WO2016045373A1 - 一种逆导型绝缘栅双极型晶体管 - Google Patents

一种逆导型绝缘栅双极型晶体管 Download PDF

Info

Publication number
WO2016045373A1
WO2016045373A1 PCT/CN2015/077105 CN2015077105W WO2016045373A1 WO 2016045373 A1 WO2016045373 A1 WO 2016045373A1 CN 2015077105 W CN2015077105 W CN 2015077105W WO 2016045373 A1 WO2016045373 A1 WO 2016045373A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
type
igbt
conduction
doping
Prior art date
Application number
PCT/CN2015/077105
Other languages
English (en)
French (fr)
Inventor
孟航
李冰华
江兴川
林信南
Original Assignee
北京大学深圳研究生院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京大学深圳研究生院 filed Critical 北京大学深圳研究生院
Publication of WO2016045373A1 publication Critical patent/WO2016045373A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]

Definitions

  • the present application relates to power semiconductor devices, and more particularly to a reverse conducting insulated gate bipolar transistor.
  • Insulated Gate Bipolar Transistor is a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) and a Bipolar Junction Transistor (BJT).
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • BJT Bipolar Junction Transistor
  • IGBTs work with inductive loads, such as the H-bridge configuration shown in Figure 1, the AC electrode as an inductive load, and the four IGBTs in parallel with the reverse diodes, namely IGBT-1, IGBT-2, IGBT-3, and IGBT-4 is connected in parallel with the reverse diode to provide freewheeling and protection.
  • Japan's Mitsubishi Corporation integrated diodes into IGBTs in a vertical form in 2004, as shown in Figure 2. This structure is called a Reverse Conducting-Insulated Gate Bipolar Transistor (RC IGBT).
  • RC IGBT Reverse Conducting-Insulated Gate Bipolar Transistor
  • a collector 201, a P-type collector region 202, an N-type collector region 203, an N-type barrier layer 204, an N-type drift region 205, a P-type base region 206, an N+ emitter region 208, an emitter 209, and a gate electrode 213 are included.
  • the gate 213 is not applied with a voltage and the emitter 209 is at a high potential, the IGBT can also be turned on.
  • the back collector area of the conventional reverse-conductivity type IGBT needs to fabricate an N-type collector region and a P-type collector region, and the back surface needs to be patterned, so that the yield of the sheet IGBT is lowered.
  • the ratio of the N region is too small, current concentration may be caused, and current distribution may be uneven, and the current density of the conventional reverse conducting IGBT that can be turned on under safe working conditions cannot be too large; if the ratio of the N region is too large, the device During the forward conduction process, voltage bounce phenomenon may occur. As shown in Figure 3, multiple current values are corresponding to the same voltage value. When the devices are used in parallel, it is prone to one device to enter the high current working state first. Also in the case of low current and high impedance, this may cause the device to be burned.
  • the present application provides a reverse conducting insulated gate bipolar transistor which realizes reverse conduction through tunneling.
  • the invention avoids the pattern process of the collector region manufacturing process and avoids the general reverse conducting IGBT in the forward conduction process.
  • the voltage rebound phenomenon Since the N+ collector region is not required to be photolithographically formed on the back side of the device, the present invention is particularly applicable to a reverse-conducting IGBT structure of a sheet.
  • a reverse conducting insulated gate bipolar transistor including a P-type collector region, an N-type tunnel doping region, an N-type barrier layer, an N-type drift region, and an MOS region, and a P-type set
  • the bottom end of the electric region is provided as an electrode for collecting the collector, and the P-type collector region is sequentially an N-type tunnel doped region, an N-type barrier layer, an N-type drift region and an MOS region;
  • the P-type collector region is degenerate In the doped region, the Fermi level enters the valence band;
  • the N-type tunnel doping region is a region where the doping concentration is close to degenerate doping, and the Fermi level is close to the conduction band but does not enter the conduction band;
  • the P-type collector region The doping concentration is higher than the doping concentration of the N-type tunnel doping region.
  • the MOS region includes a P well base region above the N-type drift region, a P+ emitter region and an N+ emitter region above the P-well base region, and an electrode as an emitter drawn from above the P+ emitter region and the N+ emitter region.
  • the transistor further includes a gate over the N-type drift region and surrounded by the MOS region, the gate includes a polysilicon gate, a gate oxide layer, and a gate electrode, the gate oxide layer covers the polysilicon gate, and the gate electrode is extracted from the polysilicon gate.
  • the beneficial effect of the present application is that the back surface of the collector does not need a pattern process, and the reverse conduction is realized by introducing an N-type tunnel doped region, so that the etching process is not required in the back surface of the process.
  • the proportion of the N-type region is too large or too small, so the forward-reverse conduction current density distribution of the device is completely uniform, and there is no N-type.
  • the problem of current concentration caused by the small ratio of the region is such that the operating current density of the reverse conducting device is improved without affecting the stable operation of the device; meanwhile, when the forward conduction is performed, there is no excessive ratio of the N-type region.
  • the voltage rebound phenomenon is such that the operating current density of the reverse conducting device is improved without affecting the stable operation of the device; meanwhile, when the forward conduction is performed, there is no excessive ratio of the N-type region.
  • FIG. 1 is a schematic diagram of an application scenario of an H-bridge of a conventional insulated gate bipolar transistor
  • FIG. 2 is a schematic structural view of a conventional reverse conducting insulated gate bipolar transistor
  • FIG. 3 is a current-voltage curve diagram of a conventional reverse conducting insulated gate bipolar transistor
  • FIG. 4 is a schematic structural view of an RC IGBT according to a specific embodiment of the present invention.
  • FIG. 5 is an energy band diagram of a PN junction formed by a P-type collector region and an N-type tunnel doped region of an RC IGBT according to a specific embodiment of the present invention
  • FIG. 6 is an energy band diagram of a PN junction formed by a P-type collector region and an N-type tunnel doped region of an RC IGBT according to an embodiment of the present invention when being biased by a forward voltage;
  • FIG. 7 is an energy band diagram of a PN junction formed by a P-type collector region and an N-type tunnel doped region of an RC IGBT according to an embodiment of the present invention when a reverse voltage is biased;
  • FIG. 8 is a graph showing a forward conduction IcVc characteristic of an RC IGBT and a conventional RC IGBT according to a specific embodiment of the present invention
  • FIG. 9 is a graph showing a forward conduction IcVc characteristic of an N-type tunnel doped region of an RC IGBT according to an embodiment of the present invention at different thicknesses;
  • FIG. 10 is a graph showing a reverse conducting IcVc characteristic of an RC IGBT according to a specific embodiment of the present invention and a conventional RC IGBT;
  • FIG. 11 is a front and reverse conduction current density distribution diagram of a conventional RC IGBT of an RC IGBT according to an embodiment of the present invention
  • FIG. 12 is a graph showing a trend of current density of a RC IGBT in a turn-off process of a conventional RC IGBT according to a specific embodiment of the present invention
  • Figure 13 is a graph showing the trend of current density versus time for a reverse recovery process of an RC IGBT and a conventional RC IGBT according to a specific embodiment of the present invention.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the RC IGBT of this embodiment includes a P-type collector region 02, an N-type tunnel doping region 03, an N-type barrier layer 04, and an N-type drift region.
  • the bottom end of the P-type collector region is provided as the electrode 01 led out by the collector, and the P-type collector region is sequentially an N-type tunnel doped region, an N-type barrier layer, an N-type drift region and an MOS region.
  • the P-type collector region is a degenerate doped region, and the Fermi level enters the valence band;
  • the N-type tunnel doped region is a region where the doping concentration is close to degenerate doping, and the Fermi level is close to the conduction band bottom but not The conduction band is entered;
  • the doping concentration of the P-type collector region is higher than the doping concentration of the N-type tunnel doping region.
  • the MOS region includes a P well base region 06 located above the N-type drift region, a P+ emitter region 07 and an N+ emitter region 08 located above the P-well base region, and an emitter as an emitter from above the P+ emitter region and the N+ emitter region. Electrode 09.
  • the transistor further includes a gate over the N-type drift region and surrounded by the MOS region, the gate including the polysilicon gate 10, the gate oxide layer 11 and the gate electrode 12, the gate oxide layer covering the polysilicon gate, and the gate electrode from the polysilicon The grid is led out.
  • the doping concentration of the N-type tunnel doping region ranges from 8 ⁇ 10 18 cm -3 to 2 ⁇ 10 19 cm -3 , and the doping concentration of the P-type collector region is 2 ⁇ 10 20 cm -3 or more.
  • the parameter values in the range are all suitable.
  • the specific parameters of the RC IGBT in this embodiment are shown in the following table. The listed values are an example of a specific embodiment, but such parameters are selected to reflect the RC IGBT of the present invention. Good performance, the device is implemented by the simulation software SENTAURUS.
  • the new RC IGBT In order to compare the performance of the conventional RC IGBT (hereinafter referred to as the new RC IGBT, the structure is shown in FIG. 4) and the conventional RC IGBT (shown in FIG. 2), the parameters of the conventional RC IGBT are set, and the conventional RC IGBT is compared with the conventional RC IGBT.
  • the new RC IGBT has two different structures: first, the N-type tunnel doping region is missing; second, the collector region is composed of an N-type collector region and a P-type collector region, and the N-type collector region and The P-type collector region has the same doping concentration and is equal to the P-type collector region doping concentration of the novel RC IGBT.
  • the remaining structural parameter settings of the conventional RC IGBT are the same as in the present embodiment.
  • the key to the improvement of the performance of the new RC IGBT is the PN junction formed by the P-type collector region and the N-type tunnel doping region.
  • the P-type collector region is a highly doped region, which is a degenerately doped semiconductor, and the Fermi level enters the valence band; the N-type tunnel doped region is a higher concentration doped region.
  • the doping concentration is set to be close to degenerate doping, and the Fermi level is close to the bottom of the conduction band but does not enter the conduction band.
  • the energy band diagram of the PN junction in voltage balance is shown in Fig.
  • the left side of the figure (that is, the range of the abscissa is 0.05-0.10 ⁇ m), the energy band of the P-type collector region is degenerately doped;
  • the side ie, the range of the abscissa is 0.10-0.15 ⁇ m) is the energy band of the N-type tunnel doped region, which is close to degenerate doping.
  • the diffusion current (the difference in concentration of carriers on both sides of the PN junction) and the drift current (self-built electric field) are equal in magnitude, opposite in direction, in a dynamic equilibrium, and no current flows through the diode.
  • the energy band diagram of the PN junction formed by the P-type collector region and the N-type tunnel doped region is in the forward voltage bias as shown in FIG. 6, that is, the potential of the P-type collector region is higher than that of the N-type tunnel-doped region.
  • the blocking effect of the built-in electric field of the PN junction is greatly reduced by the applied voltage, and the load is greatly reduced.
  • the flux enters the other side by diffusion, and the diode achieves forward conduction. Since a large number of carriers enter the semiconductor on the other side, the carrier concentration distribution in the material changes greatly compared to the thermal equilibrium state. This process is called the injection of unbalanced carriers. It can be seen that the forward conduction process of the new RC IGBT is almost indistinguishable from the conventional RC IGBT.
  • the energy band diagram of the PN junction formed by the P-type collector region and the N-type tunnel doping region is in a reverse voltage bias, that is, the potential of the P-type collector region is low.
  • Energy band diagram for the N-type tunnel doped region On both sides of the PN junction, the N-type tunnel doped region is guided by a large number of empty quantum states, which are not occupied by electrons, and the quantum states below the Fermi level in the valence band of the P-type collector region can be considered completely occupied by electrons. And have the same energy level of energy level overlap.
  • the valence band electrons in the P-type collector region can tunnel into the conduction band of the N-type tunnel doping region through quantum effects, generating a reverse tunneling current.
  • the performance improvement of the new RC IGBTs is further explained by comparing the forward-conduction IcVc characteristics, reverse-conduction IcVc characteristics, and turn-off characteristics of the new RC IGBTs and conventional RC IGBTs.
  • FIG. 8 A comparison of the forward conduction IcVc characteristic curves between the new RC IGBT (TRC IGBT) and the conventional RC IGBT is shown in Fig. 8. It can be seen that the traditional RC IGBT has obvious voltage bounce phenomenon. When it is in the forward conduction state, the traditional RC IGBT undergoes unipolar conduction (only electron current) to the bipolar conduction due to the integration of the PIN diode (electron current is empty). The hole current of the new RC IGBT is a unified P-type doping. When it is in the forward conduction state, it will directly enter the bipolar conduction, thus completely avoiding the voltage rebound phenomenon.
  • Figure 9 shows the forward conduction IcVc characteristic curve of the new RC IGBT when the N-type tunnel doping region is at different thicknesses.
  • the addition of the highly doped N-type tunnel doping region does not have a large effect on the large-injection effect of the tunneling RC IGBT.
  • the reverse conduction IcVc characteristic curve between the new RC IGBT (TRC IGBT) and the conventional RC IGBT is shown in Figure 10. It can be seen that the reverse FET voltage of the new RC IGBT is larger than that of the conventional RC IGBT.
  • the PN junction reverse conduction also requires a voltage to widen the energy band difference between the two layers of semiconductors, so that the tunneling effect is greatly increased. The tunneling current is formed, so the reverse conduction characteristic is lost.
  • the current density of the reverse recovery process of the new RC IGBT and the conventional RC IGBT changes with time t.
  • the current density is relatively large; for the new RC IGBT, the current is distributed throughout the collector region, and the current density is only about 25% of that of the conventional RC IGBT, so the reverse recovery characteristic curve has lower peak current and greater softness factor. It is useful for reducing device power consumption and preventing transistor burnout.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)

Abstract

一种逆导型绝缘栅双极型晶体管,包括集电极、P型集电区(02)、N型隧道掺杂区(03)、N型阻挡层(04)、N型漂移区(05)、MOS区和栅极。P型集电区(02)为简并掺杂区域,费米能级进入价带中;N型隧道掺杂区(03)为掺杂浓度接近简并掺杂的区域,费米能级接近导带底但不进入导带;P型集电区(02)的掺杂浓度比N型隧道掺杂区(03)的掺杂浓度高。该晶体管通过引入N型隧道掺杂区(03),实现反向导通,因此在工艺制作上,背面无须刻蚀工艺。在工作中,由于没有普通逆导型IGBT集电极端的N型区域,不存在器件正向导通和反向导通时产生的电流集中问题;也不存在器件正向导通时的电压回跳现象。

Description

一种逆导型绝缘栅双极型晶体管 技术领域
本申请涉及功率半导体器件,尤其是涉及一种逆导型绝缘栅双极型晶体管。
背景技术
绝缘栅双极型晶体管(IGBT,Insulated Gate Bipolar Transistor)是由金属-氧化层-半导体场效应晶体管(Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)和双极结型晶体管(Bipolar Junction Transistor,BJT)组成的一类新兴复合功率半导体器件,主要应用于中高压大功率范围。
在很多应用中IGBT与感性负载一起工作,比如图1所示的H桥结构,交流电极作为感性负载,四个IGBT与反向的二极管并联,即IGBT-1、IGBT-2、IGBT-3和IGBT-4分别与反向的二极管并联,起到续流和保护的作用。日本三菱公司在2004年以纵向的形式将二极管集成到IGBT,如图2所示,这种结构叫作逆导型绝缘栅双极型晶体管(Reverse Conducting-Insulated Gate Bipolar Transistor,RC IGBT),其包括集电极201、P型集电区202、N型集电区203、N型阻挡层204、N型漂移区205、P型基区206、N+发射区208、发射极209和栅极213。在栅极213不加电压、发射极209高电位时,该IGBT也能导通。这种逆导型结构的优点是显而易见的:节省系统中元器件数量;将二极管集成到IGBT,共用一个终端,硅片消耗更少;工艺成本降低,两个器件可以一起封装。
然而,传统逆导型IGBT的背面集电区域需要制作N型集电区和P型集电区,背面需要制作图案,使得薄片IGBT的成品率降低。此外,如果N区比例过小,则可能导致电流集中,电流分布不均匀,则传统逆导型IGBT在安全工作条件下能导通的电流密度不能太大;如果N区比例过大,则器件正向导通过程中可能会出现电压回跳现象,如图3所示,在同一个电压值上对应多个电流值,当器件并联使用时,容易发生一个器件率先进入高电流工作状态,另一个还在低电流高阻状态的情况,这样可能导致器件被烧毁。
发明内容
本申请提供了一种通过隧道效应实现反向导通的逆导型绝缘栅双极型晶体管,本发明避免了集电区制作过程的图案工艺,避免了一般逆导型IGBT在正向导通过程中的电压回跳现象。由于在器件的背面不需要光刻制造N+集电区域,所以本发明尤其适用于薄片的逆导型IGBT结构。
根据本发明的一方面,提供一种逆导型绝缘栅双极型晶体管,包括P型集电区、N型隧道掺杂区、N型阻挡层、N型漂移区和MOS区,P型集电区的底端设置作为集电极引出的电极,P型集电区的上方依次为N型隧道掺杂区、N型阻挡层、N型漂移区和MOS区;P型集电区为简并掺杂区域,费米能级进入价带中;N型隧道掺杂区为掺杂浓度接近简并掺杂的区域,费米能级接近导带底但不进入导带;P型集电区的掺杂浓度比N型隧道掺杂区的掺杂浓度高。MOS区包括位于N型漂移区上方的P阱基区、位于P阱基区上方的P+发射区和N+发射区、以及从P+发射区和N+发射区的上方引出的作为发射极的电极。该晶体管还包括位于N型漂移区的上方并被MOS区包围的栅极,栅极包括多晶硅栅、栅氧化层和栅极电极,栅氧化层包覆多晶硅栅,栅极电极从多晶硅栅引出。
本申请的有益效果是,集电极背面不需要图案工艺,通过引入N型隧道掺杂区,实现反向导通,因此在工艺制作上,背面无须刻蚀工艺。在工作中,由于没有普通逆导型IGBT集电极端的N型区域,不存在N型区域比例过大或者过小的情况,因此器件的正反向导通电流密度分布完全一致,不存在N型区域比例过小而产生的电流集中的问题,使该逆导型器件的工作电流密度得以提升而不影响器件的稳定工作;同时,处于正向导通时,不存在N型区域比例过大而产生的电压回跳现象。
附图说明
图1是传统的绝缘栅双极型晶体管的H桥应用场景示意图;
图2是传统的逆导型绝缘栅双极型晶体管的结构示意图;
图3是传统的逆导型绝缘栅双极型晶体管的电流电压曲线图;
图4是本发明具体实施例的RC IGBT的结构示意图;
图5是本发明具体实施例的RC IGBT的P型集电区与N型隧道掺杂区所形成的PN结处于电压平衡时的能带图;
图6是本发明具体实施例的RC IGBT的P型集电区与N型隧道掺杂区所形成的PN结处于正向电压偏置时的能带图;
图7是本发明具体实施例的RC IGBT的P型集电区与N型隧道掺杂区所形成的PN结处于反向电压偏置时的能带图;
图8是本发明具体实施例的RC IGBT的与传统RC IGBT的正向导通IcVc特性曲线图;
图9是本发明具体实施例的RC IGBT的N型隧道掺杂区处于不同厚度时的正向导通IcVc特性曲线图;
图10是本发明具体实施例的RC IGBT的与传统RC IGBT的反向导通IcVc特性曲线图;
图11是本发明具体实施例的RC IGBT的与传统RC IGBT的正、反向导通电流密度分布图;
图12是本发明具体实施例的RC IGBT的与传统RC IGBT的关断过程电流密度随时间的变化趋势图;
图13是本发明具体实施例的RC IGBT的与传统RC IGBT的反向恢复过程电流密度随时间的变化趋势图。
具体实施方式
下面通过具体实施方式结合附图对本发明作进一步详细说明。
实施例一:
如图4所示为本发明具体实施例的RC IGBT的结构示意图,本实施例的RC IGBT包括P型集电区02、N型隧道掺杂区03、N型阻挡层04、N型漂移区05和MOS区,P型集电区的底端设置作为集电极引出的电极01,P型集电区的上方依次为N型隧道掺杂区、N型阻挡层、N型漂移区和MOS区;P型集电区为简并掺杂区域,费米能级进入价带中;N型隧道掺杂区为掺杂浓度接近简并掺杂的区域,费米能级接近导带底但不进入导带;P型集电区的掺杂浓度比N型隧道掺杂区的掺杂浓度高。MOS区包括位于N型漂移区上方的P阱基区06、位于P阱基区上方的P+发射区07和N+发射区08、以及从P+发射区和N+发射区的上方引出的作为发射极的电极09。该晶体管还包括位于N型漂移区的上方并被MOS区包围的栅极,栅极包括多晶硅栅10、栅氧化层11和栅极电极12,栅氧化层包覆多晶硅栅,栅极电极从多晶硅栅引出。
N型隧道掺杂区的掺杂浓度范围为8×1018cm-3至2×1019cm-3,P型集电区的掺杂浓度为2×1020cm-3以上,在这个数值范围内的参数值都是合适的,本具体实施方式中的RC IGBT的具体参数如下表所示,所列数值是具体实施方式的一种举例,只是选了这样的参数来反映本发明RC  IGBT的良好性能,器件由仿真模拟软件SENTAURUS实现。
器件参数 数值
硅片厚度L(μm) 70
多晶硅栅厚度Lt(μm) 3.2
N型漂移区浓度(cm-3) 1.5e14
N型隧道掺杂区浓度(cm-3) 1e19
P型集电区浓度(cm-3) 2e20
N型阻挡层浓度(cm-3) 4e16
N型隧道掺杂区厚度Ld(μm) 0.1
P型集电区厚度Lc(μm) 0.4
N型阻挡层厚度Ls(μm) 5
栅氧化层厚度tox(μm) 0.04
为比较本具体实施方式中RC IGBT(以下简称新型RC IGBT,结构如图4所示)与传统RC IGBT(结构如图2所示)的性能,设置传统RC IGBT的参数,传统RC IGBT相对于新型RC IGBT在结构上有两点不同:第一,缺少了N型隧道掺杂区;第二,集电区由N型集电区和P型集电区交替组成,N型集电区和P型集电区的掺杂浓度相同并等于新型RC IGBT的P型集电区掺杂浓度。传统RC IGBT的其余结构参数设置均与本具体实施方式中相同。
关于新型RC IGBT的正、反向导通机理的说明,新型RC IGBT性能得以提升的关键在于P型集电区与N型隧道掺杂区所形成的PN结。由参数表中的掺杂浓度可知,P型集电极区为高掺杂区域,为简并掺杂半导体,费米能级进入价带中;N型隧道掺杂区为较高浓度掺杂区域,掺杂浓度设置为接近简并掺杂,费米能级接近导带底但不进入导带。PN结处于电压平衡时的能带图如图5所示,图左侧(即横坐标的范围为0.05-0.10μm)能带为P型集电区能带,为简并掺杂;图右侧(即横坐标的范围为0.10-0.15μm)能带为N型隧道掺杂区能带,为接近简并掺杂。此时,扩散电流(PN结两侧载流子的浓度差)和漂移电流(自建电场)大小相等,方向相反,处于一个动态平衡,二极管没有电流流过。
P型集电区与N型隧道掺杂区所形成的PN结处于正向电压偏置时的能带图如图6所示,即P型集电区的电势高于N型隧道掺杂区时的能带图。PN结内建电场的阻挡作用被外加电压抵消而大大降低,大量载 流子通过扩散作用进入另一侧,二极管实现正向导通。由于大量载流子进入另一侧的半导体,材料中的载流子浓度分布相比热平衡态时,发生了很大的变化,这个过程叫做非平衡载流子的注入。可以看出新型RC IGBT的正向导通过程与传统RC IGBT几乎没有区别。
关于隧道效应的机理,如图7所示为P型集电区与N型隧道掺杂区所形成的PN结处于反向电压偏置时的能带图,即P型集电区的电势低于N型隧道掺杂区时的能带图。在PN结的两侧,N型隧道掺杂区导带有大量的空量子态,未被电子占据,而P型集电区价带中费米能级以下的量子态可以认为完全被电子占据,并且有同样能量大小的能级交叠。P型集电区中的价带电子可以通过量子效应隧穿到N型隧道掺杂区导带中,产生反向隧道电流。外加负电压数值越大,能带交叠范围越大,P型集电区价带向N型隧道掺杂区导带发生隧道效应的电子数也越多,反向隧道电流会大大增加。可以看出,新型RC IGBT的反向导通是通过隧道效应来实现的,而传统RC IGBT由于没有隧道结的存在,只能通过集成PIN二极管来实现反向导通。
以下通过对新型RC IGBT及传统RC IGBT在正向导通IcVc特性、反向导通IcVc特性以及关断特性等方面的对比,对新型RC IGBT在性能上的提升作进一步说明。
(1)正向导通IcVc特性
新型RC IGBT(TRC IGBT)与传统RC IGBT之间的正向导通IcVc特性曲线对比如图8所示。可以看到传统RC IGBT存在明显的电压回跳现象,处于正向导通状态时,由于集成了PIN二极管导致传统RC IGBT经历了单极导通(只有电子电流)向双极导通(电子电流空穴电流同时存在)的转换过程;而新型RC IGBT的背面集电区是统一的P型掺杂,处于正向导通状态时,会直接进入双极导通,因此完全避免了电压回跳现象。
如图9所示为N型隧道掺杂区处于不同厚度时新型RC IGBT的正向导通IcVc特性曲线。N型隧道掺杂区厚度越大,对空穴注入阻挡的作用越强,器件的电流逐渐降低。另外可以看到高掺杂的N型隧道掺杂区的加入并没有对隧道效应RC IGBT的正向导通的大注入效应产生很大的影响。
(2)反向导通IcVc特性
新型RC IGBT(TRC IGBT)与传统RC IGBT之间的反向导通IcVc特性曲线如图10所示,可以看到新型RC IGBT的反向导通压降比传统RC IGBT要大,这是因为反向导通时,由于N型隧道掺杂区设置为接近简并掺杂的掺杂浓度,PN结反向导通还需要一个电压将两层半导体之间的能带差拉大,才能使隧道效应大大增加,形成隧穿电流,因此反向导通特性有所损失。
(3)正、反向导通电流密度分布特性
新型RC IGBT与传统RC IGBT的正、反向导通电流密度J分布对比如图11所示,可以看出不论对于正向导通还是反向导通,传统的RC IGBT的电流分布都很不均匀,这也是由于集成PIN二极管所导致的必然结果,根据说明,导通时电流的不均匀性分布会严重影响器件的安全工作。但是对于新型RC IGBT不论是正向导通状态还是反向导通状态,横向上结构的一致性使得器件的电流密度分布非常均匀。
(4)关断特性
新型RC IGBT与传统RC IGBT的关断过程电流密度随时间t的变化趋势如图12所示,可以看到两条曲线几乎完全重合,说明导通状态下器件漂移区中存储的空穴数量几乎一致,开始关断之后的空穴复合过程对应的拖尾电流几乎一样。
(5)反向恢复特性
新型RC IGBT与传统RC IGBT的反向恢复过程的电流密度随时间t的变化趋势如图13所示,对于传统RC IGBT来说,由于集电极附近的电流集中在N型集电区,所以电流密度比较大;而对于新型RC IGBT来说,电流分布在整个集电区,电流密度仅为传统RC IGBT的25%左右,因此其反向恢复特性曲线的峰值电流更低、软度因子更大,对于降低器件功耗、防止晶体管烧毁很有作用。
以上应用了具体个例对本发明进行阐述,只是用于帮助理解本发明并不用以限制本发明。对于本领域的一般技术人员,依据本发明的思想,可以对上述具体实施方式进行变化。

Claims (8)

  1. 一种逆导型绝缘栅双极型晶体管,其特征在于,包括P型集电区、N型隧道掺杂区、N型阻挡层、N型漂移区和MOS区,所述P型集电区的底端设置作为集电极引出的电极,所述P型集电区的上方依次为所述N型隧道掺杂区、所述N型阻挡层、所述N型漂移区和所述MOS区;所述P型集电区为简并掺杂区域,费米能级进入价带中;所述N型隧道掺杂区为掺杂浓度接近简并掺杂的区域,费米能级接近导带底但不进入导带;P型集电区的掺杂浓度比N型隧道掺杂区的掺杂浓度高。
  2. 如权利要求1所述的晶体管,其特征在于,所述N型隧道掺杂区的掺杂浓度范围为8×1018cm-3至2×1019cm-3
  3. 如权利要求1或2所述的晶体管,其特征在于,所述N型隧道掺杂区的费米能级与导带的能量差为0.01~0.03eV,费米能级到导带的能量差小于费米能级到价带的能量差。
  4. 如权利要求1或2所述的晶体管,其特征在于,所述N型隧道掺杂区的厚度为0.1-0.4μm。
  5. 如权利要求1所述的晶体管,其特征在于,所述P型集电区的掺杂浓度为2×1020cm-3以上。
  6. 如权利要求1所述的晶体管,其特征在于,所述MOS区包括位于所述N型漂移区上方的P阱基区、位于所述P阱基区上方的P+发射区和N+发射区、以及从P+发射区和N+发射区的上方引出的作为发射极的电极。
  7. 如权利要求6所述的晶体管,其特征在于,还包括位于所述N型漂移区的上方并被所述MOS区包围的栅极,所述栅极包括多晶硅栅、栅氧化层和栅极电极,所述栅氧化层包覆多晶硅栅,所述栅极电极从多晶硅栅引出。
  8. 如权利要求1所述的晶体管,其特征在于,所述N型阻挡层的浓度为4×1016cm-3,厚度为4-6μm。
PCT/CN2015/077105 2014-09-22 2015-04-21 一种逆导型绝缘栅双极型晶体管 WO2016045373A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410488417.7A CN104241349B (zh) 2014-09-22 2014-09-22 一种逆导型绝缘栅双极型晶体管
CN2014104884177 2014-09-22

Publications (1)

Publication Number Publication Date
WO2016045373A1 true WO2016045373A1 (zh) 2016-03-31

Family

ID=52229112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077105 WO2016045373A1 (zh) 2014-09-22 2015-04-21 一种逆导型绝缘栅双极型晶体管

Country Status (2)

Country Link
CN (1) CN104241349B (zh)
WO (1) WO2016045373A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113725295A (zh) * 2021-09-01 2021-11-30 电子科技大学 一种逆导型mos栅控晶闸管及其制造方法
CN116314309A (zh) * 2023-05-23 2023-06-23 四川奥库科技有限公司 逆导型igbt器件的背面栅结构及其加工方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104241349B (zh) * 2014-09-22 2017-06-20 北京大学深圳研究生院 一种逆导型绝缘栅双极型晶体管

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100090248A1 (en) * 2008-10-14 2010-04-15 Denso Corporation Semiconductor device having IGBT and FWD on same substrate
JP2011238872A (ja) * 2010-05-13 2011-11-24 Toyota Central R&D Labs Inc 半導体装置
US20120313139A1 (en) * 2011-06-07 2012-12-13 Renesas Electronics Corporation Igbt and diode
CN104241349A (zh) * 2014-09-22 2014-12-24 北京大学深圳研究生院 一种逆导型绝缘栅双极型晶体管

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9362349B2 (en) * 2012-06-21 2016-06-07 Infineon Technologies Ag Semiconductor device with charge carrier lifetime reduction means
CN103872113A (zh) * 2012-12-13 2014-06-18 中国科学院微电子研究所 一种隧穿型逆导igbt及其制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100090248A1 (en) * 2008-10-14 2010-04-15 Denso Corporation Semiconductor device having IGBT and FWD on same substrate
JP2011238872A (ja) * 2010-05-13 2011-11-24 Toyota Central R&D Labs Inc 半導体装置
US20120313139A1 (en) * 2011-06-07 2012-12-13 Renesas Electronics Corporation Igbt and diode
CN104241349A (zh) * 2014-09-22 2014-12-24 北京大学深圳研究生院 一种逆导型绝缘栅双极型晶体管

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113725295A (zh) * 2021-09-01 2021-11-30 电子科技大学 一种逆导型mos栅控晶闸管及其制造方法
CN113725295B (zh) * 2021-09-01 2023-08-11 电子科技大学 一种逆导型mos栅控晶闸管及其制造方法
CN116314309A (zh) * 2023-05-23 2023-06-23 四川奥库科技有限公司 逆导型igbt器件的背面栅结构及其加工方法
CN116314309B (zh) * 2023-05-23 2023-07-25 四川奥库科技有限公司 逆导型igbt器件的背面栅结构及其加工方法

Also Published As

Publication number Publication date
CN104241349A (zh) 2014-12-24
CN104241349B (zh) 2017-06-20

Similar Documents

Publication Publication Date Title
JP5787853B2 (ja) 電力用半導体装置
CN104576720B (zh) 半导体器件和逆导igbt
US7932583B2 (en) Reduced free-charge carrier lifetime device
US8853827B2 (en) Silicon carbide bipolar junction transistor (BJT) having a surface electrode disposed on a surface passivation layer formed at a region between emitter contact and base contact
US9299818B2 (en) Insulating gate-type bipolar transistor
CN104779278A (zh) 双极半导体器件及其制造方法
JP2013201360A (ja) 半導体装置
CN114823911B (zh) 集成高速续流二极管的沟槽碳化硅mosfet及制备方法
US6313488B1 (en) Bipolar transistor having a low doped drift layer of crystalline SiC
CN109119419A (zh) 一种集成肖特基续流二极管碳化硅槽栅mosfet
CN114551601B (zh) 高抗浪涌电流能力的集成栅控二极管的碳化硅mosfet
WO2016045373A1 (zh) 一种逆导型绝缘栅双极型晶体管
US20200058779A1 (en) Semiconductor device
JP2020068321A (ja) 半導体装置
WO2020134177A1 (zh) 一种具有反向通流功能的器件
KR101052498B1 (ko) 반도체장치 및 그 제조방법
CN108735823B (zh) 一种二极管及其制作方法
CN107845673B (zh) 逆导型绝缘栅双极型晶体管及其制作方法、电力电子设备
CN108766964A (zh) Ldmos静电保护器件
JP2016149429A (ja) 逆導通igbt
US20210210480A1 (en) Transistor structure for electrostatic protection and method for manufacturing same
US11374091B2 (en) Semiconductor device
CN108550630B (zh) 一种二极管及其制作方法
CN105870176A (zh) 一种碳化硅双极结型晶体管
US20150311334A1 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15845257

Country of ref document: EP

Kind code of ref document: A1