WO2016042784A1 - ルースチューブ型光ファイバユニット - Google Patents

ルースチューブ型光ファイバユニット Download PDF

Info

Publication number
WO2016042784A1
WO2016042784A1 PCT/JP2015/050650 JP2015050650W WO2016042784A1 WO 2016042784 A1 WO2016042784 A1 WO 2016042784A1 JP 2015050650 W JP2015050650 W JP 2015050650W WO 2016042784 A1 WO2016042784 A1 WO 2016042784A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
bonded
loose tube
strands
ribbon
Prior art date
Application number
PCT/JP2015/050650
Other languages
English (en)
French (fr)
Inventor
星野 豊
昇 岡田
竜也 大山
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to SG11201702106WA priority Critical patent/SG11201702106WA/en
Priority to US15/510,521 priority patent/US9989723B2/en
Priority to KR1020177003759A priority patent/KR20170055956A/ko
Publication of WO2016042784A1 publication Critical patent/WO2016042784A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure
    • G02B6/4404Multi-podded
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4403Optical cables with ribbon structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/441Optical cables built up from sub-bundles
    • G02B6/4411Matrix structure
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/443Protective covering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/4434Central member to take up tensile loads
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4429Means specially adapted for strengthening or protecting the cables
    • G02B6/44384Means specially adapted for strengthening or protecting the cables the means comprising water blocking or hydrophobic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/448Ribbon cables

Definitions

  • the present invention relates to a loose tube type optical fiber unit having a plurality of optical fiber ribbons.
  • the optical fiber in the loose tube is a single fiber, there will be a difference in length for each optical fiber due to variations in the core tension during manufacture and differences in the circumference. is there. In particular, in high-speed communication, deterioration of fiber skew becomes a problem.
  • the optical fiber ribbon is an optical fiber that is integrated with a plurality of optical fibers.
  • the lengths of the optical fibers constituting the optical fiber ribbon can be made uniform.
  • the optical fiber ribbon and the inner surface of the loose tube are designed with a large clearance.
  • this clearance is reduced, the optical fiber strands positioned at both ends of the optical fiber ribbon are pressed against the inner wall of the loose tube due to temperature change and bending, and transmission loss is deteriorated.
  • the present invention has been made in view of such a problem, and an object thereof is to provide a loose tube type optical fiber unit having good transmission characteristics and a small size.
  • the present invention is a loose tube type optical fiber unit, comprising a plurality of optical fiber ribbons and a loose tube covering the optical fiber ribbons, and the optical fiber tape. Adjacent optical fiber strands are bonded to each other and aligned at a predetermined interval, and at least some of the optical fiber strands are intermittently bonded to the longitudinal direction of the optical fiber strands.
  • This is a loose tube type optical fiber unit.
  • the length of the bonded portions intermittently bonded is Lmm, and the interval between the bonded bonded portions is Dmm, It is desirable that 5W ⁇ D ⁇ 50W and 3 mm ⁇ L ⁇ 40 / W (W ⁇ 13 mm).
  • All the optical fiber strands may be intermittently bonded to the longitudinal direction of the optical fiber strands.
  • the bonded portion of the optical fiber ribbon is intermittently bonded, the bonded portion between the optical fiber strands is easily bent. For this reason, even if a part of the optical fiber ribbon is in contact with the inner surface of the loose tube, the alignment direction of the optical fiber tape is deformed, and the stress received from the inner surface of the loose tube can be dispersed. For this reason, the clearance between the optical fiber ribbon and the inner surface of the tube can be reduced, and the loose tube type optical fiber unit can be reduced in size.
  • the fiber skew reduction effect can be obtained with certainty by appropriately adjusting the length and interval of the bonded portions bonded intermittently.
  • the alignment direction of the optical fiber ribbons can be easily deformed by intermittently bonding more than half of the bonded portions to the bonded portions between all the optical fiber strands.
  • the alignment direction of the optical fiber ribbons can be easily changed.
  • FIG. 1 is a cross-sectional view showing an optical fiber cable 1; Sectional drawing which shows the optical fiber unit 3.
  • FIG. The figure which shows the deformation
  • FIG. The perspective view which shows the optical fiber tape core wire 5a.
  • FIG. 1 is a radial sectional view showing an optical fiber cable 1.
  • the optical fiber cable 1 is an optical fiber cable in which a plurality of loose tube optical fiber units are accommodated.
  • a tension member 9 is disposed at the center of the optical fiber cable 1.
  • the tension member 9 bears the tension of the optical fiber cable 1.
  • the tension member 9 is, for example, a steel wire or fiber reinforced plastic, and a buffer layer is provided on the outer peripheral surface as necessary.
  • a plurality of optical fiber units 3 are arranged on the outer periphery of the tension member 9.
  • the optical fiber unit 3 is a loose tube type optical fiber unit.
  • a plurality of optical fiber ribbons 5 are accommodated in a loose tube 13. Details of the optical fiber unit 3 will be described later.
  • a jacket 7 is provided so as to cover the optical fiber unit 3.
  • the jacket 7 is made of, for example, polyethylene.
  • a press-wrapping tape or the like may be provided on the inner peripheral side of the outer jacket 7.
  • a tear string 11 may be embedded in a part of the jacket 7.
  • optical fiber cable of the present invention is not limited to the illustrated example, and is appropriately designed such as the number, arrangement, and size of optical fibers. Further, the configuration of the tension member and the tear string is not limited to the illustrated example, and the arrangement, size, and the like are appropriately designed.
  • FIG. 2 is a cross-sectional view of the optical fiber unit 3.
  • the plurality of optical fiber ribbons 5 are disposed in the loose tube 13. Further, a gel-like member or a water-absorbing fiber is enclosed between the inner surface of the loose tube 13 and the optical fiber ribbon 5.
  • the loose tube 13 is made of, for example, polybutylene terephthalate resin.
  • a jelly-like member or a water absorbing fiber has a protection of an optical fiber tape core wire, and a water stop function.
  • a well-known thing can be applied for the loose tube 13, the gel-like member, or the water absorbing fiber.
  • the optical fiber ribbon 5 is formed by integrating a plurality of optical fibers in one direction.
  • FIG. 3 is a perspective view showing the optical fiber ribbon 5 and
  • FIG. 4 is a cross-sectional view taken along line AA of FIG.
  • the optical fiber ribbon 5 is configured by bonding a plurality of optical fiber strands 17 in parallel.
  • this invention is not restricted to this, It is applicable if it is an optical fiber tape core wire which consists of a some optical fiber strand It is.
  • the optical fiber ribbon 5 has a predetermined interval in the longitudinal direction of the optical fiber 17 between the adjacent optical fiber 17 and the bonded portion 15b where the adhesive is continuously applied and bonded over the entire length. It is bonded by the bonding portion 15a which is opened and intermittently bonded. That is, an adhesive portion 15a or an adhesive portion 15b is formed between adjacent optical fiber strands 17.
  • the bonding portion 15b is formed so as to cover the entire circumference of the optical fiber strand 17, but the optical fiber strands 17 are exposed so that a part of the optical fiber strand 17 is exposed. You may provide only between. In other words, the adhesive portion 15 b may be formed continuously in the longitudinal direction of the optical fiber ribbon 5.
  • the third optical fiber 17 is bonded by the bonding portion 15a, and the remaining optical fiber wires 17 are bonded by the bonding portion 15b.
  • the predetermined number of optical fiber ribbons 5 are bonded by the intermittent bonding portions 15a, and the predetermined number of the central portions are bonded by the bonding portions 15b over the entire length.
  • the optical fiber ribbon 5 of the present invention is intermittently bonded to the longitudinal direction of the optical fiber 17 between at least some of the optical fibers 17.
  • the bonding portion 15b restrains the adjacent optical fiber strands 17 relatively strongly. For this reason, the optical fiber strands 17 are held straight with respect to the parallel direction of the optical fiber strands 17.
  • the bonding portion 15a the binding force between the adjacent optical fiber strands 17 is smaller than that of the bonding portion 15b. For this reason, the optical fiber strands 17 bonded by the bonding portion 15 a can be easily folded (folded) in the parallel direction of the optical fiber strands 17.
  • the adhesion part 15a when the adhesion part 15a is arrange
  • the adhering portions 15 a adjacent to each other be formed with a half-pitch shift in the longitudinal direction of the optical fiber ribbon 5.
  • the length in the longitudinal direction of the bonding portion 15a is L (mm), and the interval in the longitudinal direction between the bonding portions 15a is D (mm). Further, when the total width of the optical fiber ribbon 5 is W (mm), it is desirable that the relationship of 5W ⁇ D ⁇ 50W is satisfied.
  • the adjacent optical fiber strands 17 are not folded well, and the effect on the transmission characteristics as described later is small. Moreover, since the optical fiber strands 17 will move freely too much when the space
  • the optical fiber ribbon 5 when the optical fiber ribbon 5 is bonded completely over the entire length only by the bonding portion 15b, the optical fiber ribbon 5 maintains a substantially straight shape in the parallel direction as described above. . For this reason, the optical fiber ribbon 5 is given a large stress only to one or two optical fiber strands 17 (the optical fiber strands 17 at both ends). Such stress becomes a factor of deterioration of transmission characteristics of the optical fiber 17.
  • FIG. 5 is a cross-sectional view showing a state in which bending or the like is applied to the optical fiber unit 3 of the present invention, and the inner optical fiber ribbon 5 is in contact with the inner surface of the loose tube 13.
  • an adhesive portion 15 b is provided on a part of the optical fiber ribbon 5. For this reason, in the adhesion part 15b, the adjacent optical fiber strands 17 are folded. That is, the optical fiber ribbon 5 does not maintain a substantially straight shape in the parallel direction, but is bent.
  • the bonded portion 15b is formed in the optical fiber ribbon 5, and the individual optical fiber wires 17 can move freely in portions other than the bonded portion 15b. For this reason, it is hard to produce a difference in the tension
  • more than half of all the optical fiber strands 17 are composed of the bonding portions 15a with respect to each other (that is, the number of optical fiber strands -1). It is desirable to do.
  • the formation position of the bonding portion 15a is not limited to the example shown in FIG.
  • FIG. 6 is a diagram showing another form of the optical fiber ribbon 5a.
  • the optical fiber ribbon 5a has substantially the same configuration as the optical fiber ribbon 5, but the arrangement of the adhesive portions 15a and 15b is different.
  • the optical fiber ribbon 5a is bonded with the bonding portion 15a only between a predetermined number (four in the figure) of optical fiber strands in the central portion, and the remaining portion is bonded with the bonding portion 15b.
  • FIG. 7 is a cross-sectional view showing a state where the optical fiber unit 3 is bent and the inner optical fiber ribbon 5 is in contact with the inner surface of the loose tube 13.
  • the optical fiber tape core wire 5a can be easily bent at a portion corresponding to the bonding portion 15a of the optical fiber tape core wire 5a. For this reason, the substantially central portion of the optical fiber ribbon 5a is bent, and the contact area between the optical fiber ribbon 5a and the loose tube 13 increases. As a result, stress on the optical fiber 17 due to contact with the loose tube 13 is dispersed, and deterioration of transmission characteristics and the like can be suppressed.
  • optical fiber tape core wire 5a unlike the optical fiber tape core wire 5a, only the both end portions are bonded to the full length by the bonding portion 15b, so that the insertion workability into the fusion machine or the like is improved when the optical fiber tape core wires 5a are connected. This is because the optical fiber 17 is not scattered at the end of the optical fiber ribbon 5a.
  • optical fiber ribbon 5a Even if the optical fiber ribbon 5a is used, the same effect as that of the optical fiber ribbon 5 can be obtained.
  • more than half of all the optical fiber strands 17 that is, the number of optical fiber strands ⁇ 1) are configured by the bonding portions 15a. Is desirable.
  • the optical fiber ribbon 5b shown in FIG. 8 can be applied.
  • a predetermined number of optical fiber strands 17 on one end side are bonded to each other with an adhesive portion 15a, and a predetermined number of optical fiber strands 17 on the other end side are bonded to an adhesive portion 15b. Glued with.
  • optical fiber ribbon 5c shown in FIG. 9 can be applied.
  • the optical fiber ribbons 5c are bonded to the optical fiber strands 17 alternately every predetermined number (one in the figure) by the bonding portions 15a and the bonding portions 15b.
  • the adhesive part 15a and the adhesive part 15b may be not only one illustrated but every two, and may be arrange
  • optical fiber ribbon 5d shown in FIG. 10 can be applied. All the optical fiber strands 17 are bonded to each other by the bonding portion 15a of the optical fiber ribbon 5d. By adhering all the optical fiber strands to each other with the adhesive portion 15a, the transmission characteristics can be improved.
  • the optical fiber strands 17 bend easily. For this reason, even if a part of the optical fiber ribbon 5 or the like comes into contact with the inner surface of the loose tube 13, the alignment direction of the optical fiber ribbon 5 or the like is deformed to disperse the stress received from the inner surface of the loose tube 13. Can do. For this reason, the clearance between the optical fiber ribbon 5 and the inner surface of the loose tube 13 can be reduced, and the optical fiber unit 3 can be reduced in size.
  • the fiber skew reduction effect can be obtained with certainty.
  • the alignment direction of the optical fiber ribbon 5 and the like can be easily deformed, High fiber skew reduction effect.
  • the end portion of the optical fiber 17 is bonded at the full length by the bonding portion 15b, so that the workability of insertion into a fusion machine or the like is good.
  • the alignment direction of the optical fiber ribbon 5 and the like can be more easily deformed by intermittently bonding the optical fiber wires 17 to each other with the bonding portion 15a.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

 光ファイバテープ心線5は、複数の光ファイバ素線が一方向に併設されて一体化されたものである。光ファイバテープ心線5は、複数の光ファイバ素線17が並列に接着されて構成される。光ファイバテープ心線5は、隣り合う光ファイバ素線17同士は、全長にわたって連続して接着された接着部15bと、所定の間隔をあけて間欠的に接着された接着部15aにより接着される。すなわち、隣り合う光ファイバ素線17同士の間には、接着部15aまたは接着部15bが形成される。

Description

ルースチューブ型光ファイバユニット
 本発明は、複数の光ファイバテープ心線を具備するルースチューブ型光ファイバユニットに関するものである。
 従来より、ルースチューブ内に光ファイバを実装し、そのルースチューブ型光ファイバユニットをテンションメンバに撚り合わせてなるルースチューブケーブルがある(例えば特許文献1)。
特開2013-54219号公報
 ルースチューブ内の光ファイバが単心の場合、製造時の心線張力バラつきや周長差により、光ファイバ毎に長さの差が生じるため、ファイバスキュー(光の遅延時間差)が悪くなる恐れがある。特に、高速通信では、ファイバスキューの悪化が問題となる。
 これに対し、光ファイバテープ心線を用いる方法がある。光ファイバテープ心線は、複数の光ファイバ素線を併設して一体化した光ファイバ心線である。光ファイバテープ心線を用いることで、光ファイバテープ心線を構成する光ファイバ素線の長さをそろえることができる。
 通常、ルースチューブ内において、光ファイバテープ心線とルースチューブ内面とは、大きなクリアランスを設けた設計となっている。このクリアランスを小さくすると、温度変化や曲げにより、光ファイバテープ心線の両端に位置している光ファイバ素線がルースチューブの内壁に押し当てられることとなり、伝送損失が悪化するためである。
 このように、光ファイバテープ心線とルースチューブ内面との間に大きなクリアランスを設ける必要があるため、ルースチューブ径を大きくする必要がある。このため、ルースチューブケーブル自体が大きくなる。
 本発明は、このような問題に鑑みてなされたもので、伝送特性が良好で、小型であるルースチューブ型光ファイバユニットを提供することを目的とする。
 前述した目的を達するために本発明は、ルースチューブ型光ファイバユニットであって、複数の光ファイバテープ心線と、前記光ファイバテープ心線を覆うルースチューブと、を具備し、前記光ファイバテープ心線は、隣り合う光ファイバ素線同士が接着されて所定間隔で整列し、少なくとも一部の前記光ファイバ素線同士は、光ファイバ素線の長手方向に対して、間欠的に接着されることを特徴とするルースチューブ型光ファイバユニットである。
 前記光ファイバテープ心線の全幅をWmmとし、間欠的に接着された接着部の長さをLmmとし、間欠的に接着された接着部同士の間隔をDmmとした場合に、
 5W≦D≦50Wであり、3mm≦L≦40/W(但し、W≦13mm)であることが望ましい。
 すべての前記光ファイバ素線同士の間の接着部に対して、半数以上の接着部は、光ファイバ素線の長手方向に対して、間欠的に接着されることが望ましい。
 すべての前記光ファイバ素線同士が、光ファイバ素線の長手方向に対して、間欠的に接着されてもよい。
 本発明によれば、光ファイバテープ心線の少なくとも一部の接着部が、間欠的に接着されて形成されるため、光ファイバ素線同士の接着部が容易に屈曲する。このため、光ファイバテープ心線の一部がルースチューブ内面と接触しても、光ファイバテープ心線の整列方向が変形して、ルースチューブ内面から受ける応力を分散することができる。このため、光ファイバテープ心線とチューブ内面との間のクリアランスを小さくすることができ、ルースチューブ型光ファイバユニットを小型化することができる。
 また、間欠的に接着された接着部の長さと間隔を適切にすることで、ファイバスキューの低減効果を確実に得ることができる。
 また、すべての光ファイバ素線同士の間の接着部に対して、半数以上の接着部を間欠的に接着することで、光ファイバテープ心線の整列方向を容易に変形させることができる。特に、すべての接着部を間欠とすることで、光ファイバテープ心線の整列方向を容易に変形させることができる。
 本発明によれば、伝送特性が良好で、小型であるルースチューブ型光ファイバユニットを提供することができる。
光ファイバケーブル1を示す断面図。 光ファイバユニット3を示す断面図。 光ファイバテープ心線5を示す斜視図。 光ファイバテープ心線5を示す断面図。 ルースチューブ13内の光ファイバテープ心線5の変形状態を示す図。 光ファイバテープ心線5aを示す斜視図。 ルースチューブ13内の光ファイバテープ心線5aの変形状態を示す図。 光ファイバテープ心線5bを示す斜視図。 光ファイバテープ心線5cを示す斜視図。 光ファイバテープ心線5dを示す斜視図。
 以下、図面を参照しながら、本発明の実施形態について説明する。図1は、光ファイバケーブル1を示す径方向の断面図である。光ファイバケーブル1は、複数のルースチューブ型光ファイバユニットが収容された光ファイバケーブルである。
 断面において、光ファイバケーブル1の中心には、テンションメンバ9が配置される。テンションメンバ9は、光ファイバケーブル1の張力を負担する。テンションメンバ9は、例えば鋼線や繊維強化プラスチックなどであり、必要に応じて外周面に緩衝層が設けられる。
 テンションメンバ9の外周には、複数の光ファイバユニット3が配置される。光ファイバユニット3は、ルースチューブ型光ファイバユニットである。光ファイバユニット3は、複数の光ファイバテープ心線5がルースチューブ13内に収容される。光ファイバユニット3の詳細は後述する。
 光ファイバユニット3を覆うように、外被7が設けられる。外被7は、例えばポリエチレン製である。なお、外被7の内周側に、押さえ巻きテープ等を設けてもよい。また、外被7の一部には、引き裂き紐11を埋設してもよい。
 なお、本発明の光ファイバケーブルは、図示した例には限られず、光ファイバの本数や、配置、大きさなど適宜設計される。また、テンションメンバや引き裂き紐の構成についても、図示した例には限られず、配置やサイズなどは適宜設計される。
 次に、光ファイバユニット3について詳細を説明する。図2は、光ファイバユニット3の断面図である。前述した様に、ルースチューブ13内には、複数の光ファイバテープ心線5が配置される。また、ルースチューブ13の内面と光ファイバテープ心線5との間には、ジェル状の部材、もしくは吸水性繊維が封入される。
 ルースチューブ13は、例えばポリブチレンテレフタレート樹脂等で構成される。また、ジェリー状部材、もしくは吸水性繊維は、光ファイバテープ心線の保護と、止水機能を有する。なお、ルースチューブ13およびジェル状部材、もしくは吸水性繊維は、公知のものを適用することができる。
 光ファイバテープ心線5は、複数の光ファイバ素線が一方向に併設されて一体化されたものである。図3は、光ファイバテープ心線5を示す斜視図であり、図4は、図3のA-A線断面図である。光ファイバテープ心線5は、複数の光ファイバ素線17が並列に接着されて構成される。なお、以下の説明において、12本の光ファイバ素線17により構成される例を示すが、本発明はこれに限られず、複数の光ファイバ素線からなる光ファイバテープ心線であれば適用可能である。
 光ファイバテープ心線5は、隣り合う光ファイバ素線17同士が、全長にわたって連続して接着剤が塗布されて接着された接着部15bと、光ファイバ素線17の長手方向に所定の間隔をあけて間欠的に接着された接着部15aにより接着される。すなわち、隣り合う光ファイバ素線17同士の間には、接着部15aまたは接着部15bが形成される。
 なお、図示した例では、接着部15bは、光ファイバ素線17の全周を覆うように形成しているが、光ファイバ素線17の一部が露出するように、光ファイバ素線17同士の間にのみ設けてもよい。すなわち、接着部15bは、光ファイバテープ心線5の長手方向に連続して形成されればよい。
 図示した例では、光ファイバテープ心線5の幅方向の両端から1本目の光ファイバ素線17と2本目の光ファイバ素線17の間、および、両端から2本目の光ファイバ素線17と3本目の光ファイバ素線17の間が、接着部15aで接着され、残りの光ファイバ素線17同士の間が接着部15bで接着される。
 すなわち、光ファイバテープ心線5は、両端部の所定本数だけ、間欠の接着部15aで接着され、中央部の所定本数が全長にわたって接着部15bで接着される。このように、本発明の光ファイバテープ心線5は、少なくとも一部の光ファイバ素線17同士の間に、光ファイバ素線17の長手方向に対して、間欠的に接着される。
 接着部15bは、光ファイバ素線17同士が全長にわたって接着されるため、隣り合う光ファイバ素線17同士を比較的強く拘束する。このため、光ファイバ素線17の並列方向に対して、光ファイバ素線17同士がまっすぐに保持される。
 一方、接着部15aは、隣り合う光ファイバ素線17同士の拘束力が、接着部15bと比較して小さい。このため、接着部15aで接着された光ファイバ素線17同士を、光ファイバ素線17の並列方向に対して、容易に折り畳む(折り曲げる)ことができる。
 なお、接着部15aが、隣り合って配置される場合には、隣り合う光ファイバ素線同士の接着部15aは、光ファイバテープ心線5の長手方向に対してずれて配置される。例えば、互いに隣り合う接着部15aが、光ファイバテープ心線5の長手方向に半ピッチずれて形成されることが望ましい。
 ここで、接着部15aの長手方向の長さをL(mm)とし、接着部15a同士の長手方向の間隔をD(mm)とする。また、光ファイバテープ心線5の全幅をW(mm)とすると、5W≦D≦50Wの関係が成立することが望ましい。
 接着部15a同士の間隔Dが5Wよりも小さいと、隣り合う光ファイバ素線17同士がうまく折り畳まれず、後述するような、伝送特性に対する効果が小さい。また、接着部15a同士の間隔Dが50Wを超えると、光ファイバ素線17同士が自由に動きすぎるため、取扱い性が悪い。また、接着部15a同士の間隔Dが広いと、各光ファイバ素線17の心線長がばらつきやすく、ファイバスキューの悪化の要因となる。
 また、上記の関係に加え、さらに、3mm≦L≦40/W(但し、W≦13mm)であることが望ましい。Lが3mm未満であると、光ファイバ素線17同士が折り畳まれた際に、接着部15aが切れてしまう恐れがある。また、Lが40/Wを超えると、隣り合う光ファイバ素線17同士がうまく折り畳まれず、後述するような、伝送特性に対する効果が小さい。
 次に、本発明における伝送特性等への効果について説明する。光ファイバユニット3に曲げなどが加わると、光ファイバテープ心線5がルースチューブ13内で動く。この際、光ファイバテープ心線5が、ルースチューブ13の内面と接触する場合がある。このように、光ファイバテープ心線5とルースチューブ13の内面とが接触すると、ルースチューブ13の内面に接触した光ファイバ素線17のみに応力が付与される。
 特に、光ファイバテープ心線5が、接着部15bのみによって、全長にわたって完全に接着していると、前述した様に、光ファイバテープ心線5は、並列方向に略一直線上の形状を維持する。このため、光ファイバテープ心線5は、1本または2本の光ファイバ素線17(両端の光ファイバ素線17)に対してのみ、大きな応力が付与される。このような応力は、当該光ファイバ素線17の伝送特性悪化の要因となる。
 図5は、本発明の光ファイバユニット3に曲げなどが加わり、内部の光ファイバテープ心線5がルースチューブ13の内面と接触した状態を示す断面図である。本発明では、光ファイバテープ心線5の一部に、接着部15bが設けられる。このため、接着部15bにおいて、隣り合う光ファイバ素線17同士が折り畳まれる。すなわち、光ファイバテープ心線5は、並列方向に略一直線上の形状を維持せず、折曲げられた形状となる。
 このように、光ファイバテープ心線5が折曲げられると、ルースチューブ13の内面と接触する光ファイバ素線17の本数が増える。このため、ルースチューブ13内面との接触による応力が分散される。また、光ファイバテープ心線5の変形によって、ルースチューブ13から受ける応力が小さくなる。したがって、一部の光ファイバ素線17に応力が集中することを抑制することができる。この結果、光ファイバ素線17に対する伝送特性悪化を低減することができる。
 また、光ファイバユニット3の曲げ方向によっては、光ファイバテープ心線5を構成するそれぞれの光ファイバ素線17に対して加わる張力に差が生じる場合がある。この場合、光ファイバ素線17同士の長さが変わる恐れがある。この結果、ファイバスキューが悪化する恐れがある。
 しかし、本発明では、光ファイバテープ心線5には接着部15bが形成され、接着部15b以外の部位では、個々の光ファイバ素線17が自由に動くことができる。このため、個々の光ファイバ素線17ごとに加わる張力に差が生じにくく、ファイバスキューの悪化を抑制することができる。このような効果をより有効に得るためには、例えば、全ての光ファイバ素線17同士の間(すなわち、光ファイバ素線17の本数-1)に対して、半数以上を接着部15aで構成することが望ましい。
 なお、本発明において、接着部15aの形成位置は図3に示した例には限られない。図6は、他の形態の光ファイバテープ心線5aを示す図である。
 光ファイバテープ心線5aは、光ファイバテープ心線5とほぼ同様の構成であるが、接着部15a、15bの配置が異なる。光ファイバテープ心線5aは、中央部の所定本数(図では4本)の光ファイバ素線同士の間のみ接着部15aで接着され、残部が接着部15bで接着される。
 図7は、光ファイバユニット3に曲げなどが加わり、内部の光ファイバテープ心線5がルースチューブ13の内面と接触した状態を示す断面図である。前述した様に、光ファイバテープ心線5aの接着部15aに相当する部位は、光ファイバテープ心線5aが容易に屈曲することができる。このため、光ファイバテープ心線5aの略中央部が屈曲して、光ファイバテープ心線5aとルースチューブ13との接触面積が増大する。この結果、ルースチューブ13との接触による光ファイバ素線17への応力が分散され、伝送特性悪化等を抑制することができる。
 なお、光ファイバテープ心線5aのように、両端部のみ接着部15bで全長接着することで、光ファイバテープ心線5a同士の接続時に、融着機等への挿入作業性が良好となる。光ファイバテープ心線5aの端部で、光ファイバ素線17がばらけることがないためである。
 光ファイバテープ心線5aを用いても、光ファイバテープ心線5と同様の効果を得ることができる。なお、以下の実施形態において、前述した様に、全ての光ファイバ素線17同士の間(すなわち、光ファイバ素線17の本数-1)に対して、半数以上を接着部15aで構成することが望ましい。
 また、図8に示した光ファイバテープ心線5bを適用することもできる。光ファイバテープ心線5bは、一方の端部側の所定本数の光ファイバ素線17同士が接着部15aで接着され、他方の端部側の所定本数の光ファイバ素線17同士が接着部15bで接着される。
 光ファイバテープ心線5bを用いても、光ファイバテープ心線5、5aと同様の効果を得ることができる。
 また、図9に示した光ファイバテープ心線5cを適用することもできる。光ファイバテープ心線5cは、所定本数ごと(図では1本毎)に光ファイバ素線17同士を接着部15aと接着部15bとが交互に接着される。なお、接着部15aと接着部15bは、図示した1本毎だけでなく、2本毎であってもよく、ランダムに配置されてもよい。
 光ファイバテープ心線5cを用いても、光ファイバテープ心線5等と同様の効果を得ることができる。
 さらに、図10に示した光ファイバテープ心線5dを適用することもできる。光ファイバテープ心線5dは、全ての光ファイバ素線17同士が接着部15aで接着される。全ての光ファイバ素線同士を接着部15aで接着することで、伝送特性を良好にさせることができる。
 以上、本発明によれば、光ファイバ素線17同士の間の少なくとも一部が、接着部15aで接着されるため、光ファイバ素線17同士が容易に屈曲する。このため、光ファイバテープ心線5等の一部がルースチューブ13内面と接触しても、光ファイバテープ心線5等の整列方向が変形して、ルースチューブ13内面から受ける応力を分散することができる。このため、光ファイバテープ心線5等とルースチューブ13内面との間のクリアランスを小さくすることができ、光ファイバユニット3を小型化することができる。
 また、間欠して形成された接着部15aの長さと間隔を適切にすることで、ファイバスキューの低減効果を確実に得ることができる。
 また、すべての光ファイバ素線17同士の間の接着部に対して、半数以上を接着部15aで接着することで、光ファイバテープ心線5等の整列方向を容易に変形させることができ、ファイバスキュー低減効果が高い。
 また、少なくとも端部側の光ファイバ素線17は、接着部15bで全長接着することで、融着機等への挿入作業性が良好である。
 特に、すべての光ファイバ素線17同士の間を接着部15aで間欠的に接着させることで、光ファイバテープ心線5等の整列方向をより容易に変形させることができる。
 以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
1………光ファイバケーブル
3………光ファイバユニット
5、5a、5b、5c、5d………光ファイバテープ心線
7………外被
9………テンションメンバ
11………引き裂き紐
13………ルースチューブ
15a、15b………接着部
17………光ファイバ素線
 

Claims (4)

  1.  複数の光ファイバテープ心線と、
     前記光ファイバテープ心線を覆うルースチューブと、
     を具備し、
     前記光ファイバテープ心線は、隣り合う光ファイバ素線同士が接着されて所定間隔で整列し、
     少なくとも一部の前記光ファイバ素線同士は、光ファイバ素線の長手方向に対して、間欠的に接着されることを特徴とするルースチューブ型光ファイバユニット。
  2.  前記光ファイバテープ心線の全幅をWmmとし、間欠的に接着された接着部の長さをLmmとし、間欠的に接着された接着部同士の間隔をDmmとした場合に、
     5W≦D≦50Wであり、3mm≦L≦40/W(但し、W≦13mm)であることを特徴とする請求項1記載のルースチューブ型光ファイバユニット。
  3.  すべての前記光ファイバ素線同士の間の接着部に対して、半数以上の接着部は、光ファイバ素線の長手方向に対して、間欠的に接着されることを特徴とする請求項1記載のルースチューブ型光ファイバユニット。
  4.  すべての前記光ファイバ素線同士が、光ファイバ素線の長手方向に対して、間欠的に接着されることを特徴とする請求項3記載のルースチューブ型光ファイバユニット。
     
PCT/JP2015/050650 2014-09-17 2015-01-13 ルースチューブ型光ファイバユニット WO2016042784A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
SG11201702106WA SG11201702106WA (en) 2014-09-17 2015-01-13 Loose tube-type optical fiber unit
US15/510,521 US9989723B2 (en) 2014-09-17 2015-01-13 Loose tube-type optical fiber unit
KR1020177003759A KR20170055956A (ko) 2014-09-17 2015-01-13 루스 튜브형 광섬유 유닛

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-188548 2014-09-17
JP2014188548A JP6639773B2 (ja) 2014-09-17 2014-09-17 ルースチューブ型光ファイバユニット

Publications (1)

Publication Number Publication Date
WO2016042784A1 true WO2016042784A1 (ja) 2016-03-24

Family

ID=55532836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050650 WO2016042784A1 (ja) 2014-09-17 2015-01-13 ルースチューブ型光ファイバユニット

Country Status (6)

Country Link
US (1) US9989723B2 (ja)
JP (1) JP6639773B2 (ja)
KR (1) KR20170055956A (ja)
SG (1) SG11201702106WA (ja)
TW (1) TWI654455B (ja)
WO (1) WO2016042784A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3500883A4 (en) * 2016-08-22 2020-03-18 Corning Optical Communications LLC MOBILE ARTICULATED FIBER OPTIC TAPE BETWEEN ALIGNED AND FOLDED POSITIONS
US11300741B2 (en) * 2020-02-27 2022-04-12 Sterlite Technologies Limited Leaf shaped intermittent bonded optical fibre ribbon

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017023516A1 (en) * 2015-07-31 2017-02-09 Corning Optical Communications LLC Rollable optical fiber ribbon
JP6711119B2 (ja) * 2016-05-10 2020-06-17 住友電気工業株式会社 光ファイバテープ心線、光ファイバケーブル
PL3497498T3 (pl) 2016-08-08 2020-11-16 Corning Optical Communications LLC Elastyczna taśma światłowodowa z nieciągłymi warstwami polimeru
EP3660566A4 (en) * 2017-07-24 2021-04-07 Sumitomo Electric Industries, Ltd. FIBER TAPE AND FIBER CABLE
US20190219783A1 (en) * 2018-01-12 2019-07-18 Ofs Fitel, Llc Multi-fiber unit tube optical fiber microcable incorporating rollable optical fibers ribbons
US10871621B2 (en) * 2018-03-27 2020-12-22 Ofs Fitel, Llc Rollable ribbon fibers with water-swellable coatings
US10718917B2 (en) * 2018-08-24 2020-07-21 Prysmian S.P.A. Flexible optical fiber ribbons and methods of formation thereof
US11105993B2 (en) * 2018-12-06 2021-08-31 Sterlite Technologies Limited Direct burial sensory cable
US11693201B2 (en) * 2020-02-27 2023-07-04 Sterlite Technologies Limited Intermittently bonded optical fibre ribbon with unequal bond and gap lengths
WO2022075364A1 (ja) * 2020-10-07 2022-04-14 住友電気工業株式会社 光ファイバテープ心線、ダイス、および光ファイバテープ心線の製造方法
WO2022138994A1 (ko) * 2020-12-21 2022-06-30 대한광통신 주식회사 롤러블 광섬유 리본 및 그 제조방법
CN113325532B (zh) * 2021-05-25 2022-03-01 长飞光纤光缆股份有限公司 一种层绞式光纤带光缆及生产工艺
US20240345355A1 (en) * 2021-07-21 2024-10-17 Ls Cable & System Ltd. Optical fiber ribbon
US11953743B2 (en) * 2021-11-29 2024-04-09 Sterlite Technologies Limited Optical fibre ribbon with optimized number of bonds
CN115236813B (zh) * 2022-07-19 2024-03-12 南京华信藤仓光通信有限公司 一种网状光纤带及其制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011221163A (ja) * 2010-04-07 2011-11-04 Sumitomo Electric Ind Ltd 光ファイバテープ心線の製造方法
JP2012208443A (ja) * 2011-03-30 2012-10-25 Swcc Showa Cable Systems Co Ltd 光ファイバテープ心線および光ケーブル
JP2012234122A (ja) * 2011-05-09 2012-11-29 Fujikura Ltd 光ユニット
JP2014085592A (ja) * 2012-10-25 2014-05-12 Swcc Showa Cable Systems Co Ltd 間欠型光ファイバテープ心線の製造方法および製造装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4143651B2 (ja) 2006-04-04 2008-09-03 株式会社フジクラ 光ファイバテープ心線及び前記光ファイバテープ心線を収納した光ファイバケーブル
JP2009163045A (ja) * 2008-01-08 2009-07-23 Fujikura Ltd 光ファイバテープ心線およびその分割方法
CN102057309B (zh) * 2008-06-30 2014-04-16 日本电信电话株式会社 光纤缆线以及光纤带
JP4619424B2 (ja) 2008-06-30 2011-01-26 日本電信電話株式会社 光ファイバケーブル
JP2012118422A (ja) * 2010-12-03 2012-06-21 Fujikura Ltd 光ユニット、光ユニットからの光ファイバ取出し方法及び光ファイバケーブル
JP5840902B2 (ja) 2011-09-05 2016-01-06 株式会社フジクラ ルースチューブ型光ファイバケーブル
JP5391296B2 (ja) * 2012-03-02 2014-01-15 株式会社フジクラ 光ファイバテープ心線及びその光ファイバテープ心線を収納した光ファイバケーブル
WO2013165407A1 (en) * 2012-05-02 2013-11-07 Cignarale Joseph Round and small diameter optical cables with a ribbon-like optical fiber structure
JP2014115312A (ja) * 2012-12-06 2014-06-26 Sumitomo Electric Ind Ltd 光ケーブル及び単心分離方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011221163A (ja) * 2010-04-07 2011-11-04 Sumitomo Electric Ind Ltd 光ファイバテープ心線の製造方法
JP2012208443A (ja) * 2011-03-30 2012-10-25 Swcc Showa Cable Systems Co Ltd 光ファイバテープ心線および光ケーブル
JP2012234122A (ja) * 2011-05-09 2012-11-29 Fujikura Ltd 光ユニット
JP2014085592A (ja) * 2012-10-25 2014-05-12 Swcc Showa Cable Systems Co Ltd 間欠型光ファイバテープ心線の製造方法および製造装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3500883A4 (en) * 2016-08-22 2020-03-18 Corning Optical Communications LLC MOBILE ARTICULATED FIBER OPTIC TAPE BETWEEN ALIGNED AND FOLDED POSITIONS
US11300741B2 (en) * 2020-02-27 2022-04-12 Sterlite Technologies Limited Leaf shaped intermittent bonded optical fibre ribbon

Also Published As

Publication number Publication date
KR20170055956A (ko) 2017-05-22
JP6639773B2 (ja) 2020-02-05
US9989723B2 (en) 2018-06-05
US20170299829A1 (en) 2017-10-19
JP2016061869A (ja) 2016-04-25
SG11201702106WA (en) 2017-04-27
TWI654455B (zh) 2019-03-21
TW201612567A (en) 2016-04-01

Similar Documents

Publication Publication Date Title
WO2016042784A1 (ja) ルースチューブ型光ファイバユニット
KR102359615B1 (ko) 광섬유 케이블
EP3330760A1 (en) Optical fiber cable
JP6373196B2 (ja) 光ファイバケーブル
WO2010106858A1 (ja) 光ファイバケーブル
JP2020024257A (ja) 光ファイバテープ心線、光ファイバケーブル、および光ファイバテープ心線の融着接続方法
JP2014211511A (ja) 光ケーブル
JP6329912B2 (ja) 光ファイバテープ心線、光ファイバケーブル
CN107076954B (zh) 光缆、光缆的制造方法以及制造装置
JP6542648B2 (ja) 光ファイバケーブル
US20220342167A1 (en) Optical fiber ribbon, optical fiber cable, and connector-equipped optical fiber cord
JP5158893B2 (ja) 光ファイバユニット及び光ファイバケーブル
JP5823247B2 (ja) 光ファイバユニット、光ファイバユニットの製造方法、光ファイバケーブル
JP2017156558A (ja) 光ファイバケーブルの製造方法、光ファイバテープ心線の製造方法
KR102276843B1 (ko) 광섬유 유닛 및 광섬유 케이블
JP6391508B2 (ja) 光ファイバテープ心線
CN101458373A (zh) 多边形排列的中心管式带状光缆
KR101168762B1 (ko) 광섬유 보강구조
US6768845B1 (en) Optical cable for holding optical fiber ribbons having a plurality of one groove spacers
JP6775058B2 (ja) 光ファイバケーブル
JP5468889B2 (ja) 光ファイバケーブル、光ファイバケーブルの製造方法
JP2005070770A5 (ja)
JP4976334B2 (ja) 光ファイバケーブル
JP2009288479A (ja) 光ファイバ心線および光ファイバケーブル
JP2004126164A (ja) 平型光ファイバコード及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15842411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177003759

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15510521

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15842411

Country of ref document: EP

Kind code of ref document: A1