WO2016043223A1 - タンパク質吸着用繊維及びタンパク質吸着用カラム - Google Patents
タンパク質吸着用繊維及びタンパク質吸着用カラム Download PDFInfo
- Publication number
- WO2016043223A1 WO2016043223A1 PCT/JP2015/076292 JP2015076292W WO2016043223A1 WO 2016043223 A1 WO2016043223 A1 WO 2016043223A1 JP 2015076292 W JP2015076292 W JP 2015076292W WO 2016043223 A1 WO2016043223 A1 WO 2016043223A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- protein
- polymer
- adsorption
- group
- Prior art date
Links
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/06—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3679—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits by absorption
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/04—Macromolecular materials
- A61L31/041—Mixtures of macromolecular compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/34—Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
- A61M1/3496—Plasmapheresis; Leucopheresis; Lymphopheresis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
- B01D15/08—Selective adsorption, e.g. chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/261—Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/262—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/265—Synthetic macromolecular compounds modified or post-treated polymers
- B01J20/267—Cross-linked polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28014—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
- B01J20/28023—Fibres or filaments
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/281—Sorbents specially adapted for preparative, analytical or investigative chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/30—Processes for preparing, regenerating, or reactivating
- B01J20/3085—Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
- C08J7/12—Chemical modification
- C08J7/14—Chemical modification with acids, their salts or anhydrides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L23/00—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
- C08L23/02—Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
- C08L23/10—Homopolymers or copolymers of propene
- C08L23/12—Polypropene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L25/00—Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
- C08L25/02—Homopolymers or copolymers of hydrocarbons
- C08L25/04—Homopolymers or copolymers of styrene
- C08L25/06—Polystyrene
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M11/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
- D06M11/51—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof
- D06M11/55—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with sulfur, selenium, tellurium, polonium or compounds thereof with sulfur trioxide; with sulfuric acid or thiosulfuric acid or their salts
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/10—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing oxygen
- D06M13/12—Aldehydes; Ketones
- D06M13/13—Unsaturated aldehydes, e.g. acrolein; Unsaturated ketones; Ketenes ; Diketenes
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M13/00—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
- D06M13/322—Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
- D06M13/392—Nitroso compounds; Nitro compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2202/00—Special media to be introduced, removed or treated
- A61M2202/07—Proteins
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2220/00—Aspects relating to sorbent materials
- B01J2220/50—Aspects relating to the use of sorbent or filter aid materials
- B01J2220/52—Sorbents specially adapted for preparative chromatography
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/02—Applications for biomedical use
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2203/00—Applications
- C08L2203/12—Applications used for fibers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/02—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
- C08L2205/025—Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2205/00—Polymer mixtures characterised by other features
- C08L2205/03—Polymer mixtures characterised by other features containing three or more polymers in a blend
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2101/00—Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
- D06M2101/16—Synthetic fibres, other than mineral fibres
- D06M2101/18—Synthetic fibres consisting of macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M2101/20—Polyalkenes, polymers or copolymers of compounds with alkenyl groups bonded to aromatic groups
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M2400/00—Specific information on the treatment or the process itself not provided in D06M23/00-D06M23/18
- D06M2400/01—Creating covalent bondings between the treating agent and the fibre
-
- D—TEXTILES; PAPER
- D10—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B—INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
- D10B2509/00—Medical; Hygiene
Definitions
- the present invention relates to a protein-adsorbing fiber and a protein-adsorbing column, and is suitably used for the purpose of adsorbing a substance to be adsorbed from a treatment liquid containing proteins such as blood and blood components.
- blood purification therapy called apheresis is widespread as a treatment for removing treatment liquid such as sputum from the body, removing pathogenic substances in the treatment liquid with an adsorption column, and purifying it.
- Apheresis therapy mainly includes simple plasma exchange therapy, double filtration plasma exchange therapy, plasma adsorption therapy that removes harmful substances in plasma after separating plasma from blood, and blood adsorption therapy that removes harmful substances from whole blood.
- ⁇ 2 -MG ⁇ 2 -microglobulin
- Patent Document 1 a protein-adsorbing carrier in which a ligand having an amino group is immobilized on the surface of a water-insoluble carrier made of polystyrene or polysulfone is disclosed.
- a ligand having an amino group is a polyolefin such as polyethylene or polypropylene, a polyester such as polyethylene terephthalate or polybutylene terephthalate, a polysulfone polymer such as poly (p-phenylene ether sulfone), polyetherimide, polyimide, polyamide, polyether, Protein adsorbent carrier immobilized on the surface of a water-insoluble carrier comprising polyphenylene sulfide, polystyrene (hereinafter “PS”) or polyacrylonitrile-based polymer, derivatives of these polymer compounds, or blends and alloys of these polymer compounds Is disclosed (Patent Document 2).
- PS polystyrene
- a protein adsorption carrier in which a desired functional group is immobilized on a polymer using an aldehyde or ketone having the functional group
- Patent Document 3 polymers containing aromatic rings such as polystyrene, polysulfone, polyethersulfone and polycarbonate are disclosed.
- the physical strength of the carrier is lowered by the step of immobilizing the ligand, and a part of the carrier may be generated as fine particles and separated.
- an object of the present invention is to provide a protein-adsorbing fiber and a protein-adsorbing column that have high adsorption performance for a substance to be adsorbed and have a low possibility of generating fine particles.
- the present inventors have invented a protein-adsorbing fiber having the following constitution. That is, the present invention has the following configuration.
- Water absorption is 1 to 50%, aromatic hydrocarbon or a derivative thereof is used as a repeating unit, and a part of the aromatic ring contained in the repeating unit is crosslinked via a structure represented by the following general formula (I)
- A is selected from an aliphatic group, an aromatic group, and an amino group.
- the wavy line represents the bonding position with the aromatic ring.
- Preferred embodiments of the present invention include the following configurations.
- R 1 to R 5 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and a wavy line represents a bonding position
- Any of (1) to (4), wherein the number of aromatic rings represented by the general formula (I) is 4 to 70% with respect to the number of all aromatic rings of the crosslinked polymer The fiber for protein adsorption as described.
- a protein adsorption column comprising the protein adsorption fiber according to any one of (1) to (6) as an adsorption carrier as a method for using the protein adsorption fiber.
- the protein-adsorbing fiber and protein-adsorbing column of the present invention can provide a high adsorption performance for a substance to be adsorbed and can reduce the generation of fine particles from the fiber. It can be suitably used for the purpose of adsorbing and removing proteins such as ⁇ 2 -MG and cytokines from a treatment solution containing such proteins.
- the protein-adsorbing fiber of the present invention has a water absorption of 1 to 50%.
- this fiber includes a polymer (hereinafter referred to as “a polymer having a repeating unit of an aromatic hydrocarbon or a derivative thereof, and a part of the aromatic ring of the repeating unit is crosslinked through a structure represented by the following general formula (I)”.
- Polymer B a polymer having a repeating unit of an aromatic hydrocarbon or a derivative thereof, and a part of the aromatic ring of the repeating unit is crosslinked through a structure represented by the following general formula (I)”.
- Polymer B a polymer having a repeating unit of an aromatic hydrocarbon or a derivative thereof, and a part of the aromatic ring of the repeating unit is crosslinked through a structure represented by the following general formula (I)”.
- Polymer B a polymer having a repeating unit of an aromatic hydrocarbon or a derivative thereof, and a part of the aromatic ring of the repeating unit is crosslinked through a structure represented
- a in the formula is preferably the following general formula (A-1), (A-2) or (A-3).
- polymer C refers to a polymer in which an aromatic hydrocarbon or a derivative thereof is contained in the repeating unit. If the aromatic hydrocarbon is a benzene ring, the polymer contains a benzene skeleton in the repeating unit or in the side chain.
- the polymer C may be either a homopolymer or a copolymer.
- aromatic hydrocarbon or derivative thereof examples include the following. Benzene, naphthalene, and anthracene, which are aromatic rings of hydrocarbon groups. Furan, thiophene and pyrrole, which are heteroaromatic rings. Azulene and cyclopentadiene are non-benzene aromatic rings.
- a benzene ring is preferable.
- polystyrene, polysulfone, and derivatives thereof are preferable.
- Copolymers of polystyrene structural units or polysulfone structural units with other structural units can also be used.
- the copolymer may be random or block.
- the polymer C does not have to be one type, and two or more types having different structures can be used.
- polystyrene-based polymers such as poly ⁇ -methylstyrene and poly (styrene-divinylbenzene), and polyethersulfone, polyallylethersulfone, and polyphenylsulfone.
- a polymer having a sulfone group is exemplified.
- Polymer C is a raw material before becoming polymer B, but the weight average molecular weight of polymer C as a raw material is preferably 10,000 to 1,000,000.
- the weight average molecular weight of the polymer C is more preferably 100,000 to 500,000.
- the weight average molecular weight is calculated in terms of polystyrene measured using gel permeation chromatography at 40 ° C. using tetrahydrofuran as a solvent.
- a part of the aromatic ring of the repeating unit is bridged through the structure represented by the general formula (I) means that one aromatic ring of the polymer C and another aromatic of the other polymer C The ring is covalently bonded through the structure represented by the general formula (I), and the polymer C is chemically cross-linked.
- the functional group A is an aliphatic group, an aromatic group or an amino group.
- A may be bonded to a plurality of aromatic rings.
- the number of carbon atoms is preferably 1 to 31.
- the number of carbon atoms is preferably 6 to 10.
- the number of carbon atoms is preferably 0-20.
- the presence of the functional group A defined above makes the structure of the general formula (I) bulky, and the effect of the present invention is increased. Furthermore, if an aromatic group is bonded, the effect is further improved.
- the functional group A is preferably at least one selected from general formulas (A-1), (A-2) and (A-3).
- R 1 to R 5 are each independently a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
- the functional group represented by the general formula (A-1) an isopropyl group and a tert-butyl group are preferable.
- the functional group represented by formula (A-2) is preferably a diethylamino group.
- the fiber surface has the above general formula (I). Hydrophobic properties are improved by the aromatic ring contained in, and the structure is crosslinked by the structure represented by the general formula (I) to form a three-dimensional polymer network structure. This makes it possible to reduce the generation of fine particles from the fiber because a flexible molecular layer is formed on the fiber without chemically increasing hydrophilicity. Further, since the fibers easily interact with the protein, the protein adsorption performance is increased.
- the polymer B for protein-adsorbing fiber does not need to be crosslinked from all aromatic rings of the polymer C.
- the ratio of the number of aromatic rings contained in the structure represented by the general formula (I) to the number of all aromatic rings of the polymer B is preferably 4 to 70%, more preferably 20 to 50%. preferable.
- this ratio is too low, the water absorption rate tends to increase, so that the fibers are liable to swell, the fiber strength is lowered, and the fine particles generated from the fibers tend to increase.
- this ratio is too high, the water absorption is lowered, and the flexible molecular layer on the fiber surface is also thinned, so that the protein adsorption performance is lowered.
- a fiber having the structural unit represented by the general formula (I) can be obtained.
- crosslinking In order to control the water absorption rate of the fiber, it is preferable to crosslink using a compound having a functional group having low reactivity as a crosslinking agent, and benzyl bonded with an aliphatic group such as an alkyl group or an alkylene group or an aromatic ring. More preferably, crosslinking is performed using an aldehyde. When crosslinked with benzylaldehyde to which an electron donating functional group such as an amino group is bonded, the degree of crosslinking is increased. However, since the water absorption rate of the fiber tends to increase, the physical strength of the fiber decreases, and the effect of reducing the generation of fine particles is not as good as that of the functional group described above. In addition, when crosslinking is performed using a compound having benzyl aldehyde to which an electron-withdrawing functional group such as a nitro group that is electron-withdrawing is bonded, the degree of crosslinking is low.
- the crosslinked fibers are not covalently bonded to each other through the structure represented by the general formula (I). Without removing the porous structure.
- formaldehyde is cross-linked, there are few steric hindrances, so the amount of solvent used in the cross-linking reaction erodes the material on the fiber surface and the polymer part that is not cross-linked is leached. This is probably because of this.
- the solvent for crosslinking reaction with the polymer C using a compound having a benzylaldehyde group it is preferable to use a solvent that dissolves or swells polystyrene or polysulfone-based polymers that are preferably used as the polymer C. This is because, during the crosslinking reaction, the molecular structure of the polymer on the fiber surface that has become sparse due to dissolution or swelling by the solvent is appropriately crosslinked to form a three-dimensional polymer network.
- nitrobenzene, nitropropane, N-methyl-2-pyrrolidone and the like are preferable.
- an acid as a catalyst The acid to be added is preferably sulfuric acid.
- the protein-adsorbing fiber may contain a polymer other than the polymer B, and examples thereof include polyolefins such as polyethylene and polypropylene; polyether ketones; polycarbonates; aromatic polyesters such as polyethylene terephthalate.
- the ratio of polymers other than polymer B to all polymers of protein-adsorbed fibers is not particularly limited, but is preferably 80% by mass or less, and more preferably 40% by mass or less.
- the polymer can contain a polymer other than polymer B and the water absorption can be adjusted by adjusting these amounts.
- the polymer B is preferably 1 to 50% by mass, more preferably 11 to 30% by mass, based on the entire fiber.
- the fiber diameter of the fiber for protein adsorption is preferably 0.1 to 1000 ⁇ m, more preferably 0.5 to 20 ⁇ m.
- the fiber for protein adsorption of the present invention can be used as an adsorption carrier, for example, as a column for protein adsorption of body fluid such as blood filled in a cartridge.
- Fabrication of fiber Reference Example 1 Fabrication of fibrous carrier: A blend of 90% by weight polystyrene (weight average molecular weight 18.1 million) and 10% by weight polypropylene as the sea component, polypropylene as the island component, 16 islands made by melt spinning using a composite die, sea / A sea-island composite fiber having an island ratio of 50/50% by mass and a fiber diameter of 20 ⁇ m was prepared and further stretched by 3.1 times, and then mechanically crimped to provide a fiber. The fiber was formed into a tubular knitted shape to obtain a fibrous carrier (attraction of 58-60 mm / 50c) (hereinafter referred to as “fibrous carrier A”).
- fibrous carrier A attraction of 58-60 mm / 50c
- the fiber diameter here means that 10 small sample samples of a fibrous carrier are randomly sampled and photographed at a magnification of 2000 using a scanning electron microscope (S-800; Hitachi, Ltd.). The average value of the values obtained by measuring the diameters of 10 fibers (100 places in total) per photograph.
- a nonwoven fabric (weight per unit: 133.7 g / m 2 ) composed of 85% by mass of this fiber and 15% by mass of polypropylene fiber having a diameter of 20 ⁇ m, a sheet-like polypropylene net (thickness 0.5 mm) is formed between the two nonwoven fabrics.
- a non-woven fabric having a three-layer structure (hereinafter referred to as “PP non-woven fabric”) was obtained by sandwiching a single yarn diameter of 0.3 mm, an opening of 2 mm square, and a basis weight of 70.3 g / m 2 ).
- nonwoven fabric A A nonwoven fabric made of PP is treated with a 3% by weight sodium hydroxide aqueous solution at 95 ° C. to dissolve sea components, whereby a nonwoven fabric having a core-sheath fiber diameter of 5 ⁇ m and a bulk density of 0.02 g / cm 3 (made by PSt + PP) Nonwoven fabric) (hereinafter referred to as “nonwoven fabric A”) was produced.
- protein-adsorbed fiber A crosslinked with 4-isopropylbenzaldehyde.
- Table 1 shows a structure in which aromatic rings are bonded via a functional group.
- Example 2 Production of protein adsorption fiber B: Nitrobenzene 18.1 mL, sulfuric acid 11.9 mL, and 4-isopropylbenzaldehyde 0.4 g were mixed, stirred and dissolved at 50 ° C. to prepare 30 mL of the reaction solution. 1 g of fibrous carrier A was immersed in this reaction solution, and the reaction solution was reacted for 1 hour while maintaining the reaction solution at 50 ° C. Then, the fiber after reaction was taken out from the reaction solution, and immersed in 40 mL of nitrobenzene and washed.
- protein-adsorbed fiber B a protein-adsorbed fiber crosslinked with 4-isopropylbenzaldehyde.
- Table 1 shows structures in which the aromatic rings of the protein-adsorbing fiber B are bonded via functional groups.
- Example 3 Production of protein adsorption fiber C: Nitrobenzene 18.1 mL, sulfuric acid 11.9 mL, 4-isopropylbenzaldehyde 1.6 g were mixed, stirred and dissolved at 50 ° C. to prepare 30 mL of the reaction solution. 1 g of fibrous carrier A was immersed in this reaction solution, and the reaction solution was reacted for 1 hour while maintaining the reaction solution at 50 ° C. Then, the fiber after reaction was taken out from the reaction solution, and immersed in 40 mL of nitrobenzene and washed.
- protein-adsorbed fibers C protein-adsorbed fibers
- Table 1 shows structures in which the aromatic rings of the protein-adsorbing fiber C are bonded via functional groups.
- Example 4 Production of protein adsorption fiber D: Nitrobenzene 18.1 mL, sulfuric acid 11.9 mL and 4-tert-butylbenzaldehyde 0.8 g were mixed, stirred and dissolved at 50 ° C. to prepare 30 mL of the reaction solution. 1 g of fibrous carrier A was immersed in this reaction solution, and the reaction solution was reacted for 1 hour while maintaining the reaction solution at 50 ° C. Then, the fiber after reaction was taken out from the reaction solution, and immersed in 40 mL of nitrobenzene and washed.
- protein-adsorbed fiber D a protein-adsorbed fiber crosslinked with 4-tert-butylbenzaldehyde. It was.
- Table 1 shows structures in which the aromatic rings of the protein-adsorbing fibers D are bonded via functional groups.
- protein-adsorbed fiber E crosslinked with 4-diethylaminobenzaldehyde.
- Table 1 shows structures in which the aromatic rings of the protein-adsorbing fiber E are bonded via functional groups.
- protein-adsorbed fiber F a protein-adsorbed fiber crosslinked with 4-isopropylbenzaldehyde.
- Table 1 shows structures in which the aromatic rings of the protein-adsorbing fibers F are bonded via functional groups.
- protein-adsorbed fiber G crosslinked with 4-isopropylbenzaldehyde.
- Table 1 shows a structure in which aromatic rings are bonded via a functional group.
- protein-adsorbing fiber H crosslinked with 4-dimethylaminobenzaldehyde.
- Table 1 shows structures in which the aromatic rings of the protein-adsorbing fibers H are bonded via functional groups.
- Tetraethylenepentamine (1.5 g) was dissolved in dimethyl sulfoxide (hereinafter, “DMSO”) (500 mL), and 20 g of AMPSt knitted fabric was added thereto with stirring and reacted at 25 ° C. for 6 hours.
- DMSO dimethyl sulfoxide
- the AMPSt knitted fabric after the reaction was washed with 500 mL of DMSO on a glass filter. 3.0 g of AMPSt knitted fabric after washing is added to a solution of 150 mL of DMSO in which 1.0 g of parachlorophenyl isocyanate is dissolved, reacted at 25 ° C. for 1 hour, and then each of 60 mL of DMSO and distilled on a glass filter.
- protein-adsorbed fibers I protein-adsorbed fibers
- protein-adsorbed fibers J protein-adsorbed fibers
- Table 1 shows structures in which the aromatic rings of the protein-adsorbing fibers J are bonded via functional groups.
- Ratio (%) (peak integrated value at 5.0-6.0 (ppm)) / ⁇ (peak integrated value at 6.0-8.0 (ppm)) + (1.0-2.5 (ppm ) Peak integration value) ⁇ ⁇ 1/8 ⁇ 100 Equation 1
- ⁇ water absorption rate (%) ⁇ (weight of adsorbed fiber carrier before drying) ⁇ (weight of adsorbed fiber carrier after drying) ⁇ / (weight of adsorbed fiber carrier before drying) ... Equation 2.
- IL-6 adsorption performance measurement The IL-6 concentration in the solution before and after the adsorption reaction in the protein adsorption fibers A to J was quantified by ELISA, and the adsorption rate was calculated according to the following formula. That is, 4 protein-adsorbing fibers A to J cut into a disk shape having a diameter of 6 mm were placed in a polypropylene container. To this container, 1.1 mL of bovine extermination serum (hereinafter referred to as FBS) adjusted so that the concentration of human natural IL-6 (Kamakura Technoscience) was 10000 pg / mL was added and kept in an incubator at 37 ° C. for 2 hours. Mix by inversion.
- FBS bovine extermination serum
- IL-6 adsorption rate (%) ⁇ (IL-6 concentration before incubation) ⁇ (IL-6 concentration after incubation) ⁇ / (IL-6 concentration before incubation) ⁇ 100 (3)
- the filtered physiological saline solution was pumped into the product for 1 hour at a flow rate of 50 mL per minute, and the effluent was collected 3 times (3 L in total) at 1 L every 20 minutes. 300 mL each of the obtained effluent was supplied with a light shielding type automatic particle measuring device, the particles were measured, and the total number of particles (pieces / mL) when the solution was fed for 1 hour was calculated.
- the total number of fine particles when fed for 1 hour is 0.5 particles / mL or less of fine particles of 5 ⁇ m or more and 0.2 particles / mL or less of particles of 25 ⁇ m or more, the amount of fine particles was judged to be small.
- the protein-adsorbed fibers A to J were evaluated according to the measurement methods for (2) water absorption and (3) IL-6 adsorption performance. Further, columns A to J were evaluated in accordance with the above (4) test method for measuring the number of insoluble fine particles. Table 2 shows the results of water absorption, IL-6 adsorption performance, and insoluble fine particle count measurement.
- Fibers A to E had an IL-6 adsorption rate of 53.3% or more and not only high cytokine removal performance, but also reduced the generation of insoluble fine particles (Examples 1 to 5).
- the aromatic rings of the polymer are covalently bonded through the structure represented by the above general formula (I), but in the protein-adsorbed fiber F having a water absorption rate of 54.3%, insoluble fine particles are hardly generated.
- the IL-6 adsorption rate was 5.0% and the cytokine removal performance was low (Comparative Example 1).
- the aromatic rings of the polymer are covalently bonded through the structure represented by the above general formula (I), but in the protein-adsorbed fiber G having a water absorption rate of 0.5%, the generation of insoluble fine particles is small.
- the IL-6 adsorption rate was 3.0%, and the cytokine removal performance was low (Comparative Example 2).
- the aromatic rings of the polymer are covalently bonded through the structure represented by the above general formula (I), but in the protein-adsorbed fiber H having a water absorption rate of 0.8%, the generation of insoluble fine particles is small.
- the IL-6 adsorption rate was 7.5%, and the cytokine removal performance was low (Comparative Example 3).
- the IL-6 adsorption rate is 60 Although the cytokine removal performance was high, the generation of insoluble fine particles was high (Comparative Example 4).
- the number of all aromatics contained in the fiber is the same as the number of aromatics in polymer B.
- the protein-adsorbing fiber of the present invention can be suitably used for the purpose of adsorbing and removing proteins such as ⁇ 2 -MG and cytokines from treatment liquids containing proteins such as blood, body fluids, and effluents from living bodies.
- proteins such as ⁇ 2 -MG and cytokines
- protein adsorption columns for treating diseases for which specific adsorbed substances must be removed such as ⁇ 2 -microglobulin that is a protein, cytokines, autoimmune antibodies, lipid / protein complexes It is suitably used for an extracorporeal circulation column for removing density lipoprotein and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- Textile Engineering (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Veterinary Medicine (AREA)
- Hematology (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Cardiology (AREA)
- Surgery (AREA)
- Epidemiology (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- External Artificial Organs (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Abstract
Description
(1)吸水率が1~50%であり、芳香族炭化水素又はその誘導体を繰り返し単位とし、上記繰り返し単位が有する芳香環の一部が下記一般式(I)で示される構造を介して架橋されているポリマーを含有する、タンパク質吸着用繊維。
本発明の好ましい態様として以下の構成がある。
(2)式中、Aが、以下の一般式(A-1)、(A-2)又は(A-3)である、(1)記載のタンパク質吸着用繊維。
(3)上記ポリマーは、ポリスチレン、ポリスルホン及びそれらの誘導体からなる群から選択されるポリマーである、(1)又は(2)記載のタンパク質吸着用繊維。
(4) 上記繊維の単糸径が0.1~1000μmである、(1)~(3)のいずれか記載のタンパク質吸着用繊維。
(5) 上記架橋されているポリマーが有するすべての芳香環の数に対する、一般式(I)で示される芳香環の数が、4~70%である、(1)~(4)のいずれか記載のタンパク質吸着用繊維。
(6)サイトカイン吸着用である、(1)~(5)のいずれか記載のタンパク質吸着用繊維。
そしてタンパク質吸着用繊維の使用方法として、上記(1)~(6)のいずれか記載のタンパク質吸着用繊維を吸着担体として含むタンパク質吸着用カラムである。
(式中、Aは脂肪族基、芳香族基及びアミノ基から選ばれる。波線は、ポリマーが有する芳香環との結合位置を表す。)
「芳香族炭化水素又はその誘導体を繰り返し単位とするポリマー」(以下「ポリマーC」という。)とは、繰り返し単位に芳香族炭化水素又はその誘導体が含まれるポリマーをいう。芳香族炭化水素がベンゼン環であれば、繰り返し単位の中又は側鎖にベンゼン骨格が含まれるポリマーとなる。ポリマーCは単独重合体、共重合体のいずれであっても構わない。
炭化水素基の芳香環であるベンゼン、ナフタレン、アントラセン。
複素芳香環であるフラン、チオフェン、ピロール。
非ベンゼン系芳香環であるアズレン、シクロペンタジエン。
(1)繊維の作製:
(参考例1)繊維状担体の作製:
海成分としてポリスチレン(重量平均分子量18.1万)90質量%、ポリプロピレン10質量%の混合ポリマー、島成分としてポリプロピレンを用い、複合口金を用いて溶融紡糸を行いからなる島数16個、海/島比率50/50質量%、繊維径20μmである海島複合繊維を作製し、さらに3.1倍に延伸した後、機械捲縮を付与して繊維を設けた。該繊維を筒編状にし、繊維状担体(引度目58-60mm/50c)を得た(以下、「繊維状担体A」という。)。
芯成分として、ポリスチレン(重量平均分子量26.1万)35質量%、ポリポリプロピレン35%質量%の混合ポリマー、鞘成分としてポリスチレン(重量平均分子量26.1万)30質量%を用い、複合口金を用いて溶融紡糸を行い、芯成分がポリスチレンが海、ポリプロピレンが島となっている被覆型海島複合繊維(島数16個、繊維径26μm)を得た。溶融紡糸法で作製したものを筒編状にし、編地の繊維(引度目95mm/50c)を得た(以下、「繊維状担体B」という。)。
以下の組成ポリマーを用いて、複合口金を用いて、紡糸速度800m/分、延伸倍率3倍で溶融紡糸を行い、36島の海島複合繊維を得た。島成分は内部が芯鞘構造となっている。
島の芯成分 :ポリプロピレン
島の鞘成分 :ポリスチレン(重量平均分子量26.1万)90質量%、ポリプロピレン10質量%
海成分 :エチレンテレフタレート単位を主たる繰り返し単位とし、共重合成分として5-ナトリウムスルホイソフタル酸を共重合ポリエステルに対して3質量%含む共重合ポリエステル
質量比率 : 島の中の芯/島の中の鞘/海 = 45/40/15 。
(実施例1)タンパク質吸着繊維Aの作製
ニトロベンゼン18.1mL、硫酸11.9mL、4-イソプロピルベンズアルデヒド0.8gを50℃で混合、撹拌、溶解し、反応液を30mL調製した。この反応液に1gの繊維状担体Aを浸漬し、反応液を50℃に保ったまま1時間反応させた。その後、反応液から反応後の繊維を取り出し、40mLのニトロベンゼンに浸漬し洗浄した。続いて繊維をメタノールに浸漬し洗浄を行い、さらに水に浸漬して洗浄を行い、4-イソプロピルベンズアルデヒドにより架橋を行ったタンパク質吸着繊維(以下、「タンパク質吸着繊維A」という。)を得た。芳香環同士が、官能基を介して結合している構造を表1に示す。
ニトロベンゼン18.1mL、硫酸11.9mL、4-イソプロピルベンズアルデヒド0.4gを50℃で混合、撹拌、溶解し、反応液を30mL調製した。この反応液に1gの繊維状担体Aを浸漬し、反応液を50℃に保ったまま1時間反応させた。その後、反応液から反応後の繊維を取り出し、40mLのニトロベンゼンに浸漬し洗浄した。続いてメタノールに浸漬し洗浄を行い、さらに水に浸漬して洗浄を行い、4-イソプロピルベンズアルデヒドにより架橋を行ったタンパク質吸着繊維(以下、「タンパク質吸着繊維B」という。)を得た。タンパク質吸着繊維Bが有する、芳香環同士が、官能基を介して結合している構造を表1に示す。
ニトロベンゼン18.1mL、硫酸11.9mL、4-イソプロピルベンズアルデヒド1.6gを50℃で混合、撹拌、溶解し、反応液を30mL調製した。この反応液に1gの繊維状担体Aを浸漬し、反応液を50℃に保ったまま1時間反応させた。その後、反応液から反応後の繊維を取り出し、40mLのニトロベンゼンに浸漬し洗浄した。続いて繊維をメタノールに浸漬し洗浄を行い、さらに水に浸漬して洗浄を行い、4-イソプロピルベンズアルデヒドにより架橋を行ったタンパク質吸着繊維(以下、「タンパク質吸着繊維C」)を得た。タンパク質吸着繊維Cが有する、芳香環同士が、官能基を介して結合している構造を表1に示す。
ニトロベンゼン18.1mL、硫酸11.9mL、4-tert-ブチルベンズアルデヒド0.8gを50℃で混合、撹拌、溶解し、反応液を30mL調製した。この反応液に1gの繊維状担体Aを浸漬し、反応液を50℃に保ったまま1時間反応させた。その後、反応液から反応後の繊維を取り出し、40mLのニトロベンゼンに浸漬し洗浄した。続いて繊維をメタノールに浸漬し洗浄を行い、さらに水に浸漬して洗浄を行い、4-tert-ブチルベンズアルデヒドにより架橋を行ったタンパク質吸着繊維(以下、「タンパク質吸着繊維D」という。)を得た。タンパク質吸着繊維Dが有する、芳香環同士が、官能基を介して結合している構造を表1に示す。
ニトロベンゼン18.1mL、硫酸11.9mL、4-ジエチルアミノベンズアルデヒド1.0gを50℃で混合、撹拌、溶解し、反応液を30mL調製した。この反応液に1gの繊維状担体Aを浸漬し、反応液を50℃に保ったまま50分間反応させた。その後、反応液から反応後の繊維を取り出し、40mLのニトロベンゼンに浸漬し洗浄した。続いて繊維をメタノールに浸漬し洗浄を行い、さらに水に浸漬して洗浄を行い、4-ジエチルアミノベンズアルデヒドにより架橋を行ったタンパク質吸着繊維(以下、「タンパク質吸着繊維E」という。)を得た。タンパク質吸着繊維Eが有する、芳香環同士が、官能基を介して結合している構造を表1に示す。
ニトロベンゼン18.1mL、硫酸11.9mL、4-イソプロピルベンズアルデヒド0.15gを50℃で混合、撹拌、溶解し、反応液を30mL調製した。この反応液に1gの繊維状担体Aを浸漬し、反応液を50℃に保ったまま1時間反応させた。その後、反応液から反応後の繊維を取り出し、40mLのニトロベンゼンに浸漬し洗浄した。続いて繊維をメタノールに浸漬し洗浄を行い、さらに水に浸漬して洗浄を行い、4-イソプロピルベンズアルデヒドにより架橋を行ったタンパク質吸着繊維(以下、「タンパク質吸着繊維F」という。)を得た。タンパク質吸着繊維Fが有する、芳香環同士が、官能基を介して結合している構造を表1に示す。
ニトロベンゼン18.1mL、硫酸11.9mL、4-イソプロピルベンズアルデヒド
3.0gを50℃で混合、撹拌、溶解し、反応液を30mL調製した。この反応液に1gの繊維状担体Aを浸漬し、反応液を50℃に保ったまま1時間反応させた。その後、反応液から反応後の繊維を取り出し、40mLのニトロベンゼンに浸漬し洗浄した。続いて繊維をメタノールに浸漬し洗浄を行い、さらに水に浸漬して洗浄を行い、4-イソプロピルベンズアルデヒドにより架橋を行ったタンパク質吸着繊維(以下、「タンパク質吸着繊維G」という。)を得た。芳香環同士が、官能基を介して結合している構造を表1に示す。
ニトロベンゼン18.1mL、硫酸11.9mL、4-ジメチルアミノベンズアルデヒド1.5gを50℃で混合、撹拌、溶解し、反応液を40mL調製した。この反応液に1gの不織布Aを浸漬し、反応液を50℃に保ったまま1.5時間反応させた。その後、反応液から不織布を取り出し、40mLのニトロベンゼンに浸漬し洗浄した。続いて不織布を取り出し、メタノールに浸漬し洗浄を行い、さらに水に浸漬して洗浄を行い、4-ジメチルアミノベンズアルデヒドにより架橋を行った不織布(以下、「タンパク質吸着繊維H」)を得た。タンパク質吸着繊維Hが有する、芳香環同士が、官能基を介して結合している構造を表1に示す。
50gのN-メチロール-α-クロロアセトアミド、400gのニトロベンゼン、400gの98重量%硫酸及び0.85gのパラホルムアルデヒドからなる混合溶液中に50gの繊維状担体Bを浸し、4℃で1時間反応させた。反応後の繊維を0℃の氷水5L中に浸して反応を停止させた後、水で洗浄し、さらに繊維に付着しているニトロベンゼンをメタノールで抽出除去した。この繊維を50℃で真空乾燥して、クロロアセトアミドメチル化架橋ポリスチレン編地(以下、「AMPSt編地」という。)71gを得た。
ニトロベンゼン18.1mL、硫酸11.9mL、パラホルムアルデヒド0.8gを50℃で混合、撹拌、溶解し、反応液を30mL調製した。この反応液に1gの繊維状担体Aを浸漬し、反応液を50℃に保ったまま1時間反応させた。その後、反応液から反応後の繊維を取り出し、40mLのニトロベンゼンに浸漬し洗浄した。続いて繊維をメタノールに浸漬し洗浄を行い、さらに水に浸漬して洗浄を行い、タンパク質吸着繊維(以下、「タンパク質吸着繊維J」)を得た。タンパク質吸着繊維Jが有する、芳香環同士が、官能基を介して結合している構造を表1に示す。
ポリプロピレン-ポリエチレン共重合体製カラム(直径:40mm×長さ:133mm、吸着繊維充填部体積:40cm3)1本当たりに吸着繊維A~Jを各々54g充填した。その後、カラム内を注射用水(大塚製薬)で満たした後、高圧蒸気滅菌を行い、それぞれタンパク質吸着繊維A~Jを吸着担体として備えたカラム(以下、「カラムA~J」)を得た。
(1)芳香環及び上記一般式(I)で示される構造の確認:
タンパク質吸着繊維A~Jにおける芳香環及び上記一般式(I)で示される構造の同定は、1H-NMRスペクトルで同定した。すなわち、重クロロホルムにタンパク質吸着繊維A~Jを溶解させ、核磁気共鳴装置(JOEL RESONANCE社)を用いて1H-NMRスペクトル(TMS基準)を得た(共鳴周波数:270MHz)。取得した1H-NMRスペクトルにおいて、プロトンの存在位置とケミカルシフトとの関係にしたがい上記一般式(I)で示される構造を同定した。
6.0~8.0ppm:芳香環のプロトン
5.0~6.0:上記一般式(I)で示される構造の架橋点のプロトン
1.0~2.5:ポリスチレン主鎖のプロトン
また、1H-NMRスペクトルデータから、すべての芳香環の数に対する、一般式(I)で示される構造に含まれる芳香環の数の割合を以下の式1にしたがって算出した。
割合(%)=(5.0-6.0(ppm)におけるピーク積分値)/{(6.0-8.0(ppm)におけるピーク積分値)+(1.0-2.5(ppm)におけるピーク積分値)}×1/8×100 ・・・式1。
タンパク質吸着繊維A~Jにおける膨潤性を確認するため、以下に記載の方法にしたがって吸水率を測定した。すなわち、1辺4cmの正方形に切り取った繊維状担体を水に24時間以上浸漬させた後、2枚のキムタオル(日本製紙クレシア社製)の間に挟んで水分を十分取り除き、乾燥前の重量を測定した。この後、常温真空下で24時間以上乾燥させ、乾燥後の重量を測定した。吸水率を以下の式2にしたがって算出した。
タンパク質吸着繊維A~Jにおける吸着反応の前後の溶液中のIL-6濃度をELISA法で定量し、以下の式にしたがって吸着率を算出した。すなわち、直径6mmの円板状に切り抜いたタンパク質吸着繊維A~J4枚を、ポリプロピレン製の容器に入れた。この容器に、ヒト天然型IL-6(鎌倉テクノサイエンス)の濃度が10000pg/mLになるように調整した牛退治血清(以下、FBS)を1.1mL添加し、37℃のインキュベータ内で2時間転倒混和した。吸着繊維担体を容器から取り除いた後、市販のヒトIL-6ELISAキット(鎌倉テクノサイエンス)を用いて溶液中のIL-6の残濃度を測定し、以下の式3にしたがってIL-6吸着率を算出した。
IL-6吸着率(%)={(インキュベート前のIL-6濃度)―(インキュベート後のIL-6濃度)}/(インキュベート前のIL-6濃度)×100 ・・・式3 。
第十五改正日本薬局方収載(2006年3月31日厚生労働省告示第285号)の一般試験法6.07注射剤の不溶性微粒子試験法(第1法:光遮蔽粒子計数法;pp.1-2)を参考にして実施した。包装貨物及び容器の振動試験方法(JISZ0232)を参考にし、カラムを水平及び垂直方向に各1時間振動した。振動後のカラムを市販の人工腎臓用血液回路と接続し、生理食塩液2Lを用いて毎分100mLの流速にて洗浄した。なお、使用する生理食塩液はポアサイズ0.3μmのフィルターを通したものを用いた。濾過した生理食塩液をポンプを用いて毎分50mLの流速で1時間本品に送入し、その流出液を20分毎に1Lずつ、計3回採取(計3L)した。得られた流出液を光遮へい型自動微粒子測定装置にてそれぞれ300mLずつ供給し、微粒子を測定し、1時間送液した時の総微粒子数(個/mL)を算出した。1時間送液した時の総微粒子数が、5μm以上の微粒子が0.5個/mL以下かつ25μm以上の微粒子が0.2個/mL以下であれば微粒子の量が少ないと判断した。
Claims (7)
- 前記ポリマーは、ポリスチレン、ポリスルホン及びそれらの誘導体からなる群から選択されるポリマーである、請求項1又は2記載のタンパク質吸着用繊維。
- 前記繊維の単糸径が0.1~1000μmである、請求項1~3のいずれか一項記載のタンパク質吸着用繊維。
- 前記架橋されているポリマーが有するすべての芳香環の数に対する、一般式(I)で示される芳香環の数が、4~70%である、請求項1~4のいずれか一項記載のタンパク質吸着用繊維。
- サイトカイン吸着用である、請求項1~5のいずれか一項記載のタンパク質吸着用繊維。
- 請求項1~6のいずれか一項記載のタンパク質吸着用繊維を吸着担体として含む、タンパク質吸着用カラム。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2961454A CA2961454A1 (en) | 2014-09-16 | 2015-09-16 | Fiber for protein adsorption and column for protein adsorption |
KR1020177002801A KR20170059966A (ko) | 2014-09-16 | 2015-09-16 | 단백질 흡착용 섬유 및 단백질 흡착용 컬럼 |
JP2015549103A JP6696176B2 (ja) | 2014-09-16 | 2015-09-16 | タンパク質吸着用繊維及びタンパク質吸着用カラム |
CN201580049575.5A CN106714961B (zh) | 2014-09-16 | 2015-09-16 | 蛋白质吸附用纤维和蛋白质吸附用柱 |
US15/511,185 US9982369B2 (en) | 2014-09-16 | 2015-09-16 | Fiber and column for protein adsorption |
EP15841455.7A EP3195930B1 (en) | 2014-09-16 | 2015-09-16 | Fiber for protein adsorption and column for protein adsorption |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014187681 | 2014-09-16 | ||
JP2014-187681 | 2014-09-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016043223A1 true WO2016043223A1 (ja) | 2016-03-24 |
Family
ID=55533259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/076292 WO2016043223A1 (ja) | 2014-09-16 | 2015-09-16 | タンパク質吸着用繊維及びタンパク質吸着用カラム |
Country Status (7)
Country | Link |
---|---|
US (1) | US9982369B2 (ja) |
EP (1) | EP3195930B1 (ja) |
JP (1) | JP6696176B2 (ja) |
KR (1) | KR20170059966A (ja) |
CN (1) | CN106714961B (ja) |
CA (1) | CA2961454A1 (ja) |
WO (1) | WO2016043223A1 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112485339A (zh) * | 2019-09-12 | 2021-03-12 | 中国科学院大连化学物理研究所 | 一种基于相分离的交联剂载体及其制备和应用 |
JPWO2023008489A1 (ja) * | 2021-07-29 | 2023-02-02 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49130969A (ja) * | 1973-04-20 | 1974-12-16 | ||
JP2002363116A (ja) * | 2001-06-07 | 2002-12-18 | Nippon Steel Chem Co Ltd | ビスフェノールaの製造方法 |
JP2008237893A (ja) * | 2007-02-22 | 2008-10-09 | Toray Ind Inc | 血液処理カラム |
WO2013022012A1 (ja) * | 2011-08-09 | 2013-02-14 | 東レ株式会社 | 吸着用担体及びその製造方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006272075A (ja) | 2005-03-28 | 2006-10-12 | Toray Ind Inc | 吸着材料 |
EP2058018A4 (en) * | 2006-08-31 | 2014-01-22 | Toray Industries | ADSORPTION SUPPORT CONTAINING COMPOSITE FIBER |
JP5824873B2 (ja) | 2010-05-28 | 2015-12-02 | 東レ株式会社 | ハイモビリティーグループタンパク吸着担体 |
-
2015
- 2015-09-16 CN CN201580049575.5A patent/CN106714961B/zh not_active Expired - Fee Related
- 2015-09-16 EP EP15841455.7A patent/EP3195930B1/en active Active
- 2015-09-16 KR KR1020177002801A patent/KR20170059966A/ko unknown
- 2015-09-16 US US15/511,185 patent/US9982369B2/en active Active
- 2015-09-16 JP JP2015549103A patent/JP6696176B2/ja active Active
- 2015-09-16 CA CA2961454A patent/CA2961454A1/en not_active Abandoned
- 2015-09-16 WO PCT/JP2015/076292 patent/WO2016043223A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49130969A (ja) * | 1973-04-20 | 1974-12-16 | ||
JP2002363116A (ja) * | 2001-06-07 | 2002-12-18 | Nippon Steel Chem Co Ltd | ビスフェノールaの製造方法 |
JP2008237893A (ja) * | 2007-02-22 | 2008-10-09 | Toray Ind Inc | 血液処理カラム |
WO2013022012A1 (ja) * | 2011-08-09 | 2013-02-14 | 東レ株式会社 | 吸着用担体及びその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20170059966A (ko) | 2017-05-31 |
JP6696176B2 (ja) | 2020-05-20 |
EP3195930A1 (en) | 2017-07-26 |
CN106714961A (zh) | 2017-05-24 |
JPWO2016043223A1 (ja) | 2017-06-29 |
US9982369B2 (en) | 2018-05-29 |
EP3195930A4 (en) | 2018-05-09 |
CN106714961B (zh) | 2020-08-07 |
US20170253999A1 (en) | 2017-09-07 |
CA2961454A1 (en) | 2016-03-24 |
EP3195930B1 (en) | 2021-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yu et al. | High performance thin-film nanofibrous composite hemodialysis membranes with efficient middle-molecule uremic toxin removal | |
CA2603073C (en) | Absorbent and column for extracorporeal circulation | |
Kee et al. | Permeability performance of different molecular weight cellulose acetate hemodialysis membrane | |
Ali et al. | Nano architectured cues as sustainable membranes for ultrafiltration in blood hemodialysis | |
KR102316145B1 (ko) | 중공사막 모듈 및 그 제조 방법 | |
CA2095423A1 (en) | High efficiency removal of low density lipoprotein-cholesterol from whole blood | |
JP5338431B2 (ja) | ポリスルホン系分離膜およびポリスルホン系分離膜モジュールの製造方法 | |
US20040247682A1 (en) | Hydrophilic material and process for producing the same | |
JP5857407B2 (ja) | 中空糸膜および中空糸膜の製造方法 | |
Zheng et al. | In vitro hemocompatibility and hemodialysis performance of hydrophilic ionic liquid grafted polyethersulfone hollow fiber membranes | |
KR101631536B1 (ko) | 흡착용 담체 및 그 제조방법 | |
JP6696176B2 (ja) | タンパク質吸着用繊維及びタンパク質吸着用カラム | |
JP5633277B2 (ja) | 分離膜モジュール | |
JP6291970B2 (ja) | タンパク質吸着材料およびその製造方法、血液浄化器 | |
JP4110806B2 (ja) | 体外循環用毒素吸着材 | |
JP2007202634A (ja) | 吸着器 | |
JP5420341B2 (ja) | 血球除去用吸着体及びその製造方法 | |
JP7415700B2 (ja) | 血液浄化用担体 | |
Anderson et al. | Evaluation of the permeability and blood‐compatibility properties of membranes formed by physical interpenetration of chitosan with PEO/PPO/PEO triblock copolymers | |
JP4032465B2 (ja) | 血栓形成性物質の吸着剤および体外循環カラム | |
WO2023167184A1 (ja) | 好中球除去材料及び好中球除去材料の製造方法 | |
JP2003310751A (ja) | 癌胎児性抗原吸着材および体外循環用カラム | |
CN114011389B (zh) | 一种用于脓毒血症的血液净化材料及其制备方法和应用 | |
JP2016047240A (ja) | 中空糸膜モジュール及びその製造方法 | |
JP7230478B2 (ja) | 血液浄化カラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015549103 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15841455 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20177002801 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15511185 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2961454 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015841455 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015841455 Country of ref document: EP |