WO2016045686A1 - Répartition latérale de charges dans des immeubles de très grande hauteur afin de réduire l'effet du vent, de tremblements de terre et d'explosions, ainsi que d'accroître la surface utilisée - Google Patents

Répartition latérale de charges dans des immeubles de très grande hauteur afin de réduire l'effet du vent, de tremblements de terre et d'explosions, ainsi que d'accroître la surface utilisée Download PDF

Info

Publication number
WO2016045686A1
WO2016045686A1 PCT/EG2015/000012 EG2015000012W WO2016045686A1 WO 2016045686 A1 WO2016045686 A1 WO 2016045686A1 EG 2015000012 W EG2015000012 W EG 2015000012W WO 2016045686 A1 WO2016045686 A1 WO 2016045686A1
Authority
WO
WIPO (PCT)
Prior art keywords
building
arms
peripheral
loads
peripheral arms
Prior art date
Application number
PCT/EG2015/000012
Other languages
English (en)
Inventor
Mahmoud Galal Yehia Kamel
Original Assignee
Mahmoud Galal Yehia Kamel
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahmoud Galal Yehia Kamel filed Critical Mahmoud Galal Yehia Kamel
Priority to CN201580052952.0A priority Critical patent/CN107155335B/zh
Publication of WO2016045686A1 publication Critical patent/WO2016045686A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/34Extraordinary structures, e.g. with suspended or cantilever parts supported by masts or tower-like structures enclosing elevators or stairs; Features relating to the elastic stability

Definitions

  • the present invention relates to the lateral distribution of loads in super high- rise buildings using peripheral arms in order to reduce the effect of wind, earthquakes and explosions as well as increasing the utilized area. This is done by the construction of super high-rise buildings of regular or irregular cross- section along with the construction of a group of a tilted and outwardly curved peripheral arms of a feather shape around building corners. Then, tying these arms from the middle to building corners and from edges to each other from multiple tying points along building height using steel wire cables.
  • vibrations damping devices which make reaction forces that reduce vibrations caused by wind or earthquakes, as in patent application JP11117568 (1999) using vibrations damping device between the foundation and the bottom floor along with laminated rubber, to isolate building from ground motions during an earthquake, and with the use of hydraulic vibration damping devices in the central span of building floors fixed with beams and bracings to absorb vibration energy during an earthquakes, in the case of slender building a massive low-tier division is created.
  • the core wall is divided into two parts, internally supported by shear walls, and connected with the periphery structure of the building using boundary columns and beams.
  • the core wall is eccentrically arranged in the north of an outer peripheral tube frame structure and connected from one of its sides with mild steel boundary beams.
  • the core wall is eccentrically arranged and connected from its sides with mild steel boundary beams, in addition to mild steel boundary columns and beams in its external corners in order to support large area buildings.
  • the core wall is divided into four corners connected together using mild steel boundary beams which functions as seismic dampers, and an outer peripheral rigid-frame comprising reinforced concrete columns and first steel beams installed on the outer periphery of the building, where the steel beams are set through the reinforced concrete column, joint portion so as to surround the reinforced column using square tube-shaped thin steel plate, and second steel beams each installed between the core-tube frame and the outer peripheral rigid-frame.
  • mild steel boundary beams which functions as seismic dampers
  • an outer peripheral rigid-frame comprising reinforced concrete columns and first steel beams installed on the outer periphery of the building, where the steel beams are set through the reinforced concrete column, joint portion so as to surround the reinforced column using square tube-shaped thin steel plate, and second steel beams each installed between the core-tube frame and the outer peripheral rigid-frame.
  • Patent application JP 1 1303445 (1999) that provides a vibration control method that controls vibration caused by wind in skyscrapers, through a straight cavities running from the front to the rear of the building, which receives wind energy and blowing it out from perpendicular cavities running from halfway points of the straight cavities through the sides of the building using fans provided in the perpendicular cavities, to control vibrations by restraining eddies from occurring around the building by controlling the driving of the fans with a controller in accordance with the strength of the wind.
  • 2- Patent application JP2001 140496 (2001) building structure is divided into a big substructure constructed above a vibration damper, and a superstructure constructed above hanged truss using steel wire cables fixed on the top of the substructure, in addition to a vibration damper installed between the truss and the substructure.
  • high-rise building comprises precast concrete walls piled up in series in the vertical direction are bindingly connected to each other by unbonded prestressing steel materials passing through the precast concrete walls in the vertical direction and tighten using fixing plates for the top of the building, in addition to laminated rubber bearing is provided between the concrete foundation and floor slabs of the building lowest floor.
  • a pyramid shape skyscraper includes a concrete core wall and a huge concrete foundation with a concrete column from the bottom surrounded by a spring to resist earthquakes.
  • patent application CN1144866 didn't present the design in the case of high-rise buildings and the extent of resistance to an earthquake in this case, and in patent application JP2004084385 structure is rectangular in shape and not subject to diversification of the shape.
  • Patent application US5502932 construction is very complex and requires special equipment to for execution, as well as friction coefficient between independent structures and elastic recovery device will make them as one body, which reduces the effectiveness of vibration damping.
  • Patent application JP2011069148 over time cracks will occur between steel beams in the part set through reinforced concrete columns and concrete which exposes to corrosion due to moisture and weather factors as this part in not accessible for maintenance.
  • the number and size of arms vary depending on building form and height, also depending on loads and forces need to be outwardly distributed.
  • the number of tying points between the building and arms are determined according to the distribution of center of gravities for each case.
  • the building takes many shapes such as a circular cross-section or any regular polygon cross-section (triangle, square, pentagon, hexagon, octagon... etc.) or irregular cross-section.
  • These arms are tilted and outwardly curved so the closest point with the building base (contactless) and the farthest point with the building top, so that the curvature outwardly increase tying strength, fixation, and balance of the building.
  • These arms are constructed from different steel sections or flexible concrete, and these arms are with small cross-section at the bottom and cross- section increases with height, also many holes should be set in these arms to prevent from being wind estop and to give the desired aesthetic view, provide ventilation, visibility, and day lighting necessary for building.
  • the building in this case is not only supported by foundations beneath, but also laterally using arms, which contributes significantly to increasing the effectiveness of building resistance to explosions.
  • the basis of building fulcrum and loading from its foundation and when a bomb attack hits basement columns resulting in collapse of floors from the bottom to the top floor after floor, due to the collapse of the floor beneath, which is the basis support to it from top to bottom and the building will then totally _
  • Fig. 1 shows a plan view of a regular hexagonal section building supported with six peripheral arms.
  • Fig. 2 shows a sectional view A-A in the building showed in fig. 1 tied to the peripheral arms using steel wire cables.
  • Fig. 3 shows an elevation view for one the peripheral arm with the tying points between adjacent peripheral arms and building.
  • Fig. 4 shows a plan view of a regular rectangular section building supported with four peripheral arms.
  • Fig. 5 shows a plan view of a regular octagon section building supported with eight peripheral arms.
  • Fig. 6 shows a plan view of a graphical representation of a regular hexagonal section building supported with six peripheral arms
  • Fig. 7 shows an elevation view of a graphical representation of a regular hexagonal section building supported with six peripheral arms.
  • Fig. 8 shows a middle isometric view of a graphical representation of a regular hexagonal section building supported with six peripheral arms.
  • Fig. 9 shows a bottom isometric view of a graphical representation of a regular hexagonal section building supported with six peripheral arms.
  • Fig. 10 shows a top isometric view of a graphical representation of a regular hexagonal section building supported with six peripheral arms.
  • Peripheral arms would be in the form of a feather as shown in fig. 3, where the smallest cross-section at the bottom and cross-section increases with height, so that the biggest cross section area at the top of these arms (fig. 3 - sign no. 2), also many holes (fig. 3 - sign no. 5) should be set in these arms with a proper density to discharge wind to prevent from being wind estop to not produce unwanted additional forces on these arms, building in tied to these arms using steel wire cables (fig. 3 - sign no. 4) from multiple tying points (fig. 3 - sign no. 7) in the middle of these arms along its height, also each arm to be tied to the two adjacent arms from the edges using steel wire cables (fig. 3 - sign no. 3) from multiple tying points (fig. 3 - sign no. 6) in the edges of this arm along its height.
  • FIG. 4 Another model from the presented models for buildings supported with multiple peripheral arms for lateral distribution of loads of a regular rectangular section building surrounded with four peripheral arms as shown in fig. 4 where the construction of the building (fig. 4 - sign no. 1) and the peripheral arms (fig. 4 - sign no. 2) to be executed in parallel time, and constructing both building and arms successively floors above floor, and after completion of each phase of building construction then to be tied to the four peripheral arms using steel wire cables (fig. 4 - sign no. 4) from the tying points in building corners (fig. 4 - sign no. 8) and the tying points in the middle of each arm (fig. 4 - sign no.
  • the outward curvature of the arms increases the tension forces in the steel wire cables which maintains laterally outward distribution of building loads and building balance against various loads, and secure top floors of the building, which helps to increase their height.
  • the holes being made in these arms with an appropriate geometric pattern give the desired aesthetic view to the present building method at the same time discharges wind to not produce and additional forces on these arms when exposed to winds in order to increase the effectiveness of these arms, and also provide ventilation, visibility, and day lighting necessary for building.
  • the multiple arms for lateral distribution of loads will vary the direction of lateral loading and the provided flexible tying points using steel wire cables. Which works on the balance and stability of the building in front of the wind with its varying directions throughout the year. Also provides for the residents of the upper floors comfort and safety, and in the case of strong winds multiple lateral distribution points of the loads distributes wind load on all building floors showing building flexible response with the wind and not against it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

La présente invention concerne un procédé de construction aux fins de répartition latérale de charges dans des immeubles de très grande hauteur à l'aide de bras périphériques, de façon à conférer équilibre et stabilité à l'immeuble dans le but de réduire l'effet du vent, de tremblements de terre et d'explosions, ainsi que d'accroître la surface utilisée. Ceci est réalisé par la construction d'immeubles de très grande hauteur de section transversale régulière ou irrégulière avec la construction d'un groupe de bras inclinés et incurvés vers l'extérieur en forme de plume autour des coins de l'immeuble. Ensuite, ces bras sont attachés depuis le milieu aux coins de l'immeuble et depuis les bords les uns aux autres à partir de multiples points d'attache le long de la hauteur de l'immeuble à l'aide de câbles en fils d'acier afin d'agir sur la répartition latérale des charges de l'immeuble vers ces bras périphériques. Ces bras sont de faible section transversale au niveau de la partie inférieure et la section transversale s'accroît avec la hauteur. Il convient également de pratiquer de nombreux trous dans ces bras de façon à empêcher qu'ils ne soient arrêtés par le vent et de façon à créer l'aspect esthétique souhaité qui assure la ventilation, la visibilité et la lumière du jour nécessaires à l'immeuble. Les bras périphériques varient en quantité, taille et nombre de points d'attache entre l'immeuble et les bras périphériques, selon la forme, la hauteur, les charges et les forces de l'immeuble qui doivent être réparties vers l'extérieur.
PCT/EG2015/000012 2014-09-24 2015-03-05 Répartition latérale de charges dans des immeubles de très grande hauteur afin de réduire l'effet du vent, de tremblements de terre et d'explosions, ainsi que d'accroître la surface utilisée WO2016045686A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580052952.0A CN107155335B (zh) 2014-09-24 2015-03-05 超级高层建筑物中的负载的横向分布,以减少风力、地震和爆炸的影响,同时增加利用的区域

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EG2014091506 2014-09-24
EG2014091506 2014-09-24

Publications (1)

Publication Number Publication Date
WO2016045686A1 true WO2016045686A1 (fr) 2016-03-31

Family

ID=52774103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EG2015/000012 WO2016045686A1 (fr) 2014-09-24 2015-03-05 Répartition latérale de charges dans des immeubles de très grande hauteur afin de réduire l'effet du vent, de tremblements de terre et d'explosions, ainsi que d'accroître la surface utilisée

Country Status (2)

Country Link
CN (1) CN107155335B (fr)
WO (1) WO2016045686A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230025685A1 (en) * 2019-12-23 2023-01-26 Nam Young Kim Seismic isolation structure using rope foundation

Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4736557A (en) 1986-04-28 1988-04-12 Stratatowers Corporation Super high-rise buildings
US5377465A (en) 1990-05-18 1995-01-03 Kajima Corporation Ultra-high multi-story buildings and construction thereof
US5502932A (en) 1992-02-05 1996-04-02 Chinese Building Technology Services Corporation Limited Method and device of earthquake resistant & energy reduction for high-rise structures
CN1144866A (zh) 1996-03-14 1997-03-12 朱成 高层和超高层建筑框架结构设计施工方法
JPH09242387A (ja) * 1996-03-13 1997-09-16 Shimizu Corp 制振構造物
JPH11117568A (ja) 1997-10-15 1999-04-27 Shimizu Corp 免震・制震併用構造
JPH11131827A (ja) 1997-10-29 1999-05-18 Techno Sophia:Kk 超高層ビル群高機能集合体
JPH11303445A (ja) 1998-04-23 1999-11-02 Toda Constr Co Ltd アクティブ制振方法及びその制振装置と構造物
JP2001073585A (ja) 1999-09-03 2001-03-21 Shimizu Corp 耐震補強構造
JP2001140496A (ja) 1999-11-16 2001-05-22 Takenaka Komuten Co Ltd 超高層建物の吊り制震方法及び吊り制震構造
JP2002088907A (ja) 2000-09-21 2002-03-27 Takenaka Komuten Co Ltd 高層壁式建物
JP2002089060A (ja) 2000-09-14 2002-03-27 Shimizu Corp 集合住宅建物
JP2002227435A (ja) 2001-02-02 2002-08-14 Shimizu Corp 集合住宅建物
JP2003261982A (ja) 2002-03-11 2003-09-19 Shimizu Corp 集合住宅建物
JP2003314081A (ja) 2002-04-24 2003-11-06 Shimizu Corp 建物の架構
JP2003328586A (ja) 2002-05-15 2003-11-19 Shimizu Corp 建築物の免震構造
JP2004052922A (ja) 2002-07-22 2004-02-19 Hitachi Metals Techno Ltd 油圧式ダンパ
JP2004084385A (ja) 2002-08-28 2004-03-18 Shimizu Corp 集合住宅建物の制震構造
JP2004238929A (ja) 2003-02-06 2004-08-26 Shimizu Corp 集合住宅建物
JP2004238928A (ja) 2003-02-06 2004-08-26 Shimizu Corp 集合住宅建物
JP2004251056A (ja) 2003-02-21 2004-09-09 Shimizu Corp 建物の構造
JP2005105531A (ja) 2003-09-26 2005-04-21 Takenaka Komuten Co Ltd 建物の基礎構造とその構築方法
JP2005155172A (ja) 2003-11-26 2005-06-16 Shimizu Corp 建物の構造
JP2005201006A (ja) 2004-01-19 2005-07-28 Shimizu Corp 集合住宅建物の構造
JP2006274733A (ja) 2005-03-30 2006-10-12 Ohbayashi Corp トリプルチューブ構造物及びトリプルチューブ構造物の制振システム
JP2007120032A (ja) 2005-10-25 2007-05-17 Sekisui Chem Co Ltd 建築構造体
WO2011029749A1 (fr) * 2009-09-10 2011-03-17 Alessandro Balducci Système de protection structurelle pour immeubles
WO2011035809A1 (fr) * 2009-09-25 2011-03-31 Vsl International Ag Procédé et structure pour amortissement de mouvement dans des bâtiments
JP2011069148A (ja) 2009-09-28 2011-04-07 Shimizu Corp 建物の構造
CN102061826A (zh) 2009-11-16 2011-05-18 姚鹏云 金字塔防震摩天大楼
US20110271606A1 (en) 2008-12-19 2011-11-10 Golden Wheels Defense Fire Co., Ltd. System and method of preventing disaster for a skyscraper

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102337760B (zh) * 2011-07-11 2013-09-18 深圳市建筑设计研究总院有限公司 一种外轮廓扭转建筑物的结构
CN102535672B (zh) * 2012-02-15 2014-05-28 姚攀峰 一种新型混合式巨型抗震结构及其施工方法

Patent Citations (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4736557A (en) 1986-04-28 1988-04-12 Stratatowers Corporation Super high-rise buildings
US5377465A (en) 1990-05-18 1995-01-03 Kajima Corporation Ultra-high multi-story buildings and construction thereof
US5502932A (en) 1992-02-05 1996-04-02 Chinese Building Technology Services Corporation Limited Method and device of earthquake resistant & energy reduction for high-rise structures
JPH09242387A (ja) * 1996-03-13 1997-09-16 Shimizu Corp 制振構造物
CN1144866A (zh) 1996-03-14 1997-03-12 朱成 高层和超高层建筑框架结构设计施工方法
JPH11117568A (ja) 1997-10-15 1999-04-27 Shimizu Corp 免震・制震併用構造
JPH11131827A (ja) 1997-10-29 1999-05-18 Techno Sophia:Kk 超高層ビル群高機能集合体
JPH11303445A (ja) 1998-04-23 1999-11-02 Toda Constr Co Ltd アクティブ制振方法及びその制振装置と構造物
JP2001073585A (ja) 1999-09-03 2001-03-21 Shimizu Corp 耐震補強構造
JP2001140496A (ja) 1999-11-16 2001-05-22 Takenaka Komuten Co Ltd 超高層建物の吊り制震方法及び吊り制震構造
JP2002089060A (ja) 2000-09-14 2002-03-27 Shimizu Corp 集合住宅建物
JP2002088907A (ja) 2000-09-21 2002-03-27 Takenaka Komuten Co Ltd 高層壁式建物
JP2002227435A (ja) 2001-02-02 2002-08-14 Shimizu Corp 集合住宅建物
JP2003261982A (ja) 2002-03-11 2003-09-19 Shimizu Corp 集合住宅建物
JP2003314081A (ja) 2002-04-24 2003-11-06 Shimizu Corp 建物の架構
JP2003328586A (ja) 2002-05-15 2003-11-19 Shimizu Corp 建築物の免震構造
JP2004052922A (ja) 2002-07-22 2004-02-19 Hitachi Metals Techno Ltd 油圧式ダンパ
JP2004084385A (ja) 2002-08-28 2004-03-18 Shimizu Corp 集合住宅建物の制震構造
JP2004238929A (ja) 2003-02-06 2004-08-26 Shimizu Corp 集合住宅建物
JP2004238928A (ja) 2003-02-06 2004-08-26 Shimizu Corp 集合住宅建物
JP2004251056A (ja) 2003-02-21 2004-09-09 Shimizu Corp 建物の構造
JP2005105531A (ja) 2003-09-26 2005-04-21 Takenaka Komuten Co Ltd 建物の基礎構造とその構築方法
JP2005155172A (ja) 2003-11-26 2005-06-16 Shimizu Corp 建物の構造
JP2005201006A (ja) 2004-01-19 2005-07-28 Shimizu Corp 集合住宅建物の構造
JP2006274733A (ja) 2005-03-30 2006-10-12 Ohbayashi Corp トリプルチューブ構造物及びトリプルチューブ構造物の制振システム
JP2007120032A (ja) 2005-10-25 2007-05-17 Sekisui Chem Co Ltd 建築構造体
US20110271606A1 (en) 2008-12-19 2011-11-10 Golden Wheels Defense Fire Co., Ltd. System and method of preventing disaster for a skyscraper
WO2011029749A1 (fr) * 2009-09-10 2011-03-17 Alessandro Balducci Système de protection structurelle pour immeubles
WO2011035809A1 (fr) * 2009-09-25 2011-03-31 Vsl International Ag Procédé et structure pour amortissement de mouvement dans des bâtiments
JP2011069148A (ja) 2009-09-28 2011-04-07 Shimizu Corp 建物の構造
CN102061826A (zh) 2009-11-16 2011-05-18 姚鹏云 金字塔防震摩天大楼

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230025685A1 (en) * 2019-12-23 2023-01-26 Nam Young Kim Seismic isolation structure using rope foundation

Also Published As

Publication number Publication date
CN107155335B (zh) 2020-04-28
CN107155335A (zh) 2017-09-12

Similar Documents

Publication Publication Date Title
Vintzileou et al. Seismic behaviour of the historical structural system of the island of Lefkada, Greece
Mulla et al. A study on outrigger system in a tall RC structure with steel bracing
Poon et al. Structural design of Taipei 101, the world’s tallest building
CN102498253A (zh) 建筑物结构保护系统
US20180347221A1 (en) A method of constructing earthquake resistant structure with reinforced foundation and wall structure
CN106407552A (zh) 一种提升rc框架核心筒结构防倒塌能力的设计方法
CN109972738B (zh) 组合拱结构
CN210104972U (zh) 拱脚节点
WO2016045686A1 (fr) Répartition latérale de charges dans des immeubles de très grande hauteur afin de réduire l'effet du vent, de tremblements de terre et d'explosions, ainsi que d'accroître la surface utilisée
Rahimian et al. New York’s hearst tower
Mazzolani Passive control technologies for seismic‐resistant buildings in Europe
Jaiswal et al. Comparative analysis of building with shear wall & diagrid structure
JP5819974B2 (ja) 地震およびテロリズムから守るための吊るされた建物
CN210288696U (zh) 组合拱结构
Constantinescu et al. The Minaret of the Great Mosque in Algiers, a structural challenge
Ricciotti et al. Museum of European and Mediterranean Civilizations (MuCEM): high UHPFRC content structure design
Zaregarizi Comparative investigation on using shear wall and infill to improve seismic performance of existing buildings
Bhargavi et al. Analysis of outrigger structural system for high-Rise Building subjected to earthquake loads
Sharma et al. Analysis of Multi-Storey Buildings With shear wall I-section girder in two shape of building
CN107060077B (zh) 一种剪力控制横向力结构
Melkumyan Latest developments in seismic isolation for civil structures in Armenia
Yamini et al. WIND ANALYSIS FOR RC BUILDING USING BELT TRUSS
Srisanth et al. Seismic Response Control Strategies for Buildings J. Jestalt Srisanth, GV Rama Rao, and D. Senthil Velan
Tande SEISMIC PERFORMANCE AND OPTIMIZATION OF MULTISTORYED BUILDING BY OUTRIGGER ALONG BELT TRUSS STRUCTURE
Ballur et al. Analytical study of diagrid structural system for rectangular and rectangular-chamfered multistory building

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15712794

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15712794

Country of ref document: EP

Kind code of ref document: A1