WO2016042913A1 - 抗菌・抗ウイルス性組成物、抗菌・抗ウイルス剤、光触媒および菌・ウイルス不活化方法 - Google Patents

抗菌・抗ウイルス性組成物、抗菌・抗ウイルス剤、光触媒および菌・ウイルス不活化方法 Download PDF

Info

Publication number
WO2016042913A1
WO2016042913A1 PCT/JP2015/070726 JP2015070726W WO2016042913A1 WO 2016042913 A1 WO2016042913 A1 WO 2016042913A1 JP 2015070726 W JP2015070726 W JP 2015070726W WO 2016042913 A1 WO2016042913 A1 WO 2016042913A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibacterial
copper
antiviral
antiviral composition
compound
Prior art date
Application number
PCT/JP2015/070726
Other languages
English (en)
French (fr)
Inventor
康弘 細木
靖 黒田
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to KR1020167036166A priority Critical patent/KR20170010408A/ko
Priority to JP2016548614A priority patent/JPWO2016042913A1/ja
Priority to CN201580033682.9A priority patent/CN106470550A/zh
Publication of WO2016042913A1 publication Critical patent/WO2016042913A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/02Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using physical phenomena
    • A61L2/08Radiation
    • A61L2/088Radiation using a photocatalyst or photosensitiser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2/00Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor
    • A61L2/16Methods or apparatus for disinfecting or sterilising materials or objects other than foodstuffs or contact lenses; Accessories therefor using chemical substances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/08Halides
    • B01J27/122Halides of copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties

Definitions

  • the present invention relates to an antibacterial / antiviral composition, an antibacterial / antiviral agent, a photocatalyst, and a bacteria / virus inactivation method. More specifically, an antibacterial / antiviral composition having a high photoresponsive activity against bacteria and viruses under visible light irradiation at a wavelength of 400 nm or more, and having an inactivating action against bacteria and viruses in the dark, The present invention relates to an antibacterial / antiviral agent, a photocatalyst, and a bacteria / virus inactivation method.
  • the photocatalyst is considered to have antibacterial / antiviral activity against many bacteria and viruses, and the photocatalyst can be regarded as one of promising material groups.
  • Patent Document 1 describes that CuO / TiO 2 (anatase-type titanium oxide) inactivates phage viruses under ultraviolet light irradiation.
  • Patent Document 2 describes that platinum-supported tungsten oxide particles exhibit antiviral activity under visible light irradiation.
  • these photocatalysts having antibacterial and antiviral activities have a problem that they are not active unless irradiated with ultraviolet light, or are not activated under irradiation with visible light unless tungsten, which is a rare metal, is used.
  • Patent Documents 3 and 4 some antibacterial agents combining Ag and various metal oxides have been reported (for example, Patent Documents 3 and 4).
  • Patent Documents 3 and 4 some antibacterial agents combining Ag and various metal oxides have been reported (for example, Patent Documents 3 and 4).
  • Patent Documents 3 and 4 since these compounds do not have a photocatalytic function that appears under irradiation with visible light, they cannot be used indoors. There is a problem that it cannot be expected to maintain antibacterial and antiviral functions over a long period of time by remaining. Further, it has been found that titanium oxide in which both CuO and Ag 2 O coexist exhibits antibacterial performance in the dark and under ultraviolet irradiation (for example, Patent Document 5).
  • Patent Document 1 a sample of CuO / TiO 2 is obtained under ultraviolet irradiation (Examples 1 to 4, Comparative Examples 3 to 4), under visible light irradiation (Comparative Example 2), and in the dark (Comparative Example 1). -No virus inactivation effect was shown. By the way, the light of the white LED fluorescent lamp which has spread rapidly in recent years does not include ultraviolet light.
  • the phage / virus inactivating agent described in Patent Document 1 has no antiviral activity in the dark and under visible light irradiation, and is therefore expected to have no antiviral activity even under a white LED fluorescent lamp.
  • Patent Documents 3 to 5 specify the antibacterial performance under ultraviolet light irradiation or in a dark place. However, since there is no description regarding anti-virus and no substance responding to visible light is contained, Patent Documents 3 to It is expected that the photocatalyst described in 5 exhibits almost no antibacterial / antiviral activity under a white LED fluorescent lamp.
  • Non-Patent Document 1 describes that AgCl exhibits activity under visible light irradiation in an oxygen generation reaction from an aqueous solution containing a sacrificial agent. However, there is no correlation between water oxidative degradation activity and excellent antibacterial / antiviral activity.
  • Non-Patent Document 2 describes that an insoluble Ag compound has a narrow antibacterial and antiviral spectrum and hardly causes inactivation of phage viruses without an envelope. For this reason, those skilled in the art have not even thought of a photocatalyst that responds to visible light and exhibits antibacterial and antiviral activity, which consists of titanium oxide co-supported with a silver compound and a copper compound.
  • An object of the present invention is to provide an antibacterial / antiviral composition having high antibacterial / antiviral activity under visible light irradiation under such circumstances, an antibacterial / antiviral agent, and a method for inactivating bacteria / viruses.
  • the present inventors have achieved antibacterial and antiviral properties under visible light irradiation by supporting both silver compounds and copper compounds on titanium oxide particles. I found out that I have both. The present invention has been completed based on such findings.
  • a photocatalyst refers to a substance that has a semiconductor property, generates holes and electrons by absorbing light, and exhibits a catalytic action by participating in a chemical reaction.
  • the co-catalyst is a substance that captures holes or electrons generated by the photocatalyst, increases the adsorption amount of the reaction substrate, or lowers the activation energy of the chemical reaction that occurs on the photocatalyst surface.
  • the carrier refers to a substance that plays a role of expressing or increasing the function of the substance by controlling the size and shape of the photocatalyst or the promoter.
  • the divalent component of the copper compound functions as a promoter
  • the silver compound functions as a photocatalyst
  • the titanium oxide functions as a carrier and / or photocatalyst.
  • the virus means a DNA virus and an RNA virus, but also includes a bacteriophage (hereinafter also abbreviated as “phage”) which is a virus that infects bacteria.
  • the present invention is as follows.
  • the divalent copper compound is (a) the following general formula (1): Cu 2 (OH) 3 X (1) (In the formula, X represents an anion) (B) Divalent copper halide, (c) Divalent copper inorganic acid salt, (d) Divalent copper organic acid salt, (e) Cupric oxide (F) Copper sulfide, (g) Copper azide, (h) One or more selected from the group consisting of copper silicates, according to any one of [1] to [7] above Antibacterial and antiviral composition.
  • An antibacterial / antiviral agent comprising the antibacterial / antiviral composition according to any one of [1] to [11] above.
  • a photocatalyst comprising the antibacterial / antiviral composition according to any one of [1] to [11].
  • a fungus / virus inactivation method that inactivates viruses.
  • an antibacterial / antiviral composition an antibacterial / antiviral agent, an antibacterial / antiviral agent, a photocatalyst, and a fungus / virus inactivation method that are excellent in antibacterial / antiviral activity under visible light irradiation.
  • 2 is a reflection electron image photograph of a titanium oxide co-supported with a copper compound and a silver compound of Example 1 using a scanning electron microscope.
  • 2 is a secondary electron image photograph of the silver compound of Comparative Example 1 by a scanning electron microscope.
  • the antibacterial / antiviral composition of the present invention is a composition containing titanium oxide in which a copper compound and a silver compound are co-supported. By combining a silver compound, a copper compound and titanium oxide, the antibacterial / antiviral composition exhibits excellent antibacterial / antiviral properties in bright and dark places.
  • the silver compound used in the antibacterial / antiviral composition of the present invention is not particularly limited, but preferred silver compounds include, for example, silver oxide, silver nitride, silver sulfide, silver phosphate, silver halide, silver Examples of the silver compound include silver oxide, silver sulfide, silver phosphorus oxide, and silver halide.
  • Preferred silver oxides include, for example, AgNbO 3 , Ag 0.5 Pr 0.5 TiO 3 , AgLi 1/3 Ti 2/3 O 2 and AgGaO 2 .
  • Preferred silver sulfides include, for example, AgGaS 2 and AgInS 2 —ZnS solid solution. Examples of preferable silver phosphorus oxide include Ag 3 PO 4 .
  • Preferred silver halides include, for example, AgCl, AgBr, AgI and the like. These can be used individually by 1 type or in mixture of 2 or more types. Among these, a silver halide is more preferable because of its white color. Of the silver halides described above, a more preferred silver compound is AgCl because of its simplicity of production and high versatility of chemicals.
  • the amount of the silver compound supported is not particularly limited, but is preferably 0.01 to 20 parts by mass, more preferably 0.05 to 10 parts by mass with respect to 100 parts by mass of titanium oxide. More preferably, it is ⁇ 7 parts by mass.
  • the photocatalytic component increases, so the number of electrons and holes generated by visible light absorption increases, and the antibacterial and antiviral performance is further enhanced. Can do.
  • the supported amount of the silver compound is 20 parts by mass or less, precipitation of the silver compound at a place other than on the titanium oxide is suppressed, the particle size of the silver compound is not increased, and the photosensitive characteristics of the silver compound itself. The color change due to can be reduced.
  • the average particle size of the silver compound is not particularly limited, but the average particle size observed from a scanning electron microscope (SEM) is preferably 1 ⁇ m or less, more preferably 500 nm or less, and 300 nm or less. Is more preferable.
  • the average particle size of the silver compound is 1 ⁇ m or less, the contact probability of the silver compound with bacteria and viruses increases, and high antibacterial / antiviral performance is exhibited.
  • the average particle diameter observed from a scanning electron microscope (SEM) is 1 nm or more. Details of the average particle diameter observed from a scanning electron microscope (SEM) will be described in Examples described later.
  • the copper element mass (mass converted to Cu) in the divalent copper compound used in the antibacterial / antiviral composition of the present invention is preferably 0.01 with respect to 100 parts by mass of the total of the silver compound and titanium oxide. -20 parts by mass, more preferably 0.1-20 parts by mass, still more preferably 0.1-10 parts by mass, and particularly preferably 0.3-5 parts by mass.
  • the copper element mass in the valent copper compound is 0.01 parts by mass or more with respect to 100 parts by mass of the total of the silver compound and titanium oxide, the antiviral properties under visible light irradiation are improved.
  • the surface of a silver compound and a titanium oxide will be coat
  • covered with a bivalent copper compound as the copper element mass in a copper compound is 20 mass parts or less with respect to 100 mass parts of the total of silver chloride and a titanium oxide.
  • the photocatalytic activity of the antiviral composition can be increased.
  • the mass of the copper element in the divalent copper compound relative to 100 parts by mass of the total of the silver compound and titanium oxide can be calculated from the respective amounts of the raw material for the copper compound, the silver compound and the titanium oxide.
  • the divalent copper compound is not particularly limited as long as the copper compound has a copper valence of 2.
  • the divalent copper compound is (a) the following general formula (1): Cu 2 (OH) 3 X (1) (In the formula, X represents an anion)
  • B Divalent copper halide
  • c Divalent copper inorganic acid salt
  • d Divalent copper organic acid salt
  • e Cupric oxide
  • F copper sulfide
  • g copper (II) azide
  • one or more selected from the group consisting of copper silicate one or more selected from the group consisting of copper silicate.
  • Preferred X in the general formula (1) is a halogen such as Cl, Br and I, a conjugate base of a carboxylic acid such as CH 3 COO, a conjugate base of an inorganic acid such as NO 3 and (SO 4 ) 1/2 and OH.
  • a halogen such as Cl, Br and I
  • a conjugate base of a carboxylic acid such as CH 3 COO
  • a conjugate base of an inorganic acid such as NO 3 and (SO 4 ) 1/2 and OH.
  • More preferable X in the general formula (1) is one selected from the group consisting of Cl, CH 3 COO, NO 3 , (SO 4 ) 1/2 and OH.
  • more preferable X in the general formula (1) is halogen.
  • more preferable X is Cl.
  • the divalent copper halide is one or more selected from the group consisting of copper chloride, copper fluoride and copper bromide. Further preferred (b) divalent copper halide is copper chloride.
  • Preferred inorganic salt of (c) divalent copper is copper sulfate, copper nitrate, copper iodate, copper perchlorate, copper oxalate, copper tetraborate, ammonium sulfate copper, amide copper sulfate, ammonium chloride copper, pyrophosphate One or more selected from the group consisting of copper and copper carbonate. Further preferred (c) divalent copper inorganic acid salt is copper sulfate.
  • divalent copper organic acid salt is divalent copper carboxylate.
  • Preferred divalent copper carboxylates include copper formate, copper acetate, copper propionate, copper butyrate, copper valerate, copper caproate, copper enanthate, copper caprylate, copper pelargonate, copper caprate, misty acid Copper, copper palmitate, copper margarate, copper stearate, copper oleate, copper lactate, copper malate, copper citrate, copper benzoate, copper phthalate, copper isophthalate, copper terephthalate, copper salicylate, melittic acid Copper, copper oxalate, copper malonate, copper succinate, copper glutarate, copper adipate, copper fumarate, copper glycolate, copper glycerate, copper gluconate, copper tartrate, copper acetylacetone, copper ethylacetoacetate, isoyoshichi Copper herbate, copper ⁇ -resorcylate, copper diacetoacetate, copper
  • divalent copper compounds are selected from the group consisting of oxine copper, acetylacetone copper, ethyl acetoacetate copper, trifluoromethane sulfonate copper, phthalocyanine copper, copper ethoxide, copper isopropoxide, copper methoxide and dimethyldithiocarbamate copper. 1 type or 2 types or more are mentioned.
  • the divalent copper compound of the present invention is preferably (a) a hydroxyl group-containing divalent copper compound represented by the general formula (1), (b) a divalent copper halide, and (c) an inorganic divalent copper. Acid salt and (d) organic acid salt of divalent copper. Moreover, since there are few impurities and cost does not start, the divalent copper compound of this invention is still more preferably a hydroxyl group-containing divalent copper compound represented by the above general formula (1).
  • the (a) hydroxyl group-containing divalent copper compound represented by the general formula (1) may be an anhydride or a hydrate. *
  • the molar ratio of Ag atoms in the silver compound to Cu atoms in the divalent copper compound is preferably 1: 0.0045 to 1: 451, more preferably 1: 0.045 to 1: 451. More preferably, it is 1: 0.045 to 1: 338, and particularly preferably 1: 013 to 1: 226.
  • the molar ratio of Ag atoms in the silver compound to Cu atoms in the divalent copper compound is 1: 0.0045 to 1: 451, both the silver compound and the divalent copper compound are co-supported on the titanium oxide. The synergistic effect by increases.
  • titanium oxide used in the antibacterial / antiviral composition of the present invention is not particularly limited to any crystal form of anatase type, rutile type and brookite type, any of which may be used. It may be mixed in proportion.
  • the average particle diameter of titanium oxide is not particularly limited, but the average particle diameter determined from the BET specific surface area by the following formula (2) is preferably 1 ⁇ m or less, more preferably 500 nm or less, and 300 nm or less. It is more preferable that When the average particle diameter of titanium oxide is 1 ⁇ m or less, silver compounds and / or divalent copper compounds can be supported on titanium oxide in a highly dispersed manner, and the contact probability with bacteria and viruses increases, and high antibacterial / Antiviral performance can be expected.
  • D (average particle diameter) 6000 / S (BET specific surface area) ⁇ ⁇ (density) (2)
  • the crystal form and average particle diameter of titanium oxide can be adjusted by the production method and the starting material, and titanium oxide may be produced by any method.
  • the titanium oxide is preferably fine particle titanium oxide produced by liquid phase hydrolysis or gas phase oxidative decomposition of TiCl 4 .
  • TiCl 4 as a starting material, a small amount of Cl ions remain on the surface, so that a silver compound precipitation reaction on the titanium oxide surface, particularly a precipitation reaction from Ag ions to AgCl, is likely to occur.
  • the compound is easily supported on titanium oxide.
  • titanium oxide is co-supported with a divalent copper compound and a silver compound, and the support shape and laminated structure are not particularly limited. That is, the order in which the divalent copper compound and the silver compound are supported on the titanium oxide is not particularly limited. For example, after a silver compound is supported on titanium oxide, a divalent copper compound may be supported on titanium oxide supporting a silver compound. Further, after the divalent copper compound is supported on titanium oxide, the silver compound may be supported on titanium oxide supporting the divalent copper compound. Furthermore, you may make a titanium oxide carry
  • Examples of a method for supporting a divalent copper compound on titanium oxide and / or silver compound-supported titanium oxide include titanium oxide and / or silver compound-supported titanium oxide powder and a copper divalent salt (copper chloride, copper acetate, copper sulfate, Copper nitrate, etc.), preferably copper (II) chloride added to a polar solvent and mixed, and a basic substance (sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, calcium hydroxide aqueous solution, lime water, sodium carbonate aqueous solution, ammonia aqueous solution)
  • a triethylamine aqueous solution, a pyridine aqueous solution, an ethylenediamine aqueous solution, a sodium hydrogen carbonate aqueous solution, etc. may be further added to precipitate the divalent copper compound on titanium oxide and / or on the divalent copper compound-supported titanium oxide.
  • titanium oxide powder is dispersed in a solution containing Ag ions and Cu ions, and chloride ions and basic substances are simultaneously / or sequentially added.
  • a method of adding and simultaneously depositing a silver compound and a copper compound can be used.
  • the antibacterial / antiviral agent and photocatalyst of the present invention include the antibacterial / antiviral composition of the present invention. As a result, the antibacterial / antiviral agent and photocatalyst of the present invention have excellent antibacterial / antiviral properties in bright and dark places.
  • antibacterial / antiviral composition of the present invention ⁇ Use form of antibacterial / antiviral composition, antibacterial / antiviral agent and photocatalyst>
  • the usage forms of the antibacterial / antiviral composition, antibacterial / antiviral agent and photocatalyst of the present invention are not particularly limited.
  • the antibacterial / antiviral composition of the present invention may be used in a solid form such as a fine powder and a granule. In this case, for example, the antibacterial / antiviral composition of the present invention is used in a predetermined container.
  • the antibacterial / antiviral composition of the present invention may be used in a form of use in which the antibacterial / antiviral composition of the present invention is contained on the surface and / or inside of a predetermined substrate.
  • the latter form of use is preferred.
  • the base material include a single base material composed of general members such as fibers, metals, ceramics, and glass, and a composite base material composed of two or more kinds of members described above.
  • the substrate is not limited to these.
  • the antibacterial and antiviral composition of the present invention may be contained in a coating agent such as floor polish that can be peeled off by appropriate means. Further, the antibacterial / antiviral composition of the present invention may be immobilized on a predetermined film, and the antibacterial / antiviral composition of the present invention may be exposed on the surface of the continuous film. In addition, the antibacterial / antiviral composition of the present invention may be used in the form of a paint prepared using a solvent in which the antibacterial / antiviral composition of the present invention is dispersed.
  • the material obtained by immobilizing the antibacterial / antiviral composition of the present invention on the substrate surface is based on the antibacterial / antiviral composition of the present invention using a general immobilization means such as a binder.
  • a general immobilization means such as a binder.
  • examples thereof include a material fixed on the surface of the material.
  • Either an organic binder or an inorganic binder can be used as a binder for immobilizing the antibacterial / antiviral composition of the present invention, but an inorganic binder should be used to avoid decomposition of the binder by a photocatalytic substance. Is preferred.
  • the kind of binder is not specifically limited.
  • the inorganic binder include silica-based inorganic binders that are usually used for fixing the photocatalytic substance to the substrate surface.
  • the organic binder include a polymer binder that can form a thin film by polymerization and solvent volatilization.
  • the antibacterial / antiviral composition of the present invention is dispersed in a resin to prepare a dispersion, and the dispersion The material obtained by hardening
  • the resin for dispersing the antibacterial / antiviral composition of the present invention any of natural resins and synthetic resins can be used. Synthetic resins include, for example, acrylic resins, phenol resins, polyurethane resins, acrylonitrile / styrene copolymer resins, acrylonitrile / butadiene / styrene copolymer (ABS) resins, polyester resins, and epoxy resins. It is not limited.
  • the antibacterial / antiviral composition of the present invention can be used in the presence of arbitrary light, and in the dark.
  • the antibacterial / antiviral composition of the present invention can be used in the presence of water (for example, in water and seawater), in a dry state (for example, in a low humidity state in winter, etc.), in a high humidity state, or an organic substance. Even in the coexistence of the above, it has excellent virus inactivating properties and can inactivate viruses continuously.
  • the antibacterial / antiviral composition of the present invention can be placed on walls, floors, ceilings, and the like.
  • any object such as hospitals and factories such as buildings, machine tools, measuring devices, interiors of electrical appliances and parts (for example, interiors of refrigerators, washing machines, dishwashers, etc., and filters of air cleaners)
  • the antibacterial / antiviral composition of the present invention can be applied to the product.
  • Examples of the dark place include, but are not limited to, the inside of the machine, the storage room of the refrigerator, and a hospital facility (waiting room, operating room, etc.) that becomes a dark place at night or when not in use.
  • an air cleaning machine As a countermeasure against influenza, an air cleaning machine has been proposed in which a ceramic filter or a non-woven filter is coated with titanium oxide and a light source for irradiating the filter with ultraviolet light is incorporated.
  • a ceramic filter or a non-woven filter is coated with titanium oxide and a light source for irradiating the filter with ultraviolet light is incorporated.
  • an ultraviolet light source is not necessary, thereby reducing the cost of the air cleaner and increasing the safety of the air cleaner. be able to.
  • the fungus / virus inactivation method of the present invention inactivates bacteria and viruses using the antibacterial / antiviral composition of the present invention, the antibacterial / antiviral agent of the present invention or the photocatalyst of the present invention.
  • the antibacterial / antiviral composition of the present invention exhibits antibacterial / antiviral properties, bacteria and viruses can be inactivated using the antibacterial / antiviral composition of the present invention.
  • the antibacterial / antiviral agent and photocatalyst of the present invention contain the antibacterial / antiviral composition of the present invention, bacteria and viruses can be inactivated using the antibacterial / antiviral agent or photocatalyst of the present invention.
  • the X-ray diffraction patterns of the antibacterial and antiviral compositions of Examples and Comparative Examples were examined to examine the state of Ag in the antibacterial and antiviral compositions.
  • the apparatus used for the measurement was X'perPRO manufactured by Panallytical.
  • a solution in which a powder sample is dispersed in ethanol is coated on a glass plate (50 mm ⁇ 50 mm ⁇ 1 mm), dried at room temperature all day and night, and the coating amount per unit area is 1.0 g / m 2 in terms of powder. Samples for antibacterial and antiviral evaluation were prepared.
  • a filter paper was laid in the deep petri dish, and a small amount of sterilized water was added.
  • the sample for evaluation described above was placed on the filter paper.
  • 1/500 NB was used to prepare a bacteriophage infectious titer of about 6.7 ⁇ 10 6 to about 2.6 ⁇ 10 7 pfu / mL, and 100 ⁇ L of Q ⁇ phage (NBRC20012) suspension was dropped.
  • a PET (polyethylene terephthalate) film was covered to bring the sample surface into contact with the phage.
  • This deep petri dish covered with a glass plate was used as a measurement set.
  • a plurality of similar measurement sets were prepared.
  • a 15 W white fluorescent lamp manufactured by Panasonic Corporation, full white fluorescent lamp, FL15N
  • an ultraviolet cut filter Naitto Resin Kogyo Co., Ltd., N-113
  • a plurality of sets for measurement were allowed to stand at a position where the illuminance was 1000 lux (illuminance meter: measured by IM-5, manufactured by Topcon Corporation).
  • the phage concentration of the sample on the glass plate was measured after 1 hour from the start of light irradiation.
  • the illuminance of the room at the time of measurement was set to be 200 lux or less.
  • the phage concentration was measured by the following method.
  • the sample on the glass plate was infiltrated into 9.9 mL of phage recovery solution (SCDLP medium), and shaken for 10 minutes with a shaker.
  • This phage recovery solution was appropriately diluted with physiological saline containing peptone.
  • 1 mL of the previously diluted solution is added to a solution obtained by mixing 5.0 ⁇ 10 8 to 2.0 ⁇ 10 9 cells / mL of Escherichia coli (NBRC106373) culture solution and calcium-added LB soft agar medium. After mixing, this solution was spread on a calcium-added LB agar medium and cultured at 37 ° C. for 15 hours, and the number of phage plaques was visually measured.
  • the phage concentration N was determined by multiplying the number of plaques obtained by the dilution factor of the phage recovery solution.
  • the phage relative concentration (LOG (N / N 0 ) was determined from the initial phage concentration N 0 and the phage concentration N after a predetermined time. Note that the smaller the value of LOG (N / N 0 ) (the greater the negative value), the better the antiviral properties of the sample.
  • a filter paper was laid in the deep petri dish, and a small amount of sterilized water was added. The sample for evaluation described above was placed on the filter paper. On top of this, 1/500 NB was used so that the number of Escherichia coli (NBRC3972) or Staphylococcus aureus (NBRC12732) was about 6.7 ⁇ 10 5 to about 2.6 ⁇ 10 6 cells / mL. 100 ⁇ L of the liquid was dropped, and a film made of PET (polyethylene terephthalate) was covered to bring the sample surface into contact with the bacteria. This deep petri dish covered with a glass plate was used as a measurement set. A plurality of similar measurement sets were prepared.
  • a 15 W white fluorescent lamp manufactured by Panasonic Corporation, full white fluorescent lamp, FL15N
  • an ultraviolet cut filter Naitto Resin Kogyo Co., Ltd., N-113
  • a plurality of sets for measurement were allowed to stand at a position where the illuminance was 1000 lux (illuminance meter: measured by IM-5, manufactured by Topcon Corporation).
  • the phage concentration of the sample on the glass plate was measured after 1 hour from the start of light irradiation.
  • the illuminance of the room at the time of measurement was set to be 200 lux or less.
  • the bacterial concentration was measured by the following method.
  • the sample on the glass plate was infiltrated into 9.9 mL of the bacteria recovery solution (SCDLP medium) and shaken for 10 minutes with a shaker.
  • the bacteria collection solution was appropriately diluted with physiological saline.
  • a solution obtained by mixing 1 mL of the diluted solution with an agar medium was placed in a petri dish and cultured at 37 ° C. for 15 hours, and then the number of bacteria was visually measured.
  • the bacterial concentration N was determined by multiplying the number of obtained bacteria by the dilution rate of the collected liquid.
  • the relative bacterial concentration (LOG (N / N 0 )) was determined from the initial bacterial concentration N 0 and the bacterial concentration N after a predetermined time. Note that the smaller the value of LOG (N / N 0 ) (the greater the negative value), the better the antibacterial properties of the sample.
  • Example 1 A solution in which 5 g of anatase-type titanium oxide (manufactured by Showa Denko Ceramics Co., Ltd.) is suspended in 200 mL of distilled water to prepare a suspension, and 0.296 g of AgNO 3 (manufactured by Kanto Chemical Co., Ltd.) is dissolved. A solution in which 0.204 g of NaCl (manufactured by Kanto Chemical Co., Ltd.) was dissolved and 50 mL of each were prepared, and an AgNO 3 solution and a NaCl solution were put into the suspension in this order. Then, it stirred for 10 minutes at room temperature. The obtained suspension was filtered and dried to obtain an AgCl-supported anatase-type titanium oxide powder (5 parts by mass of AgCl supported with respect to 100 parts by mass of titanium oxide).
  • a suspension is prepared by suspending 3 g of AgCl / titanium oxide powder in 100 mL of distilled water, and 0.04 g (0.5 parts by mass of copper with respect to 100 parts by mass of AgCl / rutile titanium oxide powder).
  • CuCl 2 ⁇ 2H 2 O (manufactured by Kanto Chemical Co., Inc.) was added to the suspension and stirred for 10 minutes.
  • a 1 mol / L aqueous solution of sodium hydroxide (manufactured by Kanto Chemical Co., Inc.) was added so that the pH of the suspension was 10, and the mixture was stirred and mixed for 30 minutes to obtain a slurry.
  • Example 1 CuCl 2 .2H 2 O was hydrolyzed to Cu 2 (OH) 3 Cl.
  • D-51 manufactured by Horiba, Ltd. was used for the pH meter.
  • Example 2 A sample of Example 2 was produced in the same manner as in Example 1 except that the amount of AgCl supported was 1 part by mass with respect to 100 parts by mass of titanium oxide.
  • Example 3 A sample of Example 3 was produced in the same manner as in Example 1 except that the amount of AgCl supported was 0.1 parts by mass with respect to 100 parts by mass of titanium oxide.
  • Example 4 A sample of Example 4 was prepared in the same manner as in Example 1 except that the anatase type titanium oxide was changed to rutile type titanium oxide (manufactured by Showa Denko Ceramics Co., Ltd.).
  • Example 5 A sample of Example 5 was prepared in the same manner as in Example 1 except that the anatase type titanium oxide was changed to brookite type titanium oxide (manufactured by Showa Denko Ceramics Co., Ltd.).
  • Comparative Example 1 In a solution of 5.920 g of AgNO 3 (manufactured by Kanto Chemical Co., Ltd.) dissolved in 300 mL of distilled water, 50 mL of a solution of 4.080 g of NaCl (manufactured by Kanto Chemical Co., Ltd.) was added. Then, it stirred for 10 minutes at room temperature. The obtained suspension was filtered and dried to obtain a sample of Comparative Example 1 (AgCl powder).
  • Comparative Example 2 Suspension was prepared by suspending the AgCl powder of Comparative Example 1 in 100 mL of distilled water, and 0.04 g (0.5 parts by mass of copper with respect to 100 parts by mass of AgCl powder) of CuCl 2 .2H 2 O. (Kanto Chemical Co., Ltd.) was added to the suspension and stirred for 10 minutes. A 1 mol / L aqueous solution of sodium hydroxide (manufactured by Kanto Chemical Co., Inc.) was added so that the pH of the suspension was 10, and the mixture was stirred and mixed for 30 minutes to obtain a slurry.
  • sodium hydroxide manufactured by Kanto Chemical Co., Inc.
  • Comparative Example 3 The sample (AgCl / TiO 2 powder) of Comparative Example 3 was obtained by supporting only the silver compound on the anatase-type titanium oxide used in Example 1 in the same manner as in Example 1.
  • Comparative Example 4 The anatase-type titanium oxide powder used in Example 1 was suspended in 100 mL of distilled water to prepare a suspension, and 0.04 g (0.5 parts by mass of copper with respect to 100 parts by mass of the titanium oxide powder). CuCl 2 ⁇ 2H 2 O (manufactured by Kanto Chemical Co., Inc.) was added to the suspension and stirred for 10 minutes. A 1 mol / L aqueous solution of sodium hydroxide (manufactured by Kanto Chemical Co., Inc.) was added so that the pH of the suspension was 10, and the mixture was stirred and mixed for 30 minutes to obtain a slurry.
  • Comparative Example 5 The anatase type titanium oxide used in Example 1 was used as it was.
  • FIG. 2 A photograph of the reflected electron image of Example 1 is shown in FIG. 2, and a photograph of the secondary electron image of Comparative Example 1 is shown in FIG.
  • FIG. 1 it can be identified as a place where Ag, which is a heavy element, is present as particles that look particularly bright in the reflected electron image. From these photographs, it can be seen that in Example 1, AgCl having a size of about 50 nm is supported on titanium oxide. On the other hand, it can be seen that AgCl of Comparative Example 1 is coarse particles having a size of several hundred micrometers. From the comparison between Example 1 and Comparative Example 1, it was found that the size of AgCl can be made very small by being supported on titanium oxide.
  • Table 1 shows the average particle diameter, antibacterial and anti-phage performance data of the silver compounds obtained for the antibacterial and antiviral compositions of Examples 1 to 5 and Comparative Examples 1 to 5.
  • Example 1 The samples of Examples 1 to 5 were found to have a virus inactivation ability of 99% or more in a short time of 1 hour under irradiation of visible light with an illuminance of 1000 lux.
  • the photocatalysts of Comparative Examples 1 to 5 show almost no antiviral performance even under the same conditions. This is because Comparative Example 1 has a configuration in which any of the three components of silver compound, copper compound and titanium oxide is missing.
  • Comparative Examples 1 to 3 show activity against Escherichia coli and Staphylococcus aureus, but since this is an effect of an Ag compound, it does not function as a photocatalyst and cannot be expected to be used semipermanently. Since the samples of Comparative Examples 4 and 5 are antibacterial by Ag and do not contain a visible light absorption source, they do not show activity against both viruses and fungi.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Zoology (AREA)
  • Dentistry (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Catalysts (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本発明は、可視光照射下での抗菌・抗ウイルス活性に優れる抗菌・抗ウイルス性組成物、抗菌・抗ウイルス剤、光触媒および菌・ウイルス不活化方法を提供する。本発明の抗菌・抗ウイルス組成物は2価銅化合物および銀化合物が共担持された酸化チタンを含む。本発明の抗菌・抗ウイルス剤および本発明の光触媒は本発明の抗菌・抗ウイルス組成物を含有する。本発明の菌・ウイルス不活化方法は、本発明の抗菌・抗ウイルス組成物、本発明の抗菌・抗ウイルス剤または本発明の光触媒を用いて菌およびウイルスを不活化する。

Description

抗菌・抗ウイルス性組成物、抗菌・抗ウイルス剤、光触媒および菌・ウイルス不活化方法
 本発明は、抗菌・抗ウイルス性組成物、抗菌・抗ウイルス剤、光触媒および菌・ウイルス不活化方法に関する。さらに詳しくいえば、400nm以上の波長の可視光照射下における菌およびウイルスに対する光応答活性が高く、かつ、暗所下での菌およびウイルスに対する不活化作用を併せ持つ、抗菌・抗ウイルス性組成物、抗菌・抗ウイルス剤、光触媒および菌・ウイルス不活化方法に関する。
 抗菌・抗ウイルスの観点から抗菌金属、有機系化合物、天然化合物および光触媒等の研究が盛んに行われている。その中でも、光触媒は、多くの菌やウイルスに対して抗菌・抗ウイルス活性を有するとされ、光触媒は有望な材料群のひとつとみなすことができる。
 特許文献1には、紫外光照射下でCuO/TiO(アナターゼ型酸化チタン)はファージ・ウイルスを不活化することが記載されている。特許文献2には、白金担持酸化タングステン粒子は可視光照射下で抗ウイルス活性を発現することが記載されている。しかし、これらの抗菌・抗ウイルス活性を有する光触媒は、紫外光照射下でなければ活性しないか、または、レアメタルであるタングステンを使用しなければ可視光照射下で活性しないという問題がある。 
 一方で、Cu、Ag、Zn等の金属、金属イオン、またはそれらを含む化合物が、抗菌材として機能することが古くから知られている。その中でも、Agと各種金属酸化物とを組み合わせた抗菌剤がいくつか報告されている(例えば、特許文献3、4)。しかし、これらの化合物は、可視光照射下で発現する光触媒機能を有していないため、室内での利用ができず、暗所下で不活化させた菌やウイルスの残骸等がこれらの化合物に残留することによって、長期にわたって抗菌・抗ウイルス機能を維持することを期待できないという問題がある。
 また、CuOとAgOとの両方を共存させた酸化チタンが暗所および紫外線照射下で抗菌性能を示すことが見いだされている(例えば、特許文献5)。しかし、この光触媒系は可視光照射下で活性化しないため、この光触媒系を活性化させるために紫外線を発する光源が不可欠である。Ag化合物の一つであるAgClは、紫外域から可視光領域までの光に応答し、光反応を起こすことが知られている(例えば、非特許文献1)。しかし、AgCl粒子自体は抗ウイルス性能を示さず、また、AgCl粒子は粗大粒子になりやすく、AgCl粒子のハンドリングが悪いという問題がある(例えば、非特許文献2)。
特開2006-232729号公報 特開2011-136984号公報 特開平11-228320号公報 特開平9-278615号公報 特許第4169163号 特許第4169163号 J.Photochem.Photobio.A,95 (1996) 175-180 抗菌・抗ウイルス材料の開発・評価と加工技術 技術情報協会
 特許文献1では、CuO/TiOのサンプルは、紫外線照射下(実施例1~4、比較例3~4)、可視光照射下(比較例2)および暗所(比較例1)で、ファージ・ウイルスの不活化効果は全く示さなかった。ところで、近年急速に普及している白色LED蛍光灯の光は紫外光を含まない。特許文献1に記載のファージ・ウイルスの不活化剤は、暗所下および可視光照射下で、抗ウイルス活性が全くないことから、白色LED蛍光灯下でも抗ウイルス活性が全くないことが予想される。
 特許文献3~5には、紫外光照射下または暗所下での抗菌性能が明記されているが、抗ウイルスに関する記載がなく、可視光に応答する物質を含んでいないため、特許文献3~5に記載の光触媒は、白色LED蛍光灯下で抗菌・抗ウイルス活性をほとんど発現しないことが予想される。
 非特許文献1には、AgClが犠牲剤を含む水溶液からの酸素生成反応に可視光照射下で活性を示すことが記載されている。しかし、水の酸化分解反応活性と抗菌・抗ウイルス活性が優れていることとの間には相関性がない。非特許文献2には、不溶性のAg化合物は、抗菌・抗ウイルススペクトルが狭く、エンベローブのないファージ・ウイルスの不活化がほとんど起こらないと記載されている。このため、銀化合物および銅化合物が共担持された酸化チタンからなる、可視光に応答し、抗菌・抗ウイルス活性を示す光触媒を当業者は考えることさえしなかった。
 本発明は、このような状況下において可視光照射下での抗菌・抗ウイルス活性が高い抗菌・抗ウイルス性組成物、抗菌・抗ウイルス剤、および菌・ウイルス不活化方法を提供することを目的とする。
 本発明者らは、上記目的を達成するために、鋭意研究を重ねた結果、酸化チタン粒子に銀化合物および銅化合物の両方を担持することによって、可視光照射下での抗菌・抗ウイルス特性を併せ持つことを見出した。
 本発明は、かかる知見に基づいて完成したものである。
 なお、本明細書では、光触媒とは、半導体の性質を有し、光を吸収することによって正孔と電子とを生成し、それらが化学反応に関与することにより触媒作用を示す物質をいう。また、本明細書では、助触媒とは、光触媒により生成する正孔または電子を捕捉する、反応基質の吸着量を増加させる、または光触媒表面で起こる化学反応の活性化エネルギーを下げる役割をする物質をいう。また、本明細書では、担体とは、上記光触媒、または、上記助触媒のサイズ、形状を制御することによって、それらの物質の機能を発現させる、または、増長させる役割をする物質をいう。銅化合物の2価成分は助触媒として、銀化合物は光触媒として、酸化チタンは担体および/または光触媒としての機能を持つ。
 また、ウイルスとは、DNAウイルスおよびRNAウイルスを意昧するが、細菌に感染するウイルスであるバクテリオファージ(以下、「ファージ」と略記することもある)も包含する。
  すなわち、本発明は以下のとおりである。
[1]2価銅化合物および銀化合物が共担持された酸化チタンを含む抗菌・抗ウイルス組成物。
[2]銀化合物が銀ハロゲン化物である、上記[1]に記載の抗菌・抗ウイルス組成物。
[3]銀ハロゲン化物がAgClである、上記[2]に記載の抗菌・抗ウイルス組成物。
[4]銀化合物の担持量が、酸化チタンの100質量部に対して0.01~20質量部である、上記[1]~[3]のいずれかに記載の抗菌・抗ウイルス組成物。
[5]走査型電子顕微鏡から観測される銀化合物の平均粒子径が1nm~1μmである、上記[1]~[4]のいずれかに記載の抗菌・抗ウイルス組成物。
[6]2価銅化合物の銅元素質量が、酸化チタンおよび銀化合物の合計の100質量部に対して0.01~20質量部である、上記[1]~[5]のいずれかに記載の抗菌・抗ウイルス組成物。
[7]銀化合物中のAg原子と2価銅化合物中のCu原子とのモル比は1:0.0045~1:451である、上記[1]~[6]のいずれかに記載の抗菌・抗ウイルス組成物。
[8]2価銅化合物は、(a)下記一般式(1):
   Cu(OH)X (1)
(式中、Xは陰イオンを示す)
で表される水酸基含有2価銅化合物、(b)2価銅のハロゲン化物、(c)2価銅の無機酸塩、(d)2価銅の有機酸塩、(e)酸化第二銅、(f)硫化銅、(g)アジ化銅、(h)ケイ酸銅からなる群から選択される1種または2種以上である、上記[1]~[7]のいずれかに記載の抗菌・抗ウイルス性組成物。
[9]一般式(1)のXが、ハロゲン、カルボン酸の共役塩基、無機酸の共役塩基およびOHからなる群から選択される1種または2種以上である上記[8]に記載の抗菌・抗ウイルス組成物。
[10]Xは、Cl、CHCOO、NOおよび(SO1/2からなる群から選択される1種または2種以上である、上記[8]または[9]に記載の抗菌・抗ウイルス組成物。
[11]1000ルクスの照度の可視光照射1時間で99%以上の菌・ウイルス不活化能力を有する上記[1]~[10]のいずれかに記載の抗菌・抗ウイルス組成物。
[12]上記[1]~[11]のいずれかに記載の抗菌・抗ウイルス組成物を含有する抗菌・抗ウイルス剤。
[13]上記[1]~[11]のいずれかに記載の抗菌・抗ウイルス組成物を含有する光触媒。
[14]上記[1]~[11]のいずれかに記載の抗菌・抗ウイルス組成物、上記[12]に記載の抗菌・抗ウイルス剤または上記[13]に記載の光触媒を用いて菌およびウイルスを不活化する、菌・ウイルス不活化方法。
 本発明によれば、可視光照射下での抗菌・抗ウイルス活性に優れる抗菌・抗ウイルス性組成物、抗菌・抗ウイルス剤、光触媒および菌・ウイルス不活化方法を提供することができる。
実施例1の銅化合物および銀化合物が共担持された酸化チタンのX線回折パターンを示す図である。 実施例1の銅化合物および銀化合物が共担持された酸化チタンの走査型電子顕微鏡による反射電子像写真である。 比較例1の銀化合物の走査型電子顕微鏡による二次電子像写真である。
 以下、本発明の抗菌・抗ウイルス性組成物、本発明の抗菌・抗ウイルス剤、本発明の光触媒および菌・ウイルス不活化方法について説明する。
 本発明の抗菌・抗ウイルス性組成物は、銅化合物および銀化合物が共担持された酸化チタンを含む組成物である。銀化合物、銅化合物および酸化チタンを組み合わせることにより、抗菌・抗ウイルス組成物は、明所および暗所において優れた抗菌・抗ウイルス性を発現する。
 銀化合物、銅化合物および酸化チタンをそれぞれ単独で使用しても、それぞれの物質は可視光照射下において菌およびウイルスに対して活性を示さない。さらに、酸化チタンに担持していない状態で2価銅化合物および銀化合物の混合物を使用しても、菌およびウイルスに対しても活性を示さない。しかし、驚くべきことに、2価銅化合物および銀化合物を酸化チタンに担持させることにより、可視光照射下における抗菌・抗ウイルス活性が発現する。
<銀化合物>
 本発明の抗菌・抗ウイルス組成物に使用する銀化合物は特に限定されないが、好ましい銀化合物には、例えば、銀酸化物、銀窒化物、銀硫化物、銀リン酸化物、銀ハロゲン化物、銀炭化物および銀合金等があげられ、より好ましい銀化合物には、銀酸化物、銀硫化物、銀リン酸化物および銀ハロゲン化物が挙げられる。好ましい銀酸化物には、例えば、AgNbO、Ag0.5Pr0.5TiO、AgLi1/3Ti2/3およびAgGaO等が挙げられる。好ましい銀硫化物には、例えば、AgGaSおよびAgInS-ZnS固溶体等が挙げられる。好ましい銀リン酸化物には、例えば、AgPO等が挙げられる。好ましい銀ハロゲン化物には、例えば、AgCl、AgBrおよびAgI等が挙げられる。これらは、1種単独で、または2種以上を混合して使用することができる。それ自体の色が白色であるため、これらの中でさらに好ましい銀化合物は銀ハロゲン化物である。製法簡便性、薬品の高い汎用性から、上述の銀ハロゲン化物の中で、さらに好ましい銀化合物はAgClである。
 銀化合物の担持量は特に制限はないが、酸化チタンの100質量部に対して、0.01~20質量部であることが好ましく、0.05~10質量部であることがより好ましく、1~7質量部であることがさらに好ましい。銀化合物の担持量が0.01質量部以上あることで、光触媒成分が増加するために、可視光吸収で生成する電子および正孔の数が多くなり、抗菌・抗ウイルス性能をより高くすることができる。一方、銀化合物の担持量が20質量部以下であると、銀化合物が酸化チタン上以外の場所での析出が抑制されて、銀化合物の粒径が大きくならず、銀化合物自体の光感光特性による色変化を少なくすることができる。
 銀化合物の平均粒子径は特に制限はないが、走査型電子顕微鏡(SEM)から観察される平均粒子径は1μm以下であることが好ましく、500nm以下であることがより好ましく、300nm以下であることがさらに好ましい。銀化合物の平均粒子径が1μm以下であることで、銀化合物の菌およびウイルスとの接触確率が高くなり、高い抗菌・抗ウイルス性能が発現する。また、走査型電子顕微鏡(SEM)から観察される平均粒子径は1nm以上であることが好ましい。走査型電子顕微鏡(SEM)から観察される平均粒子径の詳細は、後述の実施例で説明する。
<2価銅化合物>
 本発明の抗菌・抗ウイルス組成物に使用する2価銅化合物中の銅元素質量(Cuに換算した質量)は、銀化合物および酸化チタンの合計の100質量部に対して、好ましくは0.01~20質量部であり、より好ましくは0.1~20質量部であり、さらに好ましくは0.1~10質量部であり、特に好ましくは0.3~5質量部である。価銅化合物中の銅元素質量が、銀化合物および酸化チタンの合計の100質量部に対して0.01質量部以上であると、可視光照射下における抗ウイルス特性が良好になる。また、銅化合物中の銅元素質量が、塩化銀および酸化チタンの合計の100質量部に対して20質量部以下であると、銀化合物および酸化チタンの表面が2価銅化合物による被覆されてしまうことが防止され、抗ウイルス組成物の光触媒活性を高くできる。
 ここで、銀化合物および酸化チタンの合計の100質量部に対する2価銅化合物中の銅元素質量は、銅化合物の原料、銀化合物および酸化チタンのそれぞれの仕込み量から算出することができる。
 2価銅化合物は、銅の価数が2である銅化合物であれば特に限定されない。例えば、2価銅化合物は、(a)下記一般式(1):
    Cu(OH)X     (1)
(式中、Xは陰イオンを示す)
で表される水酸基含有2価銅化合物、(b)2価銅のハロゲン化物、(c)2価銅の無機酸塩、(d)2価銅の有機酸塩、(e)酸化第二銅、(f)硫化銅、(g)アジ化銅(II)および(h)ケイ酸銅からなる群から選択される1種または2種以上である。
 一般式(1)の好ましいXは、Cl、BrおよびI等のハロゲン、CHCOO等のカルボン酸の共役塩基、NOおよび(SO1/2等の無機酸の共役塩基ならびにOHからなる群から選択されるいずれかである。一般式(1)のより好ましいXは、Cl、CHCOO、NO、(SO1/2およびOHからなる群から選択される1種である。また、別の観点から一般式(1)のより好ましいXはハロゲンである。これらの一般式(1)のより好ましいXの中で、さらに好ましいXはClである。
 より好ましい(b)2価銅のハロゲン化物は、塩化銅、フッ化銅および臭化銅からなる群から選択される1種または2種以上である。さらに好ましい(b)2価銅のハロゲン化物は塩化銅である。
 好ましい(c)2価銅の無機酸塩は、硫酸銅、硝酸銅、ヨウ素酸銅、過塩素酸銅、シュウ酸銅、四ホウ酸銅、硫酸アンモニウム銅、アミド硫酸銅、塩化アンモニウム銅、ピロリン酸銅および炭酸銅からなる群から選択される1種または2種以上である。さらに好ましい(c)2価銅の無機酸塩は硫酸銅である。
 より好ましい(d)2価銅の有機酸塩は、2価銅のカルボン酸塩である。好ましい2価銅のカルボン酸塩には、蟻酸銅、酢酸銅、プロピオン酸銅、酪酸銅、吉草酸銅、カプロン酸銅、エナント酸銅、カプリル酸銅、ペラルゴン酸銅、カプリン酸銅、ミスチン酸銅、パルミチン酸銅、マルガリン酸銅、ステアリン酸銅、オレイン酸銅、乳酸銅、リンゴ酸銅、クエン酸銅、安息香酸銅、フタル酸銅、イソフタル酸銅、テレフタル酸銅、サリチル酸銅、メリト酸銅、シュウ酸銅、マロン酸銅、コハク酸銅、グルタル酸銅、アジピン酸銅、フマル酸銅、グリコール酸銅、グリセリン酸銅、グルコン酸銅、酒石酸銅、アセチルアセトン銅、エチルアセト酢酸銅、イソ吉草酸銅、β‐レゾルシル酸銅、ジアセト酢酸銅、ホルミルコハク酸銅、サリチルアミン酸銅、ビス(2-エチルヘキサン酸)銅、セバシン酸銅およびナフテン酸銅からなる群から選択される1種または2種以上のものが挙げられる。さらに好ましい2価銅のカルボン酸塩は酢酸銅である。
 その他の好ましい2価銅化合物には、オキシン銅、アセチルアセトン銅、エチルアセト酢酸銅、トリフルオロメタンスルホン酸銅、フタロシアニン銅、銅エトキシド、銅イソプロポキシド、銅メトキシドおよびジメチルジチオカルバミン酸銅からなる群から選択される1種または2種以上が挙げられる。
 本発明の2価銅化合物は、好ましくは、上記(a)一般式(1)で表される水酸基含有2価銅化合物、(b)2価銅のハロゲン化物、(c)2価銅の無機酸塩および(d)2価銅の有機酸塩である。また、不純物が少ないことおよびコストがかからないことから、本発明の2価銅化合物は、さらに好ましくは、上記一般式(1)で表される水酸基含有2価銅化合物である。なお、上記(a)一般式(1)で表される水酸基含有2価銅化合物は、無水物であっても水和物であってもよい。 
 銀化合物中のAg原子と2価銅化合物中のCu原子とのモル比は、好ましくは1:0.0045~1:451であり、より好ましくは1:0.045~1:451であり、さらに好ましくは1:0.045~1:338であり、とくに好ましくは1:013~1:226である。銀化合物中のAg原子と2価銅化合物中のCu原子とのモル比が1:0.0045~1:451であると、銀化合物および2価銅化合物の両方を酸化チタンに共担持させることによる相乗効果が高くなる。
<酸化チタン>
 本発明の抗菌・抗ウイルス組成物に使用する酸化チタンは、アナターゼ型、ルチル型およびブルッカイト型のいずれの結晶形であっても特に限定されるものでなく、どれを用いてもよく、任意の割合で混ざっていてもよい。
 酸化チタンの平均粒子径は、特に制限はないが、次の式(2)によりBET比表面積から求められる平均粒子径が1μm以下であることが好ましく、500nm以下であることがより好ましく、300nm以下であることがより好ましい。酸化チタンの平均粒子径が1μm以下であることで、銀化合物および/または2価銅化合物を高分散に酸化チタンに担持することができ、菌、ウイルスとの接触確率が高くなり、高い抗菌・抗ウイルス性能が期待できる。
  D(平均粒子径)=6000/S(BET比表面積)×ρ(密度)  (2)
 酸化チタンの結晶形および平均粒子径は、その製造方法や出発原料によって、調整することができ、酸化チタンは、どのような方法で製造されてもよい。しかし、酸化チタンは、TiClの液相加水分解または気相酸化分解で製造された微粒子酸化チタンであることが好ましい。TiClを出発原料とすることで、少量のClイオンが表面に残存しているため、酸化チタン表面における銀化合物の析出反応、特にAgイオンからAgClへの析出反応が生じやすくなり、微細な銀化合物が酸化チタンに担持されやすくなる。
<2価銅化合物および銀化合物が共担持された酸化チタン>
 本発明の抗菌・抗ウイルス組成物において、酸化チタンには2価銅化合物および銀化合物が共担持されていればよく、その担持形状および積層構造は特に制限されるものではない。すなわち、2価銅化合物および銀化合物を酸化チタンに担持させる順番は、特に限定されない。例えば、銀化合物を酸化チタンに担持させた後、銀化合物を担持した酸化チタンに2価銅化合物を担持させてもよい。また、2価銅化合物を酸化チタンに担持させた後、2価銅化合物を担持した酸化チタンに銀化合物を担持させてもよい。さらに2価銅化合物および銀化合物を同時に酸化チタンに担持させてもよい。
 酸化チタンおよび/または2価銅化合物担持酸化チタンに銀化合物を担持する方法には、例えば、銀化合物がAgClの場合、酸化チタンおよび/または2価銅化合物担持酸化チタン粉末にAgCl粉末を混合する混練法、AgClコロイドを酸化チタンおよび/または銅化合物担持酸化チタン粉に吸着させるコロイド吸着法、液相中でAgイオン(AgNO、AgSO等)と塩化物イオン(NaCl、ZnCl、CuCl等)と反応させて、酸化チタンおよび/または銅化合物担持酸化チタン上にAgClを析出させる液相析出法のどれを用いてもよいが、製造法上簡便な液相析出法が好ましい。
 酸化チタンおよび/または銀化合物担持酸化チタンに2価銅化合物を担持させる方法としては、例えば酸化チタンおよび/または銀化合物担持酸化チタン粉末と、銅二価塩(塩化銅、酢酸銅、硫酸銅、硝酸銅等)、好ましくは塩化銅(II)とを極性溶媒に加え混合して、塩基性物質(水酸化ナトリウム水溶液、水酸化カリウム水溶液、水酸化カルシウム水溶液、石灰水、炭酸ナトリウム水溶液、アンモニア水溶液、トリエチルアミン水溶液、ピリジン水溶液、エチレンジアミン水溶液、炭酸水素ナトリウム水溶液等)をさらに添加し、2価銅化合物を酸化チタン上および/または2価銅化合物担持酸化チタン上に析出させる方法を用いることができる。
 酸化チタンに銀化合物および銅化合物を同時に担持する方法としては、例えば酸化チタン粉末を、AgイオンおよびCuイオンを含む溶液に酸化チタン粉を分散させ、塩化物イオンと塩基性物質を同時/または順に添加し、同時に銀化合物および銅化合物を析出させる方法を用いることができる。
<抗菌・抗ウイルス剤および光触媒>
 本発明の抗菌・抗ウイルス剤および光触媒は本発明の抗菌・抗ウイルス性組成物を含む。これにより、本発明の抗菌・抗ウイルス剤および光触媒は、明所および暗所において優れた抗菌・抗ウイルス特性を有する。
<抗菌・抗ウイルス性組成物、抗菌・抗ウイルス剤および光触媒の使用形態> 
 本発明の抗菌・抗ウイルス性組成物、抗菌・抗ウイルス剤および光触媒(以下、「本発明の抗菌・抗ウイルス性組成物等」ということがある)の使用形態は特に限定されない。例えば、本発明の抗菌・抗ウイルス性組成物等を、微粉末および顆粒等の固体状の形態で使用してもよい。この場合、例えば、本発明の抗菌・抗ウイルス性組成物等を所定の容器に充填して使用する。または、所定の基材の表面および/または内部に本発明の抗菌・抗ウイルス性組成物等を含ませる使用形態で、本発明の抗菌・抗ウイルス性組成物等を使用してもよい。一般的には、後者の使用形態が好ましい。なお、上記の基材には、例えば、繊維、金属、セラミックおよびガラス等の一般的な部材からなる単一基材、ならびに上述の部材の2種以上の部材からなる複合基材が挙げられる。しかし、基材はこれらに限定されない。
 適宜の手段により剥離可能な、フロアーポリッシュ等のコーティング剤に本発明の抗菌・抗ウイルス性組成物等を含有させてもよい。また、本発明の抗菌・抗ウイルス性組成物等を所定の膜に固定化して、本発明の抗菌・抗ウイルス性組成物等を連続膜の表面に露出させてもよい。また、本発明の抗菌・抗ウイルス性組成物等を分散させた溶媒を用いて作製した塗料の形態で、本発明の抗菌・抗ウイルス性組成物等を使用してもよい。
 本発明の抗菌・抗ウイルス性組成物等を基材表面に固定化した材料には、例えば、バインダー等の一般的な固定化手段を用いて本発明の抗菌・抗ウイルス性組成物等を基材表面に固定化した材料等が挙げられる。有機系バインダーおよび無機系バインダーのいずれも、本発明の抗菌・抗ウイルス性組成物等を固定化するバインダーとして用いることができるが、光触媒物質によるバインダーの分解を避けるために無機系バインダーを用いることが好ましい。バインダーの種類は特に限定されない。無機系バインダーには、例えば、光触媒物質を基材表面に固定化するために通常用いられるシリカ系等の無機系バインダーが挙げられる。有機系バインダーには、例えば、重合および溶媒揮発により薄膜を形成可能な高分子バインダー等が挙げられる。
 本発明の抗菌・抗ウイルス性組成物等を基材内部に含む材料には、例えば、本発明の抗菌・抗ウイルス性組成物等を樹脂中に分散させて分散物を作製し、その分散物を硬化させることにより得られる材料が挙げられる。本発明の抗菌・抗ウイルス性組成物等を分散させる樹脂には天然樹脂および合成樹脂のいずれも使用することができる。合成樹脂には、例えば、アクリル樹脂、フェノール樹脂、ポリウレタン樹脂、アクリロニトリル/スチレン共重合樹脂、アクリロニトリル/ブタジエン/スチレン共重合(ABS)樹脂、ポリエステル樹脂およびエポキシ樹脂等が挙げられるが、これらの樹脂に限定されない。
 本発明の抗菌・抗ウイルス性組成物等を使用する場所は特に限定されない。例えば、任意の光線の存在下のほか、暗所においても本発明の抗菌・抗ウイルス性組成物等を使用することができる。また、本発明の抗菌・抗ウイルス性組成物等は、水の存在下(例えば、水中および海水中等)、乾燥状態(例えば、冬季等における低湿度の状態等)、高湿度の状態、または有機物の共存下においても、優れたウイルス不活化特性を有し、持続的にウイルスを不活化することができる。例えば、壁、床および天井等に本発明の抗菌・抗ウイルス性組成物等を配置することができる。また、病院および工場等の建築物、工作機械、測定装置類、電化製品の内部および部品(例えば、冷蔵庫、洗濯機および食器洗浄機等の内部ならびに空気洗浄機のフィルター等)等の任意の対象物に、本発明の抗菌・抗ウイルス性組成物等を適用できる。暗所には、例えば、機械内部、冷蔵庫の収納室、および夜間または不使用時に暗所となる病院施設(待合室や手術室等)等が挙げられるが、これらに限定されない。
 従来から、インフルエンザ対策のーつとして、セラミックフィルターまたは不織布フィルターに酸化チタンをコーティングするとともに、そのフィルターに紫外線を照射するための光源を組み込んだ空気洗浄機が提案されている。しかし、本発明の抗菌・抗ウイルス性組成物等を空気洗浄機のフィルターに用いた場合、紫外線光源が必要なくなり、これにより、空気清浄機のコストを低減し、空気清浄機の安全性を高めることができる。
<菌・ウイルス不活化方法>
 本発明の菌・ウイルス不活化方法は、本発明の抗菌・抗ウイルス性組成物、本発明の抗菌・抗ウイルス剤または本発明の光触媒を用いて菌およびウイルスを不活化する。上述したように、本発明の抗菌・抗ウイルス性組成物は抗菌・抗ウイルス性を発現するので、本発明の抗菌・抗ウイルス性組成物を用いて菌およびウイルスを不活化できる。また、本発明の抗菌・抗ウイルス剤および光触媒は本発明の抗菌・抗ウイルス性組成物を含有するので、本発明の抗菌・抗ウイルス剤または光触媒を用いて菌およびウイルスを不活化できる。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 なお、実施例および比較例の抗菌・抗ウイルス性組成物の諸特性を以下に示す方法に従って求めた。
(1)X線回折パターン測定
 実施例および比較例の抗菌・抗ウイルス性組成物のX線回折パターンを調べて、抗菌・抗ウイルス性組成物中のAgの状態を調べた。X線回折パターン測定は、銅ターゲットを使用し、Cu-Kα1線を用いて、管電圧が45kV、管電流が40mA、測定範囲が2θ=20~80deg、サンプリング幅が0.0167deg、走査速度が1.1deg/minで行った。
 測定に使用した装置は、Panalytical社製のX’perPROであった。
(2)走査型電子顕微鏡から観測される銀化合物の平均粒子径
 実施例および比較例の抗菌・抗ウイルス性組成物中の銀化合物の平均粒子径を、走査型電子顕微鏡((株)日立ハイテクノロージーズ製、型番:S-5500)を使用して測定した。銀化合物の平均粒子径は以下のようにして測定した。
 反射電子像で白く光る100個の粒子径(AgCl)を実測し、その数平均値を平均粒子径とした。また粒子径とは、粒子が球状の場合は直径を、粒子が球状以外の場合は重心を通る最も長い一辺と最も短い一辺を足して2で除したものを指す。
(3)走査型電子顕微鏡による反射電子像および二次電子像の観察
 走査型電子顕微鏡((株)日立ハイテクノロージーズ製、型番:S-5500)を使用して、実施例および比較例の抗菌・抗ウイルス性組成物中の反射電子像および二次電子像を観察した。抗菌・抗ウイルス性組成物の反射電子像および二次電子像において、抗菌・抗ウイルス性組成物中の2価銅化合物、銀化合物および酸化チタンの見え方が異なる。したがって、抗菌・抗ウイルス性組成物中の反射電子像および二次電子像を観察することにより、2価銅化合物および銀化合物の酸化チタンにおける担持の状態を調べることができる。
(4)抗ウイルス性能(バクテリオファージの不活化)
≪ウイルス不活化能の評価:LOG(N/N)の測定≫
 ウイルス不活化能は、バクテリオファージを用いたモデル実験により以下の方法で確認した。また、測定方法はJIS R 1756に準拠して行った。
 粉末試料をエタノールに分散させた溶液をガラス板(50mm×50mm×1mm)上に塗布、室温にて一昼夜、乾燥して、単位面積当たりの塗布量が粉末換算で1.0g/mである抗菌・抗ウイルス評価用試料を作製した。
 深型シャーレ内にろ紙を敷き、少量の滅菌水を加えた。ろ紙の上に上記記載の評価用試料を置いた。この上に1/500NBを用いてバクテリオファージ感染価が約6.7×10~約2.6×10pfu/mLとなるように調製しQβファージ(NBRC20012)懸濁液を100μL滴下し、試料表面とファージとを接触させるためにPET(ポリエチレンテレフタレート)製のフィルムを被せた。この深型シャーレにガラス板で蓋をしたものを、測定用セットとした。同様の測定用セットを複数個用意した。
 また、光源として15W白色蛍光灯(パナソニック(株)製、フルホワイト蛍光灯、FL15N)に紫外線カットフィルター(日東樹脂工業(株)製、N-113)を取り付けたものを使用した。照度が1000ルクス(照度計:(株)トプコン製、IM-5にて測定)になる位置に複数個の測定用セットを静置した。光照射開始から1時間経過後にガラス板上の試料のファージ濃度測定を行った。また、測定時の部屋の照度は200ルクス以下となるようにした。
 ファージ濃度の測定は以下の方法で行った。ガラス板上の試料を9.9mLのファージ回収液(SCDLP培地)に浸透させ、振とう機にて10分間振とうさせた。このファージ回収液をぺプトン入り生理食塩水を用い適宣希釈した。別に培養しておいた5.0×10~2.0×10個/mLの大腸菌(NBRC106373)培養液とカルシウム添加LB軟寒天培地とを混合した液に、先ほど希釈した液を1mL加え混合した後、この液をカルシウム添加LB寒天培地にまき、37℃で15時間培養した後に、ファージのプラーク数を目視で計測した。得られたプラーク数にファージ回収液の希釈倍率を乗じることによってファージ濃度Nを求めた。
 初期ファージ濃度Nと、所定時間後のファージ濃度Nとから、ファージ相対濃度(LOG(N/N))を求めた。なお、LOG(N/N)の値が小さいほど(マイナスの値が大きいほど)、試料の抗ウイルス特性は優れている。
(暗所における抗ウイルス特性の評価:LOG(N/N)の測定)
 測定用セットを暗所に置き、光源から光を照射しなかったこと以外は上記の(明所における抗ウイルス特性の評価:LOG(N/N)の測定)と同様の測定を行った。なお、LOG(N/N)の値が小さいほど(マイナスの値が大きいほど)、試料の抗ウイルス特性は優れている。
(5)抗菌性能(大腸菌、黄色ブドウ球菌の不活化)
≪菌不活化能の評価:LOG(N/N)の測定≫
 菌不活化能は、大腸菌または黄色ブドウ球菌を用いたモデル実験により以下の方法で確認した。また、本手法は、JIS R 1752に準拠して行った。
 深型シャーレ内にろ紙を敷き、少量の滅菌水を加えた。ろ紙の上に上記記載の評価用試料を置いた。この上に1/500NBを用いて大腸菌(NBRC3972)または黄色ブドウ球菌(NBRC12732)の菌数が約6.7×10~約2.6×10個/mLとなるように調製し、菌液を100μL滴下し、試料表面と菌とを接触させるためにPET(ポリエチレンテレフタレート)製のフィルムを被せた。この深型シャーレにガラス板で蓋をしたものを、測定用セットとした。同様の測定用セットを複数個用意した。
 また、光源として15W白色蛍光灯(パナソニック(株)製、フルホワイト蛍光灯、FL15N)に紫外線カットフィルター(日東樹脂工業(株)製、N-113)を取り付けたものを使用した。照度が1000ルクス(照度計:(株)トプコン製、IM-5にて測定)になる位置に複数個の測定用セットを静置した。光照射開始から1時間経過後にガラス板上の試料のファージ濃度測定を行った。また、測定時の部屋の照度は200ルクス以下となるようにした。
 菌濃度の測定は以下の方法で行った。ガラス板上の試料を9.9mLの菌回収液(SCDLP培地)に浸透させ、振とう機にて10分間振とうさせた。この菌回収液を、生理食塩水を用い適宣希釈した。希釈した液を1mLと寒天培地と混釈したものをシャーレにまき、37℃で15時間培養した後に、菌数を目視で計測した。得られた菌数に回収液の希釈倍率を乗じることによって菌濃度Nを求めた。
 初期菌濃度Nと、所定時間後の菌濃度Nとから、菌相対濃度(LOG(N/N))を求めた。なお、LOG(N/N)の値が小さいほど(マイナスの値が大きいほど)、試料の抗菌特性は優れている。
(暗所における抗菌特性の評価:LOG(N/N)の測定)
 測定用セットを暗所に置き、光源から光を照射しなかったこと以外は上記の(明所における抗菌特性の評価:LOG(N/N)の測定)と同様の測定を行った。なお、LOG(N/N)の値が小さいほど(マイナスの値が大きいほど)、試料の抗菌特性は優れている。
実施例1:
 蒸留水200mLに5gのアナターゼ型酸化チタン(昭和電工セラミックス(株)製)を懸濁させて懸濁液を作製し、0.296gのAgNO(関東化学(株)製)を溶解した溶液、および、0.204gのNaCl(関東化学(株)製)を溶解した溶液、各50mLをそれぞれ準備し、AgNO溶液、NaCl溶液の順で懸濁液中に投入した。その後、室温で、10分間撹拌した。得られた懸濁液をろ過、乾燥することで、AgCl担持アナターゼ型酸化チタン粉末(酸化チタンの100質量部に対して5質量部のAgCl担持)を得た。
 蒸留水100mLに3gのAgCl/酸化チタン粉末を懸濁させて懸濁液を作製し、0.04g(AgCl/ルチル型酸化チタン粉末の100質量部に対して銅で0.5質量部)のCuCl・2HO(関東化学(株)製)をその懸濁液に添加して、10分攪拌した。懸濁液のpHが10になるように、1mol/Lの水酸化ナトリウム(関東化学(株)製)水溶液を添加し、30分間攪拌混合を行ってスラリーを得た。このスラリーをろ過し、得られた粉体を純水で洗浄し、80℃で乾燥し、ミキサーで解砕し、実施例1の試料を作製した。なお、CuCl・2HOは加水分解して、Cu(OH)Clになった。
 pHメーターには、(株)堀場製作所製、D-51を使用した。 
実施例2:
 AgCl担持量を酸化チタン100質量部に対して1質量部としたこと以外は、実施例1と同様の方法で実施例2の試料を作製した。
実施例3:
 AgCl担持量を酸化チタン100質量部に対して0.1質量部としたこと以外は、実施例1と同様の手法で実施例3の試料を作製した。
実施例4:
 アナターゼ型酸化チタンをルチル型酸化チタン(昭和電工セラミックス(株)製)としたこと以外は、実施例1と同様の手法で実施例4の試料を作製した。
実施例5:
 アナターゼ型酸化チタンをブルッカイト型酸化チタン(昭和電工セラミックス(株)製)としたこと以外は、実施例1と同様の手法で実施例5の試料を作製した。
比較例1:
 蒸留水300mLに5.920gのAgNO(関東化学(株)製)を溶解した溶液に、4.080gのNaCl(関東化学(株)製)を溶解した溶液50mLを投入した。その後、室温で、10分間撹拌した。得られた懸濁液をろ過、乾燥することで、比較例1の試料(AgCl粉末)を得た。
比較例2:
 比較例1のAgCl粉末を蒸留水100mLに懸濁させて懸濁液を作製し、0.04g(AgCl粉末の100質量部に対して銅で0.5質量部)のCuCl・2HO(関東化学(株)製)をその懸濁液に添加して、10分攪拌した。懸濁液のpHが10になるように、1mol/Lの水酸化ナトリウム(関東化学(株)製)水溶液を添加し、30分間攪拌混合を行ってスラリーを得た。このスラリーをろ過し、得られた粉体を純水で洗浄し、80℃で乾燥し、ミキサーで解砕し、比較例2の試料(Cu化合物/AgCl粉末)を作製した。なお、CuCl・2HOは加水分解して、Cu(OH)Clになった。
比較例3:
 実施例1に用いたアナターゼ型酸化チタンに、実施例1と同様の手法で銀化合物のみを担持することで、比較例3の試料(AgCl/TiO粉末)を得た。
比較例4:
 実施例1に用いたアナターゼ型酸化チタン粉末を蒸留水100mLに懸濁させて懸濁液を作製し、0.04g(酸化チタン粉末の100質量部に対して銅で0.5質量部)のCuCl・2HO(関東化学(株)製)をその懸濁液に添加して、10分攪拌した。懸濁液のpHが10になるように、1mol/Lの水酸化ナトリウム(関東化学(株)製)水溶液を添加し、30分間攪拌混合を行ってスラリーを得た。このスラリーをろ過し、得られた粉体を純水で洗浄し、80℃で乾燥し、ミキサーで解砕し、比較例3の試料(Cu化合物/酸化チタン粉末)を作製した。なお、CuCl・2HOは加水分解して、Cu(OH)Clになった。
比較例5: 
 実施例1に用いたアナターゼ型酸化チタンをそのまま用いた。
<結果>
(X線回折パターン測定)
 実施例1~5および比較例1~5の試料中に存在するAgからなる化合物は、すべて塩化ナトリウム型構造のAgClに同定された。一例として実施例1の試料のX線回折パターンを図1に示す。
(反射電子像および二次電子像観察)
 実施例1の反射電子像の写真を図2に、比較例1の二次電子像の写真を図3にそれぞれ示す。図1において、反射電子像で特に明るく見える粒子が重元素であるAg存在している場所と特定できる。これらの写真より、実施例1においては約50nmの大きさのAgClが酸化チタンに担持されていることがわかる。一方の、比較例1のAgClは、数百マイクロメートルの大きさの粗大粒子になっていることがわかる。実施例1と比較例1の比較から、酸化チタンに担持することによって、AgClの大きさを非常に小さくできることがわかった。
 以上の実施例1~5及び比較例1~5の抗菌・抗ウイルス性組成物について得られた銀化合物の平均粒子径および抗菌、抗ファージ性能のデータを表1に示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~5の試料は、1000ルクスの照度の可視光照射下で、1時間という短時間で99%以上のウイルス不活化能力を有することがわかった。比較例1~5の光触媒においては、同条件においても、ほとんど抗ウイルス性能を示さない。これは、比較例1は銀化合物、銅化合物および酸化チタンの3成分のどれかが欠けた構成であるためである。
 比較例1~3の試料は、大腸菌、黄色ブドウ球菌に対しては活性を示すが、これはAg化合物による効果であるため、光触媒としての機能がなく、半永久に用いることが期待できない。比較例4および5の試料は、Agによる抗菌性、可視光吸収源を含まないために、ウイルス、菌の両方に活性を示さない。
 実施例1~5と比較例1~5の対比から、銀化合物、銅化合物、酸化チタンの3つを組み合わせることによって、菌とウイルスの両方に不活化効果を示すことがわかった。

Claims (14)

  1.  2価銅化合物および銀化合物が共担持された酸化チタンを含む抗菌・抗ウイルス組成物。
  2.  前記銀化合物が銀ハロゲン化物である、請求項1に記載の抗菌・抗ウイルス組成物。
  3.  前記銀ハロゲン化物がAgClである、請求項2に記載の抗菌・抗ウイルス組成物。
  4.  前記銀化合物の担持量が、前記酸化チタンの100質量部に対して0.01~20質量部である、請求項1~3のいずれか1項に記載の抗菌・抗ウイルス組成物。
  5.  走査型電子顕微鏡から観測される前記銀化合物の平均粒子径が1nm~1μmである、請求項1~4のいずれか1項に記載の抗菌・抗ウイルス組成物。
  6.  前記2価銅化合物の銅元素質量が、前記酸化チタンおよび前記銀化合物の合計の100質量部に対して0.01~20質量部である、請求項1~5のいずれか1項に記載の抗菌・抗ウイルス組成物。
  7.  前記銀化合物中のAg原子と前記2価銅化合物中のCu原子とのモル比は1:0.0045~1:451である、請求項1~6のいずれか1項に記載の抗菌・抗ウイルス組成物。
  8.  前記2価銅化合物は、(a)下記一般式(1):
       Cu(OH)X (1)
    (式中、Xは陰イオンを示す)
    で表される水酸基含有2価銅化合物、(b)2価銅のハロゲン化物、(c)2価銅の無機酸塩、(d)2価銅の有機酸塩、(e)酸化第二銅、(f)硫化銅、(g)アジ化銅、(h)ケイ酸銅からなる群から選択される1種または2種以上である、請求項1~7のいずれか1項に記載の抗菌・抗ウイルス性組成物。
  9.  一般式(1)のXが、ハロゲン、カルボン酸の共役塩基、無機酸の共役塩基およびOHからなる群から選択される1種または2種以上である請求項8に記載の抗菌・抗ウイルス組成物。
  10.  Xは、Cl、CHCOO、NOおよび(SO1/2からなる群から選択される1種または2種以上である、請求項8または9に記載の抗菌・抗ウイルス組成物。
  11.  1000ルクスの照度の可視光照射1時間で99%以上の菌・ウイルス不活化能力を有する請求項1~10のいずれか1項に記載の抗菌・抗ウイルス組成物。
  12.  請求項1~11のいずれか1項に記載の抗菌・抗ウイルス組成物を含有する抗菌・抗ウイルス剤。
  13.  請求項1~11のいずれか1項に記載の抗菌・抗ウイルス組成物を含有する光触媒。
  14.  請求項1~11のいずれか1項に記載の抗菌・抗ウイルス組成物、請求項12に記載の抗菌・抗ウイルス剤または請求項13に記載の光触媒を用いて菌およびウイルスを不活化する、菌・ウイルス不活化方法。
     
PCT/JP2015/070726 2014-09-19 2015-07-21 抗菌・抗ウイルス性組成物、抗菌・抗ウイルス剤、光触媒および菌・ウイルス不活化方法 WO2016042913A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167036166A KR20170010408A (ko) 2014-09-19 2015-07-21 항균·항바이러스성 조성물, 항균·항바이러스제, 광 촉매 및 균·바이러스 불활화 방법
JP2016548614A JPWO2016042913A1 (ja) 2014-09-19 2015-07-21 抗菌・抗ウイルス性組成物、抗菌・抗ウイルス剤、光触媒および菌・ウイルス不活化方法
CN201580033682.9A CN106470550A (zh) 2014-09-19 2015-07-21 抗菌抗病毒组合物、抗菌抗病毒剂、光催化剂以及细菌病毒灭活方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014191353 2014-09-19
JP2014-191353 2014-09-19

Publications (1)

Publication Number Publication Date
WO2016042913A1 true WO2016042913A1 (ja) 2016-03-24

Family

ID=55532958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070726 WO2016042913A1 (ja) 2014-09-19 2015-07-21 抗菌・抗ウイルス性組成物、抗菌・抗ウイルス剤、光触媒および菌・ウイルス不活化方法

Country Status (5)

Country Link
JP (1) JPWO2016042913A1 (ja)
KR (1) KR20170010408A (ja)
CN (1) CN106470550A (ja)
TW (1) TW201618672A (ja)
WO (1) WO2016042913A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016198704A (ja) * 2015-04-08 2016-12-01 株式会社豊田中央研究所 触媒
WO2020045413A1 (ja) * 2018-08-29 2020-03-05 富士フイルム株式会社 抗ウイルス用組成物、抗ノロウイルス用組成物、スプレー、ワイパー
CN112869264A (zh) * 2021-04-01 2021-06-01 联科华技术有限公司 一种具有抗菌抗病毒功能的单原子医用防护口罩
JPWO2019230214A1 (ja) * 2018-05-30 2021-08-05 株式会社信州セラミックス 光の照射がなくても光の照射下で有する効果と同様の効果を有する剤を含む殺菌効果を有する材料、殺菌効果を有する材料を含んだ殺菌効果を有する製品及び殺菌効果を有する材料の調製方法
CN114621537A (zh) * 2021-12-15 2022-06-14 浙江亚厦装饰股份有限公司 一种抗菌抗病毒pvc膜及其制备方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107164995B (zh) * 2017-05-24 2018-11-13 常德金德镭射科技股份有限公司 一种防霉抗菌涂布纸的制备方法
JP6953965B2 (ja) * 2017-09-29 2021-10-27 信越化学工業株式会社 抗菌・抗カビ性を有する光触媒・合金微粒子分散液、その製造方法、及び光触媒・合金薄膜を表面に有する部材
US20220095625A1 (en) * 2018-12-06 2022-03-31 Arxada Ag Copper Chelate Complex Compositions for Antifouling Protection
CN111296416A (zh) * 2018-12-12 2020-06-19 韩国绿水滴(株) 除臭功能得到强化的抗细菌、抗真菌及抗病毒性组合物及其制备方法
CN111661898A (zh) * 2020-07-09 2020-09-15 广西碧福环保工程有限公司 一种多离子强氧化催化消毒器
CN112121234A (zh) * 2020-08-21 2020-12-25 中国科学院金属研究所 一种具有可控、持久抗感染骨科内植入物及其制备方法
CN112080940B (zh) * 2020-08-21 2022-01-14 中国科学院金属研究所 一种具有持久抗菌、抗病毒特性的织物及其制备方法
CN114271292B (zh) * 2020-09-27 2023-09-01 苏州森锋医疗器械有限公司 一种消毒剂及其制备方法
KR102649007B1 (ko) * 2021-05-06 2024-03-20 국립창원대학교 산학협력단 식품 관련 병원성 미생물의 항균 또는 살균용 조성물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054816A (ja) * 1990-09-18 1993-01-14 Create Medic Kk 抗菌性チタニア
JPH09227319A (ja) * 1995-12-21 1997-09-02 Ishihara Sangyo Kaisha Ltd 抗菌性粉末およびその製造方法
JPH09278615A (ja) * 1996-04-15 1997-10-28 Nittetsu Mining Co Ltd 抗菌性チタニア及びその製造方法
JPH10273322A (ja) * 1997-01-30 1998-10-13 Kubota Corp 抗菌性複合チタン酸化合物およびその製造方法
JP4169163B1 (ja) * 2008-05-28 2008-10-22 多木化学株式会社 光触媒酸化チタンゾル及びこれを用いたコーティング組成物
JP5331270B1 (ja) * 2011-12-22 2013-10-30 昭和電工株式会社 銅及びチタン含有組成物並びにその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11228320A (ja) 1998-02-20 1999-08-24 Hokko Chem Ind Co Ltd 抗菌剤及びその製造方法
CN1150978C (zh) * 2001-04-25 2004-05-26 中国科学院理化技术研究所 金属复合二氧化钛纳米粒子及其制备方法和用途
JP4646210B2 (ja) 2005-02-24 2011-03-09 多木化学株式会社 ファージ・ウイルスの不活性化剤
CN1775032A (zh) * 2005-11-30 2006-05-24 青岛大学 纳米二氧化钛载金属离子抗菌剂及其制备方法
JP4880410B2 (ja) * 2006-09-28 2012-02-22 多木化学株式会社 光触媒コーティング組成物が被覆された部材
KR20120098826A (ko) 2009-12-01 2012-09-05 스미또모 가가꾸 가부시끼가이샤 항바이러스제 및 그것을 사용한 항바이러스제 기능 제품
CN103480396A (zh) * 2013-10-16 2014-01-01 代思炜 一种可视灭菌强度色变光触媒制剂
CN104015853A (zh) * 2014-06-30 2014-09-03 罗梓珊 一种电动折叠车的联动锁定机构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH054816A (ja) * 1990-09-18 1993-01-14 Create Medic Kk 抗菌性チタニア
JPH09227319A (ja) * 1995-12-21 1997-09-02 Ishihara Sangyo Kaisha Ltd 抗菌性粉末およびその製造方法
JPH09278615A (ja) * 1996-04-15 1997-10-28 Nittetsu Mining Co Ltd 抗菌性チタニア及びその製造方法
JPH10273322A (ja) * 1997-01-30 1998-10-13 Kubota Corp 抗菌性複合チタン酸化合物およびその製造方法
JP4169163B1 (ja) * 2008-05-28 2008-10-22 多木化学株式会社 光触媒酸化チタンゾル及びこれを用いたコーティング組成物
JP5331270B1 (ja) * 2011-12-22 2013-10-30 昭和電工株式会社 銅及びチタン含有組成物並びにその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIU, S.-G. ET AL.: "Preparation and Characterization of Antibacterial and Self- cleaning Powder of Ag+ and Cu2+ Synergized Doped-Ti02", BULLETIN OF THE CHINESE CHRAMIC SOCIETY, vol. 26, no. 6, 2007, pages 1136 - 1140 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016198704A (ja) * 2015-04-08 2016-12-01 株式会社豊田中央研究所 触媒
JPWO2019230214A1 (ja) * 2018-05-30 2021-08-05 株式会社信州セラミックス 光の照射がなくても光の照射下で有する効果と同様の効果を有する剤を含む殺菌効果を有する材料、殺菌効果を有する材料を含んだ殺菌効果を有する製品及び殺菌効果を有する材料の調製方法
JP7425497B2 (ja) 2018-05-30 2024-01-31 株式会社信州セラミックス 殺菌効果を有する材料の製造方法、殺菌効果を有する製品の製造方法、並びに、殺菌効果及び脱臭効果を有する剤
WO2020045413A1 (ja) * 2018-08-29 2020-03-05 富士フイルム株式会社 抗ウイルス用組成物、抗ノロウイルス用組成物、スプレー、ワイパー
JPWO2020045413A1 (ja) * 2018-08-29 2021-08-10 富士フイルム株式会社 抗ウイルス用組成物、抗ノロウイルス用組成物、スプレー、ワイパー
CN112869264A (zh) * 2021-04-01 2021-06-01 联科华技术有限公司 一种具有抗菌抗病毒功能的单原子医用防护口罩
CN114621537A (zh) * 2021-12-15 2022-06-14 浙江亚厦装饰股份有限公司 一种抗菌抗病毒pvc膜及其制备方法

Also Published As

Publication number Publication date
TW201618672A (zh) 2016-06-01
KR20170010408A (ko) 2017-01-31
CN106470550A (zh) 2017-03-01
JPWO2016042913A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
WO2016042913A1 (ja) 抗菌・抗ウイルス性組成物、抗菌・抗ウイルス剤、光触媒および菌・ウイルス不活化方法
WO2013094573A1 (ja) 銅及びチタン含有組成物並びにその製造方法
JP5570006B2 (ja) ウイルス不活化剤
JP5904524B2 (ja) ウイルス不活化剤
JP6040021B2 (ja) 抗菌抗ウイルス性組成物及びその製造方法
WO2015125367A1 (ja) 抗ウイルス性組成物、抗ウイルス剤、光触媒およびウイルス不活性化方法
JP2015059089A (ja) 抗ウイルス性組成物、その製造方法およびウイルス不活性化方法
JP2011190192A (ja) 微生物不活化剤
TWI581713B (zh) Antiviral compositions, antiviral agents, photocatalysts and virus inactivation methods
JP2013216596A (ja) 抗菌剤、抗菌剤分散液、およびこれを用いた抗菌加工製品
KR101657517B1 (ko) 가시광 응답성 광촉매 물질의 제조방법
TWI485112B (zh) Tungsten oxide containing a mixed atom-valent copper compound, a method for producing the same, an antiviral agent containing the same, a photocatalyst containing the same, a virus inactivation and a deodorization method
JP2015134726A (ja) 抗ウイルス性組成物、その製造方法及びウイルス不活化方法
JP2022079542A (ja) 可視光応答型光触媒のタングステン化合物及び塗料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841968

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016548614

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167036166

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15841968

Country of ref document: EP

Kind code of ref document: A1