WO2016038941A1 - 樹脂製緩衝器の点検方法および点検装置 - Google Patents

樹脂製緩衝器の点検方法および点検装置 Download PDF

Info

Publication number
WO2016038941A1
WO2016038941A1 PCT/JP2015/064720 JP2015064720W WO2016038941A1 WO 2016038941 A1 WO2016038941 A1 WO 2016038941A1 JP 2015064720 W JP2015064720 W JP 2015064720W WO 2016038941 A1 WO2016038941 A1 WO 2016038941A1
Authority
WO
WIPO (PCT)
Prior art keywords
indenter
shock absorber
resin shock
load
resin
Prior art date
Application number
PCT/JP2015/064720
Other languages
English (en)
French (fr)
Inventor
晋也 内藤
央至 古澤
道雄 村井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to DE112015004181.8T priority Critical patent/DE112015004181B4/de
Priority to JP2016547723A priority patent/JP6246380B2/ja
Priority to US15/323,593 priority patent/US9909950B2/en
Priority to KR1020177006651A priority patent/KR101891450B1/ko
Priority to BR112017001546-3A priority patent/BR112017001546A2/ja
Priority to CN201580045739.7A priority patent/CN106604884B/zh
Publication of WO2016038941A1 publication Critical patent/WO2016038941A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/0087Devices facilitating maintenance, repair or inspection tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/28Buffer-stops for cars, cages, or skips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/28Buffer-stops for cars, cages, or skips
    • B66B5/288Buffer-stops for cars, cages, or skips with maintenance features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/40Investigating hardness or rebound hardness
    • G01N3/52Investigating hardness or rebound hardness by measuring extent of rebound of a striking body

Definitions

  • the present invention relates to an inspection method and an inspection device for a resin shock absorber, and particularly to an inspection method and an inspection device for a resin shock absorber for an elevator.
  • the elevator shock absorber when due to some abnormal cause, the car on which the person is placed or the counterweight for balancing the car travels downward from the lowest floor of the building and descends to the pit part of the hoistway, It is a device that mitigates the impact caused by the collision of the cage or counterweight with the pit.
  • a shock absorber a spring shock absorber, an oil-filled shock absorber, or a resin shock absorber is used.
  • an inspection method or an inspection device for making it possible to confirm whether or not these shock absorbers have a function of normally mitigating an impact is disclosed.
  • the resin shock absorbers are more likely to deteriorate due to the environment such as temperature and humidity than the spring shock absorbers and oil-filled shock absorbers.
  • the shock absorbing capacity which is the ability to alleviate the impact, may be reduced and the required shock absorbing capacity may not be satisfied.
  • the resin-made shock absorbers also have a feature that the speed of deterioration, that is, the life differs depending on the property if the environment installed for each property is different. For this reason, resin shock absorbers regularly check their buffer capacity for each property, and resin shock absorbers that will no longer meet legal requirements or will not meet legal requirements after a short period of time in the future. It is necessary to replace with a new resin shock absorber.
  • the present invention has been made in view of the above problems, and its purpose is an inspection method capable of easily determining whether a resin shock absorber needs to be replaced at an elevator inspection site without using a car having a rated weight. And to provide inspection equipment.
  • the inspection method for a resin shock absorber includes the following steps. First, an indenter is pushed into a resin shock absorber for an elevator. The load to push the indenter into the resin shock absorber is released. By releasing the load, a physical property value indicating a repulsive force of the indenter jumping up from the resin shock absorber is measured. By comparing the result of the physical property value obtained by measuring the repulsive force with a reference value prepared in advance, it is determined whether or not the resin shock absorber needs to be replaced.
  • the inspection apparatus for a resin shock absorber includes an apparatus main body, a load application mechanism, and a measurement mechanism.
  • the apparatus main body includes a fixing mechanism for fixing the relative position of the resin shock absorber for the elevator.
  • the load applying mechanism can apply a load for pushing the indenter into the resin shock absorber and can release the load.
  • the measurement mechanism measures a physical property value indicating a repulsive force in which the indenter whose load is released jumps up.
  • a correlation between a deceleration due to a collision test of a resin shock absorber using an elevator car and a physical property value indicating a repulsive force of an indenter made of a spherical object is obtained, and a resin shock absorber is obtained.
  • the reference value of the physical property value at the point in time when replacement is required is required. For this reason, in the subsequent inspection of resin shock absorbers, it is possible to easily determine whether or not replacement is necessary by simply examining the physical property value indicating the repulsive force of the indenter that jumps up without using a cage, and always satisfy the requirements of the regulations.
  • the state where the shock absorber is installed can be maintained.
  • FIG. 1 is a schematic plan view showing a configuration of an inspection device according to Embodiment 1.
  • FIG. 1 is a schematic plan view showing a configuration of an inspection device according to Embodiment 1.
  • FIG. 1 A schematic front view and schematic plan view showing aspects of each member in the step of pushing indenters made of spherical objects when the inspection apparatus according to Embodiment 1 is used, corresponding to the state of a) and FIG. (B) and an aspect of each member in the step of measuring the height of the indenter made of a spherical object by jumping up and measuring the height when the inspection device according to Embodiment 1 is used, corresponding to the state of FIG.
  • Schematic diagram (a) showing a step of preparing a step of pushing indenter made of a spherical object when the inspection device according to the second embodiment is used, and a spherical object when the inspection device according to the second embodiment is used
  • Schematic diagram (b) showing the step of pushing the indenter made of, and the step of detecting whether or not the indenter made of a spherical object jumps up and reaches the height reference plate when using the inspection device according to the second embodiment It is the schematic (c) which shows this.
  • the schematic front view and schematic plan view which show the aspect of each member in the preparatory stage of the process of pushing in the indenter which consists of spherical objects at the time of using the inspection apparatus concerning Embodiment 2 corresponding to the state of Fig.8
  • (a) (a schematic front view and schematic plan view showing aspects of each member in the step of pushing indenters made of spherical objects when the inspection apparatus according to Embodiment 2 is used, corresponding to the state of a) and FIG. (B) and the indenter made of a spherical object in the case of using the inspection device according to the second embodiment corresponding to the state of FIG.
  • FIG. 11 is a graph (b) showing a relationship with a collision load of an indenter made of a spherical object that jumps up from a resin shock absorber, and a graph (c) in which FIG. 11 (a) and FIG. 11 (b) are combined. It is a schematic front view which shows the structure of the inspection apparatus which concerns on Embodiment 3.
  • FIG. 6 is a schematic plan view showing a configuration of an inspection device according to Embodiment 3.
  • Graph (a) showing the relationship between the usage time of the resin shock absorber in the fourth embodiment and the average deceleration of the car colliding with the resin shock absorber, and the usage time of the resin shock absorber in the fourth embodiment It is the graph (b) which shows the relationship with the speed
  • the schematic front view and schematic plan view which show the aspect of each member in the preparatory stage of the process of pushing in the indenter which consists of a spherical object at the time of using the inspection apparatus which concerns on the state of FIG.
  • a schematic front view and schematic plan view showing aspects of each member in the step of pushing indenters made of spherical objects when the inspection device according to Embodiment 4 is used, corresponding to the state of a) and FIG. (B) and the aspect of each member in the step of measuring the speed of the indenter made of a spherical object when the inspection device according to Embodiment 4 is used, corresponding to the state of FIG.
  • They are a schematic front view and a schematic plan view (c).
  • FIG. Schematic diagram (a) showing the preparation stage of the step of pushing indenter having a shape extending in a rod shape when the inspection device according to the fifth embodiment is used, and the case where the inspection device according to the fifth embodiment is used
  • FIG. 6 is a schematic plan view and a schematic cross-sectional view (c) showing internal aspects of each member in a front direction and a plane direction in a step of measuring a collision load by jumping up an indenter having a shape extending to It is the schematic which shows the modification of the shape of an indenter used for the inspection apparatus which concerns on Embodiment 1.
  • FIG. It is the schematic which shows the modification of the shape of an indenter used for the inspection apparatus which concerns on Embodiment 5.
  • the indenter 2 made of a spherical object is replaced with a resin. It is determined whether or not the resin shock absorber 1 needs to be replaced by measuring a physical property value indicating the repulsive force indicated by the indenter 2 when the shock absorber 1 is pushed into the shock absorber 1 and released.
  • the resin shock absorber 1 is inspected mainly by the indenter 2 and the load applying plate 3 (load applying mechanism).
  • an indenter 2 is placed on the uppermost surface of the resin shock absorber 1, and a load applying plate 3 is placed thereon. At this time, the indenter 2 and the load applying plate 3 may be placed so as to contact each other. This is a preparation stage of the process of pushing the indenter 2 into the resin shock absorber 1.
  • the resin shock absorber 1 has, for example, a circular planar shape, and has a shape close to a cylindrical shape as a whole.
  • the resin shock absorber 1 may have a cylindrical shape as a whole by forming a circular hole in the center of the uppermost surface in a plan view and having a columnar cavity therein.
  • the buffer part which is a part in contact with the object such as the elevator car and the indenter 2 in the resin shock absorber 1 is formed at the uppermost part of the resin shock absorber 1 and is formed by, for example, urethane foam or rubber.
  • the resin shock absorber 1 is classified as an energy storage type nonlinear shock absorber, and it is specified that about 90% of the total height can be regarded as a stroke. For this reason, since the height of the resin shock absorber 1 can be lowered, the depth of the pit portion of the elevator hoistway where the resin shock absorber 1 is installed can be reduced.
  • the indenter 2 has such a hardness that the deformation when being pushed into the resin shock absorber 1 is negligible, and has a shape that does not damage the surface of the resin shock absorber 1 when pushed into the resin shock absorber 1. It is preferable that Therefore, the material of the indenter 2 is preferably made of a metal such as stainless steel or iron.
  • the shape of the portion of the indenter 2 that is pushed into the resin shock absorber 1 is preferably spherical or polyhedral (such as cubic or regular dodecahedron).
  • the indenter 2 is a substantially spherical and small metal member (iron ball).
  • the indenter 2 may have a cubic shape, for example (in this case, one surface constituting the cube pushes in the resin shock absorber 1).
  • the load applying plate 3 is arranged on the upper side of the indenter 2 to be pushed into the resin shock absorber 1 set in the inspection device 100, and can be arranged just above the indenter 2. Thereby, the load which pushes the indenter 2 in the resin buffer 1 can be given. Further, the load application plate 3 can release the load applied so as to push the indenter 2 into the resin shock absorber 1 by moving away from the region directly above the indenter 2, and can cause the indenter 2 to jump upward.
  • the load application plate 3 has a hardness equivalent to that of the indenter 2 and preferably has a hardness that is small enough to neglect deformation such as dents and bends when the indenter 2 is pushed in. Therefore, the load applying plate 3 is also preferably made of iron.
  • the load application plate 3 when the load application plate 3 is lowered to a position where it comes into contact with the upper surface of the indenter 2, the load application plate 3 further moves downward as indicated by a downward arrow in the figure. As a result, the indenter 2 is pushed into the resin shock absorber 1.
  • the buffer portion of the resin shock absorber 1 is formed of a deformable resin material, so that when the indenter 2 is pushed in, the surface is deformed so as to be recessed. The indenter 2 is pushed downward so that the resin shock absorber 1 bites into the deformed region.
  • the load applying plate 3 for pushing the indenter 2 downward moves in the horizontal direction indicated by the left-pointing arrow in the drawing, so that the indenter 2 in FIG. 1B is made of resin.
  • the load pushed into the shock absorber 1 is released.
  • the indenter 2 receives a repulsive force from the resin shock absorber 1 and jumps upward as indicated by an upward arrow in the figure.
  • the height from the resin shock absorber 1 reached by the indenter 2 due to the jumping is measured as a physical property value indicating the repulsive force received by the indenter 2.
  • the height at which the indenter 2 jumps up here means the height from the top surface of the resin shock absorber 1 where the indenter 2 moves by the repulsive force in the vertical direction (the height of the highest point that can be reached).
  • the indenter 2 jumps up in the vertical direction (directly above). That is, in the present embodiment, as a physical property value (heap height), the indenter 2 that jumps up from the resin shock absorber 1 by releasing the pushing force can be separated from the resin shock absorber 1 in the vertical direction. The distance is measured.
  • the trajectory of the indenter 2 jumps up almost directly above the position where the indenter 2 is placed on the resin shock absorber 1 (position where it substantially overlaps the position where the indenter 2 is placed on the resin shock absorber 1). Drawn in.
  • the result of the measured jumping height of the indenter 2 is compared with a reference value prepared in advance. As a result, if it exceeds the reference value, it is determined that the elastic force of the resin shock absorber 1 is large and the force to relieve the impact force is large, so it is determined that the replacement of the resin shock absorber 1 is unnecessary. On the other hand, if the value is below the reference value, it is determined that the elastic force of the resin shock absorber 1 is small and the force for reducing the impact force is small, so that it is determined that the resin shock absorber 1 needs to be replaced.
  • a new resin shock absorber 1 to be inspected or a used product whose use time is known is prepared as a sample of the resin shock absorber 1 for obtaining the reference value.
  • the car on which the elevator person is placed is lowered and collided with the shock absorber (topmost part) of the resin shock absorber 1 of the sample.
  • the speed at which the car is lowered at this time is preferably a movable speed at which the elevator is lowered (slightly higher than the rated speed, for example, 115% of the rated speed).
  • the average deceleration of the car at the time of the collision is measured, and this is plotted as point A1 in FIG.
  • the horizontal axis of the graph of FIG. 2A indicates the usage time of the sample resin shock absorber 1, and this usage time may be a value of the actual usage time, or so-called.
  • this usage time may be a value of the actual usage time, or so-called.
  • the resin buffer 1 is exposed to an environment in which the temperature repeatedly changes suddenly and is intentionally deteriorated. It may be a time considered as).
  • the vertical axis of the graph of FIG. 2A indicates the average deceleration of the car at the time of the collision.
  • the deceleration means an acceleration at which the speed at which the car descends due to a collision decreases, and if the speed and acceleration toward the bottom are positive, it means an acceleration indicated by a negative value. .
  • the indenter 2 is pushed into the resin shock absorber 1 and released in the manner shown in FIG. 1 with respect to the resin shock absorber 1 for which the average deceleration has been measured by the cage.
  • a process is performed, and the height from the resin shock absorber 1 where the indenter 2 jumps up with respect to the resin shock absorber 1 is measured. This is plotted as point B1 in FIG.
  • a so-called accelerated deterioration test is performed for a certain period of time, which is equivalent to the use of the sample resin shock absorber 1 and then the elevator again.
  • a point A2 indicating the average deceleration due to the collision of the car and a point B2 indicating the height of jumping by pressing and releasing the indenter 2 are obtained.
  • an accelerated deterioration test is performed on the sample resin shock absorber 1.
  • the process of obtaining the average deceleration of the car and the height at which the indenter 2 jumps is performed a plurality of times while changing the usage time of the resin shock absorber 1 (the time that is considered to have been used by the accelerated deterioration test).
  • the points A3 to A6 and the points B3 to B6 are plotted.
  • the curve obtained by connecting the points plotted in each graph shows the usage time of the resin shock absorber 1 (time considered to be used in the accelerated deterioration test) and the average deceleration of the car (the height of the indenter 2 jumping up) ).
  • the energy storage type non-linear shock absorber has an average deceleration of 9.8 m / s 2 (according to overseas regulations) when it collides with the resin shock absorber 1 at a rated weight of 115% of the rated speed. To be precise, it is required to be about 9.80665 m / s 2 ) or less (that is, to decelerate gently at a deceleration below the deceleration). This gentle deceleration can be realized by the fact that the resin shock absorber 1 has high elasticity (the resin shock absorber 1 is relatively new).
  • the average deceleration of 9.8 m / s 2 is set to a value to replace the resin shock absorber 1, and the reference time ts reaching this value is set as the resin shock absorber. 1 can be set as the time of exchange (at the time of exchange).
  • the jumping height S1 of the indenter 2 from the resin shock absorber 1 at this replacement time ts is obtained as a reference value for replacing the resin shock absorber 1.
  • the jumping height S1 of the indenter 2 as a reference value for replacing the resin shock absorber 1 is about 97 cm.
  • the average deceleration is 9.8 m / s 2 or less and the height at which the indenter 2 jumps is high. 97 cm or more. Therefore, for example, if the height at which the indenter 2 jumps up is measured at an installation site of an arbitrary resin shock absorber 1 and it is 97 cm or more, it can be determined that the resin shock absorber 1 is not required to be replaced.
  • the average deceleration exceeds 9.8 m / s 2 and the indenter 2 jumps up.
  • the height is less than 97 cm. Therefore, for example, when the height at which the indenter 2 jumps up is measured at an installation site of an arbitrary resin shock absorber 1 and it is less than 97 cm, it can be determined that the resin shock absorber 1 needs to be replaced.
  • the height at which the indenter 2 jumps up with respect to the resin shock absorber 1 is the size of the indenter 2, the depth to push the indenter 2 downward from the top surface of the resin shock absorber 1, and the indenter 2 made of resin. It varies depending on the time from when the shock absorber 1 is pushed downward from the uppermost surface to when it is released. Therefore, when the plot data of points B1 to B6 in FIGS. 2 (b) and 2 (c) is obtained, and after that, the height at which the indenter 2 jumps up with respect to the resin shock absorber 1 is measured at the elevator inspection site.
  • the values of the above parameters are made constant. Is done. If it is possible to push in with the conditions so that the values are constant as described above, the load applying plate 3 (mechanical mechanism or electric mechanism installed in the inspection device) as shown in FIG. For example, the indenter 2 may be pushed by hand.
  • the size of the indenter 2 is increased, a high load is required when pushing downward from the uppermost surface of the resin shock absorber 1, and the work may be difficult. Conversely, if the size of the indenter 2 is reduced, the load required to push downward from the uppermost surface of the resin shock absorber 1 is small, but the repulsive force after releasing the pushing load is weak, and the height at which the indenter 2 jumps up. May become difficult to determine whether or not replacement is necessary. It is possible to more accurately determine whether or not the resin shock absorber 1 needs to be replaced by raising the indenter 2 higher than when raising the indenter 2 lower.
  • an iron ball having an outer diameter of 10 mm or more and 15 mm or less is used as the indenter 2 in consideration of both workability and determination accuracy of whether or not replacement is necessary.
  • this does not limit the size of the indenter 2, and an indenter 2 having a diameter outside the above range may be used. Further, as will be described later, the size of the indenter 2 may be determined in consideration of the planar shape of the uppermost surface of the resin shock absorber 1 on which the indenter 2 is placed.
  • the indenter 2 can jump higher when the load is released, and whether or not the resin shock absorber 1 needs to be replaced. The determination can be made with higher accuracy.
  • the depth at which the indenter 2 is pushed downward from the uppermost surface of the resin shock absorber 1 is preferably deeper than the radius of the indenter 2.
  • the time from pressing the indenter 2 to releasing it that is, the time for holding the indenter 2 in the pressed state as shown in FIG. 1B is as short as possible. If this time is shortened, the indenter 2 can jump higher after opening. This is considered to be because stress relaxation occurs from the moment when the indenter 2 is pushed in from the uppermost surface of the resin shock absorber 1 and the repulsive force that the resin shock absorber 1 jumps up the indenter 2 decreases with time. .
  • the diameter of the indenter 2 is 10 mm
  • the depth at which the indenter 2 is pushed downward from the uppermost surface of the resin shock absorber 1 is 7 mm
  • the time from the start of pushing of the indenter 2 to the release is 1 Preferably it is seconds.
  • FIG. 3 is a front view of the inspection apparatus 100
  • the vertical direction in the figure is the height direction and is almost vertical
  • the horizontal direction in the figure is the width direction of the entire inspection apparatus 100
  • the direction perpendicular to the paper is the inspection.
  • the depth direction of the entire apparatus 100 is shown.
  • FIG. 4 is a plan view of the inspection apparatus 100
  • the vertical direction in the figure indicates the depth direction of the entire inspection apparatus 100
  • the upper side in the figure indicates the back side
  • the lower side in the figure indicates the near side
  • 4 indicates the width direction of the entire inspection apparatus 100
  • the direction perpendicular to the paper surface indicates the height direction (vertical direction).
  • the inspection device 100 checks the presence or absence of the function of the resin shock absorber 1 for an elevator to alleviate the impact when the elevator car collides.
  • the inspection device 100 has a device body including a base 4, a support column 5, a shock absorber fixing plate 6, and a linear guide 7, for example.
  • the inspection device 100 also includes a scale 8a in the height direction in which the resin shock absorber 1 jumps in order to measure the height from the resin shock absorber 1 that is reached when the indenter 2 jumps up from the resin shock absorber 1 at the time of inspection. It has a height display plate 8 (measuring mechanism).
  • the base 4 is installed at the lowermost part of the inspection device 100 as a base of the entire inspection device 100, and has, for example, a rectangular planar shape.
  • a resin shock absorber 1 as an object to be inspected can be placed at the center of the base 4.
  • the column 5 is a columnar member attached to, for example, an area near the four corners of the rectangular shape of the base 4, and is along a direction substantially perpendicular to the main surface of the base 4, that is, a substantially vertical direction (a direction in which the indenter 2 jumps up). It extends.
  • pillar 5 has a rectangular planar shape in FIG. 4, it is not restricted to this.
  • the shock absorber fixing plate 6 (fixing mechanism) is fixed to the support column 5 and has a function of supporting the resin shock absorber 1 placed on the base 4 from above and from the side (fixing it so as to be pressed down). is doing. That is, the shock absorber fixing plate 6 has a function of determining the relative position of the resin shock absorber 1 with respect to the apparatus main body of the inspection device 100 and fixing the resin shock absorber 1 at that position.
  • a pair of shock absorber fixing plates 6 is arranged on one side and the other side in the width direction of the inspection device 100 so as to be fixed in contact with each of the two columns 5 that are arranged in the depth direction of the inspection device 100 at intervals. In addition, it extends along the depth direction (along the horizontal direction).
  • the shock absorber fixing plate 6 intersects the first fixing region 6a having a rectangular shape extending in the depth direction (vertical direction in FIG. 4) of the inspection device 100 in plan view, and in contact with the support column 5 And a second fixed region 6b that is fixed and extends in the depth direction of the inspection device 100.
  • the first fixed region 6a is disposed on the upper side of the resin shock absorber 1 and contacts the uppermost portion of the resin shock absorber 1.
  • the second fixed region 6b is disposed on the side surface side of the resin shock absorber 1 and is made of resin.
  • the shock absorber fixing plate 6 has the above-described regions 6a and 6b, the shock absorber fixing plate 6 can be easily fixed to the support column 5, and the shock absorber fixing plate 6 is made of the resin shock absorber 1. Can be easily fixed to the inspection device 100 (relative position thereof).
  • the linear guide 7 has a columnar shape extending along the depth direction (along the horizontal direction) so as to be fixed in contact with both of the two columns 5 arranged in the depth direction of the inspection device 100 with a space therebetween. It is a member.
  • the linear guides 7 are disposed, for example, as a pair on one and the other side in the width direction of the inspection device 100, and include a part of the region directly above each of the pair of shock absorber fixing plates 6. are arranged as follows.
  • a load is applied as a columnar member extending in a direction (width direction) intersecting with the direction in which the linear guide 7 extends in a plan view.
  • a plate 3 is arranged. One end and the other end in the extending direction of the load applying plate 3 are arranged so as to contact one and the other of the pair of linear guides 7.
  • a pair of linear guides 7 is formed with a groove for gripping one end and the other end of the load applying plate 3, and the load applying plate 3 gripped by the groove extends along the direction in which the linear guide 7 extends ( It can be moved (along the horizontal direction).
  • a spring fixing plate 9 is disposed between the pair of linear guides 7.
  • the spring fixing plate 9 is a columnar member that extends in the left-right direction of FIGS. 3 and 4, that is, in the width direction of the inspection device 100, for example, like the load application plate 3. Therefore, the spring fixing plate 9 is arranged between the pair of linear guides 7 so as to extend along the direction in which the load applying plate 3 extends (so as to be arranged substantially in parallel).
  • the spring fixing plate 9 is not configured to be movable along the extending depth direction of the linear guide 7 unlike the load applying plate 3.
  • Each end of the spring fixing plate 9 is fixed to the linear guide 7 at one end of each of the pair of linear guides 7 (the lower side in FIG. 4, that is, the front end of the inspection device 100). Yes.
  • the movement of the load applying plate 3 along the linear guide 7 is performed by expansion and contraction of a spring 10 disposed between the load applying plate 3 and the spring fixing plate 9.
  • the spring 10 is arranged so as to extend along the direction in which the linear guide 7 extends (for example, two at intervals), one end of which is part of the surface of the load applying plate 3 and the other end.
  • the load applying plate 3 is connected to the spring fixing plate 9 by the spring 10. Since the spring fixing plate 9 is fixed to the main body of the inspection device 100, the load applying plate 3 is attached to the linear guide 7 according to the expansion and contraction of the spring 10 arranged so as to extend along the extending direction of the linear guide 7. The relative position with respect to the apparatus main body can be moved along.
  • the indenter 2 When the load applying plate 3 gripped by the linear guide 7 moves in the extending direction of the linear guide 7 in this manner, the indenter 2 is arranged directly below the load applying plate 3 and the indenter 2 is pushed into the load applying plate 3. It is possible to apply a load as much as possible, or to dispose a load that pushes the indenter 2 by placing the load applying plate 3 in a region other than directly above the indenter 2.
  • the load applying plate 3 is placed on the apparatus main body in a state where the spring 10 is extended with respect to the apparatus main body by the stopper 11 provided so as to mesh with a part of the linear guide 7. It is preferably fixed so that the relative position with respect to is not changed.
  • the linear guide 7 can be moved relative to the apparatus main body along the vertical direction in which the column 5 extends.
  • a groove for gripping the linear guide 7 is formed in a pair of struts 5 adjacent to each other in the left-right direction in FIG. 4, and the linear guide 7 gripped by the groove extends along the direction in which the strut 5 extends (indenter 2 It is possible to move along the vertical direction.
  • the load application plate 3 held by the linear guide 7 is also movable along the extending direction of the support column 5 (along the vertical direction in which the indenter 2 jumps up).
  • the spring fixing plate 9 fixed to the linear guide 7 can also move in the vertical direction together with the linear guide 7.
  • the load applying plate 3 held by the linear guide 7 moves in the extending direction of the support column 5, the load applying plate 3 is brought into contact with the indenter 2 directly below, and the indenter 2 is pushed downward. It is possible to move the applying plate 3 away from the indenter 2 immediately below it (release the load that pushes the indenter 2 downward).
  • the upper diagram is a schematic front view of the entire inspection device 100
  • the lower diagram is a schematic plan view of the entire inspection device 100 (FIGS. 5B and 5B described later).
  • the resin shock absorber 1 is placed on the base 4 of the main body of the inspection device 100 and fixed so as to be pressed down from above and from the side by a shock absorber fixing plate 6 as a fixing mechanism.
  • An indenter 2 is placed on the uppermost surface of the resin shock absorber 1.
  • the resin shock absorber 1 when the resin shock absorber 1 is cylindrical, a hole for forming a cylindrical hollow portion is formed in a part of the uppermost surface (particularly the central portion), and therefore the uppermost surface is an annular flat surface. Will have a shape.
  • the width of the annular portion of the resin shock absorber 1 that intersects the circumference is taken into consideration (its width).
  • the size of the indenter 2 is determined (so that the diameter is smaller than).
  • the load applying plate 3 moves along the direction in which the linear guide 7 extends to the position where the spring 10 is in the most extended state (the distance between the load applying plate 3 and the spring fixing plate 9 is maximized).
  • the load applying plate 3 is fixed to the linear guide 7 (including the apparatus main body) by the stopper 11.
  • the load applying plate 3 is disposed at a position away from the uppermost surface of the resin shock absorber 1.
  • the load applying plate 3 is disposed immediately above the indenter 2.
  • the load applying plate 3 directly above the indenter 2 moves downward together with the spring fixing plate 9 along the extending direction of the column 5 (holding the linear guide 7).
  • the load applying plate 3 and the indenter 2 are in contact with each other.
  • the load applying plate 3 is further moved downward along the extending direction of the support column 5 that grips the linear guide 7. Is pushed into the lower resin shock absorber 1 side.
  • the shock absorber fixing plate 6 it is preferable to lower the shock absorber fixing plate 6 until the linear guide 7 comes into contact with, for example, the surface of the first fixing region 6a of the shock absorber fixing plate 6 directly below the linear guide 7. In this way, since the shock absorber fixing plate 6 is fixed to the support column 5 and does not move, the amount of lowering of the load applying plate 3 in each measurement can be made constant. Therefore, the indentation depth of the indenter 2 pushed downward by the load applying plate 3 in each measurement can be made constant with respect to the uppermost surface of the resin shock absorber 1.
  • the stopper 11 is removed while maintaining the state where the indenter 2 is pushed downward.
  • the spring 10 is contracted by the elastic force
  • the load applying plate 3 is drawn in the horizontal direction (toward the spring fixing plate 9) along the extending direction of the linear guide 7, and the relative position with respect to the apparatus main body. Move.
  • the indenter 2 is released from the load application plate 3 and is therefore flipped upward by a repulsive force against the resin shock absorber 1 being pushed downward.
  • the data shown in FIG. 2 is prepared in advance, and thereafter, the resin shock absorber 1 is used as the indenter 2 without giving an impact force to the resin shock absorber 1 using an elevator car. It is possible to easily determine whether or not the resin shock absorber 1 needs to be replaced simply by measuring a physical property value (heap height) indicating the repulsive force applied to the resin shock absorber 1.
  • the replacement time point ts that indicates the time until the replacement is required varies depending on the environment such as the temperature and humidity in which the resin shock absorber 1 of the same model number is installed. However, at least the average deceleration at the time of replacement ts is 9.8 m / s 2 and the jumping height of the indenter 2 is 97 cm. It is almost the same regardless of the environment such as humidity. For this reason, once the data shown in FIG. 2 is obtained, in the inspection of the resin shock absorber 1 at the inspection site of the elevator after that, even if the elevator car is not used, it is extremely small compared to the elevator car.
  • Whether or not the resin shock absorber 1 needs to be replaced can be determined simply by measuring whether or not the jumping height is equal to or greater than the reference value S1, that is, 97 cm, using the indenter 2 and the inspection device 100. Therefore, regardless of the environment where the elevator inspection site is installed, it is possible to easily determine the buffer capacity of the resin shock absorber 1 using the data in FIG. 2 without performing an impact test using a car at the inspection site. Can do.
  • the initial defective product inspection of the resin shock absorber 1 can be easily performed.
  • the height from the resin shock absorber 1 that the raised indenter 2 reaches is used, and only the height display plate 8 is used. It can be measured very easily.
  • the step of pushing and releasing the indenter 2 with respect to the resin shock absorber 1 as in the present embodiment is performed by pushing the indenter 2 as the load applying plate 3 moves along the column 5 as described above.
  • the indenter 2 can be easily released from the resin shock absorber 1 by moving in the direction in which the linear guide 7 extends while maintaining the state in which the load application plate 3 is pushed in.
  • the inspection device 200 of the present embodiment has basically the same configuration as the inspection device 100 of the first embodiment, but is measured above the load applying plate 3.
  • the inspection apparatus 100 is different from the inspection apparatus 100 in that it includes a height reference plate 12 as a mechanism.
  • the height from the uppermost surface of the resin shock absorber 1 placed on the inspection device 200 reaches the indenter 2 at the replacement time ts obtained in FIG. It is arranged at the position of the height reference value S1 (for example, the position having a height of 97 cm shown in FIG. 2).
  • the height reference plate 12 is attached so as to be fixed to the uppermost part of the support column 5 and substantially overlaps the base 4 in plan view (particularly, overlaps with the position where the indenter 2 is disposed), for example, a rectangular shape. It has a planar shape.
  • the height reference plate 12 is shown as a dotted line and having an edge slightly inside the base 4. ing.
  • the inspection device 200 is different from the inspection device 100 only in having the height reference plate 12 as described above, and other configurations are almost the same as the configuration of the inspection device 100, and therefore the same elements are the same. The description is not repeated.
  • FIGS. 8A, 8B, and 8C showing the outline of the inspection method in the present embodiment, these are basically shown in FIGS. 1A, 1B, and 1C, respectively.
  • FIGS. 8A, 8B, and 8C are basically shown in FIGS. 1A, 1B, and 1C, respectively.
  • FIG. 8A is the process of FIG. 1A of the first embodiment
  • FIG. 8B is the process of FIG. 1B of the first embodiment
  • FIG. 8C is the embodiment. 1 corresponds to the process of FIG.
  • the indenter 2 in the step of FIG. 8C, that is, in the step of measuring the physical property value indicating the repulsive force by releasing the load pushing the indenter 2 into the resin shock absorber 1 by the load applying plate 3, the indenter 2 is repelled.
  • the height at which the force jumps up and reaches is a physical property value indicating the repulsive force.
  • the indenter 2 reaches the height reference plate 12, it means that the indenter 2 rises to a height equal to or higher than the height reference plate 12, and therefore it can be determined that the resin shock absorber 1 is not required to be replaced. . Conversely, if the indenter 2 does not reach the height reference plate 12, it can be determined that the resin shock absorber 1 needs to be replaced.
  • the inspection method of the present embodiment is different from the first embodiment only in the above points, and the other points are the same as in the first embodiment. Therefore, the same elements are denoted by the same reference numerals, The description will not be repeated.
  • the reference value S1 of the height reached by the indenter 2 at the replacement time ts of the resin shock absorber 1 is obtained from the data in FIG.
  • the inspection apparatus 200 is provided with the height reference plate 12 positioned at the height of the reference value S1, and it is detected whether or not the indenter 2 reaches the height reference plate 12. It is possible to determine whether or not the resin shock absorber 1 needs to be replaced. For this reason, similarly to the first embodiment, it is not necessary to perform the measurement using the elevator car at the inspection site, and the inspection can be easily performed.
  • This detection method is simpler than the method of measuring the jumping height of the indenter 2 using the height display plate 8 in the first embodiment, and the measurement accuracy is improved. That is, for example, in the method using the height display plate 8 of the first embodiment, there is a possibility that the height of the indenter 2 jumping up may be missed or mistakenly recognized when visually checked. . Further, when the height of the indenter 2 is confirmed by video shooting, troubles such as installation of a photographing device are required. However, in the present embodiment, since it is only necessary to detect whether or not the indenter 2 reaches the height reference plate 12, the possibility of the occurrence of the human error as described above can be further reduced, and measurement can be performed. Can be saved.
  • FIGS. 10 (a), (b), and (c) showing the outline of the inspection method in this embodiment are basically shown in FIGS. 1 (a), (b), and (c), respectively. This is the same as the outline of the inspection method of the first embodiment.
  • the physical property value As described above, the load when the indenter 2 collides with the load detector 13 (load detection device) is measured.
  • the load at the time of collision means a force in a vertical direction (a direction directly above) that the indenter 2 applies to the load detector 13.
  • the present embodiment is different from the first embodiment in which the height reached by the indenter 2 is measured using the height display plate 8 and the physical property value measurement method indicating the repulsive force received by the indenter 2 is different. ing.
  • the load detector 13 is installed, for example, on the surface (the lower side) of the ceiling portion 14 fixed to the uppermost portion of the column 5 on which the resin shock absorber 1 or the like is placed.
  • the load detector 13 is almost directly above the position where the indenter 2 is placed, and is provided on a trajectory in which the indenter 2 jumps up.
  • the load detector 13 is provided at a position where the height from the resin shock absorber 1 is lower than the height reference plate 12 in the second embodiment, for example. That is, the load detector 13 can receive a collision of the indenter 2 even when the height reached by the indenter 2 is lower than the reference value S1 of the jumping height (see FIG. 2). Basically, it is provided at a position lower than the height reference plate 12 of the second embodiment on the assumption that the indenter 2 having a weak jumping force also collides.
  • the result of the load due to the collision of the indenter 2 (collision load) measured by the load detector 13 is compared with a reference value prepared in advance. As a result, if it exceeds the reference value, it is determined that the elastic force of the resin shock absorber 1 is large and the force to relieve the impact force due to the collision of the car is large, so it is determined that the replacement of the resin shock absorber 1 is unnecessary. . On the other hand, if the value is below the reference value, it is determined that the elastic force of the resin shock absorber 1 is small and the force for reducing the impact force caused by the collision of the car is small, so it is determined that the resin shock absorber 1 needs to be replaced.
  • the magnitude of the collision load basically correlates with the magnitude of the jumping height in the first embodiment.
  • the method for obtaining the reference value of the collision load of the indenter 2 that requires replacement of the resin shock absorber 1 is basically a method for obtaining the reference value of the jumping height of the indenter 2 of the first embodiment. This will be described with reference to FIG.
  • this graph is basically the same as the graph of FIG. 2 (a) of the first embodiment, and each used time (or accelerated deterioration test) of resin shock absorber 1 was used.
  • the average deceleration at the time of collision of the car measured while changing the time taken to be considered as points A1 to A6 is plotted.
  • the time shown in FIG. 10 is the same as the time when the points A1 to A6 were measured.
  • the step of pushing and releasing the indenter 2 into the resin shock absorber 1 is performed in the manner described above, and the indenter 2 jumped at that time is caused to collide with the load detector 13 and the load detector 13 is caused to measure the collision load.
  • the results are plotted as points C1 to C6 in FIG.
  • a curve showing the relationship between the usage time of the resin shock absorber 1 (time considered to be used in the accelerated deterioration test) and the collision load of the indenter 2 against the load detector 13 is obtained. .
  • the collision load S2 of the indenter 2 as a reference value with which the resin shock absorber 1 should be replaced is about 19N.
  • the collision load of the indenter 2 against the load detector 13 varies depending on the height from the top surface of the resin shock absorber 1 where the load detector 13 is installed. Therefore, when the plot data of the points C1 to C6 in FIGS. 11B and 11C are obtained, and after that, the collision of the indenter 2 with the load detector 13 against the resin shock absorber 1 at the elevator inspection site.
  • the values of the above parameters are made constant.
  • the load detector 13 has a vertical height from the uppermost surface of the resin shock absorber 1 of preferably 50 cm or more and 80 cm or less, and more preferably 50 cm or more and 70 cm or less. As an example, in the present embodiment, the vertical height of the load detector 13 from the uppermost surface of the resin shock absorber 1 is preferably 70 cm.
  • the inspection device 300 of the present embodiment has basically the same configuration as the inspection device 100 of the first embodiment, but is measured above the load applying plate 3.
  • the inspection device 100 is different from the inspection device 100 in that it includes a load detector 13 as a mechanism.
  • the load detector is illustrated by a dotted line from the viewpoint of making other members included in the inspection device 300 visible.
  • FIGS. 14A, 14B, and 14C the operation of each member in the inspection process of the resin shock absorber 1 using the inspection device 300 of FIGS. This is the same as the operation of each member in the inspection process using the inspection device 100 in the first embodiment shown in 5 (a), (b), and (c).
  • FIG. 14C differs from FIG. 5C only in that a collision load is detected by the load detector 13. Yes.
  • the inspection device 300 is different from the inspection device 100 only in having the load detector 13 as described above, and other configurations are almost the same as the configuration of the inspection device 100, and therefore the same elements are the same. Reference numerals will be given and description thereof will not be repeated.
  • the replacement time point ts that indicates the time until the replacement is required varies depending on the environment such as the temperature and humidity in which the resin shock absorber 1 of the same model number is installed. However, at least the average deceleration at the time of replacement ts is 9.8 m / s 2 and the impact load when the indenter 2 jumps up is 19 N. It is almost the same regardless of the environment such as temperature and humidity.
  • the indenter 2 jumps up from the resin shock absorber 1 in the subsequent inspection. It is possible to determine whether or not the resin shock absorber 1 needs to be replaced simply by detecting whether the collision load is equal to or greater than the reference value S2 or less than the reference value S2. For this reason, similarly to the first embodiment, it is not necessary to perform the measurement using the elevator car at the inspection site, and the inspection can be easily performed.
  • the load detector 13 is installed at a relatively low position from the resin shock absorber 1.
  • the inspection apparatus 300 according to the present embodiment is higher in height of the apparatus main body than the inspection apparatuses 100 and 200 in which, for example, the height display plate 8 of the first embodiment or the height reference plate 12 of the second embodiment is used. Since the vertical dimension is reduced, the apparatus main body can be reduced in size.
  • the possibility of human error occurring in the measurement result can be reduced as compared with the case where the height display plate 8 is used for visual measurement as in the first embodiment, for example.
  • FIGS. 15 (a), (b) and (c) showing the outline of the inspection method in the present embodiment are basically shown in FIGS. 1 (a), (b) and (c), respectively. This is the same as the outline of the inspection method of the first embodiment.
  • the speed measuring device 15 measures the speed at which the indenter 2 jumps upward from the resin shock absorber 1.
  • the speed means a speed in a vertical direction (a direction toward directly above).
  • the speed measuring device 15 is fixed, for example, on the side of the support column 5 on which the resin shock absorber 1 is arranged (inside the apparatus main body), and when the indenter 2 passes upwardly through a part of the orbit of the indenter 2 that jumps up. Measure speed.
  • the speed measuring device 15 is provided at a position where the height from the resin shock absorber 1 is lower than, for example, the height reference plate 12 in the second embodiment. That is, the speed measuring device 15 detects the passage of the indenter 2 that rises and measures its speed even when the height reached by the indenter 2 is lower than the reference value S1 of the jumping height (see FIG. 2). From the viewpoint of enabling this, it is provided at a position lower than the height reference plate 12 of the second embodiment on the premise that the speed of the indenter 2 having a weak jumping force is basically detected. As shown in FIGS.
  • the speed measuring device 15 is basically a member extending in the horizontal direction, and can detect the speed of the indenter 2 passing through a height approximately equal to the vertical height at which the speed measuring device 15 is installed. It is assumed to be a configuration.
  • the result of the speed of the indenter 2 measured by the speed measuring device 15 is compared with a reference value prepared in advance. As a result, if it exceeds the reference value, it is determined that the elastic force of the resin shock absorber 1 is large and the force to relieve the impact force due to the collision of the car is large, so it is determined that the replacement of the resin shock absorber 1 is unnecessary. . On the other hand, if the value is below the reference value, it is determined that the elastic force of the resin shock absorber 1 is small and the force for reducing the impact force caused by the collision of the car is small, so it is determined that the resin shock absorber 1 needs to be replaced.
  • the magnitude of the speed basically correlates with the magnitude of the jumping height in the first embodiment.
  • the method for obtaining the reference value of the speed of the indenter 2 that requires replacement of the resin shock absorber 1 in the present embodiment is basically the method for obtaining the reference value of the jumping height of the indenter 2 of the first embodiment. Although it is the same, this is demonstrated using FIG.
  • this graph is basically the same as the graph of FIG. 2 (a) of the first embodiment, and is used for each use time (or accelerated deterioration test) of resin shock absorber 1.
  • the average deceleration at the time of collision of the car measured while changing the time taken to be considered as points A1 to A6 is plotted.
  • FIG. 15 shows the same time as the time at which points A1 to A6 were measured for the resin shock absorber 1 for which the average deceleration was measured by the car.
  • the step of pushing and releasing the indenter 2 into the resin shock absorber 1 in the manner is performed, and the speed measuring device 15 measures the speed of the indenter 2 that has jumped up at that time.
  • the results are plotted as points D1 to D6 in FIG.
  • a curve showing the relationship between the usage time of the resin shock absorber 1 (time considered to be used in the accelerated deterioration test) and the measured speed of the indenter 2 is obtained.
  • the resin shock absorber 1 does not need to be replaced at each of the points A1 to A4 and points D1 to D4 that have a shorter usage time than the replacement time ts, and the usage time is shorter than the replacement time ts.
  • the resin shock absorber 1 needs to be replaced.
  • the speed of the indenter 2 measured by the speed measuring device 15 varies depending on the height from the uppermost surface of the resin shock absorber 1 where the speed measuring device 15 is installed. Therefore, when obtaining the plot data of the points D1 to D6 in FIGS. 16B and 16C and when measuring the speed of the indenter 2 with respect to the resin shock absorber 1 at the elevator inspection site. Are required so that the values of the above parameters (the height from the top surface of the resin shock absorber 1 on which the speed measuring device 15 is installed) are constant.
  • the speed measuring device 15 As the speed measuring device 15 is installed at a lower position from the uppermost surface of the resin shock absorber 1, the speed at which the indenter 2 that has bounced up is measured by the speed measuring device 15 increases. Can be determined with higher accuracy.
  • the speed measuring device 15 preferably has a vertical height from the uppermost surface of the resin shock absorber 1 of, for example, 50 cm or more and 80 cm or less, and more preferably 50 cm or more and 70 cm or less. As an example, in the present embodiment, the vertical height of the speed measuring device 15 from the uppermost surface of the resin shock absorber 1 is preferably 70 cm.
  • the inspection device 400 of the present embodiment has basically the same configuration as the inspection device 100 of the first embodiment, but is measured above the load applying plate 3.
  • the inspection device 100 is different from the inspection device 100 in that it has a speed measuring device 15 as a mechanism.
  • the speed measuring device 15 is, for example, substantially the same position as the position where the indenter 2 jumps up in the depth direction of the apparatus main body (up and down direction in FIG. 18), and the indenter 2 jumps up in the width direction of the apparatus main body (left and right direction in FIG. 18). It is preferable to be installed at a position spaced apart from the position (for example, a position to the right of the indenter 2).
  • FIGS. 19A, 19B, and 19C the operation of each member in the inspection process of the resin shock absorber 1 using the inspection device 400 of FIGS. This is the same as the operation of each member in the inspection process using the inspection device 100 in the first embodiment shown in 5 (a), (b), and (c).
  • FIG. 19 (c) instead of obtaining the height at which the indenter 2 jumps up and reaching by the height display plate 8, in FIG. 19 (c), only the point at which the speed of the indenter 2 is measured by the speed measuring device 15 is shown in FIG. 5 (c). Is different.
  • the inspection device 400 is different from the inspection device 100 only in having the speed measuring device 15 as described above, and the other configuration is almost the same as the configuration of the inspection device 100, and therefore the same elements are the same. Reference numerals will be given and description thereof will not be repeated.
  • the replacement time point ts that indicates the time until the replacement is required varies depending on the environment such as the temperature and humidity in which the resin shock absorber 1 of the same model number is installed.
  • the average deceleration at the time of replacement ts is 9.8 m / s 2 and the speed of the indenter 2 is 40 km / h. It is almost the same regardless of the environment such as humidity.
  • the speed of the indenter 2 jumping up from the resin shock absorber 1 is the reference value in the subsequent inspection. It is possible to determine whether or not the resin shock absorber 1 needs to be replaced simply by detecting whether it is greater than or equal to S3 or less than the reference value S3. For this reason, similarly to the first embodiment, it is not necessary to perform the measurement using the elevator car at the inspection site, and the inspection can be easily performed.
  • the speed measuring device 15 is installed at a relatively low position from the resin shock absorber 1.
  • the inspection device 400 of the present embodiment is higher in height of the device main body than the inspection devices 100 and 200 using, for example, the height display plate 8 of the first embodiment or the height reference plate 12 of the second embodiment. Since the vertical dimension is reduced, the apparatus main body can be reduced in size.
  • the possibility of human error occurring in the measurement result can be reduced as compared with the case where the height display plate 8 is used for visual measurement as in the first embodiment, for example.
  • the inspection is basically performed using the same inspection method as in Embodiments 1 to 4, but the shape of the indenter 2 is different from those in Embodiments 1 to 4. Accordingly, the configuration of the inspection apparatus is slightly different from those of the first to fourth embodiments.
  • the shape of the indenter 2 according to the present embodiment is similar to that of the first embodiment, and has such a hardness that the deformation when being pushed into the resin shock absorber 1 is negligible, and is pushed into the resin shock absorber 1. It is preferable that the shape is such that the surface of the resin shock absorber 1 is not damaged.
  • indenter 2 used in the present embodiment is made of a metal such as stainless steel or iron as in the first embodiment, but has a shape extending in a rod shape. . That is, the indenter 2 has a rod-shaped portion 2a extending in a rod shape and a spherical portion 2b formed on one end side with respect to the direction in which the rod-shaped portion 2a extends.
  • the side on which the spherical portion 2 b is formed is the side in contact with the resin shock absorber 1.
  • FIG. 20 indenter 2 used in the present embodiment is made of a metal such as stainless steel or iron as in the first embodiment, but has a shape extending in a rod shape.
  • the indenter 2 has a rod-shaped portion 2a extending in a rod shape and a spherical portion 2b formed on one end side with respect to the direction in which the rod-shaped portion 2a extends.
  • the side on which the spherical portion 2 b is formed is the side in contact with
  • the indenter 2 may have, for example, a rod-like portion 2a extending like a rod and a polyhedral shape portion 2c formed on one end side with respect to the direction in which the rod-like portion 2a extends.
  • Good in this case, the side on which the polyhedral shape portion 2c is formed is the side in contact with the resin shock absorber 1).
  • the rod-like portion 2a may be cylindrical or prismatic (for example, a quadrangular prism), but may be cylindrical (especially when the indenter 2 has a spherical portion 2b or a polyhedral-shaped portion 2c). More preferred. Moreover, although not shown in figure, the indenter 2 may be the column shape or the prism shape which the whole has only the rod-shaped part 2a.
  • FIGS. 21 (a), (b) and (c) showing the outline of the inspection method in the present embodiment are basically shown in FIGS. 1 (a), (b) and (c), respectively.
  • the configuration of the inspection device 500 is different from that of the inspection devices 100 to 400 of the other embodiments described above in that the inspection device 500 includes the indenter pushing jig 16 as its load applying mechanism. ing.
  • the indenter pushing jig 16 is disposed above the resin shock absorber 1 with a space therebetween, and as shown by the downward arrow in FIG. 21B and the upward arrow in FIG. It can move in the direction.
  • the indenter pushing jig 16 includes a stopper 11 and a load applying plate 3 (not shown in FIG. 21).
  • FIG. 21 (a) is the process of FIGS. 1 (a) and 5 (a) of the first embodiment, for example
  • FIG. 21 (b) is the process of FIG. 1 (b) and FIG.
  • FIG. 21C corresponds to the process of FIG. 1C and FIG. 5C of the first embodiment, respectively.
  • FIG. 21A the position of the load applying plate 3 is fixed by the stopper 11 so as to be disposed above the indenter 2.
  • the indenter 2 is mounted on the uppermost surface of the resin shock absorber 1. That is, FIG. 21A is a preparatory stage of the step of pushing the indenter 2 into the resin shock absorber 1.
  • the uppermost figure among the three figures arranged in the vertical direction is a schematic plan view of the inspection device 500, particularly the indenter pushing jig 16, and the middle figure is the uppermost figure. It is a schematic sectional drawing of the part which follows the AA line in a figure and the lowest figure. The lowermost figure is a schematic sectional view of a portion along the line BB in the central figure.
  • tool 16 is also shown in figure from a viewpoint which makes a positional relationship easy to understand (FIG.22 (b), (c) mentioned later). The same applies to.
  • the indenter pushing jig 16 has an indenter jumping hole 17 and a load applying plate sliding hole 18 inside thereof.
  • the indenter spring-up hole 17 is formed to have an inner wall extending in the direction in which the indenter 2 jumps up (the vertical direction in the figure, ie, the vertical direction), and penetrates the main body of the indenter pushing jig 16 in the vertical direction. Yes.
  • the width of the inner wall of the indenter spring-up hole 17 is preferably slightly larger than the width of the indenter 2 in the left-right direction in the figure (in the direction intersecting the direction extending in a rod shape). The width is preferably large enough to jump up along the inner wall of the jumping hole 17.
  • the indenter 2 is disposed so that a portion where the rod-shaped portion 2a extends is along the inner wall of the hole 17 for indenting the indenter (so that the rod-shaped portion 2a extends along the vertical direction).
  • the load applying plate sliding hole 18 extends in the horizontal direction of the drawing, that is, in the horizontal direction, and thereby intersects (for example, orthogonally) with the indenter jumping hole 17.
  • the load applying plate 3 is disposed in the load applying plate sliding hole 18, and the load applying plate 3 is movable along the horizontal direction in which the load applying plate sliding hole 18 extends. .
  • One end of the load applying plate sliding hole 18 in the extending direction is an end wall surface 18a formed inside the main body of the indenter pushing jig 16, and the other end thereof is pressed against the indenter. It is an opening at the right end of the main body of the tool 16 in the figure. Further, as described above, the load application plate sliding hole 18 intersects the indenter jumping hole 17, but the first region on the left side (the end wall surface 18 a side) of the crossing indenter lifting hole 17. 18 b and the second region 18 c on the right side of the drawing with respect to the indenter spring-up hole 17.
  • the load applying plate 3 has an opening forming portion 3a and an indenter pushing portion 3b.
  • the opening forming portion 3a is a region in which an opening is formed for releasing the indenter 2 and causing it to jump upward when this portion enters the indenter lifting hole portion 17.
  • the indenter pushing portion 3b is an area where the indenter raising hole portion 17 can be closed in order to push the indenter 2 downward when this portion enters the indenter raising hole portion 17.
  • one end of two springs 10 is fixed to the end wall surface 18 a of the load applying plate sliding hole 18, and the other end of the spring 10 is on the left side of the opening forming portion 3 a of the load applying plate 3. It is fixed at the end.
  • the stopper 11 is lowered so as to close the right region of the second region 18c, and the load applying plate 3 is pushed leftward by the stopper 11. For this reason, the spring 10 is in the most contracted state, and the load applying plate 3 is in a state of being arranged on the leftmost side.
  • the stopper 11 fixes the load applying plate 3 to the left position in the drawing so that it does not move to the right due to the repulsive force against the elastic force of the spring 10.
  • the opening forming portion 3a of the load applying plate 3 is accommodated in the first region 18b, and the indenter pushing portion 3b is accommodated in the indenter jumping hole 17 and in the second region 18c (left side of the stopper 11). Accordingly, at this time, the indenter 2 is disposed below the indenter pushing portion 3b (load applying plate sliding hole portion 18) in the indenter jumping hole portion 17 and placed on the uppermost surface of the resin shock absorber 1. It has become a state.
  • the entire indenter pushing jig 16 is lowered while maintaining the state in which the stopper 11 pushes the load applying plate 3 to the left as shown in FIG. 22 (a). Accordingly, in the indenter jumping hole 17, the indenter pushing portion 3 b of the load applying plate 3 included in the indenter pushing jig 16 comes into contact with the indenter 2 below and pushes the indenter 2 downward. Apply load. Thus, when the load application plate 3 moves further downward in contact with the indenter 2, the indenter 2 in contact therewith is pushed into the lower resin shock absorber 1 side.
  • the stopper 11 is removed so as to move upward while maintaining the state where the indenter 2 is pushed downward.
  • the load applying plate 3 moves to the right in the drawing, and the opening of the opening forming portion 3a (the portion where the plate-like member is not disposed) is the indenter jumping hole portion 17. It is disposed directly above the inner indenter 2. That is, the opening of the opening forming portion 3a of the load applying plate 3 releases the downward load that the indenter pushing portion 3b has applied to the indenter 2 until then.
  • the inspection device 500 is different from the inspection devices 100 to 400 only in that the indenter pushing jig 16 is provided as described above, and the other configuration is substantially the same as the configuration of the inspection devices 100 to 400, and thus the same. Elements are denoted by the same reference numerals and description thereof is not repeated. Specifically, in FIG. 22, illustration of other apparatus main bodies and measurement mechanisms constituting the inspection apparatus 500 is omitted, but this part is not included in any of the inspection apparatuses 100 to 400 of the first to fourth embodiments. May be used. In other words, any of the measurement methods of Embodiments 1 to 4 can be used as the measurement method of the present embodiment.
  • the indenter pushing jig 16 is gripped by a linear guide 7 that is fixed in contact with, for example, the support column 5 of the apparatus main body (for example, similarly to the load applying plate 3 of the first embodiment). Thus, it can move along the direction in which the column 5 extends (along the vertical direction).
  • the indenter 2 having the rod-shaped portion 2 a extending in a rod shape is flipped upward while being arranged so as to extend along the inner wall of the hole 17 for indenter jumping.
  • the indenter 2 is surely arranged in the vertical direction by making the width of the inner wall of the indenter spring-up hole portion 17 close to the width intersecting with the extending direction of the rod-like portion 2a of the indenter 2 (narrow to some extent).
  • the indenter 2 does not jump up in the vertical direction, for example, it jumps up in the oblique direction, the possibility of impairing the reliability of the measurement result can be reduced.
  • the inspection device 500 having the indenter pushing jig 16 of the present embodiment may be inspected using the indenter 2 as a spherical object in the first to fourth embodiments.
  • the indenter 2 can be surely jumped up in the vertical direction along the inner wall of the hole 17 for indenter jumping, so the reliability of the measurement result Can be improved.
  • the resin shock absorber 1 is pushed in by bringing the portion into contact with the uppermost surface of the resin shock absorber 1. In this case, the surface of the resin shock absorber 1 can be prevented from being damaged.
  • the indenter 2 has the rod-shaped portion 2a, the risk of loss can be reduced as compared with the case where the indenter 2 is a spherical object.
  • 1 resin shock absorber 1 resin shock absorber, 2 indenters, 2a rod-shaped portion, 2b spherical portion, 2c polyhedral shape portion, 3 load applying plate, 3a opening forming portion, 3b indenter pushing portion, 4 foundation, 5 strut, 6 shock absorber fixing plate, 6a 1st fixed area, 6b 2nd fixed area, 7 linear guide, 8 height indicator plate, 8a scale, 9 spring fixed plate, 10 spring, 11 stopper, 12 height reference plate, 13 load detector, 14 ceiling Part, 15 speed measuring device, 16 indenter pushing jig, 17 indenting hole, 18 load applying plate sliding hole, 18a end wall, 18b first region, 18c second region, 100, 200, 300, 400,500 Inspection device.

Landscapes

  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Maintenance And Inspection Apparatuses For Elevators (AREA)
  • Vibration Dampers (AREA)

Abstract

 かごの定格重量のものを用いることなくエレベータ点検現場で簡単に樹脂製緩衝器の交換要否を判定可能な点検方法および点検装置を提供する。まずエレベータ用の樹脂製緩衝器(1)に圧子(2)が押し込まれる。圧子(2)を樹脂製緩衝器(1)に押し込む荷重が解放される。荷重を解放させることにより樹脂製緩衝器(1)から圧子(2)が跳ね上がる反発力を示す物性値が測定される。反発力を測定することにより得られた物性値の結果を予め準備された基準値と比較することにより、樹脂製緩衝器(1)の交換の要否が判定される。

Description

樹脂製緩衝器の点検方法および点検装置
 本発明は樹脂製緩衝器の点検方法および点検装置に関し、特に、エレベータ用の樹脂製緩衝器の点検方法および点検装置に関するものである。
 エレベータ用の緩衝器は、何らかの異常原因により、人を乗せるかごまたは当該かごと釣り合わせるための釣合おもりが建物の最下階よりも下方へ進行して昇降路のピット部まで下降したとき、かごまたは釣合おもりのピット部への衝突による衝撃を緩和する装置である。緩衝器としてはばね緩衝器、油入緩衝器、樹脂製緩衝器が用いられている。以下の各特許文献においては、これらの緩衝器が正常に衝撃を緩和する作用を有するか否かを確認可能とするための点検方法または点検装置が開示されている。
特開平9-132362号公報 特開2013-56748号公報 特開平9-43110号公報 特開昭62-113932号公報 特開平6-300070号公報
 上記の緩衝器の中でも特に樹脂製緩衝器は、ばね緩衝器および油入緩衝器に比べて温度や湿度などの環境による劣化が起こりやすい。つまり樹脂製緩衝器は設置後の年数経過により、衝撃を緩和する能力である緩衝能力が低下し、要求される緩衝能力を満たさなくなる場合がある。また樹脂製緩衝器は同一の型番のアイテム間であっても物件ごとに設置される環境が異なればその物件ごとに劣化の速さすなわち寿命が異なるという特徴をも有している。このため樹脂製緩衝器は、物件ごとに定期的に緩衝能力を点検し、法規の要件を満たさなくなった、または今後短い期間の経過後に法規の要件を満たさなくなるであろう樹脂製緩衝器は、新品の樹脂製緩衝器に交換する必要がある。
 しかし現状、樹脂製緩衝器の物件ごとに樹脂製緩衝器の緩衝能力を評価するためには、かごの定格重量のものを、定格速度の115%の速度で樹脂製緩衝器に衝突させて、かごの減速度を測定する必要がある。このような測定をエレベータ点検現場において樹脂製緩衝器の物件ごとに点検のつど実施することは、手間、コストおよび安全性の面から現実的でない。しかし上記の各特許文献のいずれも、このような点検作業を改善する技術についての開示がなされていない。
 本発明は、上記の課題に鑑みてなされたものであり、その目的は、かごの定格重量のものを用いることなくエレベータ点検現場で簡単に樹脂製緩衝器の交換要否を判定可能な点検方法および点検装置を提供することである。
 本発明の樹脂製緩衝器の点検方法は、以下の工程を備えている。
 まずエレベータ用の樹脂製緩衝器に圧子が押し込まれる。圧子を樹脂製緩衝器に押し込む荷重が解放される。荷重を解放させることにより樹脂製緩衝器から圧子が跳ね上がる反発力を示す物性値が測定される。反発力を測定することにより得られた物性値の結果を予め準備された基準値と比較することにより、樹脂製緩衝器の交換の要否が判定される。
 本発明の樹脂製緩衝器の点検装置は、装置本体と、荷重付与機構と、測定機構とを備えている。装置本体は、エレベータ用の樹脂製緩衝器の相対位置を固定するための固定機構を含んでいる。荷重付与機構は、圧子を樹脂製緩衝器に押し込む荷重を与え、かつ荷重を解放することが可能である。測定機構は、荷重が解放された圧子が跳ね上がる反発力を示す物性値が測定される。
 本発明によれば、最初にエレベータ用のかごを用いた樹脂製緩衝器の衝突試験による減速度と球状物などからなる圧子の反発力を示す物性値との相関関係を求め、樹脂製緩衝器の交換が必要な時点での物性値の基準値を求める。このため、以降の樹脂製緩衝器の点検においてはかごを用いずに圧子の跳ね上がる反発力を示す物性値を調べることのみにより簡易に交換要否を判断することができ、常に法規の要件を満たす緩衝器が設置されている状態を維持することができる。
実施の形態1に係る点検装置を用いた場合の球状物からなる圧子を押し込む工程の準備段階の工程を示す概略図(a)と、実施の形態1に係る点検装置を用いた場合の球状物からなる圧子を押し込む工程を示す概略図(b)と、実施の形態1に係る点検装置を用いた場合の球状物からなる圧子を跳ね上がらせその高さを測定する工程を示す概略図(c)とである。 実施の形態1における樹脂製緩衝器の使用時間と、樹脂製緩衝器に衝突するかごの平均減速度との関係を示すグラフ(a)と、実施の形態1における樹脂製緩衝器の使用時間と、樹脂製緩衝器から跳ね上がる球状物からなる圧子の跳ね上がり高さとの関係を示すグラフ(b)と、上記図2(a)および図2(b)を組み合わせたグラフ(c)とである。 実施の形態1に係る点検装置の構成を示す概略正面図である。 実施の形態1に係る点検装置の構成を示す概略平面図である。 図1(a)の状態に対応する、実施の形態1に係る点検装置を用いた場合の球状物からなる圧子を押し込む工程の準備段階における各部材の態様を示す概略正面図および概略平面図(a)と、図1(b)の状態に対応する、実施の形態1に係る点検装置を用いた場合の球状物からなる圧子を押し込む工程における各部材の態様を示す概略正面図および概略平面図(b)と、図1(c)の状態に対応する、実施の形態1に係る点検装置を用いた場合の球状物からなる圧子を跳ね上がらせその高さを測定する工程における各部材の態様を示す概略正面図および概略平面図(c)とである。 実施の形態2に係る点検装置の構成を示す概略正面図である。 実施の形態2に係る点検装置の構成を示す概略平面図である。 実施の形態2に係る点検装置を用いた場合の球状物からなる圧子を押し込む工程の準備段階の工程を示す概略図(a)と、実施の形態2に係る点検装置を用いた場合の球状物からなる圧子を押し込む工程を示す概略図(b)と、実施の形態2に係る点検装置を用いた場合の球状物からなる圧子を跳ね上がらせ高さ基準板に到達するか否かを検出する工程を示す概略図(c)とである。 図8(a)の状態に対応する、実施の形態2に係る点検装置を用いた場合の球状物からなる圧子を押し込む工程の準備段階における各部材の態様を示す概略正面図および概略平面図(a)と、図8(b)の状態に対応する、実施の形態2に係る点検装置を用いた場合の球状物からなる圧子を押し込む工程における各部材の態様を示す概略正面図および概略平面図(b)と、図8(c)の状態に対応する、実施の形態2に係る点検装置を用いた場合の球状物からなる圧子を跳ね上がらせ高さ基準板に到達するか否かを検出する工程における各部材の態様を示す概略正面図および概略平面図(c)とである。 実施の形態3に係る点検装置を用いた場合の球状物からなる圧子を押し込む工程の準備段階の工程を示す概略図(a)と、実施の形態3に係る点検装置を用いた場合の球状物からなる圧子を押し込む工程を示す概略図(b)と、実施の形態3に係る点検装置を用いた場合の球状物からなる圧子を跳ね上がらせその衝突荷重を測定する工程を示す概略図(c)とである。 実施の形態3における樹脂製緩衝器の使用時間と、樹脂製緩衝器に衝突するかごの平均減速度との関係を示すグラフ(a)と、実施の形態3における樹脂製緩衝器の使用時間と、樹脂製緩衝器から跳ね上がる球状物からなる圧子の衝突荷重との関係を示すグラフ(b)と、上記図11(a)および図11(b)を組み合わせたグラフ(c)とである。 実施の形態3に係る点検装置の構成を示す概略正面図である。 実施の形態3に係る点検装置の構成を示す概略平面図である。 図10(a)の状態に対応する、実施の形態3に係る点検装置を用いた場合の球状物からなる圧子を押し込む工程の準備段階における各部材の態様を示す概略正面図および概略平面図(a)と、図10(b)の状態に対応する、実施の形態3に係る点検装置を用いた場合の球状物からなる圧子を押し込む工程における各部材の態様を示す概略正面図および概略平面図(b)と、図10(c)の状態に対応する、実施の形態3に係る点検装置を用いた場合の球状物からなる圧子を跳ね上がらせ衝突荷重を測定する工程における各部材の態様を示す概略正面図および概略平面図(c)とである。 実施の形態4に係る点検装置を用いた場合の球状物からなる圧子を押し込む工程の準備段階の工程を示す概略図(a)と、実施の形態4に係る点検装置を用いた場合の球状物からなる圧子を押し込む工程を示す概略図(b)と、実施の形態4に係る点検装置を用いた場合の球状物からなる圧子を跳ね上がらせその速度を測定する工程を示す概略図(c)とである。 実施の形態4における樹脂製緩衝器の使用時間と、樹脂製緩衝器に衝突するかごの平均減速度との関係を示すグラフ(a)と、実施の形態4における樹脂製緩衝器の使用時間と、樹脂製緩衝器から跳ね上がる球状物からなる圧子の速度との関係を示すグラフ(b)と、上記図16(a)および図16(b)を組み合わせたグラフ(c)とである。 実施の形態4に係る点検装置の構成を示す概略正面図である。 実施の形態4に係る点検装置の構成を示す概略平面図である。 図15(a)の状態に対応する、実施の形態4に係る点検装置を用いた場合の球状物からなる圧子を押し込む工程の準備段階における各部材の態様を示す概略正面図および概略平面図(a)と、図15(b)の状態に対応する、実施の形態4に係る点検装置を用いた場合の球状物からなる圧子を押し込む工程における各部材の態様を示す概略正面図および概略平面図(b)と、図15(c)の状態に対応する、実施の形態4に係る点検装置を用いた場合の球状物からなる圧子を跳ね上がらせその速度を測定する工程における各部材の態様を示す概略正面図および概略平面図(c)とである。 実施の形態5に係る点検装置に用いる、棒状に延びる圧子の形状を示す概略図である。 実施の形態5に係る点検装置を用いた場合の棒状に延びる形状を有する圧子を押し込む工程の準備段階の工程を示す概略図(a)と、実施の形態5に係る点検装置を用いた場合の棒状に延びる形状を有する圧子を押し込む工程を示す概略図(b)と、実施の形態5に係る点検装置を用いた場合の棒状に延びる形状を有する圧子を跳ね上がらせその衝突荷重を測定する工程を示す概略図(c)とである。 図21(a)の状態に対応する、実施の形態5に係る点検装置を用いた場合の棒状に延びる形状を有する圧子を押し込む工程の準備段階における各部材の正面方向および平面方向における内部の態様を示す概略平面図および概略断面図(a)と、図21(b)の状態に対応する、実施の形態5に係る点検装置を用いた場合の棒状に延びる形状を有する圧子を押し込む工程における各部材の正面方向および平面方向における内部の態様を示す概略平面図および概略断面図(b)と、図21(c)の状態に対応する、実施の形態5に係る点検装置を用いた場合の棒状に延びる形状を有する圧子を跳ね上がらせ衝突荷重を測定する工程における各部材の正面方向および平面方向における内部の態様を示す概略平面図および概略断面図(c)とである。 実施の形態1に係る点検装置に用いる、圧子の形状の変形例を示す概略図である。 実施の形態5に係る点検装置に用いる、圧子の形状の変形例を示す概略図である。
 以下、本発明の実施の形態について図に基づいて説明する。
 (実施の形態1)
 まず図1を用いて、本実施の形態における点検方法の概要について説明する。
 基本的に本実施の形態においては、エレベータ用のかごを樹脂製緩衝器1に衝突させる検査により樹脂製緩衝器1の交換の要否が点検される代わりに、球状物からなる圧子2を樹脂製緩衝器1に押し込み、これを解放させたときに圧子2が示す反発力を示す物性値を測定することにより、樹脂製緩衝器1の交換の要否が判定される。本実施の形態においては、樹脂製緩衝器1の点検は、主に圧子2と、荷重付与板3(荷重付与機構)とにより行なわれる。
 具体的には、図1(a)を参照して、まず樹脂製緩衝器1の最上面上に圧子2が載置され、さらにその上に荷重付与板3が載置される。このとき圧子2と荷重付与板3とが互いに接触するように載置されてもよい。これは圧子2を樹脂製緩衝器1に押し込む工程の準備段階である。
 樹脂製緩衝器1は、たとえば円形の平面形状を有しており、全体としては円柱形に近い形状を有している。なお樹脂製緩衝器1は平面視において最上面の中央に円形の穴が形成され、その内部に円柱形の空洞を有することにより、全体として円筒形を有していてもよい。
 樹脂製緩衝器1のうち特にエレベータ用のかごおよび圧子2などの対象物と接触する部分である緩衝部は、樹脂製緩衝器1の最上部に形成されており、たとえば発泡ウレタンまたはゴムにより形成されている。樹脂製緩衝器1は、エネルギー蓄積型非線形緩衝器に分類され、全体の高さの約90%をストロークとみなせることが規定されている。このため樹脂製緩衝器1はその全体の高さを低くすることができるため、樹脂製緩衝器1が設置されるエレベータの昇降路のピット部の深さを浅くすることができる。
 圧子2は、樹脂製緩衝器1に押し込まれた際における変形が無視できるほどの硬さを有し、また樹脂製緩衝器1に押し込まれた際に樹脂製緩衝器1の表面を傷つけない形状であることが好ましい。そのため、圧子2の素材は、ステンレス、鉄などの金属製であることが好ましい。また圧子2の特に樹脂製緩衝器1に押し込む部分の形状は、球状または多面体形状(立方体状または正十二面体状など)であることが好ましい。
 図1においては圧子2はほぼ球形で小型の金属製部材(鉄球)となっている。ただし図23を参照して、当該圧子2はたとえば立方体形状を有していてもよい(この場合、立方体を構成する一の面が樹脂製緩衝器1を押し込むことになる)。
 荷重付与板3は、点検装置100にセットされた樹脂製緩衝器1に押し込む圧子2の上側に配置され、圧子2の真上に配置することも可能となっている。これにより、圧子2を樹脂製緩衝器1に押し込む荷重を与えることができる。また荷重付与板3は、圧子2の真上の領域から離れることにより、圧子2を樹脂製緩衝器1に押し込むように加えた荷重を解放し、圧子2を上方に跳ね上がらせることができる。荷重付与板3は圧子2と同等の硬さを有し、圧子2を押し込んだ際における凹みおよび曲りなどの変形が無視できるほどに小さくなる程度の硬さを有することが好ましい。したがって荷重付与板3も鉄製であることが好ましい。
 次に図1(b)を参照して、荷重付与板3が圧子2の上側の表面に接するところまで下降したところで、さらに荷重付与板3が図中の下向き矢印に示すように下方に移動することにより、圧子2が樹脂製緩衝器1に押し込まれる。樹脂製緩衝器1の特に緩衝部は変形可能な樹脂材料により形成されるため、圧子2が押し込むことによりその表面がめり込むように変形する。その樹脂製緩衝器1が変形した領域に食い込むように圧子2が下方へ押し込まれる。
 次に図1(c)を参照して、たとえば圧子2を下方へ押し込む荷重付与板3が図中の左向き矢印に示す水平方向に移動することにより、図1(b)における圧子2を樹脂製緩衝器1に押し込む荷重が解放される。本実施の形態においては、このとき圧子2が樹脂製緩衝器1から反発力を受けて図中の上向き矢印に示すように上方に跳ね上がる。この跳ね上がりにより圧子2が到達する樹脂製緩衝器1からの高さが圧子2が受ける反発力を示す物性値として測定される。
 ここでの圧子2の跳ね上がる高さとは、鉛直方向に関して圧子2が反発力により移動する樹脂製緩衝器1の最上面からの高さ(到達することができる最高点の高さ)を意味し、圧子2は鉛直方向(真上方向)に跳ね上がるものとする。すなわち本実施の形態においては、物性値(跳ね上がる高さ)として、押し込む力を解放することにより樹脂製緩衝器1から跳ね上がる圧子2の、樹脂製緩衝器1から最大限離れることができる鉛直方向の距離が測定される。圧子2の跳ね上がる軌道は、樹脂製緩衝器1上に圧子2が載置される位置のほぼ真上(樹脂製緩衝器1上に圧子2が載置される位置と平面的にほぼ重なる位置)に描かれる。
 この測定される圧子2の跳ね上がる高さの結果が、予め準備された基準値と比較される。その結果、基準値を上回れば、樹脂製緩衝器1の弾性力が大きく衝撃力を緩和する力が大きいと判断されるため、樹脂製緩衝器1の交換は不要と判定される。逆に基準値を下回れば、樹脂製緩衝器1の弾性力が小さく衝撃力を緩和する力が小さいと判断されるため、樹脂製緩衝器1の交換が必要と判定される。
 次に図2を用いて、上記の、樹脂製緩衝器1の交換が必要となる圧子2の跳ね上がる高さの基準値を求める方法について説明する。
 まず、たとえば点検しようとする樹脂製緩衝器1の新品、またはこれまでの使用時間がわかる中古品が、上記基準値を求めるための樹脂製緩衝器1のサンプルとして1台、準備される。
 図2(a)を参照して、エレベータ用の人を乗せるかごを下降させ、当該サンプルの樹脂製緩衝器1の特に緩衝部(最上部)に衝突させる。このときの当該かごを下降させる速度は、エレベータの下降の可動速度(定格速度よりもやや高い速度であり、たとえば定格速度の115%の速度)とすることが好ましい。この衝突時におけるかごの平均減速度が測定され、これは図2(a)の点A1のようにプロットされる。
 ここで、図2(a)のグラフの横軸は、サンプルの樹脂製緩衝器1の使用時間を示しており、この使用時間とは、実際の使用時間の値であってもよいし、いわゆる加速劣化試験によりたとえば急激に温度が繰り返し変化する環境下に樹脂製緩衝器1を晒し意図的に劣化させることにより当該時間使用されたものとみなすことができる使用時間の値(緩衝器を使用したとみなされる時間)であってもよい。
 また図2(a)のグラフの縦軸は、上記衝突時におけるかごの平均減速度を示している。ここで減速度とは、衝突によりかごが下方に降下する速度が減少する加速度を意味しており、下方に向かう速度および加速度を正とすれば、負の値で示される加速度を意味している。
 次に図2(b)を参照して、かごによる平均減速度の測定がなされた樹脂製緩衝器1に対して、図1に示す要領で圧子2を樹脂製緩衝器1に押し込みかつ解放させる工程を行ない、そのときに圧子2が樹脂製緩衝器1に対して跳ね上がる樹脂製緩衝器1からの高さが測定される。これは図2(b)の点B1のようにプロットされる。
 再度図2(a)および図2(b)を参照して、次に、たとえばいわゆる加速劣化試験により一定時間だけサンプルの樹脂製緩衝器1を使用したと同等に劣化させた後、再度エレベータのかごを衝突させることによる平均減速度を示す点A2、および圧子2を押し付け解放することにより跳ね上がる高さを示す点B2を求める。ここではより効率的に(短時間で)より長時間使用したものとされるサンプルの樹脂製緩衝器1を得る目的で、サンプルの樹脂製緩衝器1に対して加速劣化試験が行なわれる。
 以後、加速劣化試験と、上記のかごの平均減速度および圧子2の跳ね上がる高さとを求める工程とを繰り返す。言い換えれば、樹脂製緩衝器1の使用時間(加速劣化試験により使用されたとみなされる時間)を変化させながら、上記のかごの平均減速度および圧子2の跳ね上がる高さを求める工程を複数回行なう。これにより、たとえば図2(a)および図2(b)に示すように点A3~点A6、および点B3~点B6がプロットされる。各グラフでプロットされた点同士を結ぶことにより得られる曲線が、樹脂製緩衝器1の使用時間(加速劣化試験により使用されたとみなされる時間)とかごの平均減速度(圧子2の跳ね上がり高さ)との関係を示す。
 図2(a)、および両グラフの曲線を重ね合わせて1つにした図2(c)を参照して、樹脂製緩衝器1へのかごの衝突時の平均減速度の時間変化を元に、この樹脂製緩衝器1を交換すべき交換時点が決定される。
 ここで、エネルギー蓄積型非線形緩衝器は、海外法規により、かごの定格重量で定格速度の115%の速度で樹脂製緩衝器1に衝突するときの平均減速度が9.8m/s2(より正確には約9.80665m/s2)以下であること(すなわち当該減速度以下の減速度で緩やかに減速すること)が求められる。この緩やかな減速度は、樹脂製緩衝器1が高い弾性を有する(樹脂製緩衝器1が比較的新しい)ことにより実現可能である。
 このため図2(a),(c)のグラフから、9.8m/s2の平均減速度を樹脂製緩衝器1を交換すべき値とし、この値に達する基準時間tsを樹脂製緩衝器1を交換すべきとき(交換時点)とすることができる。
 図2(b),(c)を参照して、この交換時点tsにおける樹脂製緩衝器1からの圧子2の跳ね上がり高さS1が、樹脂製緩衝器1を交換すべき基準値として求められる。図2(c)においては樹脂製緩衝器1を交換すべき基準値としての圧子2の跳ね上がり高さS1は、約97cmである。
 交換時点tsよりも使用(とみなされる)時間の短い点A1~A4および点B1~B4の各時点においては、平均減速度が9.8m/s2以下でありかつ圧子2の跳ね上がる高さが97cm以上である。したがって、たとえば任意の樹脂製緩衝器1の設置現場において圧子2の跳ね上がる高さを測定し、それが97cm以上であれば、当該樹脂製緩衝器1は交換不要であると判定できる。逆に交換時点tsよりも使用(とみなされる)時間の長い点A5,A6および点B5,B6の各時点においては、平均減速度が9.8m/s2を上回っておりかつ圧子2の跳ね上がる高さが97cm未満である。したがって、たとえば任意の樹脂製緩衝器1の設置現場において圧子2の跳ね上がる高さを測定し、それが97cm未満であれば、当該樹脂製緩衝器1は交換必要であると判定できる。
 ところで、上記の圧子2が樹脂製緩衝器1に対して跳ね上がる高さは、圧子2の大きさ、圧子2を樹脂製緩衝器1の最上面から下方に押し込む深さ、および圧子2を樹脂製緩衝器1の最上面から下方に押し込んでから解放するまでの時間により変化する。このため上記の図2(b),(c)の点B1~点B6のプロットデータを得る際、およびその後にエレベータ点検現場で樹脂製緩衝器1に対して圧子2の跳ね上がる高さを測定する際には、上記の各パラメータ(圧子2の大きさ、圧子2を下方に押し込む深さ、および圧子2を押し込んでから解放するまでの時間)の値が一定となるように揃えられることが要求される。上記のように値が一定となるように条件を揃えて押し込むことが可能であれば、図1(b)のように荷重付与板3(点検装置に設置された機械的機構または電動的機構)により圧子2が押し込まれる場合に限らず、たとえば手で圧子2が押し込まれてもよい。
 圧子2のサイズが大きくなれば、樹脂製緩衝器1の最上面から下方に押し込む際に高い荷重を要し、作業が困難になる可能性がある。逆に圧子2のサイズが小さくなれば、樹脂製緩衝器1の最上面から下方に押し込む際に要する荷重は小さく済むが、押し込む荷重を解放した後における反発力が弱く、圧子2の跳ね上がる高さが小さくなり、交換要否の判定が困難になる可能性がある。圧子2を高く跳ね上がらせる方が、低く跳ね上がる場合に比べて、樹脂製緩衝器1の交換要否の判定をより精度よく行なうことができる。このため、作業性および交換要否の判定精度の双方を配慮すれば、外側の直径が10mm以上15mm以下の鉄球が圧子2として用いられることが好ましい。ただしこのことは圧子2の大きさを限定するものではなく、上記範囲外の直径を有する圧子2が用いられてもよい。また後述するように、圧子2が載置される樹脂製緩衝器1の最上面の平面形状を考慮して圧子2のサイズが決定されるべき場合もある。
 圧子2を樹脂製緩衝器1の最上面から下方に押し込む深さを深くすれば、その荷重を解放したときに圧子2をより高く跳ね上がらせることができ、樹脂製緩衝器1の交換要否の判定をより精度よく行なうことができる。圧子2を樹脂製緩衝器1の最上面から下方に押し込む深さは、圧子2の半径の値より深いことが好ましい。
 圧子2を押し込んでから解放するまでの時間、すなわち図1(b)のように圧子2が押し込まれた状態で保持する時間は、なるべく短いことが好ましい。この時間を短くする方が、開放後に圧子2をより高く跳ね上がらせることができる。これは圧子2が樹脂製緩衝器1の最上面から押し込まれた瞬間から応力緩和が起こり、樹脂製緩衝器1が圧子2を跳ね上げる反発力が時間の経過とともに低下するためであると考えられる。
 一例として、本実施の形態においては、たとえば圧子2の直径は10mm、圧子2を樹脂製緩衝器1の最上面から下方に押し込む深さは7mm、圧子2の押し込み開始から解放までの時間は1秒とすることが好ましい。
 次に図3および図4を用いて、本実施の形態に係るエレベータ用の樹脂製緩衝器の点検装置の構成について説明する。なお図3は点検装置100の正面図であるため図の上下方向が高さ方向でありほぼ鉛直方向を、図の左右方向が点検装置100全体の幅方向を、そして紙面に垂直な方向が点検装置100全体の奥行き方向を、それぞれ示している。また図4は点検装置100の平面図であるため図の上下方向が点検装置100全体の奥行き方向を示し、図の上側が奥側を、図の下側が手前側を示している。また図4の左右方向が点検装置100全体の幅方向を、そして紙面に垂直な方向が高さ方向(鉛直方向)を示している。
 図3および図4を参照して、本実施の形態の点検装置100は、エレベータ用の樹脂製緩衝器1の、エレベータ用のかごの衝突時の衝撃を緩和する機能の有無を点検することにより、当該樹脂製緩衝器1の交換の要否を判定するために用いられる装置である。点検装置100を用いた樹脂製緩衝器1の点検は、上記のように主に圧子2と、荷重付与板3(荷重付与機構)とにより行なわれる。ただし図3の正面図においては、説明の便宜上、後述するばね固定板9の図示が省略されている(以下の各正面図において同じ)。
 点検装置100は、たとえば土台4と、支柱5と、緩衝器固定板6と、リニアガイド7とを含む装置本体を有している。また点検装置100は、点検時に圧子2が樹脂製緩衝器1から跳ね上がることにより到達する樹脂製緩衝器1からの高さを測定するために樹脂製緩衝器1の跳ね上がる高さ方向の目盛8aを有する高さ表示板8(測定機構)を有している。
 土台4は、点検装置100全体の基盤として点検装置100の最下部に設置されており、たとえば矩形の平面形状を有している。土台4の中央部は、点検しようとする対象物としての樹脂製緩衝器1が載置可能となっている。
 支柱5は、たとえば土台4の矩形状の四隅の近くの領域に取り付けられた柱状の部材であり、土台4の主表面にほぼ垂直な方向すなわちほぼ鉛直方向(圧子2の跳ね上がる方向)に沿って延びている。図4においては支柱5は矩形の平面形状を有しているがこれに限られない。
 緩衝器固定板6(固定機構)は、支柱5に固定されており、土台4に載置された樹脂製緩衝器1をその上方および側方から支持する(押さえ込むように固定する)機能を有している。つまり緩衝器固定板6は、樹脂製緩衝器1の、点検装置100の装置本体に対する相対位置を定めてその位置に樹脂製緩衝器1を固定する機能を有している。緩衝器固定板6は、たとえば点検装置100の幅方向に関する一方および他方に一対配置されており、点検装置100の奥行き方向に互いに間隔をあけて2つ並ぶ支柱5のそれぞれと接触固定されるように、当該奥行き方向に沿って(水平方向に沿って)延びている。
 緩衝器固定板6は、平面視において点検装置100の奥行き方向(図4の上下方向)に延びる矩形状の第1の固定領域6aと、当該第1の固定領域6aに交差し支柱5に接触固定され点検装置100の奥行き方向に延びる第2の固定領域6bとを含んでいる。第1の固定領域6aが樹脂製緩衝器1の上側に配置され樹脂製緩衝器1の最上部に接触するとともに、第2の固定領域6bが樹脂製緩衝器1の側面側に配置され樹脂製緩衝器1の側面の一部に接触することにより、緩衝器固定板6は上方および側方の2方向から樹脂製緩衝器1を挟み込むように固定している。
 緩衝器固定板6が上記のような領域6a,6bを有する構成であることにより、緩衝器固定板6の支柱5への固定が容易となるとともに、緩衝器固定板6は樹脂製緩衝器1を点検装置100に対して(その相対位置を)容易に固定することができる。
 リニアガイド7は、点検装置100の奥行き方向に互いに間隔をあけて2つ並ぶ支柱5の双方と接触固定されるように、当該奥行き方向に沿って(水平方向に沿って)延びている柱状の部材である。リニアガイド7は緩衝器固定板6と同様に、たとえば点検装置100の幅方向に関する一方および他方に一対配置されており、一対の緩衝器固定板6のそれぞれの真上の領域の一部を含むように配置されている。
 点検装置100の幅方向に関して間隔をあけて配置される一対のリニアガイド7の間には、平面視においてリニアガイド7の延びる方向と交差する方向(幅方向)に延びる柱状の部材である荷重付与板3が配置されている。荷重付与板3の延在方向に関する一方および他方の端部が、一対のリニアガイド7のうちの一方および他方と接触するように配置されている。
 一対のリニアガイド7には荷重付与板3の一方および他方の端部を把持するための溝が形成されており、この溝が把持する荷重付与板3をリニアガイド7の延びる方向に沿って(水平方向に沿って)移動可能としている。
 より具体的には以下の構成を有している。一対のリニアガイド7の間には、荷重付与板3のほかに、ばね固定板9が配置されている。ばね固定板9は、荷重付与板3と同様に、たとえば図3および図4の左右方向すなわち点検装置100の幅方向に延びる柱状の部材である。したがってばね固定板9は、一対のリニアガイド7の間において、荷重付与板3の延びる方向に沿うように(ほぼ平行に並ぶように)配置されている。しかしばね固定板9は荷重付与板3のようにリニアガイド7の延びる奥行き方向に沿って移動可能な構成とはなっていない。ばね固定板9は、その両端部のそれぞれが、一対のリニアガイド7のそれぞれの一方の端部(図4の下側すなわち点検装置100の手前側の端部)においてリニアガイド7と固定されている。
 荷重付与板3のリニアガイド7に沿った移動は、荷重付与板3とばね固定板9との間に配置されるばね10の伸縮によりなされている。すなわちばね10はリニアガイド7の延びる方向に沿って延びるように(たとえば間隔をあけて2つ)配置され、その一方の端部が荷重付与板3の表面の一部に、その他方の端部がばね固定板9の表面の一部に、それぞれ固定されている。したがって荷重付与板3はばね10によりばね固定板9と連結されている。ばね固定板9は点検装置100の装置本体に対して固定されているため、リニアガイド7の延びる方向に沿って延びるように配置されたばね10の伸縮に応じて荷重付与板3がリニアガイド7に沿ってその装置本体に対する相対位置を移動することが可能となっている。
 このようにリニアガイド7に把持された荷重付与板3がリニアガイド7の延びる方向に沿って移動することにより、圧子2を荷重付与板3の真下に配置させ圧子2を荷重付与板3が押し込むべく荷重を与えたり、圧子2の真上以外の領域に荷重付与板3を配置させ圧子2を押し込む荷重を解放させたりすることが可能である。
 なお特に図4に示すように、リニアガイド7の一部に噛み合うように設けられたストッパ11により、荷重付与板3は、装置本体に対して、ばね10が延びたままの状態でその装置本体に対する相対位置を変えないように固定されることが好ましい。
 またリニアガイド7は支柱5の延びる鉛直方向に沿ってその装置本体に対する相対位置を移動することもできる。図4の左右方向に関して隣り合う1対の支柱5にはリニアガイド7を把持するための溝が形成されており、この溝が把持するリニアガイド7を支柱5の延びる方向に沿って(圧子2の跳ね上がる鉛直方向に沿って)移動可能としている。これによりリニアガイド7に把持される荷重付与板3も、支柱5の延びる方向に沿って(圧子2の跳ね上がる鉛直方向に沿って)移動可能となっている。リニアガイド7が鉛直方向に移動することにより、これに固定されたばね固定板9もリニアガイド7とともに鉛直方向に関して移動可能となっている。
 このようにリニアガイド7に把持された荷重付与板3が支柱5の延びる方向に沿って移動することにより、荷重付与板3をその真下の圧子2に接触させ圧子2を下方に押し込んだり、荷重付与板3をその真下の圧子2から離れさせたり(圧子2を下方に押し込む荷重を解放させたり)することが可能である。
 次に図5を用いて、図3および図4の点検装置100を用いた樹脂製緩衝器1の点検工程における各部材の動作について説明する。
 図5(a)を参照して、上側の図は点検装置100全体の概略正面図であり、下側の図は点検装置100全体の概略平面図である(後述する図5(b),(c)についても同様)。樹脂製緩衝器1が点検装置100本体の土台4に載置され、固定機構としての緩衝器固定板6により上方および側方から押さえ込むように固定される。樹脂製緩衝器1の最上面上に圧子2が載置される。
 たとえば樹脂製緩衝器1が円筒形である場合、その最上面の一部(特に中央部)には筒状の空洞部分を形成するための穴が形成されるため、最上面は円環状の平面形状を有することになる。この場合、当該円環状の部分の上に圧子2が載置されることから、樹脂製緩衝器1の上記円環状の部分の、円周に交差する幅の広さを考慮して(その幅よりも直径が小さくなるように)圧子2の大きさが決定されることが好ましい。
 たとえばばね10が最も伸びた状態となる(荷重付与板3とばね固定板9との距離が最大となる)所まで荷重付与板3がリニアガイド7の延在する方向に沿って移動し、その状態になったところで荷重付与板3のリニアガイド7の延在方向に関する移動を抑制するために荷重付与板3はストッパ11によりリニアガイド7(を含む装置本体)に固定される。この時点では荷重付与板3は樹脂製緩衝器1の最上面よりも上方に離れた位置に配置されている。またこの時点では荷重付与板3は圧子2の真上に配置される。
 図5(b)を参照して、圧子2の真上の荷重付与板3が(リニアガイド7を把持する)支柱5の延在方向に沿ってばね固定板9とともに下方に移動することにより、荷重付与板3と圧子2とが互いに接触する。このように荷重付与板3が圧子2と接触した状態で、荷重付与板3がさらにリニアガイド7を把持する支柱5の延在方向に沿うよう下方へ移動することにより、これと接触する圧子2が下方の樹脂製緩衝器1側に押し込まれる。
 このとき、リニアガイド7がその真下の緩衝器固定板6のたとえば第1の固定領域6aの表面上に接触するところまで、緩衝器固定板6を下降させることが好ましい。このようにすれば、緩衝器固定板6は支柱5に固定されており移動しないことから、各回の測定における荷重付与板3の下降量を一定にすることができる。したがって、各回の測定において荷重付与板3により下方に押し込まれる圧子2の、樹脂製緩衝器1の最上面に対する押し込みの深さを一定にすることができる。
 図5(c)を参照して、圧子2が下方に押し込まれた状態を維持したままストッパ11が外される。このときばね10が弾性力により縮めば、荷重付与板3がリニアガイド7の延在する方向に沿って水平方向に(ばね固定板9の方に向かって)引き寄せられ、その装置本体に対する相対位置が移動する。これにより、圧子2は荷重付与板3から解放されるため、樹脂製緩衝器1が下方に押し込まれたことに対する反発力により上方へ跳ね上げられる。
 このとき樹脂製緩衝器1の最上面に対して圧子2が跳ね上がった高さが、高さ表示板8の目盛8aにより確認される。この跳ね上がった高さは、目視、またはビデオ撮影の結果から読み取ることができる。
 次に、本実施の形態の作用効果を説明する。
 本実施の形態においては、図2のデータが予め準備されることにより、それ以降はエレベータ用のかごを用いて樹脂製緩衝器1に対する衝撃力を与えることなく、樹脂製緩衝器1が圧子2に与える反発力を示す物性値(跳ね上がる高さ)を測定するだけで、容易に樹脂製緩衝器1の交換要否が判断可能である。
 交換を要する状態となるまでの時間を示す交換時点tsは、たとえ同一型番の樹脂製緩衝器1であっても、それが設置される温度および湿度などの環境により変化する。しかし少なくとも交換時点tsにおける平均減速度が9.8m/s2であり圧子2の跳ね上がる高さが97cmであることについては、同一型番の樹脂製緩衝器1であれば、それが設置される温度および湿度などの環境にかかわらずほぼ同じである。このためいったん図2に示すデータが得られれば、それ以降にエレベータの点検現場における樹脂製緩衝器1の点検においては、エレベータ用のかごを用いなくても、エレベータ用のかごに比べて極めて小型の圧子2および点検装置100を用いて上記の跳ね上がる高さが基準値S1すなわち97cm以上であるか否かを測定するだけで、当該樹脂製緩衝器1の交換の要否が判定可能である。したがってエレベータの点検現場の設置される環境にかかわらず、その点検現場においてかごを用いた衝撃試験を行なうことなく、図2のデータを用いて簡易に樹脂製緩衝器1の緩衝能力を判定することができる。
 また本実施の形態の点検方法および点検装置100を用いれば、樹脂製緩衝器1の初期不良品検査を簡易に行なうこともできる。
 本実施の形態のように圧子2の跳ね上がる反発力を示す物性値として、跳ね上がった圧子2が到達する樹脂製緩衝器1からの高さが用いられることにより、高さ表示板8を用いるだけで極めて容易に測定することができる。
 本実施の形態のように樹脂製緩衝器1に対して圧子2を押し込みかつ解放するという工程は、上記のように荷重付与板3が支柱5に沿って移動することにより圧子2を押し込んだり、荷重付与板3が圧子2を押し込んだ状態を維持しながらリニアガイド7の延びる方向に移動することにより圧子2を樹脂製緩衝器1から解放可能な構成により容易に実現できる。
 (実施の形態2)
 図6および図7を参照して、本実施の形態の点検装置200は、基本的に実施の形態1の点検装置100と同様の構成を有しているが、荷重付与板3の上方に測定機構としての高さ基準板12を有している点において、点検装置100と異なっている。
 高さ基準板12は、点検装置200に載置された樹脂製緩衝器1の最上面からの高さが、実施の形態1の図2で求められた交換時点tsにおける圧子2が跳ね上がり到達する高さの基準値S1の位置(たとえば図2に示す97cmの高さの位置)に配置されている。高さ基準板12は、支柱5の最上部に固定されるように取り付けられており、土台4と平面視においてほぼ重なり(特に圧子2の配置される位置と平面的に重なり)、たとえば矩形の平面形状を有している。
 ただし図7においては高さ基準板12を土台4から独立した部材として視認しやすくする観点から、高さ基準板12は点線で、かつ土台4よりもやや内側に縁部を有するように図示されている。
 点検装置200は、上記のように高さ基準板12を有する点においてのみ点検装置100と異なっており、それ以外の構成は、点検装置100の構成とほぼ同じであるため同一の要素については同一の符号を付し、その説明は繰り返さない。
 本実施の形態における点検方法の概要を示す図8(a),(b),(c)を参照して、基本的にこれらはそれぞれ図1(a),(b),(c)に示す実施の形態1の点検方法の概要と同様である。すなわち図8(a)は実施の形態1の図1(a)の工程に、図8(b)は実施の形態1の図1(b)の工程に、図8(c)は実施の形態1の図1(c)の工程に、それぞれ対応する。
 本実施の形態においても、図8(c)の工程すなわち荷重付与板3により圧子2を樹脂製緩衝器1に押し込む荷重が解放され反発力を示す物性値を測定する工程において、圧子2が反発力を受けて上方に跳ね上がり到達する高さが、反発力を示す物性値となる。ただし図8(c)においては、実施の形態1のように高さ表示板8を用いて圧子2の到達する高さが測定される代わりに、圧子2が高さ基準板12に到達するか否かが検出される。
 すなわち圧子2が高さ基準板12に到達すれば、圧子2は高さ基準板12の高さ以上の高さまで上がることを意味するため、当該樹脂製緩衝器1は交換不要であると判定できる。逆に圧子2が高さ基準板12に到達しなければ、当該樹脂製緩衝器1は交換必要であると判定できる。
 図9(a),(b),(c)を参照して、図6および図7の点検装置200を用いた樹脂製緩衝器1の点検工程における各部材の動作は、基本的にそれぞれ図5(a),(b),(c)に示す実施の形態1での点検装置100を用いた点検工程における各部材の動作と同様である。図9(c)においては圧子2が跳ね上がり到達する高さが高さ表示板8により求められる代わりに、高さ基準板12に圧子2が到達するか否かが検出される点においてのみ、図5(c)と異なっている。
 本実施の形態の点検方法は、上記の点においてのみ実施の形態1と異なっており、それ以外の点は実施の形態1と同様であるため、同一の要素については同一の符号を付し、その説明は繰り返さない。
 次に、本実施の形態の作用効果について説明する。
 本実施の形態においても実施の形態1と同様に、図2のデータにより、樹脂製緩衝器1の交換時点tsにおける圧子2の到達する高さの基準値S1が求められる。このようにすれば以降の点検の際には点検装置200にその基準値S1の高さに位置する高さ基準板12を設け、圧子2が高さ基準板12に到達するか否かを検出するだけで、樹脂製緩衝器1の交換要否の判断が可能となる。このため実施の形態1と同様に、点検現場においてエレベータ用のかごを用いた測定を行なう必要がなくなり、点検を簡易に行なうことができる。
 この検出方法は、実施の形態1における高さ表示板8を用いて圧子2の跳ね上がる高さを測定する方法よりも簡単でありかつ測定の精度が向上される。すなわち、たとえば実施の形態1の高さ表示板8を用いた方法においては、圧子2の跳ね上がる高さを目視で確認する場合に確認し損ねたり誤った高さを認識したりする可能性がある。またビデオ撮影により圧子2の跳ね上がる高さを確認する場合には撮影装置の設置等の手間が発生する。しかし本実施の形態においては圧子2が高さ基準板12に到達するか否かを検出するだけでよいため、上記のようなヒューマンエラーが発生する可能性をより低減させることができ、かつ測定の準備等の手間を削減することができる。
 (実施の形態3)
 本実施の形態における点検方法の概要を示す図10(a),(b),(c)を参照して、基本的にこれらはそれぞれ図1(a),(b),(c)に示す実施の形態1の点検方法の概要と同様である。
 しかし本実施の形態においては、図10(c)の工程すなわち荷重付与板3により圧子2を樹脂製緩衝器1に押し込む荷重が解放され反発力を示す物性値を測定する工程において、当該物性値として、圧子2が荷重検出器13(荷重検出装置)に衝突する際の荷重が測定される。ここで衝突する際の荷重とは圧子2が荷重検出器13に対して与える鉛直方向(真上に向かう方向)の力を意味する。このように本実施の形態は、高さ表示板8を用いて圧子2の到達する高さが測定される実施の形態1とは、圧子2が受ける反発力を示す物性値の測定方法が異なっている。
 荷重検出器13は、たとえば支柱5の最上部に固定される天井部14の、樹脂製緩衝器1などが載置される側(下側)の表面上に設置されている。荷重検出器13は、圧子2が載置される位置のほぼ真上であり、特に圧子2が跳ね上がる軌道上に設けられている。
 荷重検出器13は、たとえば実施の形態2における高さ基準板12よりも、樹脂製緩衝器1からの高さが低い位置に設けられている。つまり荷重検出器13は、たとえ上記の跳ね上がる高さの基準値S1(図2参照)よりも圧子2の到達する高さが低い場合においても圧子2の衝突を受けることを可能とする観点から、基本的に跳ね上がる力の弱い圧子2とも衝突することを前提とした、実施の形態2の高さ基準板12よりも低い位置に設けられている。
 本実施の形態においては、荷重検出器13により測定される圧子2の衝突による荷重(衝突荷重)の結果が、予め準備された基準値と比較される。その結果、基準値を上回れば、樹脂製緩衝器1の弾性力が大きくかごの衝突による衝撃力を緩和する力が大きいと判断されるため、樹脂製緩衝器1の交換は不要と判定される。逆に基準値を下回れば、樹脂製緩衝器1の弾性力が小さくかごの衝突による衝撃力を緩和する力が小さいと判断されるため、樹脂製緩衝器1の交換が必要と判定される。衝突荷重の大小は、基本的に実施の形態1の跳ね上がる高さの大小と相関する。
 本実施の形態における、樹脂製緩衝器1の交換が必要となる圧子2の衝突荷重の基準値を求める方法は、基本的に実施の形態1の圧子2の跳ね上がる高さの基準値を求める方法と同様であるが、これについて図11を用いて説明する。
 図11(a)を参照して、このグラフは基本的に実施の形態1の図2(a)のグラフと同様であり、樹脂製緩衝器1の各使用時間(または加速劣化試験により使用したとみなされる時間)を変化させながら測定されたかごの衝突時の平均減速度が、点A1~点A6としてプロットされる。
 図11(b)を参照して、かごによる平均減速度の測定がなされた樹脂製緩衝器1に対して、点A1~点A6の測定がされた時間と同一の時間に、図10に示す要領で圧子2を樹脂製緩衝器1に押し込みかつ解放させる工程を行ない、そのときに跳ね上がった圧子2を荷重検出器13に衝突させ、荷重検出器13に衝突荷重を測定させる。この結果がそれぞれ、図11(b)における点C1~点C6のようにプロットされる。点C1~点C6を結ぶことにより、樹脂製緩衝器1の使用時間(加速劣化試験により使用されたとみなされる時間)と圧子2の荷重検出器13に対する衝突荷重との関係を示す曲線が得られる。
 図11(a)および図11(c)を参照して、かごの平均減速度が9.8m/s2になる交換時点tsにおける圧子2の衝突荷重S2が、樹脂製緩衝器1を交換すべき基準値として求められる。図11(c)においては樹脂製緩衝器1を交換すべき基準値としての圧子2の衝突荷重S2は、約19Nである。
 図2と同様に、交換時点tsよりも使用時間の短い点A1~点A4および点C1~C4の各時点においては当該樹脂製緩衝器1は交換不要であり、交換時点tsよりも使用時間の長い点A5,A6および点B5,B6の各時点においては、当該樹脂製緩衝器1は交換必要であると判定できる。
 ところで、上記の圧子2の荷重検出器13に対する衝突荷重は、荷重検出器13の設置される樹脂製緩衝器1の最上面からの高さにより変化する。このため上記の図11(b),(c)の点C1~点C6のプロットデータを得る際、およびその後にエレベータ点検現場で樹脂製緩衝器1に対して圧子2の荷重検出器13に対する衝突荷重を測定する際には、上記のパラメータ(荷重検出器13の設置される樹脂製緩衝器1の最上面からの高さ)の値が一定となるように揃えられることが要求される。
 荷重検出器13が樹脂製緩衝器1の最上面からより低い位置に設置されるほど、跳ね上がった圧子2が荷重検出器13に対して与える衝突荷重が大きくなり、樹脂製緩衝器1の交換要否の判定をより精度よく行なうことができる。荷重検出器13は、樹脂製緩衝器1の最上面からの鉛直方向の高さがたとえば50cm以上80cm以下であることが好ましく、50cm以上70cm以下であることがより好ましい。一例として、本実施の形態においては、樹脂製緩衝器1の最上面からの荷重検出器13の鉛直方向高さが70cmとすることが好ましい。
 図12および図13を参照して、本実施の形態の点検装置300は、基本的に実施の形態1の点検装置100と同様の構成を有しているが、荷重付与板3の上方に測定機構としての荷重検出器13を有している点において、点検装置100と異なっている。ただし図13においては点検装置300に含まれる他の部材を視認可能とする観点から、荷重検出器は点線で図示されている。
 図14(a),(b),(c)を参照して、図12および図13の点検装置300を用いた樹脂製緩衝器1の点検工程における各部材の動作は、基本的にそれぞれ図5(a),(b),(c)に示す実施の形態1での点検装置100を用いた点検工程における各部材の動作と同様である。圧子2が跳ね上がり到達する高さが高さ表示板8により求められる代わりに、図14(c)においては荷重検出器13に衝突荷重が検出される点においてのみ、図5(c)と異なっている。
 点検装置300は、上記のように荷重検出器13を有する点においてのみ点検装置100と異なっており、それ以外の構成は、点検装置100の構成とほぼ同じであるため同一の要素については同一の符号を付し、その説明は繰り返さない。
 次に、本実施の形態の作用効果について説明する。
 交換を要する状態となるまでの時間を示す交換時点tsは、たとえ同一型番の樹脂製緩衝器1であっても、それが設置される温度および湿度などの環境により変化する。しかし少なくとも交換時点tsにおける平均減速度が9.8m/s2であり圧子2の跳ね上がる際の衝突荷重が19Nであることは、同一型番の樹脂製緩衝器1であれば、それが設置される温度および湿度などの環境にかかわらずほぼ同じである。
 このことから本実施の形態においては、図11のデータにより圧子2の荷重検出器13に対する衝突荷重の基準値S2が求められれば、以降の点検の際には樹脂製緩衝器1から跳ね上がる圧子2の衝突荷重が基準値S2以上であるか基準値S2未満であるかを検出するだけで、樹脂製緩衝器1の交換要否の判断が可能となる。このため実施の形態1と同様に、点検現場においてエレベータ用のかごを用いた測定を行なう必要がなくなり、点検を簡易に行なうことができる。
 また本実施の形態においては、荷重検出器13は樹脂製緩衝器1から比較的低い位置に設置される。このため本実施の形態の点検装置300は、たとえば実施の形態1の高さ表示板8または実施の形態2の高さ基準板12が用いられる点検装置100,200に比べて、装置本体の高さ方向の寸法が小さくなるため、装置本体を小型化させることができる。
 また本実施の形態においては、たとえば実施の形態1のように高さ表示板8を用いて目視により測定を行なう場合に比べて、測定結果にヒューマンエラーが生じる可能性を低減することができる。
 (実施の形態4)
 本実施の形態における点検方法の概要を示す図15(a),(b),(c)を参照して、基本的にこれらはそれぞれ図1(a),(b),(c)に示す実施の形態1の点検方法の概要と同様である。
 しかし本実施の形態においては、図15(c)の工程すなわち荷重付与板3により圧子2を樹脂製緩衝器1に押し込む荷重が解放され反発力を示す物性値を測定する工程において、当該物性値として、圧子2が樹脂製緩衝器1から上方へ跳ね上がる速度が、速度測定器15により測定される。ここで速度とは鉛直方向(真上に向かう方向)の速度を意味する。このように本実施の形態は、実施の形態1とは、圧子2が受ける反発力を示す物性値の測定方法が異なっている。
 速度測定器15は、たとえば支柱5の樹脂製緩衝器1が配置される側(装置本体の内側)に固定され、跳ね上がる圧子2の軌道の一部を圧子2が上方に向けて通過するときの速度を測定する。
 速度測定器15は、たとえば実施の形態2における高さ基準板12よりも、樹脂製緩衝器1からの高さが低い位置に設けられている。つまり速度測定器15は、たとえ上記の跳ね上がる高さの基準値S1(図2参照)よりも圧子2の到達する高さが低い場合においても上昇する圧子2の通過を検出しその速度を測定することを可能とする観点から、基本的に跳ね上がる力の弱い圧子2の速度をも検出することを前提とした、実施の形態2の高さ基準板12よりも低い位置に設けられている。図15の各図に示すように、基本的に速度測定器15は水平方向に延びる部材であり、これが設置される鉛直方向の高さとほぼ等しい高さを通過する圧子2の速度を検出可能な構成であるものとする。
 本実施の形態においては、速度測定器15により測定される圧子2の速度の結果が、予め準備された基準値と比較される。その結果、基準値を上回れば、樹脂製緩衝器1の弾性力が大きくかごの衝突による衝撃力を緩和する力が大きいと判断されるため、樹脂製緩衝器1の交換は不要と判定される。逆に基準値を下回れば、樹脂製緩衝器1の弾性力が小さくかごの衝突による衝撃力を緩和する力が小さいと判断されるため、樹脂製緩衝器1の交換が必要と判定される。速度の大小は、基本的に実施の形態1の跳ね上がる高さの大小と相関する。
 本実施の形態における、樹脂製緩衝器1の交換が必要となる圧子2の速度の基準値を求める方法は、基本的に実施の形態1の圧子2の跳ね上がる高さの基準値を求める方法と同様であるが、これについて図16を用いて説明する。
 図16(a)を参照して、このグラフは基本的に実施の形態1の図2(a)のグラフと同様であり、樹脂製緩衝器1の各使用時間(または加速劣化試験により使用したとみなされる時間)を変化させながら測定されたかごの衝突時の平均減速度が、点A1~点A6としてプロットされる。
 図16(b)を参照して、かごによる平均減速度の測定がなされた樹脂製緩衝器1に対して、点A1~点A6の測定がされた時間と同一の時間に、図15に示す要領で圧子2を樹脂製緩衝器1に押し込みかつ解放させる工程を行ない、そのときに跳ね上がった圧子2の速度を速度測定器15に測定させる。この結果がそれぞれ、図16(b)における点D1~点D6のようにプロットされる。点D1~点D6を結ぶことにより、樹脂製緩衝器1の使用時間(加速劣化試験により使用されたとみなされる時間)と測定される圧子2の速度との関係を示す曲線が得られる。
[規則91に基づく訂正 22.01.2016] 
 図16(a)および図16(c)を参照して、かごの平均減速度が9.8m/s2になる交換時点tsにおける圧子2の跳ね上がる速度が、樹脂製緩衝器1を交換すべき基準値として求められる。図16(c)においては樹脂製緩衝器1を交換すべき基準値としての圧子2の速度S3は、約40km/hである。
 図2と同様に、交換時点tsよりも使用時間の短い点A1~点A4および点D1~D4の各時点においては当該樹脂製緩衝器1は交換不要であり、交換時点tsよりも使用時間の長い点A5,A6および点D5,D6の各時点においては、当該樹脂製緩衝器1は交換必要であると判定できる。
 ところで、上記の速度測定器15が測定する圧子2の速度は、速度測定器15の設置される樹脂製緩衝器1の最上面からの高さにより変化する。このため上記の図16(b),(c)の点D1~点D6のプロットデータを得る際、およびその後にエレベータ点検現場で樹脂製緩衝器1に対して圧子2の速度を測定する際には、上記のパラメータ(速度測定器15の設置される樹脂製緩衝器1の最上面からの高さ)の値が一定となるように揃えられることが要求される。
[規則91に基づく訂正 22.01.2016] 
 速度測定器15が樹脂製緩衝器1の最上面からより低い位置に設置されるほど、跳ね上がった圧子2が速度測定器15により測定される速度が大きくなり、樹脂製緩衝器1の交換要否の判定をより精度よく行なうことができる。速度測定器15は、樹脂製緩衝器1の最上面からの鉛直方向の高さがたとえば50cm以上80cm以下であることが好ましく、50cm以上70cm以下であることがより好ましい。一例として、本実施の形態においては、樹脂製緩衝器1の最上面からの速度測定器15の鉛直方向高さが70cmとすることが好ましい。
 図17および図18を参照して、本実施の形態の点検装置400は、基本的に実施の形態1の点検装置100と同様の構成を有しているが、荷重付与板3の上方に測定機構としての速度測定器15を有している点において、点検装置100と異なっている。速度測定器15は、たとえば装置本体の奥行き方向(図18の上下方向)に関して圧子2が跳ね上がる位置とほぼ同じ位置であり、かつ装置本体の幅方向(図18の左右方向)に関して圧子2が跳ね上がる位置と間隔をあけた位置(たとえば圧子2の右方の位置)に設置されることが好ましい。
 図19(a),(b),(c)を参照して、図17および図18の点検装置400を用いた樹脂製緩衝器1の点検工程における各部材の動作は、基本的にそれぞれ図5(a),(b),(c)に示す実施の形態1での点検装置100を用いた点検工程における各部材の動作と同様である。圧子2が跳ね上がり到達する高さが高さ表示板8により求められる代わりに、図19(c)においては速度測定器15により圧子2の速度が測定される点においてのみ、図5(c)と異なっている。
 点検装置400は、上記のように速度測定器15を有する点においてのみ点検装置100と異なっており、それ以外の構成は、点検装置100の構成とほぼ同じであるため同一の要素については同一の符号を付し、その説明は繰り返さない。
 次に、本実施の形態の作用効果について説明する。
 交換を要する状態となるまでの時間を示す交換時点tsは、たとえ同一型番の樹脂製緩衝器1であっても、それが設置される温度および湿度などの環境により変化する。しかし少なくとも交換時点tsにおける平均減速度が9.8m/s2であり圧子2の速度が40km/hであることは、同一型番の樹脂製緩衝器1であれば、それが設置される温度および湿度などの環境にかかわらずほぼ同じである。
 このことから本実施の形態においては、図16のデータにより圧子2の跳ね上がる速度の基準値S3が求められれば、以降の点検の際には樹脂製緩衝器1から跳ね上がる圧子2の速度が基準値S3以上であるか基準値S3未満であるかを検出するだけで、樹脂製緩衝器1の交換要否の判断が可能となる。このため実施の形態1と同様に、点検現場においてエレベータ用のかごを用いた測定を行なう必要がなくなり、点検を簡易に行なうことができる。
 また本実施の形態においては、速度測定器15は樹脂製緩衝器1から比較的低い位置に設置される。このため本実施の形態の点検装置400は、たとえば実施の形態1の高さ表示板8または実施の形態2の高さ基準板12が用いられる点検装置100,200に比べて、装置本体の高さ方向の寸法が小さくなるため、装置本体を小型化させることができる。
 また本実施の形態においては、たとえば実施の形態1のように高さ表示板8を用いて目視により測定を行なう場合に比べて、測定結果にヒューマンエラーが生じる可能性を低減することができる。
 (実施の形態5)
 本実施の形態においては、基本的に実施の形態1~4と同様の点検方法を用いて点検がなされるが、圧子2の形状が実施の形態1~4とは異なっている。またこれに伴い、点検装置の構成にも実施の形態1~4とは若干の相違がある。
 本実施の形態の圧子2の形状は、実施の形態1と同様に、樹脂製緩衝器1に押し込まれた際における変形が無視できるほどの硬さを有し、また樹脂製緩衝器1に押し込まれた際に樹脂製緩衝器1の表面を傷つけない形状であることが好ましい。
 具体的には、図20を参照して、本実施の形態に用いられる圧子2は、実施の形態1と同様にステンレスまたは鉄などの金属製であるが、棒状に延びる形状を有している。つまり当該圧子2は、棒状に延びる棒状部2aと、棒状部2aが延在する方向に対する一方の端部側に形成される球状部2bとを有している。ここで圧子2の一対の端部のうち球状部2bの形成される側は、樹脂製緩衝器1と接触する側となっている。ただし図24を参照して、当該圧子2はたとえば棒状に延びる棒状部2aと、棒状部2aが延在する方向に対する一方の端部側に形成される多面体形状部2cとを有していてもよい(この場合、多面体形状部2cの形成される側が、樹脂製緩衝器1と接触する側となっている)。
 なお棒状部2aは円柱状であっても角柱状(たとえば四角柱状)であってもよいが、(特に圧子2が球状部2bまたは多面体形状部2cを有する場合には)円柱状であることがより好ましい。また図示されないが、圧子2は、その全体が棒状部2aのみを有する円柱状または角柱状であってもよい。
 次に、本実施の形態における点検方法の概要を示す図21(a),(b),(c)を参照して、基本的にこれらはそれぞれ図1(a),(b),(c)に示す実施の形態1の点検方法の概要と同様である。
 しかし本実施の形態においては、点検装置500が、その荷重付与機構として、圧子押し込み治具16を有している点において、上記の他の実施の形態の点検装置100~400とは構成が異なっている。圧子押し込み治具16は、樹脂製緩衝器1と互いに間隔をあけてその上方に配置されており、図21(b)中の下向き矢印および図21(c)中の上向き矢印に示すように上下方向に移動可能となっている。圧子押し込み治具16には、ストッパ11および(図21中に示されない)荷重付与板3などが含まれている。
 基本的に図21(a)はたとえば実施の形態1の図1(a)および図5(a)の工程に、図21(b)はたとえば実施の形態1の図1(b)および図5(b)の工程に、図21(c)はたとえば実施の形態1の図1(c)および図5(c)の工程に、それぞれ対応する。
 すなわち図21(a)においてはストッパ11により、荷重付与板3の位置が圧子2の上方に配置されるように固定されている。また圧子2は樹脂製緩衝器1の最上面上に載置されている。つまり図21(a)は圧子2を樹脂製緩衝器1に押し込む工程の準備段階である。
 図21(b)においては、圧子押し込み治具16が下降することにより、これに含まれる荷重付与板3が圧子2を下方に押し込むように下方に移動する。これにより圧子2(の特に球状部2bまたは多面体形状部2c)が樹脂製緩衝器1に押し込まれる。
 図21(c)においてはストッパ11が外されることにより、ストッパ11に拘束されていた荷重付与板3が図のたとえば右方に移動し、これに伴い圧子2を樹脂製緩衝器1に押し込む荷重が解放される。このとき圧子2が樹脂製緩衝器1から反発力を受けて図中の上向き矢印に示すように上方に跳ね上がる。この跳ね上がりにより圧子2が到達する樹脂製緩衝器1からの高さが圧子2が受ける反発力を示す物性値として測定される。
 次に、圧子押し込み治具16の内部の態様を示す図22(a),(b),(c)を用いて、図21の点検装置500を用いた樹脂製緩衝器1の点検工程における各部材の動作について、より詳細に説明する。
 図22(a)を参照して、上下方向に3つ並ぶ図のうち最も上の図は点検装置500の特に圧子押し込み治具16の部分の概略平面図であり、中央の図は最も上の図および最も下の図中のA-A線に沿う部分の概略断面図である。また最も下の図は中央の図中のB-B線に沿う部分の概略断面図である。なお中央の図においては位置関係をわかりやすくする観点から、圧子押し込み治具16の下方に配置される樹脂製緩衝器1も併せて図示されている(後述する図22(b),(c)についても同様)。
 圧子押し込み治具16は、その内部に、圧子跳ね上がり用孔部17と、荷重付与板スライド用孔部18とを有している。圧子跳ね上がり用孔部17は、圧子2が跳ね上がる方向(図の上下方向すなわち鉛直方向)に沿って延びる内壁を有するように形成されており、圧子押し込み治具16の本体を上下方向に貫通している。圧子跳ね上がり用孔部17の内壁の幅は、圧子2の図の左右方向に関する(棒状に延在する方向に交差する方向に関する)幅よりやや大きい程度であることが好ましく、棒状の圧子2が圧子跳ね上がり用孔部17の内壁に沿って跳ね上がることが可能な程度の広さの幅であることが好ましい。また圧子2は、棒状部2aの延びる部分が圧子跳ね上がり用孔部17の内壁に沿うように(棒状部2aが鉛直方向に沿って延びるように)配置される。
 荷重付与板スライド用孔部18は、図の左右方向すなわち水平方向に沿って延びており、これにより圧子跳ね上がり用孔部17と交差(たとえば直交)している。荷重付与板スライド用孔部18内には荷重付与板3が配置されており、荷重付与板3は荷重付与板スライド用孔部18内をこれの延びる水平方向に沿って移動可能となっている。
 荷重付与板スライド用孔部18はその延びる方向に関する一方の端部が圧子押し込み治具16の本体の内部に形成された端部壁面18aとなっており、それに対する他方の端部は圧子押し込み治具16の本体の図の右側の端部における開口となっている。また上記のように荷重付与板スライド用孔部18は圧子跳ね上がり用孔部17と交差するが、その交差する圧子跳ね上がり用孔部17よりも図の左側(端部壁面18a側)の第1領域18bと、圧子跳ね上がり用孔部17よりも図の右側の第2領域18cとに分かれている。
 荷重付与板3は、開口形成部3aと、圧子押し込み部3bとを有している。開口形成部3aは、この部分が圧子跳ね上がり用孔部17内に入った際に圧子2を解放させて上方へ跳ね上がらせるための開口が形成された領域である。また圧子押し込み部3bは、この部分が圧子跳ね上がり用孔部17内に入った際に圧子2を下方に押し込むために圧子跳ね上がり用孔部17を塞ぐことができる領域である。
[規則91に基づく訂正 22.01.2016] 
 荷重付与板スライド用孔部18の端部壁面18aにはたとえば2本のばね10の一方端が固定されており、ばね10の他方端は荷重付与板3の開口形成部3aの図の左側の端部に固定されている。
 図22(a)においては、ストッパ11が第2領域18cの右方の領域を塞ぐように下降されており、このストッパ11により荷重付与板3が左方に押される。このためばね10は最も縮んだ状態となっており、荷重付与板3は最も左側に配置された状態となっている。ストッパ11は、荷重付与板3がばね10の弾性力に対する反発力により伸びて右方に移動することのないようにこれを図の左方の位置に固定する。
 このとき、荷重付与板3の開口形成部3aは第1領域18b内に収納され、圧子押し込み部3bは圧子跳ね上がり用孔部17内および第2領域18c(ストッパ11の左側)に収納される。したがってこのとき、圧子2は、圧子跳ね上がり用孔部17内の圧子押し込み部3b(荷重付与板スライド用孔部18)の下部に配置されるとともに、樹脂製緩衝器1の最上面上に載置された状態となっている。
 図22(b)を参照して、図22(a)のようにストッパ11が荷重付与板3を左方に押しこんだ状態を保ったまま、圧子押し込み治具16の全体が下降する。これに伴い、圧子跳ね上がり用孔部17内においては、圧子押し込み治具16に含まれる荷重付与板3の圧子押し込み部3bが、その下の圧子2と接触してかつその圧子2を下方に押し込む荷重を与える。このように荷重付与板3が圧子2と接触した状態でさらに下方へ移動することにより、これと接触する圧子2が下方の樹脂製緩衝器1側に押し込まれる。
 図22(c)を参照して、圧子2が下方に押し込まれた状態を維持したままストッパ11が上方へ移動するように外される。このときばね10が弾性力により右方へ伸びれば、荷重付与板3が図の右方に移動し、開口形成部3aの開口(板状の部材が配置されない部分)が圧子跳ね上がり用孔部17内の圧子2の真上に配置される。つまり荷重付与板3の開口形成部3aの開口が、それまで圧子押し込み部3bが圧子2に与えていた下向きの荷重を解放する。
 これにより、樹脂製緩衝器1は下方に押し込まれたことに対する反発力により上方へ跳ね上げられる。
[規則91に基づく訂正 22.01.2016] 
 点検装置500は、上記のように圧子押し込み治具16を有する点においてのみ点検装置100~400と異なっており、それ以外の構成は、点検装置100~400の構成とほぼ同じであるため同一の要素については同一の符号を付し、その説明は繰り返さない。具体的には、図22においては、点検装置500を構成する他の装置本体および測定機構の図示が省略されているが、この部分については実施の形態1~4の点検装置100~400のいずれかが用いられてもよい。すなわち本実施の形態の測定方法としては、実施の形態1~4のいずれの測定方法を用いることもできる。なお圧子押し込み治具16は、図示が省略されているが、(たとえば実施の形態1の荷重付与板3と同様に)装置本体のたとえば支柱5に接触固定されているリニアガイド7に把持されており、支柱5の延びる方向に沿って(鉛直方向に沿って)移動可能となっている。
 次に、本実施の形態の作用効果を説明する。
 本実施の形態においては、棒状に延びる棒状部2aを有する圧子2が、圧子跳ね上がり用孔部17の内壁に沿って延びるように配置されたまま、上方に跳ね上げられる。このため、特に圧子跳ね上がり用孔部17の内壁の幅を圧子2の棒状部2aの延びる方向に交差する幅に近い幅となるように(ある程度狭く)することにより、圧子2は確実に鉛直方向に沿って上方に跳ね上げられる。したがって圧子2が鉛直方向に跳ね上がらずたとえば斜め方向に跳ね上がるために測定結果の信頼性を損ねる可能性を低減することができる。
 この観点からは、実施の形態1~4における球状物としての圧子2を用いて、本実施の形態の圧子押し込み治具16を有する点検装置500により点検がなされてもよい。このようにすれば、球状物としての圧子2を用いた場合においても、圧子跳ね上がり用孔部17の内壁に沿って確実に鉛直方向に圧子2を跳ね上がらせることができるため、測定結果の信頼性を向上させることができる。
 また棒状部2aを有する圧子2が球状部2bまたは多面体形状部2cを有するため、その部分を樹脂製緩衝器1の最上面に接触させめり込ませることにより、樹脂製緩衝器1が押し込まれた際に樹脂製緩衝器1の表面を傷つけないようにすることができる。
 さらに、圧子2が棒状部2aを有することにより、圧子2が球状物である場合に比べて、紛失のリスクを低減させることもできる。
 以上に説明された各実施の形態の技術的特徴については、技術的に矛盾が生じない程度に、適宜組み合わせて使用することができる。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 樹脂製緩衝器、2 圧子、2a 棒状部、2b 球状部、2c 多面体形状部、3 荷重付与板、3a 開口形成部、3b 圧子押し込み部、4 土台、5 支柱、6 緩衝器固定板、6a 第1の固定領域、6b 第2の固定領域、7 リニアガイド、8 高さ表示板、8a 目盛、9 ばね固定板、10 ばね、11 ストッパ、12 高さ基準板、13 荷重検出器、14 天井部、15 速度測定器、16 圧子押し込み治具、17 圧子跳ね上がり用孔部、18 荷重付与板スライド用孔部、18a 端部壁面、18b 第1領域、18c 第2領域、100,200,300,400,500 点検装置。

Claims (17)

  1.  エレベータ用の樹脂製緩衝器に圧子を押し込む工程と、
     前記圧子を前記樹脂製緩衝器に押し込む荷重を解放させる工程と、
     前記荷重を解放させる工程により前記樹脂製緩衝器から前記圧子が跳ね上がる反発力を示す物性値を測定する工程と、
     前記反発力を測定する工程により得られた前記物性値の結果を予め準備された基準値と比較することにより、前記樹脂製緩衝器の交換の要否を判定する工程とを備える、樹脂製緩衝器の点検方法。
  2.  前記物性値を測定する工程においては、跳ね上がった前記圧子が到達する前記樹脂製緩衝器からの高さが測定される、請求項1に記載の樹脂製緩衝器の点検方法。
  3.  前記物性値を測定する工程においては、前記荷重を解放させる工程により前記圧子が跳ね上がり到達する高さの前記基準値の位置に設けられた高さ基準板に到達するか否かが検出され、
     前記交換の要否を判定する工程においては、前記圧子が前記高さ基準板に到達しなければ前記樹脂製緩衝器を交換する必要があると判定される、請求項1に記載の樹脂製緩衝器の点検方法。
  4.  前記物性値を測定する工程においては、跳ね上がった前記圧子の軌道上に設けられた荷重検出装置に前記圧子が衝突する際の荷重が測定される、請求項1に記載の樹脂製緩衝器の点検方法。
  5.  前記物性値を測定する工程においては、跳ね上がった前記圧子の速度が測定される、請求項1に記載の樹脂製緩衝器の点検方法。
  6.  エレベータ用のかごの可動速度で前記かごを前記樹脂製緩衝器に衝突させた際の前記かごの減速度を測定する工程と、前記圧子を押し込むことによる前記物性値を測定する工程とを、前記樹脂製緩衝器の使用時間を変化させながら複数回行なうことにより、前記減速度を測定する工程により得られる前記減速度が前記樹脂製緩衝器を交換すべき値に達した時点である交換時点を決定する工程と、
     前記交換時点における前記圧子を押し込むことによる前記物性値を測定する工程を行なうことにより得られる前記物性値を前記圧子から得られる前記樹脂製緩衝器を交換すべき前記基準値を求める工程とをさらに備える、請求項1~請求項5のいずれか1項に記載の樹脂製緩衝器の点検方法。
  7.  前記圧子を押し込む工程は、荷重付与機構が前記圧子と接触しながら前記圧子の跳ね上がる方向に沿って延びる支柱に沿って下側へ移動することによりなされ、
     前記荷重を解放させる工程は、前記荷重付与機構が前記圧子の跳ね上がる方向に交差する水平方向に沿って延びるリニアガイドに沿って水平方向に移動することによりなされる、請求項1~請求項6のいずれか1項に記載の樹脂製緩衝器の点検方法。
  8.  エレベータ用の樹脂製緩衝器の相対位置を固定するための固定機構を含む装置本体と、
     圧子を前記樹脂製緩衝器に押し込む荷重を与え、かつ前記荷重を解放することが可能な荷重付与機構と、
     前記荷重が解放された前記圧子が跳ね上がる反発力を示す物性値を測定する測定機構とを備える、樹脂製緩衝器の点検装置。
  9.  前記圧子は金属製であり、球状または多面体形状である、請求項8に記載の樹脂製緩衝器の点検装置。
  10.  前記圧子は金属製であり、棒状に延びる形状を有しており、
     前記圧子は、前記棒状に延びる形状が延在する方向に対する一方の端部側において、球状または多面体形状を有している、請求項8に記載の樹脂製緩衝器の点検装置。
  11.  前記測定機構は、跳ね上がった前記圧子が到達する前記樹脂製緩衝器からの高さを前記物性値として測定する高さ表示板である、請求項8~請求項10のいずれか1項に記載の樹脂製緩衝器の点検装置。
  12.  前記測定機構は、前記樹脂製緩衝器の点検装置の、前記圧子が跳ね上がり到達する高さの基準値の位置に設けられた高さ基準板である、請求項8~請求項10のいずれか1項に記載の樹脂製緩衝器の点検装置。
  13.  前記測定機構は、跳ね上がった前記圧子の衝突を受けることにより前記圧子の前記測定機構に対する衝突荷重を前記物性値として測定する荷重検出器である、請求項8~請求項10のいずれか1項に記載の樹脂製緩衝器の点検装置。
  14.  前記測定機構は、跳ね上がった前記圧子の速度を前記物性値として測定する速度測定器である、請求項8~請求項10のいずれか1項に記載の樹脂製緩衝器の点検装置。
  15.  前記装置本体は、
     前記樹脂製緩衝器を載置する土台と、
     前記土台に固定され、前記圧子の跳ね上がる方向に沿って延びる支柱と、
     前記支柱に固定され、前記圧子の跳ね上がる方向に交差する水平方向に沿って延び、前記荷重付与機構を水平方向に移動可能なリニアガイドとを含み、
     前記荷重付与機構が前記支柱に沿って移動することにより前記圧子を前記樹脂製緩衝器に押し込み可能であり、
     前記荷重付与機構が前記リニアガイドの延びる方向に移動することにより前記圧子を前記樹脂製緩衝器から解放可能である、請求項8~請求項14のいずれか1項に記載の樹脂製緩衝器の点検装置。
  16.  前記固定機構は、前記支柱に固定されることにより前記土台に載置された前記樹脂製緩衝器を押さえ込むように固定し、
     前記固定機構は、前記樹脂製緩衝器の、前記圧子の跳ね上がる方向側に配置される第1の固定領域と、前記第1の固定領域に交差し前記樹脂製緩衝器の側面側に配置される第2の固定領域とにより前記樹脂製緩衝器を挟み込むように固定可能である、請求項15に記載の樹脂製緩衝器の点検装置。
  17.  前記荷重付与機構は、前記圧子の跳ね上がる方向に沿って延びる内壁を有する圧子押し込み治具をさらに備える、請求項8~請求項16のいずれか1項に記載の樹脂製緩衝器の点検装置。
PCT/JP2015/064720 2014-09-11 2015-05-22 樹脂製緩衝器の点検方法および点検装置 WO2016038941A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE112015004181.8T DE112015004181B4 (de) 2014-09-11 2015-05-22 Verfahren und Vorrichtung zum Prüfen von Harz-Stossdämpfern
JP2016547723A JP6246380B2 (ja) 2014-09-11 2015-05-22 樹脂製緩衝器の点検方法および点検装置
US15/323,593 US9909950B2 (en) 2014-09-11 2015-05-22 Method and apparatus for inspecting resin shock absorber
KR1020177006651A KR101891450B1 (ko) 2014-09-11 2015-05-22 수지제 완충기의 점검 방법 및 점검 장치
BR112017001546-3A BR112017001546A2 (ja) 2014-09-11 2015-05-22 An inspecting method and an inspection device of the buffer made of resin
CN201580045739.7A CN106604884B (zh) 2014-09-11 2015-05-22 树脂制缓冲器的检查方法和检查装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014185158 2014-09-11
JP2014-185158 2014-09-11

Publications (1)

Publication Number Publication Date
WO2016038941A1 true WO2016038941A1 (ja) 2016-03-17

Family

ID=55458704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/064720 WO2016038941A1 (ja) 2014-09-11 2015-05-22 樹脂製緩衝器の点検方法および点検装置

Country Status (7)

Country Link
US (1) US9909950B2 (ja)
JP (1) JP6246380B2 (ja)
KR (1) KR101891450B1 (ja)
CN (1) CN106604884B (ja)
BR (1) BR112017001546A2 (ja)
DE (1) DE112015004181B4 (ja)
WO (1) WO2016038941A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2658186A1 (es) * 2016-09-07 2018-03-08 Asesores Proyectos Especiales Industriales, S.L. Dispositivo y procedimiento para la verificación en los amortiguadores del tipo de acumulación de energía en la puesta en servicio de ascensores

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107445016A (zh) * 2017-07-26 2017-12-08 江苏意迪驱动设备有限公司 一种电梯的支撑柱
CN107381279A (zh) * 2017-07-26 2017-11-24 江苏意迪驱动设备有限公司 一种厢式电梯的支撑柱
CN107399655A (zh) * 2017-07-26 2017-11-28 江苏意迪驱动设备有限公司 一种具有支撑构件的厢式电梯
CN107286564A (zh) * 2017-07-26 2017-10-24 江苏意迪驱动设备有限公司 一种具有支撑装置的厢式电梯
JP6556398B1 (ja) * 2018-03-26 2019-08-07 三菱電機株式会社 診断装置および閾値作成方法
JP6693622B1 (ja) * 2018-11-19 2020-05-13 東芝エレベータ株式会社 エレベータ監視装置およびエレベータ監視方法
CN111829911B (zh) * 2020-07-14 2021-11-26 北京建筑材料科学研究总院有限公司 浮筑地面填充找平层的性能测定装置
CN112607554A (zh) * 2020-12-24 2021-04-06 方冬荣 一种电梯防坠多重减震轿厢

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161549U (ja) * 1980-04-30 1981-12-01
JPH08217352A (ja) * 1995-02-14 1996-08-27 Hitachi Building Syst Eng & Service Co Ltd オイルバッファのプランジャー復帰動作確認方法
JPH11182604A (ja) * 1997-12-22 1999-07-06 Nippon Petrochem Co Ltd 衝撃エネルギー吸収部材
JP2008082978A (ja) * 2006-09-28 2008-04-10 Renias:Kk 微小硬度測定法及び微小硬度計
JP2009063438A (ja) * 2007-09-06 2009-03-26 Kyushu Institute Of Technology 測定物の表面状態試験方法及びその表面状態試験装置
JP2011073823A (ja) * 2009-09-30 2011-04-14 Mitsubishi Electric Corp エレベータの緩衝器
US20110227264A1 (en) * 2010-03-17 2011-09-22 Acla-Werke Gmbh Buffer for absorbing impacts
JP2013019782A (ja) * 2011-07-12 2013-01-31 Ihi Corp ナノインデンテーション試験装置とそのデータ補正方法
JP2013056748A (ja) * 2011-09-08 2013-03-28 Sumitomo Rubber Ind Ltd エレベータ用緩衝器

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113932A (ja) 1985-11-09 1987-05-25 Chugoku Rubber Kogyo Kk 緩衝体
US4852397A (en) * 1988-01-15 1989-08-01 Haggag Fahmy M Field indentation microprobe for structural integrity evaluation
JP3362441B2 (ja) 1993-04-09 2003-01-07 東レ株式会社 エネルギー吸収部材
US5357786A (en) * 1993-08-04 1994-10-25 Valence Technology, Inc. Device for determining mechanical properties of materials
JP3400898B2 (ja) 1995-07-28 2003-04-28 株式会社日立ビルシステム バッファ動作試験装置
JPH09132362A (ja) 1995-11-09 1997-05-20 Hitachi Building Syst Co Ltd 緩衝器の動作確認装置
US7121136B2 (en) * 2002-12-25 2006-10-17 Mitutoyo Corporation Hardness testing apparatus
JP4320018B2 (ja) * 2006-01-06 2009-08-26 株式会社レニアス 微小硬度測定法及び微小硬度計
JP4929870B2 (ja) * 2006-06-23 2012-05-09 日産自動車株式会社 ナビゲーション装置
JP4923960B2 (ja) * 2006-10-31 2012-04-25 日立電線株式会社 衝撃検知光ファイバセンサ
JP2008190945A (ja) * 2007-02-02 2008-08-21 Nitto Denko Corp 圧縮試験装置
HU230106B1 (hu) * 2008-07-17 2015-07-28 István Subert Eljárás szemcsés anyagrétegek tömörségének helyszíni meghatározásához, valamint készülék az eljárás végrehajtására
JP5278131B2 (ja) * 2009-04-15 2013-09-04 三菱電機ビルテクノサービス株式会社 エレベータ用緩衝器の復帰試験装置
DE202009007260U1 (de) 2009-05-20 2010-09-23 Vogelskamp, Ingo Aufsetzpuffer zum Abfedern einer Aufzugskabine
CN103344516A (zh) * 2013-06-17 2013-10-09 曾汉 回弹仪的回弹值确认方法
CN203455247U (zh) * 2013-07-23 2014-02-26 天津市金全福自行车有限公司 一种鞍座回弹指数测量装置
CN103630458A (zh) * 2013-12-12 2014-03-12 曾汉 一种回弹值标准装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56161549U (ja) * 1980-04-30 1981-12-01
JPH08217352A (ja) * 1995-02-14 1996-08-27 Hitachi Building Syst Eng & Service Co Ltd オイルバッファのプランジャー復帰動作確認方法
JPH11182604A (ja) * 1997-12-22 1999-07-06 Nippon Petrochem Co Ltd 衝撃エネルギー吸収部材
JP2008082978A (ja) * 2006-09-28 2008-04-10 Renias:Kk 微小硬度測定法及び微小硬度計
JP2009063438A (ja) * 2007-09-06 2009-03-26 Kyushu Institute Of Technology 測定物の表面状態試験方法及びその表面状態試験装置
JP2011073823A (ja) * 2009-09-30 2011-04-14 Mitsubishi Electric Corp エレベータの緩衝器
US20110227264A1 (en) * 2010-03-17 2011-09-22 Acla-Werke Gmbh Buffer for absorbing impacts
JP2013019782A (ja) * 2011-07-12 2013-01-31 Ihi Corp ナノインデンテーション試験装置とそのデータ補正方法
JP2013056748A (ja) * 2011-09-08 2013-03-28 Sumitomo Rubber Ind Ltd エレベータ用緩衝器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2658186A1 (es) * 2016-09-07 2018-03-08 Asesores Proyectos Especiales Industriales, S.L. Dispositivo y procedimiento para la verificación en los amortiguadores del tipo de acumulación de energía en la puesta en servicio de ascensores

Also Published As

Publication number Publication date
JPWO2016038941A1 (ja) 2017-07-13
CN106604884B (zh) 2019-02-19
US9909950B2 (en) 2018-03-06
JP6246380B2 (ja) 2017-12-13
KR101891450B1 (ko) 2018-08-23
KR20170041861A (ko) 2017-04-17
DE112015004181T5 (de) 2017-05-24
US20170138815A1 (en) 2017-05-18
BR112017001546A2 (ja) 2018-01-30
DE112015004181B4 (de) 2018-12-13
CN106604884A (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6246380B2 (ja) 樹脂製緩衝器の点検方法および点検装置
US9228927B2 (en) Field testing apparatus and method for determining the dynamic elastic modulus of asphalt
CN104913893B (zh) 一种模拟车辆碰撞的落锤冲击试验装置
JP4466431B2 (ja) 衝突試験装置
JP2009109481A (ja) 衝突試験装置および衝突試験方法
JP2012037398A (ja) 落錘式衝撃試験装置及び落錘式衝撃試験方法
EP2685235B1 (en) Machine for testing cushioning material for packaging
RU90901U1 (ru) Стенд для испытания железобетонных элементов на действие изгибающих моментов, продольных и поперечных сил при кратковременном динамическом нагружении
US8402810B2 (en) Method and apparatus for testing water hammer strength of glass bottle
CN103344399B (zh) 自动多方向短跌落测试装置和方法
KR20160050909A (ko) 2차 낙하 충격이 방지되는 낙하 충격 시험기
US9021858B2 (en) Apparatus for testing water hammer strength of glass bottle
CN102507089B (zh) 车门闭合力测试仪标定装置及方法
CN106442114B (zh) 一种用于动态压缩试验的卸载保护装置
RU77434U1 (ru) Стенд для испытания железобетонных элементов на кратковременный динамический изгиб с обжатием
JP2006184133A (ja) 落下試験機および落下試験方法
RU2696815C1 (ru) Способ экспериментального определения статико-динамических характеристик бетона
EP2535696B1 (en) Device for testing water hammer strength of glass bottle
CN108593424B (zh) 防爆材料爆轰试验动态数据测量装置
KR101293380B1 (ko) 하중 측정장치와 이를 이용한 구조물 지지장치
RU2453823C1 (ru) Нагрузочное устройство
JP2008019597A (ja) 杭の支持力測定方法
RU147262U1 (ru) Стенд для испытания железобетонных элементов с фиксированной степенью горизонтального обжатия на кратковременный динамический изгиб
Scheidemann et al. Model-sized and full-scale dynamic penetration tests on damping concrete
CN201081606Y (zh) 教练弹卡膛速度标定仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840828

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15323593

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016547723

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017001546

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20177006651

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015004181

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15840828

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112017001546

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170125