 6 is a longitudinal sectional view showing a process of press-fitting a member mount shown in FIG. 5 into a sleeve.
  • FIG. 1 shows a member mount 10 for an automobile as a first embodiment of a cylindrical vibration isolator having a structure according to the present invention.
  • the member mount 10 has a structure in which an inner shaft member 12 and an outer cylinder member 14 are elastically connected to each other by a main rubber elastic body 16.
  • the vertical direction means the vertical direction in FIG. 1 in principle.
  • the inner shaft member 12 is a hard member formed of a metal such as iron or an aluminum alloy, a synthetic resin, or the like, and has a substantially cylindrical shape with a small diameter.
  • the outer cylinder member 14 is formed of a synthetic resin such as polyamide, polyacetal, polyester, or polycarbonate, and includes a cylindrical portion 18 having a large-diameter, generally cylindrical shape.
  • a substantially annular plate-shaped flange portion 20 that protrudes to the outer peripheral side is integrally formed at the lower end portion in the axial direction of the tubular portion 18 of the outer tubular member 14.
  • the connecting portion between the outer peripheral surface of the cylindrical portion 18 and the upper surface of the flange portion 20 has a radius of curvature in the longitudinal cross section rather than the connecting portion between the inner peripheral surface of the cylindrical portion 18 and the lower surface of the flange portion 20.
  • the fillet portion 22 is formed on the inner surface in the axial direction of the proximal end portion of the flange portion 20, and the connecting portion between the outer cylindrical member 14 and the protruding proximal end of the flange portion 20 is a fillet.
  • the portion 22 is thickened and reinforced.
  • the axial direction upper end part of the outer cylinder member 14 is made into the taper surface 24 diameter-reduced as an outer peripheral surface goes upwards.
  • an outer protrusion 26 that protrudes outward in the axial direction is integrally formed on the flange portion 20 of the outer cylinder member 14.
  • the outward protrusion 26 protrudes downward in FIG. 1 from the flange portion 20.
  • the outward protrusion 26 is formed substantially continuously in the radial direction from the protruding proximal end portion to the outer peripheral end of the flange portion 20.
  • it is continuously formed in an annular shape with a substantially constant cross-sectional shape over the entire circumference in the circumferential direction.
  • the outward protrusion 26 has an axial protrusion dimension from the flange portion 20 that gradually increases toward the outer peripheral side, and gradually decreases downward as the protruding front end surface of the outer protrusion 26 moves toward the outer peripheral side.
  • An inclined surface 28 is provided. Furthermore, since the abutting surface 30 which is the upper surface of the flange portion 20 extends in a direction substantially perpendicular to the axis, and the inclined surface 28 is inclined relative to the abutting surface 30, the flange portion 20 is outside.
  • the thick protrusion of the present embodiment is formed by the outward protrusion 26.
  • the thick-walled portion of the present embodiment is formed continuously from the protruding proximal end to the outer peripheral side of the flange portion 20 over the entire outer periphery, and the axial thickness dimension gradually increases toward the outer peripheral side. Further, the flange portion 20 is continuously formed with a substantially constant cross-sectional shape over the entire circumference. In the present embodiment, the outer peripheral surfaces of the flange portion 20 and the outward projection 26 are tapered surfaces having a smaller diameter downward. Further, in FIG. 1, for the sake of easy viewing, the boundary between the integrally formed flange portion 20 and the outward projection 26 and the boundary between the flange portion 20 and the fillet portion 22 are virtually represented by two-dot chain lines. As shown in the figure.
  • the inner shaft member 12 is disposed on the substantially same central axis in an inserted state with respect to the outer cylinder member 14, and the inner shaft member 12 and the outer cylinder member 14 are elastically connected to each other by the main rubber elastic body 16.
  • the main rubber elastic body 16 has a thick, substantially cylindrical shape, and has an inner peripheral surface fixed to the outer peripheral surface of the inner shaft member 12 and an outer peripheral surface fixed to the inner peripheral surface of the outer cylinder member 14.
  • the main rubber elastic body 16 is formed by, for example, integral vulcanization molding in which the inner shaft member 12 and the outer cylinder member 14 prepared in advance are set in a molding die, and the inner shaft member 12 and the outer cylinder member 14 are provided. It can be formed as a product.
  • the main rubber elastic body 16 is formed as an integral vulcanized molded product including the inner shaft member 12.
  • the outer cylinder member 14 may be fixed to the main rubber elastic body 16 by injection molding the outer cylinder member 14 on the outer peripheral side of the main rubber elastic body 16.
  • a curled portion 32 is formed on one end surface in the axial direction of the main rubber elastic body 16 and a curled portion 34 is formed on the other end surface in the axial direction.
  • the straight portions 32, 34 are each formed in a concave groove shape that opens outward in the axial direction and extends over the entire circumferential direction, and the free surface area of the axial end surface of the main rubber elastic body 16 is the straight portion 32. , 34 is enlarged.
  • a buffer rubber 36 is fixed to the flange portion 20 of the outer cylinder member 14.
  • the buffer rubber 36 protrudes downward from the outer surface in the axial direction of the flange portion 20 and extends in the circumferential direction with a cross-sectional shape gradually narrowing toward the protruding tip.
  • the entire circumference has a substantially constant cross section. It is made into the annular
  • the buffer rubber 36 of the present embodiment is integrally formed with the main rubber elastic body 16, and is fixed to the outer surface in the axial direction of the outward protrusion 26 integrally formed with the flange portion 20. Covering at least a part of.
  • the elastic main shaft extending in the protruding direction of the shock absorbing rubber 36 extends while being inclined with respect to the axial direction so as to be substantially orthogonal to the axial outer surface of the outward protruding portion 26, and the protruding front end surface of the shock absorbing rubber 36 is
  • the outer protrusion 26 has a tapered surface that extends substantially parallel to the outer surface in the axial direction.
  • the member mount 10 having such a structure is attached to a vehicle body (not shown), for example, by a bolt (not shown) through which the inner shaft member 12 is inserted, and the outer cylinder member 14 as shown in FIGS. Is attached to a sleeve 38 of a member mount which is an assembly member.
  • the cylindrical portion 18 of the outer cylindrical member 14 is separated from the other end in the axial direction so that one end in the axial direction where the flange portion 20 is provided becomes the rear end in the press-fitting direction.
  • the sleeve 38 is press-fitted into the mounting hole 39 of the substantially cylindrical shape.
  • the outer cylinder member 14 is press-fitted into the sleeve 38 by, for example, pressing the flange portion 20 in the axial direction with the jig 40 via the cushioning rubber 36 while the sleeve 38 is positioned and held in the axial direction.
  • the pushing operation surface 42 of the jig 40 is pressed against the flange portion 20 in the axial direction via the buffer rubber 36, and the pushing force in the axial direction is exerted on the outer tubular member 14, whereby the outer tubular member 14. Is press-fitted into the sleeve 38. Further, the outer cylinder member 14 has a press-fitting end defined by abutting against the axial end surface of the sleeve 38 at the thick portion where the flange portion 20 is formed with the outward projection 26.
  • the outer diameter of the cylindrical portion 18 in the outer cylindrical member 14 is made larger than the radial inner dimension of the sleeve 38 (the diameter of the mounting hole 39), The cylindrical portion 18 of the outer cylinder member 14 is deformed to be reduced in diameter by press-fitting into the sleeve 38.
  • the main rubber elastic body 16 is pre-compressed in the radial direction by press-fitting the outer cylindrical member 14 into the sleeve 38. Further, a radially inward force is exerted on the press-fitted portion of the cylindrical portion 18 into the sleeve 38, and a relatively large stress acts near the boundary between the press-fitted portion and the non-press-fit portion in the cylindrical portion 18. .
  • the other end portion in the axial direction of the tubular portion 18 press-fitted into the sleeve 38 is formed by reducing the diameter of the other end portion of the tubular portion 18 in the outer tubular member 14 by the press-fitting into the sleeve 38.
  • it has a smaller diameter than one axial end portion that is not press-fitted into the sleeve 38.
  • the one axial end portion of the outer cylindrical member 14 that is not press-fitted into the sleeve 38 has a tapered shape that inclines toward the outer periphery as the distance from the other axial end portion press-fitted into the sleeve 38 increases. Become.
  • the flange portion 20 of the outer cylindrical member 14 is inclined inward in the axial direction as it goes to the protruding tip side, and becomes an inclined surface that is inclined upward as the axial inner surface goes to the protruding tip side.
  • the inclination angle of the axially outer surface constituted by the portion 26 is reduced.
  • the sleeve 38 and the jig 40 sandwich the thick portion of the flange portion 20 in which the outward projection 26 is formed.
  • the amount of approach displacement in the axial direction of the sleeve 38 and the jig 40 is limited by indirectly abutting with each other.
  • the outer protrusion 26 defines a pushing end when the outer cylindrical member 14 is press-fitted into the sleeve 38, and is directly on both the axial end surface of the sleeve 38 and the pushing operation surface 42 of the jig 40. You may contact
  • the approach displacement amount of the jig 40 relative to the sleeve 38 is limited by the outer peripheral portion of the flange portion 20 and the buffer rubber 36 being sandwiched between the axial direction of the jig 40 and the sleeve 38, so that the outer cylinder member 14 by the jig 40 is limited.
  • the change in the inclination angle of the flange portion 20 due to the pushing-in is reduced.
  • the stress due to the relative angle change between the tubular portion 18 and the flange portion 20 is reduced at the protruding proximal end portion of the flange portion 20, the durability of the outer tubular member 14 is improved.
  • the fillet portion 22 is provided on the inner surface in the axial direction of the protruding proximal end portion of the flange portion 20, and the protruding proximal end portion of the flange portion 20 is thickened by the fillet portion 22, the tubular portion Excellent durability against tilting of the flange portion 20 relative to 18 can be obtained.
  • the outward projection 26 is continuously provided with a substantially constant cross-sectional shape over the entire circumference, so that the press-fit end of the outer cylinder member 14 to the sleeve 38 is more stably defined.
  • the load at the time of press-fitting acts substantially evenly on the circumference, so that the durability can be improved.
  • the outward projection 26 is continuously provided from the projecting base end to the projecting tip of the flange portion 20, stress concentration in the flange portion 20 is avoided, and the durability of the flange portion 20 is improved.
  • the outward protrusion 26 of the present embodiment has a protruding height that gradually changes in the radial direction of the flange portion 20, and the axially outer surface of the outward protrusion 26 has a substantially planar shape with no steps or irregularities. Therefore, the stress can be distributed more advantageously, and the durability can be improved.
  • FIG. 4 shows a member mount 50 as a second embodiment of the cylindrical vibration isolator according to the present invention.
  • the member mount 50 has a structure in which the inner shaft member 12 and the outer cylindrical member 52 are elastically connected by the main rubber elastic body 16, and an outer protrusion 54 is integrally formed with the flange portion 20 of the outer cylindrical member 52.
  • an outer protrusion 54 is integrally formed with the flange portion 20 of the outer cylindrical member 52.
  • the outward protrusion 54 is partially formed at the protruding tip (outer peripheral end) of the flange portion 20 and protrudes downward. Further, the outward protrusion 54 has a protruding height that gradually increases toward the outer peripheral side, and the outer surface in the axial direction of the outward protrusion 54 is an inclined surface 28 that is inclined with respect to the radial direction. The outer surface in the axial direction of the flange portion 20 extends in the direction perpendicular to the axis on the inner peripheral side away from the outer protrusion 54.
  • the buffer rubber 36 fixed to the flange portion 20 is provided so as to cover the axial outer surface of the flange portion 20 including the projecting tip surface of the outer protrusion 54 and protrudes outward in the axial direction.
  • the inner peripheral portion of the outer protrusion 54 is covered with the buffer rubber 36, and the outer peripheral portion of the outer protrusion 54 is exposed without being covered with the buffer rubber 36.
  • shock absorbing rubber 36 does not necessarily need to cover the outer protrusion 54, but when provided outside the outer protrusion 54, when the outer cylinder member 52 is press-fitted into the sleeve 38,
  • the protruding height of the buffer rubber 36 is set so that the protruding portion 54 comes into contact with the pushing operation surface 42 of the jig 40.
  • the synthesis is performed.
  • the durability of the outer cylinder member 52 formed of resin is improved.
  • FIG. 5 shows a member mount 60 as a third embodiment of the tubular vibration isolator according to the present invention.
  • the member mount 60 has a structure in which the inner shaft member 12 and the outer cylindrical member 62 are elastically connected by the main rubber elastic body 16, and the flange portion 20 of the outer cylindrical member 62 has an inward protruding portion 64. It is integrally formed.
  • the inward projecting portion 64 is formed so as to protrude from the inner surface in the axial direction of the flange portion 20 and is formed over substantially the entire length from the projecting proximal end portion to the projecting distal end of the flange portion 20. Furthermore, the inward protrusion 64 has a cross-sectional shape in which the protruding dimension gradually increases toward the outer peripheral side, and continuously extends in an annular shape with a substantially constant cross-sectional shape.
  • the inner surface in the axial direction of the flange portion 20 constituted by the projecting tip surface of the inward projection 64 is inclined upward toward the outer peripheral side.
  • An inclined surface 66 is provided.
  • the outer surface in the axial direction of the flange portion 20 extends substantially in the direction perpendicular to the axis.
  • the member mount 60 having such a structure is configured such that the tubular portion 18 of the outer tubular member 62 is press-fitted into the sleeve 38 and the tubular portion 18 is pressed into the sleeve 38.
  • a relatively large stress acts on the boundary of the non-pressed portion.
  • the outer cylinder member 62 is reduced in diameter by press-fitting into the sleeve 38, as shown in FIG. 6, the flange portion 20 provided at the press-fitting rear end that is not press-fitted into the sleeve 38 moves toward the outer peripheral side. It is deformed so as to incline to the side (axially inside).
  • the press-fit end of the outer cylinder member 62 to the sleeve 38 is defined by the sleeve 38 and the jig 40 indirectly contacting each other with the formation portion (thick portion) of the inward projection 64 in the flange portion 20 interposed therebetween.
  • the stress application position due to the diameter reduction of the cylindrical portion 18 and the stress application position due to the change in the inclination angle of the flange portion 20 are set at positions separated in the axial direction.
  • the outer cylinder member 62 made of synthetic resin is prevented from being damaged by stress concentration, and sufficient durability can be obtained.
  • the thick portion of the flange portion 20 is formed by the inward protruding portion 64 protruding inward in the axial direction, the thick portion is provided in the entire protruding direction (radial direction) of the flange portion 20. There is no need, and for example, it may be partially provided at the outer peripheral end or the radial intermediate portion.
  • the thick-walled portion is only required to define the press-fitting end to the assembly member of the outer cylinder member on the protruding distal end side (outer peripheral side) than the protruding proximal end (inner peripheral end) of the flange portion. It is not necessary to be formed at the outer peripheral end of the flange portion.
  • the thick portion may be provided partially in the middle of the flange portion in the radial direction.
  • the projecting front end surface of the outward projecting portion 26 is a plane extending in the direction perpendicular to the axis in consideration of the tilting of the flange portion 20 due to the press-fitting of the tubular portion 18 into the sleeve 38.
  • it may be a flat surface extending in a direction perpendicular to the axis.
  • the contact surface 30 of the flange portion 20 with the sleeve 38 may extend in the direction perpendicular to the axis, but for example, may incline inward in the axial direction in advance toward the outer peripheral side. Furthermore, the contact surface 30 of the flange portion 20 may be inclined outward in the axial direction as it goes to the outer peripheral side. However, in the process of press-fitting the outer cylindrical member 14 into the sleeve 38, the flange portion 20 moves to the outer peripheral side. The inclination angle is set so as to be deformed into a shape inclined inward in the axial direction as it goes.
  • the fillet portion 22 formed on the inner surface in the axial direction of the protruding proximal end portion of the flange portion 20 can be appropriately changed in shape and size, and can be omitted instead of being essential.
  • the flange part 20 of the said embodiment is provided in the bending shape (refer FIG. 1) which makes an angle with respect to the cylindrical part 18 in a vertical cross section, for example, it has a predetermined curvature radius in a vertical cross section.
  • the extending curved shape may be used, and thereby stress concentration can be more effectively mitigated at the connecting portion between the tubular portion and the flange portion.
  • the buffer rubber 36 is preferably formed integrally with the main rubber elastic body 16 from the viewpoint of facilitating manufacture by reducing the number of parts.
  • the rubber rubber 36 has a characteristic different from that of the main rubber elastic body 16. Depending on the material, it may be formed independently of the main rubber elastic body 16.
  • the present invention is not limited to the solid-type cylindrical vibration isolator shown in the above embodiment, but also a fluid-filled type that utilizes a vibration-proof effect based on the flow action of an incompressible fluid sealed inside.
  • the present invention can also be suitably applied to a cylindrical vibration isolator.
  • a member mount an example in which the cylindrical vibration isolator according to the present invention is applied to a member mount has been described.
  • the cylindrical vibration isolator according to the present invention is also applied to, for example, a suspension bush or an engine mount. obtain.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Springs (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

 合成樹脂製のアウタ筒部材をスリーブなどの相手部材へ圧入装着する際に、アウタ筒部材の損傷を回避することができる、新規な構造の筒型防振装置を提供すること。 インナ軸部材12が合成樹脂製のアウタ筒部材14に対して挿入状態で配置されて、それらインナ軸部材12とアウタ筒部材14が、本体ゴム弾性体16によって相互に弾性連結された筒型防振装置10において、アウタ筒部材14の軸方向一方の端部には、外周側に突出するフランジ部20が設けられていると共に、フランジ部20には軸方向寸法を大きくされた厚肉部26が設けられている。

Description

筒型防振装置
 本発明は、例えば自動車のメンバマウントやサスペンションブッシュなどに用いられる筒型防振装置に関するものである。
 従来から、振動伝達系を構成する部材間に介装されて、それら部材を相互に防振連結する防振支持体乃至は防振連結体の一種として、筒型防振装置が知られている。筒型防振装置は、インナ軸部材がアウタ筒部材に対して内挿配置されて、それらインナ軸部材とアウタ筒部材が、径方向間に配された本体ゴム弾性体によって、相互に弾性連結された構造を有しており、自動車のメンバマウントやサスペンションブッシュなどに適用されている。
 また、アウタ筒部材としては、特開2004-176803号公報(特許文献1)に示されているように、軸直角方向に広がって外周側に突出するフランジ部を、軸方向一端に備えた構造も採用され得る。そして、アウタ筒部材がスリーブなどの組付部材の装着孔に圧入される際に、フランジ部が組付部材の軸方向端面に当接することによって、アウタ筒部材の組付部材に対する圧入端が規定されるようになっている。
 ところで、アウタ筒部材は、一般的には鉄やアルミニウム合金などの金属で形成されているが、軽量化などを目的として、合成樹脂によって形成されたアウタ筒部材も採用が検討されている。なお、図8(a)には、特許文献1に相当する従来構造の筒型防振装置100を示す。この筒型防振装置100は、同軸的に配されたインナ軸部材102と合成樹脂製のアウタ筒部材104が、本体ゴム弾性体106によって弾性連結された構造を有しており、アウタ筒部材104の軸方向一端にフランジ部108が設けられていると共に、アウタ筒部材104が組付部材としてのスリーブ110に圧入されて取り付けられるようになっている。
 しかしながら、合成樹脂で形成されたアウタ筒部材104を採用しようとすると、スリーブ110への圧入装着時に、アウタ筒部材104がフランジ部108の突出基端部で損傷するおそれがある。即ち、アウタ筒部材104をスリーブ110に装着する際に、アウタ筒部材104が圧入によって縮径変形することから、縮径による応力がアウタ筒部材104におけるフランジ部108の突出基端部に作用する。更に、図8(b)に示すように、フランジ部108が、アウタ筒部材104の縮径によって、外周に行くに従って圧入方向前側(軸方向内側)に傾斜すると共に、傾斜したフランジ部108が軸直角方向に広がるスリーブ110の軸方向端面に押し当てられる。これにより、図8(c)に示すようにフランジ部108が傾斜角度の小さくなる方向へ変形して、アウタ筒部材104におけるフランジ部108の突出基端部に対して、かかる変形による応力が作用する。これらの応力が、何れもアウタ筒部材104におけるフランジ部108の突出基端部に集中的に作用することにより、金属に比して強度の小さい合成樹脂で形成されたアウタ筒部材104では、フランジ部108の突出基端部における損傷が問題になる場合もあった。
特開2004-176803号公報
 本発明は、上述の事情を背景に為されたものであって、その解決課題は、合成樹脂製のアウタ筒部材をスリーブなどの組付部材へ圧入装着する際に、アウタ筒部材の損傷を回避することができる、新規な構造の筒型防振装置を提供することにある。
 以下、このような課題を解決するために為された本発明の態様を記載する。なお、以下に記載の各態様において採用される構成要素は、可能な限り任意の組み合わせで採用可能である。
 すなわち、本発明の第一の態様は、インナ軸部材が合成樹脂製のアウタ筒部材に対して挿入状態で配置されて、それらインナ軸部材とアウタ筒部材が本体ゴム弾性体によって相互に弾性連結された筒型防振装置において、前記アウタ筒部材の軸方向一方の端部には外周側に突出するフランジ部が設けられていると共に、該フランジ部の突出基端よりも外周側には軸方向寸法を大きくされた厚肉部が設けられていることを、特徴とする。
 このような第一の態様に従う構造とされた筒型防振装置によれば、アウタ筒部材が圧入装着される組付部材と、アウタ筒部材を組付部材に押し込むためのジグとが、フランジ部の厚肉部を挟んで間接的に当接することにより、それら組付部材とジグの相対的な位置が規定されて、アウタ筒部材の組付部材への圧入端が規定される。それ故、応力が集中的に作用し易いフランジ部の突出基端部に対して、圧入時の押込力が直接的に作用するのが防止されて、耐久性の向上が図られる。
 また、アウタ筒部材が組付部材に圧入される際に、アウタ筒部材が縮径されて、圧入後端に設けられるフランジ部が外周側に行くに従って圧入先端側に傾斜するように変形する場合には、組付部材とジグの接近変位量が厚肉部によって制限されることにより、組付部材の軸方向端面がフランジ部の突出基端部の軸方向内面に対して軸方向に離れて位置せしめられる。これにより、縮径による応力が集中的に作用するアウタ筒部材の組付部材への圧入部分と非圧入部分との境界が、圧入時のフランジ部の傾動による応力が集中するフランジ部の突出基端部に対して、軸方向の離れた位置に設定されることから、フランジ部の突出基端部が応力集中によって損傷するのを防ぐことができる。
 本発明の第二の態様は、第一の態様に記載された筒型防振装置であって、前記アウタ筒部材が組付部材の装着孔に圧入によって組み付けられた状態において、前記フランジ部が前記厚肉部の設けられた位置で該組付部材に当接されるようになっており、該フランジ部と該組付部材の当接部分よりも内周側には該フランジ部の突出基端部と該組付部材における該装着孔の開口側端面との間に隙間が残存されるようになっているものである。
 第二の態様によれば、フランジ部の厚肉部によって組付部材とジグの接近変位量が制限されることによって、アウタ筒部材の装着孔への圧入装着状態において、フランジ部の突出基端部と組付部材における装着孔の開口側端面との間に隙間が残存されるようになっている。それ故、フランジ部の角度変化による応力と、アウタ筒部材の圧入時の縮径による応力とが、圧入方向の互いに離れた位置に及ぼされて、応力の分散化による耐久性の向上が図られる。
 本発明の第三の態様は、第一又は第二の態様に記載された筒型防振装置において、前記フランジ部には軸方向外面に突出する外方突部が形成されて、該フランジ部における該外方突部の形成部分が前記厚肉部とされているものである。
 第三の態様によれば、組付部材とジグが外方突部を介して間接的に当接することで、接近方向の相対変位量を制限されることから、アウタ筒部材の組付部材への圧入時に傾斜変形したフランジ部は、圧入完了時に傾斜角度を小さくするように押し戻される際に、押し戻しによる変形量が小さくなる。それ故、押し戻しによる変形に起因してフランジ部の基端に作用する応力が緩和されて、フランジ部の基端部における損傷や破断などが回避される。
 本発明の第四の態様は、第一~第三の何れか一つの態様に記載された筒型防振装置において、前記厚肉部が前記フランジ部の全周に亘って連続して設けられているものである。
 第四の態様によれば、アウタ筒部材の圧入完了時に、組付部材とジグの間で厚肉部が全周に亘って連続して挟み込まれることから、組付部材とジグの相対位置がより安定して規定されると共に、フランジ部の周上における応力集中が回避されて、耐久性の更なる向上も期待できる。
 本発明の第五の態様は、第一~第四の何れか一つの態様に記載された筒型防振装置において、前記厚肉部が前記フランジ部の突出基端部から外周側に連続して設けられていると共に、該厚肉部の軸方向寸法が外周側に行くに従って次第に大きくされているものである。
 第五の態様によれば、厚肉部がフランジ部の突出基端部から外周側に連続して形成されていることによって、フランジ部の突出方向で厚さの急激な変化が防止されて、応力集中が回避されることから、耐久性の向上が図られる。しかも、厚肉部の軸方向寸法が径方向で徐々に変化する構造を採用することによって、応力の分散化がより有利に図られて、優れた耐久性が実現され得る。
 本発明の第六の態様は、第一~第五の何れか一つの態様に記載された筒型防振装置において、前記フランジ部における突出基端部の軸方向内面に隅肉部が形成されているものである。
 第六の態様によれば、応力集中による損傷が問題になり易いフランジ部の突出基端部が、隅肉部の形成によって厚肉化されて補強されることから、フランジ部の突出基端部での損傷が防止される。
 本発明の第七の態様は、第一~第六の何れか一つの態様に記載された筒型防振装置において、前記フランジ部の軸方向外面には緩衝ゴムが固着されているものである。
 第七の態様によれば、インナ軸部材に取り付けられる車両ボデーなどの相手部材に対して、フランジ部が緩衝ゴムを介して当接することにより、インナ軸部材とアウタ筒部材の軸方向への相対変位量を制限するストッパ効果を、緩衝ゴムによって打音や衝撃を低減しながら得ることができる。また、アウタ筒部材を組付部材に圧入する際に、フランジ部が緩衝ゴムを介してジグによって押し込まれることから、ジグの直接的な接触によるフランジ部の損傷が回避されると共に、ジグによる押込力が緩衝ゴムを介してフランジ部の広い範囲に分散して及ぼされる。
 本発明によれば、アウタ筒部材のフランジ部に軸方向寸法の大きい厚肉部が形成されていることによって、アウタ筒部材を組付部材の装着孔に圧入する際に、アウタ筒部材のフランジ部を押し込むジグと組付部材との相対位置が、それら組付部材とジグの厚肉部を挟んだ間接的な当接によって規定される。それ故、アウタ筒部材に局所的に作用する応力が低減されて、耐久性の向上が図られる。
本発明の第一の実施形態としてのメンバマウントの縦断面図。 図1に示すメンバマウントのスリーブへの圧入過程を示す縦断面図。 図1に示すメンバマウントのスリーブへの圧入完了時を示す縦断面図。 本発明の第二の実施形態としてのメンバマウントの縦断面図。 本発明の第三の実施形態としてのメンバマウントの縦断面図。 図5に示すメンバマウントのスリーブへの圧入過程を示す縦断面図。 図5に示すメンバマウントのスリーブへの圧入完了時を示す縦断面図。 従来構造の筒型防振装置の縦断面図であって、(a)がスリーブへの圧入前を、(b)がスリーブへの圧入過程を、(c)がスリーブへの圧入完了時を、それぞれ示す。
 以下、本発明の実施形態について、図面を参照しつつ説明する。
 図1には、本発明に従う構造とされた筒型防振装置の第一の実施形態として、自動車用のメンバマウント10が示されている。メンバマウント10は、インナ軸部材12とアウタ筒部材14が、本体ゴム弾性体16によって相互に弾性連結された構造を、有している。なお、上下方向とは、原則として、図1中の上下方向を言う。
 より詳細には、インナ軸部材12は、鉄やアルミニウム合金などの金属や合成樹脂等で形成された硬質の部材であって、小径の略円筒形状を有している。
 アウタ筒部材14は、ポリアミドやポリアセタール、ポリエステル、ポリカーボネートなどの合成樹脂で形成されており、大径の略円筒形状を有する筒状部18を備えている。また、アウタ筒部材14における筒状部18の軸方向下端部には、外周側に突出する略円環板形状のフランジ部20が一体形成されている。本実施形態では、筒状部18の外周面とフランジ部20の上面との接続部分が、筒状部18の内周面とフランジ部20の下面との接続部分よりも、縦断面における曲率半径の大きなR面とされており、フランジ部20の基端部の軸方向内面に隅肉部22が形成されて、アウタ筒部材14とフランジ部20の突出基端との接続部分が、隅肉部22によって厚肉とされて補強されている。なお、アウタ筒部材14の軸方向上端部は、外周面が上方に行くに従って縮径するテーパ面24とされている。
 さらに、アウタ筒部材14のフランジ部20には、軸方向外面に突出する外方突部26が一体形成されている。外方突部26は、フランジ部20から図1中の下方に向かって突出しており、本実施形態では、フランジ部20の突出基端部から外周端まで連続して径方向の略全体に形成されていると共に、周方向の全周に亘って略一定の断面形状で連続して環状に形成されている。更に、外方突部26は、フランジ部20からの軸方向突出寸法が、外周側に行くに従って次第に大きくなっており、外方突部26の突出先端面が外周側に行くに従って次第に下傾する傾斜面28とされている。更にまた、フランジ部20の上面である当接面30が略軸直角方向に広がっており、傾斜面28が当接面30に対して相対的に傾斜していることから、フランジ部20は外方突部26によって厚肉とされて、外方突部26によって本実施形態の厚肉部が形成されている。本実施形態の厚肉部は、フランジ部20における突出基端から外周側に略全体に亘って連続して形成されて、外周側に行くに従って軸方向の厚さ寸法が次第に大きくなっていると共に、フランジ部20の全周に亘って略一定の断面形状で連続的に形成されている。なお、本実施形態において、フランジ部20および外方突部26の外周面は、下方に向かって小径となるテーパ面とされている。また、図1では、見易さのために、一体形成されたフランジ部20と外方突部26の境界と、フランジ部20と隅肉部22の境界とを、それぞれ二点鎖線で仮想的に図示した。
 そして、インナ軸部材12がアウタ筒部材14に対して内挿状態で略同一中心軸上に配されて、それらインナ軸部材12とアウタ筒部材14が、本体ゴム弾性体16によって相互に弾性連結されている。本体ゴム弾性体16は、厚肉の略円筒形状を有しており、内周面がインナ軸部材12の外周面に固着されていると共に、外周面がアウタ筒部材14の内周面に固着されている。なお、本体ゴム弾性体16は、例えば、予め準備されたインナ軸部材12とアウタ筒部材14を成形用金型にセットして、インナ軸部材12とアウタ筒部材14を備えた一体加硫成形品として形成することができる。また、例えば、予め準備されたインナ軸部材12を本体ゴム弾性体16の成形用金型にセットして、インナ軸部材12を備えた一体加硫成形品として本体ゴム弾性体16を形成した後、本体ゴム弾性体16の外周側にアウタ筒部材14を射出成形することで、アウタ筒部材14を本体ゴム弾性体16に固着しても良い。
 さらに、本体ゴム弾性体16の軸方向一方の端面にすぐり部32が形成されていると共に、軸方向他方の端面にすぐり部34が形成されている。すぐり部32,34は、何れも軸方向外方に開口して周方向全周に亘って延びる凹溝状とされており、本体ゴム弾性体16の軸方向端面の自由表面積が、すぐり部32,34の形成によって大きくされている。
 また、アウタ筒部材14のフランジ部20には、緩衝ゴム36が固着されている。緩衝ゴム36は、フランジ部20の軸方向外面から下方に向かって突出して、突出先端に向かって次第に狭幅となる断面形状で周方向に延びており、本実施形態では略一定断面で全周に亘って連続する円環状とされている。また、本実施形態の緩衝ゴム36は、本体ゴム弾性体16と一体形成されており、フランジ部20と一体形成された外方突部26の軸方向外面に固着されて、外方突部26の少なくとも一部を覆っている。更に、緩衝ゴム36の突出方向に延びる弾性主軸が、外方突部26の軸方向外面と略直交するように軸方向に対して傾斜して延びていると共に、緩衝ゴム36の突出先端面が外方突部26の軸方向外面と略平行に広がるテーパ面とされている。
 かくの如き構造とされたメンバマウント10は、例えば、インナ軸部材12が挿通される図示しないボルトによって、同じく図示しない車両ボデーに取り付けられると共に、図2,3に示すように、アウタ筒部材14が組付部材であるメンバマウントのスリーブ38に取り付けられる。
 すなわち、アウタ筒部材14の筒状部18は、図2に示すように、フランジ部20が設けられた軸方向一方の端部が圧入方向後端となるように、軸方向他方の端部から略円筒形状とされたスリーブ38の装着孔39に圧入される。アウタ筒部材14は、例えば、スリーブ38を軸方向で位置決め保持した状態で、フランジ部20を緩衝ゴム36を介してジグ40で軸方向に押すことにより、スリーブ38に圧入される。換言すれば、ジグ40の押込操作面42が緩衝ゴム36を介してフランジ部20に軸方向で押し当てられて、アウタ筒部材14に軸方向の押込力が及ぼされることにより、アウタ筒部材14がスリーブ38に圧入される。また、アウタ筒部材14は、フランジ部20が外方突部26を形成された厚肉部においてスリーブ38の軸方向端面に当接することにより、圧入端が規定されるようになっている。
 さらに、圧入による固定力を有効に得るために、アウタ筒部材14における筒状部18の外径寸法が、スリーブ38の径方向内法寸法(装着孔39の直径)よりも大きくされており、スリーブ38への圧入によってアウタ筒部材14の筒状部18が縮径変形される。そして、本体ゴム弾性体16は、アウタ筒部材14のスリーブ38への圧入によって、径方向に予圧縮される。また、筒状部18のスリーブ38への圧入部分には、径方向内向きの力が及ぼされて、筒状部18における圧入部分と非圧入部分の境界付近に比較的に大きな応力が作用する。
 更にまた、アウタ筒部材14における筒状部18の軸方向他端部分が、スリーブ38への圧入によって縮径変形されることにより、スリーブ38に圧入された筒状部18の軸方向他端部分が、スリーブ38に圧入されていない軸方向一端部分よりも小径となる。これにより、図2に示すように、スリーブ38に圧入されていないアウタ筒部材14の軸方向一端部分は、スリーブ38に圧入された軸方向他端部分から離れるに従って外周側に傾斜するテーパ形状になる。その結果、アウタ筒部材14のフランジ部20は、突出先端側に行くに従って軸方向内方へ傾斜して、軸方向内面が突出先端側に行くに従って上傾する傾斜面になると共に、外方突部26で構成される軸方向外面の傾斜角度が小さくなる。
 そして、アウタ筒部材14をスリーブ38に所定の圧入端まで圧入すると、図3に示すように、スリーブ38とジグ40が、外方突部26を形成されたフランジ部20の厚肉部を挟んで間接的に当接することによって、スリーブ38とジグ40の軸方向への接近変位量が制限される。その結果、アウタ筒部材14がスリーブ38に圧入端まで圧入された状態において、フランジ部20の突出基端部分の軸方向内面と、装着孔39が開口するスリーブ38の軸方向端面との間に隙間が残存しており、フランジ部20の突出基端部とスリーブ38が軸方向に離隔している。従って、筒状部18の縮径による応力の主たる作用位置が、フランジ部20と筒状部18の角度変化による応力の主たる作用位置であるフランジ部20の突出基端部に対して、軸方向内方に離れており、応力の集中によるフランジ部20基端の損傷が回避されて、耐久性の向上が図られる。
 なお、外方突部26は、アウタ筒部材14をスリーブ38に圧入する際の押込端を規定するものであって、スリーブ38の軸方向端面とジグ40の押込操作面42との両方に直接当接していても良いし、スリーブ38の軸方向端面とジグ40の押込操作面42との少なくとも一方に、ゴム等を介して間接的に当接していても良い。
 また、スリーブ38に対するジグ40の接近変位量が、フランジ部20の外周部分と緩衝ゴム36がジグ40とスリーブ38の軸方向間で挟み込まれて制限されることにより、ジグ40によるアウタ筒部材14の押込みに起因したフランジ部20の傾斜角度の変化が低減される。その結果、フランジ部20の突出基端部において、筒状部18とフランジ部20の相対的な角度変化による応力が低減されることから、アウタ筒部材14の耐久性の向上が図られる。
 しかも、フランジ部20の突出基端部の軸方向内面に隅肉部22が設けられて、フランジ部20の突出基端部が隅肉部22によって厚肉化されていることから、筒状部18に対するフランジ部20の傾動に対して、優れた耐久性を得ることができる。
 また、本実施形態では、外方突部26が全周に亘って略一定の断面形状で連続して設けられていることにより、アウタ筒部材14のスリーブ38に対する圧入端がより安定して規定されると共に、圧入時の荷重が周上で略均等に作用することで、耐久性の向上も図られる。
 また、外方突部26がフランジ部20の突出基端から突出先端まで連続して設けられていることにより、フランジ部20における応力集中が回避されて、フランジ部20の耐久性が向上する。しかも、本実施形態の外方突部26は、フランジ部20の径方向で突出高さが徐々に変化しており、外方突部26の軸方向外面が段差や凹凸のない略平面形状とされていることから、応力の分散化がより有利に図られて、耐久性の向上が実現される。
 図4には、本発明に係る筒型防振装置の第二の実施形態として、メンバマウント50を示す。メンバマウント50は、インナ軸部材12とアウタ筒部材52が本体ゴム弾性体16によって弾性連結された構造を有しており、アウタ筒部材52のフランジ部20には外方突部54が一体形成されている。なお、第一の実施形態と実質的に同一の部材および部位については、同一の符号を付すことにより、説明を省略する。
 外方突部54は、フランジ部20の突出先端部(外周端部)に部分的に形成されて、下方に向かって突出している。また、外方突部54は、外周側に行くに従って次第に突出高さが大きくなっており、外方突部54の軸方向外面が径方向に対して傾斜する傾斜面28とされている。なお、フランジ部20の軸方向外面は、外方突部54を外れた内周側において軸直角方向に広がっている。
 また、フランジ部20に固着された緩衝ゴム36は、外方突部54の突出先端面を含むフランジ部20の軸方向外面を覆うように設けられて、軸方向外方に向かって突出している。なお、本実施形態では、外方突部54の内周部分が緩衝ゴム36で覆われていると共に、外方突部54の外周部分が緩衝ゴム36で覆われることなく露出している。また、緩衝ゴム36は、必ずしも外方突部54を覆っている必要はないが、外方突部54を外れて設けられる場合には、アウタ筒部材52のスリーブ38への圧入時に、外方突部54がジグ40の押込操作面42に当接するように、緩衝ゴム36の突出高さが設定される。
 このような本実施形態に従う構造とされたメンバマウント50のように、フランジ部20に部分的な外方突部54が設けられた構造であっても、第一の実施形態と同様に、合成樹脂で形成されたアウタ筒部材52の耐久性の向上が図られる。
 図5には、本発明に係る筒型防振装置の第三の実施形態として、メンバマウント60を示す。メンバマウント60は、インナ軸部材12とアウタ筒部材62が、本体ゴム弾性体16によって弾性連結された構造を有しており、アウタ筒部材62のフランジ部20には、内方突部64が一体形成されている。なお、第一の実施形態と実質的に同一の部材および部位については、同一の符号を付すことにより、説明を省略する。
 内方突部64は、フランジ部20の軸方向内面に突出して形成されており、フランジ部20の突出基端部から突出先端まで略全体に亘って形成されている。更に、内方突部64は、外周側に行くに従って次第に突出寸法が大きくなる断面形状を有しており、略一定の断面形状で環状に連続して延びている。このような内方突部64がフランジ部20に一体形成されることにより、内方突部64の突出先端面で構成されるフランジ部20の軸方向内面が、外周側に行くに従って上傾する傾斜面66とされている。一方、本実施形態において、フランジ部20の軸方向外面は、略軸直角方向に広がっている。
 かくの如き構造とされたメンバマウント60は、第一の実施形態と同様に、アウタ筒部材62の筒状部18がスリーブ38に圧入されて、筒状部18におけるスリーブ38への圧入部分と非圧入部分の境界に、比較的に大きな応力が作用する。また、スリーブ38への圧入によってアウタ筒部材62が縮径されると、図6に示すように、スリーブ38に圧入されない圧入後端に設けられたフランジ部20が、外周側に行くに従って圧入先端側(軸方向内側)に傾斜するように変形する。そして、アウタ筒部材62をスリーブ38に対して所定の圧入端まで圧入して、アウタ筒部材62のスリーブ38への圧入を完了する際に、図7に示すように、傾斜変形したフランジ部20が、スリーブ38の軸方向端面とジグ40の押込操作面42との間で挟み込まれて、傾斜角度が小さくなるように変形せしめられる。これにより、フランジ部20の突出基端部には、フランジ部20の押し戻しによる応力が作用する。
 ここにおいて、アウタ筒部材62のスリーブ38に対する圧入端が、スリーブ38とジグ40がフランジ部20における内方突部64の形成部分(厚肉部)を挟んで間接的に当接することにより規定されて、筒状部18の縮径による応力の作用位置と、フランジ部20の傾斜角度の変化による応力の作用位置とが、軸方向で離れた位置に設定される。これにより、合成樹脂で形成されたアウタ筒部材62が、応力集中によって損傷するのを防いで、十分な耐久性を得ることができる。
 なお、フランジ部20の厚肉部が、軸方向内側に突出する内方突部64によって形成される場合にも、厚肉部はフランジ部20の突出方向(径方向)全体に設けられている必要はなく、例えば外周端部や径方向中間部分に部分的に設けられていても良い。
 以上、本発明の実施形態について詳述してきたが、本発明はその具体的な記載によって限定されない。例えば厚肉部は、フランジ部の突出基端(内周端)よりも突出先端側(外周側)においてアウタ筒部材の組付部材への圧入端を規定するようになっていれば良く、必ずしもフランジ部の外周端に形成されている必要はない。例えば、厚肉部は、フランジ部の径方向中間に部分的に設けられていても良い。
 また、第一の実施形態に示すように、外方突部26の突出先端面は、筒状部18のスリーブ38への圧入によるフランジ部20の傾動を考慮して、軸直角方向に広がる平面に対して傾斜する傾斜面28であることが望ましいが、例えば軸直角方向に広がる平面であっても良い。
 さらに、フランジ部20におけるスリーブ38への当接面30は、軸直角方向に広がっていても良いが、例えば、予め外周側に行くに従って軸方向内側に傾斜していても良い。更にまた、フランジ部20の当接面30は、外周側に行くに従って軸方向外側に傾斜していても良いが、アウタ筒部材14のスリーブ38への圧入過程において、フランジ部20が外周側に行くに従って軸方向内側に傾斜する形状に変形するように、傾斜角度が設定される。なお、当接面30側に部分的な内方突部が設けられて厚肉部が構成された場合には、縦断面において内方突部の突出先端とフランジ部の基端とを繋ぐ仮想的な線の傾斜として、上述のような圧入過程における傾斜の変化を考えれば良い。
 また、フランジ部20の突出基端部の軸方向内面に形成される隅肉部22は、形状や大きさを適宜に変更され得ると共に、必須ではなく省略され得る。更に、前記実施形態のフランジ部20は、縦断面において筒状部18に対して角をなすような折れ曲がり形状(図1参照)で設けられているが、例えば、縦断面において所定の曲率半径をもって延びる湾曲形状であっても良く、これによって、筒状部とフランジ部の接続部分において応力の集中をより効果的に緩和することができる。
 また、緩衝ゴム36は、部品点数の削減による製造の容易化などの観点から、本体ゴム弾性体16と一体形成されていることが望ましいが、例えば、本体ゴム弾性体16とは異なる特性のゴム材料によって、本体ゴム弾性体16とは独立して形成されていても良い。
 また、本発明は、前記実施形態に示したソリッドタイプの筒型防振装置のみならず、内部に封入された非圧縮性流体の流動作用などに基づいた防振効果を利用する流体封入式の筒型防振装置にも、好適に適用され得る。更に、前記実施形態では、本発明に係る筒型防振装置をメンバマウントに適用した例を示したが、本発明に係る筒型防振装置は、例えばサスペンションブッシュやエンジンマウントなどにも適用され得る。
10,50,60:メンバマウント(筒型防振装置)、12:インナ軸部材、14,52,62:アウタ筒部材、16:本体ゴム弾性体、20:フランジ部、22:隅肉部、26,54:外方突部(厚肉部)、36:緩衝ゴム、38:スリーブ(組付部材)、39:装着孔、40:ジグ、42:押込操作面、56:内方突部(厚肉部)

Claims (7)

  1.  インナ軸部材が合成樹脂製のアウタ筒部材に対して挿入状態で配置されて、それらインナ軸部材とアウタ筒部材が本体ゴム弾性体によって相互に弾性連結された筒型防振装置において、
     前記アウタ筒部材の軸方向一方の端部には外周側に突出するフランジ部が設けられていると共に、該フランジ部の突出基端よりも外周側には軸方向寸法を大きくされた厚肉部が設けられていることを特徴とする筒型防振装置。
  2.  前記アウタ筒部材が組付部材の装着孔に圧入によって組み付けられた状態において、前記フランジ部が前記厚肉部の設けられた位置で該組付部材に当接されるようになっており、該フランジ部と該組付部材の当接部分よりも内周側には該フランジ部の突出基端部と該組付部材における該装着孔の開口側端面との間に隙間が残存されるようになっている請求項1に記載の筒型防振装置。
  3.  前記フランジ部には軸方向外面に突出する外方突部が形成されて、該フランジ部における該外方突部の形成部分が前記厚肉部とされている請求項1又は2に記載の筒型防振装置。
  4.  前記厚肉部が前記フランジ部の全周に亘って連続して設けられている請求項1~3の何れか一項に記載の筒型防振装置。
  5.  前記厚肉部が前記フランジ部の突出基端部から外周側に連続して設けられていると共に、該厚肉部の軸方向寸法が外周側に行くに従って次第に大きくされている請求項1~4の何れか一項に記載の筒型防振装置。
  6.  前記フランジ部における突出基端部の軸方向内面に隅肉部が形成されている請求項1~5の何れか一項に記載の筒型防振装置。
  7.  前記フランジ部の軸方向外面には緩衝ゴムが固着されている請求項1~6の何れか一項に記載の筒型防振装置。
PCT/JP2015/074879 2014-09-25 2015-09-01 筒型防振装置 WO2016047395A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580032825.4A CN106460986B (zh) 2014-09-25 2015-09-01 筒型隔振装置
US15/226,644 US9976619B2 (en) 2014-09-25 2016-08-02 Tubular vibration-damping device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-194596 2014-09-25
JP2014194596A JP6343535B2 (ja) 2014-09-25 2014-09-25 筒型防振装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/226,644 Continuation US9976619B2 (en) 2014-09-25 2016-08-02 Tubular vibration-damping device

Publications (1)

Publication Number Publication Date
WO2016047395A1 true WO2016047395A1 (ja) 2016-03-31

Family

ID=55580923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074879 WO2016047395A1 (ja) 2014-09-25 2015-09-01 筒型防振装置

Country Status (4)

Country Link
US (1) US9976619B2 (ja)
JP (1) JP6343535B2 (ja)
CN (1) CN106460986B (ja)
WO (1) WO2016047395A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160273611A1 (en) * 2015-03-20 2016-09-22 Canon Kabushiki Kaisha Damping structure
CN109790894A (zh) * 2016-10-12 2019-05-21 山下橡胶株式会社 防振装置
CN110494668A (zh) * 2017-04-03 2019-11-22 本田技研工业株式会社 悬架衬套

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016107155A1 (de) * 2016-04-18 2017-10-19 Benteler Automobiltechnik Gmbh Achskomponente für eine Kraftfahrzeugachse
FR3057310B1 (fr) * 2016-10-11 2019-07-05 Jtekt Europe Palier amortisseur avec pre-charge axiale
JP6760828B2 (ja) * 2016-11-25 2020-09-23 スタンレー電気株式会社 車両用灯具における導光棒の組付構造
DE102017222757A1 (de) * 2017-12-14 2019-06-19 Bayerische Motoren Werke Aktiengesellschaft Radträger eines Fahrzeugs mit einer Aufnahme für eine Spurstange
DE112020003594B4 (de) * 2019-10-29 2024-09-26 Sumitomo Riko Company Limited Karosserie-dämpferstrebe
CN116261822A (zh) * 2020-10-16 2023-06-13 松下知识产权经营株式会社 模制马达

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741105U (ja) * 1993-12-27 1995-07-21 豊生ブレーキ工業株式会社 エンジンマウント
JP2000130485A (ja) * 1998-10-29 2000-05-12 Musashi Seimitsu Ind Co Ltd ブッシュとアームとの結合構造
JP2001193776A (ja) * 1999-10-25 2001-07-17 Toyo Tire & Rubber Co Ltd 複合防振ブッシュ
JP2007177820A (ja) * 2005-12-27 2007-07-12 Honda Motor Co Ltd ブッシュ
JP2009264568A (ja) * 2008-04-30 2009-11-12 Bridgestone Corp 弾性ブッシュ
JP2010019342A (ja) * 2008-07-10 2010-01-28 Bridgestone Corp 筒型防振ブッシュの製造方法、および、それによって製造される筒型防振ブッシュ
JP2011099522A (ja) * 2009-11-06 2011-05-19 Toyo Tire & Rubber Co Ltd 防振装置
JP2011106651A (ja) * 2009-11-20 2011-06-02 Toyo Tire & Rubber Co Ltd 防振装置
JP2012127452A (ja) * 2010-12-16 2012-07-05 Bridgestone Corp 防振装置
WO2012132105A1 (ja) * 2011-03-30 2012-10-04 東海ゴム工業株式会社 防振装置
EP2644930A2 (de) * 2012-03-29 2013-10-02 Carl Freudenberg KG Lager und Verfahren zu dessen Herstellung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3624280A1 (de) * 1986-07-18 1988-01-28 Trw Ehrenreich Gmbh Gelenk fuer uebertragungsgestaenge in kraftfahrzeugen
JP2002081479A (ja) * 2000-09-08 2002-03-22 Toyo Tire & Rubber Co Ltd 防振ブッシュ
JP2002276714A (ja) * 2001-03-22 2002-09-25 Tokai Rubber Ind Ltd 防振装置
US7104533B2 (en) * 2002-11-26 2006-09-12 Tokai Rubber Industries, Ltd. Cylindrical vibration damping device
US20100065998A1 (en) * 2008-09-17 2010-03-18 Honda Motor Co., Ltd. Arrangement for retaining a compliance bush assembly
WO2010041749A1 (ja) * 2008-10-09 2010-04-15 株式会社ブリヂストン 防振装置
JP5562570B2 (ja) * 2009-03-25 2014-07-30 株式会社ブリヂストン 防振装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741105U (ja) * 1993-12-27 1995-07-21 豊生ブレーキ工業株式会社 エンジンマウント
JP2000130485A (ja) * 1998-10-29 2000-05-12 Musashi Seimitsu Ind Co Ltd ブッシュとアームとの結合構造
JP2001193776A (ja) * 1999-10-25 2001-07-17 Toyo Tire & Rubber Co Ltd 複合防振ブッシュ
JP2007177820A (ja) * 2005-12-27 2007-07-12 Honda Motor Co Ltd ブッシュ
JP2009264568A (ja) * 2008-04-30 2009-11-12 Bridgestone Corp 弾性ブッシュ
JP2010019342A (ja) * 2008-07-10 2010-01-28 Bridgestone Corp 筒型防振ブッシュの製造方法、および、それによって製造される筒型防振ブッシュ
JP2011099522A (ja) * 2009-11-06 2011-05-19 Toyo Tire & Rubber Co Ltd 防振装置
JP2011106651A (ja) * 2009-11-20 2011-06-02 Toyo Tire & Rubber Co Ltd 防振装置
JP2012127452A (ja) * 2010-12-16 2012-07-05 Bridgestone Corp 防振装置
WO2012132105A1 (ja) * 2011-03-30 2012-10-04 東海ゴム工業株式会社 防振装置
EP2644930A2 (de) * 2012-03-29 2013-10-02 Carl Freudenberg KG Lager und Verfahren zu dessen Herstellung

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160273611A1 (en) * 2015-03-20 2016-09-22 Canon Kabushiki Kaisha Damping structure
US9958026B2 (en) * 2015-03-20 2018-05-01 Canon Kabushiki Kaisha Damping structure
CN109790894A (zh) * 2016-10-12 2019-05-21 山下橡胶株式会社 防振装置
US20190234483A1 (en) * 2016-10-12 2019-08-01 Yamashita Rubber Co., Ltd. Vibration-damping device
CN109790894B (zh) * 2016-10-12 2020-12-08 山下橡胶株式会社 防振装置
US10962083B2 (en) * 2016-10-12 2021-03-30 Yamashita Rubber Co., Ltd. Vibration-damping device
CN110494668A (zh) * 2017-04-03 2019-11-22 本田技研工业株式会社 悬架衬套
CN110494668B (zh) * 2017-04-03 2021-04-23 本田技研工业株式会社 悬架衬套

Also Published As

Publication number Publication date
JP6343535B2 (ja) 2018-06-13
CN106460986A (zh) 2017-02-22
CN106460986B (zh) 2018-07-27
US9976619B2 (en) 2018-05-22
JP2016065594A (ja) 2016-04-28
US20160341271A1 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
WO2016047395A1 (ja) 筒型防振装置
JP5753225B2 (ja) 防振装置
JP5780638B2 (ja) 防振ブッシュおよびその製造方法
JP6532367B2 (ja) ブラケット付き筒形防振装置
US10451133B2 (en) Tubular vibration-damping device
JP5095577B2 (ja) 防振連結ロッド
JP4395760B2 (ja) 防振ブッシュ
JP2012211604A (ja) 防振装置
JP3951274B1 (ja) 防振ブッシュの製造方法
JP6257389B2 (ja) 筒型防振装置とその製造方法
WO2011036890A1 (ja) トルクロッド
JP3932025B2 (ja) 防振ブッシュ
JPH10274268A (ja) 防振ブッシュおよびブッシュ組立体
JP2007263148A (ja) メンバマウントおよびその製造方法
JP2008169984A (ja) 防振ブッシュ
JP5622467B2 (ja) 防振ブッシュ及び防振ブッシュ組付体の製造方法
JP2012140974A (ja) 筒形防振装置
JP4699294B2 (ja) 防振装置
JP4937062B2 (ja) スタビライザブッシュ付きスタビライザバー
JP2015110992A (ja) 防振装置
JP2009030664A (ja) アッパーサポート組付体及びその組付方法
JP5184287B2 (ja) 防振ブッシュ
JP6275472B2 (ja) 筒形防振装置
JP7460572B2 (ja) 防振装置
JP2009216135A (ja) 自動車用筒形防振装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15843312

Country of ref document: EP

Kind code of ref document: A1