WO2016039072A1 - 半導体装置および半導体装置の製造方法 - Google Patents

半導体装置および半導体装置の製造方法 Download PDF

Info

Publication number
WO2016039072A1
WO2016039072A1 PCT/JP2015/072910 JP2015072910W WO2016039072A1 WO 2016039072 A1 WO2016039072 A1 WO 2016039072A1 JP 2015072910 W JP2015072910 W JP 2015072910W WO 2016039072 A1 WO2016039072 A1 WO 2016039072A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
type
semiconductor region
semiconductor
silicon carbide
Prior art date
Application number
PCT/JP2015/072910
Other languages
English (en)
French (fr)
Inventor
原田 祐一
保幸 星
明将 木下
大西 泰彦
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Priority to JP2016547789A priority Critical patent/JP6264466B2/ja
Publication of WO2016039072A1 publication Critical patent/WO2016039072A1/ja
Priority to US15/283,999 priority patent/US10147791B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/266Bombardment with radiation with high-energy radiation producing ion implantation using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • the present invention relates to a semiconductor device used as a switching device formed on a silicon carbide substrate and a method for manufacturing the semiconductor device.
  • FIG. 19 is a cross-sectional structure diagram of an n-channel MOSFET formed using a conventional silicon carbide substrate.
  • An n ⁇ type SiC layer 2 having a low impurity concentration is formed on the front surface side of an n type SiC (silicon carbide) substrate 1, and a plurality of p type base regions 10 are formed on the surface layer of the n ⁇ type SiC layer 2.
  • the Further, a p-type SiC layer 11 is formed on the surface of the p-type base region 10.
  • an n-type region 12 is formed on the front surface of the n ⁇ -type SiC layer 2 where the p-type base region 10 is not formed so as to be sandwiched between the p-type SiC layers 11, and the p-type SiC layer 11 is further formed.
  • An n-type source region 4 and a low impurity concentration p + -type contact region 5 are formed.
  • a source electrode 8 is formed on the front surfaces of the n-type source region 4 and the p + -type contact region 5.
  • the gate extends from the p-type SiC layer 11 to the n-type region 12 through the gate insulating film 6.
  • An electrode 7 is formed.
  • a drain electrode 9 is formed on the back side of the n-type SiC substrate 1 (see, for example, Patent Document 1 below).
  • the n-type region 12 and the n-type source region 4 are individually formed, and the processing accuracy is poor and the characteristic variation is large. Further, when the n-type region 12 having an impurity concentration higher than that of the n ⁇ -type SiC layer 2 is provided between the p-type base regions 10 for improving the on-resistance, the number of processes increases and the processing accuracy is poor and the characteristic variation is similar to the above. growing. Further, when a high voltage is applied to the drain electrode 9, an avalanche is likely to occur at the pn junction portion composed of the p-type base region 10 and the n ⁇ -type SiC layer 2, particularly at the terminal portion of the p-type base region 10.
  • FIG. 20 is a cross-sectional structure diagram showing an avalanche current path of an n-channel MOSFET formed using a conventional silicon carbide substrate. As shown by an arrow in FIG. 20, an avalanche current flows along a path from the corner portion of the p-type base region 10 to the source electrode 8 through the portion of the p-type base region 10 below the n-type source region 4. An avalanche current may cause a parasitic npn bipolar transistor including the n ⁇ -type SiC layer 2, the p-type base region 10, and the n-type source region 4 to operate, and the breakdown tolerance may be reduced.
  • the present invention provides a semiconductor device and a semiconductor device capable of improving the dielectric breakdown resistance and breakdown resistance of the gate insulating film with a low on-resistance and improved accuracy of the threshold voltage Vth and high quality. It aims at providing the manufacturing method of.
  • the semiconductor device of the present invention has the following characteristics.
  • a first conductivity type silicon carbide layer having a lower impurity concentration than the silicon carbide substrate is formed on the surface of the first conductivity type silicon carbide substrate.
  • a first semiconductor region of a second conductivity type is selectively formed on the surface layer of the silicon carbide layer.
  • a first source region of a first conductivity type is selectively formed on the surface layer of the first semiconductor region.
  • a source electrode electrically connected to the surfaces of the first semiconductor region and the first source region is provided.
  • a gate electrode is formed on the surface of the portion of the first semiconductor region sandwiched between the silicon carbide layer and the first source region via a gate insulating film.
  • a drain electrode is formed on the back surface of the silicon carbide substrate.
  • the surface layer of the first semiconductor region is in contact with the first source region outside the first source region, and has a first conductivity type having a higher impurity concentration than the first source region.
  • the second source region is formed.
  • a portion of the silicon carbide layer sandwiched between the first semiconductor regions has a first conductivity type third semiconductor region deeper than the first semiconductor region and having a higher impurity concentration than the silicon carbide layer.
  • a fourth semiconductor region of a first conductivity type having a smaller size than the first semiconductor region is formed under the first semiconductor region.
  • the gate electrode is formed over the third semiconductor region via the gate insulating film, and the third semiconductor region is formed on the first region in contact with the silicon carbide layer and the gate insulating film. It is divided into two regions that are in contact with each other and a second region having a higher impurity concentration than the first region.
  • the fourth semiconductor region is formed in a ring-like planar shape below the first semiconductor region.
  • the source electrode is electrically connected to the surfaces of the second semiconductor region and the first source region, and the fourth semiconductor region is formed under the first semiconductor region that is located immediately below the second semiconductor region. It is characterized by that.
  • the semiconductor device manufacturing method of the present invention has the following characteristics.
  • a first conductivity type silicon carbide layer having a lower impurity concentration than the silicon carbide substrate is formed on the surface of the first conductivity type silicon carbide substrate.
  • a first semiconductor region of a second conductivity type is selectively formed on the surface layer of the silicon carbide layer.
  • a first source region of a first conductivity type is selectively formed on the surface layer of the first semiconductor region.
  • a source electrode electrically connected to the surfaces of the first semiconductor region and the first source region is provided.
  • a gate electrode is formed on the surface of the portion of the first semiconductor region sandwiched between the silicon carbide layer and the first source region via a gate insulating film.
  • a drain electrode is formed on the back surface of the silicon carbide substrate.
  • a first step of forming the silicon carbide layer having a lower impurity concentration than the silicon carbide substrate on the surface of the silicon carbide substrate is performed.
  • a second step of selectively forming the first semiconductor region on the surface layer of the silicon carbide layer is performed.
  • a third step of selectively forming the first source region on the surface layer of the first semiconductor region is performed.
  • a fourth step of forming the semiconductor region is performed. Then, at a predetermined timing, a fifth step of forming a first conductive type fourth semiconductor region having a size smaller than that of the first semiconductor region under the first semiconductor region is performed.
  • the fourth step as the third semiconductor region, a first region that reaches a position deeper than the first semiconductor region, and a first region that is disposed at a position shallower than the first region. And a second region having a high impurity concentration.
  • the fifth step is performed after the second step, before the third step, or after the third step and before the fourth step.
  • a second conductive type second semiconductor region having a higher impurity concentration than the first semiconductor region is provided on the inner side of the surface layer of the first semiconductor region than the first source region.
  • the method further includes a sixth step of selectively forming, wherein the fifth step is performed after the fourth step, before the sixth step, or after the sixth step.
  • the third step includes forming a first ion implantation mask having an opening corresponding to a formation region of the first source region on a surface of the first semiconductor region, and the first ion implantation. Forming the first source region by performing ion implantation using the mask as a mask, and forming the fourth semiconductor region using the same first ion implantation mask as a mask in the fifth step. It is characterized by that.
  • the sixth step includes a step of forming a second ion implantation mask having an opening corresponding to the formation region of the second semiconductor region on the surface of the first semiconductor region, and the second ion implantation step. Forming the second semiconductor region by performing ion implantation using the mask as a mask, and forming the fourth semiconductor region using the same second ion implantation mask as a mask in the fifth step. It is characterized by that.
  • the third step includes forming a first ion implantation mask having an opening corresponding to a formation region of the first source region on a surface of the first semiconductor region, and the first ion implantation. Forming the first source region by performing ion implantation using the mask as a mask. Furthermore, the fourth step increases the width of the opening of the first ion implantation mask so that a portion of the first semiconductor region outside the first source region is selectively exposed, Selectively removing the first ion implantation mask so that a portion of the silicon carbide layer sandwiched between the first semiconductor regions is exposed; and masking a remaining portion of the first ion implantation mask And performing the step of forming the second source region and the third semiconductor region by performing ion implantation.
  • the impurities used for forming the first source region, the second source region, and the third semiconductor region are nitrogen and phosphorus having a large projected range.
  • the first conductive type third semiconductor region and the first conductive type first source region formed on the surface are formed simultaneously, thereby eliminating the problem of misalignment, and controlling the threshold value to achieve stable characteristics.
  • the first conductivity type region formed between the second conductivity type first semiconductor regions can reduce the JFET resistance and reduce the on-resistance.
  • the fourth semiconductor region of the first conductivity type is formed below the first semiconductor region of the second conductivity type, the second conductivity type first semiconductor region and the second semiconductor region when the high voltage is applied to the drain electrode. An avalanche is caused at the pn junction with the third semiconductor region of the first conductivity type formed below the first semiconductor region of the two conductivity type.
  • the breakdown resistance of the gate insulating film is improved, and the reliability of the gate insulating film is improved.
  • the location where the avalanche is generated becomes a pn junction, and the second conductive type first semiconductor region Since the avalanche current flowing under the first conductivity type first source region is reduced and the operation of the parasitic npn transistor can be suppressed, the breakdown resistance of the element is improved.
  • the saturation current of the element can be suppressed, the current at the time of load short-circuiting is also suppressed, and the breakdown tolerance is improved.
  • an element can be formed without increasing the formation process. The problem of misalignment can be solved, stable characteristics can be obtained, and reliability and breakdown resistance can be improved.
  • the low on-resistance and the accuracy of the threshold voltage Vth are improved, the quality is high, and the dielectric breakdown resistance and breakdown resistance of the gate insulating film can be improved.
  • FIG. 1 is a cross-sectional structure diagram of a MOSFET in a first embodiment of a semiconductor device of the present invention.
  • FIG. 2 is a plan view of the n-type silicon carbide layer and the junction between the n-type region and the p-type base region of the MOSFET in the first embodiment of the semiconductor device of the present invention.
  • FIG. 3 is a diagram showing a manufacturing process in the first embodiment of the semiconductor device of the present invention.
  • Part 1 is a diagram showing manufacturing steps in the first embodiment of the semiconductor device of the present invention.
  • Part 2 is a diagram showing manufacturing steps in the first embodiment of the semiconductor device of the present invention.
  • Part 2 is a diagram showing manufacturing steps in the first embodiment of the semiconductor device of the present invention.
  • Part 3 FIG. 6 is a diagram showing a manufacturing process in the first embodiment of the semiconductor device of the present invention.
  • FIG. 7 is a diagram showing a manufacturing process in Example 1 of the semiconductor device of the present invention.
  • FIG. 8 is a diagram for explaining the flow of avalanche current in the first embodiment of the semiconductor device of the present invention.
  • FIG. 9 is a plan view of the n-type silicon carbide layer and the junction between the n-type region and the p-type base region of the MOSFET in the second embodiment of the semiconductor device of the present invention.
  • FIG. 10 is a cross-sectional structure diagram of the MOSFET in the semiconductor device according to the second embodiment of the present invention (A-A ′ cross-sectional view in FIG. 9).
  • FIG. 11 is a cross-sectional structural view (cross-sectional view taken along the line B-B ′ of FIG.
  • FIG. 12 is a cross-sectional view of a MOSFET in the third embodiment of the semiconductor device of the present invention.
  • FIG. 13 is a plan view of the n-type silicon carbide layer and the junction between the n-type region and the p-type base region of the MOSFET in the third embodiment of the semiconductor device of the present invention.
  • FIG. 14 is a diagram showing manufacturing steps in Example 3 of the semiconductor device of the present invention.
  • Part 1 is a diagram showing manufacturing steps in Example 3 of the semiconductor device of the present invention.
  • Part 2 is a diagram showing manufacturing steps in Example 3 of the semiconductor device of the present invention.
  • Part 3 FIG.
  • FIG. 17 is a diagram showing manufacturing steps in Example 3 of the semiconductor device of the present invention.
  • Part 4 FIG. 18 is a diagram showing manufacturing steps in Example 3 of the semiconductor device of the present invention.
  • Part 5 FIG. 19 is a cross-sectional structure diagram of an n-channel MOSFET formed using a conventional silicon carbide substrate.
  • FIG. 20 is a cross-sectional structure diagram showing an avalanche current path of an n-channel MOSFET formed using a conventional silicon carbide substrate.
  • Example 1 is a cross-sectional structure diagram of a MOSFET in a first embodiment of a semiconductor device of the present invention.
  • the first conductivity type is n-type and the second conductivity type is p-type.
  • An n ⁇ type SiC layer 2 is formed on the front surface side of the n type SiC substrate 1, and a plurality of p type base regions (second conductivity type first semiconductor regions) 10 are provided on the surface layer of the n ⁇ type SiC layer 2. It is formed.
  • a laminated body in which an n ⁇ -type SiC layer 2 and a p-type SiC layer 11 (to be described later) are sequentially laminated on an n-type SiC substrate 1 is referred to as an SiC substrate.
  • An n-type region (first conductivity type third semiconductor region) 22 is formed between the p-type base regions 10.
  • the depth of the n-type region 22 from the surface of the n ⁇ -type SiC layer 2 is n ⁇ of the p-type base region 10. It is deeper than the depth from the surface of the type SiC layer 2.
  • a second n-type region (first conductive type fourth semiconductor region) 23 is formed under the p-type base region 10 (on the back side of the substrate).
  • An n-type region 22 a having the same impurity concentration as that of the n-type region 22 may be formed when the n-type region 22 is formed.
  • a p-type SiC layer 11 is formed on the surface of n ⁇ -type SiC layer 2.
  • the impurity concentration of p-type SiC layer 11 is lower than the impurity concentration of p-type base region 10.
  • An n + -type region 12 is formed on the p-type SiC layer 11 on the n-type region 22 from the front surface to the back surface so as to reach the n-type region 22.
  • a second n + type source region (first conductivity type second source region) 21 21, an n type source region (first conductivity type first source region) 4
  • a p + -type contact region (second conductivity type second semiconductor region) 5 is selectively formed.
  • the n-type source region 4 is in contact with the p + -type contact region 5 and is arranged closer to the n + -type region 12 than the p + -type contact region 5.
  • the second n + -type source region 21 is in contact with the n-type source region 4 and is disposed closer to the n + -type region 12 than the n-type source region 4.
  • the second n + -type source region 21 has a higher impurity concentration than the n-type source region 4.
  • the n-type source region 4, the second n + -type source region 21, and the p + -type contact region 5 penetrate the p-type SiC layer 11 in the depth direction and reach the p-type base region 10.
  • a source electrode 8 is formed on the front surfaces of the n-type source region 4 and the p + -type contact region 5. Furthermore, a gate electrode 7 is formed on the surface of the portion of the p-type SiC layer 11 sandwiched between the n + -type region 12 and the second n + -type source region 21 via the gate insulating film 6. ing. The gate electrode 7 may extend on the n + type region 12 through the gate insulating film 6. A portion of the gate electrode 7 (not shown) that connects cells with other cells is formed by connecting the p-type SiC layer 11 without forming the n + -type region 12. Drain electrode 9 is formed on the back surface of n-type SiC substrate 1.
  • FIG. 2 is a plan view of the n-type silicon carbide layer and the junction between the n-type region and the p-type base region of the MOSFET in the first embodiment of the semiconductor device of the present invention.
  • FIG. 2 is a plan view of the junction surface of n ⁇ -type SiC layer 2 and second n-type region 23 and p-type base region 10 shown in FIG. 2, the second n-type region 23 is formed in a ring shape below the p-type base region 10 (on the back side of the substrate).
  • the second n-type region 23 is shown as a hexagonal cell centered on the p + -type contact region 5, but this shape is not limited to a polygonal cell and is formed by a circular cell. It doesn't matter.
  • the operation of the MOSFET shown in FIGS. 1 and 2 is the same as that of the conventional MOSFET. That is, it can be turned on by applying a voltage higher than the threshold voltage to the gate electrode 7 and forming an inversion layer on the surface of the p-type base region 10 or the p-type SiC layer 11.
  • FIG. 3 to 7 are diagrams showing manufacturing steps in the first embodiment of the semiconductor device of the present invention.
  • the MOSFET in the first embodiment is manufactured in the order of steps (a) to (e) shown in FIG.
  • an n ⁇ -type SiC layer 2 is deposited (formed) on the front surface of the n-type SiC substrate 1 by, for example, epitaxial growth.
  • p-type base region 10 is selectively formed on the surface layer of n ⁇ -type SiC layer 2.
  • the p-type base region 10 is formed by, for example, aluminum (Al) ion implantation with an impurity concentration of about 3.0 ⁇ 10 18 cm ⁇ 3 and a depth of about 0.5 ⁇ m from the surface of the n ⁇ -type SiC layer 2.
  • the p-type SiC layer 11 having, for example, an impurity concentration of about 5.0 ⁇ 10 15 and a thickness of about 0.5 ⁇ m is formed on the entire surface of the n ⁇ -type SiC layer 2 by, for example, epitaxial growth.
  • the n ⁇ -type SiC layer 2 is formed to have an impurity concentration of about 1.0 ⁇ 10 16 cm ⁇ 3 and a thickness of about 10 ⁇ m in a 1200 V class MOSFET, for example.
  • an oxide film 31 is formed on the surface of the p-type SiC layer 11, and a portion of the oxide film 31 corresponding to the formation region of the n-type source region 4 is removed.
  • the n-type source region 4 is selectively formed inside the p-type SiC layer 11 by ion implantation of an n-type impurity such as phosphorus (P) using the remaining portion of the oxide film 31 as a mask.
  • the n-type source region 4 is formed with an impurity concentration of about 1.0 ⁇ 10 20 cm ⁇ 3 or more and a depth of about 0.5 ⁇ m.
  • the second n-type region 23 is formed by ion implantation of n-type impurities using the remaining oxide film 31 remaining with the same opening width as that of the n-type source region 4 as a mask.
  • the second n-type region 23 has an impurity concentration of about 1.2 to 1.5 times that of the n ⁇ -type SiC layer 2 and a high implantation energy of 600 keV or more at a depth of about 1.5 to 1.0 ⁇ m. By implantation, it is formed at an arbitrary depth (that is, below the p-type base region 10).
  • the second n-type region 23 is smaller in size (area) than the p-type base region 10 (the lateral end of the second n-type region 23 is located inside the corner portion of the p-type base region 10). And a ring-shaped planar shape as shown in FIG.
  • n-type impurities are also ion-implanted into the p-type base region 10, but the impurity concentration of the p-type base region 10 is, for example, about 3.0 ⁇ 10 18 cm ⁇ 3 , and the second n-type region 23. Therefore, the p-type base region 10 is not inverted to the n-type when the second n-type region 23 is formed.
  • the order of forming the n-type source region 4 and the second n-type region 23 can be interchanged.
  • n-type region 22 is selectively formed on the surface layer of the n ⁇ -type SiC layer 2 by ion implantation of an n-type impurity such as nitrogen (N).
  • n-type region 22 is, for example, n - impurity concentration of about 1.2-1.5 times the type SiC layer 2, n - is formed to a depth of about 1.2 ⁇ m from type SiC layer 2 surface.
  • n-type impurities are also ion-implanted into the p-type base region 10, but the impurity concentration of the p-type base region 10 is, for example, about 3.0 ⁇ 10 18 cm ⁇ 3, which is higher than that of the n-type region 22. Because of the impurity concentration, the formation of the n-type region 22 does not invert the p-type base region 10 to the n-type. At this time, an n-type region 22 a having the same impurity concentration as that of the n-type region 22 may be formed under the p-type base region 10.
  • the second n + type source region 21 and the n + type region 12 are formed, for example, with an impurity concentration of about 4.0 ⁇ 10 16 cm ⁇ 3 and a depth of about 0.5 ⁇ m. Then, all the oxide film 31 is removed.
  • the formation order of the n-type region 22 and the second n + -type source region 21 and the n + -type region 12 can be interchanged.
  • an oxide film 32 is formed on the surface of the p-type SiC layer 11, and a portion of the oxide film 32 corresponding to the formation region of the p + -type contact region 5 is removed.
  • the p + -type contact region 5 is formed by ion implantation of a p-type impurity such as Al.
  • the p + -type contact region 5 is formed, for example, with an impurity concentration of about 1.0 ⁇ 10 20 cm ⁇ 3 and a depth of about 0.5 ⁇ m. Then, all the oxide film 32 is removed.
  • activation annealing is performed at a temperature of 1600 ° C. or higher to remove and activate ion implantation damage in each layer.
  • the surface structure and the back electrode (drain electrode) 9 are formed by a general method to obtain the semiconductor device of FIG.
  • the surface structure includes a gate insulating film 6, a gate electrode 7, an interlayer insulating film (not shown), a source electrode 8, an electrode pad, a passivation protective film (not shown), and the like.
  • the film thickness of the oxide films 31 and 32 used as masks during ion implantation needs to be, for example, about 1.5 ⁇ m or more, and is projected as an impurity during ion implantation for forming each n-type region. It is preferable to use nitrogen (N) or phosphorus (P) having a large range.
  • the three regions of the n-type region 22, the second n + -type source region 21 and the n + -type region 12 can be formed in one photolithography process, so that the number of steps can be greatly reduced. it can.
  • the MOSFET formed by the above process has the following effects (1) to (5).
  • the JFET resistance can be reduced, and the on-resistance is reduced.
  • n-type region 22 and the second n + -type source region 21 are simultaneously formed using one mask (oxide film 31), there is no problem of variation in channel length due to misalignment. Variations in characteristics such as on-resistance can be reduced and stable characteristics can be obtained.
  • This simultaneous formation 1. 1. Simultaneous formation of n + -type region 12 and second n + -type source region 21 2. N-type region 22 and second n + -type source region 21 are formed using the same oxide film 31 as a mask. The n-type region 22, the n + -type region 12, and the second n + -type source region 21 are either formed using the same oxide film 31 as a mask.
  • the second n-type region 23 is formed smaller than the p-type base region 10 (the lateral end portion of the second n-type region 23 is positioned inside the corner portion of the p-type base region 10).
  • the ring-shaped planar shape is formed, an avalanche can be generated at the pn junction at the terminal end of the second n-type region 23.
  • FIG. 8 is a diagram for explaining the flow of avalanche current in the first embodiment of the semiconductor device of the present invention.
  • the second n-type region 23 is smaller in size (area) than the p-type base region 10 (the lateral end of the second n-type region 23 is positioned inside the corner of the p-type base region 10). 8), the path of the avalanche current flowing from the p-type base region 10 toward the source electrode 8 is formed from one end of the second n-type region 23 to the p-type base region, as shown in FIG. 10 to the source electrode 8 without passing under the n-type source region 4 from the other end of the second n-type region 23 through the path under the n-type source region 4 to the source electrode 8.
  • the avalanche current which flows through the part of the p-type base region 10 below the n-type source region 4 can be reduced.
  • the operation of the parasitic npn bipolar transistor composed of n ⁇ type SiC layer 2, p type base region 10 and n type source region 4 can be suppressed, so that the breakdown resistance of the element can be improved.
  • the saturation current can be reduced and the current when the load is short-circuited can be suppressed. Therefore, the breakdown resistance of the element is improved.
  • FIG. 9 is a plan view of the n-type silicon carbide layer of the MOSFET and the junction of the n-type region and the p-type base region in the second embodiment of the semiconductor device of the present invention
  • FIGS. 10 and 11 are the semiconductor device of the present invention, respectively. It is sectional structure drawing of MOSFET in Example 2 of the. 10 is a cross-sectional view taken along line AA ′ of FIG. 9, and FIG. 11 is a cross-sectional view taken along line BB ′ of FIG.
  • Embodiment 2 of the present invention is the same as that of Embodiment 1 described above.
  • the second embodiment is different from the first embodiment in that the planar shape of the p-type base region 10 is formed in a stripe shape, and the second n-type region is formed below the p-type base region 10.
  • Reference numeral 23 denotes a ladder-shaped planar shape.
  • Example 3 12 is a cross-sectional view of a MOSFET in the third embodiment of the semiconductor device of the present invention
  • FIG. 13 is an n-type silicon carbide layer, n-type region, and p-type base region of the MOSFET in the third embodiment of the semiconductor device of the present invention. It is a top view of the junction part.
  • the third embodiment of the present invention is different from the first embodiment described above in that the second n-type region 23 formed under the p-type base region 10 in the first and second embodiments is formed under the p + -type contact region 5. Is a point.
  • the second n-type region 23 is the p-type base region 10. It is formed at the center.
  • the planar shape of the hexagonal cell centered on the p + -type contact region 5 is shown, but the planar shape of the p + -type contact region 5 is formed by a polygonal cell and a circular cell. It doesn't matter.
  • FIG. 14 to FIG. 18 are diagrams showing manufacturing steps in Example 3 of the semiconductor device of the present invention.
  • the MOSFET according to the third embodiment is manufactured in the order of steps (a) to (e) shown in FIG.
  • an n ⁇ -type SiC layer 2 is deposited (formed) on the front surface of the n-type SiC substrate 1 by, for example, epitaxial growth.
  • p-type base region 10 is formed in the surface layer of n ⁇ -type SiC layer 2.
  • the p-type base region 10 is formed to have an impurity concentration of 3.0 ⁇ 10 18 cm ⁇ 3 and a depth of about 0.5 ⁇ m from the surface of the n ⁇ -type SiC layer 2 by Al ion implantation, for example.
  • the p-type SiC layer 11 having an impurity concentration of 5.0 ⁇ 10 15 and a thickness of 0.5 ⁇ m is formed on the entire surface of the n ⁇ -type SiC layer 2 by, for example, epitaxial growth.
  • the n ⁇ -type SiC layer 2 is formed to have an impurity concentration of 1.0 ⁇ 10 16 cm ⁇ 3 and a thickness of about 10 ⁇ m in a 1200 V class MOSFET, for example.
  • an oxide film 41 is formed on the surface of the p-type SiC layer 11, and a portion of the oxide film 41 corresponding to the formation region of the n-type source region 4 is removed.
  • the n-type source region 4 is selectively formed in the p-type SiC layer 11 by ion implantation of n-type impurities using the remaining portion of the oxide film 41 as a mask.
  • the n-type source region 4 is formed with an impurity concentration of about 1.0 ⁇ 10 20 cm ⁇ 3 or more and a depth of about 0.5 ⁇ m.
  • n-type region 22 is selectively formed in the surface layer of the n ⁇ -type SiC layer 2 by ion implantation of an n-type impurity with the remainder of the oxide film 41 as a maximum.
  • the n-type region 22 is formed, for example, with an impurity concentration about 1.2 to 1.5 times that of the n ⁇ -type SiC layer 2 and a depth of about 1.2 ⁇ m.
  • n-type impurities are also ion-implanted into the p-type base region 10, but the impurity concentration of the p-type base region 10 is, for example, about 3.0 ⁇ 10 18 cm ⁇ 3, which is higher than that of the n-type region 22. Because of the impurity concentration, the formation of the n-type region 22 does not invert the p-type base region 10 to the n-type. At this time, an n-type region 22 a having the same impurity concentration as that of the n-type region 22 may be formed under the p-type base region 10.
  • the second n + type source region 21 and the n + type region 12 are formed by ion implantation of n type impurities using the oxide film 41 remaining with the same opening width as that of forming the n type region 22 as a mask.
  • the second n + -type source region 21 and the n + -type region 12 are formed, for example, with an impurity concentration of about 4.0 ⁇ 10 16 cm ⁇ 3 and a depth of about 0.5 ⁇ m.
  • the formation order of the n-type region 22 and the second n + -type source region 21 and the n + -type region 12 can be interchanged. Then, all the oxide film 41 is removed.
  • an oxide film 42 is formed on the surface of the p-type SiC layer 11, and a portion of the oxide film 42 corresponding to the formation region of the p + -type contact region 5 is removed.
  • the p + -type contact region 5 is formed by ion implantation of a p-type impurity such as Al.
  • the p + -type contact region 5 is formed, for example, with an impurity concentration of about 1.0 ⁇ 10 20 cm ⁇ 3 and a depth of about 0.5 ⁇ m.
  • the second n-type region 23 is formed by ion implantation of p-type impurities using the oxide film 42 remaining with the same opening width as that when forming the p + -type contact region 5 as a mask.
  • the second n-type region 23 has an impurity concentration of about 1.2 to 1.5 times that of the n ⁇ -type SiC layer 2 and a high implantation energy of 600 keV or more at a depth of about 1.5 to 1.0 ⁇ m. It is formed to an arbitrary depth by implantation.
  • the second n-type region 23 is formed under the p-type base region 10 that is located immediately below the p + -type contact region 5.
  • the impurity concentration of the p-type base region 10 is, for example, about 3.0 ⁇ 10 18 cm ⁇ 3 and is higher than the second n-type region 23, the second n-type region The formation of 23 does not invert the p-type base region 10 to the n-type.
  • the order of forming the p + -type contact region 5 and the second n-type region 23 can be interchanged.
  • activation annealing is performed at a temperature of 1600 ° C. or higher to remove and activate ion implantation damage of each layer.
  • the oxide films 41 and 42 that serve as masks at the time of ion implantation require a thickness of, for example, about 1.5 ⁇ m or more, and each n-type region Nitrogen (N) or phosphorus (P) having a large projected range is preferably used as an impurity in the ion implantation for forming.
  • the vertical MOSFET according to the third embodiment is formed by the process as described above, and exhibits the same characteristics as the first embodiment.
  • the problem of misalignment can be eliminated by simultaneously forming the n-type region and the second n-source region formed on the surface, and a stable characteristic can be obtained by controlling the threshold value.
  • the n-type region is formed between the p-type base regions, the JFET resistance can be reduced and the on-resistance can be reduced.
  • the n-type region is formed under the p-type base region, a pn junction between the p-type base region and the n-type region formed under the p-type base region when a high voltage is applied to the drain electrode. Starts avalanche. As a result, a large electric field is not applied to the gate insulating film, the breakdown resistance of the gate insulating film is improved, and the reliability of the gate insulating film is improved.
  • the n-type region smaller than the p-type base region, the location where the avalanche is generated becomes the pn junction, and the avalanche current flowing under the n-type source region of the p-type base region is reduced, thereby reducing the parasitic npn. Since the operation of the transistor can be suppressed, the breakdown resistance of the element is improved. Furthermore, by forming the n-type source region with two layers having different impurity concentrations, the saturation current of the element can be suppressed, the current when the load is short-circuited is also suppressed, and the breakdown tolerance is improved.
  • the formed element can solve the problem of misalignment, obtain stable characteristics, and improve reliability and breakdown resistance.
  • the present invention can be variously changed.
  • the dimensions and impurity concentrations of each part are variously set according to required specifications.
  • each Example mentioned above demonstrated as an example the case provided with the base region of the structure which laminated
  • One p-type region having a uniform impurity concentration in the depth direction may be used as the base region.
  • the semiconductor device and the method for manufacturing the semiconductor device according to the present invention are useful for a high voltage semiconductor device used for a power conversion device, a power supply device such as various industrial machines, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 p型ベース領域(10),p型SiC層(11)の表面層の、n型ソース領域(4)よりも外側にn型ソース領域(4)に接して形成された、n型ソース領域(4)よりも不純物濃度の高いn+型ソース領域(21)と、n-型SiC層(2)の、p型ベース領域(10),p型SiC層(11)間に挟まれた部分に、p型ベース領域(10),p型SiC層(11)よりも深く形成された、n-型SiC層(2)よりも不純物濃度の高いn型領域(22),n+型領域(12)と、p型ベース領域(10)の下にp型ベース領域(10)よりも大きさが小さい第2のn型領域(23)と、を備える。このようにすることで、低オン抵抗かつ閾値電圧Vthの精度が向上し品質が高く、ゲート絶縁膜の絶縁破壊耐量及び破壊耐量を向上できる。

Description

半導体装置および半導体装置の製造方法
 本発明は、炭化珪素基板上に形成したスイッチングデバイスとして用いられる半導体装置および半導体装置の製造方法に関する。
 図19は、従来の炭化珪素基板を用いて形成したnチャネルMOSFETの断面構造図である。n型SiC(炭化珪素)基板1のおもて面側に低不純物濃度のn-型SiC層2が形成され、n-型SiC層2の表面層に複数のp型ベース領域10が形成される。更に、p型ベース領域10の表面にp型SiC層11が形成される。更にp型ベース領域10が形成されていないn-型SiC層2のおもて面上に、p型SiC層11間に挟まれるようにn型領域12が形成され、更にp型SiC層11の内部にn型ソース領域4と低不純物濃度のp+型コンタクト領域5が形成される。更にn型ソース領域4とp+型コンタクト領域5のおもて面上にソース電極8が形成されている。また、p型SiC層11の、n型領域12とn型ソース領域4とに挟まれた部分の表面上に、p型SiC層11からn型領域12にわたって、ゲート絶縁膜6を介してゲート電極7が形成されている。また、n型SiC基板1の裏面側にはドレイン電極9が形成されている(例えば、下記特許文献1参照。)。
 図19の構造のMOSFETにおいて、ソース電極8に対しドレイン電極9に正の電圧が印可された状態でゲート電極7にゲート閾値以下の電圧が印加されている場合には、p型ベース領域10とn-型SiC層2或いはp型SiC層11とn型領域12の間のpn接合が逆バイアスされた状態であるため電流は流れない。一方、ゲート電極7にゲート閾値以上の電圧を印可するとゲート電極7直下のp型ベース領域10又はp型SiC層11表面に反転層が形成されることにより電流が流れるため、ゲート電極7に印加する電圧によってMOSFETのスイッチング動作を行うことができる。
特開平8-186254号公報
 しかしながら、上記構造のMOSFETではn型領域12とn型ソース領域4が個別に形成され加工精度が悪く特性バラツキが大きい。また、オン抵抗改善のためにp型ベース領域10間にn-型SiC層2よりも不純物濃度の高いn型領域12を設ける場合、工程数が増えるとともに上記同様に加工精度が悪く特性バラツキが大きくなる。さらに、ドレイン電極9に高電圧が印加された際にp型ベース領域10とn-型SiC層2からなるpn接合部の特にp型ベース領域10の終端部でアバランシェを起こしやすい。
 図20は、従来の炭化珪素基板を用いて形成したnチャネルMOSFETのアバランシェ電流の経路を示す断面構造図である。図20の矢印に示すように、p型ベース領域10のコーナー部からp型ベース領域10の、n型ソース領域4の下の部分を通ってソース電極8へ向う経路をアバランシェ電流が流れ、このアバランシェ電流によってn-型SiC層2、p型ベース領域10およびn型ソース領域4からなる寄生npnバイポーラトランジスタが動作し破壊耐量が低下する場合がある。
 この発明は、上述した従来技術による問題点を解消するため、低オン抵抗かつ閾値電圧Vthの精度が向上し品質が高く、ゲート絶縁膜の絶縁破壊耐量及び破壊耐量が向上できる半導体装置および半導体装置の製造方法を提供することを目的とする。
 上記目的を達成するため、本発明の半導体装置は、次の特徴を有する。第1導電型の炭化珪素基板の表面に、前記炭化珪素基板よりも低不純物濃度の第1導電型の炭化珪素層が形成されている。前記炭化珪素層の表面層に選択的に第2導電型の第1半導体領域が形成されている。前記第1半導体領域の表面層に選択的に第1導電型の第1ソース領域が形成されている。前記第1半導体領域及び前記第1ソース領域の表面に電気的に接続するソース電極を備えている。前記第1半導体領域の、前記炭化珪素層と前記第1ソース領域とに挟まれた部分の表面上に、ゲート絶縁膜を介してゲート電極が形成されている。前記炭化珪素基板の裏面にドレイン電極が形成されている。このような半導体装置において、前記第1半導体領域の表面層の、前記第1ソース領域よりも外側に前記第1ソース領域に接して、前記第1ソース領域よりも不純物濃度の高い第1導電型の第2ソース領域が形成されている。さらに、前記炭化珪素層の、前記第1半導体領域間に挟まれた部分に、該第1半導体領域よりも深く、前記炭化珪素層よりも不純物濃度の高い第1導電型の第3半導体領域と、前記第1半導体領域の下に該第1半導体領域よりも大きさが小さい第1導電型の第4半導体領域が形成されている。
 また、前記ゲート電極は、前記ゲート絶縁膜を介して、前記第3半導体領域上にわたって形成されており、前記第3半導体領域が、前記炭化珪素層に接する第1領域と、前記ゲート絶縁膜に接する、前記第1領域よりも不純物濃度の高い第2領域と、の2つの領域に分かれていることを特徴とする。
 また、前記第4半導体領域は、前記第1半導体領域の下部にリング状の平面形状に形成されたことを特徴とする。
 また、前記第1半導体領域の表面層の、前記第1ソース領域よりも内側に形成された、前記第1半導体領域よりも不純物濃度の高い第2導電型の第2半導体領域をさらに備え、前記ソース電極は、前記第2半導体領域及び前記第1ソース領域の表面に電気的に接続され、前記第4半導体領域は、前記第2半導体領域の直下位置となる前記第1半導体領域の下に形成されたことを特徴とする。
 上記目的を達成するため、本発明の半導体装置の製造方法は、以下の特徴を有する。第1導電型の炭化珪素基板の表面に、前記炭化珪素基板よりも低不純物濃度の第1導電型の炭化珪素層が形成されている。前記炭化珪素層の表面層に選択的に第2導電型の第1半導体領域が形成されている。前記第1半導体領域の表面層に選択的に第1導電型の第1ソース領域が形成されている。前記第1半導体領域及び前記第1ソース領域の表面に電気的に接続するソース電極を備えている。前記第1半導体領域の、前記炭化珪素層と前記第1ソース領域とに挟まれた部分の表面上に、ゲート絶縁膜を介してゲート電極が形成されている。前記炭化珪素基板の裏面にドレイン電極が形成されている。このような半導体装置の製造方法において、前記炭化珪素基板の表面に、前記炭化珪素基板よりも低不純物濃度の前記炭化珪素層を形成する第1工程を行う。前記炭化珪素層の表面層に、前記第1半導体領域を選択的に形成する第2工程を行う。前記第1半導体領域の表面層に前記第1ソース領域を選択的に形成する第3工程を行う。前記第1半導体領域の表面層の、前記第1ソース領域よりも外側に、前記第1ソース領域に隣接して、前記第1ソース領域よりも不純物濃度の高い第1導電型の第2ソース領域を形成するとともに、前記炭化珪素層の、前記第1半導体領域間に挟まれた部分に、該第1半導体領域よりも深く、かつ前記炭化珪素層よりも不純物濃度の高い第1導電型の第3半導体領域を形成する第4工程を行う。そして、所定のタイミングで、前記第1半導体領域下に該第1半導体領域よりも大きさが小さい第1導電型の第4半導体領域を形成する第5工程を行う。
 また、前記第4工程では、前記第3半導体領域として、前記第1半導体領域よりも深い位置にまで達する第1領域と、前記第1領域よりも浅い位置に配置された、前記第1領域よりも不純物濃度の高い第2領域と、を形成することを特徴とする。
 また、前記第5工程は、前記第2工程の後、前記第3工程の前、または前記第3工程の後、前記第4工程の前に行うことを特徴とする。
 また、前記第4工程の後、前記第1半導体領域の表面層の、前記第1ソース領域よりも内側に、前記第1半導体領域よりも不純物濃度の高い第2導電型の第2半導体領域を選択的に形成する第6工程をさらに含み、前記第5工程は、前記第4工程の後、前記第6工程の前、または前記第6工程の後に行うことを特徴とする。
 また、前記第3工程は、前記第1半導体領域の表面に、前記第1ソース領域の形成領域に対応する部分が開口した第1イオン注入用マスクを形成する工程と、前記第1イオン注入用マスクをマスクとしてイオン注入を行うことにより前記第1ソース領域を形成する工程と、を行い、前記第5工程では、同一の前記第1イオン注入用マスクをマスクとして前記第4半導体領域を形成することを特徴とする。
 また、前記第6工程は、前記第1半導体領域の表面に、前記第2半導体領域の形成領域に対応する部分が開口した第2イオン注入用マスクを形成する工程と、前記第2イオン注入用マスクをマスクとしてイオン注入を行うことにより前記第2半導体領域を形成する工程と、を行い、前記第5工程では、同一の前記第2イオン注入用マスクをマスクとして前記第4半導体領域を形成することを特徴とする。
 また、前記第3工程は、前記第1半導体領域の表面に、前記第1ソース領域の形成領域に対応する部分が開口した第1イオン注入用マスクを形成する工程と、前記第1イオン注入用マスクをマスクとしてイオン注入を行うことにより前記第1ソース領域を形成する工程と、を行う。さらに、前記第4工程は、前記第1半導体領域の、前記第1ソース領域よりも外側の部分が選択的に露出されるように前記第1イオン注入用マスクの開口部の幅を広げるとともに、前記炭化珪素層の、前記第1半導体領域間に挟まれた部分が露出されるように前記第1イオン注入用マスクを選択的に除去する工程と、前記第1イオン注入用マスクの残部をマスクとしてイオン注入を行うことにより前記第2ソース領域、前記第3半導体領域を形成する工程と、を行うことを特徴とする。
 また、前記第1ソース領域と、前記第2のソース領域及び前記第3半導体領域の形成に用いる不純物は、投影飛程の大きな窒素、リンであることを特徴とする。
 上記構成によれば、表面に形成する第1導電型の第3半導体領域及び第1導電型の第1ソース領域を同時形成することでアライメントずれの問題が無くなり、閾値をコントロールし安定した特性を得ることができるとともに、第2導電型の第1半導体領域間に形成した第1導電型領域のためJFET抵抗を小さくしオン抵抗の低減を図ることができる。また、第2導電型の第1半導体領域下に第1導電型の第4半導体領域が形成されるため、ドレイン電極に高電圧が印加された際に第2導電型の第1半導体領域と第2導電型の第1半導体領域下に形成した第1導電型の第3半導体領域とのpn接合部でアバランシェを起こすようになる。これにより、ゲート絶縁膜に大きな電界が掛かることが無くなりゲート絶縁膜の破壊耐量を向上及びゲート絶縁膜の信頼性が向上する。また、第1導電型の第3半導体領域を第2導電型の第1半導体領域よりも小さく形成することでアバランシェの発生箇所がpn接合部となり、第2導電型の第1半導体領域の、第1導電型の第1ソース領域の下の部分を流れるアバランシェ電流が低減し寄生npnトランジスタの動作を抑制することができるため、素子の破壊耐量が向上する。更に、第1導電型の第1ソース領域を不純物濃度の異なる2層で形成することで素子の飽和電流を抑えることができ、負荷短絡時の電流も抑制し破壊耐量が向上する。また、第1導電型の第1ソース領域及び第3半導体領域を1回のフォトリソグラフィの工程で同時に形成することにより形成工程の増加を伴うことなく素子を形成することができ、形成した素子ではアライメントずれの問題を解消し安定した特性を得るとともに信頼性及び破壊耐量の向上を図ることができる。
 本発明によれば、低オン抵抗かつ閾値電圧Vthの精度が向上し品質が高く、ゲート絶縁膜の絶縁破壊耐量及び破壊耐量を向上できる。
図1は、本発明の半導体装置の実施例1におけるMOSFETの断面構造図である。 図2は、本発明の半導体装置の実施例1におけるMOSFETのn型炭化珪素層及びn型領域とp型ベース領域の接合部の平面図である。 図3は、本発明の半導体装置の実施例1における製造工程を示す図である。(その1) 図4は、本発明の半導体装置の実施例1における製造工程を示す図である。(その2) 図5は、本発明の半導体装置の実施例1における製造工程を示す図である。(その3) 図6は、本発明の半導体装置の実施例1における製造工程を示す図である。(その4) 図7は、本発明の半導体装置の実施例1における製造工程を示す図である。(その5) 図8は、本発明の半導体装置の実施例1におけるアバランシェ電流の流れを説明する図である。 図9は、本発明の半導体装置の実施例2におけるMOSFETのn型炭化珪素層及びn型領域とp型ベース領域の接合部の平面図である。 図10は、本発明の半導体装置の実施例2におけるMOSFETの断面構造図(図9のA-A’断面図)である。 図11は、本発明の半導体装置の実施例2におけるMOSFETの断面構造図(図9のB-B’断面図)である。 図12は、本発明の半導体装置の実施例3におけるMOSFETの断面構造図である。 図13は、本発明の半導体装置の実施例3におけるMOSFETのn型炭化珪素層及びn型領域とp型ベース領域の接合部の平面図である。 図14は、本発明の半導体装置の実施例3における製造工程を示す図である。(その1) 図15は、本発明の半導体装置の実施例3における製造工程を示す図である。(その2) 図16は、本発明の半導体装置の実施例3における製造工程を示す図である。(その3) 図17は、本発明の半導体装置の実施例3における製造工程を示す図である。(その4) 図18は、本発明の半導体装置の実施例3における製造工程を示す図である。(その5) 図19は、従来の炭化珪素基板を用いて形成したnチャネルMOSFETの断面構造図である。 図20は、従来の炭化珪素基板を用いて形成したnチャネルMOSFETのアバランシェ電流の経路を示す断面構造図である。
 以下に添付図面を参照して、この発明にかかる半導体装置および半導体装置の製造方法の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。また、本明細書では、ミラー指数(結晶学的面指数)の表記において、“-”はその直後の指数につくバーを意味しており、指数の前に“-”を付けることで負の指数をあらわしている。
[実施例1]
 図1は、本発明の半導体装置の実施例1におけるMOSFETの断面構造図である。なお、本実施例では第1導電型をn型、第2導電型をp型としているが、これを逆に形成することも可能である。
 n型SiC基板1のおもて面側にn-型SiC層2が形成され、n-型SiC層2の表面層にp型ベース領域(第2導電型の第1半導体領域)10が複数形成される。以下、n型SiC基板1上にn-型SiC層2および後述するp型SiC層11を順に積層してなる積層体をSiC基体とする。p型ベース領域10の間にはn型領域(第1導電型の第3半導体領域)22が形成される。n型領域22の、n-型SiC層2表面(n-型SiC層2の、n型SiC基板1側に対して反対側の表面)からの深さは、p型ベース領域10のn-型SiC層2表面からの深さよりも深い。また、p型ベース領域10の下(基体裏面側)には第2のn型領域(第1導電型の第4半導体領域)23が形成されている。n型領域22形成時にn型領域22と同じ不純物濃度のn型領域22aが形成されてもよい。
 n-型SiC層2の表面にはp型SiC層11が形成されている。p型SiC層11の不純物濃度は、p型ベース領域10の不純物濃度よりも低い。p型SiC層11の、n型領域22上の部分には、n型領域22にまで達するようにおもて面から裏面に向けてn+型領域12が形成される。更にp型SiC層11の内部には、第2のn+型ソース領域(第1導電型の第2ソース領域)21と、n型ソース領域(第1導電型の第1ソース領域)4とp+型コンタクト領域(第2導電型の第2半導体領域)5とがそれぞれ選択的に形成されている。n型ソース領域4は、p+型コンタクト領域5に接し、かつp+型コンタクト領域5よりもn+型領域12側に配置されている。第2のn+型ソース領域21は、n型ソース領域4に接し、かつn型ソース領域4よりもn+型領域12側に配置されている。第2のn+型ソース領域21は、n型ソース領域4よりも不純物濃度が高い。n型ソース領域4、第2のn+型ソース領域21およびp+型コンタクト領域5は、深さ方向にp型SiC層11を貫通してp型ベース領域10に達する。
 また、n型ソース領域4とp+型コンタクト領域5のおもて面上にはソース電極8が形成されている。更にp型SiC層11の、n+型領域12と第2のn+型ソース領域21との間に挟まれた部分の表面上には、ゲート絶縁膜6を介してゲート電極7が形成されている。ゲート電極7は、ゲート絶縁膜6を介して、n+型領域12上に延在していてもよい。他のセルとのセル間を繋ぐゲート電極7部分(不図示)は、n+型領域12を形成せずにp型SiC層11を繋げて形成されている。n型SiC基板1の裏面にドレイン電極9が形成されている。
 図2は、本発明の半導体装置の実施例1におけるMOSFETのn型炭化珪素層及びn型領域とp型ベース領域の接合部の平面図である。図2は、図1に示したn-型SiC層2及び第2のn型領域23とp型ベース領域10の接合面の平面図である。図2の素子内部の図で示すように、第2のn型領域23は、p型ベース領域10の下部(基体裏面側)にリング状に形成されている。なお、図2の例では、第2のn型領域23は、p+型コンタクト領域5を中心とした6角形セルで示しているが、この形状は多角形セルに限らず円形セルで形成しても構わない。
 図1および図2に示したMOSFETの動作は、従来MOSFETと同様である。すなわち、ゲート電極7に閾値電圧以上の電圧を印加し、p型ベース領域10又はp型SiC層11表面に反転層を形成することでオンさせることができる。
 図3~図7は、本発明の半導体装置の実施例1における製造工程を示す図である。実施例1におけるMOSFETは、図3に示す(a)~図7に示す(e)の各工程順で製造する。
(a)図3に示すように、例えばエピタキシャル成長により、n型SiC基板1のおもて面にn-型SiC層2を堆積(形成)する。次に、n-型SiC層2の表面層に選択的にp型ベース領域10を形成する。p型ベース領域10は、例えば、アルミニウム(Al)イオン注入にて不純物濃度3.0×1018cm-3程度、n-型SiC層2表面からの深さ0.5μm程度に形成する。その後、例えばエピタキシャル成長により、n-型SiC層2の表面の全面に、例えば、不純物濃度5.0×1015程度、厚さ0.5μm程度のp型SiC層11を形成する。なお、n-型SiC層2は、例えば、1200VクラスのMOSFETでは不純物濃度1.0×1016cm-3程度、厚さ10μm程度に形成する。
(b)図4に示すように、p型SiC層11の表面に酸化膜31を形成し、n型ソース領域4の形成領域に対応する部分の酸化膜31を除去する。次に、酸化膜31の残部をマスクとしてp型SiC層11の内部に選択的にn型ソース領域4をリン(P)などのn型不純物のイオン注入にて形成する。n型ソース領域4は、例えば、不純物濃度1.0×1020cm-3以上程度、深さ0.5μm程度に形成する。また、n型ソース領域4の形成時と同じ開口幅で残る酸化膜31の残部をマスクとして用いてn型不純物のイオン注入にて第2のn型領域23を形成する。
 第2のn型領域23は、例えば、n-型SiC層2の1.2~1.5倍程度の不純物濃度、深さ1.5~1.0μm程度に600keV以上の高注入エネルギーにて注入することで任意の深さ(すなわちp型ベース領域10の下)に形成する。この第2のn型領域23は、p型ベース領域10よりも大きさ(面積)が小さく(第2のn型領域23の横端部はp型ベース領域10のコーナー部よりも内側に位置させて)形成し、かつ図2に示したようにリング状の平面形状に形成する。この際、p型ベース領域10にもn型不純物がイオン注入されるが、p型ベース領域10の不純物濃度が例えば3.0×1018cm-3程度であり、第2のn型領域23に比べて高不純物濃度であることから、第2のn型領域23の形成でp型ベース領域10がn型に反転することはない。n型ソース領域4と、第2のn型領域23との形成順序は入れ換え可能である。
(c)図5に示すように、第2のn+型ソース領域21及びn+型領域12の形成領域に対応する部分の酸化膜31を除去する。次に、酸化膜31の残部をマクスとしn-型SiC層2の表面層に選択的にn型領域22を窒素(N)などのn型不純物のイオン注入にて形成する。n型領域22は、例えば、n-型SiC層2の1.2~1.5倍程度の不純物濃度、n-型SiC層2表面からの深さ1.2μm程度に形成する。この際、p型ベース領域10にもn型不純物がイオン注入されるが、p型ベース領域10の不純物濃度が例えば3.0×1018cm-3程度でありn型領域22に比べて高不純物濃度であることから、n型領域22の形成でp型ベース領域10がn型に反転することは無い。また、このとき、p型ベース領域10の下に、n型領域22と同じ不純物濃度のn型領域22aが形成されてもよい。
 また、n型領域22の形成時と同じ開口幅で残る酸化膜31の残部をマスクとしてそのまま用いて第2のn+型ソース領域21及びn+型領域12をn型不純物のイオン注入にて形成する。第2のn+型ソース領域21及びn+型領域12は、例えば、不純物濃度4.0×1016cm-3程度、深さ0.5μm程度にて形成する。そして、酸化膜31をすべて除去する。n型領域22と、第2のn+型ソース領域21及びn+型領域12との形成順序は入れ換え可能である。
(d)図6に示すように、p型SiC層11の表面に酸化膜32を形成し、p+型コンタクト領域5の形成領域に対応する部分の酸化膜32を除去する。次に、酸化膜32の残部をマスクとしてp+型コンタクト領域5を例えばAlなどのp型不純物のイオン注入にて形成する。p+型コンタクト領域5は、例えば、不純物濃度1.0×1020cm-3程度、深さ0.5μm程度に形成する。そして、酸化膜32をすべて除去する。
(e)図7に示すように、温度1600℃以上にて活性化アニールを実施、各層のイオン注入ダメージの除去及び活性化をおこなう。
(f)一般的な方法により、表面構造及び裏面電極(ドレイン電極)9を形成して図1の半導体装置を得る。表面構造とは、ゲート絶縁膜6、ゲート電極7、層間絶縁膜(不図示)、ソース電極8、電極パッドおよびパッシベーション保護膜(不図示)などである。
 なお、イオン注入の際にマスクとなる酸化膜31,32の膜厚は、例えば1.5μm以上程度の厚さが必要であるとともに、各n型領域を形成するイオン注入の際の不純物として投影飛程の大きな窒素(N)又はリン(P)を使用することが好ましい。上記工程により、本実施例1の縦型MOSFETが形成される。
 このようにn型領域22、第2のn+型ソース領域21及びn+型領域12の3つの領域を1回のフォトリソグラフィの工程で形成できるため、大幅な工程数の削減を図ることができる。上記工程により形成したMOSFETは、以下(1)~(5)の作用効果を有する。
(1)p型ベース領域10間にn-型SiC層2よりも不純物濃度の高いn型領域22を形成することによりJFET抵抗を低減することができ、オン抵抗が小さくなる。
(2)1つのマスク(酸化膜31)を用いてn型領域22及び第2のn+型ソース領域21を同時形成することでアライメントずれによるチャネル長のばらつきの問題が生じないため、閾値やオン抵抗などの特性ばらつきを低減し安定した特性を得ることができる。
 この同時形成は、
1.n+型領域12及び第2のn+型ソース領域21の同時形成
2.n型領域22及び第2のn+型ソース領域21を同一の酸化膜31をマスクとして形成
3.n型領域22、n+型領域12及び第2のn+型ソース領域21を同一の酸化膜31をマスクとして形成のいずれかである。
(3)p型ベース領域10の下に形成した第2のn型領域23のpn接合部でアバランシェを発生させることができるようになり、ゲート絶縁膜6の絶縁破壊耐量と信頼性を向上できる。
(4)第2のn型領域23をp型ベース領域10よりも小さく(第2のn型領域23の横端部はp型ベース領域10のコーナー部よりも内側に位置させて)形成し、かつリング状の平面形状に形成されていることで第2のn型領域23の終端部分のpn接合部でアバランシェを発生させることができる。
 図8は、本発明の半導体装置の実施例1におけるアバランシェ電流の流れを説明する図である。第2のn型領域23をp型ベース領域10よりも大きさ(面積)が小さく(第2のn型領域23の横端部はp型ベース領域10のコーナー部よりも内側に位置させて)形成することで、図8に示すように、p型ベース領域10のからソース電極8へ向って流れるアバランシェ電流の経路は、第2のn型領域23の一方の端部からp型ベース領域10の、n型ソース領域4の下の部分通ってソース電極8へ向う経路と、第2のn型領域23の他方の端部からn型ソース領域4の下を通らずにソース電極8へ向う経路と、に分散される。このため、p型ベース領域10の、n型ソース領域4の下の部分を流れるアバランシェ電流を低減させることができる。これにより、n-型SiC層2、p型ベース領域10およびn型ソース領域4からなる寄生npnバイポーラトランジスタの動作を抑制できるため素子の破壊耐量を向上させることができる。
(5)nソース領域を不純物濃度の異なる2層(n型ソース領域4と、第2のn+型ソース領域21)で形成することで飽和電流を低減し、負荷短絡時の電流を抑制できるため素子の破壊耐量が向上する。
[実施例2]
 図9は、本発明の半導体装置の実施例2におけるMOSFETのn型炭化珪素層及びn型領域とp型ベース領域の接合部の平面図、図10と図11は、それぞれ本発明の半導体装置の実施例2におけるMOSFETの断面構造図である。図10は、図9のA-A’断面図、図11は、図9のB-B’断面図である。
 本発明の実施例2の基本的な構造は、上述した実施例1と同様である。実施例2が上述した実施例1と異なる点は、図9に示すように、p型ベース領域10の平面形状がストライプ形状に形成され、p型ベース領域10の下を第2のn型領域23が梯子状の平面形状に形成されている点である。このように一定の間隔で隣り合うp型ベース領域10の下の第2のn型領域23同士をつなぐことでアバランシェがp+型コンタクト領域5付近にて発生しやすくなる。これにより、p型ベース領域10の、n型ソース領域4の下の部分を流れるアバランシェ電流を抑制することができ、寄生npnトランジスタの動作を抑制し素子の破壊耐量が向上する。
[実施例3]
 図12は、本発明の半導体装置の実施例3におけるMOSFETの断面構造図、図13は、本発明の半導体装置の実施例3におけるMOSFETのn型炭化珪素層及びn型領域とp型ベース領域の接合部の平面図である。
 本発明の実施例3が上述した実施例1と異なる点は、実施例1,2でp型ベース領域10下に形成した第2のn型領域23をp+型コンタクト領域5下に形成した点である。図13の素子内部構造に示すように、n-型SiC層2及び第2のn型領域23とp型ベース領域10の接合部において、第2のn型領域23はp型ベース領域10の中心部に形成されている。なお、図13の例では、p+型コンタクト領域5を中心とした6角形セルの平面形状で示しているが、p+型コンタクト領域5の平面形状は多角形セル及び円形セルで形成しても構わない。
 図14~図18は、本発明の半導体装置の実施例3における製造工程を示す図である。実施例3におけるMOSFETは、図14に示す(a)~図18に示す(e)の各工程順で製造する。
(a)図14に示すように、例えばエピタキシャル成長により、n型SiC基板1のおもて面にn-型SiC層2を堆積(形成)する。次に、n-型SiC層2の表面層にp型ベース領域10を形成する。p型ベース領域10は、例えば、Alイオン注入にて不純物濃度3.0×1018cm-3、n-型SiC層2の表面からの深さ0.5μm程度に形成する。その後、例えばエピタキシャル成長により、n-型SiC層2の表面全面に不純物濃度5.0×1015、厚さ0.5μmのp型SiC層11を形成する。なお、n-型SiC層2は、例えば、1200VクラスのMOSFETでは不純物濃度1.0×1016cm-3、厚さ10μm程度に形成する。
(b)図15に示すように、p型SiC層11の表面に酸化膜41を形成し、n型ソース領域4の形成領域に対応する部分の酸化膜41を除去する。次に、酸化膜41の残部をマスクとしてp型SiC層11の内部に選択的にn型ソース領域4をn型不純物のイオン注入にて形成する。n型ソース領域4は、例えば、不純物濃度1.0×1020cm-3以上程度、深さ0.5μm程度に形成する。
(c)図16に示すように、第2のn+型ソース領域21及びn+型領域12の形成領域に対応する部分の酸化膜41を除去する。酸化膜41の残部をマクスとしてn-型SiC層2の表面層に選択的にn型領域22をn型不純物のイオン注入にて形成する。n型領域22は、例えば、n-型SiC層2の1.2~1.5倍程度の不純物濃度、深さ1.2μm程度に形成する。この際、p型ベース領域10にもn型不純物がイオン注入されるが、p型ベース領域10の不純物濃度が例えば3.0×1018cm-3程度でありn型領域22に比べて高不純物濃度であることから、n型領域22の形成でp型ベース領域10がn型に反転することは無い。また、このとき、p型ベース領域10の下に、n型領域22と同じ不純物濃度のn型領域22aが形成されてもよい。
 また、n型領域22の形成時と同じ開口幅で残る酸化膜41をマスクに用いて第2のn+型ソース領域21及びn+型領域12をn型不純物のイオン注入にて形成する。第2のn+型ソース領域21及びn+型領域12は、例えば不純物濃度4.0×1016cm-3程度、深さ0.5μm程度にて形成する。n型領域22と、第2のn+型ソース領域21及びn+型領域12との形成順序は入れ換え可能である。そして、酸化膜41をすべて除去する。
(d)図17に示すように、p型SiC層11の表面に酸化膜42を形成し、p+型コンタクト領域5の形成領域に対応する部分の酸化膜42を除去する。次に、酸化膜42の残部をマスクとしてp+型コンタクト領域5を例えばAlなどのp型不純物のイオン注入にて形成する。p+型コンタクト領域5は、例えば、不純物濃度1.0×1020cm-3程度、深さ0.5μm程度に形成する。また、p+型コンタクト領域5の形成時と同じ開口幅で残る酸化膜42をマスクとして用いてp型不純物のイオン注入にて第2のn型領域23のを形成する。第2のn型領域23は、例えば、n-型SiC層2の1.2~1.5倍程度の不純物濃度、深さ1.5~1.0μm程度に600keV以上の高注入エネルギーにて注入することで任意の深さに形成する。
 図17の例では、p+型コンタクト領域5の直下位置となるp型ベース領域10下に第2のn型領域23を形成する。この際、p型ベース領域10の不純物濃度が例えば3.0×1018cm-3程度であり、第2のn型領域23に比べて高不純物濃度であることから、第2のn型領域23の形成でp型ベース領域10がn型に反転することはない。p+型コンタクト領域5と、第2のn型領域23との形成順序は入れ換え可能である。
(e)図18に示すように、温度1600℃以上にて活性化アニールを実施、各層のイオン注入ダメージの除去及び活性化をする。
(f)実施例1と同様に、表面構造及び裏面電極(ドレイン電極)9を形成し、図12に示す半導体装置を得る。
 なお、実施例3においても実施例1と同様に、イオン注入の際にマスクとなる酸化膜41,42の膜厚は例えば1.5μm以上程度の厚さが必要であるとともに、各n型領域を形成するイオン注入の際の不純物として投影飛程の大きな窒素(N)又はリン(P)を使用することが好ましい。上記のような工程にて本実施例3の縦型MOSFETが形成され、実施例1と同様の特性を示す。
 以上説明した各実施の形態によれば、表面に形成するn型領域及び第2のnソース領域を同時形成することでアライメントずれの問題が無くなり、閾値をコントロールし安定した特性を得ることができるとともに、p型ベース領域間に形成したn型領域のためJFET抵抗を小さくしオン抵抗の低減を図ることができる。
 また、p型ベース領域下にn型領域が形成されるため、ドレイン電極に高電圧が印加された際にp型ベース領域とp型ベース領域下に形成したn型領域とのpn接合部でアバランシェを起こすようになる。これにより、ゲート絶縁膜に大きな電界が掛かることが無くなりゲート絶縁膜の破壊耐量を向上及びゲート絶縁膜の信頼性が向上する。また、n型領域をp型ベース領域よりも小さく形成することでアバランシェの発生箇所が前記pn接合部となり、p型ベース領域の、nソース領域の下の部分を流れるアバランシェ電流が低減し寄生npnトランジスタの動作を抑制することができるため、素子の破壊耐量が向上する。更に、n型ソース領域を不純物濃度の異なる2層で形成することで素子の飽和電流を抑えることができ、負荷短絡時の電流も抑制し破壊耐量が向上する。
 n型領域22、第2のn+型ソース領域21及びn+型領域12の3つの領域を1回のフォトリソグラフィの工程で同時に形成することにより形成工程の増加を伴うことなく素子を形成することができ、形成した素子ではアライメントずれの問題を解消し安定した特性を得るとともに信頼性及び破壊耐量の向上を図ることができる。
 以上において本発明は種々変更可能であり、上述した各実施の形態において、たとえば各部の寸法や不純物濃度等は要求される仕様等に応じて種々設定される。また、上述した各実施例では、不純物濃度の異なるp型ベース領域およびp型炭化珪素層を深さ方向に積層した構成のベース領域を備える場合を例に説明しているが、これに限らず、不純物濃度が深さ方向に一様な1つのp型領域をベース領域としてもよい。
 以上のように、本発明にかかる半導体装置および半導体装置の製造方法は、電力変換装置や種々の産業用機械などの電源装置などに使用される高耐圧半導体装置に有用である。
 1 n型炭化珪素基板
 2 n-型炭化珪素層
 3 p型領域
 4 n型ソース領域
 5 p+型コンタクト領域
 6 ゲート絶縁膜
 7 ゲート電極
 8 ソース電極
 9 ドレイン電極
10 p型ベース領域
11 p型炭化珪素層
12 n+型領域
21 第2のn+型ソース領域
22 n型領域(カウンタードープ領域)
23 第2のn型領域

Claims (12)

  1.  第1導電型の炭化珪素基板と、前記炭化珪素基板の表面に形成された、前記炭化珪素基板よりも低不純物濃度の第1導電型の炭化珪素層と、前記炭化珪素層の表面層に選択的に形成された第2導電型の第1半導体領域と、前記第1半導体領域の表面層に選択的に形成された第1導電型の第1ソース領域と、前記第1半導体領域及び前記第1ソース領域の表面に電気的に接続するソース電極と、前記第1半導体領域の、前記炭化珪素層と前記第1ソース領域とに挟まれた部分の表面上に、ゲート絶縁膜を介して形成されたゲート電極と、前記炭化珪素基板の裏面に形成されたドレイン電極と、を備えた半導体装置において、 前記第1半導体領域の表面層の、前記第1ソース領域よりも外側に前記第1ソース領域に接して形成された、前記第1ソース領域よりも不純物濃度の高い第1導電型の第2ソース領域と、
     前記炭化珪素層の、前記第1半導体領域間に挟まれた部分に、該第1半導体領域よりも深く形成された、前記炭化珪素層よりも不純物濃度の高い第1導電型の第3半導体領域と、
     前記第1半導体領域の下に該第1半導体領域よりも大きさが小さい第1導電型の第4半導体領域と、をさらに備えることを特徴とする半導体装置。
  2.  前記ゲート電極は、前記ゲート絶縁膜を介して、前記第3半導体領域上にわたって形成されており、
     前記第3半導体領域が、前記炭化珪素層に接する第1領域と、前記ゲート絶縁膜に接する、前記第1領域よりも不純物濃度の高い第2領域と、の2つの領域に分かれていることを特徴とする請求項1に記載の半導体装置。
  3.  前記第4半導体領域は、前記第1半導体領域の下部にリング状の平面形状に形成されたことを特徴とする請求項1に記載の半導体装置。
  4.  前記第1半導体領域の表面層の、前記第1ソース領域よりも内側に形成された、前記第1半導体領域よりも不純物濃度の高い第2導電型の第2半導体領域をさらに備え、
     前記ソース電極は、前記第2半導体領域及び前記第1ソース領域の表面に電気的に接続され、
     前記第4半導体領域は、前記第2半導体領域の直下位置となる前記第1半導体領域の下に形成されたことを特徴とする請求項1~3のいずれか一つに記載の半導体装置。
  5.  第1導電型の炭化珪素基板と、前記炭化珪素基板の表面に形成された、前記炭化珪素基板よりも低不純物濃度の第1導電型の炭化珪素層と、前記炭化珪素層の表面層に選択的に形成された第2導電型の第1半導体領域と、前記第1半導体領域の表面層に選択的に形成された第1導電型の第1ソース領域と、前記第1半導体領域及び前記第1ソース領域の表面に電気的に接続するソース電極と、前記第1半導体領域の、前記炭化珪素層と前記第1ソース領域とに挟まれた部分の表面上に、ゲート絶縁膜を介して形成されたゲート電極と、前記炭化珪素基板の裏面に形成されたドレイン電極と、を備えた半導体装置の製造方法において、
     前記炭化珪素基板の表面に、前記炭化珪素基板よりも低不純物濃度の前記炭化珪素層を形成する第1工程と、
     前記炭化珪素層の表面層に、前記第1半導体領域を選択的に形成する第2工程と、
     前記第1半導体領域の表面層に前記第1ソース領域を選択的に形成する第3工程と、
     前記第1半導体領域の表面層の、前記第1ソース領域よりも外側に、前記第1ソース領域に隣接して、前記第1ソース領域よりも不純物濃度の高い第1導電型の第2ソース領域を形成するとともに、前記炭化珪素層の、前記第1半導体領域間に挟まれた部分に、該第1半導体領域よりも深く、かつ前記炭化珪素層よりも不純物濃度の高い第1導電型の第3半導体領域を形成する第4工程と、
     を含み、
     所定のタイミングで、前記第1半導体領域下に該第1半導体領域よりも大きさが小さい第1導電型の第4半導体領域を形成する第5工程をさらに含むことを特徴とする半導体装置の製造方法。
  6.  前記第4工程では、前記第3半導体領域として、前記第1半導体領域よりも深い位置にまで達する第1領域と、前記第1領域よりも浅い位置に配置された、前記第1領域よりも不純物濃度の高い第2領域と、を形成することを特徴とする請求項5に記載の半導体装置の製造方法。
  7.  前記第5工程は、前記第2工程の後、前記第3工程の前、または前記第3工程の後、前記第4工程の前に行うことを特徴とする請求項5に記載の半導体装置の製造方法。
  8.  前記第4工程の後、前記第1半導体領域の表面層の、前記第1ソース領域よりも内側に、前記第1半導体領域よりも不純物濃度の高い第2導電型の第2半導体領域を選択的に形成する第6工程をさらに含み、
     前記第5工程は、前記第4工程の後、前記第6工程の前、または前記第6工程の後に行うことを特徴とする請求項5に記載の半導体装置の製造方法。
  9.  前記第3工程は、
     前記第1半導体領域の表面に、前記第1ソース領域の形成領域に対応する部分が開口した第1イオン注入用マスクを形成する工程と、
     前記第1イオン注入用マスクをマスクとしてイオン注入を行うことにより前記第1ソース領域を形成する工程と、を行い、
     前記第5工程では、同一の前記第1イオン注入用マスクをマスクとして前記第4半導体領域を形成することを特徴とする請求項7に記載の半導体装置の製造方法。
  10.  前記第6工程は、
     前記第1半導体領域の表面に、前記第2半導体領域の形成領域に対応する部分が開口した第2イオン注入用マスクを形成する工程と、
     前記第2イオン注入用マスクをマスクとしてイオン注入を行うことにより前記第2半導体領域を形成する工程と、を行い、
     前記第5工程では、同一の前記第2イオン注入用マスクをマスクとして前記第4半導体領域を形成することを特徴とする請求項8に記載の半導体装置の製造方法。
  11.  前記第3工程は、
     前記第1半導体領域の表面に、前記第1ソース領域の形成領域に対応する部分が開口した第1イオン注入用マスクを形成する工程と、
     前記第1イオン注入用マスクをマスクとしてイオン注入を行うことにより前記第1ソース領域を形成する工程と、を行い、
     前記第4工程は、
     前記第1半導体領域の、前記第1ソース領域よりも外側の部分が選択的に露出されるように前記第1イオン注入用マスクの開口部の幅を広げるとともに、前記炭化珪素層の、前記第1半導体領域間に挟まれた部分が露出されるように前記第1イオン注入用マスクを選択的に除去する工程と、
     前記第1イオン注入用マスクの残部をマスクとしてイオン注入を行うことにより前記第2ソース領域、前記第3半導体領域を形成する工程と、を行うことを特徴とする請求項5~8のいずれか一つに記載の半導体装置の製造方法。
  12.  前記第1ソース領域と、前記第2のソース領域及び前記第3半導体領域の形成に用いる不純物は、投影飛程の大きな窒素、リンであることを特徴とする請求項9に記載の半導体装置の製造方法。
PCT/JP2015/072910 2014-09-08 2015-08-13 半導体装置および半導体装置の製造方法 WO2016039072A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016547789A JP6264466B2 (ja) 2014-09-08 2015-08-13 半導体装置の製造方法
US15/283,999 US10147791B2 (en) 2014-09-08 2016-10-03 Semiconductor device and method of manufacturing semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-182768 2014-09-08
JP2014182768 2014-09-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/283,999 Continuation US10147791B2 (en) 2014-09-08 2016-10-03 Semiconductor device and method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2016039072A1 true WO2016039072A1 (ja) 2016-03-17

Family

ID=55458830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072910 WO2016039072A1 (ja) 2014-09-08 2015-08-13 半導体装置および半導体装置の製造方法

Country Status (3)

Country Link
US (1) US10147791B2 (ja)
JP (1) JP6264466B2 (ja)
WO (1) WO2016039072A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021044275A (ja) * 2019-09-06 2021-03-18 富士電機株式会社 半導体装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255276A (ja) * 1988-04-05 1989-10-12 Toshiba Corp 半導体装置
JPH06338616A (ja) * 1993-05-28 1994-12-06 Sanyo Electric Co Ltd 縦型mos半導体装置及びその製造方法
JP2014146738A (ja) * 2013-01-30 2014-08-14 Mitsubishi Electric Corp 半導体装置およびその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08186254A (ja) 1994-12-28 1996-07-16 Toyota Central Res & Dev Lab Inc 絶縁ゲート型半導体装置およびその製造方法
US7598567B2 (en) * 2006-11-03 2009-10-06 Cree, Inc. Power switching semiconductor devices including rectifying junction-shunts
US10541306B2 (en) * 2012-09-12 2020-01-21 Cree, Inc. Using a carbon vacancy reduction material to increase average carrier lifetime in a silicon carbide semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01255276A (ja) * 1988-04-05 1989-10-12 Toshiba Corp 半導体装置
JPH06338616A (ja) * 1993-05-28 1994-12-06 Sanyo Electric Co Ltd 縦型mos半導体装置及びその製造方法
JP2014146738A (ja) * 2013-01-30 2014-08-14 Mitsubishi Electric Corp 半導体装置およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021044275A (ja) * 2019-09-06 2021-03-18 富士電機株式会社 半導体装置
JP7404722B2 (ja) 2019-09-06 2023-12-26 富士電機株式会社 半導体装置

Also Published As

Publication number Publication date
US10147791B2 (en) 2018-12-04
US20170025503A1 (en) 2017-01-26
JP6264466B2 (ja) 2018-01-24
JPWO2016039072A1 (ja) 2017-04-27

Similar Documents

Publication Publication Date Title
US8354715B2 (en) Semiconductor device and method of fabricating the same
JP6477912B2 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP5002693B2 (ja) 半導体装置
JP2014135494A (ja) 二重並列チャネル構造を持つ半導体素子及びその半導体素子の製造方法
JP2012074441A (ja) 電力用半導体装置
US9748393B2 (en) Silicon carbide semiconductor device with a trench
JP2017092355A (ja) 半導体装置および半導体装置の製造方法
JP2018022852A (ja) 半導体装置およびその製造方法
JP6206599B2 (ja) 半導体装置および半導体装置の製造方法
KR20120067340A (ko) 반도체 장치 및 반도체 장치의 제조 방법
JP5630552B2 (ja) 炭化珪素半導体装置およびその製造方法
JP6250938B2 (ja) 半導体装置及びその製造方法
JP2013182905A (ja) 半導体装置
JP6862782B2 (ja) 半導体装置および半導体装置の製造方法
JP6264466B2 (ja) 半導体装置の製造方法
KR102406116B1 (ko) 반도체 소자 및 그 제조 방법
JP2018064047A (ja) 半導体装置および半導体装置の製造方法
JP6318721B2 (ja) 半導体装置および半導体装置の製造方法
KR102335490B1 (ko) 반도체 소자 및 그 제조 방법
KR101339277B1 (ko) 반도체 소자 및 그 제조 방법
JP6930113B2 (ja) 半導体装置および半導体装置の製造方法
JP2016025324A (ja) 半導体装置およびその制御方法
WO2019077878A1 (ja) 炭化珪素半導体装置および炭化珪素半導体装置の製造方法
JP6230455B2 (ja) 半導体装置
JP2000183338A (ja) Mis型半導体装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840934

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547789

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15840934

Country of ref document: EP

Kind code of ref document: A1