WO2016043099A1 - 充電装置 - Google Patents

充電装置 Download PDF

Info

Publication number
WO2016043099A1
WO2016043099A1 PCT/JP2015/075564 JP2015075564W WO2016043099A1 WO 2016043099 A1 WO2016043099 A1 WO 2016043099A1 JP 2015075564 W JP2015075564 W JP 2015075564W WO 2016043099 A1 WO2016043099 A1 WO 2016043099A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
power factor
voltage
battery
output
Prior art date
Application number
PCT/JP2015/075564
Other languages
English (en)
French (fr)
Inventor
浩行 野田
水谷 政敏
夏比古 森
Original Assignee
Ntn株式会社
浩行 野田
水谷 政敏
夏比古 森
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 浩行 野田, 水谷 政敏, 夏比古 森 filed Critical Ntn株式会社
Priority to CN201580049651.2A priority Critical patent/CN106688158A/zh
Publication of WO2016043099A1 publication Critical patent/WO2016043099A1/ja
Priority to US15/454,624 priority patent/US20170187215A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • H02J7/0049Detection of fully charged condition
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00711Regulation of charging or discharging current or voltage with introduction of pulses during the charging process
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from AC mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
    • H02M7/02Conversion of AC power input into DC power output without possibility of reversal
    • H02M7/04Conversion of AC power input into DC power output without possibility of reversal by static converters
    • H02M7/12Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a charging device that is applied to quick charging or the like of various charging target devices including a rechargeable battery such as an electric vehicle, a smartphone, a rechargeable dry battery, and a DIY electric tool.
  • a rechargeable battery such as an electric vehicle, a smartphone, a rechargeable dry battery, and a DIY electric tool.
  • the conventional charging device uses a DC power source that has been rectified and smoothed as described above. However, it was found that there was no problem in reducing the battery life even if the rectified pulsating flow without being smoothed was connected to the battery as it was and charged. In addition, it has been found that charging with a pulsating flow is more advantageous for detecting the charge level by devising a means for detecting the charge level.
  • the present inventor considered the relationship between the internal resistance of the battery and the charge level, and considered the detection of the charge level by detecting the internal resistance.
  • the internal resistance of the battery can be detected with high accuracy by using an internal resistance measuring instrument.
  • the conventional internal resistance measuring instrument is a device for research and experimental use, and it is expensive and difficult to use for general purposes. The measured value fluctuates and it is difficult for the general public to measure accurately.
  • the pulsating flow that is just rectified from the alternating current of a commercial power supply, etc. has a voltage waveform that is a sine wave, but the current waveform is a narrow pulse, and the electric power to be charged is the product of the current and the voltage.
  • the current value between the pulses of the waveform is zero, the power is also zero, so that there is a problem that charging efficiency is poor.
  • An object of the present invention is to provide a charging device that solves the above-described problems and enhances charging efficiency while performing charging using a pulsating flow that is advantageous for detecting the degree of charging.
  • the charging device includes a rectifier circuit 2 that rectifies an alternating current of an AC power source 1 and outputs it as a pulsating current, a power factor improving means 15 that increases the power factor of the pulsating current output from the rectifying circuit 2, and a charging target An output circuit 6 having an output terminal 5 connected to a charging terminal of the device 3 and outputting a power factor improving pulsating flow output from the power factor improving means 15 without smoothing the voltage.
  • the power factor improving means 15 by providing the power factor improving means 15, the power factor of the pulsating flow output from the rectifier circuit 2 is increased, and charging is performed using this power factor improving pulsating flow.
  • efficient charging can be performed.
  • since charging is performed with a pulsating flow it is possible to accurately detect the degree of charging as follows, to prevent overcharging and to increase the battery life. That is, when charging with a pulsating current, a ripple voltage is generated in the terminal voltage of the battery. The fluctuation range, that is, the amplitude of the ripple voltage is proportional to the internal resistance of the battery. In addition, the internal resistance of the battery decreases as charging proceeds.
  • the power factor improving means 15 has a configuration in which the current waveform of the pulsating current output from the rectifier circuit is rectangularized and the width between the wave peaks is reduced to form the power factor improving pulsating flow. May be. According to this configuration, by making the current waveform of the pulsating current rectangular and narrowing the width between the wave peaks, the power factor of the pulsating flow is improved and the power applied to the battery is increased.
  • a charge level detecting means 7 for monitoring the terminal voltage of the battery 4 of the device 3 to be charged and detecting the charge level based on the fluctuation width of the ripple voltage of the terminal voltage caused by the pulsating flow. It may be provided. As described above, when charging is performed in a pulsating state in which the voltage after rectification is not smoothed, a ripple voltage is generated in the terminal voltage of the battery 4. The fluctuation width, that is, the amplitude of the ripple voltage is proportional to the internal resistance of the battery 4. Further, the internal resistance of the battery 4 decreases as the charging proceeds. Therefore, the degree of charge of the battery 4 can be accurately detected by measuring the fluctuation range of the terminal voltage of the battery 4 by the charge degree detection means 7.
  • the “ripple voltage” refers to a voltage that is superimposed on a direct current component and periodically fluctuates.
  • This charging device includes a rectifier circuit 2 that rectifies an alternating current of an AC power supply 1 and outputs it as a pulsating current, a power factor improving means 15 that increases a power factor of the pulsating current output from the rectifying circuit 2, and a charging target device 3. And an output circuit 6 which has an output terminal 5 connected to a charging terminal (not shown) and outputs the power factor improving pulsating current output from the power factor improving means 15 without smoothing the voltage. .
  • the charging device further includes a charge level detection means 7 that monitors the terminal voltage of the battery 4 of the device 3 to be charged and detects the charge level based on the fluctuation width of the ripple voltage of the terminal voltage generated by the pulsating current.
  • the charging device further includes a charging stop unit 11 and a charging degree notification unit 13.
  • the AC power supply 1 is, for example, a 100V or 200V single-phase AC commercial power supply, and an input terminal 8 such as a plug that plugs into an outlet (not shown) in the wiring of the AC power supply 1 is provided upstream of the rectifier circuit 2.
  • the rectifier circuit 2 is a full-wave rectifier circuit, and includes a bridge circuit of the semiconductor switching element 2a.
  • the rectifier circuit 2 may be a half-wave rectifier circuit.
  • the charging target device 3 may be any device provided with a rechargeable battery 4, such as an electric vehicle, a smartphone, a personal computer, a DIY electric tool, a rechargeable dry battery charging socket, and the like.
  • the power factor improving means 15 includes a power factor improving circuit.
  • a flyback power factor improving circuit is used as the power factor improving means 15, for example.
  • the power factor improving means 15 performs the power factor improvement processing by making the current waveform of the pulsating flow a input as shown in FIG. Let the rate improvement pulsating flow b.
  • FIG. 4 shows a circuit example of the power factor improving means 15. Briefly, when the switching element 21 is turned on, a current flows to the primary side of the transformer 22 and energy is stored. When the switching element 21 is turned off, the stored energy is output from the secondary side of the transformer 22 through the diode 23.
  • the output circuit 6 may be configured to apply the power factor improving pulsating current output from the power factor improving means 15 to the output terminal 5.
  • a current limiting resistor 9 is provided at the subsequent stage of the rectifier circuit 2 and a capacitor 10 is connected in parallel with the positive and negative output terminals 5 and 5 so as not to pass the DC voltage of the battery.
  • a backflow prevention diode (not shown) may be provided in front of the output terminal 5 in the output circuit 6.
  • the charge level detection means 7 includes a voltage detection unit 7a including a voltmeter connected between the positive and negative terminals 5 and 5 of the output circuit 6, and a determination unit 7b.
  • the determination unit 7b is a unit that determines that charging is complete when the fluctuation range of the terminal voltage detected by the voltage detection unit 7a is equal to or less than the set fluctuation range or less than the set fluctuation range.
  • the set fluctuation range may be a fluctuation range of the ripple voltage at full charge, but is not necessarily a value corresponding to full charge, and may be a value having a margin for the remaining charge. For example, a battery for an electric vehicle can be charged by regenerative braking by providing a margin for the remaining chargeable amount.
  • the set fluctuation range is set according to the type of the battery 4 to be charged, but may be switched by a mode switch (not shown) or the like so as to be compatible with a plurality of types of batteries 4.
  • the voltage detection unit 7a is a digital voltmeter including, for example, an operational amplifier, a filter, a logic circuit, and the like, monitors and detects the terminal voltage, and the detected voltage value is a given signal. Output in format.
  • the determination unit 7b receives a predetermined conversion function or comparison function stored in a software library (Look (Up Look Up Table)) or a software library (Library), hardware equivalent thereto, and the like. In response to the input of the fluctuation width of the terminal voltage and the set fluctuation width, a flag as a comparison result between the fluctuation width of the terminal voltage and the set fluctuation width, that is, the determination signal of the charge completion is output.
  • Hardware circuit or software function The software is stored in a ROM (Read Only Memory), and the processor reads, processes, and executes, for example, to drive an electrical signal to the outside.
  • the charging stop means 11 is a means for stopping the charging when the charging degree detecting means determines that the charging is completed.
  • the charging stopping means 11 stops the charging by opening the open / close switch 12 provided in the output circuit 6.
  • the on / off switch 12 may be a semiconductor switching element or a contact switch such as a relay.
  • the charge stop unit 11 is a hardware circuit including a drive circuit that receives a determination signal indicating that the charge is detected by the charge level detection unit 7 and outputs a signal for opening and closing the open / close switch 12, for example.
  • the charging degree notifying means 13 is means for notifying a person of the degree of charging detected by the charging degree detecting means 7, and includes, for example, a liquid crystal panel or a notification lamp.
  • the charge level notification means 13 is configured to notify the charge level in stages by turning the lamp on, off, flashing, or the like, or displaying a percentage display, a pointer, a graph or the like on a screen such as a liquid crystal screen. It may be.
  • the pulsating flow a that has been rectified in the full wave by the rectifying circuit 2 is improved in the power factor by the power factor improving means 15 and becomes a pulsating flow b in which the current waveform is rectangular as shown in FIG. .
  • the output circuit 6 is charged with the pulsating flow b which has been improved in power factor and has not been smoothed.
  • the pulsating current a rectified by the full wave in the rectifier circuit 2 has a sine wave as shown in the upper left column, but the current waveform has a width as shown in the middle left column. Narrow pulses, with a large gap between each pulse. While the current value of the current waveform is zero, the power is zero. For this reason, as shown in the lower row of the left column, the power waveform has a narrow pulse shape like the current waveform, and charging efficiency is poor when used for charging as it is. However, in this embodiment, as shown in the right column of the figure by the power factor improving means 15, the input current waveform of the pulsating flow a is made rectangular to narrow the width between the wave peaks.
  • the power factor is improved, the power waveform becomes a wide rectangle, and the width between adjacent pulses of the current waveform becomes narrow. Therefore, by charging with the pulsating flow b after the power factor improvement, the charging can be performed as efficiently as possible in a short time while the pulsating flow.
  • the ripple voltage c corresponding to the pulsating flow b which is the charging voltage is generated in the terminal voltage of the battery 4 because of the pulsating flow.
  • the fluctuation range that is, the amplitude of the ripple voltage c is proportional to the internal resistance r of the battery 4.
  • the internal resistance r of the battery 4 decreases as charging progresses. For this reason, as charging progresses, the ripple voltage c decreases as indicated by the symbol “c ′”, and the fluctuation range of the terminal voltage of the battery 4 is measured by the charging degree detection means 7, thereby charging the battery 4. The degree can be accurately detected.
  • the degree of charge detected by the charge degree detection means 7 is displayed stepwise by the charge degree notification means 13 or as a percentage display.
  • the charging degree detection means 7 determines that the charging is completed, and in response to this determination, the charging stop means 11 turns the open / close switch 12 on. Open and stop charging.
  • the charging device of this configuration since charging is performed in a pulsating state where smoothing is not performed after rectification, a charging state such as full charging can be accurately detected, overcharging can be prevented, and battery life can be prevented. Decrease can be avoided.
  • charging is performed not by the pulsating flow output simply by rectification but by the pulsating flow after power factor improvement, charging can be performed efficiently, charging can be performed in a short time, and rapid charging can be supported.
  • FIG. 3 shows another embodiment of the present invention.
  • a voltage conversion circuit 14 for converting a voltage is provided in the first embodiment shown in FIG.
  • the voltage conversion circuit 14 is a hardware circuit composed of, for example, a regulator or a semiconductor element.
  • the voltage conversion circuit 14 is provided in the subsequent stage of the rectifier circuit 2, but may be provided in the previous stage of the rectifier circuit 2.
  • Other configurations are the same as those of the first embodiment.
  • a voltage conversion circuit 14 is provided so that the output side voltage of the input side rectifier circuit 2 is connected to the output side where the battery 4 is connected. Charging can be performed satisfactorily by converting the charging voltage to a voltage suitable for charging and then charging. In this case, since charging is performed in a pulsating manner in this charging device, the charging voltage applied to the charging terminal of the battery 4 may be set higher than the voltage for charging with a normal smoothed direct current. preferable. Thereby, the lengthening of the charge time with respect to direct current

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Rectifiers (AREA)
  • Secondary Cells (AREA)

Abstract

 充電装置に、交流電源(1)の交流を整流して脈流として出力する整流回路(2)と、この整流回路(2)から出力される脈流の力率を高める力率改善手段(15)と、出力回路(6)とを設ける。出力回路(6)は、充電対象機器(3)の充電端子に接続する出力端子(5)を有し前記力率改善手段(15)から出力される力率改善脈流を、電圧の平滑化を行うことなく出力する。また、充電対象機器(3)のバッテリー(4)の端子電圧を監視し前記脈流により生じる前記端子電圧のリップル電圧の変動幅によって充電程度を検出する充電程度検出手段(7)を設ける。

Description

充電装置 関連出願
 本出願は、2014年9月18日出願の特願2014-189665の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。
 この発明は、電気自動車や、スマートフォン、充電式乾電池、DIY電動工具等の充電式バッテリーを備える種々の充電対象機器への急速充電等に適用される充電装置に関する。
 従来、バッテリーの充電には、整流されかつ平滑化された直流電源を使用し、バッテリーの端子電圧を確認することでバッテリーの満充電等の蓄電状態を確認している。なお、研究・実験用途に設計されて、バッテリーの内部抵抗などの非常に小さい抵抗値を計測する機器としては、交流4端子法を用いたバッテリテスタ・内部抵抗計測器が市販されている(非特許文献1)。
交流4端子法バッテリテスタ・内部抵抗計測器(東京デバイセズIW7807)、東京デバイセズ、http://tokyodevices.jp/categories/battery-testers (2014年6月13日検索)
 従来の充電装置は、上記のように整流されかつ平滑化された直流電源を使用している。しかし、平滑化せずに整流した脈流をそのままバッテリーに接続し充電を行っても、バッテリー寿命の低下の上で問題がないことがわかった。また、充電程度の検出手段の工夫により、脈流で充電する方が、むしろ充電程度の検出に有利であることが分かった。
 すなわち、従来のバッテリーの端子電圧により蓄電状態を確認する方法では正確な蓄電状態を把握することが困難であり、そのため、特に急速充電時に過充電を起こし、バッテリーの寿命を短くするという課題がある。
 そこで、本発明者は、バッテリーの内部抵抗と充電程度とが比例する関係に着眼し、内部抵抗を検出して充電程度を検出することを考えた。バッテリーの内部抵抗は、内部抵抗計測器を用いれば、精度良く検出することができる。この内部抵抗の測定につき、従来の内部抵抗計測器は研究・実験用途向けの機器であって、高価であり、一般用途に用いることが困難であるうえ、端子の当て方による抵抗値の変動等で測定値が変動し、一般の者が正確に測定することが難しい。
 これに対して、脈流で充電すれば、その脈流により生じるバッテリーの端子電圧のリップル電圧の変動幅によって充電程度を検出することが分かった。
 このように、脈流で充電する方が、充電程度の検出に有利であり、過充電を回避してバッテリーの長寿命を図る上で有利である。
 しかし、商用電源等の交流から整流しただけの脈流は、電圧波形はサイン波であるが、電流波形が幅の狭いパルス状であり、充電される電力は電流と電圧の積であり、電流波形のパルス間の電流値零のときは電力も零となるため、充電の効率が悪いという問題点がある。
 この発明の目的は、上記課題を解消し、充電程度の検出に有利な脈流による充電を行いながら、充電の効率を高めた充電装置を提供することである。
 この発明の充電装置は、交流電源1の交流を整流して脈流として出力する整流回路2と、この整流回路2から出力される脈流の力率を高める力率改善手段15と、充電対象機器3の充電端子に接続する出力端子5を有し前記力率改善手段15から出力される力率改善脈流を、電圧の平滑化を行うことなく出力する出力回路6とを備える。
 この構成によると、力率改善手段15を設けることで、整流回路2から出力される脈流の力率を高め、この力率改善脈流を用いて充電するため、脈流で充電するようにしながら、効率の良い充電が行える。また、脈流で充電するため、次のように充電程度の検出が精度良く行えて、過充電を防止し、バッテリー寿命を高めることができる。すなわち、脈流で充電すると、バッテリーの端子電圧にリップル電圧が生じる。このリップル電圧の変動幅、つまり振幅は、バッテリーの内部抵抗に比例する。また、バッテリーの内部抵抗は充電が進むに従って小さくなる。そのため、バッテリーの端子電圧の変動幅を測定することにより、バッテリーの充電の程度を正確に検出することができる。これにより、満充電を精度良く検出し、急速充電等における過充電を回避し、バッテリーの寿命低下を防止することができる。なお、脈流で充電するが、電圧変動があっても、過充電の場合のようなバッテリーの寿命低下は生じない。
 この発明の一実施形態において、前記力率改善手段15は、前記整流回路から出力された脈流の電流波形を矩形化し各波山間の幅を狭めて前記力率改善脈流とする構成であっても良い。この構成によれば、脈流の電流波形を矩形化し各波山間の幅を狭めることで、前記脈流の力率が向上してバッテリーに印加される電力が大きくなる。
 この発明の一実施形態において、さらに、前記充電対象機器3のバッテリー4の端子電圧を監視し前記脈流により生じる前記端子電圧のリップル電圧の変動幅によって充電程度を検出する充電程度検出手段7を設けても良い。上記のように、整流後の電圧の平滑化を行っていない脈流の状態で充電すると、バッテリー4の端子電圧にリップル電圧が生じる。このリップル電圧の変動幅、つまり振幅は、バッテリー4の内部抵抗に比例する。また、バッテリー4の内部抵抗は充電が進むに従って小さくなる。そのため、前記充電程度検出手段7によりバッテリー4の端子電圧の変動幅を測定することにより、バッテリー4の充電の程度を正確に検出することができる。これにより、満充電を精度良く検出し、急速充電等における過充電を回避し、バッテリー4の寿命低下を防止することができる。
 なお、「リップル電圧」は、直流成分に重畳されて周期的に変動する電圧を言う。
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
この発明の一実施形態にかかる充電装置の回路図である。 同充電装置における力率改善手段による改善前後の電圧、電流、および電力の波形例の概略を示す説明図である。 この発明の他の実施形態にかかる充電装置の回路図である。 力率改善手段の一例を示す電気回路図である。
 この発明の一実施形態を図面と共に説明する。この充電装置は、交流電源1の交流を整流して脈流として出力する整流回路2と、この整流回路2から出力される脈流の力率を高める力率改善手段15と、充電対象機器3の充電端子(図示せず)に接続する出力端子5を有し前記力率改善手段15から出力される力率改善脈流を、電圧の平滑化を行うことなく出力する出力回路6とを備える。この充電装置は、さらに、前記充電対象機器3のバッテリー4の端子電圧を監視し前記脈流により生じる前記端子電圧のリップル電圧の変動幅によって充電程度を検出する充電程度検出手段7とを備える。この充電装置は、さらに、充電停止手段11および充電程度報知手段13を備える。
 前記交流電源1は、例えば100Vまたは200Vの単相の交流商用電源であり、整流回路2の上流側に、前記交流電源1の配線におけるコンセント(図示せず)に差し込むプラグ等の入力端子8が設けられている。整流回路2は、全波整流回路であり、半導体スイッチング素子2aのブリッジ回路等で構成される。整流回路2は、半波整流回路であっても良い。
 充電対象機器3は、充電可能なバッテリー4を備える機器であればどのような機器でも良く、例えば、電気自動車、スマートフォン、パーソナルコンピュータ、DIY電動工具、充電式乾電池の充電用ソケット等である。
 前記力率改善手段15は、力率改善回路等からなる。力率改善回路は、電源の力率(power factor)を1に近づける回路のことであり、PFC(Power Factor Correction)回路と呼ばれることが多い。なお、力率とは、交流電力の電圧と電流の位相差をφとすると、力率=cos φで求められる。力率改善手段15には、例えばフライバック方式の力率改善回路が用いられる。力率改善手段15は、ここでは、具体的には、前記力率の改善処理として、図2のように入力された脈流aの電流波形を矩形化し各波山間の幅を狭めて前記力率改善脈流bとする。
 図4に力率改善手段15の回路例を示す。簡単に説明すると、スイッチング素子21がオンされると、トランス22の一次側に電流が流れ、エネルギーが蓄えられる。スイッチング素子21がオフすると、蓄えられたエネルギーがトランス22の二次側からダイオード23を通して出力される。
 図1において、出力回路6は、前記力率改善手段15から出力される力率改善脈流を前記出力端子5に印加する構成であれば良い。図示の例では整流回路2の後段に電流制限用の抵抗9を設けると共に、正負の出力端子5,5と並列にバッテリーの直流電圧を通さないためのコンデンサ10を接続している。また、出力回路6における出力端子5の手前に、逆流防止用のダイオード(図示せず)を設けてもよい。
 充電程度検出手段7は、この例では、出力回路6の正負の端子5,5間に接続した電圧計からなる電圧検出部7aと、判定部7bとからなる。判定部7bは、電圧検出部7aで検出される前記端子電圧の変動幅が設定変動幅以下または設定変動幅未満になると充電完了と判定する手段である。前記設定変動幅は、満充電になるときのリップル電圧の変動幅とすれば良いが、必ずしも満充電に対応する値とせず、残充電可能量に余裕を持たせた値としても良い。例えば、電気自動車のバッテリーでは残充電可能量に余裕を持たせておくことで、回生ブレーキによる充電の余地が得られる。前記設定変動幅は、充電対象のバッテリー4の種類等に応じて設定されるが、複数種類のバッテリー4に対応できるようにモードスイッチ(図示せず)等で切換可能としても良い。
 具体的には、電圧検出部7aは、例えばオペアンプ、フィルター、およびロジック回路等から構成されるデジタル電圧計であり、前記端子電圧を監視して検出し、当該検出した電圧値を所与の信号形式で出力する。また、判定部7bは、ソフトウエアやハードウエアで実現されたLUT(Look Up Table)、またはソフトウエアのライブラリ(Library)に収められた所定の変換関数または比較関数やそれに等価のハードウエア等を用いて、前記端子電圧の変動幅、および前記設定変動幅の入力を受けて、前記端子電圧の変動幅と前記設定変動幅との比較結果としてのフラグ、すなわち前記充電完了の判定信号を出力しうるハードウエア回路またはソフトウエア関数で構成されている。なお、ソフトウエアは、ROM(Read Only Memory)に格納され、プロセッサが、読みだして処理および実行し、例えば外部への電気信号をドライブする。
 充電停止手段11は、充電程度検出手段が充電完了と判定すると充電を停止する手段であり、例えば、出力回路6に設けた開閉スイッチ12を開くことで充電を停止する。開閉スイッチ12は、半導体スイッチング素子であっても、リレー等の有接点のスイッチであっても良い。充電停止手段11は、例えば、充電程度検出手段7の充電完了との判定信号の入力を受けて、開閉スイッチ12を開閉させる信号を出力するドライブ回路を含むハードウエア回路である。
 充電程度報知手段13は、充電程度検出手段7により検出された充電の程度を人に知らせる手段であり、例えば、液晶パネルまたは報知ランプ等からなる。充電程度報知手段13は、充電の程度を、ランプのオン、オフ、点滅等で段階的に知らせる構成であっても、またパーセント表示や指針,グラフ等を液晶画面のようなスクリーンに表示する構成であっても良い。
 上記構成の充電装置によると、整流回路2で全波整流された脈流aが、力率改善手段15で力率改善されて電流波形が図2のように矩形化された脈流bとなる。出力回路6は、この力率改善されて後に平滑化されていない脈流bで充電する。
 図2と共に説明すると、整流回路2で全波整流された脈流aは、同図左列上段に示すように電圧波形がサイン波状であるが、左列中段に示すように、電流波形は幅の狭いパルス状となり、各パルス間の間隔が大きく開いている。電流波形の電流値が零の間は、電力も零となる。そのため、左列下段に示すように、電力波形は、電流波形と同様に幅の狭いパルス状となり、このまま充電に用いると充電効率が悪い。しかし、この実施形態では、力率改善手段15により同図右列に示すように、入力された脈流aの電流波形を矩形化し各波山間の幅を狭める。これにより力率が改善されて電力波形が幅の広い矩形となり、電流波形の隣合うパルス間の幅が狭くなる。そのため、この力率改善後の脈流bで充電することにより、脈流でありながら、できるだけ効率良く短時間で充電することができる。
 上記のように力率改善は行うが、脈流であるため、バッテリー4の端子電圧に充電電圧である脈流bに対応するリップル電圧cが生じる。このリップル電圧cの変動幅、つまり振幅は、バッテリー4の内部抵抗rに比例する。また、バッテリー4の内部抵抗rは充電が進むに従って小さくなる。そのため、充電が進むに従って、リップル電圧cが符号「c′」で波形を示すように小さくなり、充電程度検出手段7によりバッテリー4の端子電圧の変動幅を測定することによって、バッテリー4の充電の程度を正確に検出することができる。
 充電程度検出手段7により検出した充電の程度は、充電程度報知手段13により段階的に、またはパーセント表示等で表示する。充電程度検出手段7により、リップル電圧cの変動幅が設定変動幅以下または未満になると、充電程度検出手段7は充電完了と判定し、この判定に応答して充電停止手段11は開閉スイッチ12を開き、充電を停止する。
 スマートフォン等の多くの充電対象機器3は、充電装置に接続したままで放置する場合が多いが、前記充電停止手段11を設けることで、特に人による操作を必要とせずに、過充電を防止し、バッテリー4の寿命低下を回避できる。
 このように、この構成の充電装置によると、整流後に平滑化を行わない脈流の状態で充電するため、満充電等の充電状態を正確に検出でき、過充電の防止が行え、バッテリーの寿命低下を回避できる。また、単に整流によって出力した脈流でなく、その後に力率改善を行った脈流で充電するため、効率良く充電できて、短時間で充電が行え、急速充電にも対応することができる。
 図3は、この発明の他の実施形態を示す。この例は、図1に示す第1の実施形態において、電圧を変換する電圧変換回路14を設けたものである。電圧変換回路14は、例えば、レギュレータや半導体素子等からなるハードウエア回路である。図示の例では、電圧変換回路14を整流回路2の後段に設けているが、整流回路2の前段に設けても良い。その他の構成は第1の実施形態と同様である。
 前記交流電源1の電圧とバッテリー4の電圧は大きく異なる場合があるため、電圧変換回路14を設けて、入力側の整流回路2の出力電圧に対して、バッテリー4が接続されている出力側の充電電圧を充電に適した電圧に変換したうえで充電を行うようにすることで、良好に充電が行える。この場合に、この充電装置では脈流で充電を行うため、バッテリー4の充電端子に印加する充電電圧は、通常の平滑化された直流で充電する場合の電圧よりも高く設定しておくことが好ましい。これにより、脈流で充電することで生じる直流に対する充電時間の長時間化が回避できる。
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。
1…交流電源
2…整流回路
3…充電対象機器
4…バッテリー
5…出力端子
6…出力回路
7…充電程度検出手段
11…充電停止手段
13…充電程度報知手段
14…電圧変換回路
15…力率改善手段

Claims (3)

  1.  交流電源の交流を整流して脈流として出力する整流回路と、
     前記整流回路から出力される脈流の力率を高める力率改善手段と、
     充電対象機器の充電端子に接続する出力端子を有し、前記力率改善手段から出力される力率改善脈流を、電圧の平滑化を行うことなく出力する出力回路と、
    を備える充電装置。
  2.  請求項1に記載の充電装置において、前記力率改善手段は、前記整流回路から出力された脈流の電流波形を矩形化し各波山間の幅を狭めて前記力率改善脈流とする充電装置。
  3.  請求項1または請求項2に記載の充電装置において、さらに、前記充電対象機器のバッテリーの端子電圧を監視し前記脈流により生じる前記端子電圧のリップル電圧の変動幅によって充電程度を検出する充電程度検出手段を備える充電装置。
PCT/JP2015/075564 2014-09-18 2015-09-09 充電装置 WO2016043099A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580049651.2A CN106688158A (zh) 2014-09-18 2015-09-09 充电装置
US15/454,624 US20170187215A1 (en) 2014-09-18 2017-03-09 Charging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-189665 2014-09-18
JP2014189665A JP6400407B2 (ja) 2014-09-18 2014-09-18 充電装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/454,624 Continuation US20170187215A1 (en) 2014-09-18 2017-03-09 Charging device

Publications (1)

Publication Number Publication Date
WO2016043099A1 true WO2016043099A1 (ja) 2016-03-24

Family

ID=55533138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075564 WO2016043099A1 (ja) 2014-09-18 2015-09-09 充電装置

Country Status (4)

Country Link
US (1) US20170187215A1 (ja)
JP (1) JP6400407B2 (ja)
CN (1) CN106688158A (ja)
WO (1) WO2016043099A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018516054A (ja) * 2016-02-05 2018-06-14 クワントン オーピーピーオー モバイル テレコミュニケーションズ コーポレイション リミテッド 端末用充電システム、端末用充電方法及び電源アダプター
EP3273570A4 (en) * 2016-02-05 2019-01-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. CHARGING SYSTEM, CHARGING METHOD, AND POWER ADAPTER FOR TERMINAL
CN109314398A (zh) * 2016-06-02 2019-02-05 Ntn株式会社 电池充电装置
EP3488255A1 (en) * 2016-07-21 2019-05-29 Petalite Limited Battery charging circuit and method
EP3276784B1 (en) * 2016-07-26 2020-06-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging system, charging method, and power adapter
CN111740620A (zh) * 2019-03-25 2020-10-02 Tdk株式会社 电源装置和医疗系统
US10910852B2 (en) 2016-07-26 2021-02-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging system, charging method, and power adapter
US11368050B2 (en) 2017-04-07 2022-06-21 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless charging device, method, and device to-be-charged
EP3340425B1 (en) * 2016-10-12 2022-10-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. System comprising an adapter and a chargeable device and charging method therefor
US11539229B2 (en) 2018-05-31 2022-12-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Multi-stage constant current charging method and charging apparatus
EP3567699B1 (en) * 2016-07-26 2023-07-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging device and method, power adapter and terminal

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6715046B2 (ja) 2016-03-22 2020-07-01 Ntn株式会社 交流発電機のブレーキ装置
JP2017221073A (ja) 2016-06-10 2017-12-14 Ntn株式会社 Dc/dcコンバータ
EP3471257A4 (en) 2016-06-10 2020-04-01 NTN Corporation DEVICE FOR IMPROVING THE POWER FACTOR
JP6838169B2 (ja) * 2017-11-29 2021-03-03 マーレエレクトリックドライブズジャパン株式会社 バッテリ充電装置
JP6958392B2 (ja) 2018-01-30 2021-11-02 トヨタ自動車株式会社 二次電池システムおよび二次電池の劣化状態推定方法
KR102657047B1 (ko) * 2018-05-04 2024-04-15 삼성전자주식회사 어댑터, 전원 공급 시스템 및 그의 전원 공급 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138506A (ja) * 1990-09-28 1992-05-13 Fujitsu Ltd 電源装置
JP2014155420A (ja) * 2013-02-13 2014-08-25 Panasonic Corp 車載電源装置および電気自動車

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3612152B2 (ja) * 1995-11-21 2005-01-19 新電元工業株式会社 充電装置
US7285919B2 (en) * 2001-06-22 2007-10-23 Lutron Electronics Co., Inc. Electronic ballast having improved power factor and total harmonic distortion
US7378818B2 (en) * 2002-11-25 2008-05-27 Tiax Llc Bidirectional power converter for balancing state of charge among series connected electrical energy storage units
KR100510143B1 (ko) * 2003-07-01 2005-08-25 삼성전자주식회사 역률 보상 방법, 이에 적합한 장치 그리고 이를 적용한전원 장치
JP4630165B2 (ja) * 2005-09-21 2011-02-09 パナソニック株式会社 Dc−dcコンバータ
JP5231149B2 (ja) * 2008-09-25 2013-07-10 株式会社ジャムコ 電源周波数変換器
JP5592613B2 (ja) * 2009-01-22 2014-09-17 パナソニック株式会社 電源装置及びそれを用いた照明器具
KR100930813B1 (ko) * 2009-03-09 2009-12-09 이동원 능동형 정전력 공급장치
US20110169474A1 (en) * 2010-01-09 2011-07-14 Cuks, Llc Step-down switching PFC converter
KR20120020554A (ko) * 2010-08-30 2012-03-08 삼성전기주식회사 전기 차량용 통합형 충전 장치
JP2012249410A (ja) * 2011-05-27 2012-12-13 Sharp Corp 電気自動車充電用の充電器及び充電装置
DE102011077716A1 (de) * 2011-06-17 2012-12-20 Robert Bosch Gmbh Ladevorrichtung und Verfahren zum Laden eines elektrischen Energiespeichers
US8193662B1 (en) * 2011-10-17 2012-06-05 Google Inc. Power supply source blending and smoothing
KR101321236B1 (ko) * 2012-11-01 2013-10-28 명지대학교 산학협력단 Pfc 컨버터의 출력전압 리플 보상 장치 및 이를 이용한 전기 차량용 배터리 충전 장치
JP5701283B2 (ja) * 2012-12-25 2015-04-15 オムロンオートモーティブエレクトロニクス株式会社 充電装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138506A (ja) * 1990-09-28 1992-05-13 Fujitsu Ltd 電源装置
JP2014155420A (ja) * 2013-02-13 2014-08-25 Panasonic Corp 車載電源装置および電気自動車

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3249779B1 (en) * 2016-02-05 2020-09-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Adaptor and charge control method
EP3322066B1 (en) * 2016-02-05 2020-04-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging system, charging method, and power adapter for terminal
EP3273570A4 (en) * 2016-02-05 2019-01-23 Guangdong Oppo Mobile Telecommunications Corp., Ltd. CHARGING SYSTEM, CHARGING METHOD, AND POWER ADAPTER FOR TERMINAL
JP2018516054A (ja) * 2016-02-05 2018-06-14 クワントン オーピーピーオー モバイル テレコミュニケーションズ コーポレイション リミテッド 端末用充電システム、端末用充電方法及び電源アダプター
US11539230B2 (en) 2016-02-05 2022-12-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Device charging system, charging method, and power adapter
US10340727B2 (en) 2016-02-05 2019-07-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging system and charging method, and power adapter
EP3249780B1 (en) * 2016-02-05 2019-07-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging system, charging method, and power adapter for terminal
EP3282551B1 (en) * 2016-02-05 2019-08-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Adapter and charging control method
EP3285353B1 (en) * 2016-02-05 2020-02-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging system, charging method, and power adapter for terminal
EP3282549B1 (en) * 2016-02-05 2020-02-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Adapter and charging control method
EP3322065B1 (en) * 2016-02-05 2020-04-08 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging system, charging method, and power adapter for terminal
EP3285362B1 (en) * 2016-02-05 2021-03-10 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging system and charging method for terminal, and power adapter and switch power source
US10622829B2 (en) 2016-02-05 2020-04-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging control method and apparatus
US10644530B2 (en) 2016-02-05 2020-05-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging system, charging method, and device
US10651677B2 (en) 2016-02-05 2020-05-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging system and charging method, and power adapter and switching-mode power supply
IL258469B (en) * 2016-02-05 2022-09-01 Guangdong Oppo Mobile Telecommunications Corp Ltd Charging system, charging method, and power adapter for the terminal
US10714963B2 (en) 2016-02-05 2020-07-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging system, charging method, and device
EP3282547B1 (en) * 2016-02-05 2020-08-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Terminal charging system, charging method, and power adapter
US10910866B2 (en) 2016-02-05 2021-02-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging system and charging method for terminal and power adapter
JP2018527879A (ja) * 2016-02-05 2018-09-20 クワントン オーピーピーオー モバイル テレコミュニケーションズ コーポレイション リミテッド 端末用充電システム、端末用充電方法及び電源アダプター
EP3285363B1 (en) * 2016-02-05 2021-05-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Adapter and charging control method
EP3249778B1 (en) * 2016-02-05 2020-10-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging system, charging method, and power adapter for terminal
US10886772B2 (en) 2016-02-05 2021-01-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging system and charging method for terminal, and power adapter
CN109314398A (zh) * 2016-06-02 2019-02-05 Ntn株式会社 电池充电装置
US11719755B2 (en) 2016-07-21 2023-08-08 Petalite Limited Battery charging circuit and method
US11327119B2 (en) 2016-07-21 2022-05-10 Petalite Limited Battery charging circuit and method
AU2017300950B2 (en) * 2016-07-21 2022-12-01 Petalite Limited A battery charging circuit and method
EP3488255A1 (en) * 2016-07-21 2019-05-29 Petalite Limited Battery charging circuit and method
US10910852B2 (en) 2016-07-26 2021-02-02 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging system, charging method, and power adapter
EP3723231A1 (en) * 2016-07-26 2020-10-14 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging system, charging method, and power adapter
EP3276784B1 (en) * 2016-07-26 2020-06-17 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging system, charging method, and power adapter
EP3567699B1 (en) * 2016-07-26 2023-07-26 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Charging device and method, power adapter and terminal
EP3340425B1 (en) * 2016-10-12 2022-10-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. System comprising an adapter and a chargeable device and charging method therefor
US11368050B2 (en) 2017-04-07 2022-06-21 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless charging device, method, and device to-be-charged
US11539229B2 (en) 2018-05-31 2022-12-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Multi-stage constant current charging method and charging apparatus
CN111740620A (zh) * 2019-03-25 2020-10-02 Tdk株式会社 电源装置和医疗系统
CN111740620B (zh) * 2019-03-25 2024-02-02 Tdk株式会社 电源装置和医疗系统

Also Published As

Publication number Publication date
JP2016063622A (ja) 2016-04-25
CN106688158A (zh) 2017-05-17
JP6400407B2 (ja) 2018-10-03
US20170187215A1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP6400407B2 (ja) 充電装置
WO2016024490A1 (ja) 充電装置
US9692314B2 (en) Detection circuit and three-phase AC-to-AC power converting apparatus incorporating the same
JP2015046962A (ja) 三相交流電源の欠相検出装置
JP6498457B2 (ja) 電源装置及び溶接用電源装置
TWM413972U (en) Ion balance Regulating device
WO2019123673A1 (ja) 電気機器及び電気機器の接地状態検知方法
JP5568898B2 (ja) リチウムイオンバッテリの充電制御方法
US10459036B2 (en) Battery checker
JP2008128897A (ja) 電源装置
JP6717117B2 (ja) 充放電制御方法、電池システム及び蓄電池システム
JP5959385B2 (ja) 交流電圧生成装置および電圧検出装置
US10530182B2 (en) UPS power failure detection
JP6865780B2 (ja) バッテリーチェッカー
TW201937826A (zh) 充電裝置、充電排序方法與電量偵測方法
KR20190023973A (ko) 과전류 방지 인버터 장치
JP2015521765A5 (ja)
US20150214843A1 (en) Reboost power conversion apparatus having flyback mode
JP2016003989A (ja) 非接触型電圧検出装置
JP5188536B2 (ja) 電源検査装置、電源検査方法、電源装置
JP6272135B2 (ja) 電力消費システム、漏電検知方法、および、プログラム
JP5147897B2 (ja) 整流回路検査装置、整流回路検査方法
CN218917541U (zh) 一种变压器检测装置
JP5188551B2 (ja) 電源検査装置、電源検査方法、電源装置
TWI475790B (zh) 具有虛功補償的電源轉換裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15842847

Country of ref document: EP

Kind code of ref document: A1