WO2019146626A1 - リチウムイオン電池用セパレータ用塗液及びリチウムイオン電池用セパレータ - Google Patents

リチウムイオン電池用セパレータ用塗液及びリチウムイオン電池用セパレータ Download PDF

Info

Publication number
WO2019146626A1
WO2019146626A1 PCT/JP2019/002024 JP2019002024W WO2019146626A1 WO 2019146626 A1 WO2019146626 A1 WO 2019146626A1 JP 2019002024 W JP2019002024 W JP 2019002024W WO 2019146626 A1 WO2019146626 A1 WO 2019146626A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
separator
ion battery
magnesium hydroxide
coating
Prior art date
Application number
PCT/JP2019/002024
Other languages
English (en)
French (fr)
Inventor
友洋 佐藤
秀彰 三枝
加藤 真
誉子 笠井
國珍 尹
Original Assignee
三菱製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱製紙株式会社 filed Critical 三菱製紙株式会社
Priority to US16/963,406 priority Critical patent/US11735797B2/en
Priority to EP19743957.3A priority patent/EP3745493A4/en
Priority to CN202211561355.9A priority patent/CN115663397A/zh
Priority to JP2019530521A priority patent/JP6999671B2/ja
Priority to CN201980010072.5A priority patent/CN111615765B/zh
Publication of WO2019146626A1 publication Critical patent/WO2019146626A1/ja
Priority to US17/950,444 priority patent/US11881595B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention is formed by coating a coating liquid for a lithium ion battery separator (hereinafter, sometimes “coating liquid for a lithium ion battery separator” may be abbreviated as “coating liquid”) and the coating liquid on a substrate
  • coating liquid for a lithium ion battery separator
  • the present invention relates to a lithium ion battery separator.
  • Lithium ion battery separators for preventing contact between positive and negative electrodes are used in lithium ion batteries (hereinafter, “lithium ion batteries” may be abbreviated as “battery”).
  • lithium ion battery separator hereinafter sometimes referred to as “lithium ion battery separator” may be abbreviated as “separator”
  • separator has low heat resistance and is critical to safety.
  • separators containing inorganic particles such as alumina and boehmite have been proposed (see Patent Documents 1 to 4).
  • the separator is composed of a porous film, a base material such as a non-woven fabric, and a coated layer containing inorganic particles.
  • sedimentation of the inorganic particles can be observed by reaggregation of the inorganic particles in the coating solution used to provide the coating layer. A viscosity change is observed, the coating liquid tends to be unstable, and coating unevenness may occur in the separator.
  • the heat resistance required for the separator is a property called “melt integrity”, which has high shape stability even at high temperatures and does not lose the function of electrically separating the positive and negative electrodes of the battery (non-patent) Reference 1).
  • the present invention also provides a separator comprising a substrate and a coated layer containing magnesium hydroxide as inorganic particles, and having particularly high shape stability even when the substrate is thermally melted. It is in.
  • a coating solution for a lithium ion battery separator which is used to produce a lithium ion battery separator comprising a substrate and a coating layer containing inorganic particles, wherein the coating solution is an inorganic particle. And an organic polymer binder, and a carboxymethyl cellulose or a salt thereof having an etherification degree of 1.10 or more and 2.00 or less.
  • the content of carboxymethylcellulose or a salt thereof having an etherification degree of 1.10 or more and 2.00 or less is 0.1 parts by mass or more and less than 2.0 parts by mass with respect to 100 parts by mass of the inorganic particles
  • the coating liquid for separators for lithium ion batteries as described in 1).
  • a separator for a lithium ion battery comprising a substrate and a coated layer provided on at least one surface of the substrate, wherein the coated layer is an inorganic particle, an organic polymer binder, and etherification
  • a separator for a lithium ion battery comprising carboxymethylcellulose or a salt thereof having a degree of 1.10 or more and 2.00 or less.
  • the content of carboxymethylcellulose or a salt thereof having an etherification degree of 1.10 or more and 2.00 or less is 0.1 parts by mass or more and less than 2.0 parts by mass with respect to 100 parts by mass of the inorganic particles
  • the separator for lithium ion batteries as described in 6).
  • a coating solution for a lithium ion battery separator which is used to produce a lithium ion battery separator comprising a base material and a coating layer containing inorganic particles, wherein the inorganic particles are oil-absorbing oil Coating fluid for separators for lithium ion batteries characterized by including magnesium hydroxide which quantity is 30-80 (g / 100g).
  • a separator for a lithium ion battery comprising a substrate and a coated layer provided on at least one surface of the substrate, wherein the coated layer has an oil absorption of 30 to 80 (g)
  • a lithium ion battery separator comprising magnesium hydroxide which is 100 g).
  • the separator for lithium ion batteries as described in said (13) whose base material is a nonwoven fabric.
  • a lithium ion battery separator composed of a substrate and a coated layer containing inorganic particles
  • Reaggregation of inorganic particles can be efficiently suppressed by containing carboxymethylcellulose or a salt thereof having an etherification degree of 1.10 or more and 2.00 or less, which is highly resistant to acids and alkalis, in a coating liquid.
  • the stability of the coating liquid can be improved, and a lithium ion battery separator with extremely high productivity, high safety, and low internal resistance can be manufactured.
  • magnesium hydroxide having an oil absorption of 30 to 80 (g / 100 g) is included as the inorganic particles, it is particularly safe because the shape stability is excellent even when the base material is thermally melted.
  • the coating liquid for a lithium ion battery separator of the present invention is a coating liquid used to produce a lithium ion battery separator composed of a substrate and a coating layer containing inorganic particles.
  • the lithium ion battery separator of the present invention is composed of a substrate and a coating layer provided on at least one surface of the substrate.
  • the coating liquid (1) of the present invention is characterized by containing inorganic particles, an organic polymer binder, and carboxymethylcellulose (CMC) or its salt (CMC salt) having an etherification degree of 1.10 or more and 2.00 or less. .
  • the separator (6) of the present invention is characterized in that the coating layer contains inorganic particles, an organic polymer binder, and a CMC or CMC salt having an etherification degree of 1.10 or more and 2.00 or less.
  • CMC salts include metal salts.
  • the CMC salt may be a compound in which all carboxy groups (—COOH) contained in carboxymethylcellulose form a salt, and some carboxy groups contained in CMC form a salt. It may be a compound. It is preferred that at least 40% or more of the total amount of carboxy groups form a salt.
  • Examples of the type of metal ion contained in the metal salt include alkali metal ions.
  • Examples of the alkali metal ion include lithium ion, sodium ion, potassium ion and the like.
  • the CMC salt for example, carboxymethylcellulose lithium (CMC-Li), carboxymethylcellulose sodium (CMC-Na), carboxymethylcellulose potassium (CMC-K) and the like can be mentioned.
  • the coating liquid (1) and the separator (6) of the present invention contain a CMC or CMC salt having an etherification degree of 1.10 or more and 2.00 or less.
  • the degree of etherification of the CMC or CMC salt is more preferably 1.13 or more and 1.90 or less, and still more preferably 1.15 or more and 1.80 or less.
  • the degree of etherification is too low, the stability of the coating solution is deteriorated.
  • the degree of etherification exceeds 2.00, stable production of CMC or CMC salt becomes difficult.
  • the degree of etherification of CMC or CMC salt can be determined as follows. Accurately measure 0.5 g to 0.7 g of CMC or CMC salt (anhydride) as a sample, wrap in filter paper and incinerate in a porcelain crucible. After cooling, this is transferred to a 500 ml beaker, 250 ml of water is added, and further 35 ml of 0.05 mol / l sulfuric acid is added with a pipette and boiled for 30 minutes. It is cooled, a phenolphthalein indicator is added, and the excess acid is back titrated with 0.1 mol / l potassium hydroxide to calculate the degree of etherification from the following formulas (I) and (II) .
  • A usage (ml) of 0.05 mol / liter of sulfuric acid consumed in the bound alkali in 1 g of sample.
  • B usage amount (ml) of sulfuric acid of 0.05 mol / liter.
  • C 0.05 molar / liter sulfuric acid titer.
  • D 0.1 mol / l potassium hydroxide titre (ml).
  • E 0.1 mol / l potassium hydroxide titer.
  • the alkalinity or acidity in the formula (I) can be determined as follows. Approximately 1 g of anhydrous sample is accurately weighed into a 300 ml Erlenmeyer flask and dissolved by adding about 200 ml of water. Add 5 ml of 0.05 mol / l sulfuric acid to this with a pipette, boil for 10 minutes, cool, add a phenolphthalein indicator and titrate with 0.1 mol / l potassium hydroxide ("F" ml ). At the same time, a blank test is performed ("G" ml) and calculated by the following formula (III). When the (GF) E value is ( ⁇ ), the alkalinity is read as the acidity (“E”: potency of potassium hydroxide of 0.1 mol / liter).
  • the content of CMC or CMC salt having an etherification degree of 1.10 or more and 2.00 or less in the coating layer of the coating liquid (1) and the separator (6) is 0.1 parts by mass with respect to 100 parts by mass of the inorganic particles More than 2.0 mass parts is preferred, 0.2 mass parts or more and less than 1.9 mass parts are more preferred, and 0.3 mass parts or more and less than 1.8 mass parts are still more preferred. If the content is too low, the effect of incorporating a CMC or CMC salt having an etherification degree of 1.00 or more and 2.00 or less in the coating solution and the coating layer may not be sufficiently exhibited. On the other hand, if the content is too high, the internal resistance of the separator may be high.
  • the inorganic particles contained in the coating liquid (1) and the coating layer of the separator (6) are not particularly limited as long as they are suitable for use in the coating layer of the separator.
  • Examples include kaolin, calcined kaolin, calcium carbonate, light calcium carbonate, magnesium carbonate, zinc oxide, alumina, boehmite, aluminum hydroxide, magnesium hydroxide, titanium dioxide, barium sulfate, zinc sulfate, amorphous silica And calcium silicate. These may be used alone or in combination of two or more.
  • alumina, boehmite or magnesium hydroxide is preferable, and magnesium hydroxide is more preferable, from the viewpoint of thermal stability. In alumina, ⁇ -alumina is more preferred.
  • 0.3 micrometer or more and 4.0 micrometers or less are preferable, and, as for the average particle diameter of the inorganic particle contained in the coating layer of a coating liquid (1) and a separator (6), 0.4 micrometer or more and 3.8 micrometers or less are more preferable, and 0.5 micrometer More preferably, it is 3.5 ⁇ m or less.
  • the average particle size is a volume-based 50% particle size (D50) determined from particle size distribution measurement by a laser diffraction method.
  • the inorganic particles be magnesium hydroxide having an oil absorption of 30 to 80 (g / 100 g) in bulk, because the separator has high shape stability even when the base material is thermally melted. More preferably, the oil absorption of magnesium hydroxide is 50 to 80 (g / 100 g).
  • the coating liquid (11) of the present invention is characterized in that the inorganic particles contain magnesium hydroxide having an oil absorption of 30 to 80 (g / 100 g). Further, the separator (13) of the present invention is characterized in that the coating layer contains magnesium hydroxide having an oil absorption of 30 to 80 (g / 100 g). More preferably, the oil absorption of magnesium hydroxide is 50 to 80 (g / 100 g).
  • the inventors of the present invention examined the mechanism of expression of shape stability at the time of heat melting in a separator composed of a coated layer containing magnesium hydroxide and a substrate. As a result, when the base material was heat-melted, it was found that the constituent material of the heat-melted and liquid base material was absorbed by magnesium hydroxide to form a hard oil clay-like substance and lose its fluidity. . This makes it difficult to flow even when thermally melted, and a separator having high shape stability can be obtained. Furthermore, it has been found that this effect is particularly pronounced when the oil absorption of the magnesium hydroxide used in the coating layer is 30 to 80 (g / 100 g).
  • the oil absorption of magnesium hydroxide is specified in JIS K5101-13-1: 2004 (Pigment test method-Part 13: Oil absorption-Section 1: Refined oil method, Test methods for pigments-Part 13: Oil absorption—Section 1: Measured according to the Refined linseed oil method.
  • Magnesium hydroxide is a powdery compound produced by a method of treating an aqueous solution of magnesium salt with alkali, a method of hydrolyzing magnesium oxide and the like.
  • the average particle diameter of magnesium hydroxide capable of achieving both low internal resistance and small self-discharge is preferably 0.3 ⁇ m to 4.0 ⁇ m, more preferably 0.4 ⁇ m to 3.0 ⁇ m, and 0 More preferably, they are not less than 0.5 ⁇ m and not more than 2.0 ⁇ m.
  • the coating layer of the coating liquid (1) and the separator (6) contains an organic polymer binder. Moreover, it is preferable to make the coating layer of a coating liquid (11) and a separator (13) contain an organic polymer binder.
  • the organic polymer binder exhibits the effect of increasing the strength of the coated layer.
  • the organic polymer binder is not particularly limited as long as it is suitable for use in the coating layer of the separator.
  • Examples thereof include ethylene-vinyl acetate copolymer (EVA), (meth) acrylate copolymer, fluorocarbon rubber, styrene-butadiene copolymer resin (SBR), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), Resins, such as polyvinyl pyrrolidone (PVP) and a polyurethane, are mentioned.
  • EVA ethylene-vinyl acetate copolymer
  • (SBR) (meth) acrylate copolymer
  • SBR polyvinyl alcohol
  • PVB polyvinyl butyral
  • Resins such as polyvinyl pyrrolidone (PVP) and a polyurethane
  • transduced the crosslinked structure can also be used.
  • organic polymer binders may be used alone or in combination of two or more.
  • the content of the organic polymer binder is preferably 0.5 to 10 parts by mass, more preferably 0.7 to 8 parts by mass, and more preferably 1 to 6 parts by mass with respect to 100 parts by mass of the inorganic particles. Part or less is more preferable.
  • the coating strength of the separator may be weak.
  • the internal resistance of the separator may be high.
  • an inorganic particle In the coating layer of the coating solution (1) and the separator (6), an inorganic particle, an organic polymer binder, a CMC or CMC salt having an etherification degree of 1.10 or more and 2.00 or less, a polyacrylic acid, an etherification degree
  • Various dispersants such as CMC or CMC salt less than 1.10; hydroxyethyl cellulose, CMC or CMC salt having etherification degree less than 1.10, various thickeners such as polyethylene oxide; wetting agent; antiseptic agent;
  • the additives of the above can also be blended as needed.
  • the medium for preparing the coating liquid (1) is particularly limited as long as it can uniformly dissolve or disperse inorganic particles, an organic polymer binder, CMC having a degree of etherification of 1.10 or more and 2.00 or less, or a CMC salt.
  • organic solvents such as N-methyl-2-pyrrolidone (NMP), 2-butanone, toluene, hexane and the like are exemplified.
  • NMP N-methyl-2-pyrrolidone
  • 2-butanone 2-butanone
  • toluene hexane and the like
  • the most preferred medium is water.
  • various dispersants such as polyacrylic acid and copolymers thereof, CMC, CMC salt other than magnesium hydroxide and organic polymer binder; polyethylene oxide, polyacrylamide Additives such as various thickeners such as hydroxyethyl cellulose, CMC, CMC salt and the like; wetting agents; preservatives; antifoaming agents may be optionally blended.
  • the medium for preparing the coating solution (11) is not particularly limited as long as it can uniformly dissolve or disperse magnesium hydroxide, an organic polymer binder and additives, and examples thereof include water; NMP, 2-butanone, Examples are organic solvents such as toluene and hexane.
  • the most preferred medium is water.
  • examples of the substrate include porous films, woven fabrics, non-woven fabrics, knitted fabrics, paper and the like.
  • porous films include porous films made of polyolefins such as polyethylene (PE) and polypropylene (PP).
  • PE polyethylene
  • PP polypropylene
  • the most preferred substrate is a non-woven fabric, which can lower the internal resistance of the separator.
  • the non-woven fabric used for the separator of the present invention may consist only of synthetic resin fibers.
  • the content of the synthetic resin fiber is less than 70% by mass, the strength of the non-woven fabric may be too weak.
  • a synthetic resin fiber is a thermoplastic fiber.
  • the synthetic resin fiber is a thermoplastic fiber, when the non-woven fabric as the base material is heat-melted, the thermoplastic fiber that has been heat-melted and becomes liquid is absorbed by magnesium hydroxide to form a hard oil clay-like substance It is easy to get the effect of
  • the average fiber diameter of the synthetic resin fiber is preferably 1 ⁇ m to 20 ⁇ m, more preferably 1 ⁇ m to 15 ⁇ m, and still more preferably 1 ⁇ m to 10 ⁇ m. If the average fiber diameter is less than 1 ⁇ m, the fibers may be too thin, and the coated layer may not easily penetrate into the non-woven fabric, making it difficult to suppress the increase in thickness of the separator. If the average fiber diameter is larger than 20 ⁇ m, it may be difficult to reduce the thickness of the nonwoven fabric itself, and it may be difficult to suppress an increase in the thickness of the separator.
  • the average fiber diameter refers to 30 fibers of a cross section perpendicular to the longitudinal direction of the fibers or a cross section close to the vertical direction of the fibers forming the nonwoven fabric from the scanning electron micrograph of the nonwoven fabric cross section It is the average value which measured the fiber diameter.
  • Synthetic resin fibers may be melted or deformed by heat or pressure. In that case, the cross-sectional area is measured, and the fiber diameter in terms of true circle is calculated.
  • the fiber length of the synthetic resin fiber is preferably 1 mm or more and 15 mm or less, more preferably 2 mm or more and 10 mm or less, and still more preferably 2 mm or more and 5 mm or less. If the fiber length is shorter than 1 mm, it may fall off from the non-woven fabric, and if it is longer than 15 mm, the fibers may be entangled to form bumps and uneven thickness may occur.
  • resins that constitute synthetic resin fibers include polyolefin, polyester, polyvinyl acetate, ethylene-vinyl acetate copolymer, polyamide, acrylic, polyvinyl chloride, polyvinylidene chloride, polyvinyl ether, polyvinyl ketone, polyether, polyvinyl alcohol , Diene resin, polyurethane, phenol resin, melamine resin, furan resin, urea resin, aniline resin, unsaturated polyester, alkyd resin, fluorine resin, silicone, polyamide imide, polyphenylene sulfide, polyimide, polycarbonate, polyazo methine, polyester amide, poly Resins such as ether ether ketone, poly-p-phenylene benzobisoxazole, polybenzimidazole, ethylene-vinyl alcohol copolymer and the like can be mentioned.
  • Copolymers of these resins can also be used.
  • these resins it is preferable to use a polyester resin, an acrylic resin, or a polyolefin resin in order to increase the adhesion to the coating layer.
  • a polyester resin, an acrylic resin, and a polyamide resin it is preferable to use a polyester resin, an acrylic resin, and a polyamide resin.
  • polyester resins examples include polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polytrimethylene terephthalate (PTT), polyethylene naphthalate (PEN), polybutylene naphthalate (PBN), polyethylene isophthalate, wholly aromatic. Polyester resin is mentioned. Moreover, these copolymers can also be used. Among these resins, polyethylene terephthalate resin is preferable in order to improve heat resistance, electrolytic solution resistance, and adhesiveness with the inorganic particle layer.
  • the acrylic resin may be, for example, one composed of a polymer of 100% acrylonitrile, and copolymerizable with acrylonitrile a (meth) acrylic acid derivative such as acrylic acid, methacrylic acid, acrylic acid ester, methacrylic acid ester, vinyl acetate, etc. And the like.
  • polystyrene resin examples include polypropylene, polyethylene, polymethylpentene, ethylene-vinyl alcohol copolymer, olefin copolymer and the like.
  • polyamide resin for example, aliphatic polyamide such as nylon, poly-p-phenylene terephthalamide, copoly (para-phenylene-3,4'-oxydiphenylene terephthalamide), poly-m-phenylene isophthalamide etc.
  • aliphatic polyamide such as nylon, poly-p-phenylene terephthalamide, copoly (para-phenylene-3,4'-oxydiphenylene terephthalamide), poly-m-phenylene isophthalamide etc.
  • Semi-aromatic refers to those having, for example, a fatty chain or the like in part of the main chain.
  • the wholly aromatic polyamide may be either of para type or meta type.
  • the synthetic resin fibers may be fibers (single fibers) made of a single resin, or fibers (composite fibers) made of two or more resins.
  • the synthetic resin fibers contained in the non-woven fabric substrate may be used alone or in combination of two or more.
  • As the composite fiber core-sheath type, eccentric type, side-by-side type, sea-island type, orange type, multiple bimetal type can be mentioned. You may use the fiber which divided the composite fiber.
  • the non-woven fabric may contain fibers other than synthetic resin fibers.
  • short fibers such as solvent-spun cellulose and regenerated cellulose; fibrillated products such as solvent-spun cellulose and regenerated cellulose; natural cellulose fibers; pulped natural cellulose fibers; fibrillated natural cellulose fibers; inorganic fibers; fibrillated synthetic resin
  • fibers other than synthetic resin fibers For example, short fibers such as solvent-spun cellulose and regenerated cellulose; fibrillated products such as solvent-spun cellulose and regenerated cellulose; natural cellulose fibers; pulped natural cellulose fibers; fibrillated natural cellulose fibers; inorganic fibers; fibrillated synthetic resin
  • fibrillated synthetic resin may contain a synthetic resin pulp or the like.
  • the basis weight of the non-woven fabric is preferably 6 g / m 2 or more and 20 g / m 2 or less, more preferably 7 g / m 2 or more and 18 g / m 2 or less, still more preferably 8 g / m 2 or more and 15 g / m 2 or less It is. If the basis weight exceeds 20 g / m 2 , it may be difficult to thin the separator. If the basis weight is less than 6 g / m 2 , it may be difficult to obtain sufficient strength.
  • the basis weight is measured based on the method defined in JIS P 8124: 2011 (Paper and board-Basis weight measurement method, Paper and board-Determination of grammage).
  • the thickness of the nonwoven fabric is preferably 9 ⁇ m to 30 ⁇ m, more preferably 10 ⁇ m to 27 ⁇ m, and still more preferably 11 ⁇ m to 24 ⁇ m. If the thickness is less than 9 ⁇ m, sufficient strength may not be obtained. When the thickness exceeds 30 ⁇ m, it may be difficult to make the separator thin.
  • thickness means the value measured by carrying out 5 N load using the outer side micrometer prescribed
  • a production method can be used in which a fiber web is formed and fibers in the fiber web are bonded to obtain a non-woven fabric.
  • the obtained nonwoven fabric may be used as it is as a substrate, or a laminate of a plurality of nonwoven fabrics may be used as a substrate.
  • the method for producing the fiber web include dry methods such as card method, air laying method, spun bond method and melt blow method; wet methods such as wet paper making method; electrostatic spinning method and the like.
  • the web obtained by the wet method is homogeneous and dense, and can be suitably used as a substrate for a separator.
  • fibers are dispersed in water to form a uniform paper making slurry, and the paper making slurry is used to make a fiber web by using a paper machine having at least one of the paper making methods such as circular mesh type, long mesh type and inclined type. It is a way to get.
  • fibers are bonded by a fiber bonding method selected from the group consisting of bonding, fusion and entanglement.
  • a fiber bonding method a water flow entanglement (spun lace) method, a needle punch method, a binder bonding method or the like can be used.
  • the binder bonding method may be a chemical bonding method in which the fibers are bonded with a binder applied to the fiber web, or a thermal bonding method in which the fibers are bonded with a synthetic resin fiber for a binder contained in the fiber web.
  • a thermal bonding method to adhere a synthetic resin fiber for a binder.
  • the thermal bonding method forms a uniform nonwoven fabric from a uniform fibrous web.
  • a temperature at which the synthetic resin fiber for binder does not form a film a temperature lower by 20 ° C. or more than the melting point or the softening point of the synthetic resin fiber for binder.
  • the separator (6) of the present invention can be produced by coating the coating liquid (1) of the present invention on a substrate. Further, the separator (13) of the present invention can be produced by coating the coating liquid (11) of the present invention on a substrate.
  • the coating solution may be coated on only one side of the substrate, or may be coated on both sides of the substrate. Moreover, you may apply
  • Coating devices include various coating methods such as blade, rod, reverse roll, lip, die, curtain and air knife, various printing methods such as flexo, screen, offset, gravure, ink jet, roll transfer, film transfer, etc.
  • a transfer method, a pulling method such as dipping, or the like can be selected and used as needed.
  • the basis weight of the separator of the present invention is preferably 10 g / m 2 or more and 36 g / m 2 or less, more preferably 12 g / m 2 or more and 32 g / m 2 or less, still more preferably 14 g / m 2 or more and 27 g / m 2 m 2 or less. If the basis weight exceeds 36 g / m 2 , the internal resistance may be too high. If the basis weight is less than 10 g / m 2 , pinholes may easily occur, or it may be difficult to obtain sufficient strength.
  • the thickness of the separator of the present invention is preferably 10 ⁇ m to 40 ⁇ m, more preferably 11 ⁇ m to 30 ⁇ m, and still more preferably 12 ⁇ m to 25 ⁇ m. If the thickness exceeds 40 ⁇ m, the lithium ion battery separator may be too thick, and the internal resistance may be high. If the thickness is less than 10 ⁇ m, pinholes may easily occur or it may be difficult to obtain sufficient strength.
  • a coating amount is a dry coating amount (coating amount (absolute drying)).
  • Substrate 1 A denier of 0.1 dtex (average fiber diameter 3.0 ⁇ m), a fiber length of 3 mm, oriented crystallized PET short fiber (stretched PET fiber) 50 parts and a denier of 0.2 dtex (average fiber diameter of 4.3 ⁇ m), a single fiber length of 3 mm 50 parts of component-type binder PET short fibers (unstretched PET fiber, softening point 120 ° C., melting point 230 ° C.) were dispersed in water with a pulper to prepare a uniform sheet-forming slurry with a concentration of 1%.
  • This slurry for papermaking is made by a wet method in a circular mesh type paper machine, and by using a cylinder dryer at 135 ° C., the PET short fibers for binder and the intersection point of PET short fibers for binder and oriented crystallized PET short fibers Were fused to develop tensile strength, and a nonwoven fabric with a basis weight of 10 g / m 2 was obtained. Furthermore, using a 1-nip thermal calendar consisting of a dielectric heating jacket roll (metal thermal roll) and an elastic roll, this nonwoven fabric is heated at a temperature of 200 ° C., a linear pressure of 100 kN / m, and a processing speed of 30 m / min. Heat-calendering treatment to prepare a non-woven fabric having a thickness of 15 .mu.m.
  • Base material 2 A porous polypropylene film (basis weight 12 g / m 2 , thickness 20 ⁇ m, porosity 40%) was used as the base material 2.
  • Example 1 After adding 90 parts of a 2% CMC-Na aqueous solution (1.8 parts of solid content) to a dispersion in which 100 parts of magnesium hydroxide having an average particle diameter of 1.0 ⁇ m is dispersed in 140 parts of water, stirring and mixing Add 10 parts of carboxy-modified styrene-butadiene copolymer resin emulsion (solid content concentration 50%, glass transition point -18 ° C, average particle size 0.2 ⁇ m) as a polymer binder, and mix by stirring, and finally 16 parts of adjusted water In addition, the solid content concentration was adjusted to 30% to prepare a coating solution a1.
  • a 2% CMC-Na aqueous solution 1.8 parts of solid content
  • CMC-Na As CMC-Na, CMC-Na having a viscosity of 3,500 mPa ⁇ s at 25 ° C. in a 1% aqueous solution and a degree of etherification of 2.00 was used.
  • Example 2 For CMC-Na, except that CMC-Na having an etherification degree of 2.00 was changed to CMC-Na having a viscosity of 3300 mPa ⁇ s at 25 ° C of a 1% aqueous solution and an etherification degree of 1.80.
  • a coating solution a2 was prepared in the same manner as in the preparation.
  • Example 3 Of CMC-Na, except that CMC-Na with an etherification degree of 2.00 was changed to CMC-Na with a viscosity of 1% aqueous solution at 25 ° C of 3000 mPa ⁇ s and an etherification degree of 1.15.
  • a coating solution a3 was prepared in the same manner as in the preparation.
  • a coating solution a4 was prepared in the same manner as in the preparation.
  • Example 5 4 parts of a 2% CMC-Na aqueous solution (0.08 parts of solid content) is added to a dispersion in which 100 parts of magnesium hydroxide having an average particle diameter of 1.0 ⁇ m is dispersed in 140 parts of water Add 10 parts of carboxy-modified styrene-butadiene copolymer resin emulsion (solid concentration 50%, glass transition point -18 ° C, average particle size 0.2 ⁇ m) as a binder, stir and mix, and finally add 96 parts of conditioned water The solid content concentration was adjusted to 30% to prepare a coating solution a5.
  • CMC-Na CMC-Na having a viscosity of 3000 mPa ⁇ s at 25 ° C. in a 1% aqueous solution and a degree of etherification of 1.15 was used.
  • the magnesium hydroxide used the oil absorption amount 66 (g / 100g).
  • Example 6 A dispersion of 100 parts of magnesium hydroxide having an average particle diameter of 1.0 ⁇ m dispersed in 140 parts of water is mixed with 5 parts of a 2% aqueous solution of CMC-Na (solid content: 0.10 parts), stirred and mixed. Add 10 parts of carboxy-modified styrene-butadiene copolymer resin emulsion (solid content concentration 50%, glass transition point -18 ° C, average particle size 0.2 ⁇ m) as a polymer binder, and mix by stirring, and finally 95 parts of adjusted water In addition, the solid content concentration was adjusted to 30% to prepare a coating solution a6.
  • CMC-Na As CMC-Na, CMC-Na having a viscosity of 3000 mPa ⁇ s at 25 ° C. in a 1% aqueous solution and a degree of etherification of 1.15 was used.
  • the magnesium hydroxide used the oil absorption amount 66 (g / 100g).
  • Example 7 After adding and stirring and mixing 95 parts of 2% CMC-Na aqueous solution (1.9 parts of solid content) to a dispersion in which 100 parts of magnesium hydroxide having an average particle diameter of 1.0 ⁇ m is dispersed in 140 parts of water Add 10 parts of a carboxy-modified styrene-butadiene copolymer resin emulsion (solid content concentration 50%, glass transition point -18 ° C, average particle size 0.2 ⁇ m) as a polymer binder, stir and mix, and finally 11 parts of adjusted water In addition, the solid concentration was adjusted to 30% to prepare a coating solution a7.
  • a carboxy-modified styrene-butadiene copolymer resin emulsion solid content concentration 50%, glass transition point -18 ° C, average particle size 0.2 ⁇ m
  • CMC-Na As CMC-Na, CMC-Na having a viscosity of 3000 mPa ⁇ s at 25 ° C. in a 1% aqueous solution and a degree of etherification of 1.15 was used.
  • the magnesium hydroxide used the oil absorption amount 66 (g / 100g).
  • Example 8 100 parts of a 2% CMC-Na aqueous solution (2.0 parts of solid content) is added to a dispersion in which 100 parts of magnesium hydroxide having an average particle diameter of 1.0 ⁇ m is dispersed in 140 parts of water and stirred and mixed. Add 10 parts of carboxy-modified styrene-butadiene copolymer resin emulsion (solid content concentration 50%, glass transition point -18 ° C, average particle size 0.2 ⁇ m) as a polymer binder, and mix by stirring, and finally 7 parts of adjusted water In addition, the solid content concentration was adjusted to 30% to prepare a coating solution a8.
  • CMC-Na As CMC-Na, CMC-Na having a viscosity of 3000 mPa ⁇ s at 25 ° C. in a 1% aqueous solution and a degree of etherification of 1.15 was used.
  • the magnesium hydroxide used the oil absorption amount 66 (g / 100g).
  • Example 9 100 parts of boehmite having an average particle diameter of 2.0 ⁇ m dispersed in 140 parts of water is mixed with 75 parts of a 2% CMC-Na aqueous solution (1.5 parts of solid content) after stirring and mixing, an organic polymer binder Add 10 parts of a carboxy-modified styrene-butadiene copolymer resin emulsion (solid content concentration 50%, glass transition point -18 ° C, average particle size 0.2 ⁇ m), stir and mix, and finally add 30 parts of adjusted water The solid content concentration was adjusted to 30% to prepare a coating solution a9.
  • CMC-Na having a viscosity of 3100 mPa ⁇ s at 25 ° C. and a degree of etherification of 1.40 at 25 ° C. was used as CMC-Na.
  • Example 10 A coating solution a10 was prepared in the same manner as the coating solution a9, except that boehmite having an average particle diameter of 2.0 ⁇ m was changed to ⁇ -alumina having an average particle diameter of 0.3 ⁇ m.
  • Example 11 A coating solution a11 was prepared in the same manner as the coating solution a9, except that boehmite having an average particle diameter of 2.0 ⁇ m was changed to ⁇ -alumina having an average particle diameter of 0.5 ⁇ m.
  • Example 12 After mixing 1 part of a 50% acrylic dispersant (0.5 part solid content) in 140 parts of water, magnesium hydroxide with an oil absorption of 44 (g / 100 g) and an average particle size of 3.0 ⁇ m is uniformly added 100 parts were gradually added with stirring and dispersed.
  • Example 13 A coating solution b2 was prepared in the same manner as in the preparation of the coating solution b1, except that magnesium hydroxide was changed to magnesium hydroxide having an oil absorption of 66 (g / 100 g) and an average particle diameter of 1.0 ⁇ m.
  • Example 14 A coating solution b3 was prepared in the same manner as the preparation of the coating solution b1, except that magnesium hydroxide was changed to magnesium hydroxide having an oil absorption of 72 (g / 100 g) and an average particle diameter of 0.6 ⁇ m.
  • Example 15 A coating solution b4 was prepared in the same manner as in the preparation of the coating solution b1, except that magnesium hydroxide was changed to magnesium hydroxide having an oil absorption of 33 (g / 100 g) and an average particle diameter of 2.0 ⁇ m.
  • Example 16 A coating solution b5 was prepared in the same manner as in the preparation of the coating solution b1, except that magnesium hydroxide was changed to magnesium hydroxide having an oil absorption of 74 (g / 100 g) and an average particle diameter of 0.4 ⁇ m.
  • Example 17 A coating solution b6 was prepared in the same manner as in the preparation of the coating solution b1, except that magnesium hydroxide was changed to magnesium hydroxide having an oil absorption of 27 (g / 100 g) and an average particle diameter of 1.0 ⁇ m.
  • Example 18 A coating solution b7 was prepared in the same manner as in the preparation of the coating solution b1, except that magnesium hydroxide was changed to magnesium hydroxide having an oil absorption of 85 (g / 100 g) and an average particle diameter of 0.5 ⁇ m.
  • Comparative Example 1 After adding 90 parts of a 2% CMC-Na aqueous solution (1.8 parts of solid content) to a dispersion in which 100 parts of magnesium hydroxide having an average particle diameter of 1.0 ⁇ m is dispersed in 140 parts of water, stirring and mixing Add 10 parts of carboxy-modified styrene-butadiene copolymer resin emulsion (solid content concentration 50%, glass transition point -18 ° C, average particle size 0.2 ⁇ m) as a polymer binder, and mix by stirring, and finally 16 parts of adjusted water In addition, the solid content concentration was adjusted to 30%, and a comparative coating liquid c1 was prepared.
  • a 2% CMC-Na aqueous solution 1.8 parts of solid content
  • a CMC-Na having a viscosity of 3000 mPa ⁇ s at 25 ° C. and a degree of etherification of 1.00 at 25 ° C. was used as CMC-Na.
  • the oil absorption of the magnesium hydroxide was 66 (g / 100 g).
  • Comparative example 2 A dispersion obtained by dispersing 100 parts of magnesium hydroxide having an average particle size of 1.0 ⁇ m in 140 parts of water as an organic polymer binder is a carboxy-modified styrene-butadiene copolymer resin emulsion (solids concentration 50%, glass transition point -18 ° C) 10 parts of average particle diameter (0.2 ⁇ m) was added, stirred and mixed, and finally 100 parts of adjusted water was added to adjust the solid content concentration to 30%, to prepare a comparative coating liquid c2.
  • the oil absorption of the magnesium hydroxide was 66 (g / 100 g).
  • The change in viscosity is less than 1.5 times.
  • The change in viscosity is 1.5 times or more and less than 2.0 times.
  • X Viscosity change is 2.0 times or more.
  • Example 11 ⁇ Separator for Lithium Ion Battery of Example 11>
  • the coating liquid of Example 11 is coated and dried on the substrate 2 using a reverse gravure coater as a coating apparatus so that the coating amount (absolute drying) is 10.0 g / m 2 , lithium ion A battery separator was obtained.
  • the coating liquids a1 to a11 and b1 to b7 for lithium ion battery separators prepared in Examples 1 to 11 and Examples 12 to 18 respectively are coating liquids containing inorganic particles and an organic polymer binder.
  • carboxymethylcellulose sodium having an etherification degree of 1.10 or more and 2.00 or less no sedimentation or a large change in viscosity is observed, the stability of the coating liquid is excellent, and a battery using the manufactured separator The internal resistance of the was also low and excellent.
  • the coating liquid c1 for lithium ion battery separators prepared in Comparative Example 1 contains carboxymethylcellulose sodium having an etherification degree of less than 1.10, a change in viscosity is observed upon standing and the stability of the coating liquid The sex was inferior.
  • the coating liquid c2 for a lithium ion battery separator prepared in Comparative Example 2 did not contain carboxymethylcellulose sodium, sedimentation was observed, and the stability of the coating liquid was inferior.
  • the coating liquid a4 for a lithium ion battery separator prepared in Example 4 had a slight change in viscosity after being allowed to stand for 24 hours because the degree of etherification of sodium carboxymethylcellulose was a little as low as 1.10.
  • the coating liquid a5 for a lithium ion battery separator prepared in Example 5 has a somewhat small addition amount of sodium carboxymethylcellulose having an etherification degree of 1.10 or more and 2.00 or less in a coating liquid containing inorganic particles and an organic polymer binder. Therefore, some settling was observed after standing for 24 hours.
  • the coating liquid a8 for lithium ion battery separators prepared in Example 8 has a slightly large amount of sodium carboxymethylcellulose with an etherification degree of 1.10 or more and 2.00 or less in a coating liquid containing inorganic particles and an organic polymer binder. As a result, the internal resistance of the separator slightly increased.
  • the minimum temperature at which holes are opened is 330 to 370 ° C. C. in the separator of Example 17 using magnesium hydroxide having an oil absorption of less than 30 (g / 100 g), and practice using magnesium hydroxide having an oil absorption of more than 80 (g / 100 g) As compared to 280 ° C. in the separator of Example 18, the lowest temperature at which the holes were opened was remarkably high, and the shape stability was particularly high.
  • Coating liquid ⁇ 2 A coating solution ⁇ 2 was prepared in the same manner as in the preparation of the coating solution ⁇ 1, except that magnesium hydroxide was changed to magnesium hydroxide having an oil absorption of 66 (g / 100 g) and an average particle diameter of 1.0 ⁇ m.
  • Coating solution ⁇ 3 A coating solution ⁇ 3 was prepared in the same manner as in the preparation of the coating solution ⁇ 1, except that magnesium hydroxide was changed to magnesium hydroxide having an oil absorption of 72 (g / 100 g) and an average particle diameter of 0.6 ⁇ m.
  • Coating liquid ⁇ 4 A coating solution ⁇ 4 was prepared in the same manner as in the preparation of the coating solution ⁇ 1, except that magnesium hydroxide was changed to magnesium hydroxide having an oil absorption of 33 (g / 100 g) and an average particle diameter of 2.0 ⁇ m.
  • Coating solution ⁇ 5 was prepared in the same manner as the coating solution ⁇ 1 except that magnesium hydroxide was changed to magnesium hydroxide having an oil absorption of 74 (g / 100 g) and an average particle diameter of 0.4 ⁇ m.
  • Comparative coating solution ⁇ 1 was prepared in the same manner as coating solution ⁇ 1 except that magnesium hydroxide was changed to magnesium hydroxide having an oil absorption of 27 (g / 100 g) and an average particle diameter of 1.0 ⁇ m. .
  • Comparative coating solution ⁇ 2 Comparative coating solution ⁇ 2 was prepared in the same manner as in the preparation of coating solution ⁇ 1, except that magnesium hydroxide was changed to magnesium hydroxide having an oil absorption of 85 (g / 100 g) and an average particle diameter of 0.5 ⁇ m. .
  • the minimum temperature at which the holes open is 330 to 270 ° C. in the separator of Comparative Example 3 using magnesium hydroxide having 370 ° C. and linseed oil absorption of less than 30 (g / 100 g), and linseed oil absorption exceeding 80 (g / 100 g)
  • the minimum temperature at which the holes are opened is remarkably high, and the shape stability is high.
  • the coating solution for a lithium ion battery separator and the lithium ion battery separator of the present invention can be used for the production of a lithium ion battery having high safety and good internal resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Composite Materials (AREA)
  • Cell Separators (AREA)

Abstract

無機粒子、有機ポリマーバインダー、及び、エーテル化度1.10以上2.00以下のカルボキシメチルセルロース又はその塩を含むリチウムイオン電池用セパレータ用塗液、又は、無機粒子があまに油吸油量が30~80(g/100g)である水酸化マグネシウムを含むリチウムイオン電池用セパレータ用塗液ならびに、これらの塗液から形成された塗層を基材上に有する安全性が高く、かつ内部抵抗の低いセパレータを提供する。

Description

リチウムイオン電池用セパレータ用塗液及びリチウムイオン電池用セパレータ
 本発明は、リチウムイオン電池用セパレータ用塗液(以下、「リチウムイオン電池用セパレータ用塗液」を「塗液」と略記する場合がある)及び該塗液を基材に塗工してなるリチウムイオン電池用セパレータに関する。
 リチウムイオン電池(以下、「リチウムイオン電池」を「電池」と略記する場合がある)には、正負極間の接触を防ぐためのリチウムイオン電池用セパレータが用いられている。
 リチウムイオン電池用セパレータ(以下、「リチウムイオン電池用セパレータ」を「セパレータ」と略記する場合がある)として従来用いられているポリエチレン又はポリプロピレンからなる多孔性フィルムは、耐熱性が低く、安全上重大な問題を抱えている。すなわち、かかる多孔性フィルムをセパレータとして用いた電池は、内部短絡等の原因により電池内部で局部的な発熱が生じた場合、発熱部位周辺のセパレータが収縮して内部短絡が更に拡大し、暴走的に発熱して発火・破裂等の重大な事象に至ることがある。
 このような問題に対し、アルミナやベーマイト等の無機粒子を含有してなるセパレータが提案されている(特許文献1~4参照)。このセパレータは、多孔性フィルム、不織布等の基材と、無機粒子を含む塗層とから構成されている。
 無機粒子を含有してなるセパレータを製造する場合には、塗層を設けるために使用される塗液中で、無機粒子が再凝集することにより、無機粒子の沈降が見られたり、塗液の粘度変化が見られたりして、塗液が不安定になりやすく、セパレータに塗工ムラが発生することがあった。
 また、無機粒子を含有してなるセパレータの内、電解液の分解を誘発することのない有利なセパレータとして、無機粒子が、酸化マグネシウム又は水酸化マグネシウムであるセパレータが提案されている(特許文献5及び6参照)。
 一方で、近年の電池のエネルギー密度向上に伴い、とりわけ高い耐熱性を有するセパレータが望まれている。セパレータに求められる耐熱性とは、「メルトインテグリティ(Melt Integrity)」と言われる、高温下でも形状安定性が高く、電池の正負極を電気的に分離する機能を失わない性質である(非特許文献1参照)。
特開2008-4439号公報 特開2013-133418号公報 特開2014-229406号公報 特表2013-541128号公報 特開2012-134024号公報 国際公開第2016/043142号パンフレット
佐藤登他監修、「リチウムイオン電池の高安全技術と材料≪普及版≫、Safety Technologies and Materials for Lithium-ion Batteries≪Popular Edition≫」普及版、株式会社シーエムシー出版、2014年9月9日発行、第145頁
 本発明の課題は、基材と、無機粒子を含む塗層とから構成されるリチウムイオン電池用セパレータを製造するにあたり、塗層を設けるために使用される塗液の安定性を向上させて、セパレータの生産性を高めることができるリチウムイオン電池用セパレータ用塗液を提供することにある。また、該塗液を基材に塗工して得られる、安全性が高く、かつ内部抵抗の低いセパレータを提供することにある。
 また、基材と、無機粒子として水酸化マグネシウムを含む塗層とから構成されるセパレータであって、基材が熱溶融した場合であっても、とりわけ高い形状安定性を有するセパレータを提供することにある。
 本発明者らは、上記課題を解決するために鋭意研究した結果、下記手段を見出した。
(1)基材と、無機粒子を含む塗層とから構成されるリチウムイオン電池用セパレータを製造するために使用されるリチウムイオン電池用セパレータ用塗液であって、該塗液が、無機粒子、有機ポリマーバインダー、及び、エーテル化度1.10以上2.00以下のカルボキシメチルセルロース又はその塩を含むことを特徴とするリチウムイオン電池用セパレータ用塗液。
(2)エーテル化度1.10以上2.00以下のカルボキシメチルセルロース又はその塩の含有量が、無機粒子100質量部に対して、0.1質量部以上2.0質量部未満である上記(1)に記載のリチウムイオン電池用セパレータ用塗液。
(3)無機粒子が、水酸化マグネシウムである上記(1)又は(2)に記載のリチウムイオン電池用セパレータ用塗液。
(4)水酸化マグネシウムが、あまに油吸油量が30~80(g/100g)である上記(3)記載のリチウムイオン電池用セパレータ用塗液。
(5)基材が不織布である上記(1)~(4)のいずれかに記載のリチウムイオン電池用セパレータ用塗液。
(6)基材と、該基材の少なくとも1面に設けられてなる塗層とから構成されるリチウムイオン電池用セパレータであって、該塗層が無機粒子、有機ポリマーバインダー、及び、エーテル化度1.10以上2.00以下のカルボキシメチルセルロース又はその塩を含むことを特徴とするリチウムイオン電池用セパレータ。
(7)エーテル化度1.10以上2.00以下のカルボキシメチルセルロース又はその塩の含有量が、無機粒子100質量部に対して、0.1質量部以上2.0質量部未満である上記(6)に記載のリチウムイオン電池用セパレータ。
(8)無機粒子が、水酸化マグネシウムである上記(6)又は(7)に記載のリチウムイオン電池用セパレータ。
(9)水酸化マグネシウムが、あまに油吸油量が30~80(g/100g)である上記(8)記載のリチウムイオン電池用セパレータ。
(10)基材が不織布である上記(6)~(9)のいずれかに記載のリチウムイオン電池用セパレータ。
(11)基材と、無機粒子を含む塗層とから構成されるリチウムイオン電池用セパレータを製造するために使用されるリチウムイオン電池用セパレータ用塗液であって、無機粒子があまに油吸油量が30~80(g/100g)である水酸化マグネシウムを含むことを特徴とするリチウムイオン電池用セパレータ用塗液。
(12)基材が不織布である上記(11)に記載のリチウムイオン電池用セパレータ用塗液。
(13)基材と、該基材の少なくとも1面に設けられてなる塗層とから構成されるリチウムイオン電池用セパレータであって、該塗層があまに油吸油量が30~80(g/100g)である水酸化マグネシウムを含むことを特徴とするリチウムイオン電池用セパレータ。
(14)基材が不織布である上記(13)に記載のリチウムイオン電池用セパレータ。
 本発明によれば、基材と、無機粒子を含む塗層とから構成されるリチウムイオン電池用セパレータを製造するにあたり、塗層を設けるために使用される無機粒子を含むリチウムイオン電池用セパレータ用塗液中に、酸やアルカリへの耐性の高い、エーテル化度1.10以上2.00以下のカルボキシメチルセルロース又はその塩を含有させることによって、無機粒子の再凝集を効率的に抑えることができる。その結果、塗液の安定性を向上させることができ、著しく高い生産性で、安全性が高く、かつ内部抵抗の低いリチウムイオン電池用セパレータを製造することができる。
 また、無機粒子として、あまに油吸油量が30~80(g/100g)である水酸化マグネシウムを含有させた場合、基材が熱溶融した場合でも形状安定性が優れることから、特に安全性が高いリチウムイオン電池用セパレータとすることができる。
 本発明のリチウムイオン電池用セパレータ用塗液は、基材と、無機粒子を含む塗層とから構成されるリチウムイオン電池用セパレータを製造するために使用される塗液である。また、本発明のリチウムイオン電池用セパレータは、基材と、該基材の少なくとも1面に設けられてなる塗層とから構成されている。
<塗液(1)及びセパレータ(6)>
 本発明の塗液(1)は、無機粒子、有機ポリマーバインダー、及び、エーテル化度1.10以上2.00以下のカルボキシメチルセルロース(CMC)又はその塩(CMC塩)を含むことを特徴とする。
 本発明のセパレータ(6)は、塗層が無機粒子、有機ポリマーバインダー、及び、エーテル化度1.10以上2.00以下のCMC又はCMC塩を含むことを特徴とする。
<CMC又はCMC塩>
 具体的には、CMC塩としては、金属塩が挙げられる。CMC塩は、カルボキシメチルセルロース中に含まれている全てのカルボキシ基(-COOH)が塩を形成している化合物でも良く、CMC中に含まれている一部のカルボキシ基が塩を形成している化合物でもよい。全カルボキシ基量の少なくとも40%以上が塩を形成しているのが好ましい。
 金属塩に含まれる金属イオンの種類としては、アルカリ金属イオンが挙げられる。アルカリ金属イオンとしては、例えば、リチウムイオン、ナトリウムイオン、カリウムイオン等である。具体的には、CMC塩としては、例えば、カルボキシメチルセルロースリチウム(CMC-Li)、カルボキシメチルセルロースナトリウム(CMC-Na)、カルボキシメチルセルロースカリウム(CMC-K)等が挙げられる。
 本発明の塗液(1)及びセパレータ(6)は、エーテル化度1.10以上2.00以下のCMC又はCMC塩を含む。CMC又はCMC塩のエーテル化度は、1.13以上1.90以下がより好ましく、1.15以上1.80以下が更に好ましい。エーテル化度が低すぎると、塗液の安定性が悪化する。エーテル化度2.00を超えると、CMC又はCMC塩の安定生産が難しくなる。
 CMC又はCMC塩のエーテル化度は、次のようにして求めることができる。試料としてのCMC又はCMC塩(無水物)0.5g~0.7gを精密に計り、ろ紙に包んで磁製ルツボ中で灰化する。冷却した後、これを500mlビーカーに移し、水を250ml加え、さらにピペットで0.05モル/リットルの硫酸35mlを加えて、30分間煮沸する。これを冷却し、フェノールフタレイン指示薬を加えて、過剰の酸を0.1モル/リットルの水酸化カリウムで逆滴定して、次式(I)及び(II)から、エーテル化度を算出する。
A=(B×C-D×E)/試料無水物(g)-アルカリ度(又は+酸度) (I)
エーテル化度=162×A/(10,000-80×A) (II)
「A」:試料1g中の結合したアルカリに消費された0.05モル/リットルの硫酸の使用量(ml)。
「B」:0.05モル/リットルの硫酸の使用量(ml)。
「C」:0.05モル/リットルの硫酸の力価。
「D」:0.1モル/リットルの水酸化カリウムの滴定量(ml)。
「E」:0.1モル/リットルの水酸化カリウムの力価。
 式(I)中のアルカリ度又は酸度は、次のようにして求めることができる。試料無水物約1gを300mlの三角フラスコに精密に計りとり、水約200mlを加えて溶かす。これに0.05モル/リットルの硫酸5mlをピペットで加え、10分間煮沸したのち冷却して、フェノールフタレイン指示薬を加え、0.1モル/リットルの水酸化カリウムで滴定する(「F」ml)。同時に空試験を行い(「G」ml)、次式(III)によって算出する。なお、(G-F)E値が(-)のときには、アルカリ度を酸度と読み替える(「E」:0.1モル/リットルの水酸化カリウムの力価)。
アルカリ度=(G-F)E/試料無水物(g) (III)
 塗液(1)及びセパレータ(6)の塗層における、エーテル化度1.10以上2.00以下のCMC又はCMC塩の含有量は、無機粒子100質量部に対して、0.1質量部以上2.0質量部未満が好ましく、0.2質量部以上1.9質量部未満がより好ましく、0.3質量部以上1.8質量部未満が更に好ましい。含有量が低すぎると、塗液及び塗層にエーテル化度1.00以上2.00以下のCMC又はCMC塩を含有させた効果が十分に発現しない場合がある。逆に、含有量が高すぎると、セパレータの内部抵抗が高くなる場合がある。
<無機粒子>
 塗液(1)及びセパレータ(6)の塗層に含まれる無機粒子は、セパレータの塗層に用いるのに好適なものであれば、特に制限はされない。その例としては、カオリン、焼成カオリン、重質炭酸カルシウム、軽質炭酸カルシウム、炭酸マグネシウム、酸化亜鉛、アルミナ、ベーマイト、水酸化アルミニウム、水酸化マグネシウム、二酸化チタン、硫酸バリウム、硫酸亜鉛、非晶質シリカ、ケイ酸カルシウムなどが挙げられる。これらを単独で用いても良いし、2種以上併用して用いてもよい。なかでも熱安定性の点から、アルミナ、ベーマイト又は水酸化マグネシウムが好ましく、水酸化マグネシウムがより好ましい。アルミナでは、αアルミナがより好ましい。
 塗液(1)及びセパレータ(6)の塗層に含まれる無機粒子の平均粒子径は、0.3μm以上4.0μm以下が好ましく、0.4μm以上3.8μm以下がより好ましく、0.5μm以上3.5μm以下が更に好ましい。平均粒子径が0.3μmよりも小さい場合、電池の内部抵抗が高くなる場合があり、4.0μmよりも大きい場合、セパレータが厚くなり過ぎる場合がある。平均粒子径とは、レーザー回折法による粒度分布測定から求められる体積基準50%粒子径(D50)である。
 また、無機粒子が、あまに油吸油量が30~80(g/100g)である水酸化マグネシウムである場合、基材が熱溶融した場合でも形状安定性が高いセパレータとなることから好ましい。水酸化マグネシウムのあまに油吸油量は50~80(g/100g)であることがより好ましい。
<塗液(11)及びセパレータ(13)>
 本発明の塗液(11)では、無機粒子があまに油吸油量が30~80(g/100g)である水酸化マグネシウムを含むことを特徴としている。また、本発明のセパレータ(13)では、塗層があまに油吸油量が30~80(g/100g)である水酸化マグネシウムを含むことを特徴としている。水酸化マグネシウムのあまに油吸油量は50~80(g/100g)であることがより好ましい。
<水酸化マグネシウムのあまに油吸油量>
 本発明の発明者らが、水酸化マグネシウムを含む塗層と基材とから構成されるセパレータにおける、熱溶融時の形状安定性の発現機構について検討した。その結果、基材が熱溶融した際に、熱溶融して液体となった基材の構成材料が水酸化マグネシウムに吸収され、硬い油粘土状物を形成して流動性を失うことを見出した。これにより、熱溶融しても流動しにくく、形状安定性が高いセパレータが得られる。さらに、塗層に用いられる水酸化マグネシウムのあまに油吸油量が30~80(g/100g)である場合に、この作用が特に顕著に発現することを見出した。
 水酸化マグネシウムのあまに油吸油量が30(g/100g)未満である場合は、熱溶融して液体となった基材の構成材料を水酸化マグネシウムが吸収しきれず、流動性が失われず保持される。そのため、基材が熱溶融した場合でも形状安定性が高いセパレータは得られない。一方、塗層に用いられる水酸化マグネシウムのあまに油吸油量が80(g/100g)を超える場合には、熱溶融して液体となった基材の構成材料と水酸化マグネシウムとの混合物は、脆いケーキ状となり、外力で容易に崩壊してしまう。そのため、基材が熱溶融した場合でも形状安定性が高いセパレータは得られない。
 水酸化マグネシウムのあまに油吸油量は、JIS K5101-13-1:2004(顔料試験方法-第13部:吸油量-第1節:精製あまに油法、Test methods for pigments―Part 13:Oil absorption―Section 1:Refined linseed oil method)により測定される。水酸化マグネシウムは、マグネシウム塩水溶液をアルカリで処理する方法、酸化マグネシウムを加水分解する方法等の方法によって製造される粉体状の化合物である。基材が熱溶融した場合でも形状安定性が高いセパレータが得られるという効果を得ると言う観点のみからすれば、水酸化マグネシウムのあまに油吸油量が30~80(g/100g)であれば良く、例えば粒子径、粒子形状、比表面積等の特性は影響しない。一方で、電池の内部抵抗を低くする、自己放電を小さくする等の観点からは、水酸化マグネシウムの他の特性、特に粒子径には、適切な範囲が存在する。具体的には、低い内部抵抗と小さい自己放電とを両立できる水酸化マグネシウムの平均粒子径としては、0.3μm以上4.0μm以下が好ましく、0.4μm以上3.0μm以下がより好ましく、0.5μm以上2.0μm以下がさらに好ましい。
<有機ポリマーバインダー>
 塗液(1)及びセパレータ(6)の塗層には、有機ポリマーバインダーを含有させる。また、塗液(11)及びセパレータ(13)の塗層には、有機ポリマーバインダーを含有させることが好ましい。有機ポリマーバインダーは、塗層の強度を高める効果を発現する。有機ポリマーバインダーは、セパレータの塗層に用いるのに好適なものであれば特に制限はされない。その例としては、エチレン-酢酸ビニル共重合体(EVA)、(メタ)アクリレート共重合体、フッ素系ゴム、スチレン-ブタジエン共重合樹脂(SBR)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、ポリウレタンなどの樹脂が挙げられる。また、これらの樹脂の一部に、非水電解液への溶解を防止するために、架橋構造を導入した樹脂も用いることができる。これらの有機ポリマーバインダーは1種単独で使用してもよく、2種以上を併用してもよい。これらの中でも、スチレン-ブタジエン共重合樹脂(SBR)、(メタ)アクリレート共重合体が特に好ましい。
 有機ポリマーバインダーの含有量は、無機粒子100質量部に対して、0.5質量部以上10質量部以下が好ましく、0.7質量部以上8質量部以下がより好ましく、1質量部以上6質量部以下が更に好ましい。含有量が低すぎると、セパレータの塗層強度が弱くなる場合がある。逆に、含有量が高すぎると、セパレータの内部抵抗が高くなる場合がある。
 塗液(1)及びセパレータ(6)の塗層には、無機粒子、有機ポリマーバインダー、エーテル化度1.10以上2.00以下のCMC又はCMC塩の他に、ポリアクリル酸、エーテル化度1.10未満のCMC又はCMC塩等の各種分散剤;ヒドロキシエチルセルロース、エーテル化度1.10未満のCMC又はCMC塩、ポリエチレンオキサイド等の各種増粘剤;濡れ剤;防腐剤;消泡剤などの添加剤を、必要に応じ配合させることもできる。
 塗液(1)を調製するための媒体としては、無機粒子、有機ポリマーバインダー、エーテル化度1.10以上2.00以下のCMC又はCMC塩を均一に溶解又は分散できるものであれば特に限定されず、例えば、水;N-メチル-2-ピロリドン(NMP)、2-ブタノン、トルエン、ヘキサン等の有機溶媒が例示される。最も好ましい媒体は水である。
 塗液(11)及びセパレータ(13)の塗層には、水酸化マグネシウム、有機ポリマーバインダー以外に、ポリアクリル酸及びその共重合体、CMC、CMC塩等の各種分散剤;ポリエチレンオキサイド、ポリアクリルアミド、ヒドロキシエチルセルロース、CMC、CMC塩等の各種増粘剤;濡れ剤;防腐剤;消泡剤などの添加剤を、必要に応じ配合することもできる。
 塗液(11)を調製するための媒体としては、水酸化マグネシウム、有機ポリマーバインダー及び添加剤を均一に溶解又は分散できるものであれば特に限定されず、例えば、水;NMP、2-ブタノン、トルエン、ヘキサン等の有機溶媒が例示される。最も好ましい媒体は水である。
 本発明において、基材としては、多孔性フィルム、織布、不織布、編物、紙等が挙げられる。多孔性フィルムとしては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィンからなる多孔性フィルムが挙げられる。最も好ましい基材は、不織布であり、セパレータの内部抵抗をより低くすることができる。
 不織布における合成樹脂繊維の含有量は70質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上が更に好ましい。また、本発明のセパレータに用いる不織布は、合成樹脂繊維のみからなっていてもよい。合成樹脂繊維の含有量が70質量%よりも少ない場合、不織布の強度が弱くなり過ぎる場合がある。また、合成樹脂繊維が熱可塑性繊維であることが好ましい。合成樹脂繊維が熱可塑性繊維である場合、基材である不織布が熱溶融した際に、熱溶融して液体となった熱可塑性繊維が、水酸化マグネシウムに吸収され、硬い油粘土状物を形成するという作用が得られ易い。
 合成樹脂繊維の平均繊維径は1μm以上20μm以下が好ましく、1μm以上15μm以下がより好ましく、1μm以上10μm以下が更に好ましい。平均繊維径が1μm未満の場合、繊維が細すぎて、塗層が不織布内部に滲み込みにくくなり、セパレータの厚み増加を抑制することが難しくなることがある。平均繊維径が20μmより太い場合、不織布自体の厚みを薄くすることが困難になり、セパレータの厚み増加を抑制することが難しくなることがある。
 本発明における平均繊維径とは、不織布断面の走査型電子顕微鏡写真より、不織布を形成する繊維について、繊維の長さ方向に対して垂直な断面又は垂直に近い断面の繊維を30本選択し、その繊維径を測定した平均値である。合成樹脂繊維は熱や圧力によって溶融する場合や変形する場合がある。その場合は、断面積を測定して、真円換算の繊維径を算出する。
 合成樹脂繊維の繊維長は1mm以上15mm以下が好ましく、2mm以上10mm以下がより好ましく、2mm以上5mm以下が更に好ましい。繊維長が1mmより短い場合、不織布から脱落することがあり、15mmより長い場合、繊維がもつれてダマになることがあり、厚みむらが生じることがある。
 合成樹脂繊維を構成する樹脂としては、例えばポリオレフィン、ポリエステル、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリアミド、アクリル、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルエーテル、ポリビニルケトン、ポリエーテル、ポリビニルアルコール、ジエン樹脂、ポリウレタン、フェノール樹脂、メラミン樹脂、フラン樹脂、尿素樹脂、アニリン樹脂、不飽和ポリエステル、アルキド樹脂、フッ素樹脂、シリコーン、ポリアミドイミド、ポリフェニレンスルフィド、ポリイミド、ポリカーボネート、ポリアゾメチン、ポリエステルアミド、ポリエーテルエーテルケトン、ポリ-p-フェニレンベンゾビスオキサゾール、ポリベンゾイミダゾール、エチレン-ビニルアルコール共重合体等の樹脂が挙げられる。また、これらの樹脂の共重合体も使用できる。これらの樹脂の中で、塗層との接着性を高くするためには、ポリエステル樹脂、アクリル樹脂、ポリオレフィン樹脂を使用することが好ましい。また、セパレータの耐熱性を向上させるためには、ポリエステル樹脂、アクリル樹脂、ポリアミド樹脂を使用することが好ましい。
 ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリトリメチレンテレフタレート(PTT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)、ポリエチレンイソフタレート、全芳香族ポリエステル樹脂が挙げられる。また、これらの共重合体も使用できる。これらの樹脂の中で、耐熱性、耐電解液性、無機粒子層との接着性を向上させるためには、ポリエチレンテレフタレート樹脂が好ましい。
 アクリル樹脂としては、例えばアクリロニトリル100%の重合体からなるもの、アクリロニトリルに対して、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル等の(メタ)アクリル酸誘導体、酢酸ビニル等を共重合させたもの等が挙げられる。
 ポリオレフィン樹脂としては、例えばポリプロピレン、ポリエチレン、ポリメチルペンテン、エチレン-ビニルアルコール共重合体、オレフィン共重合体等が挙げられる。
 ポリアミド樹脂としては、例えばナイロンなどの脂肪族ポリアミド、ポリ-p-フェニレンテレフタルアミド、コポリ(パラ-フェニレン-3,4’-オキシジフェニレンテレフタルアミド)、ポリ-m-フェニレンイソフタルアミドなどの全芳香族ポリアミド、全芳香族ポリアミドにおける主鎖の一部に脂肪鎖を有する半芳香族ポリアミドが挙げられる。
 半芳香族とは、主鎖の一部に例えば脂肪鎖などを有するものを指す。全芳香族ポリアミドはパラ型、メタ型いずれでもよい。
 合成樹脂繊維は、単一の樹脂からなる繊維(単繊維)であってもよいし、2種以上の樹脂からなる繊維(複合繊維)であってもよい。また、不織布基材に含まれる合成樹脂繊維は、1種でもよいし、2種類以上を組み合わせて使用してもよい。複合繊維としては、芯鞘型、偏芯型、サイドバイサイド型、海島型、オレンジ型、多重バイメタル型が挙げられる。複合繊維を分割した繊維を使用してもよい。
 不織布は、合成樹脂繊維以外の繊維を含有してもよい。例えば、溶剤紡糸セルロース、再生セルロース等の短繊維;溶剤紡糸セルロース、再生セルロース等のフィブリル化物;天然セルロース繊維;天然セルロース繊維のパルプ化物;天然セルロース繊維のフィブリル化物;無機繊維;合成樹脂のフィブリル化物;合成樹脂のパルプ化物等を含有してもよい。
 不織布の坪量は、好ましくは6g/m以上20g/m以下であり、より好ましくは7g/m以上18g/m以下であり、更に好ましくは8g/m以上15g/m以下である。坪量が20g/mを超える場合、セパレータの薄膜化が難しくなる場合がある。坪量が6g/m未満の場合、十分な強度を得ることが難しい場合がある。なお、坪量はJIS P 8124:2011(紙及び板紙-坪量測定法、Paper and board-Determination of grammage)に規定された方法に基づき測定される。
 不織布の厚みは、好ましくは9μm以上30μm以下であり、より好ましくは10μm以上27μm以下であり、更に好ましくは11μm以上24μm以下である。厚みが9μm未満の場合、十分な強度が得られない場合がある。厚みが30μmを超える場合、セパレータの薄膜化が難しくなる場合がある。なお、厚みはJIS B 7502:2016(マイクロメータ、Micrometers)に規定された外側マイクロメーターを使用して、5N荷重することにより測定された値を意味する。
 不織布の製造方法としては、繊維ウェブを形成し、繊維ウェブ内の繊維を結合させて不織布を得る製造方法を用いることができる。得られた不織布は、そのまま基材として使用してもよいし、複数枚の不織布からなる積層体を基材として使用することもできる。繊維ウェブの製造方法としては、例えば、カード法、エアレイ法、スパンボンド法、メルトブロー法等の乾式法;湿式抄紙法等の湿式法;静電紡糸法等が挙げられる。このうち、湿式法によって得られるウェブは、均質かつ緻密であり、セパレータ用基材として好適に用いることができる。湿式法は、繊維を水中に分散して均一な抄紙スラリーとし、この抄紙スラリーを円網式、長網式、傾斜式等の抄紙方式の少なくとも1つを有する抄紙機を用いて、繊維ウェブを得る方法である。
 繊維ウェブから不織布を製造する方法では、接着、融着及び絡合からなる群から選ばれる繊維結合方法によって、繊維を結合させる。繊維結合方法としては、水流交絡(スパンレース)法、ニードルパンチ法、バインダー接着法等を使用することができる。バインダー接着法には、繊維ウェブに付与したバインダーで繊維を結合させるケミカルボンド法、繊維ウェブに含まれるバインダー用合成樹脂繊維で繊維を結合させるサーマルボンド法等を使用することができる。特に、均一性を重視して前記湿式法を用いる場合、サーマルボンド法を施して、バインダー用合成樹脂繊維を接着することが好ましい。サーマルボンド法により、均一な繊維ウェブから均一な不織布が形成される。
 不織布に対して、カレンダー等によって圧力を加えて、厚さを調整することや、厚さを均一化することが好ましい。ただし、バインダー用合成樹脂繊維が皮膜化しない温度(バインダー用合成樹脂繊維の融点又は軟化点よりも20℃以上低い温度)で加圧することが好ましい。
 本発明のセパレータ(6)は、本発明の塗液(1)を基材に塗工して製造することができる。また、本発明のセパレータ(13)は、本発明の塗液(11)を基材に塗工して製造することができる。塗液を、基材の片面にのみ塗工してもよいし、基材の両面に塗工してもよい。また、基材の片面に2回以上塗布しても良い。
 塗液を基材に塗工する方法としては、各種の塗工装置を用いることができる。塗工装置としては、ブレード、ロッド、リバースロール、リップ、ダイ、カーテン、エアーナイフ等各種の塗工方式、フレキソ、スクリーン、オフセット、グラビア、インクジェット等の各種印刷方式、ロール転写、フィルム転写などの転写方式、ディッピング等の引き上げ方式等を、必要に応じて選択して用いることができる。
 本発明のセパレータの坪量は、好ましくは10g/m以上36g/m以下であり、より好ましくは12g/m以上32g/m以下であり、更に好ましくは14g/m以上27g/m以下である。坪量が36g/mを超えた場合、内部抵抗が高くなり過ぎる場合がある。坪量が10g/m未満の場合、ピンホールが発生しやすくなる場合や、十分な強度を得ることが難しくなる場合がある。
 本発明のセパレータの厚みは、好ましくは10μm以上40μm以下であり、より好ましくは11μm以上30μm以下であり、更に好ましくは12μm以上25μm以下である。厚みが40μmを超えた場合、リチウムイオン電池セパレータが厚くなり過ぎてしまい、内部抵抗が高くなる場合がある。厚みが10μm未満の場合、ピンホールが発生しやすくなる場合や、十分な強度を得ることが難しくなる場合がある。
 以下、実施例により本発明を更に詳しく説明するが、本発明は実施例に限定されるものではない。なお、実施例において百分率(%)及び部は、断りのない限り全て質量基準である。また、塗工量は乾燥塗工量(塗工量(絶乾))である。
≪塗液(1)及びセパレータ(6)≫
<基材1の作製>
 繊度0.1dtex(平均繊維径3.0μm)、繊維長3mmの配向結晶化PET短繊維(延伸PET繊維)50部と繊度0.2dtex(平均繊維径4.3μm)、繊維長3mmの単一成分型バインダー用PET短繊維(未延伸PET繊維、軟化点120℃、融点230℃)50部とをパルパーにより水中に分散し、濃度1%の均一な抄造用スラリーを調製した。この抄造用スラリーを、円網型抄紙機にて、湿式方式で抄き上げ、135℃のシリンダードライヤーによって、バインダー用PET短繊維同士、及びバインダー用PET短繊維と配向結晶化PET短繊維の交点を融着させて引張強度を発現させ、坪量10g/mの不織布とした。更に、この不織布を、誘電発熱ジャケットロール(金属製熱ロール)及び弾性ロールからなる1ニップ式熱カレンダーを使用して、熱ロール温度200℃、線圧100kN/m、処理速度30m/分の条件で熱カレンダー処理し、厚み15μmの不織布を作製し、基材1とした。
<基材2>
 多孔性ポリプロピレンフィルム(坪量12g/m、厚み20μm、空孔率40%)を基材2とした。
実施例1
 平均粒子径1.0μmの水酸化マグネシウム100部を、水140部に分散した分散液に、2%のCMC-Na水溶液90部(固形分1.8部)を添加・攪拌混合した後、有機ポリマーバインダーとして、カルボキシ変性スチレン-ブタジエン共重合樹脂エマルション(固形分濃度50%、ガラス転移点-18℃、平均粒子径0.2μm)10部を添加・攪拌混合し、最後に調整水16部を加えて固形分濃度を30%に調整し、塗液a1を調製した。CMC-Naとして、1%水溶液の25℃における粘度が3500mPa・sおよびエーテル化度2.00のCMC-Naを使用した。水酸化マグネシウムは、あまに油吸油量66(g/100g)のものを使用した。
実施例2
 CMC-Naとして、エーテル化度2.00のCMC-Naを、1%水溶液の25℃における粘度が3300mPa・sおよびエーテル化度1.80のCMC-Naに変更した以外は、塗液a1の調製と同様にして、塗液a2を調製した。
実施例3
 CMC-Naとして、エーテル化度2.00のCMC-Naを、1%水溶液の25℃における粘度が3000mPa・sおよびエーテル化度1.15のCMC-Naに変更した以外は、塗液a1の調製と同様にして、塗液a3を調製した。
実施例4
 CMC-Naとして、エーテル化度2.00のCMC-Naを、1%水溶液の25℃における粘度が2500mPa・sおよびエーテル化度1.10のCMC-Naに変更した以外は、塗液a1の調製と同様にして、塗液a4を調製した。
実施例5
 平均粒子径1.0μmの水酸化マグネシウム100部を水140部に分散した分散液に、2%のCMC-Na水溶液4部(固形分0.08部)を添加・攪拌混合した後、有機ポリマーバインダーとして、カルボキシ変性スチレン-ブタジエン共重合樹脂エマルション(固形分濃度50%、ガラス転移点-18℃、平均粒子径0.2μm)10部を添加・攪拌混合し、最後に調整水96部を加えて固形分濃度を30%に調整し、塗液a5を調製した。CMC-Naとして、1%水溶液の25℃における粘度が3000mPa・sおよびエーテル化度1.15のCMC-Naを使用した。水酸化マグネシウムは、あまに油吸油量66(g/100g)のものを使用した。
実施例6
 平均粒子径1.0μmの水酸化マグネシウム100部を、水140部に分散した分散液に、2%のCMC-Na水溶液5部(固形分0.10部)を添加・攪拌混合した後、有機ポリマーバインダーとして、カルボキシ変性スチレン-ブタジエン共重合樹脂エマルション(固形分濃度50%、ガラス転移点-18℃、平均粒子径0.2μm)10部を添加・攪拌混合し、最後に調整水95部を加えて固形分濃度を30%に調整し、塗液a6を調製した。CMC-Naとして、1%水溶液の25℃における粘度が3000mPa・sおよびエーテル化度1.15のCMC-Naを使用した。水酸化マグネシウムは、あまに油吸油量66(g/100g)のものを使用した。
実施例7
 平均粒子径1.0μmの水酸化マグネシウム100部を、水140部に分散した分散液に、2%のCMC-Na水溶液95部(固形分1.9部)を添加・攪拌混合した後、有機ポリマーバインダーとして、カルボキシ変性スチレン-ブタジエン共重合樹脂エマルション(固形分濃度50%、ガラス転移点-18℃、平均粒子径0.2μm)10部を添加・攪拌混合し、最後に調整水11部を加えて固形分濃度を30%に調整し、塗液a7を調製した。CMC-Naとして、1%水溶液の25℃における粘度が3000mPa・sおよびエーテル化度1.15のCMC-Naを使用した。水酸化マグネシウムは、あまに油吸油量66(g/100g)のものを使用した。
実施例8
 平均粒子径1.0μmの水酸化マグネシウム100部を、水140部に分散した分散液に、2%のCMC-Na水溶液100部(固形分2.0部)を添加・攪拌混合した後、有機ポリマーバインダーとして、カルボキシ変性スチレン-ブタジエン共重合樹脂エマルション(固形分濃度50%、ガラス転移点-18℃、平均粒子径0.2μm)10部を添加・攪拌混合し、最後に調整水7部を加えて固形分濃度を30%に調整し、塗液a8を調製した。CMC-Naとして、1%水溶液の25℃における粘度が3000mPa・sおよびエーテル化度1.15のCMC-Naを使用した。水酸化マグネシウムは、あまに油吸油量66(g/100g)のものを使用した。
実施例9
 平均粒子径2.0μmのベーマイト100部を、水140部に分散した分散液に、2%のCMC-Na水溶液75部(固形分1.5部)を添加・攪拌混合した後、有機ポリマーバインダーとして、カルボキシ変性スチレン-ブタジエン共重合樹脂エマルション(固形分濃度50%、ガラス転移点-18℃、平均粒子径0.2μm)10部を添加・攪拌混合し、最後に調整水30部を加えて固形分濃度を30%に調整し、塗液a9を調製した。CMC-Naとして、1%水溶液の25℃における粘度が3100mPa・sおよびエーテル化度1.40のCMC-Naを使用した。
実施例10
 平均粒子径2.0μmのベーマイトを平均粒子径0.3μmのαアルミナに変更した以外は、塗液a9の調製と同様にして、塗液a10を調製した。
実施例11
 平均粒子径2.0μmのベーマイトを平均粒子径0.5μmのαアルミナに変更した以外は、塗液a9の調製と同様にして、塗液a11を調製した。
実施例12
 水140部に、50%のアクリル酸系分散剤1部(固形分0.5部)を混合した後、あまに油吸油量44(g/100g)、平均粒子径3.0μmの水酸化マグネシウム100部を、攪拌しながら徐々に添加して分散した。分散終了後、2%のCMC-Na水溶液90部(固形分1.8部)、有機ポリマーバインダーとして、カルボキシ変性スチレン-ブタジエン共重合体エマルション(固形分濃度50%、ガラス転移点-18℃、平均粒子径0.2μm)10部(固形分5部)を攪拌しながら順次添加し、最後に調整水を加えて、固形分濃度を30%に調整し、塗液b1を調製した。CMC-Naとして、1%水溶液の25℃における粘度が3000mPa・sおよびエーテル化度1.15のCMC-Naを使用した。
実施例13
 水酸化マグネシウムを、あまに油吸油量66(g/100g)、平均粒子径1.0μmの水酸化マグネシウムに変更した以外は、塗液b1の調製と同様にして、塗液b2を調製した。
実施例14
 水酸化マグネシウムを、あまに油吸油量72(g/100g)、平均粒子径0.6μmの水酸化マグネシウムに変更した以外は、塗液b1の調製と同様にして、塗液b3を調製した。
実施例15
 水酸化マグネシウムを、あまに油吸油量33(g/100g)、平均粒子径2.0μmの水酸化マグネシウムに変更した以外は、塗液b1の調製と同様にして、塗液b4を調製した。
実施例16
 水酸化マグネシウムを、あまに油吸油量74(g/100g)、平均粒子径0.4μmの水酸化マグネシウムに変更した以外は、塗液b1の調製と同様にして、塗液b5を調製した。
実施例17
 水酸化マグネシウムを、あまに油吸油量27(g/100g)、平均粒子径1.0μmの水酸化マグネシウムに変更した以外は、塗液b1の調製と同様にして、塗液b6を調製した。
実施例18
 水酸化マグネシウムを、あまに油吸油量85(g/100g)、平均粒子径0.5μmの水酸化マグネシウムに変更した以外は、塗液b1の調製と同様にして、塗液b7を調製した。
比較例1
 平均粒子径1.0μmの水酸化マグネシウム100部を、水140部に分散した分散液に、2%のCMC-Na水溶液90部(固形分1.8部)を添加・攪拌混合した後、有機ポリマーバインダーとして、カルボキシ変性スチレン-ブタジエン共重合樹脂エマルション(固形分濃度50%、ガラス転移点-18℃、平均粒子径0.2μm)10部を添加・攪拌混合し、最後に調整水16部を加えて固形分濃度を30%に調整し、比較塗液c1を調製した。CMC-Naとして、1%水溶液の25℃における粘度が3000mPa・sおよびエーテル化度1.00のCMC-Naを使用した。水酸化マグネシウムのあまに油吸油量は66(g/100g)であった。
比較例2
 平均粒子径1.0μmの水酸化マグネシウム100部を水140部に分散した分散液に、有機ポリマーバインダーとして、カルボキシ変性スチレン-ブタジエン共重合樹脂エマルション(固形分濃度50%、ガラス転移点-18℃、平均粒子径0.2μm)10部を添加・攪拌混合し、最後に調整水100部を加えて固形分濃度を30%に調整し、比較塗液c2を調製した。水酸化マグネシウムのあまに油吸油量は66(g/100g)であった。
<塗液の安定性;沈降の評価>
 実施例及び比較例の塗液を24時間静置した後の、分散粒子の沈降の様子を確認し、次の3段階に分類した。
○:沈降物なし。
△:沈降物少しあり。
×:沈降物あり。
<塗液の安定性;粘度変化の評価>
 実施例及び比較例の塗液を24時間静置前後の粘度を測定し、粘度変化=静置後粘度/静置前粘度の式から、粘度変化の倍率(倍)を求め、次の3段階に分類した。
○:粘度変化が1.5倍未満。
△:粘度変化が1.5倍以上2.0倍未満。
×:粘度変化が2.0倍以上。
<実施例1~10、12~18及び比較例1、2のリチウムイオン電池用セパレータ>
 前記基材1に、塗工装置としてリバースグラビアコーターを用いて、実施例1~10、12~18及び比較例1、2の塗液を塗工量(絶乾)が10.0g/mとなるように塗工・乾燥し、リチウムイオン電池用セパレータを得た。
<実施例11のリチウムイオン電池用セパレータ>
 前記基材2に、塗工装置としてリバースグラビアコーターを用いて、実施例11の塗液を塗工量(絶乾)が10.0g/mとなるように塗工・乾燥し、リチウムイオン電池用セパレータを得た。
<評価用電池の作製>
 前記の各セパレータを用い、正極にマンガン酸リチウム、負極にメソカーボンマイクロビーズ、電解液にヘキサフルオロリン酸リチウムの1mol/L炭酸ジエチル/炭酸エチレン(容量比7/3)混合溶媒溶液を用いた設計容量30mAhの評価用電池を作製した。
<内部抵抗の評価>
 作製した各電池について、60mA定電流充電→4.2V定電圧充電(1時間)→60mAで定電流放電→2.8Vになったら次のサイクル のシーケンスにて、5サイクルの慣らし充放電を行った後、60mA定電流充電→4.2V定電圧充電(1時間)→6mAで30分間定電流放電(放電量3mAh)→放電終了直前の電圧を測定(電圧a)→60mA定電流充電→4.2V定電圧充電(1時間)→90mAで2分間定電流放電(放電量3mAh)→放電終了直前の電圧(電圧b)の測定を行い、内部抵抗Ω=(電圧a-電圧b)/(90mA-6mA)の式で内部抵抗を求めた。結果を表1に記す。
 ○:内部抵抗4Ω未満
 △:内部抵抗4Ω以上5Ω未満
 ×:内部抵抗5Ω以上
<不織布基材溶融時の形状安定性の評価>
 実施例12~18の各リチウムイオン電池用セパレータに、はんだリワーク用のホットエアー装置を用い、10℃ステップで変化させた種々の温度の熱風を吹きつけ、セパレータに孔が開く最低の温度を評価した。結果を表1に示す。なお、本試験の熱風温度が高ければ高い程、セパレータに孔が開き易い。より広範な温度条件において電池の正負極を電池的に分離するという機能を維持できるという観点から、より高温まで孔が開かないセパレータが、基材溶融時の形状安定性がより高いセパレータと言える。
Figure JPOXMLDOC01-appb-T000001
 表1に示した通り、実施例1~11および実施例12~18でそれぞれ作製したリチウムイオン電池用セパレータ用塗液a1~a11およびb1~b7は、無機粒子と有機ポリマーバインダーを含む塗液にエーテル化度1.10以上2.00以下のカルボキシメチルセルロースナトリウムを含有させることで、沈降や大きな粘度変化が見られなく、塗液の安定性に優れ、また、製造されたセパレータを用いてなる電池の内部抵抗も低く、優れていた。
 一方、比較例1で作製したリチウムイオン電池用セパレータ用塗液c1は、エーテル化度1.10未満のカルボキシメチルセルロースナトリウムを含有しているため、静置時に粘度変化が見られ、塗液の安定性が劣っていた。
 比較例2で作製したリチウムイオン電池用セパレータ用塗液c2は、カルボキシメチルセルロースナトリウムを含有していないため、沈降が見られ、塗液の安定性が劣っていた。
 実施例4で作製したリチウムイオン電池用セパレータ用塗液a4は、カルボキシメチルセルロースナトリウムのエーテル化度が1.10とやや小さいことから、24時間静置後にやや粘度変化が見られた。
 実施例5で作製したリチウムイオン電池用セパレータ用塗液a5は、無機粒子と有機ポリマーバインダーを含む塗液中のエーテル化度1.10以上2.00以下のカルボキシメチルセルロースナトリウムの添加量がやや少ないことから、24時間静置後にやや沈降が見られた。
 実施例8で作製したリチウムイオン電池用セパレータ用塗液a8は、無機粒子と有機ポリマーバインダーを含む塗液中のエーテル化度1.10以上2.00以下のカルボキシメチルセルロースナトリウムの添加量がやや多いことから、ややセパレータの内部抵抗が高くなった。
 実施例11で作製したリチウムイオン電池用セパレータは、基材に多孔性フィルムを使用したことから、ややセパレータの内部抵抗が高くなった。
 あまに油吸油量が30~80(g/100g)である水酸化マグネシウムを用いた実施例12~16のリチウムイオン電池用セパレータにおいて、孔が開く最低温度は330~370℃であり、あまに油吸油量が30(g/100g)未満である水酸化マグネシウムを用いた実施例17のセパレータにおける270℃、及びあまに油吸油量が80(g/100g)を超える水酸化マグネシウムを用いた実施例18のセパレータにおける280℃と比較して、孔が開く最低温度が顕著に高く、形状安定性が特に高いセパレータであった。
≪塗液(11)及びセパレータ(13)≫
(塗液α1)
 水140部に、50%のアクリル酸系分散剤1部(固形分0.5部)を混合した後、あまに油吸油量44(g/100g)、平均粒子径3.0μmの水酸化マグネシウム100部を、攪拌しながら徐々に添加して分散した。分散終了後、2%のCMC-Na水溶液90部(固形分1.8部)、有機ポリマーバインダーとして、カルボキシ変性スチレン-ブタジエン共重合樹脂エマルション(固形分濃度50%、ガラス転移点-18℃、平均粒子径0.2μm)10部(固形分5部)を攪拌しながら順次添加し、最後に調整水を加えて、固形分濃度を30%に調整し、塗液α1を調製した。
(塗液α2)
 水酸化マグネシウムを、あまに油吸油量66(g/100g)、平均粒子径1.0μmの水酸化マグネシウムに変更した以外は、塗液α1の調製と同様にして、塗液α2を調製した。
(塗液α3)
 水酸化マグネシウムを、あまに油吸油量72(g/100g)、平均粒子径0.6μmの水酸化マグネシウムに変更した以外は、塗液α1の調製と同様にして、塗液α3を調製した。
(塗液α4)
 水酸化マグネシウムを、あまに油吸油量33(g/100g)、平均粒子径2.0μmの水酸化マグネシウムに変更した以外は、塗液α1の調製と同様にして、塗液α4を調製した。
(塗液α5)
 水酸化マグネシウムを、あまに油吸油量74(g/100g)、平均粒子径0.4μmの水酸化マグネシウムに変更した以外は、塗液α1の調製と同様にして、塗液α5を調製した。
(比較塗液β1)
 水酸化マグネシウムを、あまに油吸油量27(g/100g)、平均粒子径1.0μmの水酸化マグネシウムに変更した以外は、塗液α1の調製と同様にして、比較塗液β1を調製した。
(比較塗液β2)
 水酸化マグネシウムを、あまに油吸油量85(g/100g)、平均粒子径0.5μmの水酸化マグネシウムに変更した以外は、塗液α1の調製と同様にして、比較塗液β2を調製した。
<リチウムイオン電池用セパレータの作製>
 前記不織布基材に、塗液α1~α5及び比較塗液β1~β2を、塗工量(絶乾)が10.0g/mとなるように、塗工装置としてリバースグラビアコーターを用いて塗工・乾燥し、実施例19~23及び比較例3、4のリチウムイオン電池用セパレータを得た。
<不織布基材溶融時の形状安定性の評価>
 前記の各リチウムイオン電池用セパレータに、はんだリワーク用のホットエアー装置を用い、10℃ステップで変化させた種々の温度の熱風を吹きつけ、セパレータに孔が開く最低の温度を評価した。結果を表2に示す。なお、本試験の熱風温度が高ければ高い程、セパレータに孔が開き易い。より広範な温度条件において電池の正負極を電池的に分離するという機能を維持できるという観点から、より高温まで孔が開かないセパレータが、基材溶融時の形状安定性がより高いセパレータと言える。
Figure JPOXMLDOC01-appb-T000002
 表2に示した通り、あまに油吸油量が30~80(g/100g)である水酸化マグネシウムを用いた実施例19~23のリチウムイオン電池用セパレータにおいて、孔が開く最低温度は330~370℃であり、あまに油吸油量が30(g/100g)未満である水酸化マグネシウムを用いた比較例3のセパレータにおける270℃、及びあまに油吸油量が80(g/100g)を超える水酸化マグネシウムを用いた比較例4のセパレータにおける280℃と比較して、孔が開く最低温度が顕著に高く、形状安定性が高いセパレータであった。
 本発明のリチウムイオン電池用セパレータ用塗液及びリチウムイオン電池用セパレータは、安全性が高く、かつ内部抵抗が良好なリチウムイオン電池の製造に用いることができる。

Claims (14)

  1.  基材と、無機粒子を含む塗層とから構成されるリチウムイオン電池用セパレータを製造するために使用されるリチウムイオン電池用セパレータ用塗液であって、該塗液が、無機粒子、有機ポリマーバインダー、及び、エーテル化度1.10以上2.00以下のカルボキシメチルセルロース又はその塩を含むことを特徴とするリチウムイオン電池用セパレータ用塗液。
  2.  エーテル化度1.10以上2.00以下のカルボキシメチルセルロース又はその塩の含有量が、無機粒子100質量部に対して、0.1質量部以上2.0質量部未満である請求項1に記載のリチウムイオン電池用セパレータ用塗液。
  3.  無機粒子が、水酸化マグネシウムである請求項1又は2に記載のリチウムイオン電池用セパレータ用塗液。
  4.  水酸化マグネシウムの、あまに油吸油量が30~80(g/100g)である請求項3記載のリチウムイオン電池用セパレータ用塗液。
  5.  基材が不織布である請求項1~4のいずれかに記載のリチウムイオン電池用セパレータ用塗液。
  6.  基材と、該基材の少なくとも1面に設けられてなる塗層とから構成されるリチウムイオン電池用セパレータであって、該塗層が無機粒子、有機ポリマーバインダー、及び、エーテル化度1.10以上2.00以下のカルボキシメチルセルロース又はその塩を含むことを特徴とするリチウムイオン電池用セパレータ。
  7.  エーテル化度1.10以上2.00以下のカルボキシメチルセルロース又はその塩の含有量が、無機粒子100質量部に対して、0.1質量部以上2.0質量部未満である請求項6に記載のリチウムイオン電池用セパレータ。
  8.  無機粒子が、水酸化マグネシウムである請求項6又は7に記載のリチウムイオン電池用セパレータ。
  9.  水酸化マグネシウムの、あまに油吸油量が30~80(g/100g)である請求項8記載のリチウムイオン電池用セパレータ。
  10.  基材が不織布である請求項6~9のいずれかに記載のリチウムイオン電池用セパレータ。
  11.  基材と、無機粒子を含む塗層とから構成されるリチウムイオン電池用セパレータを製造するために使用されるリチウムイオン電池用セパレータ用塗液であって、無機粒子があまに油吸油量が30~80(g/100g)である水酸化マグネシウムを含むことを特徴とするリチウムイオン電池用セパレータ用塗液。
  12.  基材が不織布である請求項11に記載のリチウムイオン電池用セパレータ用塗液。
  13.  基材と、該基材の少なくとも1面に設けられてなる塗層とから構成されるリチウムイオン電池用セパレータであって、該塗層があまに油吸油量が30~80(g/100g)である水酸化マグネシウムを含むことを特徴とするリチウムイオン電池用セパレータ。
  14.  基材が不織布である請求項13に記載のリチウムイオン電池用セパレータ。
PCT/JP2019/002024 2018-01-25 2019-01-23 リチウムイオン電池用セパレータ用塗液及びリチウムイオン電池用セパレータ WO2019146626A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US16/963,406 US11735797B2 (en) 2018-01-25 2019-01-23 Coating solution for lithium ion battery separators and lithium ion battery separator
EP19743957.3A EP3745493A4 (en) 2018-01-25 2019-01-23 COATING LIQUID FOR LITHIUM-ION BATTERY SEPARATORS AND SEPARATOR FOR LITHIUM-ION BATTERY
CN202211561355.9A CN115663397A (zh) 2018-01-25 2019-01-23 锂离子电池用隔板用涂液和锂离子电池用隔板
JP2019530521A JP6999671B2 (ja) 2018-01-25 2019-01-23 リチウムイオン電池用セパレータ用塗液及びリチウムイオン電池用セパレータ
CN201980010072.5A CN111615765B (zh) 2018-01-25 2019-01-23 锂离子电池用隔板用涂液和锂离子电池用隔板
US17/950,444 US11881595B2 (en) 2018-01-25 2022-09-22 Coating solution for lithium ion battery separators and lithium ion battery separator

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018-010983 2018-01-25
JP2018010983 2018-01-25
JP2018184232 2018-09-28
JP2018-184232 2018-09-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/963,406 A-371-Of-International US11735797B2 (en) 2018-01-25 2019-01-23 Coating solution for lithium ion battery separators and lithium ion battery separator
US17/950,444 Division US11881595B2 (en) 2018-01-25 2022-09-22 Coating solution for lithium ion battery separators and lithium ion battery separator

Publications (1)

Publication Number Publication Date
WO2019146626A1 true WO2019146626A1 (ja) 2019-08-01

Family

ID=67395441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002024 WO2019146626A1 (ja) 2018-01-25 2019-01-23 リチウムイオン電池用セパレータ用塗液及びリチウムイオン電池用セパレータ

Country Status (5)

Country Link
US (2) US11735797B2 (ja)
EP (1) EP3745493A4 (ja)
JP (2) JP6999671B2 (ja)
CN (2) CN111615765B (ja)
WO (1) WO2019146626A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024162345A1 (ja) * 2023-02-02 2024-08-08 旭化成株式会社 鉛蓄電池用セパレータ、およびこれを用いた鉛蓄電池

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4032957B1 (en) * 2020-12-10 2023-10-25 Nippon Paint Industrial Coatings Co., Ltd. Rust preventive coating composition and method for producing rust preventive coating film
CN115275520B (zh) * 2022-08-29 2023-07-07 江苏欧力特能源科技有限公司 一种锂电池用复合隔膜及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008004439A (ja) 2006-06-23 2008-01-10 Hitachi Maxell Ltd 電池用セパレータ、およびリチウム二次電池
JP2009532315A (ja) * 2006-03-31 2009-09-10 アルベマール・コーポレーシヨン 改善された混練および粘度特性を持つ水酸化マグネシウム
JP2012134024A (ja) 2010-12-22 2012-07-12 Mitsubishi Paper Mills Ltd リチウム二次電池用セパレータ
JP2013133418A (ja) 2011-12-27 2013-07-08 Sumitomo Chemical Co Ltd 塗工液、積層多孔質フィルム及び積層多孔質フィルムの製造方法
JP2013541128A (ja) 2010-08-11 2013-11-07 カール・フロイデンベルク・カーゲー 貫入強さを高めたセパレータ
WO2014083988A1 (ja) * 2012-11-30 2014-06-05 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP2014229406A (ja) 2013-05-20 2014-12-08 日本ゼオン株式会社 二次電池多孔膜用スラリー組成物、二次電池用多孔膜の製造方法、二次電池用多孔膜、二次電池用セパレーター、二次電池用電極および二次電池
WO2016043142A1 (ja) 2014-09-17 2016-03-24 三菱製紙株式会社 電気化学素子用セパレータ及びそれを用いてなる電気化学素子
JP2016515988A (ja) * 2013-10-29 2016-06-02 オトクリトエ アクツィオネルノエ オブシェストヴォ “カウスティク” 水酸化マグネシウム難燃剤ナノ粒子及びその生産方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307132A (ja) * 2004-04-19 2005-11-04 Hitachi Kasei Polymer Co Ltd オフセットインキ用の樹脂
KR102165556B1 (ko) * 2012-04-05 2020-10-14 제온 코포레이션 이차 전지용 세퍼레이터
JP6292625B2 (ja) * 2012-06-12 2018-03-14 三菱製紙株式会社 リチウムイオン電池用セパレータ
JP6033933B2 (ja) 2014-09-17 2016-11-30 三菱製紙株式会社 電気化学素子用セパレータ及びそれを用いてなる電気化学素子

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009532315A (ja) * 2006-03-31 2009-09-10 アルベマール・コーポレーシヨン 改善された混練および粘度特性を持つ水酸化マグネシウム
JP2008004439A (ja) 2006-06-23 2008-01-10 Hitachi Maxell Ltd 電池用セパレータ、およびリチウム二次電池
JP2013541128A (ja) 2010-08-11 2013-11-07 カール・フロイデンベルク・カーゲー 貫入強さを高めたセパレータ
JP2012134024A (ja) 2010-12-22 2012-07-12 Mitsubishi Paper Mills Ltd リチウム二次電池用セパレータ
JP2013133418A (ja) 2011-12-27 2013-07-08 Sumitomo Chemical Co Ltd 塗工液、積層多孔質フィルム及び積層多孔質フィルムの製造方法
WO2014083988A1 (ja) * 2012-11-30 2014-06-05 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP2014229406A (ja) 2013-05-20 2014-12-08 日本ゼオン株式会社 二次電池多孔膜用スラリー組成物、二次電池用多孔膜の製造方法、二次電池用多孔膜、二次電池用セパレーター、二次電池用電極および二次電池
JP2016515988A (ja) * 2013-10-29 2016-06-02 オトクリトエ アクツィオネルノエ オブシェストヴォ “カウスティク” 水酸化マグネシウム難燃剤ナノ粒子及びその生産方法
WO2016043142A1 (ja) 2014-09-17 2016-03-24 三菱製紙株式会社 電気化学素子用セパレータ及びそれを用いてなる電気化学素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MR. NOBORU SATOH ET AL.: "Safety Technologies and Materials for Lithium-ion Batteries", 9 September 2014, CMC PUBLISHER, pages: 145

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024162345A1 (ja) * 2023-02-02 2024-08-08 旭化成株式会社 鉛蓄電池用セパレータ、およびこれを用いた鉛蓄電池

Also Published As

Publication number Publication date
JP2020187990A (ja) 2020-11-19
JP6999671B2 (ja) 2022-01-18
US11881595B2 (en) 2024-01-23
EP3745493A4 (en) 2022-02-23
JP6828094B2 (ja) 2021-02-10
EP3745493A1 (en) 2020-12-02
US11735797B2 (en) 2023-08-22
US20230035812A1 (en) 2023-02-02
CN115663397A (zh) 2023-01-31
CN111615765B (zh) 2023-02-03
US20210074981A1 (en) 2021-03-11
CN111615765A (zh) 2020-09-01
JPWO2019146626A1 (ja) 2020-11-26

Similar Documents

Publication Publication Date Title
JP6542343B2 (ja) リチウムイオン二次電池セパレータ用不織布基材及びリチウムイオン二次電池セパレータ
US11881595B2 (en) Coating solution for lithium ion battery separators and lithium ion battery separator
JP6292625B2 (ja) リチウムイオン電池用セパレータ
JP5829557B2 (ja) 金属イオン二次電池セパレータの製造方法
JP6953413B2 (ja) リチウムイオン電池セパレータ用基材及びリチウムイオン電池セパレータ
JP5750033B2 (ja) リチウムイオン電池セパレータ
JP2013084367A (ja) リチウムイオン電池セパレータ用塗工液およびリチウムイオン電池セパレータ
JP5841510B2 (ja) 金属イオン二次電池セパレータ用塗液及び金属イオン二次電池セパレータ
JP2016162538A (ja) リチウムイオン二次電池用セパレータ及びそれを用いてなるリチウムイオン二次電池
JP2018170215A (ja) リチウムイオン電池セパレータ
WO2013176276A1 (ja) リチウムイオン電池用セパレータ
JP5876375B2 (ja) 金属イオン二次電池セパレータ
JP6765277B2 (ja) リチウムイオン電池
JP2019160888A (ja) キャパシタ用セパレータ用塗液およびキャパシタ用セパレータ
JP2021057237A (ja) リチウムイオン電池用セパレータ
JP2019175703A (ja) リチウムイオン二次電池用セパレータ及びリチウムイオン二次電池
JP2022133630A (ja) リチウムイオン二次電池用セパレータの製造方法
JP6049588B2 (ja) リチウムイオン電池セパレータ
JP6581533B2 (ja) リチウムイオン電池用セパレータ
JP6018526B2 (ja) 金属イオン二次電池セパレータ
JP2013254570A (ja) リチウムイオン電池用セパレータ及びリチウムイオン電池
JP6016466B2 (ja) リチウムイオン電池用セパレータ用塗液およびリチウムイオン電池用セパレータ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019530521

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19743957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019743957

Country of ref document: EP

Effective date: 20200825