WO2016043084A1 - 発光素子および発電素子 - Google Patents

発光素子および発電素子 Download PDF

Info

Publication number
WO2016043084A1
WO2016043084A1 PCT/JP2015/075347 JP2015075347W WO2016043084A1 WO 2016043084 A1 WO2016043084 A1 WO 2016043084A1 JP 2015075347 W JP2015075347 W JP 2015075347W WO 2016043084 A1 WO2016043084 A1 WO 2016043084A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
electrode
inorganic material
light
Prior art date
Application number
PCT/JP2015/075347
Other languages
English (en)
French (fr)
Inventor
中村 伸宏
宮川 直通
暁 渡邉
俊成 渡邉
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2016548841A priority Critical patent/JPWO2016043084A1/ja
Publication of WO2016043084A1 publication Critical patent/WO2016043084A1/ja
Priority to US15/459,278 priority patent/US10128457B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/854Arrangements for extracting light from the devices comprising scattering means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/341Short-circuit prevention

Definitions

  • the present invention relates to a light emitting element such as an organic LED element and a power generation element.
  • Light emitting elements such as organic LED (Light Emitting Diode) elements are widely used for displays, backlights, lighting applications, and the like.
  • a general light emitting element has a first electrode disposed on a substrate, a second electrode, and a light emitting layer disposed between these electrodes.
  • a voltage is applied between both electrodes, holes and electrons are injected from each electrode into the light emitting layer.
  • the holes and electrons are recombined in the light emitting layer, binding energy is generated, and the light emitting material in the light emitting layer is excited by this binding energy. Since light is emitted when the excited light emitting material returns to the ground state, light can be extracted to the outside by using this.
  • Patent Document 1 shows that when a high refractive index scattering layer is provided between a glass substrate and a transparent electrode, the light extraction efficiency from the light emitting element is improved.
  • Patent Documents 2 to 4 each show that a light extraction structure uses a diffraction structure, a corrugated structure, and a low refractive index layer to increase the light extraction efficiency of the light emitting element.
  • the flatness and uniformity of the formed layer may be deteriorated in the subsequent film forming process.
  • the flatness and uniformity of each layer are lowered, there is a high risk of short-circuiting between two electrodes that are to be separated via the light emitting layer. In such a case, desired characteristics cannot be obtained in the finally obtained light-emitting element. Such a problem also applies to the power generation element.
  • the present invention has been made in view of such a background, and an object of the present invention is to provide a light-emitting element in which a short circuit hardly occurs between the first electrode and the second electrode.
  • an object of the present invention is to provide a power generation element in which a short circuit hardly occurs between the first electrode and the second electrode.
  • a light emitting device having a light extraction structure, First and second electrodes, and a light emitting layer disposed between the first and second electrodes, Between the first electrode and the light emitting layer, or between the second electrode and the light emitting layer, an inorganic material layer is disposed, The layer of the inorganic material, is not less 100nm or more in thickness, conductivity of not more than 10 -6 ⁇ -1 cm -1 or more 100 [Omega -1 cm -1, the light emitting device is provided.
  • a photoelectric element Having first and second electrodes, and a power generation layer disposed between the first and second electrodes, Between the first electrode and the power generation layer, or between the second electrode and the power generation layer, an inorganic material layer is disposed,
  • the layer of the inorganic material is not less 100nm or more in thickness, conductivity of not more than 10 -6 ⁇ -1 cm -1 or more 100 [Omega -1 cm -1, the power generating element is provided.
  • FIG. 1 is a schematic cross-sectional view of a light emitting device according to an embodiment of the present invention.
  • FIG. 5 is a schematic cross-sectional view of another light emitting device according to an embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of still another light emitting device according to an embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional view of still another light emitting device according to an embodiment of the present invention.
  • It is a schematic diagram for demonstrating the problem of the color nonuniformity of a light emitting element. It is the graph which showed the calculation result of the front luminance in the light emitting element containing a scattering layer.
  • FIG. 10 is an X-ray diffraction spectrum of samples of Examples 1 to 9.
  • 2 is a UPS spectrum (work function) in the sample of Example 1.
  • 2 is a UPS spectrum (ionization potential) in the sample of Example 1.
  • 2 is a Tauc plot of a film of inorganic material in the sample of Example 1.
  • 4 is a Tauc plot of a film of inorganic material in the sample of Example 2.
  • FIG. 10 is a diagram collectively showing current-voltage characteristics of the electronic-only device and the samples of Examples 2 to 7.
  • FIG. 10 is a diagram showing current-voltage-luminance characteristics measured in the organic EL element in Example 10.
  • FIG. 1 shows a simplified cross-sectional view of a conventional organic LED element.
  • the conventional organic LED element 1 includes a glass substrate 10, a transparent electrode (first electrode) 35, an organic layer 40, and a reflective electrode (second electrode) 70 in this order. Have.
  • the transparent electrode (first electrode) 35 functions as one of an anode and a cathode
  • the reflective electrode (second electrode) 70 functions as the other of the anode and the cathode.
  • the organic layer 40 includes an electron injection layer, an electron transport layer, an organic light emitting layer, a hole transport layer, and a hole injection layer. However, in the organic layer 40, one or more layers excluding the organic light emitting layer 55 may be omitted.
  • the transparent electrode (first electrode) 35 functions as an anode
  • the reflective electrode (second electrode) 70 functions as a cathode
  • the organic layer 40 is formed by laminating a hole injection layer 65, a hole transport layer 60, an organic light emitting layer 55, an electron transport layer 50, and an electron injection layer 45 in this order from the transparent electrode (first electrode) 35 side. Consists of.
  • the organic layer 40 is formed from an electron injection layer from the transparent electrode (first electrode) 35 side.
  • An electron transport layer, an organic light emitting layer, a hole transport layer, and a hole injection layer are laminated in this order.
  • the lower surface of the organic LED element 1, that is, the exposed surface of the glass substrate 10 is the light extraction surface 12.
  • the conventional organic LED element 1 can have the scattering layer 20 between the glass substrate 10 and the transparent electrode 35 in order to improve light extraction.
  • the scattering layer 20 includes a glass base material 21 having a first refractive index and a plurality of scattering materials 24 having a second refractive index different from the base material 21 and dispersed in the base material 21. Composed.
  • Such a scattering layer 20 functions as a light extraction structure. That is, the scattering layer 20 has a role of effectively scattering the light generated from the organic light emitting layer 55 and reducing the amount of light totally reflected in the organic LED element 1. Therefore, in the organic LED element 1 having the configuration of FIG. 1, the amount of light emitted from the light extraction surface 12 can be improved.
  • the organic LED element 1 having such a light extraction structure in some cases, foreign matters may adhere to the surface or remain in the film formation process of the scattering layer 20. Such a foreign substance becomes a factor of lowering the flatness and uniformity of the layers formed in the subsequent film formation process of the layers 35 to 70. If the flatness and uniformity of such a layer are lowered to an unacceptable level, the risk of short-circuiting between the two electrodes 35 and 70 to be separated via the organic layer 40 increases. In such a case, the organic LED element 1 finally obtained has a problem that desired characteristics cannot be obtained.
  • Such a problem is not limited to the organic LED element 1 having the scattering layer 20, but also in a light-emitting element having other light extraction structures (for example, a diffraction structure, a corrugated structure, and a low refractive index layer). Can occur as well.
  • a light-emitting element having other light extraction structures for example, a diffraction structure, a corrugated structure, and a low refractive index layer.
  • the light extraction structure refers to a structure that effectively scatters light generated from the organic light emitting layer and has a role of reducing the amount of light totally reflected in the organic LED element. If so, the invention is not limited to a scattering layer, a diffractive structure (for example, JP-A-2012-512518), a corrugated structure (for example, JP 2009-98661 A), and a low refractive index layer (for example, JP 2004-182490 A). .
  • a diffractive structure for example, JP-A-2012-512518
  • a corrugated structure for example, JP 2009-98661 A
  • a low refractive index layer for example, JP 2004-182490 A.
  • a light emitting device having a light extraction structure, First and second electrodes, and a light emitting layer disposed between the first and second electrodes, Between the first electrode and the light emitting layer, or between the second electrode and the light emitting layer, an inorganic material layer is disposed, The layer of the inorganic material, is not less 100nm or more in thickness, conductivity of not more than 10 -6 ⁇ -1 cm -1 or more 100 [Omega -1 cm -1, the light emitting device is provided.
  • a relatively thick inorganic material layer of 100 nm or more is disposed at any location between the two electrodes.
  • each layer placed between two electrodes and two electrodes even if foreign matter remains on the surface during the formation of the light extraction structure
  • the flatness is significantly improved.
  • the problem of a short circuit between the two electrodes can be significantly suppressed.
  • the layer of the thick inorganic material the conductivity is in the -1 cm -1 or less in the range 10 -6 Omega -1 cm -1 or more 100 [Omega.
  • Such a thick inorganic material layer exhibits good electron mobility and conductivity that can be used as, for example, an electron injection layer. For this reason, in one Embodiment of this invention, the installation of the layer of a thick inorganic material can suppress the short circuit between electrodes, without having a bad influence on the characteristic of a light emitting element.
  • the thick inorganic material layer may be amorphous, microcrystalline, or a mixture of amorphous and microcrystalline.
  • the thick inorganic material layer has at least one material selected from the group consisting of a zinc-tin-silicon-oxygen-based material, a zinc-tin-oxygen-based material, and a zinc-silicon-oxygen-based material. Also good. Other thick inorganic material layers may be zinc-tin-germanium-oxygen-based materials.
  • the thick inorganic material layer When the thick inorganic material layer is composed of a zinc-silicon-oxygen-based material, the thick inorganic material layer includes zinc (Zn), silicon (Si), and oxygen (O), and atoms of Zn / (Zn + Si).
  • the number ratio is preferably 0.30 to 0.95. This is because, when the atomic ratio of Zn / (Zn + Si) is 0.30 or more and 0.95 or less, the above-described conductivity is easily obtained and an inorganic material layer with high flatness is easily obtained.
  • the inorganic material layer may be an indium-silicon-oxygen-based, indium-gallium-zinc-oxygen-based, indium-zinc-oxygen-based, or germanium-zinc-oxygen-based material.
  • the thick inorganic material layer is composed of a zinc-tin-silicon-oxygen-based material
  • the thick inorganic material layer contains zinc (Zn), tin (Sn), silicon (Si), and oxygen (O).
  • SnO 2 is preferably 15 mol% or more and 95 mol% or less with respect to 100 mol% in total of the oxides of the inorganic material layer in terms of oxide. This is because if SnO 2 is 15 mol% or more and 95 mol% or less, an inorganic material layer with high flatness can be easily obtained, and the above-described conductivity can be easily obtained.
  • the thick inorganic material layer is more preferably 7 mol% or more and 30 mol% or less of SiO 2 with respect to 100 mol% of the total oxide of the inorganic material layer in terms of oxide. preferable. This is because if the SiO 2 content is 7 mol% or more and 30 mol% or less, the electron affinity is not too high, the volume resistivity is not too high, and the above-described conductivity is easily obtained.
  • the thick inorganic material layer when the thick inorganic material layer is composed of a zinc-tin-oxygen-based material, the thick inorganic material layer contains zinc (Zn), tin (Sn), and oxygen (O), and is converted into an oxide. It is preferable that SnO 2 is 15 mol% or more and 95 mol% or less with respect to 100 mol% in total of the oxides of the inorganic material layer. If SnO 2 is 15 mol% or more and 95 mol% or less, it is easy to obtain a layer of an inorganic material with high flatness, and it is easy to maintain an amorphous, microcrystalline, or thin film in which amorphous and microcrystalline are mixed. This is because the above-described conductivity is easily obtained, an oxide target for film formation is easily obtained, and a thin film is easily formed.
  • FIG. 2 the cross-sectional structure of the light emitting element (organic LED element) by one Embodiment of this invention is shown typically.
  • a light emitting device 100 includes a transparent substrate 110, a scattering layer 120 as a light extraction structure, and a transparent electrode ( A cathode) 135, an organic layer 140, and a reflective electrode (anode) 170 in this order.
  • the scattering layer 120 includes a glass base material 121 having a first refractive index and a plurality of scattering materials 124 having a second refractive index different from the base material 121 and dispersed in the base material 121. Composed.
  • the lower surface of the first light emitting element 100 (that is, the exposed surface of the transparent substrate 110) is the light extraction surface 112.
  • the organic layer 140 has an electron injection layer 180, an electron transport layer 150, an organic light emitting layer 155, a hole transport layer 160, and a hole injection layer 165 in this order from the side close to the transparent electrode 135.
  • the first light emitting element 100, electron injection layer 180 is not less 100nm or more in thickness, so that the electrical conductivity is 10 -6 ⁇ -1 cm -1 or more 100 [Omega -1 cm -1 or less in the range Formed.
  • the electron injection layer 180 is made of an inorganic material selected from the group consisting of a zinc-tin-silicon-oxygen system, a zinc-tin-oxygen system, and a zinc-silicon-oxygen system.
  • the problem of short circuit between the two electrodes 135 and 170 as described above is significantly suppressed. That is, in the first light emitting element 100, even when foreign matter remains on the surface when the scattering layer 120 is formed, the first light emitting element 100 is disposed later due to the presence of a thick inorganic material layer as the electron injection layer 180.
  • the flatness and uniformity of each layer 150-170 can be significantly increased. In addition, this can significantly suppress a short circuit between the two electrodes 135 and 170.
  • a thick inorganic material layer In the case of a thick inorganic material layer, the flatness of the film is more easily obtained when the amorphous or amorphous state is dominant. In addition, in a thick inorganic material layer, when the amorphous or amorphous state is dominant, the relationship between the electron affinity and the composition tends to be linear, so that the power supplied to the film can be easily controlled. Furthermore, a thick inorganic material layer is more easily obtained when the amorphous or amorphous state is dominant. In a thick inorganic material layer, microcrystals are more easily oriented in the layer thickness direction than amorphous layers. Therefore, when the crystallites are dominant, the electronic characteristics in the layer thickness direction are easily improved.
  • FIG. 3 the cross-sectional structure of another light emitting element (organic LED element) by one Embodiment of this invention is typically shown.
  • another light emitting device 200 is basically the first light emitting device shown in FIG. 100 has the same configuration.
  • the second light emitting element 200 is different from the first light emitting element 100 in that the organic layer 240 includes both the electron injection layer 245 and the thick inorganic material layer 280. That is, in the second light emitting element 200, the organic layer 240 includes an electron injection layer 245, a thick inorganic material layer 280, an electron transport layer 250, an organic light emitting layer 255, a hole transport layer 260, and a hole injection layer 265 in this order. .
  • a thick layer of inorganic material 280 has a thickness of not less than 100 nm, has a conductivity of 10 -6 ⁇ -1 cm -1 or more 100 [Omega -1 cm -1 or less.
  • the thick inorganic material layer 280 is made of a material selected from the group consisting of zinc-tin-silicon-oxygen, zinc-tin-oxygen and zinc-silicon-oxygen.
  • the short circuit between the two electrodes 235 and 270 can be significantly suppressed similarly to the first light emitting element 100. Also, it will be easily understood that the presence of the thick inorganic material layer 280 is less likely to adversely affect the characteristics of the second light emitting element 200 in the second light emitting element 200.
  • FIG. 4 the cross-sectional structure of another light emitting element (organic LED element) by one Embodiment of this invention is shown typically.
  • another light emitting device 300 includes a transparent substrate 310, a scattering layer 320, and a transparent electrode (anode). 335, an organic layer 340, and a reflective electrode (cathode) 370 are provided in this order.
  • the scattering layer 320 includes a glass base material 321 having a first refractive index, and a plurality of scattering materials 324 having a second refractive index different from the base material 321 and dispersed in the base material 321. Composed.
  • the lower surface of the third light emitting element 300 (that is, the exposed surface of the transparent substrate 310) is the light extraction surface 312.
  • the organic layer 340 includes a hole injection layer 365, a hole transport layer 360, an organic light emitting layer 355, an electron transport layer 350, and an electron injection layer 380 in this order from the side close to the transparent electrode 335.
  • the electron injection layer 380 is formed of a thick inorganic material layer as described above. That is, the electron injection layer 380 has a thickness of not less than 100 nm, has a conductivity of 10 -6 ⁇ -1 cm -1 or more 100 [Omega -1 cm -1 or less.
  • the electron injection layer 380 is made of a material selected from the group consisting of a zinc-tin-silicon-oxygen system, a zinc-tin-oxygen system, and a zinc-silicon-oxygen system.
  • the third light emitting element 300 Even in such a configuration of the third light emitting element 300, it is possible for a person skilled in the art to significantly suppress a short circuit between the two electrodes 335 and 370, similarly to the first and second light emitting elements 100 and 200. Is obvious. Also, it will be easily understood that the presence of the thick inorganic material layer (electron injection layer 380) in the third light emitting element 300 is less likely to adversely affect the characteristics of the third light emitting element 300.
  • yet another light emitting device 400 basically includes the third light emitting device shown in FIG. The structure is similar to that of the element 300.
  • the fourth light emitting element 400 is different from the third light emitting element 300 in that the organic layer 440 includes both the electron injection layer 445 and the thick inorganic material layer 480. That is, in the fourth light-emitting element 400, the organic layer 440 includes a hole injection layer 465, a hole transport layer 460, an organic light-emitting layer 455, an electron transport layer 450, a thick inorganic material layer 480, from the side close to the transparent electrode 435. And an electron injection layer 445.
  • the fourth light emitting element 400 similarly to the first to third light emitting elements 100, 200, 300, it is possible to significantly suppress a short circuit between the two electrodes 435, 470. It will be apparent to those skilled in the art. It will be easily understood that the presence of the thick inorganic material layer 480 is less likely to adversely affect the characteristics of the fourth light emitting element 400 also in the fourth light emitting element 400.
  • each component will be described with reference to the second light emitting element (organic LED element) 200 shown in FIG. Therefore, in the following description, for the sake of clarity, the reference numerals used in FIG. 3 are used when referring to the respective members.
  • the material of the transparent substrate 210 is not particularly limited as long as it is transparent.
  • the transparent substrate 210 may be a glass substrate or a plastic substrate, for example.
  • the scattering layer 220 includes a base material 221 and a plurality of scattering materials 224 dispersed in the base material 221.
  • the base material 221 has a first refractive index
  • the scattering material 224 has a second refractive index different from that of the base material.
  • the amount of the scattering material 224 in the scattering layer 220 is preferably reduced from the inside of the scattering layer 220 to the outside, and in this case, highly efficient light extraction can be realized.
  • the base material 221 is made of glass, and an inorganic glass such as soda lime glass, borosilicate glass, and alkali-free glass is used as the glass material.
  • the scattering material 224 includes, for example, bubbles, precipitated crystals, material particles different from the base material, phase separation glass, and the like.
  • a phase-separated glass refers to a glass composed of two or more types of glass phases.
  • the difference between the refractive index of the base material 221 and the refractive index of the scattering material 224 is preferably large.
  • one or more components of P 2 O 5 , SiO 2 , B 2 O 3 , GeO 2 , and TeO 2 are selected as a network former.
  • high refractive index components TiO 2 , Nb 2 O 5 , WO 3 , Bi 2 O 3 , La 2 O 3 , Gd 2 O 3 , Y 2 O 3 , ZrO 2 , ZnO, BaO, PbO, and Sb 2
  • One or more components of O 3 may be selected.
  • alkali oxides, alkaline earth oxides, fluorides, and the like may be added within a range that does not affect the refractive index.
  • the color of light emission can be changed by adding a colorant to the base material 221.
  • a colorant such as transition metal oxides, rare earth metal oxides, metal colloids, and the like can be used alone or in combination.
  • the transparent electrode 235 is required to have a translucency of 80% or more in order to extract light generated in the organic light emitting layer 255 to the outside. When used as an anode, a high work function is required to inject many holes.
  • the transparent electrode 235 for example, materials such as ITO, SnO 2 , ZnO, IZO (Indium Zinc Oxide), and AZO (ZnO—Al 2 O 3 : zinc oxide doped with aluminum) are used.
  • the electron injection layer is formed of a material selected from the group consisting of zinc-tin-silicon-oxygen system, zinc-tin-oxygen system, and zinc-silicon-oxygen system. Therefore, ohmic characteristics can be obtained even when the above transparent electrode material is used.
  • the thickness of the transparent electrode 235 is preferably 100 nm or more.
  • the refractive index of the transparent electrode 235 is in the range of 1.75 to 2.2.
  • the refractive index of the transparent electrode 235 can be lowered by increasing the carrier concentration.
  • Commercially available ITO contains 10 wt% SnO 2 as standard, but the refractive index of ITO can be lowered by further increasing the Sn concentration.
  • the carrier concentration increases, but the mobility and transmittance decrease. Therefore, it is necessary to determine the Sn amount in consideration of the overall balance.
  • the refractive index of the transparent electrode 235 is preferably determined in consideration of the refractive index of the base material 221 constituting the scattering layer 220 and the refractive index of the reflective electrode 270.
  • Reflective electrode 270 a metal having a small work function or an alloy thereof is used.
  • the reflective electrode 270 may be, for example, an alkali metal, an alkaline earth metal, a metal belonging to Group 3 of the periodic table, or the like.
  • the electron injection layer 245 is configured, for example, by providing a layer doped with an alkali metal such as lithium (Li) or cesium (Cs) on the surface of the transparent electrode 245.
  • an alkali metal such as lithium (Li) or cesium (Cs)
  • the thick inorganic material layer 280 may be used as the electron injection layer 245.
  • the thick inorganic material layer 280 may be composed of a material selected from the group consisting of zinc-tin-silicon-oxygen, zinc-tin-oxygen, and zinc-silicon-oxygen as described above.
  • Layer 280 of a thick inorganic material is amorphous, has a thickness of not less than 100 nm, have a conductivity of 10 -6 ⁇ -1 cm -1 or more 100 [Omega -1 cm -1 or less in the range good.
  • the thick inorganic material layer 280 may have a thickness in the range of, for example, 100 nm to 500 nm. Further, the thick inorganic material layer 280 may have a conductivity in the range of 10 ⁇ 4 ⁇ ⁇ 1 cm ⁇ 1 or more and 10 ⁇ ⁇ 1 cm ⁇ 1 or less, for example.
  • Such a thick inorganic material layer 280 can be formed by a film forming process such as a sputtering method and a PVD method.
  • the electron transport layer 250 serves to transport electrons injected from the transparent electrode 235.
  • the electron transport layer 250 for example, tris (8-quinolinolato) aluminum complex (Alq3) is used.
  • Organic light emitting layer 255 has a role of providing a field where injected electrons and holes are recombined.
  • the organic light emitting material a low molecular weight or high molecular weight material is used.
  • guest materials such as tris (8-quinolinolato) aluminum complex (Alq3) and metal complexes of quinoline derivatives such as bis (8-quinolinolato) calcium complex (Caq2), coronene, etc.
  • Alq3 8-quinolinolato aluminum complex
  • metal complexes of quinoline derivatives such as bis (8-quinolinolato) calcium complex (Caq2), coronene, etc.
  • Caq2 8-quinolinolato calcium complex
  • coronene etc.
  • the fluorescent substance is mentioned.
  • a quinolinolate complex may be used, and in particular, an aluminum complex having 8-quinolinol and a derivative thereof as a ligand may be used.
  • the hole transport layer 260 serves to transport holes injected from the hole injection layer 265 to the organic light emitting layer 255.
  • a triphenylamine derivative or the like is used for the hole transport layer 260.
  • the thickness of the hole transport layer 260 is, for example, in the range of 10 nm to 150 nm.
  • the hole injection layer 265 preferably has a small difference in ionization potential in order to lower the hole injection barrier from the electrode.
  • the driving voltage of the organic LED element 200 decreases and the hole injection efficiency increases.
  • a high molecular material or a low molecular material is used as the material of the hole injection layer 265.
  • the polymer materials polyethylene dioxythiophene (PEDOT: PSS) doped with polystyrene sulfonic acid (PSS) is often used, and among the low molecular materials, phthalocyanine-based copper phthalocyanine (CuPc) is widely used.
  • PDOT polyethylene dioxythiophene
  • PSS polystyrene sulfonic acid
  • CuPc phthalocyanine-based copper phthalocyanine
  • FIG. 6 schematically shows a cross section of a general light-emitting element having a light extraction structure.
  • the light emitting device 500 includes a transparent substrate 510, a lower transparent electrode 535, an organic layer 540, and an upper reflective electrode 570 in this order.
  • the organic layer 540 includes the light emitting layer 555 and each constituent layer (for example, an electron injection layer and / or an electron transport layer) disposed below the light emitting layer 555 (that is, the lower transparent electrode 510 side).
  • 1 layer ”590 and each constituent layer (for example, a hole transport layer and / or a hole injection layer) disposed on the upper side of the light emitting layer 555 (that is, on the upper reflective electrode 570 side).
  • Layer 592 the constituent layer disposed on the upper side of the light emitting layer 555 (that is, on the upper reflective electrode 570 side).
  • the light extraction structure is not shown in FIG. 6 for simplification, the light extraction structure is realized by a method different from the scattering layer 120 as shown in FIG. Assume.
  • the first layer 590 is relatively thin, and therefore, the change in the distance between the lower transparent electrode 535 and the light emitting layer 555 due to the film thickness variation of the first layer 590 is not so much. Not noticeable.
  • the second layer 592 is relatively thin. Therefore, the change in the distance between the upper reflective electrode 570 and the light-emitting layer 555 due to the film thickness variation of the second layer 592 is not so remarkable. Therefore, it is difficult for the light interference condition to change between the three paths P1 to P3 shown in FIG. 6, and variations in color due to the emitted light are unlikely to occur.
  • the film thickness variation depending on the location of the first layer 590 becomes relatively large.
  • the path P3 is three times as many times as passing through the first layer 590 as compared with the path P1 or the path P2, the path P3 is affected by a more remarkable film thickness variation. Therefore, the light interference condition changes between the route P1 and the route P3 and between the route P2 and the route P3. As a result, the variation in the color of light emission finally output increases, and color unevenness occurs in the light emitting element 500.
  • the scattering layer 120 can be designed so that the refractive index is relatively close to the refractive index of the lower transparent electrode 535. That is, when the scattering layer 120 is installed, the refractive index difference at the interface between the scattering layer 120 and the lower transparent electrode 535 is suppressed, and the light component re-reflected at the interface between the lower transparent electrode 535 and the scattering layer can be reduced. it can. As a result, light emission output via the path P3 is suppressed, and the problem of color unevenness as described above can be significantly suppressed.
  • the following simulation calculation is performed to compare the light emission characteristics with and without the scattering layer (Case 1) and (Case 2). went.
  • the scattering layer contains scattering particles, in order to confirm the interference suppressing effect, it is sufficient to consider a layer with an infinite film thickness composed only of the matrix portion of the scattering layer.
  • FIG. 7 shows a calculation result in the case 1
  • FIG. 8 shows a calculation result in the case 2.
  • the horizontal axis indicates the spectral wavelength of the output light
  • the vertical axis indicates the front luminance.
  • FIG. 9 shows a schematic flow chart when the first light emitting device 100 is manufactured.
  • step S110 forming a scattering layer on the transparent substrate
  • step S120 forming a first electrode on the scattering layer
  • step S130 forming a thick inorganic material layer on the first electrode
  • step S140 forming an organic light emitting layer on the thick inorganic material layer
  • step S150 forming a second electrode on the organic light emitting layer
  • Step S110 First, the transparent substrate 110 is prepared.
  • the scattering layer 120 in which the scattering substance 124 is dispersed in the glass base material 121 is formed on the transparent substrate 110.
  • the method for forming the scattering layer 120 is not particularly limited, but here, a method for forming the scattering layer 120 by the “frit paste method” will be particularly described. However, it will be apparent to those skilled in the art that the scattering layer 120 may be formed by other methods.
  • frit paste method a paste containing a glass material called a frit paste is prepared (preparation process), this frit paste is applied to the surface of the substrate to be installed, patterned (pattern formation process), and the frit paste is then baked. This is a method of forming a desired glass film on the surface to be installed by performing (firing process).
  • the glass powder is composed of a material that finally forms the base material of the scattering layer.
  • the composition of the glass powder is not particularly limited as long as desired scattering characteristics can be obtained, and the glass powder can be frit pasted and fired.
  • the composition of the glass powder is, for example, 20-30 mol% of P 2 O 5 , 3-14 mol% of B 2 O 3 , 10-20 mol% of Bi 2 O 3 , 3-15 mol% of TiO 2 , Nb 2 O 5 10 to 20 mol%, WO 3 to 5 to 15 mol%, the total amount of Li 2 O, Na 2 O and K 2 O is 10 to 20 mol%, and the total amount of the above components is 90 mol% or more. May be.
  • the particle size of the glass powder is, for example, in the range of 1 ⁇ m to 100 ⁇ m.
  • a predetermined amount of filler may be added to the glass powder.
  • the filler for example, particles such as zircon, silica, or alumina are used, and the particle size is usually in the range of 0.1 ⁇ m to 20 ⁇ m.
  • the resin for example, ethyl cellulose, butyral resin, melamine resin, alkyd resin, rosin resin, and the like are used.
  • a butyral resin, a melamine resin, an alkyd resin, and a rosin resin are added, the strength of the frit paste coating film is improved.
  • the solvent has a role of dissolving the resin and adjusting the viscosity.
  • Solvents include, for example, ⁇ -terpineol, and 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate.
  • a surfactant may be added to the frit paste to adjust the viscosity and promote frit dispersion.
  • you may use a silane coupling agent for surface modification.
  • these raw materials are mixed to prepare a frit paste in which glass raw materials are uniformly dispersed.
  • the frit paste prepared by the above-described method is applied on a transparent substrate and patterned.
  • the application method and the patterning method are not particularly limited.
  • a frit paste may be pattern-printed on a transparent substrate using a screen printer.
  • a doctor blade printing method or a die coat printing method may be used.
  • the frit paste film is baked. Usually, firing is performed in two steps. In the first step, the resin in the frit paste film is decomposed and disappeared, and in the second step, the glass powder is softened and sintered.
  • the first step is performed by maintaining the frit paste film in a temperature range of 200 ° C. to 400 ° C. in an air atmosphere.
  • the processing temperature varies depending on the resin material contained in the frit paste.
  • the treatment temperature may be about 350 ° C. to 400 ° C.
  • the resin is nitrocellulose
  • the treatment temperature may be about 200 ° C. to 300 ° C.
  • the processing time is usually about 30 minutes to 1 hour.
  • the second step is performed by maintaining the frit paste film in the temperature range of the softening temperature ⁇ 30 ° C. of the contained glass powder in an air atmosphere.
  • the processing temperature is, for example, in the range of 450 ° C. to 600 ° C.
  • the processing time is not particularly limited, but is, for example, 30 minutes to 1 hour.
  • the glass powder is softened and sintered, and the base material 121 of the scattering layer 120 is formed.
  • the scattering material 124 uniformly dispersed in the base material 121 is obtained by the scattering material encapsulated in the frit paste film, for example, due to the bubbles present therein.
  • the scattering layer 120 having a surface whose side surface portion is inclined at a gentler angle than a right angle from the upper surface toward the bottom surface is formed.
  • the thickness of the finally obtained scattering layer 120 may be in the range of 5 ⁇ m to 50 ⁇ m.
  • Step S120 Next, a transparent first electrode 135 is placed on the scattering layer 120 obtained in the above step.
  • the installation method of the first electrode 135 is not particularly limited, and for example, a film forming method such as a sputtering method, a vapor deposition method, and a vapor phase film forming method may be used.
  • the material of the first electrode 135 may be ITO or the like. Further, the thickness of the first electrode 135 is not particularly limited, and may be, for example, in the range of 50 nm to 1.0 ⁇ m.
  • the first electrode 135 may be patterned by an etching process or the like.
  • Step S130 Next, a layer of thick inorganic material 180 is formed on the first electrode.
  • the thick inorganic material layer 180 may be formed by a process such as sputtering or PVD.
  • the thick inorganic material layer 180 may be made of a material selected from the group consisting of zinc-tin-silicon-oxygen, zinc-tin-oxygen, and zinc-silicon-oxygen.
  • the layer 180 of a thick inorganic material has a thickness of not less than 100 nm, for example, it has a conductivity of 10 -6 ⁇ -1 cm -1 or more 100 [Omega -1 cm -1 or less.
  • the outermost surface is flattened. Therefore, even if foreign matter remains on the surface after the formation of the scattering layer 120, the flatness of the layers installed after step S130 can be increased. This also makes it possible to significantly suppress a short circuit between the first electrode 135 formed in step S120 and the second electrode 170 formed in the subsequent step S150.
  • Step S140 Next, the layers constituting the organic layer 140 are formed on the thick inorganic material layer 180.
  • the organic layer 140 includes an electron transport layer 150, an organic light emitting layer 155, a hole transport layer 160, and a hole injection layer 165.
  • each layer constituting the organic layer 140 is not particularly limited, and for example, a vapor deposition method and / or a coating method may be used.
  • Step S150 Next, the second electrode 170 is provided on the organic layer 140.
  • the installation method of the second electrode 170 is not particularly limited, and for example, an evaporation method, a sputtering method, a vapor deposition method, or the like may be used.
  • the first light emitting device 100 as shown in FIG. 2 is manufactured.
  • the first light emitting element 100 since the thick inorganic material layer 180 is disposed in the step S130, the first light emitting element 100 is provided between the first electrode 135 and the second electrode 170. Therefore, the possibility that a short circuit occurs can be significantly suppressed.
  • the thick inorganic material layer 180 has the above-described characteristics, even if the thick inorganic material layer 180 is interposed, an effect that an adverse effect on the characteristics of the first light-emitting element 100 hardly occurs can be obtained. .
  • Example 1 Samples in which an inorganic material film was formed on various deposition substrates were manufactured by the following method.
  • the film formation substrate a nickel substrate, a glass substrate, or the like was used.
  • RF magnetron sputtering apparatus manufactured by ULVAC
  • sputtering target a sintered body target having a diameter of 2 inches and containing ZnO and SiO 2 at a predetermined ratio was used.
  • the deposition target substrate was introduced into the chamber of the sputtering apparatus.
  • a predetermined sputtering gas As a sputtering gas, argon (Ar) gas (G1 grade: purity 99.99995 vol.%) Or a mixed gas of oxygen (O 2 ) gas (G1 grade: purity 99.99995 vol.%) And Ar gas (G1 grade) It was used. That is, Ar gas or an O 2 / Ar mixed gas having an oxygen concentration of 20% was used as the sputtering gas.
  • the sputtering gas pressure was set to a predetermined pressure
  • the distance between the target and the deposition target substrate (TS distance) was set to a predetermined distance
  • power of 50 W was applied to the cathode of the sputtering apparatus.
  • the substrate temperature during film formation was 70 ° C. or lower.
  • Example 2 to Example 9 Samples in which an inorganic material film was formed on various deposition substrates were prepared in the same manner as in Example 1 (Examples 2 to 9). However, in Examples 2 to 9, film forming conditions different from those in Example 1 were adopted.
  • Table 1 summarizes the film forming conditions used in Examples 1 to 9.
  • the atomic ratio was determined by SEM-EDX analysis of the inorganic material film.
  • the acceleration voltage was set to 10 kV.
  • the X-ray diffraction spectrum was measured by the Zeeman Borin method using an Rigaku X-ray diffractometer RINT-2000. Details of the Zeemanborin method are shown in the Japan Institute of Metals, Vol. 27, No. 6, pages 461-465 (1988).
  • An electron beam was irradiated onto Cu under the conditions of an acceleration voltage of 50 kV and a discharge current of 300 mA, the generated CuK ⁇ ray was fixed at an incident angle of 0.5 °, and the sample was irradiated to obtain a diffraction pattern.
  • FIG. 10 shows the diffraction pattern obtained for each sample.
  • the deposition target substrate is a substrate in which 150 nm of ITO is deposited on an alkali-free glass substrate (hereinafter referred to as an ITO substrate), and the inorganic material film (thickness 10 nm) is an ITO substrate. A film was formed on the surface on which the ITO was formed.
  • the measurement was performed by irradiating the film with ultraviolet rays (He (I), 21.22 eV) of a He lamp in a high vacuum of 10 ⁇ 7 Pa or higher.
  • He (I), 21.22 eV) ultraviolet rays of a He lamp in a high vacuum of 10 ⁇ 7 Pa or higher.
  • FIG. 11 is a diagram showing the relationship between the photoelectron count number and the photoelectron kinetic energy
  • FIG. 12 is a diagram showing the relationship between the photoelectron count number and the binding energy.
  • the work function of the thin film in the sample of Example 1 was calculated to be 3.9 eV. Further, from FIG. 12, the ionization potential of the thin film in the sample of Example 1 obtained by the sum of the binding energy and the work function was calculated to be 6.6 eV.
  • the light absorption coefficient was calculated by measuring the reflectance and transmittance using each sample. Moreover, the optical band gap was calculated
  • FIGS. 13 and 14 show Tauc plots of inorganic material films in the samples of Examples 1 and 2, respectively.
  • the electron affinity of the inorganic material film in the sample of Example 1 is expected to be 2.6 eV.
  • the electron affinity is expected to be about 3.3 to 3.4 eV.
  • a 2 mol% Nd-containing aluminum (product name: AD20) target manufactured by Kobelco Research Institute with a diameter of 2 inches was used.
  • the electron-only device has a cathode as a bottom electrode on a glass substrate, an electron transport layer having a thickness of 150 nm on the bottom electrode, and an anode as a top electrode on the electron transport layer so as to be orthogonal to the bottom electrode. Arranged and configured.
  • the cathode was formed by sputtering film formation using Nd-containing aluminum having a thickness of 80 nm and a width of 1 mm using a 2 mol% Nd-containing aluminum target (product name: AD20) manufactured by Kobelco Research Institute. A 150 nm thick Alq3 layer was formed as the electron transport layer. The anode was formed by vacuum vapor deposition of aluminum so as to have a thickness of 80 nm.
  • a voltage was applied to the cathode and anode of the electronic only element, and the current value generated at this time was measured.
  • FIG. 15 shows current-voltage characteristics (denoted as “Alq3”) obtained in the electronic-only device.
  • I / A E / ( ⁇ ⁇ L) Formula (1)
  • I is the current density
  • A is the area
  • E is the voltage
  • is the resistivity
  • L is the thickness of the electron transport layer.
  • the thickness of the electron transport layer was 150 nm.
  • Example 10 An organic EL element was produced by the following method and its characteristics were evaluated.
  • a cathode is disposed as a bottom electrode on a glass substrate, and an electron transport layer, a light-emitting layer, a hole transport layer, a hole injection layer, and an anode as a top electrode are disposed on the glass substrate in order, from the anode side.
  • a structure for extracting light was adopted.
  • Example 11 the formation of the electron injection layer, the hole block layer, and the electron block layer was omitted.
  • a cathode was formed on a glass substrate.
  • An alkali-free glass substrate was used as the glass substrate.
  • the cleaned glass substrate and metal mask were placed in the chamber of the sputtering apparatus.
  • a target for cathode film formation was placed in the chamber of the sputtering apparatus.
  • an aluminum (product name: AD20) target of 2 mol% Nd containing 2 inches in diameter manufactured by Kobelco Research Institute was used.
  • a cathode was formed by sputtering on a glass substrate so that the cathode had a thickness of 80 nm and a width of 1 mm.
  • the sputtering gas was Ar, the sputtering gas pressure was 0.3 Pa, and a power of 50 W was applied to the sputtering cathode.
  • an electron transport layer was formed on the cathode.
  • an inorganic material film having a thickness of 100 nm was formed as an electron transport layer on the glass substrate on which the cathode was formed under the sputtering conditions in Example 7.
  • a light emitting layer, a hole transport layer, and a hole injection layer were formed on the electron transport layer.
  • the glass substrate on which the electron transport layer (and the cathode) was formed was transported from the sputtering apparatus chamber to the vacuum deposition chamber in a high vacuum atmosphere of 10 ⁇ 4 Pa or less.
  • Alq3 was deposited as a light emitting layer on the electron transport layer to a thickness of 50 nm.
  • ⁇ -NPD was deposited as a hole transport layer on the light emitting layer to a thickness of 50 nm.
  • MoO x was deposited to a thickness of 0.8 nm as a hole injection layer on the hole transport layer.
  • an anode was formed on the hole injection layer.
  • gold was deposited as an anode with a thickness of 10 nm and a width of 1 mm.
  • the degree of vacuum at the time of vapor deposition was about 8 ⁇ 10 ⁇ 6 Pa. Since the anode transmits visible light, light is extracted from the anode (top electrode) side.
  • the light emitting layer, the hole transport layer, and the hole injection layer were formed using a metal mask so as to completely cover the cathode and the electron transport layer.
  • the anode was formed using a metal mask so as to be orthogonal to the cathode.
  • the overlapping 1 mm ⁇ 1 mm region of the 1 mm wide anode deposited so as to be orthogonal to the 1 mm wide cathode is the region that emits light when voltage is applied.
  • An organic EL element including an injection layer and an anode made of gold was produced.
  • FIG. 16 shows current-voltage-luminance characteristics measured in the organic EL element.
  • the luminance and current density of the organic EL element increased from 8 V, and the luminance was 1500 cd / m 2 and the current density was 2.6 A / cm 2 at 12 V. From this result, it was confirmed that the film
  • the light emitting device according to the present invention is not limited to the above example.
  • the light extraction structure is not limited to the scattering layer.
  • conventionally known various structures for improving the light extraction efficiency such as a diffraction structure, a corrugated structure, and a low refractive index layer, may be applied.
  • the light emitting element according to the present invention is not limited to the organic LED element, and the light emitting element may have an inorganic material or the like in the light emitting layer. Moreover, it can be used not only for light emitting elements but also for improving light utilization efficiency of power generating elements such as solar cells.
  • the present invention can be used for various light-emitting elements such as organic LED elements and power generation elements.
  • DESCRIPTION OF SYMBOLS 1 Conventional organic LED element 10 Glass substrate 12 Light extraction surface 20 Scattering layer 21 Base material 24 Scattering substance 35 Transparent electrode (anode) 40 organic layer 45 electron injection layer 50 electron transport layer 55 organic light emitting layer 60 hole transport layer 65 hole injection layer 70 reflective electrode (cathode) 100 1st light emitting element (organic LED element) DESCRIPTION OF SYMBOLS 110 Transparent substrate 112 Light extraction surface 120 Scattering layer 121 Base material 124 Scattering substance 135 Transparent electrode (cathode) 140 Organic layer 150 Electron transport layer 155 Organic light emitting layer 160 Hole transport layer 165 Hole injection layer 170 Reflective electrode (anode) 180 Electron injection layer 200 Second light emitting element (organic LED element) 210 transparent substrate 212 light extraction surface 220 scattering layer 221 base material 224 scattering material 235 transparent electrode 240 organic layer 245 electron injection layer 250 electron transport layer 255 organic light emitting layer 260 hole transport layer 265 hole injection layer 270 reflective electrode 280

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 光取り出し構造を有する発光素子であって、第1および第2の電極と、該第1および第2の電極の間に配置された発光層とを有し、前記第1の電極と前記発光層の間、または前記第2の電極と前記発光層の間には、無機材料の層が配置され、前記無機材料の層は、厚さが100nm以上であり、導電率が10-6Ω-1cm-1以上100Ω-1cm-1以下である、発光素子。

Description

発光素子および発電素子
 本発明は、例えば、有機LED素子のような発光素子、および発電素子に関する。
 有機LED(Light Emitting Diode)素子のような発光素子は、ディスプレイ、バックライト、および照明用途等に幅広く用いられている。
 一般的な発光素子は、基板上に設置された第1の電極と、第2の電極と、これらの電極間に設置された発光層とを有する。両電極間に電圧を印加すると、それぞれの電極から、発光層にホールおよび電子が注入される。このホールと電子が発光層内で再結合された際に、結合エネルギーが生じ、この結合エネルギーによって発光層中の発光材料が励起される。励起した発光材料が基底状態に戻る際に発光が生じるため、これを利用することにより、光を外部に取り出すことができる。
 最近では、発光素子の光取り出し効率を高めるため、発光素子に各種光取り出し構造を設けることが提案されている。
 例えば、特許文献1には、ガラス基板と透明電極の間に、高屈折率の散乱層を設けた場合、発光素子からの光取り出し効率が向上することが示されている。また、特許文献2~4には、それぞれ、光取り出し構造として、回折構造、コルゲート構造、および低屈折率層を使用し、発光素子の光取り出し効率を高めることが示されている。
国際公開第WO09/017035号 特表2012-512518号公報 特開2009-9861号公報 特開2004-182490号公報
 前述のように、これまでに、発光素子の光取り出し効率を高めるため、発光素子に各種光取り出し構造を設けることが提案されている。
 しかしながら、光取り出し構造を有する発光素子の製造過程中に、しばしば、表面に異物が残存する場合がある。
 このような異物が存在すると、その後の成膜工程において、形成される層の平坦性および均一性が悪くなるおそれがある。そして、各層の平坦性および均一性が低下すると、発光層を介して離間されるべき2つの電極の間で短絡してしまう危険性が高くなる。そのような場合、最終的に得られる発光素子に、所望の特性が得られなくなってしまう。このような課題は、発電素子においても同様である。
 本発明は、このような背景に鑑みなされたものであり、本発明では、第1の電極と第2の電極の間で、短絡が生じ難い発光素子を提供することを目的とする。
 また、本発明では、第1の電極と第2の電極の間で、短絡が生じ難い発電素子を提供することを目的とする。
 本発明では、光取り出し構造を有する発光素子であって、
 第1および第2の電極と、該第1および第2の電極の間に配置された発光層とを有し、
 前記第1の電極と前記発光層の間、または前記第2の電極と前記発光層の間には、無機材料の層が配置され、
 前記無機材料の層は、厚さが100nm以上であり、導電率が10-6Ω-1cm-1以上100Ω-1cm-1以下である、発光素子が提供される。
 また、本発明では、光電素子であって、
 第1および第2の電極と、該第1および第2の電極の間に配置された発電層とを有し、
 前記第1の電極と前記発電層の間、または前記第2の電極と前記発電層の間には、無機材料の層が配置され、
 前記無機材料の層は、厚さが100nm以上であり、導電率が10-6Ω-1cm-1以上100Ω-1cm-1以下である、発電素子が提供される。
 本発明では、第1の電極と第2の電極の間で、短絡が生じ難い発光素子を提供することができる。
 また、本発明では、第1の電極と第2の電極の間で、短絡が生じ難い発電素子を提供することができる。
従来の有機LED素子の概略的な断面図である。 本発明の一実施形態による発光素子の概略的な断面図である。 本発明の一実施形態による別の発光素子の概略的な断面図である。 本発明の一実施形態によるさらに別の発光素子の概略的な断面図である。 本発明の一実施形態によるさらに別の発光素子の概略的な断面図である。 発光素子の色むらの問題を説明するための概略的な図である。 散乱層を含む発光素子における、正面輝度の計算結果を示したグラフである。 散乱層を含まない発光素子における、正面輝度の計算結果を示したグラフである。 第1の発光素子を製造する際の概略的なフローを模式的に示した図である。 例1~例9のサンプルのX線回折スペクトルである。 例1のサンプルにおけるUPSスペクトル(仕事関数)である。 例1のサンプルにおけるUPSスペクトル(イオン化ポテンシャル)である。 例1のサンプルにおける無機材料の膜のTaucプロットである。 例2のサンプルにおける無機材料の膜のTaucプロットである。 電子オンリー素子、および例2~例7のサンプルにおける電流-電圧特性をまとめて示した図である。 例10における有機EL素子において測定された電流-電圧-輝度特性を示した図である。
 以下、図面を参照して、本発明の一実施形態について説明する。
 (従来の発光素子)
 本発明の特徴をより良く理解するため、従来の発光素子の構成について説明する。なお、ここでは、特許文献1に記載の有機LED素子を例に、従来の発光素子の構成について説明する。
 図1には、従来の有機LED素子の簡略的な断面図を示す。
 図1に示すように、従来の有機LED素子1は、ガラス基板10と、透明電極(第1の電極)35と、有機層40と、反射性電極(第2の電極)70とをこの順に有する。
 透明電極(第1の電極)35は陽極および陰極の一方として機能し、反射性電極(第2の電極)70は陽極および陰極の他方として機能する。
 有機層40は、電子注入層、電子輸送層、有機発光層、ホール輸送層、ホール注入層により構成される。ただし、有機層40において、有機発光層55を除く、1または2以上の層は、省略されても良い。
 図1の例では、透明電極(第1の電極)35が陽極、反射性電極(第2の電極)70が陰極として機能する場合を示している。この場合の有機層40は、透明電極(第1の電極)35側から、ホール注入層65、ホール輸送層60、有機発光層55、電子輸送層50、電子注入層45をこの順に積層することにより構成される。
 透明電極(第1の電極)35が陰極、反射性電極(第2の電極)70が陽極として機能する場合は、有機層40は、透明電極(第1の電極)35側から、電子注入層、電子輸送層、有機発光層、ホール輸送層、ホール注入層をこの順に積層することにより構成される。
 なお、図1の例では、有機LED素子1の下側の表面、すなわちガラス基板10の露出面が光取り出し面12となる。
 ここで、従来の有機LED素子1は、光取り出し改善のために、ガラス基板10と透明電極35の間に、散乱層20を有することができる。散乱層20は、第1の屈折率を有するガラス製のベース材21と、該ベース材21中に分散された、ベース材21とは異なる第2の屈折率を有する複数の散乱物質24とで構成される。
 このような散乱層20は、光取り出し構造として機能する。すなわち、散乱層20は、有機発光層55から生じる光を効果的に散乱させ、有機LED素子1内で全反射される光の量を低減する役割を有する。従って、図1の構成の有機LED素子1では、光取り出し面12から出射される光量を向上させることができる。
 しかしながら、このような光取り出し構造(散乱層20)を有する有機LED素子1では、しばしば、散乱層20の成膜過程において、表面に異物が付着したり、残留したりする場合がある。このような異物は、その後の各層35~70の成膜工程において形成される層の平坦性および均一性を低下させる要因となる。そして、そのような層の平坦性および均一性が許容できない程度にまで低下すると、有機層40を介して離間されるべき2つの電極35および70の間で短絡してしまう危険性が高くなる。そのような場合、最終的に得られる有機LED素子1に、所望の特性が得られなくなってしまうという問題がある。
 なお、このような問題は、散乱層20を有する有機LED素子1に限られるものではなく、その他の光取り出し構造(例えば、回折構造、コルゲート構造、および低屈折率層)を有する発光素子においても、同様に生じ得る。
 本発明において、光取り出し構造とは、有機発光層から生じる光を効果的に散乱させ、有機LED素子内で全反射される光の量を低減する役割を有するものをいい、同様の効果が得られれば、散乱層、回折構造(例えば、特表2012-512518号)、コルゲート構造(例えば、特開2009-9861号)、および低屈折率層(例えば、特開2004-182490号)に限定されない。
 これに対して、本発明の一実施形態では、
 光取り出し構造を有する発光素子であって、
 第1および第2の電極と、該第1および第2の電極の間に配置された発光層とを有し、
 前記第1の電極と前記発光層の間、または前記第2の電極と前記発光層の間には、無機材料の層が配置され、
 前記無機材料の層は、厚さが100nm以上であり、導電率が10-6Ω-1cm-1以上100Ω-1cm-1以下である、発光素子が提供される。
 本発明の一実施形態による発光素子では、2つの電極の間のいずれかの箇所に、100nm以上の比較的厚い無機材料の層が配置されている。このような厚い無機材料の層を配置した場合、光取り出し構造の形成の際に、仮に表面に異物が残留した場合であっても、2つの電極の間に設置される各層、および2つの電極の平坦性が有意に改善される。その結果、2電極間の短絡の問題を有意に抑制することができる。
 なお、2つの電極の間に、単に「厚い層」を介在させただけでは、電極間の短絡の問題が解決できたとしても、電子および/またはホールの移動度および導電性に悪影響が生じる可能性が高く、このため発光素子に所望の特性が生じなくなってしまう。
 これに対して、本発明の一実施形態による発光素子では、この厚い無機材料の層は、導電率が10-6Ω-1cm-1以上100Ω-1cm-1以下の範囲にある。
 このような厚い無機材料の層は、例えば、電子注入層としても使用可能な、良好な電子移動度および導電性を示す。このため、本発明の一実施形態では、厚い無機材料の層の設置が発光素子の特性に悪影響を及ぼすことなく、電極間の短絡を抑制することができる。
 厚い無機材料の層は、非晶質であっても、微結晶であっても、非晶質と微結晶が混在する形態であっても良い。
 また、厚い無機材料の層は、亜鉛-錫-ケイ素-酸素系材料、亜鉛-錫-酸素系材料、および亜鉛-ケイ素-酸素系材料からなる群から選定された少なくとも一つの材料を有しても良い。その他の厚い無機材料の層としては、亜鉛-錫-ゲルマニウム-酸素系材料であっても良い。
 厚い無機材料の層が亜鉛-ケイ素-酸素系材料で構成される場合、厚い無機材料の層は、亜鉛(Zn)、ケイ素(Si)および酸素(O)を含み、Zn/(Zn+Si)の原子数比が0.30~0.95であることが好ましい。Zn/(Zn+Si)の原子数比が0.30以上、0.95以下であれば、前記した導電率が得られやすく、平坦度の高い無機材料の層が得られやすいからである。その他、無機材料の層は、インジウム-ケイ素-酸素系、インジウム-ガリウム-亜鉛-酸素系、インジウム-亜鉛-酸素系、ゲルマニウム-亜鉛-酸素系の材料であっても良い。
 また、厚い無機材料の層が亜鉛-錫-ケイ素-酸素系材料で構成される場合、厚い無機材料の層は、亜鉛(Zn)、錫(Sn)、ケイ素(Si)および酸素(O)を含み、酸化物換算で、前記無機材料の層の酸化物の合計100mol%に対して、SnOが15mol%以上、95mol%以下であることが好ましい。SnOが15mol%以上、95mol%以下であれば、平坦度の高い無機材料の層が得られやすく、前記した導電率が得られやすいからである。また、この場合に、この厚い無機材料の層は、酸化物換算で、前記無機材料の層の酸化物の合計100mol%に対して、SiOが7mol%以上、30mol%以下であることがより好ましい。SiOが7mol%以上、30mol%以下であれば、電子親和力が大きすぎず、体積抵抗率が大きすぎず、前記した導電率が得られやすいからである。
 さらに、厚い無機材料の層が亜鉛-錫-酸素系材料で構成される場合、厚い無機材料の層は、亜鉛(Zn)、錫(Sn)および酸素(O)を含み、酸化物換算で、前記無機材料の層の酸化物の合計100mol%に対して、SnOが15mol%以上、95mol%以下であることが好ましい。SnOが15mol%以上、95mol%以下であれば、平坦度の高い無機材料の層が得られやすく、非晶質、微結晶、または非晶質と微結晶が混在する薄膜の状態を保ちやすく、前記した導電率が得られやすく、成膜用の酸化物ターゲットが得やすく薄膜をつくりやすいからである。
 (本発明の一実施形態による発光素子)
 次に、図2を参照して、本発明の一実施形態による発光素子の構成について、より詳しく説明する。図2には、本発明の一実施形態による発光素子(有機LED素子)の断面構成を模式的に示す。
 図2に示すように、本発明の一実施形態による発光素子(以下、「第1の発光素子」と称する)100は、透明基板110と、光取り出し構造としての散乱層120と、透明電極(陰極)135と、有機層140と、反射性電極(陽極)170とをこの順に有する。
 散乱層120は、第1の屈折率を有するガラス製のベース材121と、該ベース材121中に分散された、ベース材121とは異なる第2の屈折率を有する複数の散乱物質124とで構成される。
 図2の例では、第1の発光素子100の下側の表面(すなわち透明基板110の露出面)が光取り出し面112となる。
 有機層140は、透明電極135に近い側から、電子注入層180、電子輸送層150、有機発光層155、ホール輸送層160、ホール注入層165をこの順に有する。
 ここで、第1の発光素子100において、電子注入層180は、厚さが100nm以上であり、導電率が10-6Ω-1cm-1以上100Ω-1cm-1以下の範囲となるように形成される。また、電子注入層180は、亜鉛-錫-ケイ素-酸素系、亜鉛-錫-酸素系および亜鉛-ケイ素-酸素系からなる群から選定された無機材料で構成される。
 電子注入層180を、このような厚い無機材料の層で構成した場合、前述のような2電極135、170の間の短絡の問題が有意に抑制される。すなわち、第1の発光素子100では、散乱層120の形成の際に、仮に表面に異物が残留した場合であっても、電子注入層180としての厚い無機材料の層の存在により、以降に配置される各層150~170の平坦性および均一性を有意に高めることができる。また、これにより、2電極135、170の間の短絡を有意に抑制することができる。
 厚い無機材料の層は、非晶質または非晶質の状態が支配的である方が膜の平坦性がいっそう得られやすい。また、厚い無機材料の層は、非晶質または非晶質の状態が支配的である方が電子親和力と組成との関係が線形性となりやすいため膜に供給する電力を制御しやすい。さらに、厚い無機材料の層は、非晶質または非晶質の状態が支配的である方が均質な層が得られやすい。厚い無機材料の層は、非晶質に比べて微結晶の方が層厚方向に配向しやすいため、微結晶が支配的である方が層厚方向の電子的な特性を向上しやすい。
 (本発明の一実施形態による別の発光素子)
 次に、図3を参照して、本発明の一実施形態による別の発光素子の構成について、説明する。図3には、本発明の一実施形態による別の発光素子(有機LED素子)の断面構成を模式的に示す。
 図3に示すように、本発明の一実施形態による別の発光素子(以下、「第2の発光素子」と称する)200は、基本的に、前述の図2に示した第1の発光素子100と同様の構成を有する。
 ただし、この第2の発光素子200は、有機層240が、電子注入層245と厚い無機材料の層280の両方を有する点で、第1の発光素子100とは異なっている。すなわち、第2の発光素子200において、有機層240は、電子注入層245、厚い無機材料の層280、電子輸送層250、有機発光層255、ホール輸送層260、ホール注入層265をこの順に有する。
 ここで、厚い無機材料の層280は、前述のように、100nm以上の厚さを有し、10-6Ω-1cm-1以上100Ω-1cm-1以下の範囲の導電率を有する。また、厚い無機材料の層280は、亜鉛-錫-ケイ素-酸素系、亜鉛-錫-酸素系および亜鉛-ケイ素-酸素系からなる群から選定された材料で構成される。
 このような構成においても、第1の発光素子100と同様に、2つの電極235、270間の短絡を有意に抑制することができることは、当業者には明らかである。また、第2の発光素子200においても、厚い無機材料の層280の存在が、第2の発光素子200の特性に悪影響を及ぼす可能性が少ないことは容易に理解されよう。
 (本発明の一実施形態によるさらに別の発光素子)
 次に、図4を参照して、本発明の一実施形態によるさらに別の発光素子の構成について、説明する。図4には、本発明の一実施形態によるさらに別の発光素子(有機LED素子)の断面構成を模式的に示す。
 図4に示すように、本発明の一実施形態によるさらに別の発光素子(以下、「第3の発光素子」と称する)300は、透明基板310と、散乱層320と、透明電極(陽極)335と、有機層340と、反射性電極(陰極)370とをこの順に有する。散乱層320は、第1の屈折率を有するガラス製のベース材321と、該ベース材321中に分散された、ベース材321とは異なる第2の屈折率を有する複数の散乱物質324とで構成される。
 図4の例では、第3の発光素子300の下側の表面(すなわち透明基板310の露出面)が光取り出し面312となる。
 有機層340は、透明電極335に近い側から、ホール注入層365、ホール輸送層360、有機発光層355、電子輸送層350、電子注入層380をこの順に有する。
 ここで、電子注入層380は、前述のような厚い無機材料の層で構成される。すなわち、電子注入層380は、100nm以上の厚さを有し、10-6Ω-1cm-1以上100Ω-1cm-1以下の範囲の導電率を有する。また、電子注入層380は、亜鉛-錫-ケイ素-酸素系、亜鉛-錫-酸素系および亜鉛-ケイ素-酸素系からなる群から選定された材料で構成される。
 このような第3の発光素子300の構成においても、第1および第2の発光素子100、200と同様に、2つの電極335、370間の短絡を有意に抑制することができることは、当業者には明らかである。また、第3の発光素子300においても、厚い無機材料の層(電子注入層380)の存在が、第3の発光素子300の特性に悪影響を及ぼす可能性が少ないことは容易に理解されよう。
 (本発明の一実施形態によるさらに別の発光素子)
 次に、図5を参照して、本発明の一実施形態によるさらに別の発光素子の構成について、説明する。図5には、本発明の一実施形態によるさらに別の発光素子(有機LED素子)の断面構成を模式的に示す。
 図5に示すように、本発明の一実施形態によるさらに別の発光素子(以下、「第4の発光素子」と称する)400は、基本的に、前述の図4に示した第3の発光素子300と同様の構成を有する。
 ただし、この第4の発光素子400は、有機層440が、電子注入層445と厚い無機材料の層480の両方を有する点で、第3の発光素子300とは異なっている。すなわち、第4の発光素子400において、有機層440は、透明電極435に近い側から、ホール注入層465、ホール輸送層460、有機発光層455、電子輸送層450、厚い無機材料の層480、および電子注入層445を有する。
 このような第4の発光素子400の構成においても、第1~第3の発光素子100、200、300と同様に、2つの電極435、470間の短絡を有意に抑制することができることは、当業者には明らかである。また、第4の発光素子400においても、厚い無機材料の層480の存在が、第4の発光素子400の特性に悪影響を及ぼす可能性が少ないことは容易に理解されよう。
 (各構成部材について)
 次に、本発明の一実施形態による発光素子を構成する各部材について、詳しく説明する。
 なお、ここでは、一例として、図3に示した第2の発光素子(有機LED素子)200を参照して、各構成部材について説明する。従って、以降の記載では、明確化のため、各部材を参照する際に、図3で使用した参照符号を使用する。
 また、以下に示す各構成部材の仕様は、単なる一例であることに留意する必要がある。
 (透明基板210)
 透明基板210の材料は、透明である限り、特に限られない。
 透明基板210は、例えば、ガラス基板またはプラスチック基板であっても良い。
 (散乱層220)
 散乱層220は、ベース材221と、該ベース材221中に分散された複数の散乱物質224とを有する。ベース材221は、第1の屈折率を有し、散乱物質224は、ベース材とは異なる第2の屈折率を有する。
 散乱層220中の散乱物質224の存在量は、散乱層220の内部から外側に向かって小さくなっていることが好ましく、この場合、高効率の光取り出しを実現することができる。
 ベース材221は、ガラスで構成され、ガラスの材料としては、ソーダライムガラス、ホウケイ酸塩ガラス、および無アルカリガラスなどの無機ガラスが使用される。
 散乱物質224は、例えば、気泡、析出結晶、ベース材とは異なる材料粒子、分相ガラス等で構成される。分相ガラスとは、2種類以上のガラス相により構成されるガラスをいう。
 ベース材221の屈折率と散乱物質224の屈折率の差は、大きい方が良く、このためには、ベース材221として高屈折率ガラスを使用し、散乱物質224として気泡を使用することが好ましい。
 ベース材221用の高屈折率のガラスのため、ネットワークフォーマとして、P、SiO、B、GeO、およびTeOのうちの一種類または二種類以上の成分を選定し、高屈折率成分として、TiO、Nb、WO、Bi、La、Gd、Y、ZrO、ZnO、BaO、PbO、およびSbのうちの一種類または二種類以上の成分を選定しても良い。さらに、ガラスの特性を調整するため、アルカリ酸化物、アルカリ土類酸化物、フッ化物などを、屈折率に影響を及ぼさない範囲で、添加しても良い。
 ベース材221に、着色剤を添加することにより、発光の色味を変化させることもできる。着色剤としては、遷移金属酸化物、希土類金属酸化物、および金属コロイドなどを、単独でまたは組み合わせて使うことができる。
 (透明電極235)
 透明電極235には、有機発光層255で生じた光を外部に取り出すため、80%以上の透光性が要求される。また、陽極として用いる場合には、多くの正孔を注入するため、仕事関数が高いことが要求される。
 透明電極235には、例えば、ITO、SnO、ZnO、IZO(Indium Zinc Oxide)、およびAZO(ZnO-Al:アルミニウムがドーピングされた亜鉛酸化物)などの材料が用いられる。一方、陰極として用いる場合でも、電子注入層を亜鉛-錫-ケイ素-酸素系、亜鉛-錫-酸素系および亜鉛-ケイ素-酸素系からなる群から選定された材料で構成される層を形成することにより、上記の透明電極材料を用いてもオーミック特性が得られる。
 透明電極235の厚さは、100nm以上であることが好ましい。
 透明電極235の屈折率は、1.75~2.2の範囲である。例えば、透明電極235としてITOを使用した場合、キャリア濃度を増加させることにより、透明電極235の屈折率を低下させることができる。市販のITOでは、SnOが10wt%含まれるものが標準となっているが、Sn濃度をさらに増加させることにより、ITOの屈折率を下げることができる。ただし、Sn濃度の増加により、キャリア濃度は増加するが、移動度および透過率は、低下する。従って、全体のバランスを考慮して、Sn量を決める必要がある。
 また、透明電極235の屈折率は、散乱層220を構成するベース材221の屈折率や反射性電極270の屈折率を考慮して、決定することが好ましい。
 (反射性電極270)
 反射性電極270には、仕事関数の小さな金属またはその合金が用いられる。反射性電極270は、例えば、アルカリ金属、アルカリ土類金属、および周期表第3属の金属などであっても良い。
 (電子注入層245)
 電子注入層245は、例えば透明電極245の表面に、リチウム(Li)、セシウム(Cs)等のアルカリ金属をドープした層を設けることにより構成される。
 なお、前述のように、厚い無機材料の層280を電子注入層245としても良い。
 (厚い無機材料の層280)
 厚い無機材料の層280は、前述のように、亜鉛-錫-ケイ素-酸素系、亜鉛-錫-酸素系および亜鉛-ケイ素-酸素系からなる群から選定された材料で構成されても良い。
 厚い無機材料の層280は、非晶質であり、100nm以上の厚さを有し、10-6Ω-1cm-1以上100Ω-1cm-1以下の範囲の導電率を有しても良い。
 厚い無機材料の層280は、例えば、100nm~500nmの範囲の厚さを有しても良い。また、厚い無機材料の層280は、例えば、10-4Ω-1cm-1以上10Ω-1cm-1以下の範囲の導電率を有しても良い。
 このような厚い無機材料の層280は、例えば、スパッタリング法およびPVD法などの成膜プロセスにより、形成することができる。
 (電子輸送層250)
 電子輸送層250は、透明電極235から注入された電子を輸送する役割をする。
 電子輸送層250には、例えば、トリス(8-キノリノラート)アルミニウム錯体(Alq3)などが用いられる。
 (有機発光層255)
 有機発光層255は、注入された電子とホールが再結合する場を提供する役割を有する。有機発光材料としては、低分子系または高分子系のものが使用される。
 有機発光層255には、ゲスト材料として、例えば、トリス(8-キノリノラート)アルミニウム錯体(Alq3)など、およびビス(8-キノリノラート)カルシウム錯体(Caq2)などのキノリン誘導体の金属錯体など、並びにコロネンなどの蛍光性物質が挙げられる。
 ホスト材料としては、キノリノラート錯体を使用しても良く、特に、8-キノリノールおよびその誘導体を配位子としたアルミニウム錯体が使用されても良い。
 (ホール輸送層260)
 ホール輸送層260は、ホール注入層265から注入されたホールを有機発光層255に輸送する役割をする。
 ホール輸送層260には、例えば、トリフェニルアミン誘導体などが用いられる。
 ホール輸送層260の厚さは、例えば10nm~150nmの範囲である。ホール輸送層260の厚さが薄いほど、有機LED素子200を低電圧化できるが、電極間短絡の問題から、通常は、10nm~150nmの範囲である。
 (ホール注入層265)
 ホール注入層265は、電極からのホール注入の障壁を低くするため、イオン化ポテンシャルの差が小さいものが好ましい。電極からホール注入層265への電荷の注入効率が高まると、有機LED素子200の駆動電圧が下がり、ホールの注入効率が高まる。
 ホール注入層265の材料としては、高分子材料または低分子材料が使用される。高分子材料の中では、ポリスチレンスルフォン酸(PSS)がドープされたポリエチレンジオキシチオフェン(PEDOT:PSS)が良く使用され、低分子材料の中では、フタロシアニン系の銅フタロシアニン(CuPc)が広く用いられる。
 (追加の効果について)
 以上、本発明の一実施形態による発光素子を用いて、本発明の効果について説明した。ただし、本発明の一実施形態による発光素子において、特定の構成では、発光の色むらの抑制という、追加の効果を得ることができる。
 以下、図6を参照して、この効果について説明する。
 図6には、光取り出し構造を有する、一般的な発光素子の断面を概略的に示す。
 図6に示すように、この発光素子500は、透明基板510と、下部透明電極535と、有機層540と、上部反射性電極570とをこの順に有する。有機層540は、発光層555と、発光層555の下側(すなわち下部透明電極510側)に配置された各構成層(例えば電子注入層および/または電子輸送層など。以下、まとめて「第1の層」590という)と、発光層555の上側(すなわち上部反射性電極570側)に配置された各構成層(例えばホール輸送層および/またはホール注入層など。以下、まとめて「第2の層」592という)と、を有する。
 なお、図6には、簡略化のため光取り出し構造は、示されていないが、光取り出し構造は、例えば図2等に示したような散乱層120とは異なる方法によって実現されているものと仮定する。
 このような発光素子500の構成において、発光素子500の作動の際には、2つの電極535、570間に電位が印加され、発光層555から発光が生じる。この発光は、少なくとも、図6に示すような3通りの経路、すなわちP1、P2およびP3を経て、透明基板510から外部に出力(放射)される。
 ここで、従来の発光素子500では、第1の層590は、比較的薄く、このため第1の層590の膜厚変動による、下部透明電極535と発光層555の間の距離の変化はあまり顕著ではない。同様に、第2の層592は、比較的薄く、このため第2の層592の膜厚変動による、上部反射性電極570と発光層555の間の距離の変化はあまり顕著ではない。そのため、図6に示した3通りの経路P1~P3の間で、光の干渉条件が変化することは生じ難く、出力される発光による色味のばらつきは生じ難い。
 しかしながら、第1の層590の中に、厚い層、例えば、前述の「厚い無機材料の層」が存在する場合、第1の層590の場所による膜厚変動が相対的に大きくなる。
 特に、経路P3は、経路P1または経路P2に比べて、第1の層590を通過する回数が3倍であるため、経路P3は、より顕著な膜厚変動の影響を受けるようになる。従って、経路P1と経路P3、および経路P2と経路P3の間で、光の干渉条件が変化する。その結果、最終的に出力される発光の色味のばらつきが大きくなり、発光素子500内で色むらが生じてしまう。
 これに対して、光取り出し構造として、例えば図2等に示した散乱層120を適用した場合、このような問題を有意に抑制することができる。
 これは、散乱層120は、屈折率が下部透明電極535の屈折率と比較的近くなるように設計できるためである。すなわち、散乱層120を設置した場合、散乱層120と下部透明電極535の界面での屈折率差が抑制され、下部透明電極535と散乱層の界面で再反射する光の成分を低減することができる。その結果、経路P3を経て出力される発光が抑制され、前述のような色むらの問題を有意に抑制することができる。
 このような高屈折率散乱層による干渉抑制効果を確認するため、以下のシミュレーション計算により、散乱層を有する場合(ケース1)と有しない場合(ケース2)を想定して、発光特性の比較を行った。散乱層は散乱粒子を含むが、干渉抑制効果を確認するためには、散乱層のマトリックス部のみで構成される膜厚が無限大の層を考慮すれば十分である。
 ケース1として、以下の構成の発光素子を仮定した。
(ケース1)
 散乱層付き透明基板:散乱層マトリックス部分の屈折率=1.9
 下部透明電極:厚さ150nm、屈折率=1.9
 電子注入層(厚い無機材料の層で形成されると仮定):厚さ450nm~550nm(±10%の膜厚ばらつきを想定)、屈折率=1.8
 発光層:厚さ10nm、屈折率=1.75
 ホール輸送層:厚さ50nm、屈折率=1.8
 上部反射性電極:厚さ80nm、屈折率=0.6、消衰係数=3.55
 また、ケース2として、以下のように、散乱層を有しないこと以外は、ケース1と同様の構成の発光素子を仮定した。
(ケース2)(散乱層なし)
 透明基板:屈折率=1.5
 その他の構成は、ケース1と同じ
 以上の2通りのケースについて、setfosソフトウェア(FLUXiM社製)を使用し、想定した発光素子から得られる発光の正面輝度を計算した。
 計算の結果を図7および図8に示す。図7は、ケース1の場合の計算結果を示しており、図8は、ケース2の場合の計算結果を示している。また、両図において、横軸は、出力される光のスペクトル波長を示し、縦軸は、正面輝度を示している。
 図8に示すように、ケース2では、厚い無機材料の層で形成された電子注入層の厚さが450nm~550nmの間で変化すると、これに伴い、出力光の輝度が大きく変化することがわかる。これに対して、ケース1では、厚い無機材料の層で形成された電子注入層の厚さが450nm~550nmの間で変化しても、出力光の輝度はほとんど変化しないことがわかる。
 このように、光取り出し構造として散乱層を有する発光素子では、下部透明電極535と発光層555の間に厚い無機材料の層を配置しても、光の干渉条件の変化が少なく、色むらが生じ難いことが確認された。
 (本発明の一実施形態による発光素子の製造方法)
 次に、図9を参照して、本発明の一実施形態による発光素子の製造方法の一例について説明する。なお、ここでは、一例として、図2に示したような構成を有する第1の発光素子100を例に、その製造方法について説明する。ただし、その他の構成を有する発光素子、例えば、図3~図5に示したような発光素子200~500においても、以下に記載する製造方法の一部を変更して適用できることは、当業者には明らかである。
 図9には、第1の発光素子100を製造する際の概略的なフロー図を示す。
 図9に示すように、この製造方法は、
(a)透明基板上に散乱層を形成するステップ(ステップS110)と、
(b)散乱層上に、第1の電極を形成するステップ(ステップS120)と、
(c)第1の電極上に、厚い無機材料の層を形成するステップ(ステップS130)と、
(d)厚い無機材料の層上に、有機発光層を形成するステップ(ステップS140)と、
(e)有機発光層上に、第2の電極を形成するステップ(ステップS150)と、
 を有する。
 以下、各ステップについて詳しく説明する。なお、以下の説明では、明確化のため、各部材を参照する際に、図2に示した参照符号を使用することにする。
 (ステップS110)
 まず、透明基板110が準備される。
 次に、透明基板110上に、ガラス製のベース材121中に散乱物質124が分散された散乱層120が形成される。
 散乱層120の形成方法は、特に限られないが、ここでは、特に、「フリットペースト法」により、散乱層120を形成する方法について説明する。ただし、その他の方法で散乱層120を形成しても良いことは、当業者には明らかである。
 フリットペースト法とは、フリットペーストと呼ばれるガラス材料を含むペーストを調製し(調製工程)、このフリットペーストを被設置基板の表面に塗布して、パターン化し(パターン形成工程)、さらにフリットペーストを焼成すること(焼成工程)により、被設置表面に、所望のガラス製の膜を形成する方法である。
 以下、各工程について簡単に説明する。
 (調製工程)
 まず、ガラス粉末、樹脂、および溶剤等を含むフリットペーストが調製される。
 ガラス粉末は、最終的に散乱層のベース材を形成する材料で構成される。ガラス粉末の組成は、所望の散乱特性が得られ、フリットペースト化して焼成することが可能なものであれば特に限られない。ガラス粉末の組成は、例えば、Pを20~30mol%、Bを3~14mol%、Biを10~20mol%、TiOを3~15mol%、Nbを10~20mol%、WOを5~15mol%含み、LiOとNaOとKOの総量が10~20mol%であり、以上の成分の総量が、90mol%以上のものであっても良い。ガラス粉末の粒径は、例えば、1μm~100μmの範囲である。
 なお、最終的に得られる散乱層120の熱膨張特性を制御するため、ガラス粉末には、所定量のフィラーを添加しても良い。フィラーには、例えば、ジルコン、シリカ、またはアルミナなどの粒子が使用され、粒径は、通常、0.1μm~20μmの範囲である。
 樹脂には、例えば、エチルセルロース、ブチラール樹脂、メラミン樹脂、アルキッド樹脂、およびロジン樹脂などが用いられる。なお、ブチラール樹脂、メラミン樹脂、アルキッド樹脂、およびロジン樹脂を添加すると、フリットペースト塗布膜の強度が向上する。
 溶剤は、樹脂を溶解し、粘度を調整する役割を有する。溶剤には、例えば、α-テルピネオール、および2,2,4-トリメチル-1,3-ペンタンジオールモノイソブチレートがある。
 その他、フリットペーストには、粘度の調整やフリット分散促進のため、界面活性剤を添加しても良い。また、表面改質のため、シランカップリング剤を使用しても良い。
 次に、これらの原料を混合し、ガラス原料が均一に分散されたフリットペーストを調製する。
 (パターン形成工程)
 次に、前述の方法で調製したフリットペーストを、透明基板上に塗布し、パターン化する。塗布の方法およびパターン化の方法は、特に限られない。例えば、スクリーン印刷機を用いて、透明基板上にフリットペーストをパターン印刷しても良い。あるいは、ドクターブレード印刷法またはダイコート印刷法を利用しても良い。
 その後、フリットペースト膜は、乾燥される。
 (焼成工程)
 次に、フリットペースト膜が焼成される。通常、焼成は、2段階のステップで行われる。第1のステップでは、フリットペースト膜中の樹脂が分解、消失され、第2のステップでは、ガラス粉末が軟化、焼結される。
 第1のステップは、大気雰囲気下で、フリットペースト膜を200℃~400℃の温度範囲に保持することにより行われる。ただし、処理温度は、フリットペーストに含まれる樹脂の材料によって変化する。例えば、樹脂がエチルセルロースの場合は、処理温度は、350℃~400℃程度であり、樹脂がニトロセルロースの場合は、処理温度は、200℃~300℃程度であっても良い。なお処理時間は、通常、30分から1時間程度である。
 第2のステップは、大気雰囲気下で、フリットペースト膜を、含まれるガラス粉末の軟化温度±30℃の温度範囲に保持することにより行われる。処理温度は、例えば、450℃~600℃の範囲である。また、処理時間は、特に限られないが、例えば、30分~1時間である。
 第2のステップ後に、ガラス粉末が軟化、焼結して、散乱層120のベース材121が形成される。また、フリットペースト膜中に内包させた散乱物質によって、例えば内在する気泡などによって、ベース材121中に均一に分散された散乱物質124が得られる。
 その後、透明基板110を冷却することにより、側面部分が上面から前記底面に向かって、直角よりも緩やかな角度で傾斜した表面を有する散乱層120が形成される。
 最終的に得られる散乱層120の厚さは、5μm~50μmの範囲であっても良い。
 (ステップS120)
 次に、前記工程で得られた散乱層120上に、透明な第1の電極135が設置される。
 第1の電極135の設置方法は、特に限られず、例えば、スパッタ法、蒸着法、および気相成膜法等の成膜法を利用しても良い。
 前述のように、第1の電極135の材料は、ITO等であっても良い。また、第1の電極135の厚さは、特に限られず、例えば50nm~1.0μmの範囲であっても良い。
 また、第1の電極135は、エッチング処理等により、パターン化しても良い。
 (ステップS130)
 次に、第1の電極の上に、厚い無機材料の層180が形成される。
 厚い無機材料の層180は、例えば、スパッタリング法、PVD法等のプロセスで形成されても良い。
 前述のように、厚い無機材料の層180は、亜鉛-錫-ケイ素-酸素系、亜鉛-錫-酸素系および亜鉛-ケイ素-酸素系からなる群から選定された材料で構成されても良い。
 また、厚い無機材料の層180は、100nm以上の厚さを有し、例えば、10-6Ω-1cm-1以上100Ω-1cm-1以下の範囲の導電率を有する。
 厚い無機材料の層180を形成することにより、最表面が平坦化される。従って、仮に散乱層120の形成後に、表面に異物が残留していた場合であっても、このステップS130以降に設置される層の平坦度を高めることが可能となる。また、これにより、ステップS120で形成された第1の電極135と、以降のステップS150において形成される第2の電極170の間の短絡を、有意に抑制することが可能となる。
 (ステップS140)
 次に、厚い無機材料の層180の上に、有機層140を構成する各層が形成される。
 なお、図2の例では、有機層140は、電子輸送層150、有機発光層155、ホール輸送層160、およびホール注入層165の各層を有する。
 しかしながら、有機層140として、必ずしもこれらの全ての層を形成する必要はない。すなわち、有機発光層155以外の層は、省略しても良い。
 有機層140を構成する各層の設置方法は、特に限られず、例えば、蒸着法および/または塗布法を使用しても良い。
 (ステップS150)
 次に、有機層140上に第2の電極170が設置される。
 第2の電極170の設置方法は、特に限られず、例えば、蒸着法、スパッタ法、気相成膜法等を使用しても良い。
 以上の工程により、図2に示したような第1の発光素子100が製造される。
 前述のように、このような第1の発光素子100の製造方法では、ステップS130の工程において、厚い無機材料の層180が配置されるため、第1の電極135と第2の電極170の間で、短絡が生じる可能性を有意に抑制することができる。
 また、厚い無機材料の層180は、前述のような特性を有するため、厚い無機材料の層180を介在させても、第1の発光素子100の特性に悪影響は生じ難くなるという効果が得られる。
 以下、本発明の発光素子の実施例について説明する。
 (例1)
 以下の方法により、各種被成膜基板上に無機材料の膜を成膜したサンプルを作製した。被成膜基板には、ニッケル基板およびガラス基板等を使用した。
 (成膜条件)
 成膜装置には、RFマグネトロンスパッタ装置(アルバック社製)を使用した。スパッタリングターゲットには、直径2インチで、所定の比率でZnOとSiOを含む焼結体ターゲットを使用した。
 成膜の際には、まず、被成膜基板をスパッタ装置のチャンバー内に導入した。
 スパッタ装置のチャンバー内を10-5Pa以下の真空度にした後、チャンバー内に所定のスパッタリングガスを20sccm導入した。スパッタリングガスとして、アルゴン(Ar)ガス(G1グレード:純度99.99995vol.%)、または、酸素(O)ガス(G1グレード:純度99.99995vol.%)とArガス(G1グレード)の混合ガスを使用した。すなわち、スパッタリングガスとして、Arガス、または、酸素濃度20%のO/Ar混合ガスを使用した。
 スパッタガスの圧力を所定の圧力とし、ターゲットと被成膜基板の間隔(T-S距離)を所定の間隔とし、スパッタ装置のカソードに電力50Wを印加した。成膜時の基板温度は70℃以下であった。
 (例2~例9)
 例1と同様の方法で、各種被成膜基板上に無機材料の膜を成膜したサンプルを作製した(例2~例9)。ただし、例2~例9では、例1の場合とは異なる成膜条件を採用した。
 以下の表1には、例1~例9において使用した成膜条件をまとめて示す。
Figure JPOXMLDOC01-appb-T000001
 例1~例9において得られた各サンプルを用いて、以下の評価を行った。
 (評価1 原子数比)
 例1~例9において得られた各サンプルを用いて、無機材料の膜の原子数比(Zn/(Zn+Si))を評価した。なお、各サンプルにおいて、被成膜基板はニッケル基板とした。
 原子数比は、無機材料の膜をSEM-EDX分析することによって求めた。ニッケル基板による影響を小さくするために、加速電圧は10kVとした。
 以下の表2の「Zn/(Zn+Si)」の欄には、得られた結果をまとめて示した。
Figure JPOXMLDOC01-appb-T000002
 (評価2 X線回折)
 例1~例9において得られた各サンプルを用いて、無機材料の膜のX線回折スペクトルを測定した。なお、各サンプルにおいて、被成膜基板は、厚さ1mmの石英ガラス基板とした。
 X線回折スペクトルは、RIGAKU製X線回折装置RINT-2000を用い、ゼーマンボーリン法により測定した。ゼーマンボーリン法の詳細は、日本金属学会会報第27巻第6号461~465頁(1988)に示されている。加速電圧50kV、放電電流300mAの条件で電子線をCuに照射し、発生したCuKα線を入射角0.5°に固定してサンプルに照射し、回折パターンを得た。
 図10には、各サンプルにおいて得られた回折パターンを示す。
 いずれの回折パターンにおいても、ウルツ型ZnOに由来するハローパターンが認められた。回折角2θが33°付近のウルツ型ZnOの(002)面におけるシェラー径を、前述の表2の「シェラー径」欄に示した。
 例1~例7で得られた膜は、いずれもシェラー径5nm以下であり、X線回折的に非晶質または非晶質の状態が支配的であることが確認された。一方、例8および例9では、シェラー径が5nmより大きく、X線回折的に結晶質であることが確認された。
 (評価3 UPS測定)
 例1~例9において得られた各サンプルを用いて、紫外光電子分光(UPS)法により、イオン化ポテンシャルを測定した。
 なお、各サンプルにおいて、被成膜基板は、無アルカリガラス基板上に150nmのITOが成膜された基板(以下、ITO基板と称する)とし、無機材料の膜(厚さ10nm)は、ITO基板のITOが成膜された面上に成膜した。
 測定は、10-7Pa以上の高真空中で、膜にHeランプの紫外線(He(I)、21.22eV)を照射することにより、実施した。
 例1のサンプルにおいて得られた結果を図11および図12に示す。図11は、光電子のカウント数と光電子の運動エネルギーの関係を示した図であり、図12は、光電子のカウント数と結合エネルギーの関係を示した図である。
 図11から、例1のサンプルにおける薄膜の仕事関数は、3.9eVと算定された。また、図12から、結合エネルギーと仕事関数の和で求められる、例1のサンプルにおける薄膜のイオン化ポテンシャルは、6.6eVと算定された。
 (評価4 光吸収係数)
 例1~例9において得られた各サンプルを用いて、各無機材料の膜の光吸収係数を算定した。なお、各サンプルにおいて、被成膜基板は、厚さ1mmの石英ガラス基板とした。
 光吸収係数は、各サンプルを用いて、反射率および透過率を測定することにより算出した。また、得られた光吸収係数のTaucプロットから光学バンドギャップを求めた。
 図13および図14には、それぞれ、例1および例2のサンプルにおける無機材料の膜のTaucプロットを示す。
 前述の表2の「バンドギャップ」の欄には、各サンプルにおいて得られた光学バンドギャップをまとめて示す。例1~例7におけるサンプルでは、光学バンドギャップは、3.2~4.0の範囲であった。
 前述のUPS測定で得られたイオン化ポテンシャルの結果と照合すると、例1のサンプルにおける無機材料の膜の電子親和力は、2.6eVと予想される。例2~例7のサンプルにおける無機材料の膜においても、同程度のイオン化ポテンシャルを仮定すると、電子親和力は、3.3~3.4eV程度と予想される。
 前述の表2の「電子親和力」の欄には、各サンプルにおける無機材料の膜の予想される電子親和力をまとめて示す。
 (評価5 抵抗率)
 例2~例7において得られた各サンプルを用いて、各無機材料の膜の抵抗率を測定した。なお、各サンプルにおいて、被成膜基板は、厚さ1mmの石英ガラス基板とした。
 抵抗率は、4端子法で測定した。各サンプルにおいて、無機材料の膜上に、幅1mmのNd含有アルミニウム層を2mm間隔でスパッタ成膜し、これらを測定電極とした。
 スパッタ成膜のターゲットには、コベルコ科研製の直径2インチの2mol%Nd含有アルミニウム(製品名:AD20)ターゲットを用いた。
 前述の表2の「抵抗率」欄には、得られた測定結果をまとめて示した。
 (評価6 電子輸送性の評価)
 以下の方法により、電子のみを流す素子、いわゆる電子オンリー素子を作製し、その特性を評価した。
 電子オンリー素子は、ガラス基板上にボトム電極として陰極を配置し、ボトム電極上に電子輸送層を厚さ150nmで配置し、電子輸送層上にトップ電極として陽極を、ボトム電極と直交するように配置して構成した。
 陰極は、コベルコ科研製の直径2インチの2mol%Nd含有アルミニウム(製品名:AD20)ターゲットを用い、Nd含有アルミニウムを厚さ80nm、幅1mmとなるようにスパッタ成膜して形成した。電子輸送層として、厚さ150nmのAlq3の層を形成した。陽極は、アルミニウムを厚さ80nmとなるように真空蒸着して形成した。
 電子オンリー素子の陰極と陽極に電圧を印加し、この際に生じる電流値を測定した。
 図15には、電子オンリー素子において得られた電流-電圧特性(「Alq3」と表記)を示す。
 なお、この図15には、例2~例7のサンプルにおける電流-電圧特性が同時に示されている。これらの電流-電圧特性は、各サンプルにおける前述の抵抗率から算定した。
 算定には、以下の式(1)を用いた:
 
  I/A=E/(ρ・L)   式(1)
 
ここでIは電流密度、Aは面積、Eは電圧、ρは抵抗率、Lは電子輸送層の厚さである。電子輸送層の厚さは150nmとした。
 図15から、印加電圧が20Vまでの範囲では、例2~例7のサンプルは、電子輸送層にAlq3を用いた電子オンリー素子に比べて、電流値が数桁以上大きくなっていることがわかる。なお、図15には、20Vを超える電圧領域は示されていない。これは、このような大きな電圧の印加は、素子の劣化につながり実用的ではないからである。
 図15から、例2~例7のサンプルにおける無機材料の膜を電子輸送層に用いた場合、厚さが150nmであっても、有機EL素子として充分な電子輸送性を有することがわかった。
 (例10)
 以下の方法により、有機EL素子を作製し、その特性を評価した。有機EL素子は、ガラス基板上にボトム電極として陰極を配置し、その上に順に、電子輸送層、発光層、ホール輸送層、ホール注入層、およびトップ電極としての陽極を配置し、陽極側から光を取り出す構造とした。また、例11においては、電子注入層、ホールブロック層、および電子ブロック層の形成は省略した。
 まず、ガラス基板上に、陰極を形成した。ガラス基板としては、無アルカリガラス基板を用いた。洗浄したガラス基板およびメタルマスクを、スパッタ装置のチャンバー内に設置した。また、陰極成膜用のターゲットを、スパッタ装置のチャンバー内に設置した。陰極用のターゲットとしては、コベルコ科研製の直径2インチの2mol%Nd含有アルミニウム(製品名:AD20)ターゲットを用いた。メタルマスクを用いて、ガラス基板上に、陰極を厚さ80nm、幅1mmとなるようにスパッタ成膜した。スパッタガスはAr、スパッタガスの圧力は0.3Paとし、スパッタカソードに電力50Wを印加した。
 次に、陰極上に、電子輸送層を形成した。メタルマスクは動かさずに、例7におけるスパッタ条件で、陰極が形成されたガラス基板上に、電子輸送層として厚さ100nmの無機材料の膜を成膜した。
 次に、電子輸送層上に、発光層、ホール輸送層、ホール注入層を形成した。電子輸送層(および陰極)が形成されたガラス基板を、10-4Pa以下の高真空の雰囲気下で、スパッタ装置のチャンバーから真空蒸着用のチャンバーに搬送した。続けて、電子輸送層上に発光層としてAlq3を厚さ50nm蒸着した。続けて、発光層上にホール輸送層としてα―NPDを厚さ50nm蒸着した。続けて、ホール輸送層上にホール注入層としてMoOを厚さ0.8nm蒸着した。
 次に、ホール注入層上に、陽極を形成した。ホール注入層が形成されたガラス基板上に、陽極として金を厚さ10nm、幅1mmで蒸着した。蒸着時の真空度は約8×10-6Paであった。陽極は可視光を透過するので、陽極(トップ電極)側から光を取り出す構造となっている。
 なお、発光層、ホール輸送層およびホール注入層は、陰極および電子輸送層を完全に覆うように、メタルマスクを用いて形成した。陽極は、陰極と直交するように、メタルマスクを用いて形成した。幅1mmの陰極と直交するように蒸着された幅1mmの陽極の重複する1mm×1mmの領域が、電圧印加により発光する領域である。
 以上の工程を経て、ガラス基板、2mol%ネオジウムを含有したアルミニウムからなる陰極、無機材料の膜からなる電子輸送層、Alq3からなる発光層、α-NPDからなるホール輸送層、MoOからなるホール注入層、および金からなる陽極を備える有機EL素子を作製した。
 (有機EL素子の特性評価)
 次に、得られた有機EL素子について、直流電圧を印加し、電流および輝度を測定した。測定は、窒素パージしたグローブボックス内において、有機EL素子の陰極と陽極の間に所定の値の電圧を印加した際に得られる輝度および電流値を測定することにより実施した。輝度測定には、TOPCOM社製の輝度計(BM-7A)を使用した。
 図16には、有機EL素子において測定された電流-電圧-輝度特性を示す。有機EL素子は、8Vから輝度および電流密度が増加し、12Vで輝度1500cd/m、電流密度2.6A/cmであった。この結果から、厚さ100nmの無機材料の膜は、電子輸送層として機能することが確認された。このように厚い無機材料の電子輸送層を用いて、低電圧で、従来通りの効率が得られている事がわかる。この発光素子を光取り出し構造の上に形成すれば、更なる高効率発光素子が得られるとともに、厚い無機材料層により短絡が抑制できる。
 以上、本発明の一実施形態による発光素子の構成例およびその製造方法の一例について説明した。
 しかしながら、本発明による発光素子が、上記の例に限られないことは、当業者には明らかである。
 例えば、本発明による発光素子において、光取り出し構造は、散乱層に限られるものではない。光取り出し構造として、回折構造、コルゲート構造、および低屈折率層など、従来から知られている光取り出し効率を高めるための各種構成を適用しても良い。
 さらに、本発明による発光素子は、有機LED素子に限られるものではなく、発光素子は、発光層が無機材料等であっても良い。また発光素子に限らず、太陽電池等の発電素子の光利用効率向上に用いることも可能である。
 本発明は、有機LED素子などの各種発光素子、および発電素子などに利用することができる。
 本願は2014年9月18日に出願した日本国特許出願2014-190360号に基づく優先権を主張するものであり同日本国出願の全内容を本願に参照により援用する。
 1    従来の有機LED素子
 10   ガラス基板
 12   光取り出し面
 20   散乱層
 21   ベース材
 24   散乱物質
 35   透明電極(陽極)
 40   有機層
 45   電子注入層
 50   電子輸送層
 55   有機発光層
 60   ホール輸送層
 65   ホール注入層
 70   反射性電極(陰極)
 100   第1の発光素子(有機LED素子)
 110   透明基板
 112   光取り出し面
 120   散乱層
 121   ベース材
 124   散乱物質
 135   透明電極(陰極)
 140   有機層
 150   電子輸送層
 155   有機発光層
 160   ホール輸送層
 165   ホール注入層
 170   反射性電極(陽極)
 180   電子注入層
 200   第2の発光素子(有機LED素子)
 210   透明基板
 212   光取り出し面
 220   散乱層
 221   ベース材
 224   散乱物質
 235   透明電極
 240   有機層
 245   電子注入層
 250   電子輸送層
 255   有機発光層
 260   ホール輸送層
 265   ホール注入層
 270   反射性電極
 280   厚い無機材料の層
 300   第3の発光素子(有機LED素子)
 310   透明基板
 312   光取り出し面
 320   散乱層
 321   ベース材
 324   散乱物質
 335   透明電極(陽極)
 340   有機層
 350   電子輸送層
 355   有機発光層
 360   ホール輸送層
 365   ホール注入層
 370   反射性電極(陰極)
 380   電子注入層
 400   第4の発光素子(有機LED素子)
 410   透明基板
 412   光取り出し面
 420   散乱層
 421   ベース材
 424   散乱物質
 435   透明電極(陽極)
 440   有機層
 445   電子注入層
 450   電子輸送層
 455   有機発光層
 460   ホール輸送層
 465   ホール注入層
 470   反射性電極(陰極)
 480   厚い無機材料の層
 500   発光素子
 510   透明基板
 535   下部透明電極
 540   有機層
 555   発光層
 570   上部反射性電極
 590   第1の層
 592   第2の層

Claims (14)

  1.  光取り出し構造を有する発光素子であって、
     第1および第2の電極と、該第1および第2の電極の間に配置された発光層とを有し、
     前記第1の電極と前記発光層の間、または前記第2の電極と前記発光層の間には、無機材料の層が配置され、
     前記無機材料の層は、厚さが100nm以上であり、導電率が10-6Ω-1cm-1以上100Ω-1cm-1以下である、発光素子。
  2.  前記無機材料の層は、亜鉛-錫-ケイ素-酸素系材料、亜鉛-錫-酸素系材料、および亜鉛-ケイ素-酸素系材料からなる群から選定された少なくとも一つの材料を有する、請求項1に記載の発光素子。
  3.  前記亜鉛-ケイ素-酸素系材料は、亜鉛(Zn)、ケイ素(Si)および酸素(O)を含み、Zn/(Zn+Si)の原子数比が0.30~0.95である、請求項2に記載の発光素子。
  4.  前記亜鉛-錫-ケイ素-酸素系材料は、亜鉛(Zn)、錫(Sn)、ケイ素(Si)および酸素(O)を含み、酸化物換算で、前記無機材料の層の酸化物の合計100mol%に対して、SnOが15mol%以上、95mol%以下である、請求項2に記載の発光素子。
  5.  酸化物換算で、前記無機材料の層の酸化物の合計100mol%に対して、SiOが7mol%以上、30mol%以下である、請求項4に記載の発光素子。
  6.  前記亜鉛-錫-酸素系材料は、亜鉛(Zn)、錫(Sn)および酸素(O)を含み、酸化物換算で、前記無機材料の層の酸化物の合計100mol%に対して、SnOが15mol%以上、95mol%以下である、請求項2に記載の発光素子。
  7.  前記無機材料の層は、非晶質の酸化物を含む、請求項1乃至6のいずれか一つに記載の発光素子。
  8.  前記発光層は、有機発光層である、請求項1乃至7のいずれか一つに記載の発光素子。
  9.  前記第1の電極は、透明電極であり、前記第2の電極は、反射性電極である、請求項1乃至8のいずれか一つに記載の発光素子。
  10.  前記第1の電極の前記第2の電極とは反対の側に、透明基板が配置される、請求項9に記載の発光素子。
  11.  前記光取り出し構造は、前記第1の電極と前記透明基板の間に設置された散乱層によって構成され、
     前記散乱層は、ガラスからなるベース材と、該ベース材中に分散された複数の散乱物質とを有する、請求項10に記載の発光素子。
  12.  前記無機材料の層は、前記第1の電極と前記発光層の間に配置される、請求項1乃至11のいずれか一つに記載の発光素子。
  13.  前記無機材料の層は、前記第1の電極と接する、請求項12に記載の発光素子。
  14.  発電素子であって、
     第1および第2の電極と、該第1および第2の電極の間に配置された発電層とを有し、
     前記第1の電極と前記発電層の間、または前記第2の電極と前記発電層の間には、無機材料の層が配置され、
     前記無機材料の層は、厚さが100nm以上であり、導電率が10-6Ω-1cm-1以上100Ω-1cm-1以下である、発電素子。
PCT/JP2015/075347 2014-09-18 2015-09-07 発光素子および発電素子 WO2016043084A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016548841A JPWO2016043084A1 (ja) 2014-09-18 2015-09-07 発光素子および発電素子
US15/459,278 US10128457B2 (en) 2014-09-18 2017-03-15 Light-emitting device and power-generating device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-190360 2014-09-18
JP2014190360 2014-09-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/459,278 Continuation US10128457B2 (en) 2014-09-18 2017-03-15 Light-emitting device and power-generating device

Publications (1)

Publication Number Publication Date
WO2016043084A1 true WO2016043084A1 (ja) 2016-03-24

Family

ID=55533123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075347 WO2016043084A1 (ja) 2014-09-18 2015-09-07 発光素子および発電素子

Country Status (3)

Country Link
US (1) US10128457B2 (ja)
JP (1) JPWO2016043084A1 (ja)
WO (1) WO2016043084A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110609A1 (ja) 2016-12-14 2018-06-21 国立大学法人山形大学 組成物および有機光電子素子並びにその製造方法
JP2018195512A (ja) * 2017-05-19 2018-12-06 国立大学法人東京工業大学 有機el素子
KR20190116254A (ko) 2017-02-08 2019-10-14 국립대학법인 야마가타대학 조성물 및 유기 광전자 소자 그리고 그 제조 방법
WO2023234074A1 (ja) * 2022-06-02 2023-12-07 Agc株式会社 ナノ粒子、分散液、インク、薄膜、有機発光ダイオードおよび量子ドットディスプレイ、ならびにナノ粒子を製造する方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107515492A (zh) * 2017-09-22 2017-12-26 出门问问信息科技有限公司 一种显示装置、屏幕切换方法及电子设备
EP3820252A4 (en) * 2018-07-02 2022-03-30 Tokyo Institute of Technology OPTOELECTRONIC ELEMENT, FLAT SCREEN IN WHICH IT IS USED AND METHOD FOR MANUFACTURING OPTOELECTRONIC ELEMENT
CN109411627B (zh) * 2018-10-30 2020-11-24 固安翌光科技有限公司 一种有机发光二极管

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017035A1 (ja) * 2007-07-27 2009-02-05 Asahi Glass Co., Ltd. 透光性基板、その製造方法、有機led素子及びその製造方法
JP2010527107A (ja) * 2007-05-10 2010-08-05 イーストマン コダック カンパニー 光出力が改善されたエレクトロルミネッセンス・デバイス
JP2012059417A (ja) * 2010-09-06 2012-03-22 Fujifilm Corp 透明導電フィルム、その製造方法、電子デバイス、及び、有機薄膜太陽電池
JP2014027192A (ja) * 2012-07-30 2014-02-06 Sony Corp 発光素子およびこれを備えた表示装置、並びに電子機器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897541A (en) 1984-05-18 1990-01-30 Luxtron Corporation Sensors for detecting electromagnetic parameters utilizing resonating elements
JP4650754B2 (ja) 2002-01-11 2011-03-16 有限会社ピエデック技術研究所 水晶ユニットの製造方法と水晶発振器の製造方法
JP4927293B2 (ja) 2002-11-29 2012-05-09 三菱化学株式会社 多孔性シリカ膜、それを有する積層基板、およびエレクトロルミネッセンス素子
US20080100202A1 (en) * 2006-11-01 2008-05-01 Cok Ronald S Process for forming oled conductive protective layer
JP2009009861A (ja) 2007-06-28 2009-01-15 Tokyo Institute Of Technology 有機el素子及びその製造方法
US7957621B2 (en) 2008-12-17 2011-06-07 3M Innovative Properties Company Light extraction film with nanoparticle coatings
JP2010183137A (ja) 2009-02-03 2010-08-19 Seiko Epson Corp 水晶振動片及びその製造方法、振動子、発振器、電子機器
US9059422B2 (en) * 2009-02-03 2015-06-16 Kaneka Corporation Substrate with transparent conductive film and thin film photoelectric conversion device
DE102011086255A1 (de) * 2011-11-14 2013-05-16 Osram Opto Semiconductors Gmbh Organisches licht emittierendes bauelement
DE102012207229B4 (de) * 2012-05-02 2020-06-04 Osram Oled Gmbh Elektronisches Bauelement und Verfahren zum Herstellen eines elektronischen Bauelements
US9299956B2 (en) * 2012-06-13 2016-03-29 Aixtron, Inc. Method for deposition of high-performance coatings and encapsulated electronic devices
DE102013106508A1 (de) * 2013-06-21 2014-12-24 Osram Opto Semiconductors Gmbh Elektrode und optoelektronisches Bauelement sowie ein Verfahren zum Herstellen eines optoelektronischen Bauelements
EP3014675B1 (en) * 2013-06-29 2019-05-15 Aixtron Se Method for deposition of high-performance coatings and encapsulated electronic devices
DE102013110449B4 (de) * 2013-09-20 2019-10-24 Osram Oled Gmbh Bauelement und Verfahren zum Herstellen eines Bauelementes
US9627652B2 (en) * 2013-12-26 2017-04-18 Vitro, S.A.B. De C.V. Organic light emitting diode with light extracting electrode

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010527107A (ja) * 2007-05-10 2010-08-05 イーストマン コダック カンパニー 光出力が改善されたエレクトロルミネッセンス・デバイス
WO2009017035A1 (ja) * 2007-07-27 2009-02-05 Asahi Glass Co., Ltd. 透光性基板、その製造方法、有機led素子及びその製造方法
JP2012059417A (ja) * 2010-09-06 2012-03-22 Fujifilm Corp 透明導電フィルム、その製造方法、電子デバイス、及び、有機薄膜太陽電池
JP2014027192A (ja) * 2012-07-30 2014-02-06 Sony Corp 発光素子およびこれを備えた表示装置、並びに電子機器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018110609A1 (ja) 2016-12-14 2018-06-21 国立大学法人山形大学 組成物および有機光電子素子並びにその製造方法
KR20190091448A (ko) 2016-12-14 2019-08-06 국립대학법인 야마가타대학 조성물 및 유기 광전자 소자 그리고 그 제조 방법
US10879468B2 (en) 2016-12-14 2020-12-29 National University Corporation Yamagata University Composition, organic photoelectronic element, and production method therefor
KR20190116254A (ko) 2017-02-08 2019-10-14 국립대학법인 야마가타대학 조성물 및 유기 광전자 소자 그리고 그 제조 방법
US11469377B2 (en) 2017-02-08 2022-10-11 National University Corporation Yamagata University Composition, organic photoelectronic element, and production methods therefor
JP2018195512A (ja) * 2017-05-19 2018-12-06 国立大学法人東京工業大学 有機el素子
WO2023234074A1 (ja) * 2022-06-02 2023-12-07 Agc株式会社 ナノ粒子、分散液、インク、薄膜、有機発光ダイオードおよび量子ドットディスプレイ、ならびにナノ粒子を製造する方法

Also Published As

Publication number Publication date
JPWO2016043084A1 (ja) 2017-07-27
US20170186990A1 (en) 2017-06-29
US10128457B2 (en) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2016043084A1 (ja) 発光素子および発電素子
EP2352360B1 (en) Substrate for electronic device, electronic device using same and method for producing same
EP2557896B1 (en) Organic led element, translucent substrate, and method for manufacturing organic led element
WO2013054820A1 (ja) 有機led素子の散乱層用ガラス、有機led素子用の積層基板及びその製造方法、並びに有機led素子及びその製造方法
WO2012057043A1 (ja) 有機el素子、透光性基板、および有機el素子の製造方法
EP2995595B1 (en) Translucent substrate, organic led element and method of manufacturing translucent substrate
TWI506836B (zh) 透明導電膜及包含其之有機發光裝置
TWI679791B (zh) 發光元件、顯示裝置及照明裝置
JP6056765B2 (ja) 有機led素子用の積層基板及び有機led素子
TW201301609A (zh) 有機el元件、透光性基板及有機led元件之製造方法
JP2015107892A (ja) ガラス組成物および光取り出し層
WO2014185224A1 (ja) 有機led素子、有機led素子の製造方法
WO2014112414A1 (ja) 透光性基板の製造方法、透光性基板、および有機led素子
JP2017059647A (ja) 光電変換素子および太陽電池
KR102054528B1 (ko) 투명 도전성막 및 이를 포함하는 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842644

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016548841

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15842644

Country of ref document: EP

Kind code of ref document: A1