CN103872113A - 一种隧穿型逆导igbt及其制造方法 - Google Patents

一种隧穿型逆导igbt及其制造方法 Download PDF

Info

Publication number
CN103872113A
CN103872113A CN201210540050.XA CN201210540050A CN103872113A CN 103872113 A CN103872113 A CN 103872113A CN 201210540050 A CN201210540050 A CN 201210540050A CN 103872113 A CN103872113 A CN 103872113A
Authority
CN
China
Prior art keywords
district
igbt
region
contrary
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201210540050.XA
Other languages
English (en)
Inventor
张文亮
朱阳军
田晓丽
卢烁今
褚为利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Lianxing Electronic Co ltd
Institute of Microelectronics of CAS
Jiangsu CAS IGBT Technology Co Ltd
Original Assignee
Shanghai Lianxing Electronic Co ltd
Institute of Microelectronics of CAS
Jiangsu CAS IGBT Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Lianxing Electronic Co ltd, Institute of Microelectronics of CAS, Jiangsu CAS IGBT Technology Co Ltd filed Critical Shanghai Lianxing Electronic Co ltd
Priority to CN201210540050.XA priority Critical patent/CN103872113A/zh
Publication of CN103872113A publication Critical patent/CN103872113A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0821Collector regions of bipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66234Bipolar junction transistors [BJT]
    • H01L29/66325Bipolar junction transistors [BJT] controlled by field-effect, e.g. insulated gate bipolar transistors [IGBT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thyristors (AREA)

Abstract

本发明公开了一种隧穿型逆导IGBT及其制作方法,属于半导体器件技术领域。该隧穿型逆导IGBT包括P+区、P-基区、N-漂移区、N+缓冲层、P+集电极,其特征在于,在P+集电极和N+缓冲层内引入N++区,在P+集电极内于N++区底部引入P++区,P++区与N++区底部接触,使得P+区、P-基区、N-漂移区、N+缓冲层和N++区构成逆导通道,N++区和P++区形成隧道结,隧道结的掺杂浓度为1019/cm3~1020/cm3。该隧穿型逆导IGBT芯片面积小、成本低,可靠性高;开关功率损耗少;无回跳。

Description

一种隧穿型逆导IGBT及其制造方法
技术领域
本发明涉及半导体器件技术领域,特别涉及一种隧穿型逆导IGBT及其制作方法。
背景技术
逆导型IGBT是一种在承受反压时,可以允许电流从发射极流向集电极的IGBT。附图1为在同一坐标系中绘制的普通IGBT的“漏电流Ic—反偏电压VCE”特性曲线图和逆导型IGBT的“漏电流Ic—反偏电压VCE”特性曲线图。从附图1可以看出,当反偏电压VCE小于反向截止电压VCE(max)时,普通IGBT存在极小的漏电流Ic,当反偏电压达到反向截止电压VCE(max)时,普通IGBT的集电结发生雪崩而击穿,也就是说,普通IGBT的几乎无法实现反向导通。但是,当使用IGBT驱动感性负载时,为了给电感提供续流通道,通常需要IGBT具有反向导通能力。
现有技术中,获得具有反向导通能力的IGBT的方法包括两种,第一种是将一个普通IGBT与同等电压级别的PIN二极管反并联,这种方式的IGBT的缺陷在于,寄生电感较大、可靠性也较差;第二种是将普通IGBT的芯片与FRD的芯片反并联后封装到同一单管或模块中,这种方式的IGBT虽然能够减少寄生电感,但是,成本较高且电路的体积较大。
为了获得具有逆导能力的IGBT,曾有一种短路集电极型逆导IGBT问世,附图2为短路集电极型逆导IGBT的局部结构示意图,从附图2可以看出,该IGBT是在P+集电极区04加入N+集电极区03,直接将N+缓冲层2通过N+集电极区03连接到背面金属上,使P+区、P-基区、N-漂移区01、N+集电极区03形成逆导通道。但是,这样形成的短路集电极型逆导IGBT在导通初期,电流密度很小,反偏电压VCE很小,但是,当反偏电压VCE大于一特定值VP时,反偏电压VCE会陡降,电流密度则陡增,附图3短路集电极型逆导IGBT的“集电极-发射极电流—集电极-发射极电压”特性曲线,在附图3上出现一大段负阻区,即短路集电极型逆导IGBT存在回跳。
发明内容
为了解决上述问题,本发明提出了一种在IGBT的集电结的部分区域引入隧道结结构而使IGBT芯片具有逆导能力的隧穿型逆导IGBT及其制造方法。
本发明提供的隧穿型逆导IGBT包括P+区、P-基区、N-漂移区、N+缓冲层、P+集电极,在所述P+集电极和N+缓冲层内引入N++区,在所述P+集电极内于所述N++区底部引入P++区,所述P++区与所述N++区底部接触,所述使得所述P+区、P-基区、N-漂移区、N+缓冲层、N++区和P++区构成逆导通道,所述N++区和P++区形成隧道结,所述隧道结的掺杂浓度为1019/cm3~1020/cm3
作为优选,所述掺杂浓度为5×1019/cm3
作为优选,所述隧道结为突变结。
本发明提供的隧穿型逆导IGBT的制造方法包括以下步骤:
在IGBT的P+集电极和N+缓冲层内注入高剂量的N型杂质,
激活所述N型杂质,使之形成N++区,
在所述P+集电极内加入含有P型掺杂剂的合金,所述P型掺杂剂的合金与所述N++区的底部接触,
使所述P型掺杂剂的合金融化,使所述P型掺杂剂从所述合金中扩散出来形成P++区,
其中,
所述N++区和P++区形成隧道结,所述隧道结的掺杂浓度为1019/cm3~1020/cm3
作为优选,所述P型掺杂剂的合金融化温度为500℃,融化时间为1min。
本发明提供的隧穿型逆导IGBT的有益效果在于,
1)电流可以从由N++区和P++区形成隧道结隧穿过去,从而为IGBT提供了逆导通道,这样形成的逆导IGBT芯片面积小、成本低,可靠性高;
2)在该隧穿型逆导IGBT关断时,N-缓冲层中过剩的载流子可以直接通过该隧道结快速导走,该隧穿型逆导IGBT还可以提高关断速度,进而减少开关功率损耗;
3)无回跳。
附图说明
图1为本发明实施例提供的在同一坐标系中绘制的普通IGBT的“漏电流Ic—反偏电压VCE”特性曲线图和逆导型IGBT的“漏电流Ic—反偏电压VCE”特性曲线图;
图2为短路集电极型逆导IGBT的局部结构示意图;
图3为短路集电极型逆导IGBT的“集电极-发射极电流—集电极-发射极电压”特性曲线图;
图4为隧道结的电流电压特性曲线图;
图5为隧道结热平衡时的能带图;
图6为本发明实施例提供的隧穿型逆导IGBT的结构示意图。
具体实施方式
为了深入了解本发明,下面结合附图及具体实施例对本发明进行详细说明。
参见附图6,本发明提供的隧穿型逆导IGBT包括P+区1、P-基区2、N-漂移区3、N+缓冲层4、P+集电极5,在P+集电极5和N+缓冲层4内引入N++区6,在P+集电极5内于N++区6底部引入P++区7,P++区7与N++区底部6接触,使得P+区1、P-基区2、N-漂移区3、N+缓冲层4、N++区6和P++区7构成逆导通道8,N++区6和P++区7形成隧道结,该隧道结的掺杂浓度为1019/cm3~1020/cm3
其中,典型掺杂浓度为5×1019/cm3
其中,隧道结可以为突变结,从而,使所形成的隧道结良好。
本发明提供的隧穿型逆导IGBT的制造方法包括以下步骤:
在IGBT的P+集电极5和N+缓冲层4内注入高剂量的N型杂质,
激活N型杂质,使之形成N++区6,
在P+集电极5内加入含有P型掺杂剂的合金,P型掺杂剂的合金与N++区6的底部接触,
使P型掺杂剂的合金融化,使P型掺杂剂从合金中扩散出来形成P++区7,
其中,
N++区6和P++区7形成隧道结,隧道结的掺杂浓度为1019/cm3~1020/cm3
其中,作为P型掺杂剂的合金融化的具体条件为P型掺杂剂的合金融化温度为500℃,融化时间为1min。
本发明提供的隧穿型逆导IGBT依据的原理如下:
由重掺杂的P区和N区形成的PN结通常称为隧道结,当隧道结两侧的掺杂浓度为1019/cm3~1020/cm3,这是普通的隧道结的10~1000倍。由于耗尽区形成的势垒特别薄,为
Figure BDA00002581719600051
当隧道结承受反应时,有较大的电流通过隧道效应流过隧道结,从而使隧道结具有双向导电能力。
隧道结电流电压特性如图4所示,正向电流一开始随正向电压的增加而迅速上升达到一个极大值IP,称为峰值电流,对应的正向电压VP称为峰值电压。随后电压增加,电流反而减小,达到一个极小值IV,称为谷值电流,对应的电压VV称为谷值电压。当电压大于谷值电压VV后,电流又随电流电压特性曲线的斜率为负,随着电压的增大电流反而减小的现象称为负阻,这一段电流电压特性曲线的斜率为负,这一特性称为负阻特性。反向时,反向电流随反向偏压的增大而迅速增加。从图4和图5可以看到,隧道结具有良好的逆向导通特性,这是本发明提供的遂穿型IGBT的关键所在。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种隧穿型逆导IGBT,包括P+区、P-基区、N-漂移区、N+缓冲层、P+集电极,其特征在于,在所述P+集电极和N+缓冲层内引入N++区,在所述P+集电极内于所述N++区底部引入P++区,所述P++区与所述N++区底部接触,使得所述P+区、P-基区、N-漂移区、N+缓冲层和N++区构成逆导通道,所述N++区和P++区形成隧道结,所述隧道结的掺杂浓度为1019/cm3~1020/cm3
2.根据权利要求1所述的隧穿型逆导IGBT,其特征在于,所述掺杂浓度为5×1019/cm3
3.根据权利要求1或2所述的隧穿型逆导IGBT,其特征在于,所述隧穿型逆导IGBT的PN结为突变结。
4.一种权利要求1中任一所述的隧穿型逆导IGBT的制造方法包括以下步骤:
在IGBT的P+集电极和N+缓冲层内注入的N型杂质,
激活所述N型杂质,使之形成N++区,
在所述P+集电极内加入含有P型掺杂剂的合金,所述P型掺杂剂的合金与所述N++区的底部接触,
使所述P型掺杂剂的合金融化,使所述P型掺杂剂从所述合金中扩散出来形成P++区,
其中,
所述N++区和P++区形成隧道结,所述隧道结的掺杂浓度为1019/cm3~1020/cm3
5.根据权利要求4所述的方法,其特征在于,所述P型掺杂剂的合金融化温度为500℃,融化时间为1min。
CN201210540050.XA 2012-12-13 2012-12-13 一种隧穿型逆导igbt及其制造方法 Pending CN103872113A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201210540050.XA CN103872113A (zh) 2012-12-13 2012-12-13 一种隧穿型逆导igbt及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201210540050.XA CN103872113A (zh) 2012-12-13 2012-12-13 一种隧穿型逆导igbt及其制造方法

Publications (1)

Publication Number Publication Date
CN103872113A true CN103872113A (zh) 2014-06-18

Family

ID=50910467

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201210540050.XA Pending CN103872113A (zh) 2012-12-13 2012-12-13 一种隧穿型逆导igbt及其制造方法

Country Status (1)

Country Link
CN (1) CN103872113A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167356A (zh) * 2014-07-25 2014-11-26 浙江大学 绝缘栅双极型晶体管及其制备方法
CN104241349A (zh) * 2014-09-22 2014-12-24 北京大学深圳研究生院 一种逆导型绝缘栅双极型晶体管
CN105304699A (zh) * 2015-11-09 2016-02-03 电子科技大学 一种功率半导体器件及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01109769A (ja) * 1987-10-22 1989-04-26 Mitsubishi Electric Corp 半導体装置
CN2217264Y (zh) * 1994-06-24 1996-01-10 电子科技大学 隧道泵高速绝缘栅双极晶体管
US20120068220A1 (en) * 2010-09-21 2012-03-22 Kabushiki Kaisha Toshiba Reverse conducting-insulated gate bipolar transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01109769A (ja) * 1987-10-22 1989-04-26 Mitsubishi Electric Corp 半導体装置
CN2217264Y (zh) * 1994-06-24 1996-01-10 电子科技大学 隧道泵高速绝缘栅双极晶体管
US20120068220A1 (en) * 2010-09-21 2012-03-22 Kabushiki Kaisha Toshiba Reverse conducting-insulated gate bipolar transistor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104167356A (zh) * 2014-07-25 2014-11-26 浙江大学 绝缘栅双极型晶体管及其制备方法
CN104167356B (zh) * 2014-07-25 2017-04-19 浙江大学 绝缘栅双极型晶体管及其制备方法
CN104241349A (zh) * 2014-09-22 2014-12-24 北京大学深圳研究生院 一种逆导型绝缘栅双极型晶体管
CN104241349B (zh) * 2014-09-22 2017-06-20 北京大学深圳研究生院 一种逆导型绝缘栅双极型晶体管
CN105304699A (zh) * 2015-11-09 2016-02-03 电子科技大学 一种功率半导体器件及其制造方法
CN105304699B (zh) * 2015-11-09 2018-01-09 电子科技大学 一种功率半导体器件及其制造方法

Similar Documents

Publication Publication Date Title
CN103383958B (zh) 一种rc-igbt器件及其制作方法
CN102779840B (zh) 一种具有终端深能级杂质层的igbt
CN105789269A (zh) 沟槽绝缘栅双极型晶体管及其制备方法
CN102169892B (zh) 一种增强型平面绝缘栅双极型晶体管
CN105742346A (zh) 双分裂沟槽栅电荷存储型rc-igbt及其制造方法
CN103383957B (zh) 一种逆导型igbt器件
CN108321193B (zh) 一种沟槽栅电荷存储型igbt及其制作方法
CN105870180B (zh) 双分裂沟槽栅电荷存储型rc-igbt及其制造方法
CN101393928A (zh) 一种阳极短路的隧道泵igbt
JP6809586B2 (ja) 半導体装置
CN103489910A (zh) 一种功率半导体器件及其制造方法
CN113571415B (zh) Igbt器件及其制作方法
CN105185826A (zh) 一种横向rc-igbt器件
CN102623492A (zh) 一种mos场控晶闸管
CN102832240A (zh) 一种集电极终端具有介质层的绝缘栅双极型晶体管
CN111834449B (zh) 一种具有背面双mos结构的快速关断rc-igbt器件
CN107305909A (zh) 一种逆导型igbt背面结构及其制备方法
CN106057879A (zh) Igbt器件及其制造方法
CN103872113A (zh) 一种隧穿型逆导igbt及其制造方法
CN104638024A (zh) 一种基于soi的横向恒流二极管及其制造方法
CN110429077A (zh) 一种适用于功率半导体器件的抗单粒子烧毁结构
CN103915489B (zh) 绝缘栅双极型晶体管
CN106067481A (zh) 一种双通道rc‑igbt器件及其制备方法
CN104795438A (zh) 一种能抑制负阻效应的sa-ligbt
CN104779279A (zh) 一种能抑制负阻效应的rc-igbt

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20140618

RJ01 Rejection of invention patent application after publication