WO2016043148A1 - 金属の生物腐食抑制剤 - Google Patents

金属の生物腐食抑制剤 Download PDF

Info

Publication number
WO2016043148A1
WO2016043148A1 PCT/JP2015/075979 JP2015075979W WO2016043148A1 WO 2016043148 A1 WO2016043148 A1 WO 2016043148A1 JP 2015075979 W JP2015075979 W JP 2015075979W WO 2016043148 A1 WO2016043148 A1 WO 2016043148A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
present
corrosion inhibitor
group
methylglutaraldehyde
Prior art date
Application number
PCT/JP2015/075979
Other languages
English (en)
French (fr)
Inventor
拓大 ▲鶴▼田
亮佑 清水
貴裕 細野
純市 藤
暁 若井
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2016548874A priority Critical patent/JP6642873B2/ja
Priority to US15/512,292 priority patent/US10087404B2/en
Priority to CA2961703A priority patent/CA2961703A1/en
Priority to DK15842726.0T priority patent/DK3202266T3/da
Priority to EP15842726.0A priority patent/EP3202266B1/en
Priority to MX2017003609A priority patent/MX2017003609A/es
Priority to KR1020177007111A priority patent/KR20170052594A/ko
Priority to SG11201702102SA priority patent/SG11201702102SA/en
Priority to CN201580049962.9A priority patent/CN106686980B/zh
Priority to BR112017005174A priority patent/BR112017005174A2/pt
Priority to RU2017108571A priority patent/RU2694973C2/ru
Publication of WO2016043148A1 publication Critical patent/WO2016043148A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N35/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having two bonds to hetero atoms with at the most one bond to halogen, e.g. aldehyde radical
    • A01N35/02Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having two bonds to hetero atoms with at the most one bond to halogen, e.g. aldehyde radical containing aliphatically bound aldehyde or keto groups, or thio analogues thereof; Derivatives thereof, e.g. acetals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • A61L2/18Liquid substances or solutions comprising solids or dissolved gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/02Foam dispersion or prevention
    • B01D19/04Foam dispersion or prevention by addition of chemical substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/12Oxygen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/12Oxygen-containing compounds
    • C23F11/122Alcohols; Aldehydes; Ketones
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • C23G1/19Iron or steel
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/32Anticorrosion additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/12Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D2111/00Cleaning compositions characterised by the objects to be cleaned; Cleaning compositions characterised by non-standard cleaning or washing processes
    • C11D2111/10Objects to be cleaned
    • C11D2111/14Hard surfaces
    • C11D2111/16Metals
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a metal biocorrosion inhibitor.
  • Biological corrosion refers to a corrosion phenomenon induced directly or indirectly by the action of microorganisms present in the environment, and many research examples have been reported (for example, Non-Patent Document 1 etc.). There are still unexplained parts. In recent studies, if biological corrosion is caused by two or more types of microorganisms (for example, sulfate-reducing bacteria and methanogens), the action of these microorganisms may synergistically promote corrosion. Has been reported.
  • a compound having bactericidal properties often show high toxicity.
  • the amount used is as small as possible because it may affect workers and the ecosystem, and it is quickly degraded in the environment. It is desirable. That is, a compound having bactericidal properties desirably has high biodegradability while exhibiting a desired effect at a low concentration.
  • Glutaraldehyde which is frequently used as a biocorrosion inhibitor in fossil fuel mining, is known to have mutagenic properties and is not sufficiently biodegradable and may remain in the environment for a relatively long period of time. There is a concern about the above-mentioned effects.
  • the object of the present invention is to provide a metal biocorrosion inhibitor that exhibits an effect at a low concentration and is excellent in biodegradability, a method for producing the biocorrosion inhibitor, and a metal organism using the biocorrosion inhibitor.
  • the object is to provide a method of inhibiting corrosion.
  • the present invention provides the following [1] to [8].
  • [1] A metal biological corrosion inhibitor comprising 3-methylglutaraldehyde as an active ingredient.
  • [2] The biological corrosion inhibitor according to [1], wherein the biological corrosion is caused by at least one selected from sulfate-reducing bacteria, nitrate-reducing bacteria, methanogenic bacteria, iodine-oxidizing bacteria, iron-oxidizing bacteria, and sulfur-oxidizing bacteria. .
  • R 1 and R 2 each independently represents an alkyl group having 1 to 6 carbon atoms, or linked to each other to represent an alkylene group having 2 to 7 carbon atoms
  • R 1 and R 2 are as defined above, and R 3 and R 4 each independently represent an alkyl group having 1 to 6 carbon atoms, or linked to each other to represent an alkylene group having 2 to 7 carbon atoms.
  • the method includes the steps of generating 3-methylglutaraldehyde by contacting one or more compounds represented by the formula (1) or the compound represented by the formula (2) with water and water: 5] The manufacturing method of the metal corrosion inhibitor in any one of. [7] The method for producing a metal corrosion inhibitor according to [6], wherein an acid is allowed to coexist. [8] A method for inhibiting biocorrosion of metals using the biocorrosion inhibitor of any one of [1] to [5].
  • the present invention it is possible to provide a metal biological corrosion inhibitor that exhibits an effect at a low concentration and is excellent in biodegradability.
  • Example 1 it is a graph which shows the biological corrosion inhibitory test result (iron elution density
  • Comparative Example 1 it is a graph showing the biological corrosion inhibition test result (iron elution concentration) of glutaraldehyde.
  • the agent of the present invention contains 3-methylglutaraldehyde as an active ingredient.
  • 3-Methylglutaraldehyde is a known substance, and a known method (for example, a method described in Organic Synthesis, Vol. 34, p. 29 (1954), Organic Synthesis, Vol. 34, p. 71 (1954), etc.) Or by a method according to it.
  • the agent of the present invention may further contain components commonly used in the field of biological corrosion inhibitors, as long as the object of the present invention is not impaired.
  • the components include other antibacterial agents, dispersants, suspending agents, spreading agents, penetrating agents, wetting agents, mucilage agents, stabilizers, flame retardants, coloring agents, antioxidants, antistatic agents, foaming Agents, lubricants, gelling agents, film-forming aids, antifreezing agents, viscosity adjusting agents, pH adjusting agents, preservatives, emulsifiers, antifoaming agents, carriers and the like.
  • antibacterial agents include, for example, oxidizing agents (peracetic acid, potassium monopersulfate, sodium perborate, hydrogen peroxide, sodium percarbonate, etc.), phosphonium salts (THPS, polyether polyaminomethylene phosphonate, tributyltetradecylphosphonium chloride).
  • oxidizing agents peracetic acid, potassium monopersulfate, sodium perborate, hydrogen peroxide, sodium percarbonate, etc.
  • phosphonium salts THPS, polyether polyaminomethylene phosphonate, tributyltetradecylphosphonium chloride.
  • Alkylbenzenesulfonic acid, quaternary ammonium salts N-alkyldimethylbenzylammonium chloride, N-dialkylmethylbenzylammonium chloride, etc.
  • isothiazoline / thiazoline / isothiazolone compounds (2- (thiocyanomethylthio) benzothiazole, iso
  • Thiocarbamate compounds hydroquinone compounds, aldehyde compounds other than 3-methylglutaraldehyde (glutaraldehyde, chloroacetaldehyde, 1,9- Nandial, 2-methyl-1,8-octanedial, etc.), azo compounds, benzalkonium chloride, hypochlorous acid, oxazolidine compounds, imidazole compounds (1,2-dimethyl-5-nitro-1H-imidazole) Amino alcohol, ethers, liposomes, alkyne alkoxylates, bromine biocides (such as 2,2-dibromo-2-nitroacetamide), enzymes (such as endo- ⁇ -1,2-galactanase) , Metal ions, phenolic compounds and the like.
  • These antibacterial agents may be used alone or in combination of two or more.
  • dispersant examples include surfactants such as sulfates of higher alcohols, alkylsulfonic acids, alkylarylsulfonic acids, oxyalkylamines, fatty acid esters, polyalkylene oxides, anhydrosorbitols; soaps, caseins, gelatin, Examples include starch, alginic acid, agar, carboxymethylcellulose (CMC), polyvinyl alcohol, pine oil, sugar oil, bentonite, cresol soap and the like. These dispersing agents may be used independently and may use 2 or more types together.
  • surfactants such as sulfates of higher alcohols, alkylsulfonic acids, alkylarylsulfonic acids, oxyalkylamines, fatty acid esters, polyalkylene oxides, anhydrosorbitols; soaps, caseins, gelatin, Examples include starch, alginic acid, agar, carboxymethylcellulose (CMC), polyvinyl alcohol, pine oil, sugar oil
  • the carrier examples include water, alcohol (methanol, ethanol, isopropanol, glycol, glycerin, etc.), ketone (acetone, methyl ethyl ketone, etc.), aliphatic hydrocarbon (hexane, liquid paraffin, etc.), aromatic hydrocarbon (benzene, xylene, etc.) ), Liquid carriers such as halogenated hydrocarbons, acid amides, esters, nitriles; clays (kaolin, bentonite, acid clay, etc.), talcs (talc powder, wax stone powder, etc.), silicas (diatomaceous earth, silicic anhydride, Mica powder, etc.), solid carriers such as alumina, sulfur powder, activated carbon, and the like. These carriers may be used alone or in combination of two or more.
  • the total content of the active ingredients in the agent of the present invention may be appropriately set according to the dosage form, usage mode, etc., but is usually 1 to 100% by mass, preferably 5 to 5 from the viewpoint of cost effectiveness.
  • the amount is 100% by mass, more preferably 5 to 95% by mass.
  • the method for producing the agent of the present invention is not particularly limited, and a method known per se or a method analogous thereto can be used. For example, it can be produced by adding and mixing 3-methylglutaraldehyde with components conventionally used in the field of biological corrosion inhibitors, if desired.
  • Examples of the dosage form of the present invention include emulsions, solutions, aqueous solvents, wettable powders, powders, granules, fine granules, tablets, pastes, suspensions, sprays, and coating agents.
  • the method for formulating each dosage form is not particularly limited, and it can be formulated by a method known per se or a method analogous thereto.
  • 3-methylglutaraldehyde which is an active ingredient of the agent of the present invention, has a bactericidal action higher than that of glutaraldehyde against microorganisms that cause biological corrosion, and is highly biodegradable. Therefore, the agent of the present invention is suitably used for suppressing metal biocorrosion.
  • microorganisms that cause biological corrosion include, but are not limited to, sulfate-reducing bacteria, nitrate-reducing bacteria, methanogens, iodine-oxidizing bacteria, iron-oxidizing bacteria, and sulfur-oxidizing bacteria.
  • “inhibition” of biological corrosion is a concept including preventing the occurrence of biological corrosion and suppressing the progress (deterioration) of biological corrosion.
  • sulfate-reducing bacteria is a general term for microorganisms having the ability to reduce sulfates.
  • Specific examples of the sulfate-reducing bacteria include microorganisms belonging to the genus Desulfovibrio, microorganisms belonging to the genus Desulfobacter, microorganisms belonging to the genus Desulfobacterium.
  • nitrate-reducing bacteria is a general term for microorganisms having the ability to reduce nitrate.
  • methane-producing bacteria is a general term for microorganisms having an ability to produce methane in an anaerobic environment.
  • methanogenic bacteria include microorganisms belonging to the genus Methanobacterium, microorganisms belonging to the genus Methanococcus, microorganisms belonging to the genus Methanarcarcina, and the like.
  • iodine oxidizing bacteria is a general term for microorganisms having the ability to oxidize iodide ions (I ⁇ ) into molecular iodine (I 2 ).
  • iodine-oxidizing bacteria include Roseovarius sp. 2S-5, Iodide oxidizing bacteria MAT3 strain and the like.
  • iron-oxidizing bacteria is a general term for microorganisms having the ability to oxidize divalent iron ions (Fe 2+ ) to trivalent iron ions (Fe 3+ ).
  • specific examples of the iron-oxidizing bacteria include Mariprofundus ferrooxydans, Acidibiobacillus ferrooxidans, and the like.
  • sulfur-oxidizing bacteria is a general term for microorganisms having the ability to oxidize sulfur or inorganic sulfur compounds.
  • Specific examples of the sulfur-oxidizing bacteria include Thiobacillus genus bacteria, Acidithiobacillus genus bacteria, Sulfolobus genus archaea, and Acidianus genus archaea.
  • the agent of the present invention is at least one selected from sulfate-reducing bacteria, nitrate-reducing bacteria, methanogenic bacteria, iodine-oxidizing bacteria, iron-oxidizing bacteria, and sulfur-oxidizing bacteria; more preferably sulfate-reducing bacteria, nitrate-reducing bacteria, and methanogenic bacteria. At least one selected from the group consisting of sulfate-reducing bacteria and methanogens; particularly preferably used for suppressing biocorrosion caused by methanogens.
  • Methanogens prefer anaerobic environments and inhabit paddy fields, as well as swamps, ponds, lakes, rivers, seas, and fossil fuel mining sites.
  • Sulfate-reducing bacteria prefer an anaerobic environment and usually live in water-containing environments, such as forest soil, fields, swamps, ponds, lakes, rivers, and the ocean.
  • Nitrate-reducing bacteria prefer an anaerobic environment and can grow in an oxidative environment compared to methanogens and sulfate-reducing bacteria.
  • Iron-oxidizing bacteria are present in mine wastewater. It also inhabits places such as rivers where a little brown sediment is collected.
  • Sulfur-oxidizing bacteria live in the same environment as iron-oxidizing bacteria, and also in domestic wastewater, so they are also involved in concrete corrosion of sewage pipes.
  • the agent of this invention is used suitably in order to suppress the biocorrosion of the metal which exists in the above-mentioned microbial habitat, or is installed.
  • the metal in which the agent of the present invention is used is not particularly limited as long as it is exposed to an environment in which microorganisms that cause biocorrosion are present.
  • iron and an alloy containing iron are preferable, and iron is more preferable.
  • the method of using the agent of the present invention is not particularly limited as long as the object of the present invention is not impaired, but as one aspect thereof, for example, when the metal is exposed to an environment where microorganisms causing biocorrosion are present, the present invention is preliminarily performed before that. And a method of keeping the agent in the environment.
  • the liquid of the present invention high pressure water
  • the liquid of the present invention is injected into a rock or the like at high pressure.
  • the agent of the present invention may be present in the environment while the metal is exposed to an environment in which microorganisms that cause biocorrosion are present.
  • a method of applying or spraying a surface of a metal that is required to suppress biocorrosion, with the agent of the present invention as it is or dissolved or dispersed in water or an organic solvent, etc. Is mentioned.
  • the usage form of the agent of the present invention is preferably an aqueous liquid form in which the total concentration of the active ingredients is in a specific range.
  • the total concentration of active ingredients in such an aqueous liquid is usually 10000 ppm or less, preferably from 0.01 ppm to 3000 ppm, more preferably from 0.1 ppm to 1000 ppm from the viewpoint of cost effectiveness. If the concentration is less than 0.01 ppm, the effect of suppressing biocorrosion tends to be small, and if it exceeds 10,000 ppm, it tends to be excessive and difficult to use in price.
  • ppm means “mass ppm” unless otherwise specified.
  • the method for producing the aqueous liquid is not particularly limited, and a method known per se or a method analogous thereto can be used.
  • it can be produced by adding the active ingredient to a suitable liquid carrier, stirring, dissolving or dispersing.
  • suitable liquid carrier include the liquid carriers exemplified above as one of the components that may be contained in the agent of the present invention.
  • the aqueous liquid can be used as, for example, high-pressure water used in the hydraulic crushing method.
  • the aqueous liquid may contain components commonly used in high-pressure water (for example, proppant, viscosity modifier, surfactant, acid, etc.). Further, the aqueous liquid may be applied or sprayed on the surface of a metal that is required to suppress biological corrosion.
  • 3-methylglutaraldehyde which is an active ingredient in the agent of the present invention, is represented by the following formula (1) from the viewpoint of storage stability.
  • R 1 and R 2 each represent an alkyl group having 1 to 6 carbon atoms, or are connected to each other to represent an alkylene group having 2 to 7 carbon atoms
  • R 1 , R 2 , R 3 , R 4 each represent an alkyl group having 1 to 6 carbon atoms, or R 1 and R 2 , R 3 and R 4 are connected to each other to form an alkylene group having 2 to 7 carbon atoms.
  • compound (2) bisacetal compounds represented by the following
  • compound (2) represents at least one of compound (1) and compound (2) can be further contained in the agent of the present invention as an equivalent of 3-methylglutaraldehyde.
  • 3-methylglutaraldehyde can be generated by contacting the agent of the present invention further containing one or more of compound (1) or compound (2) with water. Further, 3-methylglutaraldehyde may be generated by directly contacting one or more of compound (1) or compound (2) with water present in the environment subject to biological corrosion inhibition.
  • the agent containing one or more of the compound (1) or the compound (2) capable of generating 3-methylglutaraldehyde upon contact with water is also an embodiment of the agent of the present invention.
  • an acid may be used as necessary.
  • the acid to be used is not particularly limited, and examples thereof include inorganic acids such as sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid, and boric acid; and organic acids such as formic acid, acetic acid, propionic acid, and oxalic acid.
  • the method of bringing the agent of the present invention further containing at least one of compound (1) or compound (2) into contact with water is not particularly limited, and the method further includes at least one of compound (1) or compound (2). Water may be brought into contact with a composition obtained by previously mixing the agent of the invention and an acid, and the present invention further comprises one or more of compound (1) or compound (2) in a solution obtained by mixing acid and water in advance. The agent may be contacted.
  • the contact time is not particularly limited, but is usually 5 seconds or longer, preferably 1 minute or longer, and more preferably 10 minutes or longer.
  • the contact temperature is not limited, but is usually from -20 ° C to 200 ° C, preferably from 0 ° C to 120 ° C, more preferably from 10 ° C to 100 ° C.
  • the quantity at the time of mixing an acid and water will be 6.0 or less, and the quantity used as 1.0 to 5.6 is preferable, and 2.0 to 5 An amount of 0.0 is more preferable.
  • the alkyl group having 1 to 6 carbon atoms independently represented by R 1 to R 6 is, for example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n- Examples thereof include a butyl group, an isobutyl group, a t-butyl group, an n-pentyl group, and a cyclohexyl group.
  • a methyl group, an ethyl group, and an n-propyl group are preferable, and a methyl group and an ethyl group are more preferable.
  • Examples of the alkylene group represented by R 1 and R 2 , R 3 and R 4 linked to each other include an ethylene group, an n-propylene group, an n-butylene group, an n-pentylene group, an n-hexylene group, -Methyl-ethylene group, 1,2-dimethylethylene group, 2-methyl-n-propylene group, 2,2-dimethyl-n-propylene group, 3-methyl-n-pentylene group.
  • ethylene group, n-propylene group, 2-methyl-n-propylene group, 2,2-dimethyl-n-propylene group, 2-methyl-ethylene group and 1,2-dimethylethylene group are preferable, ethylene group, n More preferred are -propylene group, 2-methyl-n-propylene group, and 2,2-dimethyl-n-propylene group.
  • Compound (1) and Compound (2) are known compounds and can be produced by a known method (for example, JP-A-11-228566) or a method analogous thereto.
  • the “total content of active ingredient” and “total concentration of active ingredient” are 3-methylglutaraldehyde and compound, respectively.
  • (1) represents the total content and concentration of compound (2).
  • a sterilization method known per se or a method analogous thereto may be used in combination as long as the object of the present invention is not impaired.
  • a known antibacterial agent may be used in combination, or a sterilization method by pH control (for example, refer to WO2010 / 056114, WO2008 / 134778, etc.) or a sterilization method by ultrasonic irradiation (for example, refer to WO2000 / 024679). May be.
  • Examples of known antibacterial agents that can be used in combination with the agent of the present invention include other antibacterial agents exemplified above as one of the components that may be included in the agent of the present invention.
  • Example 1 A biological corrosion inhibition test was conducted on 3-methylglutaraldehyde as follows.
  • Milli-Q water 970 ml, NaCl 19.0 g, MgCl 2 ⁇ 6H 2 O 2.6 g, CaCl 2 ⁇ 2H 2 O 0.15 g, Na 2 SO 4 4.0 g, NH 4 Cl 0.25 g, KH 2 PO 4 4.0 g, KCl 0.5 g, HEPES (2- [4- (2-hydroxyethyl) -1-piperazinyl] ethanesulfonic acid) 23.8 g were mixed and dissolved in an anaerobic chamber, and an inorganic salt seawater medium ( A liquid) was prepared.
  • Milli-Q water is ultrapure water produced using an apparatus (for example, Milli-Q Integral 10) manufactured by Merck Millipore.
  • vitamin solution (V solution) 4-aminobenzoic acid 4 mg, D-biotin 1 mg, nicotinic acid 10 mg, D-calcium pantothenate 5 mg, pyridoxine hydrochloride 15 mg, thiamine hydrochloride 10 mg, vitamin B12 5 mg were mixed and made up to 100 ml with Milli-Q water. Then, the filter was sterilized to prepare a vitamin solution (V solution).
  • Comparative Example 1 A biological corrosion inhibition test was conducted in the same manner as in Example 1 except that glutaraldehyde was used in place of 3-methylglutaraldehyde. The results are shown in FIG.
  • Example 2 A biodegradability test was conducted on 3-methylglutaldehyde and glutaraldehyde as follows.
  • ⁇ Biodegradability test> The decomposition test of the test substance was performed with reference to the test method of OECD test guideline 301C and JIS K 6950 (ISO 14851). That is, 300 ml of an inorganic medium solution and 9 mg (30 ppm) of activated sludge obtained from the Mizushima sewage treatment plant in the Mizushima area of Kurashiki City, Okayama Prefecture, Japan are placed in a culture bottle.
  • the biodegradability test was carried out at two concentrations: high concentration group: test substance 30 mg (100 ppm) and low concentration group: 9 mg (30 ppm).
  • aniline which is a biodegradation standard substance, showed a biodegradation rate of 60% or more during the test period, and was determined to be good degradability.
  • this test system was judged to have operated normally.
  • the 28-day biodegradation rate of the 3-methylglutaraldehyde high concentration group (100 ppm) was 64.8%, which was judged as “good degradability”.
  • the 28-day biodegradation rate of the 3-methylglutaraldehyde low concentration group (30 ppm) was 97.2%, which was judged as “good degradability”.
  • Example 3 The following formula is added to 100 g of hydrochloric acid aqueous solution adjusted to pH 4.0 by adding hydrochloric acid to distilled water.
  • acetal compound A an acetal compound represented by the following (hereinafter referred to as acetal compound A) was added and stirred at 80 ° C. in a nitrogen atmosphere. A portion was collected after 1 hour and analyzed by gas chromatography. As a result, it was confirmed that 97.2% of the acetal compound A was consumed and 82.6% of 3-methylglutaraldehyde was produced.
  • Example 4 To 100 g of aqueous hydrochloric acid adjusted to pH 4.0 by adding hydrochloric acid to distilled water, 2.0 g of acetal compound A was added and stirred at 30 ° C. in a nitrogen atmosphere. A portion was collected after 50 hours and analyzed by gas chromatography in the same manner as in Example 3. As a result, 52.5% of acetal compound A was consumed and 47.3% of 3-methylglutaraldehyde was produced. confirmed.
  • the agent of the present invention contains 3-methylglutaraldehyde as an active ingredient, is excellent in biodegradability, and is excellent in the ability to suppress biocorrosion of metals in a small amount. In other words, it is highly safe for environmental and occupational safety.
  • the agent of the present invention can be used, for example, for inhibiting biocorrosion of high-pressure water or metal fluid used in a hydraulic fracturing method.
  • the agent of this invention can be used by apply
  • the agent of the present invention can be used effectively to suppress the biocorrosion of metals present in or installed in the habitat of microorganisms that induce biocorrosion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Zoology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Environmental Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Agronomy & Crop Science (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Dispersion Chemistry (AREA)
  • Toxicology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

【課題】低濃度で効果を発揮し、かつ生分解性にも優れる、金属の生物腐食抑制剤を提供すること。 【解決手段】3-メチルグルタルアルデヒドを有効成分とする、金属の生物腐食抑制剤。

Description

金属の生物腐食抑制剤
 本発明は、金属の生物腐食の抑制剤に関する。
 生物腐食とは、環境中に存在する微生物の作用により直接的又は間接的に誘起される腐食現象をいい、多くの研究例が報告されているが(例えば非特許文献1等)、発生のメカニズム等に関して未解明の部分も残っている。最近の研究では、生物腐食が2種以上の微生物(例えば、硫酸還元菌およびメタン生成菌等)によるものである場合には、これらの微生物の作用が相乗的に腐食を促進する場合があることが報告されている。
 近年、化石燃料(例、石油、天然ガス、シェールオイル、シェールガス等)の採掘では高圧水による岩盤の破砕等が行われており、この高圧水の流路である鉄配管等において生物腐食がみられている。この生物腐食を抑制するためにグルタルアルデヒドが用いられている(特許文献1参照)。一般的に、グルタルアルデヒドおよびその類縁体は殺菌性を有することが知られており、中でもグルタルアルデヒドは優れた殺菌性を有することが知られている(非特許文献2)。
Journal of Bioscience and Bioengineering VOL. 110, No. 4, pp. 426-430 (2010) Journal of applied bacteriology Vol.30, No.1, 78-87(1967)
米国特許第2801216号明細書
 一方で、殺菌性を有する化合物は高い毒性を示すことが少なくない。このような化合物が環境中に放出される用途で使用された場合、作業者や生態系に影響を及ぼす可能性があることから使用量は極力少ないことが望ましく、また環境中で速やかに分解されることが望ましい。すなわち、殺菌性を有する化合物においては、低濃度で所望の効果を示しながらも、同時に高い生分解性を有することが望ましい。化石燃料の採掘において生物腐食抑制剤として繁用されているグルタルアルデヒドは変異原性を有することが知られており、生分解性が十分でなく、比較的長期にわたって環境中に残存する可能性があり、上記した影響が懸念される。
 しかして本発明の目的は、低濃度で効果を発揮しかつ生分解性にも優れた金属の生物腐食抑制剤、該生物腐食抑制剤の製造方法、該生物腐食抑制剤を用いた金属の生物腐食の抑制方法を提供することにある。
 本発明者らが詳細に検討した結果、3-メチルグルタルアルデヒドはグルタルアルデヒドと比較して高い生分解性を有し、かつ極めて低濃度で金属の生物腐食抑制効果を発現することを見出して本発明を完成した。
 すなわち、本発明は、下記[1]~[8]を提供する。
[1]3-メチルグルタルアルデヒドを有効成分とする、金属の生物腐食抑制剤。
[2]前記生物腐食が、硫酸還元菌、硝酸還元菌、メタン生成菌、ヨウ素酸化菌、鉄酸化細菌および硫黄酸化細菌から選ばれる少なくとも1種によるものである、[1]の生物腐食抑制剤。
[3]下記式(1)
Figure JPOXMLDOC01-appb-C000005
(R、Rはそれぞれ独立して炭素数1から6のアルキル基を表すか、互いに連結して炭素数2から7のアルキレン基を表す)
で表される化合物または下記式(2)
Figure JPOXMLDOC01-appb-C000006
(R、Rは前記定義のとおりであり、R、Rはそれぞれ独立して炭素数1から6のアルキル基を表すか、互いに連結して炭素数2から7のアルキレン基を表す)
で表される化合物の1種以上をさらに含む[1]または[2]の生物腐食抑制剤。
[4]有効成分の総濃度が0.01ppm~3000ppmの範囲である水性液の形態である、[1]~[3]のいずれかの生物腐食抑制剤。
[5]前記金属が鉄である、[1]~[4]のいずれかの生物腐食抑制剤。
[6]式(1)で表される化合物または式(2)で表される化合物の1種以上、および水を接触させて3-メチルグルタルアルデヒドを発生させる工程を含む、[1]~[5]のいずれかの金属腐食抑制剤の製造方法。
[7]酸を共存させる、[6]の金属腐食抑制剤の製造方法。
[8][1]~[5]のいずれかの生物腐食抑制剤を用いる、金属の生物腐食抑制方法。
 本発明によれば、低濃度で効果を発揮しかつ生分解性にも優れた金属の生物腐食抑制剤を提供できる。
実施例1において、3-メチルグルタルアルデヒドの生物腐食抑制試験結果(鉄の溶出濃度)を示すグラフである。 比較例1において、グルタルアルデヒドの生物腐食抑制試験結果(鉄の溶出濃度)を示すグラフである。
 本発明の剤は有効成分として3-メチルグルタルアルデヒドを含有する。3-メチルグルタルアルデヒドは公知物質であり、公知の方法(例えばOrganic Syntheses,Vol.34,p.29(1954)、およびOrganic Syntheses,Vol.34,p.71(1954)等に記載の方法)、またはそれに準ずる方法によって製造できる。
 本発明の剤は、3-メチルグルタルアルデヒド以外に、本発明の目的を損なわない限り、生物腐食抑制剤の分野で慣用の成分を更に含んでもよい。当該成分としては、例えば他の抗菌剤、分散剤、懸濁剤、展着剤、浸透剤、湿潤剤、粘漿剤、安定剤、難燃剤、着色剤、酸化防止剤、帯電防止剤、発泡剤、潤滑剤、ゲル化剤、造膜助剤、凍結防止剤、粘度調整剤、pH調整剤、防腐剤、乳化剤、消泡剤、担体等が挙げられる。
 他の抗菌剤としては、例えば酸化剤(過酢酸、モノ過硫酸カリウム、過ホウ酸ナトリウム、過酸化水素、過炭酸ナトリウムなど)、ホスホニウム塩(THPS、ポリエーテルポリアミノメチレンホスホネート、トリブチルテトラデシルホスホニウムクロリドなど)、アルキルベンゼンスルホン酸、4級アンモニウム塩(N-アルキルジメチルベンジルアンモニウムクロリド、N-ジアルキルメチルベンジルアンモニウムクロリドなど)、イソチアゾリン・チアゾリン・イソチアゾロン系化合物(2-(チオシアノメチルチオ)ベンゾチアゾール、イソチアゾロンなど)、チオカルバメート系化合物、ヒドロキノン系化合物、3-メチルグルタルアルデヒド以外のアルデヒド化合物(グルタルアルデヒド、クロロアセトアルデヒド、1,9-ノナンジアール、2-メチル-1,8-オクタンジアールなど)、アゾ系化合物、塩化ベンザルコニウム、次亜塩素酸、オキサゾリジン化合物、イミダゾール系化合物(1,2-ジメチル-5-ニトロ-1H-イミダゾールなど)、アミノアルコール、エーテル類、リポソーム類、アルキンアルコキシレート類、臭素系殺生物剤(2,2-ジブロモ-2-ニトロアセトアミドなど)、酵素類(endo-β-1,2-galactanaseなど)、金属イオン類、フェノール系化合物等が挙げられる。これらの抗菌剤は単独で用いてもよく、2種以上を併用してもよい。
 分散剤としては、例えば高級アルコールの硫酸エステル、アルキルスルホン酸、アルキルアリールスルホン酸、オキシアルキルアミン、脂肪酸エステル、ポリアルキレンオキサイド系、アンヒドロソルビトール系等の界面活性剤;石けん類、カゼイン、ゼラチン、澱粉、アルギン酸、寒天、カルボキシメチルセルロース(CMC)、ポリビニルアルコール、松根油、糖油、ベントナイト、クレゾール石けん等が挙げられる。これらの分散剤は単独で用いてもよく、2種以上を併用してもよい。
 担体としては、例えば水、アルコール(メタノール、エタノール、イソプロパノール、グリコール、グリセリンなど)、ケトン(アセトン、メチルエチルケトンなど)、脂肪族炭化水素(ヘキサン、流動パラフィンなど)、芳香族炭化水素(ベンゼン、キシレンなど)、ハロゲン化炭化水素、酸アミド、エステル、ニトリル等の液体担体;クレー類(カオリン、ベントナイト、酸性白土など)、タルク類(滑石粉、ロウ石粉など)、シリカ類(珪藻土、無水ケイ酸、雲母粉など)、アルミナ、硫黄粉末、活性炭等の固体担体;等が挙げられる。これらの担体は単独で用いてもよく、2種以上を併用してもよい。
 本発明の剤における前記有効成分の総含有割合は、剤形や使用態様等に応じて適宜設定すればよいが、通常1~100質量%であり、費用対効果の観点から、好ましくは5~100質量%であり、より好ましくは5~95質量%である。
 本発明の剤の製造方法は特に制限されず、自体公知の方法またはそれに準ずる方法を用いることができる。例えば、3-メチルグルタルアルデヒドに、所望により生物腐食抑制剤の分野で慣用の成分を添加し混合することなどによって製造できる。
 本発明の剤形としては、例えば乳剤、液剤、水溶剤、水和剤、粉剤、粒剤、微粒剤、錠剤、ペースト剤、懸濁剤、噴霧剤、塗布剤等が挙げられる。各剤形に製剤化する方法は特に制限されず、自体公知の方法又はそれに準ずる方法によって製剤化することができる。
 本発明の剤の有効成分である3-メチルグルタルアルデヒドは、生物腐食を引き起こす微生物に対してグルタルアルデヒド以上の殺菌作用を有し、かつ生分解性が高い。そのため、本発明の剤は金属の生物腐食を抑制するために好適に用いられる。生物腐食を引き起こす微生物としては、例えば硫酸還元菌、硝酸還元菌、メタン生成菌、ヨウ素酸化菌、鉄酸化細菌および硫黄酸化細菌等が挙げられるが、これらに限定されない。なお、本発明において生物腐食の「抑制」とは、生物腐食の発生を未然に防ぐこと、および生物腐食の進展(悪化)を抑えることを含む概念である。
 本発明において「硫酸還元菌」とは、硫酸塩を還元する能力を有する微生物の総称である。硫酸還元菌の具体例としては、Desulfovibrio属の微生物、Desulfobacter属の微生物、Desulfotomaculum属の微生物等が挙げられる。
 本発明において「硝酸還元菌」とは、硝酸塩を還元する能力を有する微生物の総称である。
 本発明において「メタン生成菌」とは、嫌気的環境下でメタンを生成する能力を有する微生物の総称である。メタン生成菌の具体例としては、Methanobacterium属の微生物、Methanococcus属の微生物、Methanosarcina属の微生物等が挙げられる。
 本発明において「ヨウ素酸化菌」とは、ヨウ化物イオン(I)を分子状ヨウ素(I)へと酸化する能力を有する微生物の総称である。ヨウ素酸化菌の具体例としては、Roseovarius sp.2S-5、Iodide oxidizing bacterium MAT3株等が挙げられる。
 本発明において「鉄酸化細菌」とは、2価の鉄イオン(Fe2+)を3価の鉄イオン(Fe3+)に酸化する能力を有する微生物の総称である。鉄酸化細菌の具体例としては、Mariprofundus ferrooxydans、Acidithiobacillus ferrooxidans等が挙げられる。
 本発明において「硫黄酸化細菌」とは、硫黄または無機硫黄化合物を酸化する能力を有する微生物の総称である。硫黄酸化細菌の具体例としては、Thiobacillus属細菌、Acidithiobacillus属細菌、Sulfolobus属古細菌、Acidianus属古細菌等が挙げられる。
 本発明の剤は、硫酸還元菌、硝酸還元菌、メタン生成菌、ヨウ素酸化菌、鉄酸化細菌および硫黄酸化細菌から選ばれる少なくとも1種;より好ましくは硫酸還元菌、硝酸還元菌およびメタン生成菌から選ばれる少なくとも1種;更に好ましくは硫酸還元菌およびメタン生成菌から選ばれる少なくとも1種;特に好ましくはメタン生成菌による生物腐食を抑制するために用いることが好ましい。
 メタン生成菌は嫌気的な環境を好み、水田、さらには沼、池、湖、河川、海および化石燃料の採掘現場等に生息する。
 硫酸還元菌は嫌気的な環境を好み、水分を含む環境であれば大抵生息し、例えば森林土壌、田畑、沼、池、湖、河川および海等のあらゆるところに生息する。
 硝酸還元菌は嫌気的な環境を好み、メタン生成菌や硫酸還元菌に比べ酸化的な環境でも生育できるため、上記環境に生息する。
 鉄酸化細菌は鉱山廃水等に存在する。また河川等において少し茶色の堆積物等が溜まっている場所等に生息する。
 硫黄酸化細菌は鉄酸化細菌と同様の環境に生息し、また生活排水にも生息するので、下水管のコンクリート腐食等にも関与している。さらに硫黄を含む温泉にも生息する。
 ヨウ素酸化細菌の比較的多く存在する場所は地下かん水であり、また海洋環境にも広く存在する。
 従って、本発明の剤は、上述の微生物の生息環境に存在する、または設置される金属の生物腐食を抑制するために好適に使用される。
 本発明の剤が使用される金属は、生物腐食を引き起こす微生物が存在する環境にさらされるものであれば特に制限されず、例えば鉄、銅、亜鉛、錫、アルミニウム、マグネシウム、チタン、ニッケル、クロム、マンガン、モリブデンおよびこれらから選ばれる少なくとも1種を含む合金等が挙げられる。中でも工業的利用の観点から、鉄および鉄を含む合金であることが好ましく、鉄であることがより好ましい。
 本発明の剤の使用方法は本発明の目的を損なわない限り特に制限されないが、その一態様として、例えば生物腐食を引き起こす微生物が存在する環境に金属がさらされる場合、それより前に予め本発明の剤を当該環境に存在させておく方法等が挙げられる。当該態様の具体例を挙げると、水圧破砕法による化石燃料(例えば石油、天然ガス、シェールオイル、シェールガスなど)の採掘において、岩盤等に高圧で注入される液体(高圧水)に本発明の剤を予め添加し溶解させておくことにより、高圧水が接触する金属(例えば高圧水の流路である金属配管など)に発生する生物腐食を抑制することができる。あるいは、生物腐食を引き起こす微生物が存在する環境に金属がさらされる間、当該環境に本発明の剤を存在させても良い。他の一態様としては、例えば生物腐食の抑制が必要とされる金属の表面に、本発明の剤をそのまま、または水や有機溶媒などに溶解または分散させたものを、塗布または噴霧する方法等が挙げられる。
 本発明の剤の使用形態としては、前記有効成分の総濃度が特定の範囲である水性液の形態であることが好ましい。
 かかる水性液における有効成分の総濃度は、通常10000ppm以下であり、費用対効果の観点から、好ましくは0.01ppm~3000ppmであり、より好ましくは0.1ppm~1000ppmである。当該濃度が0.01ppm未満であると生物腐食抑制効果が小さくなる傾向となり、10000ppmを超えると大過剰となって価格的に利用が難しくなる傾向となる。本明細書において、「ppm」は、特に断りのない限り「質量ppm」を意味する。
 水性液の製造方法は特に制限されず、自体公知の方法またはそれに準ずる方法を用いることができる。例えば、前記有効成分を適当な液体担体に添加して攪拌し、溶解または分散させることによって製造できる。当該液体担体としては、例えば本発明の剤が含んでもよい成分の一つとして上記に例示した液体担体等が挙げられる。
 水性液は、例えば水圧破砕法において用いられる高圧水等として利用可能である。水性液を当該高圧水として用いる場合、水性液は高圧水に慣用の成分(例えばプロパント、粘度調整剤、界面活性剤、酸など)を含んでもよい。
 また、水性液は生物腐食の抑制が必要とされる金属の表面に塗布または噴霧してもよい。
 本発明の剤における有効成分である3-メチルグルタルアルデヒドは、保存安定性の観点から下記式(1)
Figure JPOXMLDOC01-appb-C000007
(R、Rはそれぞれ炭素数1から6のアルキル基を表すか、互いに連結して炭素数2から7のアルキレン基を表す)
で表されるアセタール化合物(以下、化合物(1)と称する)または下記式(2)
Figure JPOXMLDOC01-appb-C000008
(R、R、R、Rはそれぞれ炭素数1から6のアルキル基を表すか、RとR、RとRは互いに連結して炭素数2から7のアルキレン基を表す)
で表されるビスアセタール化合物(以下、化合物(2)と称する)の1種以上を含む形態として本発明の剤にさらに含有させて保存および運搬してもよい。すなわち、化合物(1)または化合物(2)の1種以上は、3-メチルグルタルアルデヒドの等価体として本発明の剤にさらに含有させることができる。化合物(1)または化合物(2)の1種以上を含有させる場合の含有量に特に制限はない。なお、3-メチルグルタルアルデヒドは含有せずに化合物(1)または化合物(2)の1種以上のみを含有させたものも本発明の剤と同等に扱うことができる。
 使用前に化合物(1)または化合物(2)の1種以上をさらに含有する本発明の剤を水と接触させて3-メチルグルタルアルデヒドを発生させることができる。また生物腐食抑制の対象となる環境に存在する水に化合物(1)または化合物(2)の1種以上を直接接触させることで3-メチルグルタルアルデヒドを発生させてもよい。このように、水と接触させることで3-メチルグルタルアルデヒドを発生することができる化合物(1)または化合物(2)の1種以上を含む剤もまた、本発明の剤の一態様である。
 化合物(1)または化合物(2)の1種以上をさらに含む本発明の剤と水とを接触させ3-メチルグルタルアルデヒドを発生させる際には、必要に応じて酸を用いてもよい。用いる酸としては特に限定されず、例えば、硫酸、燐酸、硝酸、塩酸、ホウ酸などの無機酸;ギ酸、酢酸、プロピオン酸、シュウ酸などの有機酸が挙げられる。化合物(1)または化合物(2)の1種以上をさらに含む本発明の剤と水とを接触させる方法は特に限定されず、化合物(1)または化合物(2)の1種以上をさらに含む本発明の剤と酸とを予め混合してなる組成物に水を接触させてもよく、予め酸と水を混合した溶液に化合物(1)または化合物(2)の1種以上をさらに含む本発明の剤を接触させてもよい。
 用いる水の量に特に制限は無いが、通常、化合物(1)または化合物(2)の1種以上の合計量と当量以上が好ましい。接触時間に特に制限は無いが、通常5秒以上であり、1分以上であることが好ましく、10分以上であることがより好ましい。接触温度について得に制限は無いが、通常-20℃から200℃であり、0℃から120℃であることが好ましく、10℃から100℃であることがより好ましい。酸の使用量に特に制限は無いが、通常酸と水を混合した際のpHが6.0以下となる量であり、1.0から5.6となる量が好ましく、2.0から5.0となる量がより好ましい。
 化合物(1)、化合物(2)において、R~Rがそれぞれ独立して表す炭素数1から6のアルキル基としては、例えばメチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、シクロヘキシル基が挙げられる。中でもメチル基、エチル基、n-プロピル基が好ましく、メチル基、エチル基がより好ましい。また、RとR、RとRが互いに連結して表すアルキレン基としては、例えばエチレン基、n-プロピレン基、n-ブチレン基、n-ペンチレン基、n-へキシレン基、2-メチル-エチレン基、1,2-ジメチルエチレン基、2-メチル-n-プロピレン基、2,2-ジメチル-n-プロピレン基、3-メチル-n-ペンチレン基が挙げられる。中でもエチレン基、n-プロピレン基、2-メチル-n-プロピレン基、2,2-ジメチル-n-プロピレン基、2-メチル-エチレン基、1,2-ジメチルエチレン基が好ましく、エチレン基、n-プロピレン基、2-メチル-n-プロピレン基、2,2-ジメチル-n-プロピレン基がより好ましい。
 化合物(1)、化合物(2)は公知化合物であり、公知の方法(例えば特開平11-228566号公報)、またはそれに準ずる方法によって製造できる。
 化合物(1)または化合物(2)の1種以上をさらに含む本発明の剤を用いる場合、前記「有効成分の総含有割合」および「有効成分の総濃度」はそれぞれ3-メチルグルタルアルデヒド、化合物(1)、化合物(2)の含有割合の合計および濃度の合計を表す。
 本発明の剤を使用する際、本発明の目的を損なわない限り、自体公知の殺菌方法またはこれに準ずる方法を併用してもよい。
 例えば、公知の抗菌剤を併用してもよいし、pH制御による殺菌方法(例えばWO2010/056114、WO2008/134778など参照)や、超音波照射による殺菌方法(例えばWO2000/024679など参照)等を併用してもよい。本発明の剤と併用することのできる公知の抗菌剤としては、例えば本発明の剤が含んでもよい成分の一つとして上記に例示した他の抗菌剤等が挙げられる。
 以下に実施例を挙げて本発明をより詳細に説明するが、本発明は以下の実施例に限定されない。
実施例1
 3-メチルグルタルアルデヒドについて以下のように生物腐食抑制試験を行った。
[無機塩海水培地(A液)の調製]
 Milli-Q水 970ml、NaCl 19.0g、MgCl・6HO 2.6g、CaCl・2HO 0.15g、NaSO 4.0g、NHCl 0.25g、KHPO 4.0g、KCl 0.5g、HEPES(2-[4-(2-ヒドロキシエチル)-1-ピペラジニル]エタンスルホン酸) 23.8gを嫌気性チャンバ内で混合溶解して、無機塩海水培地(A液)を調製した。
 なお、Milli-Q水は、Merk Millipore社製装置(例えば、Milli-Q Integral 10)を用いて製造した超純水である。
[炭酸水素ナトリウム溶液(C液)の調製]
 Milli-Q水 30mlにNaHCO 2.52gを溶解した後、フィルター除菌して、炭酸水素ナトリウム溶液(C液)を調製した。
[微量元素溶液(E液)の調製]
 HCl(35%) 8.3ml、FeSO・7HO 2100mg、HBO 30mg、MnCl・4HO 100mg、CoCl・6HO 190mg、NiCl・6HO 24mg、CuCl・2HO 2mg、ZnSO・7HO 144mg、NaMoO・2HO 36mgを混合し、Milli-Q水にて100mlにメスアップした後、フィルター除菌して、微量元素溶液(E液)を調製した。
[セレンタングステン溶液(S液)の調製]
 NaOH 400mg、NaSeO 4mg、NaWO・2HO 8mgを混合し、Milli-Q水にて100mlにメスアップした後、フィルター除菌して、セレンタングステン溶液(S液)を調製した。
[ビタミン溶液(V液)の調製]
 4-アミノ安息香酸 4mg、D-ビオチン 1mg、ニコチン酸 10mg、D-パントテン酸カルシウム 5mg、ピリドキシン塩酸塩 15mg、チアミン塩酸塩 10mg、ビタミンB12 5mgを混合し、Milli-Q水にて100mlにメスアップした後、フィルター除菌して、ビタミン溶液(V液)を調製した。
<生物腐食抑制試験>
 A液を10分程度ガス置換し、オートクレーブにて121℃、20分間加熱した後、C液、E液、S液およびV液を添加し、得られた混合液を、滅菌した鉄薄片(0.08g Iron foil(縦10mm×横10mm×厚さ0.1mm:Sigma-Aldrich356808-G))が入ったバイアルに20mlずつ分注した。各バイアルを、5分間ガス置換(Nガスに、最終的に20%COガスとなるように、COガスを混合)した後、素早くブチルゴム栓を閉め、アルミシールで確実に固定した。その後、シリンジを用いてMethanococcus maripaludis KA-1株を0.5ml(10~10cells/ml)添加し、更に3-メチルグルタルアルデヒドを図1に示される濃度となるように添加した。各バイアルを37℃で静置し、鉄薄片における生物腐食の進行度を確認するために、7日後、14日後、21日後、28日後に鉄の溶出濃度を測定した。鉄の溶出濃度の測定は、各バイアル中の液(1.0ml)を取り分け、そこに6M HClを0.5ml添加して不溶性の鉄を溶解し、1M L-アスコルビン酸を1.0ml添加して三価鉄を二価鉄に還元したものを、オルトフェナントロリン法にて比色測定した。結果を図1に示す。
比較例1
 3-メチルグルタルアルデヒドに代えてグルタルアルデヒドを用いた以外は、実施例1と同様に生物腐食抑制試験を行った。結果を図2に示す。
 図1および図2の結果から、3-メチルグルタルアルデヒドでは、添加濃度1ppmで鉄の溶出濃度が充分に低く抑えられた。一方、グルタルアルデヒドでは、鉄の溶出濃度を同程度に抑えるために添加濃度100ppmが必要であることがわかる。従って、3-メチルグルタルアルデヒドはグルタルアルデヒドと比較して、極めて低濃度で良好な生物腐食抑制作用を有することが示された。
実施例2
 3-メチルグルタルアルデヒドおよびグルタルアルデヒドについて、以下のようにして生分解性試験を行った。
<生分解性試験>
 OECDテストガイドライン301C、JIS K 6950(ISO 14851)の試験方法を参考に被験物質の分解度試験を実施した。すなわち、培養ボトルに無機培地液300ml、日本国岡山県倉敷市水島地区の水島下水処理場より試験開始当日入手した活性汚泥9mg(30ppm)を入れ、被験物質は共に殺菌作用があることから汚泥への影響を加味して高濃度群:被験物質30mg(100ppm)、および低濃度群:9mg(30ppm)の2濃度で生分解性試験を実施した。
 クーロメーター(大倉電気3001A型)を用いて25℃で28日間培養し、被験物質の分解に消費された酸素量と被験物質の構造式より求めた理論酸素要求量を用いて生分解率を算出した。生分解標準物質としてはアニリン30mg(100ppm)を用いた。生分解率が60%以上の時、良分解性物質と判定した。
 以上の条件で測定した結果、生分解標準物質であるアニリンは試験期間中に60%以上の生分解率を示し、良分解性と判定された。これにより、本試験系は正常に稼動したものと判断した。
 3-メチルグルタルアルデヒド高濃度群(100ppm)の28日間の生分解率は64.8%であり、『良分解性』と判断された。
 3-メチルグルタルアルデヒド低濃度群(30ppm)の28日間の生分解率は97.2%であり、『良分解性』と判断された。
比較例2
 3-メチルグルタルアルデヒドに代えてグルタルアルデヒドを用いた以外は、実施例2と同様にして生分解性試験を行った。
 グルタルアルデヒド高濃度群(100ppm)の28日間の生分解率は52.6%であり、『部分的な生分解性(難分解性)』と判断された。
 グルタルアルデヒド低濃度群(30ppm)の28日間の生分解率は78.0%であり、『良分解性』と判断された。以上の結果より、3-メチルグルタルアルデヒドはグルタルアルデヒドに比べて生分解性が高いことが示された。
実施例3
 蒸留水に塩酸を加えてpH4.0に調整した塩酸水溶液100gに下記式
Figure JPOXMLDOC01-appb-C000009
で表されるアセタール化合物(以下、アセタール化合物Aと称する)を2.0g加え、窒素雰囲気下、80℃で攪拌した。1時間後に一部を採取してガスクロマトグラフィー分析したところ、アセタール化合物Aは97.2%消費され、3-メチルグルタルアルデヒドが82.6%生成していることを確認した。
[ガスクロマトグラフィー分析条件]
 分析機器:GC-2014(株式会社島津製作所製)
 検出器:FID(水素炎イオン化型検出器)
 使用カラム:DB-WAX(長さ30m、膜厚0.25μm、内径0.25mm)
      (アジレント・テクノロジー社製)
 分析条件:気化室温度250℃、検出器温度250℃
 昇温条件:50℃(4分保持)→(10℃/分で昇温)→250℃
 内部標準物質:テトラエチレングリコールジメチルエーテル
実施例4
 蒸留水に塩酸を加えてpH4.0に調整した塩酸水溶液100gにアセタール化合物Aを2.0g加え、窒素雰囲気下、30℃で攪拌した。50時間後に一部を採取して実施例3と同様にしてガスクロマトグラフィー分析したところ、アセタール化合物Aは52.5%消費され、3-メチルグルタルアルデヒドが47.3%生成していることを確認した。
 本発明の剤は3-メチルグルタルアルデヒドを有効成分とし、生分解性に優れ、少量で金属の生物腐食の抑制能に優れる。すなわち環境・労働安全上、安全性が高い。
 本発明の剤は、例えば水圧破砕法において用いられる高圧水または金属流体の生物腐食抑制に使用することができる。また、本発明の剤は、生物腐食の抑制が必要とされる金属の表面に塗布又は噴霧して使用することができる。
 さらに、本発明の剤は、生物腐食を誘起する微生物の生息環境に存在するかまたは設置される金属の生物腐食を抑制するために、有効に使用できる。
 本出願は、日本で出願された特願2014-191163(出願日:2014年9月19日)を基礎としており、その内容は本明細書に全て包含されるものである。

Claims (8)

  1.  3-メチルグルタルアルデヒドを有効成分とする、金属の生物腐食抑制剤。
  2.  前記生物腐食が、硫酸還元菌、硝酸還元菌、メタン生成菌、ヨウ素酸化菌、鉄酸化細菌および硫黄酸化細菌から選ばれる少なくとも1種によるものである、請求項1に記載の生物腐食抑制剤。
  3. 下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    (R、Rはそれぞれ独立して炭素数1から6のアルキル基を表すか、互いに連結して炭素数2から7のアルキレン基を表す)
    で表される化合物または下記式(2)
    Figure JPOXMLDOC01-appb-C000002
    (R、Rは前記定義のとおりであり、R、Rはそれぞれ独立して炭素数1から6のアルキル基を表すか、互いに連結して炭素数2から7のアルキレン基を表す)
    で表される化合物の1種以上をさらに含む請求項1または請求項2に記載の生物腐食抑制剤。
  4.  有効成分の総濃度が0.01ppm~3000ppmの範囲である水性液の形態である、請求項1~3のいずれか1項に記載の生物腐食抑制剤。
  5.  前記金属が鉄である、請求項1~4のいずれか1項に記載の生物腐食抑制剤。
  6. 下記式(1)
    Figure JPOXMLDOC01-appb-C000003
    (R、Rはそれぞれ独立して炭素数1から6のアルキル基を表すか、互いに連結して炭素数2から7のアルキレン基を表す)
    で表される化合物または下記式(2)
    Figure JPOXMLDOC01-appb-C000004
    (R、Rは前記定義のとおりであり、R、Rはそれぞれ独立して炭素数1から6のアルキル基を表すか、互いに連結して炭素数2から7のアルキレン基を表す)
    で表される化合物の1種以上、および水を接触させて3-メチルグルタルアルデヒドを発生させる工程を含む、請求項1~5のいずれか1項に記載の金属腐食抑制剤の製造方法。
  7. 酸を共存させる、請求項6に記載の金属腐食抑制剤の製造方法。
  8. 請求項1~5のいずれか1項に記載の生物腐食抑制剤を用いる、金属の生物腐食抑制方法。
PCT/JP2015/075979 2014-09-19 2015-09-14 金属の生物腐食抑制剤 WO2016043148A1 (ja)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2016548874A JP6642873B2 (ja) 2014-09-19 2015-09-14 金属の生物腐食抑制剤
US15/512,292 US10087404B2 (en) 2014-09-19 2015-09-14 Biological corrosion inhibitor for metals
CA2961703A CA2961703A1 (en) 2014-09-19 2015-09-14 Biological corrosion inhibitor for metals
DK15842726.0T DK3202266T3 (da) 2014-09-19 2015-09-14 Hæmmer af biologisk korrosion af metaller
EP15842726.0A EP3202266B1 (en) 2014-09-19 2015-09-14 Biological corrosion inhibitor for metals
MX2017003609A MX2017003609A (es) 2014-09-19 2015-09-14 Inhibidor de corrosion biologica para metales.
KR1020177007111A KR20170052594A (ko) 2014-09-19 2015-09-14 금속의 생물 부식 억제제
SG11201702102SA SG11201702102SA (en) 2014-09-19 2015-09-14 Biological corrosion inhibitor for metals
CN201580049962.9A CN106686980B (zh) 2014-09-19 2015-09-14 金属的生物腐蚀抑制剂
BR112017005174A BR112017005174A2 (pt) 2014-09-19 2015-09-14 inibidor de corrosão biológica para metais
RU2017108571A RU2694973C2 (ru) 2014-09-19 2015-09-14 Ингибитор биологической коррозии металлов

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014191163 2014-09-19
JP2014-191163 2014-09-19

Publications (1)

Publication Number Publication Date
WO2016043148A1 true WO2016043148A1 (ja) 2016-03-24

Family

ID=55533185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075979 WO2016043148A1 (ja) 2014-09-19 2015-09-14 金属の生物腐食抑制剤

Country Status (13)

Country Link
US (1) US10087404B2 (ja)
EP (1) EP3202266B1 (ja)
JP (1) JP6642873B2 (ja)
KR (1) KR20170052594A (ja)
CN (1) CN106686980B (ja)
BR (1) BR112017005174A2 (ja)
CA (1) CA2961703A1 (ja)
DK (1) DK3202266T3 (ja)
MX (1) MX2017003609A (ja)
RU (1) RU2694973C2 (ja)
SG (1) SG11201702102SA (ja)
TW (1) TWI663292B (ja)
WO (1) WO2016043148A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062254A1 (ja) * 2016-09-27 2018-04-05 株式会社クラレ 金属腐食の抑制方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107108426A (zh) * 2014-12-24 2017-08-29 株式会社可乐丽 醛化合物的制造方法及缩醛化合物
CN117903854A (zh) * 2024-03-19 2024-04-19 成都南玉电力设备有限公司 一种醇氢发动机甲醇燃料催化剂

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2137603A1 (de) * 1971-07-27 1973-02-08 Diamalt Ag Mittel zum gerben von haeuten und fellen
US4491676A (en) * 1980-12-30 1985-01-01 Union Carbide Corporation Acid addition to aqueous dialdehyde solutions
US20030148527A1 (en) * 2001-11-14 2003-08-07 Rupi Prasad Chemical treatment for hydrostatic test
US20050238729A1 (en) * 2004-04-26 2005-10-27 Jenneman Gary E Inhibition of biogenic sulfide production via biocide and metabolic inhibitor combination
CN101244856A (zh) * 2008-03-11 2008-08-20 武汉科技学院 管道输水系统中腐蚀微生物的化学防治方法及产品

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI93031B (fi) * 1993-06-17 1994-10-31 Cellkem Service Oy Glutaarialdehydin käyttö peroksidin hajoamisen estämiseksi uusiomassan ja muun kuitumassan valmistuksessa
US2546018A (en) * 1947-09-06 1951-03-20 Shell Dev Production of glutaraldehyde and csubstituted glutaraldehyde from dihydro pyrans
US2820821A (en) * 1956-01-05 1958-01-21 Union Carbide Corp Process for oxidizing glutaraldehydes
US2820820A (en) * 1956-01-05 1958-01-21 Union Carbide Corp Method for oxidizing glutaraldehydes
US2801216A (en) * 1956-04-05 1957-07-30 Union Carbide & Carbon Corp Treatment of water with dialdehyde bactericides
DE1902402A1 (de) * 1968-05-21 1969-11-27 Dresden Arzneimittel Verfahren zur Herstellung von 1-substituierten 6.7-Dimethoxy-isochinolinen
US4448977A (en) * 1978-11-17 1984-05-15 Union Carbide Corporation Stabilized acetal-acid compositions
RU2221900C2 (ru) * 2001-07-06 2004-01-20 Касаткина Марина Валентиновна Ингибитор коррозии металлов
RU2268593C2 (ru) * 2004-04-29 2006-01-27 Открытое акционерное общество "Томский научно-исследовательский и проектный институт нефти и газа Восточной нефтяной компании ВНК" ОАО "ТомскНИПИнефть ВНК" Способ подавления роста сульфатвосстанавливающих бактерий
WO2009011920A1 (en) * 2007-07-18 2009-01-22 Lcp Tech Holdings Llc Enzymatically active compositions for suppressing sulfide generation and methods of use thereof
WO2009118765A2 (en) * 2008-03-28 2009-10-01 Panacea Biotec Limited Novel monoamine re-uptake inhibitor
EP2700313B1 (en) * 2009-05-26 2015-12-23 Dow Global Technologies LLC Biocidal compositions comprising glutaraldehyde and tris(hydroxymethyl)nitromethane and methods of use
WO2015141535A1 (ja) * 2014-03-17 2015-09-24 株式会社クラレ 含硫黄化合物除去用の組成物
CN107108426A (zh) * 2014-12-24 2017-08-29 株式会社可乐丽 醛化合物的制造方法及缩醛化合物
KR20170110079A (ko) * 2015-01-29 2017-10-10 주식회사 쿠라레 함황 화합물 제거용의 조성물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2137603A1 (de) * 1971-07-27 1973-02-08 Diamalt Ag Mittel zum gerben von haeuten und fellen
US4491676A (en) * 1980-12-30 1985-01-01 Union Carbide Corporation Acid addition to aqueous dialdehyde solutions
US20030148527A1 (en) * 2001-11-14 2003-08-07 Rupi Prasad Chemical treatment for hydrostatic test
US20050238729A1 (en) * 2004-04-26 2005-10-27 Jenneman Gary E Inhibition of biogenic sulfide production via biocide and metabolic inhibitor combination
CN101244856A (zh) * 2008-03-11 2008-08-20 武汉科技学院 管道输水系统中腐蚀微生物的化学防治方法及产品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RAYMOND I. LONGLEY ET AL., ORGANIC SYNTHESES, vol. 34, 1954, pages 71, XP055403451 *
See also references of EP3202266A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062254A1 (ja) * 2016-09-27 2018-04-05 株式会社クラレ 金属腐食の抑制方法
CN109715856A (zh) * 2016-09-27 2019-05-03 株式会社可乐丽 抑制金属腐蚀的方法

Also Published As

Publication number Publication date
DK3202266T3 (da) 2020-02-03
US10087404B2 (en) 2018-10-02
EP3202266B1 (en) 2019-11-27
JPWO2016043148A1 (ja) 2017-07-06
CN106686980B (zh) 2019-09-24
MX2017003609A (es) 2017-09-19
EP3202266A1 (en) 2017-08-09
CA2961703A1 (en) 2016-03-24
CN106686980A (zh) 2017-05-17
BR112017005174A2 (pt) 2017-12-05
RU2017108571A (ru) 2018-10-19
TWI663292B (zh) 2019-06-21
RU2017108571A3 (ja) 2019-02-19
SG11201702102SA (en) 2017-04-27
EP3202266A4 (en) 2018-04-25
TW201617482A (zh) 2016-05-16
RU2694973C2 (ru) 2019-07-18
KR20170052594A (ko) 2017-05-12
JP6642873B2 (ja) 2020-02-12
US20170275575A1 (en) 2017-09-28

Similar Documents

Publication Publication Date Title
Turkiewicz et al. The application of biocides in the oil and gas industry
US20210155844A1 (en) Anti-corrosion formulations with storage stability
JP6642873B2 (ja) 金属の生物腐食抑制剤
TWI650074B (zh) 金屬之生物腐蝕的抑制方法
EP3004421B1 (fr) Formulations anti-corrosion stables au stockage
Williams et al. The environmental fate of oil and gas biocides: A review
Lavanya et al. Surfactants as biodegradable sustainable inhibitors for corrosion control in diverse media and conditions: A comprehensive review
WO2019124340A1 (ja) 原油または天然ガスの採掘用処理剤
EP3134355B1 (en) Hydrotesting and mothballing composition and method of using combination products for multifunctional water treatment
WO2018003626A1 (ja) 殺菌剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842726

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016548874

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177007111

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015842726

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015842726

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2961703

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15512292

Country of ref document: US

Ref document number: MX/A/2017/003609

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017005174

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017108571

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112017005174

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170315