WO2016043142A1 - 電気化学素子用セパレータ及びそれを用いてなる電気化学素子 - Google Patents

電気化学素子用セパレータ及びそれを用いてなる電気化学素子 Download PDF

Info

Publication number
WO2016043142A1
WO2016043142A1 PCT/JP2015/075915 JP2015075915W WO2016043142A1 WO 2016043142 A1 WO2016043142 A1 WO 2016043142A1 JP 2015075915 W JP2015075915 W JP 2015075915W WO 2016043142 A1 WO2016043142 A1 WO 2016043142A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle layer
inorganic particle
separator
nonwoven fabric
electrochemical element
Prior art date
Application number
PCT/JP2015/075915
Other languages
English (en)
French (fr)
Inventor
友洋 佐藤
鬼頭 昌利
Original Assignee
三菱製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015158617A external-priority patent/JP6033933B2/ja
Application filed by 三菱製紙株式会社 filed Critical 三菱製紙株式会社
Priority to US15/511,872 priority Critical patent/US20170294637A1/en
Priority to CN201580049941.7A priority patent/CN106716680B/zh
Priority to EP15843044.7A priority patent/EP3196960B1/en
Publication of WO2016043142A1 publication Critical patent/WO2016043142A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/454Separators, membranes or diaphragms characterised by the material having a layered structure comprising a non-fibrous layer and a fibrous layer superimposed on one another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/42Acrylic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/423Polyamide resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an electrochemical element separator and an electrochemical element using the same.
  • the electrochemical element has a built-in electrochemical element separator.
  • the separator for electrochemical elements plays a role of preventing direct contact between the positive electrode and the negative electrode in the electrochemical element.
  • the separator for electrochemical elements separates the positive electrode and the negative electrode so as not to cause an internal short circuit (internal short circuit).
  • an internal short circuit internal short circuit
  • the separator for electrochemical elements needs to be porous.
  • a resin porous film made of a polyolefin resin such as polyethylene or polypropylene has been conventionally used.
  • a resin porous membrane is used as a separator for a lithium ion secondary battery, the function of isolating the positive and negative electrodes is lost due to melting and shrinkage when the battery abnormally generates heat, resulting in a significant internal short circuit. There was a problem that caused.
  • a lithium ion secondary comprising an inorganic particle layer formed by applying inorganic particles such as alumina, boehmite, magnesium oxide, magnesium hydroxide to a nonwoven fabric substrate made of highly heat-resistant fibers.
  • Battery separators have been proposed (see, for example, Patent Documents 1 to 4).
  • PET polyethylene terephthalate
  • PET polyethylene terephthalate
  • such lithium-ion secondary battery separators are designed to reduce the thickness of the entire lithium-ion secondary battery separator by reducing the thickness of the nonwoven fabric substrate or inorganic particle layer in order to reduce the internal resistance.
  • pinholes are easily generated, and internal short circuit is easily caused.
  • a capacitor which is another electrochemical element, has a large electric capacity and has high stability against repeated charge and discharge, and is therefore widely used in applications such as a power supply used in vehicles and electrical equipment.
  • a capacitor separator used in a capacitor conventionally, a paper mainly composed of a beaten product of solvent-spun cellulose fiber and regenerated cellulose fiber (for example, see Patent Documents 5 to 7) and a nonwoven fabric containing synthetic fibers (for example, Patent Document 8) is used.
  • a separator for example, see Patent Document 9 made of a nonwoven fabric base material and inorganic particles has been disclosed.
  • the capacitor separators described in Patent Documents 5 to 9 have a problem that, when the thickness is reduced in order to reduce the internal resistance, pinholes are likely to occur and internal short-circuiting is likely to occur. .
  • An object of the present invention is to provide a separator for an electrochemical element having excellent production stability, few pinholes and low internal resistance, and an electrochemical element using the same.
  • the present inventors have found the following invention as a means for solving the above problems.
  • the nonwoven fabric substrate is a nonwoven fabric substrate mainly composed of synthetic resin fibers having an average fiber diameter of 1 to 20 ⁇ m;
  • an inorganic particle layer As the inorganic particle layer, an inorganic particle layer A containing magnesium hydroxide having an average particle size of 2.0 to 4.0 ⁇ m, an inorganic particle layer B containing magnesium hydroxide having an average particle size of 0.5 ⁇ m or more and less than 2.0 ⁇ m,
  • a separator for an electrochemical element having a configuration in which an inorganic particle layer A and an inorganic particle layer B are laminated in this order on one surface of the nonwoven fabric substrate.
  • the nonwoven fabric substrate is a nonwoven fabric substrate mainly composed of synthetic resin fibers having an average fiber diameter of 1 to 20 ⁇ m;
  • an inorganic particle layer containing magnesium hydroxide having an average particle size of 2.0 to 4.0 ⁇ m
  • a separator for an electrochemical element characterized in that an inorganic particle layer A is provided on one side of the nonwoven fabric substrate and an inorganic particle layer B is provided on the other side.
  • the nonwoven fabric base material mainly composed of synthetic resin fibers having an average fiber diameter of 1 to 20 ⁇ m has high strength, when an inorganic particle layer containing magnesium hydroxide is provided as inorganic particles, a coating containing inorganic particles is provided.
  • the liquid can be given sufficient strength to be applied to the nonwoven fabric substrate.
  • the inorganic particle layer A contains magnesium hydroxide having an average particle diameter of 2.0 to 4.0 ⁇ m as inorganic particles, and the inorganic particle layer B is water having an average fiber diameter of 0.5 ⁇ m or more and less than 2.0 ⁇ m as inorganic particles.
  • the average particle diameter of magnesium hydroxide contained in the inorganic particle layer A is larger than the average particle diameter of magnesium hydroxide contained in the inorganic particle layer B. Therefore, compared with the inorganic particle layer B, the inorganic particle layer A is less likely to permeate into the nonwoven fabric base material and pinholes are less likely to occur, but the thickness tends to be slightly thicker.
  • the inorganic particle layer B tends to permeate into the nonwoven fabric substrate, and compared to the inorganic particle layer A, pinholes are likely to occur, but the thickness tends to be thin.
  • the inorganic particle layer B bleeds into the nonwoven fabric substrate.
  • the inorganic particle layer A can prevent the formation of a uniform inorganic particle layer on the surface of the separator for electrochemical devices. As a result, even when the electrochemical element separator is thin, the generation of pinholes can be suppressed, and the internal resistance can be lowered.
  • the generation of pinholes can be similarly suppressed, and the thickness is thin.
  • the internal resistance can be lowered.
  • the inorganic particle layer A and the inorganic particle layer B are easy to adhere to the nonwoven fabric base material and the layer strength becomes strong, there is an effect that the defect is hardly generated during the manufacture of the separator and the manufacturing stability is excellent.
  • the separator for electrochemical devices (1) of the present invention comprises magnesium hydroxide having an average particle diameter of 2.0 to 4.0 ⁇ m on one side of a nonwoven fabric substrate mainly composed of synthetic resin fibers having an average fiber diameter of 1 to 20 ⁇ m.
  • a separator for an electrochemical element characterized in that an inorganic particle layer A containing and an inorganic particle layer B containing magnesium hydroxide having an average particle diameter of 0.5 ⁇ m or more and less than 2.0 ⁇ m are laminated in this order. is there.
  • the separator for electrochemical devices (2) of the present invention contains magnesium hydroxide having an average particle diameter of 2.0 to 4.0 ⁇ m on one surface of a nonwoven fabric substrate mainly composed of synthetic resin fibers having an average fiber diameter of 1 to 20 ⁇ m.
  • An electrochemical device comprising an inorganic particle layer A and an inorganic particle layer B containing magnesium hydroxide having an average particle size of 0.5 ⁇ m or more and less than 2.0 ⁇ m on the other surface Separator.
  • the nonwoven fabric substrate used in the separator for electrochemical devices of the present invention is a nonwoven fabric substrate mainly composed of synthetic resin fibers having an average fiber diameter of 1 to 20 ⁇ m.
  • the content of the synthetic resin fiber having an average fiber diameter of 1 to 20 ⁇ m is preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass with respect to all fibers constituting the nonwoven fabric substrate. It is at least mass%.
  • the strength of the nonwoven fabric substrate may be weakened.
  • the synthetic resin fiber having an average fiber diameter of 1 to 20 ⁇ m is a fiber that does not have fibrils, and is a so-called staple fiber (short fiber).
  • the average fiber diameter of the synthetic resin fibers having an average fiber diameter of 1 to 20 ⁇ m is 1 to 20 ⁇ m, more preferably 1 to 15 ⁇ m, and further preferably 1 to 10 ⁇ m.
  • the average fiber diameter is less than 1 ⁇ m, the fibers are too thin and the inorganic particle layer is less likely to penetrate into the nonwoven fabric substrate, making it difficult to reduce the thickness of the separator.
  • the average fiber diameter is larger than 20 ⁇ m, it is difficult to reduce the thickness of the nonwoven fabric substrate itself, and it is difficult to reduce the thickness of the separator.
  • the nonwoven fabric base material can contain synthetic resin fibers having an average fiber diameter of less than 1 ⁇ m, synthetic resin fibers having an average fiber diameter of more than 20 ⁇ m, fibrillated products of synthetic resins and synthetic resin fibers, fibrils or pulped products, In order to obtain the effect of reducing the thickness of the separator, synthetic resin fibers having an average fiber diameter of 1 to 20 ⁇ m are the main component of the nonwoven fabric substrate.
  • the average fiber diameter in the present invention refers to 30 fibers having a cross section perpendicular to or approximately perpendicular to the length direction of the fibers of the fibers forming the nonwoven fabric substrate, based on a scanning electron micrograph of the cross section of the nonwoven fabric substrate. It is the average value which selected this and measured the fiber diameter.
  • Synthetic resin fibers may be melted or deformed by heat or pressure. In that case, the cross-sectional area is measured, and the fiber diameter in terms of a perfect circle is calculated.
  • the fiber length of the synthetic resin fiber having an average fiber diameter of 1 to 20 ⁇ m is preferably 1 to 15 mm, more preferably 2 to 10 mm, and further preferably 2 to 5 mm. If the fiber length is shorter than 1 mm, it may fall off from the nonwoven fabric substrate. If the length is longer than 15 mm, the fibers may become tangled and become lumpy, which may cause uneven thickness.
  • the resin constituting the synthetic fiber examples include polyolefin (polyolefin), polyester (polyester), polyvinyl acetate, ethylene-vinyl acetate copolymer, polyamide (polyamide). ) Series, acrylic series, polyvinyl chloride series, polyvinylidene chloride series, polyvinyl ether series, polyvinyl ketone series, polyether ether series Alcohol (polyvinyl alc hol), diene, polyurethane (polyurethane), phenol, melamine, furan, urea, aniline, unsaturated polyester (Unsaturated polymer), Alkyd, Fluorocarbon, Silicone, Polyamideimide, Polyphenylenesulfide, Polyimidepolyimide, Polyimidepolyimide, Polyimidepolyimide, Polyimidepolyimide, Polyimidepolyimide, Polyimidepolyimide Polyazomethine (polyazomethine) ) Series, polyesteramide series,
  • derivatives of these resins can also be used.
  • these resins it is preferable to use a polyester resin, an acrylic resin, or a polyolefin resin in order to increase the adhesiveness with the inorganic particle layer.
  • a polyester resin, an acrylic resin, or a polyamide resin it is preferable to use a polyester resin, an acrylic resin, or a polyamide resin.
  • polyester resin examples include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), and polyethylene phthalate (PTT).
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PTT polytrimethylene terephthalate
  • PTT polyethylene phthalate
  • Resin polybutylene naphthalate
  • polyethylene isophthalate wholly aromatic polyester, and the like. It is.
  • derivatives of these resins can also be used.
  • a polyethylene terephthalate resin is preferable in order to improve heat resistance, resistance to electrolytic solution, and adhesion to the inorganic particle layer.
  • acrylic resins include those made of a 100% acrylonitrile polymer, acrylic acid, methacrylic acid, acrylic ester, acrylate, and methacrylic acid.
  • acrylic acid derivatives such as esters (methacrylic ester), copolymers of vinyl acetate and the like.
  • polystyrene resin examples include polypropylene, polyethylene, polymethylpentene, ethylene-vinyl alcohol copolymer, olefin copolymer, and the like. From the viewpoint of heat resistance, polypropylene, polymethylpentene, ethylene-vinyl alcohol copolymer, olefin copolymer and the like can be mentioned.
  • polyamide resin examples include aliphatic polyamides such as nylon, poly-p-phenylene terephthalamide, and copoly (para-phenylene-3,4′-oxydiphenylene terephthalamide). ) (Copoly (para-phenylene-3,4'-oxydiphenylene terephthalic amide)), poly-m-phenylene isophthalamide (poly-m-phenylene isophthalamide), wholly aromatic polyamides, wholly aromatic polyamides Have a fatty chain as part of the main chain That semi-aromatic polyamide (semi-aromatic polyamide) can be mentioned.
  • aliphatic polyamides such as nylon, poly-p-phenylene terephthalamide, and copoly (para-phenylene-3,4′-oxydiphenylene terephthalamide).
  • poly-m-phenylene isophthalamide poly-m-phenylene isophthalamide
  • wholly aromatic polyamides wholly aromatic polyamides Have a
  • Semi-aromatic refers to a substance having, for example, a fatty chain as a part of the main chain.
  • the wholly aromatic polyamide may be either a para type or a meta type.
  • the synthetic resin fiber may be a fiber (single fiber) made of a single resin, or may be a fiber (composite fiber) made of two or more kinds of resins.
  • the synthetic resin fiber contained in the nonwoven fabric substrate may be one type or a combination of two or more types. Examples of the composite fiber include a core-sheath type, an eccentric type, a side-by-side type, a sea-island type, an orange type, and a multiple bimetal type. You may use the fiber which divided
  • the non-woven fabric substrate may contain fibers other than synthetic resin fibers.
  • fibers other than synthetic resin fibers For example, solvent-spun cellulose or regenerated cellulose short fibers, fibrillated products, natural cellulose fibers, natural cellulose fiber pulped products, fibrillated products, inorganic fibers, and the like may be contained.
  • the basis weight of the nonwoven fabric substrate is preferably 6 to 20 g / m 2 , more preferably 7 to 18 g / m 2 , and still more preferably 8 to 15 g / m 2 .
  • the basis weight is measured based on the method defined in JIS P 8124 (paper and paperboard—basis weight measurement method).
  • the thickness of the nonwoven fabric substrate is preferably 9 to 30 ⁇ m, more preferably 10 to 27 ⁇ m, and still more preferably 11 to 24 ⁇ m. When the thickness is less than 9 ⁇ m, sufficient strength of the nonwoven fabric substrate may not be obtained. If the thickness exceeds 30 ⁇ m, it may be difficult to reduce the thickness of the separator.
  • thickness means the value measured based on the method prescribed
  • a production method in which a nonwoven fabric is obtained by forming a fiber web and bonding, fusing and entanglement of fibers in the fiber web can be used.
  • the obtained nonwoven fabric may be used as it is as a nonwoven fabric substrate, or may be used as a laminate comprising a plurality of nonwoven fabrics.
  • the method for producing the fiber web include dry methods such as a carding method, an airlay method, a spunbond method, and a meltblow method; wet methods such as a wet papermaking method; (Electrospinning) method and the like.
  • the web obtained by a wet method is homogeneous and dense, and can be suitably used as a nonwoven fabric substrate.
  • fibers are dispersed in water to form a uniform papermaking slurry, and this papermaking slurry is made into a fiber web using a papermaking machine having at least one of a papermaking system such as a circular net type, a long net type, and an inclined type. How to get.
  • a papermaking system such as a circular net type, a long net type, and an inclined type. How to get.
  • a hydroentangled (spun lace) method As a method for producing a nonwoven fabric substrate from a fiber web, a hydroentangled (spun lace) method, a needle punch method, a binder bonding method (thermal bond, thermal bond), or the like can be used.
  • a binder synthetic resin fiber when the wet method is used with emphasis on uniformity, it is preferable to bond a binder synthetic resin fiber by performing a binder bonding method.
  • a uniform nonwoven fabric is formed from a uniform web by the binder bonding method. It is preferable to adjust the thickness or make the thickness uniform by applying pressure to the wet nonwoven fabric produced in this way with a calendar or the like. However, it is preferable to apply pressure at a temperature at which the synthetic resin fiber for binder does not form a film (temperature lower by 20 ° C. or more than the melting point or softening point of the synthetic resin fiber for binder).
  • the inorganic particle layer A is formed by applying a coating liquid a containing magnesium hydroxide having an average particle size of 2.0 to 4.0 ⁇ m on one side of the nonwoven fabric substrate. It is obtained by the method of coating on.
  • the average particle diameter is a volume average particle diameter (D50) obtained from a particle size distribution measurement by a laser diffraction method.
  • the average particle diameter of magnesium hydroxide in the inorganic particle layer A is more preferably 2.2 to 3.7 ⁇ m, still more preferably 2.5 to 3.5 ⁇ m.
  • the coating amount (absolute dryness) of the inorganic particle layer A is preferably 2.0 to 8.0 g / m 2 , more preferably 2.5 to 7.0 g / m 2 , and still more preferably 3. 0 to 6.0 g / m 2 .
  • the coating amount exceeds 8.0 g / m 2 , the electrochemical element separator may be too thick.
  • the coating amount is less than 2.0 g / m 2 , pinholes are likely to occur.
  • the inorganic particle layer B layer is formed by coating the inorganic particle layer A with a coating liquid b containing magnesium hydroxide having an average particle size of 0.5 ⁇ m or more and 2.0 ⁇ m or less. It is obtained by the method.
  • the inorganic particle layer B is coated with the coating liquid b on the other surface of the nonwoven fabric substrate opposite to the surface on which the inorganic particle layer A is provided. It is obtained by the method of crafting.
  • the average particle diameter of magnesium hydroxide in the inorganic particle layer B is more preferably 0.5 to 1.5 ⁇ m, still more preferably 0.5 to 1.3 ⁇ m, and particularly preferably 0.5 to 1.0 ⁇ m. It is.
  • the coating amount (absolute dryness) of the inorganic particle layer B is preferably 2.0 to 8.0 g / m 2 , more preferably 2.5 to 7.0 g / m 2 , and still more preferably 3. 0 to 6.0 g / m 2 .
  • the coating amount exceeds 8.0 g / m 2 , the electrochemical element separator may be too thick.
  • the coating amount is less than 2.0 g / m 2 , pinholes are likely to occur.
  • the medium for preparing the coating liquid containing magnesium hydroxide is not particularly limited as long as it can uniformly dissolve or disperse the binder and magnesium hydroxide.
  • aromatic hydrocarbons such as toluene, tetrahydrofuran (cyclic ethers such as tetrahydrofuran (THF), ketones such as methyl ethyl ketone (MEK), alcohols such as isopropanol, N-methyl-2-pyrrolidone (NMP), N, N-dimethylacetamide (N, N-Dimethylacetamide, DMAc), N, N-dimethylformamide (N, N-dimethylformamide, DMF), dimethyl sulfoxide (Dimet) yl sulfoxide, DMSO), can be used, such as optionally water. Moreover, you may mix and use these media as needed.
  • the medium to be used is preferably a medium that does not expand or dissolve the nonwoven fabric substrate.
  • Examples of the method for applying the coating liquid include a blade, a rod, a reverse roll, a lip, a die, a curtain, an air knife, and the like.
  • Various coating methods, flexographic, screen, offset, gravure, ink jet, and other printing methods, transfer methods such as roll transfer and film transfer are required. It can be selected and used accordingly.
  • the basis weight of the separator for electrochemical devices of the present invention is preferably 10 to 36 g / m 2 , more preferably 12 to 32 g / m 2 , and further preferably 14 to 27 g / m 2 .
  • the basis weight exceeds 36 g / m 2 , the internal resistance may become too high.
  • the basis weight is less than 10 g / m 2 , pinholes are likely to occur or it may be difficult to obtain sufficient strength.
  • the thickness of the separator for an electrochemical element of the present invention is preferably 10 to 40 ⁇ m, more preferably 11 to 30 ⁇ m, and further preferably 12 to 25 ⁇ m.
  • the thickness exceeds 40 ⁇ m, the electrochemical element separator becomes too thick, and the internal resistance may increase. If the thickness is less than 10 ⁇ m, pinholes are likely to occur or it may be difficult to obtain sufficient strength.
  • the separator for electrochemical elements of the present invention is particularly suitably used for electrochemical elements such as lithium ion secondary batteries and capacitors.
  • Lithium ion secondary battery As the negative electrode active material of the lithium ion secondary battery in the present invention, carbon materials such as graphite and coke, metallic lithium, aluminum (Al), silicon (Si), tin (Sn), nickel (Ni), lead (Pb) Metals such as alloys of one or more (semi) metals and lithium (Li) selected from: SiO, SnO, Fe 2 O 3 , WO 2 , Nb 2 O 5 , Li 4/3 Ti 5/3 O 4 Oxides and nitrides such as Li 0.4 CoN are used.
  • carbon materials such as graphite and coke, metallic lithium, aluminum (Al), silicon (Si), tin (Sn), nickel (Ni), lead (Pb) Metals such as alloys of one or more (semi) metals and lithium (Li) selected from: SiO, SnO, Fe 2 O 3 , WO 2 , Nb 2 O 5 , Li 4/3 Ti 5/3 O 4 Oxides and n
  • Examples of the positive electrode active material include lithium cobalt oxide, lithium manganese oxide, lithium nickel oxide, lithium titanium oxide (LTO), lithium nickel manganese oxide (LTO), lithium nickel manganese oxide (LTO), lithium nickel manganese oxide (LTO), lithium nickel manganese oxide (LTO), lithium nickel manganese oxide (LTO), and lithium nickel manganese oxide (LTO).
  • Lithium-nickel-manganese oxide) and lithium iron phosphate are used.
  • Lithium iron phosphate further includes manganese (Mn), chromium (Cr), cobalt (Co), copper (Cu), nickel, vanadium (V), molybdenum (Mo), titanium (Ti), zinc (Zn), It may be a composite with one or more metals selected from aluminum (Al), gallium (Ga), magnesium (Mg), boron (B), and niobium (Nb).
  • Examples of the electrolyte of the lithium ion secondary battery include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, dimethoxymethane, and dimethoxymethane.
  • a solution obtained by dissolving a lithium salt in an organic solvent such as a mixed solvent thereof is used.
  • Examples of the lithium salt include lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ).
  • the capacitor in the present invention means an electric double layer capacitor, a lithium ion capacitor, a hybrid capacitor, or a redox capacitor.
  • the electric double layer capacitor is charged with an electric double layer formed at the interface between the electrode and the electrolyte.
  • the electrode active material carbon materials such as activated carbon, carbon black, carbon aerogel, carbon nanotube, and non-porous carbon are mainly used.
  • the electrolytic solution include an aqueous solution in which an ion dissociable salt is dissolved, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, acetonitrile, ⁇ -butyrolactone, N, N-dimethylformamide, tetrahydrofuran.
  • Ion-dissociable salts in organic solvents such as dimethoxyethane, dimethoxymethane, sulfolane, dimethyl sulfoxide, ethylene glycol, propylene glycol, methyl cellosolve, and mixed solvents thereof Ionic liquid (solid molten salt), etc. It is not limited.
  • the negative electrode active material is a material capable of reversibly supporting lithium ions
  • the positive electrode active material is a material capable of reversibly supporting lithium ions and / or anions. This is a capacitor in which lithium ions are supported.
  • the negative electrode active material include graphite, non-graphitizable carbon, polyacene organic semiconductor, and lithium titanate.
  • the positive electrode active material include conductive polymers such as polypyrrole, polythiophene, polyaniline, polyacetylene, activated carbon, and polyacene organic semiconductor.
  • As the electrolytic solution an organic solvent in which a lithium salt is dissolved is used.
  • lithium salt examples include LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6 , and Li (C 2 F 5 SO 2 ) N.
  • organic solvent examples include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, acetonitrile, ⁇ -butyrolactone, N, N-dimethylformamide, tetrahydrofuran, dimethoxyethane, dimethoxymethane, sulfolane, dimethyl sulfoxide, ethylene glycol, propylene glycol, Examples thereof include methyl cellosolve and mixed solvents thereof.
  • a hybrid capacitor is a capacitor in which the reaction mechanism or electrode material of the positive electrode and the negative electrode are different.
  • the negative electrode is an oxidation-reduction reaction
  • the positive electrode is an electric double layer reaction.
  • the negative electrode active material of the hybrid capacitor include activated carbon, graphite, hard carbon, polyacene, metal oxide such as Li 4 Ti 5 O 12 , and n-type conductive polymer.
  • the positive electrode active material include activated carbon, metal oxides such as MnO 2 , LiCoO 2 , ruthenium oxide, graphite, and p-type conductive polymer.
  • a redox capacitor has a storage and discharge mechanism that uses all or part of oxidation / reduction of an electrode active material, adsorption / desorption of ions on an electrode surface, and charge / discharge in an electric double layer.
  • electrode active materials of redox capacitors include metal oxides such as ruthenium oxide, iridium oxide, titanium oxide, zirconium oxide, nickel oxide, vanadium oxide, tungsten oxide, manganese oxide, and cobalt oxide, and composites of these metal oxides.
  • lithium metal oxides such as LiFePO 4 , polypyrrole, polyaniline, polythiophene, polyacene, derivatives thereof, polyfluorene derivatives, polyquinoxaline derivatives, polyindole, polyindole, cyclic Examples include quindole polymers, 1,5-diaminoanthraquinone, 1,4-benzoquinone, complexes of graphite with these quinone compounds, and metal complex polymers.
  • the electrolytic solution examples include an aqueous solution in which an ion dissociable salt is dissolved, propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, acetonitrile, ⁇ -butyrolactone, N, N-dimethylformamide, tetrahydrofuran, dimethoxyethane, dimethoxymethane, and sulfolane. , Dimethyl sulfoxide, ethylene glycol, propylene glycol, methyl cellosolve, ionic liquid (solid molten salt), etc., in which an ionic dissociable salt is dissolved in an organic solvent such as a mixed solvent thereof. Is not to be done.
  • PET1 Oriented crystallized polyethylene terephthalate fiber with average fiber diameter of 2.5 ⁇ m and fiber length of 3 mm
  • PET2 Oriented crystallized polyethylene terephthalate fiber with average fiber diameter of 3.2 ⁇ m and fiber length of 3 mm
  • PET3 Average fiber diameter of 4.3 ⁇ m, fiber length of 3 mm
  • PA1 Total aromatic polyamide fiber (copoly (para-phenylene-3,4'-oxydiphenylene terephthalamide), Copoly (p-phenylene-3,4'-oxydiphenylene terephthalamide) having an average fiber diameter of 8.1 ⁇ m and a fiber length of 5 mm. ))
  • Nonwoven fabric substrate 1-5 Slurries 1 to 3 were subjected to wet paper making using a circular net / tilted combination paper machine to produce nonwoven substrates 1 to 5 shown in Table 2.
  • the thickness was determined by using a heat calender device having a configuration of metal roll-resin roll (Shore hardness D92) under the conditions of a metal roll temperature of 195 ° C., a linear pressure of 200 kN / m, a processing speed of 10 m / min, and a nip (nip). Adjustment was performed by performing a thermal calendar process.
  • a coating liquid a2 was prepared in the same manner as the coating liquid a1, except that magnesium hydroxide having an average particle diameter of 2.0 ⁇ m was changed to magnesium hydroxide having an average particle diameter of 3.0 ⁇ m.
  • a coating liquid a3 was prepared in the same manner as the coating liquid a1, except that magnesium hydroxide having an average particle diameter of 2.0 ⁇ m was changed to magnesium hydroxide having an average particle diameter of 4.0 ⁇ m.
  • a coating solution b2 was prepared in the same manner as the coating solution b1, except that magnesium hydroxide having an average particle size of 0.5 ⁇ m was changed to magnesium hydroxide having an average particle size of 1.0 ⁇ m.
  • a coating solution b3 was prepared in the same manner as the coating solution b1, except that magnesium hydroxide having an average particle size of 0.5 ⁇ m was changed to magnesium hydroxide having an average particle size of 1.5 ⁇ m.
  • a coating solution c2 was prepared in the same manner as the coating solution c1 except that the alumina hydrate having an average particle size of 2.0 ⁇ m was changed to alumina hydrate having an average particle size of 0.5 ⁇ m.
  • Example 1-1 After coating and drying the coating liquid a1 on the nonwoven fabric substrate 1 with a kiss reverse gravure coater so that the coating amount (absolute dryness) is 7.0 g / m 2 , On the same coated surface, the coating liquid b1 was coated and dried with a kiss reverse gravure coater so that the coating amount (absolutely dry) was 2.5 g / m 2 to obtain an electrochemical device separator.
  • Example 1-2 After coating and drying the coating liquid a2 on the nonwoven fabric substrate 2 with a kiss reverse gravure coater so that the coating amount (absolutely dry) is 5.0 g / m 2 , the coating liquid a2 is further applied to the same coated surface.
  • the coating liquid b2 was coated and dried with a kiss reverse gravure coater so that the coating amount (absolute dryness) was 5.0 g / m 2 to obtain a separator for an electrochemical device.
  • Example 1-3 After coating and drying the coating liquid a3 on the nonwoven fabric substrate 3 with a kiss reverse gravure coater so that the coating amount (absolutely dry) is 3.0 g / m 2 , the coating liquid a3 is further applied to the same coated surface.
  • the coating liquid b3 was coated and dried with a kiss reverse gravure coater so that the coating amount (absolute dryness) was 6.0 g / m 2 to obtain a separator for an electrochemical device.
  • Example 1-4 After coating and drying the coating liquid a1 on the nonwoven fabric substrate 4 with a kiss reverse gravure coater so that the coating amount (absolutely dry) is 2.0 g / m 2 , the coating liquid a1 is further applied to the same coated surface.
  • the coating liquid b1 was coated and dried with a kiss reverse gravure coater so that the coating amount (absolutely dry) was 2.0 g / m 2 to obtain a separator for an electrochemical device.
  • Example 1-5 On the nonwoven fabric substrate 5, the coating liquid a1 is coated and dried with a kiss reverse gravure coater so that the coating amount (absolute dryness) is 8.0 g / m 2.
  • the coating liquid b1 was coated and dried with a kiss reverse gravure coater so that the coating amount (absolute dryness) was 8.0 g / m 2 to obtain a separator for an electrochemical device.
  • Example 2-1 After coating and drying the coating liquid a1 on the nonwoven fabric substrate 1 with a kiss reverse gravure coater so that the coating amount (absolute dryness) is 7.0 g / m 2 , On the other surface, the coating liquid b1 is coated and dried with a kiss reverse gravure coater so that the coating amount (absolutely dry) is 2.5 g / m 2 to obtain a separator for an electrochemical device. It was.
  • Example 2-2 After coating and drying the coating liquid a2 on the nonwoven fabric substrate 2 with a kiss reverse gravure coater so that the coating amount (absolute dryness) is 5.0 g / m 2 , the nonwoven fabric substrate 2 is further coated. On the other surface, the coating liquid b2 is coated and dried with a kiss reverse gravure coater so that the coating amount (absolutely dry) is 5.0 g / m 2, and an electrochemical element separator is formed. Obtained.
  • Example 2-3 After coating and drying the coating liquid a3 on the nonwoven fabric substrate 3 with a kiss reverse gravure coater so that the coating amount (absolutely dry) is 3.0 g / m 2 , the nonwoven fabric substrate 3 is further coated. On the other surface, the coating liquid b3 is coated and dried with a kiss reverse gravure coater so that the coating amount (absolute dryness) is 7.0 g / m 2. Obtained.
  • Example 2-4 After coating and drying the coating liquid a1 on the nonwoven fabric substrate 4 with a kiss reverse gravure coater so that the coating amount (absolutely dry) is 2.0 g / m 2 , the nonwoven fabric substrate 4 is further coated. On the other surface, the coating liquid b1 is coated and dried with a kiss reverse gravure coater so that the coating amount (absolute dryness) is 2.0 g / m 2, and an electrochemical element separator is formed. Obtained.
  • Example 2-5 After coating and drying the coating liquid a1 on the nonwoven fabric substrate 5 with a kiss reverse gravure coater so that the coating amount (absolute dryness) is 8.0 g / m 2 , the nonwoven fabric substrate 5 is further coated. On the other surface, the coating liquid b2 is coated and dried with a kiss reverse gravure coater so that the coating amount (absolutely dry) is 8.0 g / m 2, and the electrochemical element separator is formed. Obtained.
  • Example 2-6 After coating and drying the coating liquid b1 on the nonwoven fabric substrate 2 with a kiss reverse gravure coater so that the coating amount (absolutely dry) is 3 g / m 2 , the nonwoven fabric substrate 2 is further coated. On one surface, the coating liquid a2 was coated and dried with a kiss reverse gravure coater so that the coating amount (absolute dryness) was 4 g / m 2 to obtain a separator for an electrochemical device.
  • a fiber C1 obtained by beating a solvent-spun cellulose fiber having an average fiber diameter of 10.0 ⁇ m and a fiber length of 4 mm using a refiner to a Canadian standard freeness (CSF) of 20 ml measured according to JIS P8121, and Manila hemp Then, using a refiner, the fiber C2 beaten until the CSF becomes 300 ml, a papermaking slurry prepared at a ratio of C1 / C2 70/30, and wet papermaking using a circular mesh / inclined combination papermaking machine.
  • a separator for an electrochemical device having an amount of 7.0 g / m 2 , a thickness of 20 ⁇ m, and a density of 0.35 g / cm 3 was produced.
  • A The occurrence of visual pinholes is not observed.
  • B There is a portion where transmitted light is observed slightly.
  • C Obviously many transmitted lights are observed.
  • A No damage is observed in the inorganic particle layer at the fold.
  • C Many cracks are seen in the inorganic particle layer in the crease portion.
  • Lithium ion secondary battery [Production of lithium ion secondary battery] Using each of the above-described separators for electrochemical devices, lithium manganate as the positive electrode, mesocarbon microbead as the negative electrode, and 1 mol / L diethyl carbonate (DEC) / lithium hexafluorophosphate (LiPF 6 ) as the electrolyte A lithium ion secondary battery having a design capacity of 30 mAh using a mixed solvent solution of ethylene carbonate (EC) (capacity ratio: 7/3) was produced.
  • EC ethylene carbonate
  • Electrode 0 10 parts by weight of polyvinylidene fluoride is dissolved in 90 parts by weight of N-methyl-2-pyrrolidone, and an average particle diameter of 5.0 ⁇ m using a phenol resin as a starting material, 80 parts by mass of powdered activated carbon having a specific surface area of 2000 m 2 / g, 10 parts by mass of acetylene black having an average particle diameter of 200 nm, and 300 parts by mass of N-methyl-2-pyrrolidone were added and mixed thoroughly with a mixing stirrer. An electrode slurry was obtained.
  • the electrode slurry is applied and dried using an applicator to an aluminum foil current collector having a thickness of 30 ⁇ m whose surface has been etched with hydrochloric acid, and then subjected to a press treatment using a roll press apparatus, and an electric double layer having a thickness of 150 ⁇ m.
  • An electrode for a capacitor was produced and designated as electrode 0.
  • the separators for electrochemical devices produced in Examples 1-1 to 1-5 were provided with inorganic particles on one side of a nonwoven fabric substrate mainly composed of synthetic resin fibers having an average fiber diameter of 1 to 20 ⁇ m. Since the layer A and the inorganic particle layer B have a structure laminated in this order, there are few pinholes in the separator for an electrochemical element, and the internal resistance of the lithium ion secondary battery and capacitor using the separator is low. It was excellent. In addition, since the layer strength is strong, defects are unlikely to occur during the production of the separator, and the production stability is excellent.
  • the separators for electrochemical devices produced in Examples 2-1 to 2-6 are provided with the inorganic particle layer A on one side of a nonwoven fabric substrate mainly composed of synthetic resin fibers having an average fiber diameter of 1 to 20 ⁇ m.
  • the inorganic particle layer B is provided on the other surface, there are few pinholes in the separator for electrochemical elements, and the internal resistance of the lithium ion secondary battery and capacitor using the separator is low, which is excellent It was.
  • the layer strength is strong, defects are unlikely to occur during the production of the separator, and the production stability is excellent.
  • the separator for an electrochemical element produced in Comparative Example 1-2 does not include the inorganic particle layer B, and the coating amount of the inorganic particle layer A is larger than that of the separator for electrochemical element produced in Comparative Example 1-1. Although it was further increased, although the generation of pinholes was suppressed, the inorganic particle layer became too thick, and the internal resistance of the lithium ion secondary battery and capacitor deteriorated.
  • the separator for an electrochemical element produced in Comparative Example 1-3 does not include the inorganic particle layer A, and the inorganic particle layer B soaks into the nonwoven fabric base material to form a uniform inorganic particle layer on the separator surface. Since it was not possible, the occurrence of pinholes was observed.
  • the separator for an electrochemical element produced in Comparative Example 1-4 has a configuration in which an inorganic particle layer B and an inorganic particle layer A layer are laminated in this order on one side of a nonwoven fabric substrate. Since the inorganic particle layer B soaked into the nonwoven fabric base material and a uniform inorganic particle layer could not be formed on the separator surface, generation of pinholes was observed.
  • the separator for an electrochemical element produced in Comparative Example 1-5 has an inorganic particle layer C containing an alumina hydrate having an average particle diameter of 2.0 ⁇ m and an alumina having an average particle diameter of 0.5 ⁇ m on one side of a nonwoven fabric substrate.
  • the inorganic particle layer D containing a hydrate has a structure in which the layers are laminated in this order, but the layer strength is weaker than the separators for electrochemical devices produced in Examples 1-1 to 1-5. The production stability of was poor.
  • the inorganic particle layer A is provided on both surfaces of the nonwoven fabric base material.
  • the electrochemical element separator becomes thicker. As a result, the internal resistance of the lithium ion secondary battery and the capacitor deteriorated.
  • the inorganic particle layer B layer is provided on both surfaces of the nonwoven fabric base material.
  • the inorganic particle layer A is not included, the inorganic particle layer B is not a nonwoven fabric base material. It was easy to seep into the interior and pinholes were observed.
  • the separator for an electrochemical element produced in Comparative Example 2-3 was provided with an inorganic particle layer C containing alumina hydrate having an average particle diameter of 2.0 ⁇ m on one side of a nonwoven fabric substrate, and on the other side.
  • the inorganic particle layer D containing alumina hydrate having an average particle diameter of 0.5 ⁇ m is provided, but the layer strength is the same as that of the separator for an electrochemical element produced in Examples 2-1 to 2-6.
  • the separator was weaker and the manufacturing stability of the separator was poor.
  • the separator for an electrochemical element produced in Comparative Example 3-1 is a paper separator made of solvent-spun cellulose fiber C1 and Manila hemp fiber C2. However, since the thickness was as thin as 20 ⁇ m, generation of pinholes was observed.
  • the separator for electrochemical elements produced in Example 4 has a slightly lower basis weight and a slightly thinner thickness. Compared with the separators prepared in -1 to 1-3 and 1-5, in the pinhole evaluation, there was a portion where transmitted light was slightly observed.
  • the separator for an electrochemical element produced in Example 5 has a slightly higher basis weight and a slightly thicker thickness. Therefore, compared with the separator for an electrochemical element produced in Examples 1-1 to 1-4, lithium ion The internal resistance of the secondary battery and capacitor became slightly high.
  • the separator for electrochemical elements produced in Example 2-4 has a slightly lower basis weight and a slightly thinner thickness. Compared with the separators for electrochemical devices produced in Examples 2-1 to 2-3, 2-5, and 2-6, in the pinhole evaluation, there was a portion where a slight amount of transmitted light was observed.
  • the separator for an electrochemical element produced in Example 2-5 has a slightly higher basis weight and a slightly thicker thickness. Therefore, the separator for an electrochemical element in Examples 2-1 to 2-4 and 2-6 was compared. As a result, the internal resistance of the lithium ion secondary battery and the capacitor was slightly increased.
  • the inorganic particle layer B layer was first coated on the nonwoven fabric substrate, but the inorganic particle layer A was first coated on the nonwoven fabric substrate. Similar to the separators for electrochemical devices of -1 to 2-5, no pinholes were observed, and the internal resistance of the lithium ion secondary battery and capacitor was low and excellent.
  • a separator for an electrochemical element and an electrochemical element are suitable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cell Separators (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 製造安定性に優れ、ピンホールがなく、内部抵抗の低い電気化学素子用セパレータと、それを用いてなる電気化学素子を提供することにある。 不織布基材と、無機粒子を含む無機粒子層とを備えてなる電気化学素子用セパレータにおいて、該不織布基材が平均繊維径1~20μmの合成樹脂繊維を主体としてなる不織布基材であり、該無機粒子層として、平均粒子径2.0~4.0μmの水酸化マグネシウムを含む無機粒子層Aと、平均粒子径0.5μm以上2.0μm未満の水酸化マグネシウムを含む無機粒子層Bとを有し、該不織布基材の片面上に、無機粒子層Aと無機粒子層Bとがこの順に積層された構成を有することを特徴とする電気化学素子用セパレータ、又は該不織布基材の片面上に、無機粒子層Aが設けられ、もう一方の面上に無機粒子層Bが設けられた構成を有することを特徴とする電気化学素子用セパレータと、それを用いてなる電気化学素子。

Description

電気化学素子用セパレータ及びそれを用いてなる電気化学素子
 本発明は、電気化学素子用セパレータ及びそれを用いてなる電気化学素子に関する。
 電気化学素子には、電気化学素子用セパレータが内蔵されている。電気化学素子用セパレータは、電気化学素子内において、正極と負極とが直接接触しないようにする役割を果たしている。つまり、内部ショート(内部短絡)しないように、電気化学素子用セパレータが正極と負極を隔離している。電気化学素子の内部抵抗を下げるためには、電解質のイオンが効率良く透過できる空孔が電気化学素子用セパレータの内部に形成されていなければならない。したがって、電気化学素子用セパレータは多孔質であることが必要である。
 電気化学素子の1種であるリチウムイオン二次電池に使用されているリチウムイオン二次電池用セパレータとしては、従来、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂からなる樹脂製多孔膜が用いられてきた。しかし、このような樹脂製多孔膜をリチウムイオン二次電池用セパレータとして使用した場合には、電池が異常発熱した場合に溶融・収縮し、正負極を隔離する機能が失われて、著しい内部短絡を生じる問題があった。
 このような問題に対し、耐熱性の高い繊維からなる不織布基材に、アルミナ、ベーマイト、酸化マグネシウム、水酸化マグネシウム等の無機粒子を塗工して、無機粒子層を設けてなるリチウムイオン二次電池用セパレータが提案されている(例えば、特許文献1~4参照)。また、耐熱性の高い繊維として、ポリエチレンテレフタレート(PET)繊維が使用されている。しかし、このようなリチウムイオン二次電池用セパレータは、内部抵抗を低くするために、不織布基材や無機粒子層を薄くして、リチウムイオン二次電池用セパレータ全体の厚みを薄くしようとした場合に、ピンホールが発生しやすくなり、内部短絡しやくすなるという問題があった。
 また、別の電気化学素子であるキャパシタは大きな電気容量を持つとともに、充放電の繰り返しに対する安定性が高いため、車輌や電気機器に使用される給電源等の用途に広く使用されつつある。キャパシタに使用されているキャパシタ用セパレータとしては、従来、溶剤紡糸セルロース繊維や再生セルロース繊維の叩解物を主体とする紙(例えば、特許文献5~7参照)や合成繊維を含有してなる不織布(例えば、特許文献8参照)が使用されている。また、最近では、不織布基材と無機粒子とからなるセパレータ(例えば、特許文献9参照)が開示されている。しかし、特許文献5~9に記載されているキャパシタ用セパレータは、内部抵抗を低くするために、厚みを薄くした場合に、ピンホールが発生しやすくなり、内部短絡しやすくなるという問題があった。
特表2005-536857号公報 特開2009-230975号公報 特開2012-134024号公報 国際公開第2013/187458号公報 特開2002-231580号公報 特開平11-168033号公報 特開2000-3834号公報 特開2003-45752号公報 特開2014-38974号公報
 本発明の課題は、製造安定性に優れ、ピンホールが少なく、内部抵抗の低い電気化学素子用セパレータと、それを用いてなる電気化学素子を提供することである。
 本発明者らは、上記課題を解決するための手段として、下記発明を見出した。
(1)不織布基材と、無機粒子を含む無機粒子層とを備えてなる電気化学素子用セパレータにおいて、
 該不織布基材が平均繊維径1~20μmの合成樹脂繊維を主体としてなる不織布基材であり、
 該無機粒子層として、平均粒子径2.0~4.0μmの水酸化マグネシウムを含む無機粒子層Aと、平均粒子径0.5μm以上2.0μm未満の水酸化マグネシウムを含む無機粒子層Bとを有し、
 該不織布基材の片面上に、無機粒子層Aと無機粒子層Bとがこの順に積層された構成を有することを特徴とする電気化学素子用セパレータ。
(2)不織布基材と、無機粒子を含む無機粒子層とを備えてなる電気化学素子用セパレータにおいて、
 該不織布基材が平均繊維径1~20μmの合成樹脂繊維を主体としてなる不織布基材であり、
 該無機粒子層として、平均粒子径2.0~4.0μmの水酸化マグネシウムを含む無機粒子層Aと、平均粒子径0.5μm以上2.0μm未満の水酸化マグネシウムを含む無機粒子層Bとを有し、
 該不織布基材の片面上に無機粒子層Aが設けられ、もう一方の面上に無機粒子層Bが設けられた構成を有することを特徴とする電気化学素子用セパレータ。
(3)(1)又は(2)に記載の電気化学素子用セパレータを用いてなる電気化学素子、
を見出した。
 本発明によれば、平均繊維径1~20μmの合成樹脂繊維を主体としてなる不織布基材は強度が高いため、無機粒子として水酸化マグネシウムを含む無機粒子層を設ける際に、無機粒子を含む塗液を不織布基材に塗工するのに十分な強度を持たせることができる。
 無機粒子層Aは、無機粒子として平均粒子径2.0~4.0μmの水酸化マグネシウムを含んでいて、無機粒子層Bは、無機粒子として平均繊維径0.5μm以上2.0μm未満の水酸化マグネシウムを含んでいる。無機粒子層Aに含まれている水酸化マグネシウムの平均粒子径は、無機粒子層Bに含まれている水酸化マグネシウムの平均粒子径よりも大きい。そのため、無機粒子層Aは、無機粒子層Bと比較して、不織布基材内部に滲み込みにくく、ピンホールが発生しにくいが、厚みがやや厚くなりやすい。無機粒子層Bは、不織布基材内部に滲み込みやすく、無機粒子層Aと比較して、ピンホールが発生しやすいが、厚みが薄くなりやすい。
 そのため、不織布基材の片面上に、無機粒子層A層と、無機粒子層Bとが、この順に積層された構成を有する電気化学素子用セパレータでは、無機粒子層Bが不織布基材内部に滲み込むことを無機粒子層Aが防ぎ、電気化学素子用セパレータ表面に均一な無機粒子層を形成させることができる。その結果、電気化学素子用セパレータの厚みが薄くても、ピンホールの発生を抑制することができ、また、内部抵抗も低くすることができる。
 無機粒子層Aと無機粒子層Bとが、不織布基材の異なる面に設けられた構成を有する電気化学素子用セパレータにおいても、同様にピンホールの発生を抑制することができ、厚みが薄く、内部抵抗を低くすることができる。
 また、無機粒子層Aと無機粒子層Bは、不織布基材と密着しやすく、層強度が強くなるため、セパレータ製造の際に欠点が生じにくく、製造安定性にも優れるという効果が得られる。
<電気化学素子用セパレータ>
 本発明の電気化学素子用セパレータ(1)は、平均繊維径1~20μmの合成樹脂繊維を主体としてなる不織布基材の片面上に、平均粒子径2.0~4.0μmの水酸化マグネシウムを含む無機粒子層Aと、平均粒子径0.5μm以上2.0μm未満の水酸化マグネシウムを含む無機粒子層Bとが、この順に積層された構成を有することを特徴とする電気化学素子用セパレータである。
 本発明の電気化学素子用セパレータ(2)は、平均繊維径1~20μmの合成樹脂繊維を主体としてなる不織布基材の片面上に平均粒子径2.0~4.0μmの水酸化マグネシウムを含む無機粒子層Aが設けられ、もう一方の面上に平均粒子径0.5μm以上2.0μm未満の水酸化マグネシウムを含む無機粒子層Bが設けられた構成を有することを特徴とする電気化学素子用セパレータである。
 本発明の電気化学素子用セパレータに使用される不織布基材は、平均繊維径1~20μmの合成樹脂繊維を主体としてなる不織布基材である。平均繊維径1~20μmの合成樹脂繊維の含有量は、不織布基材を構成する全繊維に対して、好ましくは70質量%以上であり、より好ましくは80質量%以上であり、さらに好ましくは90質量%以上である。平均繊維径は1~20μmの合成樹脂繊維の含有量が70質量%よりも少ない場合、不織布基材の強度が弱くなる場合がある。
 平均繊維径1~20μmの合成樹脂繊維は、フィブリルを有していない繊維であり、いわゆるステープル繊維(staple fiber、短繊維)である。平均繊維径1~20μmの合成樹脂繊維の平均繊維径は、1~20μmであり、より好ましくは1~15μmであり、さらに好ましくは1~10μmである。平均繊維径が1μm未満の場合、繊維が細すぎて、無機粒子層が不織布基材内部に滲み込みにくくなり、セパレータの厚みを薄くすることが難しくなる。平均繊維径が20μmより太い場合、不織布基材自体の厚みを薄くすることが困難になり、セパレータの厚みを薄くすることが難しくなる。不織布基材には、平均繊維径が1μm未満の合成樹脂繊維、平均繊維径が20μm超の合成樹脂繊維、合成樹脂や合成樹脂繊維のフィブリル化物、フィブリッド又はパルプ化物を含有させることができるが、セパレータの厚みを薄くする効果を得るために、平均繊維径1~20μmの合成樹脂繊維が不織布基材の主体となる。
 本発明における平均繊維径とは、不織布基材断面の走査型電子顕微鏡写真より、不織布基材を形成する繊維について、繊維の長さ方向に対して垂直な断面又は垂直に近い断面の繊維を30本選択し、その繊維径を測定した平均値である。合成樹脂繊維は熱や圧力によって溶融する場合や変形する場合がある。その場合は、断面積を測定して、真円換算の繊維径を算出する。
 平均繊維径1~20μmの合成樹脂繊維の繊維長は、好ましくは1~15mmであり、より好ましくは2~10mmであり、さらに好ましくは2~5mmである。繊維長が1mmより短い場合、不織布基材から脱落する場合がある。15mmより長い場合、繊維がもつれてダマになることがあり、厚みむらが生じる場合がある。
 合成樹脂繊維を構成する樹脂としては、ポリオレフィン(polyolefin)系、ポリエステル(polyester)系、ポリ酢酸ビニル(polyvinyl acetate)系、エチレン-酢酸ビニル共重合体(ethylene-vinyl acetate copolymer)系、ポリアミド(polyamide)系、アクリル(acrylic)系、ポリ塩化ビニル(polyvinyl chloride)系、ポリ塩化ビニリデン(polyvinylidene chloride)系、ポリビニルエーテル(polyvinyl ether)系、ポリビニルケトン(polyvinylketone)系、ポリエーテル(polyether)系、ポリビニルアルコール(polyvinyl alcohol)系、ジエン(diene)系、ポリウレタン(polyurethane)系、フェノール(phenol)系、メラミン(melamine)系、フラン(furan)系、尿素(urea formaldehyde)系、アニリン(aniline)系、不飽和ポリエステル(Unsaturated polyester)系、アルキド(alkyd)系、フッ素(fluorocarbon)系、シリコーン(silicone)系、ポリアミドイミド(polyamide imide)系、ポリフェニレンスルフィド(polyphenylene sulfide)系、ポリイミド(polyimide)系、ポリカーボネート(polycarbonate)系、ポリアゾメチン(polyazomethine)系、ポリエステルアミド(polyesteramide)系、ポリエーテルエーテルケトン(polyetheretherketone)系、ポリ-p-フェニレンベンゾビスオキサゾール(poly-p-phenylenebenzobisoxazole)系、ポリベンゾイミダゾール(polybenzimidazole)系、エチレン-ビニルアルコール共重合体(ethylene-vinylalcohol copolymer)系等の樹脂が挙げられる。また、これらの樹脂の誘導体も使用できる。これらの樹脂の中で、無機粒子層との接着性を高くするためには、ポリエステル系樹脂、アクリル系樹脂、ポリオレフィン系樹脂を使用することが好ましい。また、電気化学素子用セパレータの耐熱性を向上させるためには、ポリエステル系樹脂、アクリル系樹脂、ポリアミド系樹脂を使用することが好ましい。
 ポリエステル系樹脂としては、例えば、ポリエチレンテレフタレート(polyethylene terephthalate、PET)系、ポリブチレンテレフタレート(polybutylene terephthalate、PBT)系、ポリトリメチレンテレフタレート(polytrimethylen terephtalate、PTT)系、ポリエチレンナフタレート(polyethylene naphthalate、PEN)系、ポリブチレンナフタレート系(polybutylene naphthalate)、ポリエチレンイソフタレート(polyethylene isophthalate)系、全芳香族ポリエステル(fully aromatic polyester)系等の樹脂が挙げられる。また、これらの樹脂の誘導体も使用できる。これらの樹脂の中で、耐熱性、耐電解液性、無機粒子層との接着性を向上させるためには、ポリエチレンテレフタレート系樹脂が好ましい。
 アクリル系樹脂としては、アクリロニトリル(acrylonitrile)100%の重合体からなるもの、アクリロニトリルに対して、アクリル酸(acrylic acid)、メタクリル酸(methacrylic acid)、アクリル酸エステル(acrylic ester、acrylate)、メタクリル酸エステル(methacrylic ester、acrylate)等の(メタ)アクリル酸誘導体、酢酸ビニル等を共重合させたもの等が挙げられる。
 ポリオレフィン系樹脂としては、ポリプロピレン(polypropylene)、ポリエチレン(polyethylene)、ポリメチルペンテン(polymethylpentene)、エチレン-ビニルアルコール共重合体、オレフィン系共重合体等が挙げられる。耐熱性の観点から、ポリプロピレン、ポリメチルペンテン、エチレン-ビニルアルコール共重合体、オレフィン系共重合体等を挙げることができる。
 ポリアミド系樹脂としては、ナイロン(nylon)などの脂肪族ポリアミド(aliphatic polyamide)、ポリ-p-フェニレンテレフタルアミド(poly-paraphenylene terephthalamide)、コポリ(パラ-フェニレン-3,4′-オキシジフェニレンテレフタルアミド)(copoly(para-phenylene-3,4′-oxydiphenyleneterephthalic amide))、ポリ-m-フェニレンイソフタルアミド(poly-m-phenyleneisophthalamide)などの全芳香族ポリアミド(wholly aromatic polyamide、aramid)、全芳香族ポリアミドにおける主鎖の一部に脂肪鎖を有する半芳香族ポリアミド(semi-aromatic polyamide)が挙げられる。
 半芳香族とは、主鎖の一部に例えば脂肪鎖などを有するものを指す。全芳香族ポリアミドはパラ(para)型、メタ(meta)型いずれでも良い。
 合成樹脂繊維は、単一の樹脂からなる繊維(単繊維)であっても良いし、2種以上の樹脂からなる繊維(複合繊維)であっても良い。また、不織布基材に含まれる合成樹脂繊維は、1種でも良いし、2種類以上を組み合わせて使用しても良い。複合繊維としては、芯鞘型、偏芯型、サイドバイサイド型、海島型、オレンジ型、多重バイメタル型が挙げられる。複合繊維を分割した繊維を使用しても良い。
 不織布基材は、合成樹脂繊維以外の繊維を含有しても良い。例えば、溶剤紡糸セルロースや再生セルロースの短繊維やフィブリル化物、天然セルロース繊維、天然セルロース繊維のパルプ化物やフィブリル化物、無機繊維等を含有しても良い。
 不織布基材の坪量は、好ましくは6~20g/mであり、より好ましくは7~18g/mであり、さらに好ましくは8~15g/mである。坪量が20g/mを超える場合、セパレータの薄膜化が難しくなる場合がある。坪量が6g/m未満の場合、十分な強度を得ることが難しい場合がある。なお、坪量はJIS P 8124(紙及び板紙-坪量測定法)に規定された方法に基づき測定される。
 不織布基材の厚みは、好ましくは9~30μmであり、より好ましくは10~27μmであり、さらに好ましくは11~24μmである。厚みが9μm未満の場合、十分な不織布基材の強度が得られない場合がある。厚みが30μmを超える場合、セパレータの薄膜化が難しくなる場合がある。なお、厚みはJIS B 7502に規定された方法に基づき測定した値、つまり、5N荷重時の外側マイクロメーターにより測定された値を意味する。
 不織布基材の製造方法としては、繊維ウェブを形成し、繊維ウェブ内の繊維を接着・融着・絡合させて不織布を得る製造方法を用いることができる。得られた不織布は、そのまま不織布基材として使用しても良いし、複数枚の不織布からなる積層体として使用することもできる。繊維ウェブの製造方法としては、例えば、カード(carding)法、エアレイ(airlay)法、スパンボンド(spunbond)法、メルトブロー(meltblow)法等の乾式法;湿式抄紙法等の湿式法;静電紡糸(electrospinning)法等が挙げられる。このうち、湿式法によって得られるウェブは、均質かつ緻密であり、不織布基材として好適に用いることができる。湿式法は、繊維を水中に分散して均一な抄紙スラリーとし、この抄紙スラリーを円網式、長網式、傾斜式等の抄紙方式の少なくとも1つを有する抄紙機を用いて、繊維ウェブを得る方法である。
 繊維ウェブから不織布基材を製造する方法としては、水流交絡(スパンレース、spun lace)法、ニードルパンチ(needle punch)法、バインダー接着法(サーマルボンド、thermal bond)等を使用することができる。特に、均一性を重視して前記湿式法を用いる場合、バインダー接着法を施して、バインダー用合成樹脂繊維を接着することが好ましい。バインダー接着法により、均一なウェブから均一な不織布が形成される。このようにして製造した湿式不織布に対して、カレンダー(calender)等によって圧力を加えて、厚さを調整することや、あるいは厚さを均一化することが好ましい。ただし、バインダー用合成樹脂繊維が皮膜化しない温度(バインダー用合成樹脂繊維の融点又は軟化点よりも20℃以上低い温度)で加圧するのが好ましい。
 本発明の電気化学素子用セパレータ(1)及び(2)において、無機粒子層Aは、平均粒子径2.0~4.0μmの水酸化マグネシウムを含む塗液aを、不織布基材の片面上に塗工する方法で得られる。
 本発明における平均粒子径とは、レーザー回折法による粒度分布測定から求められる体積平均粒子径(D50)である。
 無機粒子層Aにおける水酸化マグネシウムの平均粒子径は、より好ましくは2.2~3.7μmであり、さらに好ましくは2.5~3.5μmである。
 無機粒子層Aの塗工量(絶乾)は、好ましくは2.0~8.0g/mであり、より好ましくは2.5~7.0g/mであり、さらに好ましくは3.0~6.0g/mである。塗工量が8.0g/mを超えた場合、電気化学素子用セパレータの厚みが厚くなり過ぎる場合がある。塗工量が2.0g/m未満の場合、ピンホールが発生しやすくなる場合がある。
 本発明の電気化学素子用セパレータ(1)において、無機粒子層B層は、平均粒子径0.5μm以上2.0μm以下の水酸化マグネシウムを含む塗液bを、無機粒子層A上に塗工する方法で得られる。
 本発明の電気化学素子用セパレータ(2)において、無機粒子層Bは、無機粒子層Aが設けられた面とは反対側の、不織布基材のもう一方の面上に、塗液bを塗工する方法で得られる。
 無機粒子層Bにおける水酸化マグネシウムの平均粒子径は、より好ましくは0.5~1.5μmであり、さらに好ましくは0.5~1.3μmであり、特に好ましくは0.5~1.0μmである。
 無機粒子層Bの塗工量(絶乾)は、好ましくは2.0~8.0g/mであり、より好ましくは2.5~7.0g/mであり、さらに好ましくは3.0~6.0g/mである。塗工量が8.0g/mを超えた場合、電気化学素子用セパレータの厚みが厚くなり過ぎる場合がある。塗工量が2.0g/m未満の場合、ピンホールが発生しやすくなる場合がある。
 水酸化マグネシウムを含む塗液を調製するための媒体としては、バインダーや水酸化マグネシウムを均一に溶解又は分散できるものであれば特に限定されず、例えば、トルエンなどの芳香族炭化水素類、テトラヒドロフラン(tetrahydrofuran、THF)などの環状エーテル類、メチルエチルケトン(methyl ethyl ketone、MEK)などのケトン類、イソプロパノールなどのアルコール類、N-メチル-2-ピロリドン(N-methylpyrrolidone、NMP)、N,N-ジメチルアセトアミド(N,N-Dimethylacetamide、DMAc)、N,N-ジメチルホルムアミド(N,N-dimethylformamide、DMF)、ジメチルスルホキシド(Dimethyl sulfoxide、DMSO)、水などを必要に応じて用いることができる。また、必要に応じてこれらの媒体を混合して用いても良い。なお、使用する媒体は不織布基材を膨張あるいは溶解させないものが好ましい。
 塗液を塗工する方法としては、例えばブレード(blade)、ロッド(rod)、リバースロール(reverse roll)、リップ(lip)、ダイ(die)、カーテン(curtain)、エアーナイフ(air knife)等各種の塗工方式、フレキソ(flexography)、スクリーン(screen)、オフセット(offset)、グラビア(gravure)、インクジェット(inkjet)等の各種印刷方式、ロール転写、フィルム転写などの転写方式等を、必要に応じて選択して用いることができる。
 本発明の電子化学素子用セパレータの坪量は、好ましくは10~36g/mであり、より好ましくは12~32g/mであり、さらに好ましくは14~27g/mである。坪量が36g/mを超えた場合、内部抵抗が高くなり過ぎる場合がある。坪量が10g/m未満の場合、ピンホールが発生しやすくなる場合や、十分な強度を得ることが難しくなる場合がある。
 本発明の電子化学素子用セパレータの厚みは、好ましくは10~40μmであり、より好ましくは11~30μmであり、さらに好ましくは12~25μmである。厚みが40μmを超えた場合、電気化学素子用セパレータが厚くなり過ぎてしまい、内部抵抗が高くなる場合がある。厚みが10μm未満の場合、ピンホールが発生しやすくなる場合や、十分な強度を得ることが難しくなる場合がある。
 本発明の電気化学素子用セパレータは、特にリチウムイオン二次電池、キャパシタ等の電気化学素子に好適に用いられる。
<リチウムイオン二次電池>
 本発明におけるリチウムイオン二次電池の負極活物質としては、黒鉛やコークスなどの炭素材料、金属リチウム、アルミニウム(Al)、ケイ素(Si)、スズ(Sn)、ニッケル(Ni)、鉛(Pb)から選ばれる1種以上の(半)金属とリチウム(Li)との合金、SiO、SnO、Fe、WO、Nb、Li4/3Ti5/3等の金属酸化物、Li0.4CoNなどの窒化物が用いられる。正極活物質としては、コバルト酸リチウム(lithium cobalt oxide)、マンガン酸リチウム(lithium manganese oxide)、ニッケル酸リチウム(lithium nickel oxide)、チタン酸リチウム(lithium titanium oxide、LTO)、リチウムニッケルマンガン酸化物(lithium-nickel-manganese oxide)、リン酸鉄リチウム(lithium iron phosphate)が用いられる。リン酸鉄リチウムは、さらに、マンガン(Mn)、クロム(Cr)、コバルト(Co)、銅(Cu)、ニッケル、バナジウム(V)、モリブデン(Mo)、チタン(Ti)、亜鉛(Zn)、アルミニウム(Al)、ガリウム(Ga)、マグネシウム(Mg)、ホウ素(B)、ニオブ(Nb)から選ばれる1種以上の金属との複合物でも良い。
 リチウムイオン二次電池の電解液には、プロピレンカーボネート(propylene carbonate)、エチレンカーボネート(ethylene carbonate)、ジメチルカーボネート(dimethyl carbonate)、ジエチルカーボネート(diethyl carbonate)、ジメトキシエタン(dimethoxyethane)、ジメトキシメタン(dimethoxymethane)、これらの混合溶媒などの有機溶媒にリチウム塩を溶解させたものが用いられる。リチウム塩としては、六フッ化リン酸リチウム(LiPF)や四フッ化ホウ酸リチウム(LiBF)が挙げられる。固体電解質としては、ポリエチレングリコールやその誘導体、ポリ(メタ)アクリル酸誘導体、ポリシロキサンやその誘導体、ポリフッ化ビニリデンなどのゲル状ポリマーにリチウム塩を溶解させたものが用いられる。
<キャパシタ>
 本発明におけるキャパシタとは、電気二重層キャパシタ、リチウムイオンキャパシタ、ハイブリッドキャパシタ、レドックスキャパシタを意味する。
 電気二重層キャパシタは、電極と電解液との界面に電気二重層が形成され、蓄電される。電極活物質としては、活性炭、カーボンブラック、カーボンエーロゲル、カーボンナノチューブ、非多孔性炭素などの炭素材料が主に用いられる。電解液としては、イオン解離性の塩を溶解させた水溶液、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、アセトニトリル(acetonitrile)、γ-ブチロラクトン(γ-butyrolacton)、N,N-ジメチルホルムアミド、テトラヒドロフラン、ジメトキシエタン、ジメトキシメタン、スルホラン(sulfolane)、ジメチルスルホキシド、エチレングリコール(ethylene glycol)、プロピレングリコール(propylene glycol)、メチルセロソルブ(methyl cellosolve)、これらの混合溶媒などの有機溶媒にイオン解離性の塩を溶解させたもの、イオン性液体(固体溶融塩)などが挙げられるが、これらに限定されるものではない。
 リチウムイオンキャパシタは、負極活物質がリチウムイオンを可逆的に担持可能な物質であり、正極活物質がリチウムイオン及び/またはアニオンを可逆的に担持可能な物質であり、予め負極及び/または正極にリチウムイオンが担持されてなるキャパシタである。負極活物質としては、例えば黒鉛、難黒鉛化炭素、ポリアセン系有機半導体、チタン酸リチウムなどが挙げられる。正極活物質としては、例えばポリピロール(polypyrrole)、ポリチオフェン(polythiophene)、ポリアニリン(polyaniline)、ポリアセチレン(polyacetylene)などの導電性高分子、活性炭、ポリアセン(polyacene)系有機半導体などが挙げられる。電解液としては、リチウム塩を溶解させた有機溶媒が用いられる。リチウム塩としては、例えばLiClO、LiAsF、LiBF、LiPF、Li(CSO)Nなどが挙げられる。有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、アセトニトリル、γ-ブチロラクトン、N,N-ジメチルホルムアミド、テトラヒドロフラン、ジメトキシエタン、ジメトキシメタン、スルホラン、ジメチルスルホキシド、エチレングリコール、プロピレングリコール、メチルセロソルブ、これらの混合溶媒が挙げられる。
 ハイブリッドキャパシタとは、正極と負極の反応機構または電極材料が異なっているキャパシタである。例えば、負極が酸化還元反応で、正極が電気二重層型反応といった具合である。ハイブリッドキャパシタの負極活物質としては、例えば活性炭、黒鉛、ハードカーボン、ポリアセン、LiTi12などの金属酸化物、n型導電性高分子などが挙げられる。正極活物質としては、例えば活性炭、MnO、LiCoO、酸化ルテニウムなどの金属酸化物、黒鉛、p型導電性高分子などが挙げられる。
 レドックスキャパシタは、蓄電と放電の機構が、電極活物質の酸化還元、電極表面でのイオンの吸脱着、電気二重層における充放電のすべてあるいは一部を利用してなるものである。レドックスキャパシタの電極活物質としては、例えば、酸化ルテニウム、酸化イリジウム、酸化チタン、酸化ジルコニウム、酸化ニッケル、酸化バナジウム、酸化タングステン、酸化マンガン、酸化コバルトなどの金属酸化物、これら金属酸化物の複合物、これら金属酸化物の水和物、これら金属酸化物と炭素材料との複合物、窒化モリブデン、窒化モリブデンと金属酸化物との複合物、リチウムイオンをインターカレートできるグラファイトやLiTi12、LiFePOなどのリチウム金属酸化物、ポリピロール、ポリアニリン、ポリチオフェン、ポリアセン、これらの誘導体、ポリフルオレン誘導体、ポリキノキサリン(polyquinoxaline)誘導体、ポリインドール(polyindole)、サイクリックインドールポリマー、1,5-ジアミノアントラキノン(1,5-diaminoanthraquinone)、1,4-ベンゾキノン(1,4-benzoquinone)、グラファイトとこれらキノン系化合物との複合体、金属錯体高分子が挙げられる。電解液としては、イオン解離性の塩を溶解させた水溶液、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、アセトニトリル、γ-ブチロラクトン、N,N-ジメチルホルムアミド、テトラヒドロフラン、ジメトキシエタン、ジメトキシメタン、スルホラン、ジメチルスルホキシド、エチレングリコール、プロピレングリコール、メチルセロソルブ、これらの混合溶媒などの有機溶媒にイオン解離性の塩を溶解させたもの、イオン性液体(固体溶融塩)などが挙げられるが、これらに限定されるものではない。
 以下、実施例により本発明をさらに詳しく説明するが、本発明は実施例に限定されるものではない。
 表1に示した原料と配合量に従って、抄紙用スラリーを調製した。
<表1中の略語の説明>
PET1:平均繊維径2.5μm、繊維長3mmの配向結晶化ポリエチレンテレフタレート繊維
PET2:平均繊維径3.2μm、繊維長3mmの配向結晶化ポリエチレンテレフタレート繊維
PET3:平均繊維径4.3μm、繊維長3mmの単一成分型未延伸ポリエチレンテレフタレート繊維(バインダー、軟化点120℃、融点230℃)
PA1:平均繊維径8.1μm、繊維長5mmの全芳香族ポリアミド繊維(コポリ(パラ-フェニレン-3,4′-オキシジフェニレンテレフタルアミド)、Copoly(p-phenylene-3,4′-oxydiphenylene terephthalamide))
Figure JPOXMLDOC01-appb-T000001
<不織布基材1~5>
 スラリー1~3を円網・傾斜コンビネーション抄紙機を用いて、湿式抄紙し、表2に示す不織布基材1~5を作製した。厚みは、金属ロール-樹脂ロール(ショア硬度D92)の構成の熱カレンダー装置を使用して、金属ロール温度195℃、線圧200kN/m、加工速度10m/min、1ニップ(nip)の条件で熱カレンダー処理を行うことで調整した。
Figure JPOXMLDOC01-appb-T000002
<塗液a1の調製>
 平均粒子径2.0μmの水酸化マグネシウム100質量部を水150質量部に分散した。次に、その1質量%水溶液の25℃における粘度が200mPa・sのカルボキシメチルセルロースナトリウム塩2質量%水溶液75質量部を添加・攪拌混合した。続いて、ガラス転移点-18℃、平均粒子径0.2μmのカルボキシ変性スチレン-ブタジエン共重合樹脂エマルション(固形分濃度50質量%)10質量部を添加・攪拌混合した。最後に、固形分濃度が25質量%になるように、調製水を加えて、塗液a1を調製した。
<塗液a2の調製>
 平均粒子径2.0μmの水酸化マグネシウムを平均粒子径3.0μmの水酸化マグネシウムに変更した以外は、塗液a1の調製と同様にして、塗液a2を調製した。
<塗液a3の調製>
 平均粒子径2.0μmの水酸化マグネシウムを平均粒子径4.0μmの水酸化マグネシウムに変更した以外は、塗液a1の調製と同様にして、塗液a3を調製した。
<塗液b1の調製>
 平均粒子径0.5μmの水酸化マグネシウム100質量部を水150質量部に分散した。次に、その1質量%水溶液の25℃における粘度が200mPa・sのカルボキシメチルセルロースナトリウム塩2質量%水溶液75質量部を添加・攪拌混合した。続いて、ガラス転移点-18℃、平均粒子径0.2μmのカルボキシ変性スチレン-ブタジエン共重合樹脂エマルション(固形分濃度50質量%)10質量部を添加・攪拌混合した。最後に、固形分濃度が25質量%になるように、調整水を加えて、塗液b1を調製した。
<塗液b2の調製>
 平均粒子径0.5μmの水酸化マグネシウムを平均粒子径1.0μmの水酸化マグネシウムに変更した以外は、塗液b1の調製と同様にして、塗液b2を調製した。
<塗液b3の調製>
 平均粒子径0.5μmの水酸化マグネシウムを平均粒子径1.5μmの水酸化マグネシウムに変更した以外は、塗液b1の調製と同様にして、塗液b3を調製した。
<塗液c1の調製>
 平均粒子径2.0μmのアルミナ水和物100質量部を水150質量部に分散した。次に、その1質量%水溶液の25℃における粘度が200mPa・sのカルボキシメチルセルロースナトリウム塩2質量%水溶液75質量部を添加・攪拌混合した。続いて、ガラス転移点-18℃、平均粒子径0.2μmのカルボキシ変性スチレン-ブタジエン共重合樹脂エマルション(固形分濃度50質量%)10質量部を添加・攪拌混合した。最後に、固形分濃度が25質量%になるように、調整水を加えて、塗液c1を調製した。
<塗液c2の調製>
 平均粒子径2.0μmのアルミナ水和物を平均粒子径0.5μmのアルミナ水和物に変更した以外は、塗液c1の調製と同様にして、塗液c2を調製した。
<電気化学素子用セパレータ>
(実施例1-1)
 不織布基材1上に、塗液a1を、キスリバース(kiss reverse)方式のグラビアコーターにて塗工量(絶乾)が7.0g/mとなるように塗工・乾燥した後、さらに同じ塗工面に、塗液b1をキスリバース方式のグラビアコーターにて塗工量(絶乾)が2.5g/mとなるように塗工・乾燥し、電気化学素子用セパレータを得た。
(実施例1-2)
 不織布基材2上に、塗液a2を、キスリバース方式のグラビアコーターにて塗工量(絶乾)が5.0g/mとなるように塗工・乾燥した後、さらに同じ塗工面に、塗液b2をキスリバース方式のグラビアコーターにて塗工量(絶乾)が5.0g/mとなるように塗工・乾燥し、電気化学素子用セパレータを得た。
(実施例1-3)
 不織布基材3上に、塗液a3を、キスリバース方式のグラビアコーターにて塗工量(絶乾)が3.0g/mとなるように塗工・乾燥した後、さらに同じ塗工面に、塗液b3をキスリバース方式のグラビアコーターにて塗工量(絶乾)が6.0g/mとなるように塗工・乾燥し、電気化学素子用セパレータを得た。
(実施例1-4)
 不織布基材4上に、塗液a1を、キスリバース方式のグラビアコーターにて塗工量(絶乾)が2.0g/mとなるように塗工・乾燥した後、さらに同じ塗工面に、塗液b1をキスリバース方式のグラビアコーターにて塗工量(絶乾)が2.0g/mとなるように塗工・乾燥し、電気化学素子用セパレータを得た。
(実施例1-5)
 不織布基材5上に、塗液a1を、キスリバース方式のグラビアコーターにて塗工量(絶乾)が8.0g/mとなるように塗工・乾燥した後、さらに同じ塗工面に、塗液b1をキスリバース方式のグラビアコーターにて塗工量(絶乾)が8.0g/mとなるように塗工・乾燥し、電気化学素子用セパレータを得た。
(実施例2-1)
 不織布基材1上に、塗液a1を、キスリバース方式のグラビアコーターにて塗工量(絶乾)が7.0g/mとなるように塗工・乾燥した後、不織布基材1のもう一方の面上に、塗液b1をキスリバース方式のグラビアコーターにて塗工量(絶乾)が2.5g/mとなるように塗工・乾燥し、電気化学素子用セパレータを得た。
(実施例2-2)
 不織布基材2上に、塗液a2を、キスリバース方式のグラビアコーターにて塗工量(絶乾)が5.0g/mとなるように塗工・乾燥した後、さらに不織布基材2のもう一方の面上に、塗液b2をキスリバース方式のグラビアコーターにて塗工量(絶乾)が5.0g/mとなるように塗工・乾燥し、電気化学素子用セパレータを得た。
(実施例2-3)
 不織布基材3上に、塗液a3を、キスリバース方式のグラビアコーターにて塗工量(絶乾)が3.0g/mとなるように塗工・乾燥した後、さらに不織布基材3のもう一方の面上に、塗液b3をキスリバース方式のグラビアコーターにて塗工量(絶乾)が7.0g/mとなるように塗工・乾燥し、電気化学素子用セパレータを得た。
(実施例2-4)
 不織布基材4上に、塗液a1を、キスリバース方式のグラビアコーターにて塗工量(絶乾)が2.0g/mとなるように塗工・乾燥した後、さらに不織布基材4のもう一方の面上に、塗液b1をキスリバース方式のグラビアコーターにて塗工量(絶乾)が2.0g/mとなるように塗工・乾燥し、電気化学素子用セパレータを得た。
(実施例2-5)
 不織布基材5上に、塗液a1を、キスリバース方式のグラビアコーターにて塗工量(絶乾)が8.0g/mとなるように塗工・乾燥した後、さらに不織布基材5のもう一方の面上に、塗液b2をキスリバース方式のグラビアコーターにて塗工量(絶乾)が8.0g/mとなるように塗工・乾燥し、電気化学素子用セパレータを得た。
(実施例2-6)
 不織布基材2上に、塗液b1を、キスリバース方式のグラビアコーターにて塗工量(絶乾)が3g/mとなるように塗工・乾燥した後、さらに不織布基材2のもう一方の面上に、塗液a2をキスリバース方式のグラビアコーターにて塗工量(絶乾)が4g/mとなるように塗工・乾燥し、電気化学素子用セパレータを得た。
(比較例1-1)
 不織布基材2上に、塗液a2を、キスリバース方式のグラビアコーターにて塗工量(絶乾)が5.0g/mとなるように塗工・乾燥した後、さらに同じ塗工面に、塗液a2をキスリバース方式のグラビアコーターにて塗工量(絶乾)が5.0g/mとなるように塗工・乾燥し、電気化学素子用セパレータを得た。
(比較例1-2)
 不織布基材2上に、塗液a2を、キスリバース方式のグラビアコーターにて塗工量(絶乾)が10.0g/mとなるように塗工・乾燥した後、さらに同じ塗工面に、塗液a2をキスリバース方式のグラビアコーターにて塗工量(絶乾)が10.0g/mとなるように塗工・乾燥し、電気化学素子用セパレータを得た。
(比較例1-3)
 不織布基材2上に、塗液b2を、キスリバース方式のグラビアコーターにて塗工量(絶乾)が5.0g/mとなるように塗工・乾燥した後、さらに同じ塗工面に、塗液b2をキスリバース方式のグラビアコーターにて塗工量(絶乾)が5.0g/mとなるように塗工・乾燥し、電気化学素子用セパレータを得た。
(比較例1-4)
 不織布基材2上に、塗液b2を、キスリバース方式のグラビアコーターにて塗工量(絶乾)が5.0g/mとなるように塗工・乾燥した後、さらに同じ塗工面に、塗液a2をキスリバース方式のグラビアコーターにて塗工量(絶乾)が5.0g/mとなるように塗工・乾燥し、電気化学素子用セパレータを得た。
(比較例1-5)
 不織布基材2上に、塗液c1を、キスリバース方式のグラビアコーターにて塗工量(絶乾)が8.0g/mとなるように塗工・乾燥した後、さらに同じ塗工面に、塗液c2をキスリバース方式のグラビアコーターにて塗工量(絶乾)が8.0g/mとなるように塗工・乾燥し、電気化学素子用セパレータを得た。なお、塗液c1を塗工して得られる無機粒子層を「無機粒子層C」と称し、塗液c2を塗工して得られる無機粒子層を「無機粒子層D」と称する。
(比較例2-1)
 不織布基材2上に、塗液a2を、キスリバース方式のグラビアコーターにて塗工量(絶乾)が10.0g/mとなるように塗工・乾燥した後、さらに不織布基材2のもう一方の面上に、塗液a2をキスリバース方式のグラビアコーターにて塗工量(絶乾)が10.0g/mとなるように塗工・乾燥し、電気化学素子用セパレータを得た。
(比較例2-2)
 不織布基材2上に、塗液b1を、キスリバース方式のグラビアコーターにて塗工量(絶乾)が5.0g/mとなるように塗工・乾燥した後、さらに不織布基材2のもう一方の面上に、塗液b1をキスリバース方式のグラビアコーターにて塗工量(絶乾)が5.0g/mとなるように塗工・乾燥し、電気化学素子用セパレータを得た。
(比較例2-3)
 不織布基材2上に、塗液c1を、キスリバース方式のグラビアコーターにて塗工量(絶乾)が8.0g/mとなるように塗工・乾燥した後、さらに不織布基材2のもう一方の面上に、塗液c2をキスリバース方式のグラビアコーターにて塗工量(絶乾)が8.0g/mとなるように塗工・乾燥し、電気化学素子用セパレータを得た。
(比較例3-1)
 平均繊維径10.0μm、繊維長4mmの溶剤紡糸セルロース繊維を、リファイナーを用いて、JIS P8121に準拠して測定したカナダ標準濾水度(CSF)20mlとなるまで叩解した繊維C1と、マニラ麻を、リファイナーを用いて、CSFが300mlとなるまで叩解した繊維C2を、C1/C2=70/30の割合で調製した抄紙用スラリーを円網・傾斜コンビネーション抄紙機を用いて、湿式抄紙し、坪量7.0g/m、厚み20μm、密度0.35g/cmの電気化学素子用セパレータを作製した。
 実施例及び比較例の電気化学素子用セパレータと、それを用いてなる電気化学素子について、下記の評価を行い、その結果を表3に示した。
[ピンホール評価]
 前記の各電気化学素子用セパレータ(A4サイズ:210mm×297mm)のピンホールの状態について、透過光を用いて目視にて確認し、次の評価基準で評価した。結果を表3に記す。
 A:目視でのピンホールの発生は見られない。
 B:うっすらと透過光が観察される部分が存在する。
 C:明らかに透過光が多数観察される。
[層強度評価]
 前記の各電気化学素子用セパレータを幅方向100mm×長さ方向200mmサイズで切り取り、長さ方向100mmの位置で折り目をつけて180度折り曲げ、その後、元に戻して広げる作業を3回繰り返した。そのときの無機粒子層のひび割れの様子を目視にて確認し、次の評価基準で評価した。なお、片面塗工の場合は、不織布基材面を内側、無機粒子層面を外側として折り曲げた。両面塗工の場合は、無機粒子層A又はCを内側、無機粒子層B又はDを外側として折り曲げた。結果を表3に記す。
 A:折り目の部分の無機粒子層に、損傷は見られない。
 C:折り目部分の無機粒子層に、多数のひび割れが見られる。
<リチウムイオン二次電池>
[リチウムイオン二次電池の作製]
 前記の各電気化学素子用セパレータを用い、正極にマンガン酸リチウム、負極にメソカーボンマイクロビーズ(mesocarbon microbead)、電解液にヘキサフルオロリン酸リチウム(LiPF)の1mol/L炭酸ジエチル(DEC)/炭酸エチレン(EC)(容量比7/3)混合溶媒溶液を用いた設計容量30mAhのリチウムイオン二次電池を作製した。
[内部抵抗の評価]
 作製した各リチウムイオン二次電池について、「60mA定電流充電→4.2V定電圧充電(1時間)→60mAで定電流放電→2.8Vになったら次のサイクル」のシーケンスにて、5サイクルの慣らし充放電を行った後、「60mA定電流充電→4.2V定電圧充電(1時間)→6mAで30分間定電流放電(放電量3mAh)→放電終了直前の電圧を測定(電圧a)→60mA定電流充電→4.2V定電圧充電(1時間)→90mAで2分間定電流放電(放電量3mAh)→放電終了直前の電圧(電圧b)の測定」を行い、「内部抵抗Ω=(電圧a-電圧b)/(90mA-6mA)」の式で内部抵抗を求めた。結果を表3に記す。
 A:内部抵抗4Ω未満
 B:内部抵抗4Ω以上5Ω未満
 C:内部抵抗5Ω以上
<電気二重層キャパシタ>
[電極0の作製]
 ポリフッ化ビニリデン(polyvinylidene fluoride)10質量部をN-メチル-2-ピロリドン(N-methyl-2-pyrrolidinone)90質量部に溶解し、これにフェノール樹脂を出発原料とする平均粒径5.0μm、比表面積2000m/gの粉末状活性炭80質量部と、平均粒径200nmのアセチレンブラック10質量部と、N-メチル-2-ピロリドン300質量部を添加し、混合撹拌機にて十分混合して、電極スラリーを得た。塩酸により表面をエッチング処理した厚み30μmのアルミニウム箔集電体に、アプリケータを用いて上記の電極スラリーを塗布・乾燥した後に、ロールプレス装置を用いてプレス処理を行い、厚み150μmの電気二重層キャパシタ用電極を作製し、これを電極0とした。
[電気二重層キャパシタの作製]
 電極0を30mm×50mmサイズで2枚切り取り、前記の各電気化学素子用セパレータが電極間に介するようにそれぞれ積層した。これをアルミニウム製収納袋に収納し、130℃で24時間真空加熱を行った後、アルミニウム製収納袋内に電解液を注入し、注入口を密栓して電気二重層キャパシタを作製した。電解液に(C(CH)NBFの1.5mol/lプロピレンカーボネート溶液を用いた。
[内部抵抗の評価]
 作製した各電気二重層キャパシタを用い、充放電電圧範囲0~2.7V、充放電電流200mAで、定電流充放電を10サイクル繰り返し、10サイクル目の放電開始直後の電圧低下より内部抵抗を算出し、10個の平均値を求めた。結果を表3に記す。
 A:内部抵抗80mΩ未満
 B:内部抵抗80mΩ以上100mΩ未満
 C:内部抵抗100mΩ以上
Figure JPOXMLDOC01-appb-T000003
 表3に示した通り、実施例1-1~1-5で作製した電気化学素子用セパレータは、平均繊維径1~20μmの合成樹脂繊維を主体としてなる不織布基材の片面上に、無機粒子層Aと、無機粒子層Bとが、この順に積層された構成を有するため、電気化学素子用セパレータのピンホールが少なく、それを用いてなるリチウムイオン二次電池及びキャパシタの内部抵抗が低く、優れていた。また、層強度が強いことから、セパレータの製造の際に欠点が生じにくく、製造安定性に優れていた。
 また、実施例2-1~2-6で作製した電気化学素子用セパレータは、平均繊維径1~20μmの合成樹脂繊維を主体としてなる不織布基材の片面上に、無機粒子層Aが設けられ、もう一方の面上に無機粒子層Bが設けられた構成を有するため、電気化学素子用セパレータのピンホールが少なく、それを用いてなるリチウムイオン二次電池及びキャパシタの内部抵抗が低く、優れていた。また、層強度が強いことから、セパレータの製造の際に欠点が生じにくく、製造安定性に優れていた。
 一方、比較例1-1で作製した電気化学素子用セパレータは、無機粒子層Bを含まないため、ピンホールの発生が見られた。
 比較例1-2で作製した電気化学素子用セパレータは、無機粒子層Bを含まず、また、比較例1-1で作製した電気化学素子用セパレータよりも、無機粒子層Aの塗工量をさらに増やしたが、ピンホールの発生は抑えられるものの、無機粒子層が厚くなり過ぎ、リチウムイオン二次電池及びキャパシタの内部抵抗が悪化した。
 比較例1-3で作製した電気化学素子用セパレータは、無機粒子層Aを含まず、無機粒子層Bが不織布基材内部にまで滲み込み、セパレータ表面に均一な無機粒子層を形成させることができなかったことから、ピンホールの発生が見られた。
 比較例1-4で作製した電気化学素子用セパレータは、不織布基材の片面上に、無機粒子層Bと、無機粒子層A層とが、この順に積層された構成を有しているが、無機粒子層Bが不織布基材内部にまで滲み込み、セパレータ表面に均一な無機粒子層を形成させることができなかったことから、ピンホールの発生が見られた。
 比較例1-5で作製した電気化学素子用セパレータは、不織布基材の片面上に、平均粒子径2.0μmのアルミナ水和物を含む無機粒子層Cと、平均粒子径0.5μmのアルミナ水和物を含む無機粒子層Dとが、この順に積層された構成を有しているが、層強度が実施例1-1~1-5で作製した電気化学素子用セパレータに比べ弱く、セパレータの製造安定性に劣っていた。
 比較例2-1で作製した電気化学素子用セパレータは、無機粒子層Aが不織布基材の両面に設けられているが、無機粒子層B層を含まないため、電気化学素子用セパレータが厚くなり過ぎ、リチウムイオン二次電池及びキャパシタの内部抵抗が悪化した。
 比較例2-2で作製した電気化学素子用セパレータは、無機粒子層B層が不織布基材の両面に設けられているが、無機粒子層Aを含まないため、無機粒子層Bが不織布基材内部にまで滲み込みやすく、ピンホールの発生が見られた。
 比較例2-3で作製した電気化学素子用セパレータは、不織布基材の片面上に、平均粒子径2.0μmのアルミナ水和物を含む無機粒子層Cが設けられ、もう一方の面上に平均粒子径0.5μmのアルミナ水和物を含む無機粒子層Dが設けられた構成を有しているが、層強度が実施例2-1~2-6で作製した電気化学素子用セパレータに比べ弱く、セパレータの製造安定性に劣っていた。
 比較例3-1で作製した電気化学素子用セパレータは、溶剤紡糸セルロース繊維C1と、マニラ麻繊維C2からなる紙製セパレータであるが、厚みが20μmと薄かったため、ピンホールの発生が見られた。
 実施例1-1~1-4で作製した電気化学素子用セパレータを比較すると、実施例4で作製した電気化学素子用セパレータは、坪量がやや低く、厚みもやや薄いことから、実施例1-1~1-3及び1-5で作製したセパレータと比較して、ピンホール評価において、うっすらと透過光が観察される部分があった。
 実施例5で作製した電気化学素子用セパレータは、坪量がやや高く、厚みもやや厚いことから、実施例1-1~1-4で作製した電気化学素子用セパレータと比較して、リチウムイオン二次電池及びキャパシタの内部抵抗がやや高くなった。
 実施例2-1~2-6で作製した電気化学素子用セパレータを比較すると、実施例2-4で作製した電気化学素子用セパレータは、坪量がやや低く、厚みもやや薄いことから、実施例2-1~2-3、2-5及び2-6で作製した電気化学素子用セパレータと比較して、ピンホール評価において、うっすらと透過光が観察される部分があった。
 実施例2-5で作製した電気化学素子用セパレータは、坪量がやや高く、厚みもやや厚いことから、実施例2-1~2-4及び2-6の電気化学素子用セパレータと比較して、リチウムイオン二次電池及びキャパシタの内部抵抗がやや高くなった。
 実施例2-6で作製した電気化学素子用セパレータは、無機粒子層B層を先に不織布基材上に塗工したが、無機粒子層Aを先に不織布基材に塗工した実施例2-1~2-5の電気化学素子用セパレータと同様に、ピンホールは見られず、リチウムイオン二次電池及びキャパシタの内部抵抗が低く、優れていた。
 本発明の活用例としては、電気化学素子用セパレータ及び電気化学素子が好適である。

Claims (3)

  1.  不織布基材と、無機粒子を含む無機粒子層とを備えてなる電気化学素子用セパレータにおいて、
     該不織布基材が平均繊維径1~20μmの合成樹脂繊維を主体としてなる不織布基材であり、
     該無機粒子層として、平均粒子径2.0~4.0μmの水酸化マグネシウムを含む無機粒子層Aと、平均粒子径0.5μm以上2.0μm未満の水酸化マグネシウムを含む無機粒子層Bとを有し、
     該不織布基材の片面上に、無機粒子層Aと無機粒子層Bとがこの順に積層された構成を有することを特徴とする電気化学素子用セパレータ。
  2.  不織布基材と、無機粒子を含む無機粒子層とを備えてなる電気化学素子用セパレータにおいて、
     該不織布基材が平均繊維径1~20μmの合成樹脂繊維を主体としてなる不織布基材であり、
     該無機粒子層として、平均粒子径2.0~4.0μmの水酸化マグネシウムを含む無機粒子層Aと、平均粒子径0.5μm以上2.0μm未満の水酸化マグネシウムを含む無機粒子層Bとを有し、
     該不織布基材の片面上に無機粒子層Aが設けられ、もう一方の面上に無機粒子層Bが設けられた構成を有することを特徴とする電気化学素子用セパレータ。
  3.  請求項1又は2に記載の電気化学素子用セパレータを用いてなる電気化学素子。
PCT/JP2015/075915 2014-09-17 2015-09-11 電気化学素子用セパレータ及びそれを用いてなる電気化学素子 WO2016043142A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/511,872 US20170294637A1 (en) 2014-09-17 2015-09-11 Separator for electrochemical device and electrochemical device including the separator
CN201580049941.7A CN106716680B (zh) 2014-09-17 2015-09-11 电化学元件用隔离物及使用其而成的电化学元件
EP15843044.7A EP3196960B1 (en) 2014-09-17 2015-09-11 Electrochemical element separator and electrochemical element obtained using same

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2014-189124 2014-09-17
JP2014189124 2014-09-17
JP2015-008522 2015-01-20
JP2015008522 2015-01-20
JP2015-038425 2015-02-27
JP2015038425 2015-02-27
JP2015-045693 2015-03-09
JP2015045693 2015-03-09
JP2015158617A JP6033933B2 (ja) 2014-09-17 2015-08-11 電気化学素子用セパレータ及びそれを用いてなる電気化学素子
JP2015-158617 2015-08-11

Publications (1)

Publication Number Publication Date
WO2016043142A1 true WO2016043142A1 (ja) 2016-03-24

Family

ID=55533180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075915 WO2016043142A1 (ja) 2014-09-17 2015-09-11 電気化学素子用セパレータ及びそれを用いてなる電気化学素子

Country Status (1)

Country Link
WO (1) WO2016043142A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017218701A (ja) * 2016-06-09 2017-12-14 三菱製紙株式会社 耐熱性湿式不織布
WO2018047742A1 (ja) * 2016-09-08 2018-03-15 三菱製紙株式会社 リチウムイオン電池セパレータ用基材及びリチウムイオン電池セパレータ
JP2018170215A (ja) * 2017-03-30 2018-11-01 三菱製紙株式会社 リチウムイオン電池セパレータ
CN109328408A (zh) * 2016-06-27 2019-02-12 日本高度纸工业株式会社 电化学元件用分隔件和电化学元件、汽车、电子设备
WO2019146626A1 (ja) 2018-01-25 2019-08-01 三菱製紙株式会社 リチウムイオン電池用セパレータ用塗液及びリチウムイオン電池用セパレータ
CN110114911A (zh) * 2016-12-27 2019-08-09 三菱制纸株式会社 锂离子电池隔板和锂离子电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003834A (ja) * 1998-06-16 2000-01-07 Nippon Kodoshi Corp 電気二重層コンデンサ
JP2012134024A (ja) * 2010-12-22 2012-07-12 Mitsubishi Paper Mills Ltd リチウム二次電池用セパレータ
JP2014038974A (ja) * 2012-08-20 2014-02-27 Jm Energy Corp 蓄電デバイス

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000003834A (ja) * 1998-06-16 2000-01-07 Nippon Kodoshi Corp 電気二重層コンデンサ
JP2012134024A (ja) * 2010-12-22 2012-07-12 Mitsubishi Paper Mills Ltd リチウム二次電池用セパレータ
JP2014038974A (ja) * 2012-08-20 2014-02-27 Jm Energy Corp 蓄電デバイス

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3196960A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017218701A (ja) * 2016-06-09 2017-12-14 三菱製紙株式会社 耐熱性湿式不織布
CN109328408A (zh) * 2016-06-27 2019-02-12 日本高度纸工业株式会社 电化学元件用分隔件和电化学元件、汽车、电子设备
CN109328408B (zh) * 2016-06-27 2021-06-29 日本高度纸工业株式会社 电化学元件用分隔件和电化学元件、汽车、电子设备
EP3512000A4 (en) * 2016-09-08 2020-04-29 Mitsubishi Paper Mills Limited SUBSTRATE FOR SEPARATORS OF A LITHIUM-ION BATTERY AND SEPARATOR OF A LITHIUM-ION BATTERY
CN109661737A (zh) * 2016-09-08 2019-04-19 三菱制纸株式会社 锂离子电池隔板用基材和锂离子电池隔板
JPWO2018047742A1 (ja) * 2016-09-08 2019-10-10 三菱製紙株式会社 リチウムイオン電池セパレータ用基材及びリチウムイオン電池セパレータ
WO2018047742A1 (ja) * 2016-09-08 2018-03-15 三菱製紙株式会社 リチウムイオン電池セパレータ用基材及びリチウムイオン電池セパレータ
CN109661737B (zh) * 2016-09-08 2022-12-20 三菱制纸株式会社 锂离子电池隔板用基材和锂离子电池隔板
US11637349B2 (en) 2016-09-08 2023-04-25 Mitsubishi Paper Mills Limited Substrate for lithium ion battery separators and lithium ion battery separator
CN110114911A (zh) * 2016-12-27 2019-08-09 三菱制纸株式会社 锂离子电池隔板和锂离子电池
EP3565028A4 (en) * 2016-12-27 2020-11-04 Mitsubishi Paper Mills Limited LITHIUM-ION BATTERY SEPARATOR AND LITHIUM-ION BATTERY
US11335972B2 (en) 2016-12-27 2022-05-17 Mitsubishi Paper Mills Limited Lithium ion battery separator and lithium ion battery
JP2018170215A (ja) * 2017-03-30 2018-11-01 三菱製紙株式会社 リチウムイオン電池セパレータ
WO2019146626A1 (ja) 2018-01-25 2019-08-01 三菱製紙株式会社 リチウムイオン電池用セパレータ用塗液及びリチウムイオン電池用セパレータ
US11735797B2 (en) 2018-01-25 2023-08-22 Mitsubishi Paper Mills Limited Coating solution for lithium ion battery separators and lithium ion battery separator
US11881595B2 (en) 2018-01-25 2024-01-23 Mitsubishi Paper Mills Limited Coating solution for lithium ion battery separators and lithium ion battery separator

Similar Documents

Publication Publication Date Title
JP6033933B2 (ja) 電気化学素子用セパレータ及びそれを用いてなる電気化学素子
JP6542343B2 (ja) リチウムイオン二次電池セパレータ用不織布基材及びリチウムイオン二次電池セパレータ
WO2016043142A1 (ja) 電気化学素子用セパレータ及びそれを用いてなる電気化学素子
JP2014512650A (ja) セパレータ、その製造方法及びこれを備えた電気化学素子
JP5837437B2 (ja) 非水系二次電池用セパレータおよび非水系二次電池
JP2010225809A (ja) 電気化学素子用セパレータ電極一体型蓄電素子およびそれを用いてなる電気化学素子
KR102320298B1 (ko) 정극 도공액, 정극 전구체, 및 비수계 리튬 축전 소자
JP5025936B2 (ja) 電子部品用電極−多孔質シート複合体の製造方法
JP6317556B2 (ja) リチウムイオン二次電池用セパレータ及びそれを用いてなるリチウムイオン二次電池
JP2014056953A (ja) キャパシタ用セパレータ及びキャパシタ
CN109155205B (zh) 电化学元件用隔离物及使用其而成的电化学元件
WO2022085694A1 (ja) 非水系アルカリ金属蓄電素子および正極塗工液
JP2016162538A (ja) リチウムイオン二次電池用セパレータ及びそれを用いてなるリチウムイオン二次電池
JP2012155941A (ja) 電気化学素子用セパレータおよびそれを用いた電気化学素子
JP2018170215A (ja) リチウムイオン電池セパレータ
JP5848630B2 (ja) キャパシタ用セパレータ及びそれを用いてなるキャパシタ
JP2011187515A (ja) 電気化学素子用セパレータ及びそれを用いてなる電気化学素子
JP2015156341A (ja) 電池用セパレータ
JP2014036074A (ja) キャパシタ用セパレータ及びキャパシタ
JP2012011754A (ja) 複合体およびそれからなる電気電子部品
JP2012204121A (ja) 蓄電デバイス用電極
JP2019160888A (ja) キャパシタ用セパレータ用塗液およびキャパシタ用セパレータ
JP2014186915A (ja) セパレータ及び非水系電池
JP2011134930A (ja) 非電気二重層型キャパシタ
JP2014067953A (ja) キャパシタ用セパレータ及びそれを用いてなるキャパシタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843044

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15511872

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015843044

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015843044

Country of ref document: EP