WO2016038929A1 - 胎児染色体の異数性の有無を検出する方法 - Google Patents

胎児染色体の異数性の有無を検出する方法 Download PDF

Info

Publication number
WO2016038929A1
WO2016038929A1 PCT/JP2015/062893 JP2015062893W WO2016038929A1 WO 2016038929 A1 WO2016038929 A1 WO 2016038929A1 JP 2015062893 W JP2015062893 W JP 2015062893W WO 2016038929 A1 WO2016038929 A1 WO 2016038929A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplification
amplification product
absence
dna
tertiary
Prior art date
Application number
PCT/JP2015/062893
Other languages
English (en)
French (fr)
Inventor
雄喜 井上
靖幸 石井
彩 大内
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP15840802.1A priority Critical patent/EP3192879A1/en
Priority to CN201580045175.7A priority patent/CN106661633A/zh
Priority to JP2016547714A priority patent/JPWO2016038929A1/ja
Publication of WO2016038929A1 publication Critical patent/WO2016038929A1/ja
Priority to US15/427,050 priority patent/US20170152555A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • C12Q1/6874Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]

Definitions

  • the present invention relates to a method for detecting the presence or absence of aneuploidy in fetal chromosomes.
  • amniotic fluid chromosome test As a prenatal genetic test, an amniotic fluid chromosome test has been performed in which fetal-derived cells are isolated from amniotic fluid collected by amniocentesis and the chromosomes in the fetal-derived cells are examined.
  • amniocentesis has the risk of causing miscarriage.
  • a test that detects fetal chromosomal abnormality by analyzing fetal cell-free DNA present in the blood of the pregnant mother or chromosomal DNA of fetal cell present in the blood of the pregnant mother is non-invasive. Known as prenatal genetic testing.
  • non-invasive prenatal genetic tests tests that analyze fetal cell-free DNA have already been put to practical use.
  • the test for analyzing the chromosomal DNA of fetal cells has not yet been put into practical use.
  • fetal cells for example, fetal nucleated red blood cells
  • a noninvasive prenatal genetic test with better test accuracy can be expected.
  • a method of obtaining sequence information from an amplification product obtained by collecting DNA from human peripheral blood and performing multi-step DNA amplification to diagnose a disease or determine a parent and child is disclosed in, for example, Japanese Patent No. 4404553. This is disclosed in Table 2014-502845, JP-T 2004-511215, and JP-A-6-327476.
  • a method for quantifying the initial ratio of a plurality of nucleic acid amounts by performing a multiplex amplification reaction is disclosed in JP-T-2006-505268.
  • An object of one embodiment of the present invention is to provide a method for detecting the presence or absence of aneuploidy of fetal chromosomes, which is excellent in detection power.
  • a sequence analysis step for determining the amount of amplification wherein the primary amplification step is a step of amplifying the total amount of DNA to
  • [2] The method for detecting the presence or absence of fetal chromosome aneuploidy according to [1], wherein the tertiary amplification step is a step of amplifying the total amount of DNA to 6 to 24 times.
  • the tertiary amplification step is a step of amplifying the total amount of DNA to 6 to 24 times.
  • the sequence analysis step is performed using a next-generation sequencer.
  • a method for detecting the presence or absence of aneuploidy of fetal chromosomes according to item 1.
  • the primer used in the tertiary amplification step has the base sequence of the second label at the 5 ′ end, and by performing the tertiary amplification step, the second label is added to both ends of the tertiary amplification product,
  • the primer used in the secondary amplification process has the base sequence of the first label at the 5 'end, and the first label is added to both ends of the secondary amplification product by performing the secondary amplification process.
  • a labeled secondary amplification product is obtained, and thus the secondary amplification step and the first addition step are performed together, and the fetal chromosome differentiation according to any one of [1] to [5]
  • a method to detect the presence or absence of numericality A method to detect the presence or absence of numericality.
  • the chromosomal DNA is chromosomal DNA obtained from one cell, and the primary amplification step is a step of performing whole genome amplification from one cell, according to any one of [1] to [7], A method for detecting the presence or absence of aneuploidy in fetal chromosomes.
  • the aneuploidy of fetal chromosome according to any one of [1] to [8], wherein the biological sample is blood, and the chromosomal DNA is chromosomal DNA obtained from cells in blood. How to detect the presence or absence.
  • a method for detecting the presence or absence of aneuploidy of fetal chromosomes which is excellent in detection power.
  • the term “process” is not limited to an independent process, and is included in this term if the intended purpose of the process is achieved even when it cannot be clearly distinguished from other processes. .
  • a numerical range indicated by using “to” indicates a range including the numerical values described before and after “to” as the minimum value and the maximum value, respectively.
  • the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. Means.
  • the method of the present disclosure is a method for obtaining chromosomal DNA from a biological sample collected from a pregnant mother, amplifying a plurality of regions on the chromosomal DNA, and detecting the presence or absence of fetal chromosome aneuploidy.
  • the primary amplification step, the secondary amplification step, and the tertiary amplification step are used to amplify DNA in multiple stages, determine the base sequence and amount of the amplified product, and determine the presence or absence of fetal chromosome aneuploidy. Is detected.
  • the methods of the present disclosure apply to prenatal genetic testing to detect, for example, trisomy of chromosomes 13, 18, and 21; excess sex chromosomes;
  • the primary amplification step, the secondary amplification step, and the tertiary amplification step amplify DNA using a DNA polymerase.
  • the primary amplification step is a step of amplifying the total amount of DNA to 6000 to 30000 times
  • the secondary amplification step is a step of amplifying the total amount of DNA to 3 to 150 times.
  • the amplification factor of the total amount of DNA in the primary amplification step and the secondary amplification step (total amount of DNA after amplification ⁇ total amount of DNA before amplification) is within the above range, so that the aneuploidy of fetal chromosomes Excellent detection of presence / absence. The reason is not limited by a specific mechanism, but is presumed to be due to the mechanism described below.
  • DNA amplification by DNA polymerase differs depending on the amplification sequence (amplification efficiency) depending on the base sequence of the amplification region, length of the amplification region, specificity of the primer sequence, reaction temperature, reaction time, etc.
  • the polymerase chain reaction which is one of the DNA amplification methods, is a reaction that theoretically amplifies DNA exponentially by repeating the number of cycles.
  • the DNA concentration that is, the amount of amplification product
  • the amount of amplified product will be substantially the same even if there is a difference in the amount of original DNA, and information on the original DNA amount ratio will be lost.
  • the amplification factor of the total amount of DNA in the primary amplification step is set to 30000 times or less. If the amplification magnification is more than 30000 times, an appropriate number of amplification cycles is required to realize this amplification magnification, and a difference in amplification efficiency accumulates with each amplification cycle, resulting in amplification products between amplification regions. The quantitative ratio is far from the original DNA quantitative ratio in the chromosome. Therefore, in the method of the present disclosure, the amplification factor of the total amount of DNA in the primary amplification step is 30000 times or less.
  • the amplification magnification of each amplification region amplified by the primary amplification step is also within the range of about 30000 times or less, and the distribution of amplification magnification varies. And information on chromosome aneuploidy is preserved. For example, when the amplification factor of the total amount of DNA is 10,000 times, the amplification factor of each individual amplification region is distributed around 10,000 times, and there is little variation.
  • the amplification factor of the total amount of DNA in the secondary amplification step is 150 times or less.
  • the secondary amplification step is usually performed by PCR. From the viewpoint of avoiding loss of chromosome aneuploidy information due to over-amplification, the number of amplification cycles should not be too many, and the amplification of the total amount of DNA The magnification is 150 times or less.
  • the amplification factor of each amplification region amplified by the secondary amplification step is also within the range of about 150 times or less, and the distribution of amplification factors The information on chromosome aneuploidy is maintained. For example, when the amplification factor of the total amount of DNA is 100 times, the amplification factor of each individual amplification region is distributed around 100 times and there is little variation.
  • the amplification factor of the total amount of DNA in the primary amplification step is 6000 times or more, and the total amount of DNA in the secondary amplification step The amplification factor is 3 times or more.
  • the primary amplification step is a step of amplifying the total amount of DNA from 6000 times to 30000 times, more preferably a step of amplifying from 6000 times to 25000 times, and even more preferably from 6000 times to 20000 times.
  • the secondary amplification step is a step of amplifying the total amount of DNA 3 to 150 times, more preferably 3 to 100 times, and even more preferably 3 to 60 times. It is the process of amplifying.
  • the amplification factor of the total amount of DNA in the tertiary amplification step is not particularly limited.
  • the length of the DNA as a template is uniform to some extent, and since the number of primer pairs to be used is usually limited to one, the above-mentioned problems related to DNA amplification are as much as in the primary amplification step and the secondary amplification step. It is thought not to be manifested.
  • the amplification factor of the total amount of DNA in the tertiary amplification step is preferably 6 to 24 times, more preferably 6 to 20 times, and more preferably 6 to More preferably, it is 15 times.
  • the final amplification product amplified in multiple stages by the primary amplification process, the secondary amplification process, and the tertiary amplification process described above, that is, all or part of the tertiary amplification product is applied to the sequence analysis apparatus in the sequence analysis process. It is a substance.
  • the tertiary amplification product is a so-called sequencing library.
  • the ratio of the amount of tertiary amplification products between a plurality of target regions well reproduces the original DNA amount ratio in chromosomal DNA (ie, the aneuploidy of chromosomes). According to this, the presence or absence of chromosome aneuploidy can be accurately detected.
  • the primary amplification step is a step of amplifying chromosomal DNA obtained from a biological sample collected from a pregnant mother to obtain a primary amplification product.
  • the primary amplification step may be a DNA strand synthesis reaction performed by a DNA polymerase.
  • the biological sample collected from the pregnant mother will be described later.
  • the primary amplification is preferably performed by whole genome amplification (WGA).
  • Whole genome amplification for example, can amplify a small amount of chromosomal DNA fragments contained in a biological sample or a small amount of chromosomal DNA obtained from a single cell, facilitating analysis of chromosomal DNA.
  • Whole genome amplification includes, for example, a step of lysing cells using a surfactant and a proteolytic enzyme, and a step of amplifying DNA by DNA polymerase using genomic DNA eluted from the cells as a template.
  • reagents based on PCR include PicoPLEXPLEWGA Kit (New England Biolabs), GenomePlex Single Cell Whole Genome Amplification Kit (Sigma-Aldrich), MALBAC method (Multiple Annealing and Looping disclosed in International Publication No. 2012/166425). -Based (Amplification (Cycles)).
  • reagents based on the strand displacement type DNA synthesis reaction include GenomiPhi DNA Amplification Kit (GE Healthcare, GenomiPhi is a registered trademark) and REPLI-g Single Cell Kit (QIAGEN, REPLI-g is a registered trademark).
  • it is preferable to use PicoPLEX WGA Kit (New England Biolabs).
  • PicoPLEX WGA Kit (New England Biolabs) is a kit that sequentially performs three steps of (i) Sample Preparation, (ii) DNA Pre-Amplification, and (iii) DNA Amplification in one reaction vessel.
  • Step (i) is a step of extracting genomic DNA from one cell, and the cells are lysed using a buffer containing a surfactant and a proteolytic enzyme.
  • Step (ii) is a step of preamplifying DNA using genomic DNA extracted from cells, random primers, and heat-resistant DNA polymerase.
  • Step (iii) is a step of amplifying DNA by performing PCR using a heat-resistant DNA polymerase.
  • steps (i) and (ii) are performed so that the total amount of DNA is amplified 6000 to 30000 times, and step (iii) is performed. It is preferable to omit this, and it is preferable to adjust the number of amplification cycles in step (ii).
  • the primary amplification product is preferably purified.
  • the purification is performed using, for example, QIAquick PCR-Purification Kit (QIAGEN, QIAquick is a registered trademark).
  • the amount of the primary amplification product can be confirmed by measuring the concentration using, for example, NanoDrop (registered trademark, Thermo Fisher Fisher), BioAnalyzer (Agilent), or Quantus Fluorometer (Promega).
  • the secondary amplification step is a step of obtaining a secondary amplification product by performing multiplex amplification of a plurality of target regions using a plurality of primer pairs using the primary amplification product as a template.
  • the secondary amplification product is a mixture of a plurality of types of amplification products.
  • the secondary amplification step is preferably realized by PCR, that is, multiplex PCR (multiplex PCR) is preferable.
  • the primer pairs used in the secondary amplification step are primer pairs designed for the purpose of detecting fetal chromosome aneuploidy, and are a plurality of primer pairs corresponding to a plurality of chromosome positions (target regions).
  • the length of the target region that is, the length of the amplified region is, for example, 100 to 180 base pairs.
  • the base sequence complementary to the target region in the primer is preferably 15 to 25 bases, more preferably 20 bases.
  • the first addition step is a step of adding a first label to both ends of the secondary amplification product to obtain a labeled secondary amplification product.
  • the first label is an oligonucleotide which is a sequence that anneals to the primer used in the tertiary amplification step.
  • the first label added to one end of the secondary amplification product and the first label added to the other end may have the same or different base sequences.
  • the labels added to both ends of the secondary amplification product regardless of the difference in both base sequences are collectively referred to as “first label”.
  • the first label is a sequence that anneals the primers used in the tertiary amplification step, PCR is performed with one primer pair in the tertiary amplification step by making the first label common between the secondary amplification products. It becomes possible to do.
  • the first label is preferably 15 to 20 bases, more preferably 17 bases.
  • Examples of the method of adding the first label to both ends of the secondary amplification product include ligation by DNA ligase and addition by PCR.
  • addition by PCR is preferable.
  • the addition by PCR means that by performing PCR using a primer having the base sequence of the first label at the 5 ′ end, a secondary amplification product having the first label added to both ends is obtained. is there. In this case, the secondary amplification process and the first addition process are performed together.
  • the total length of the primer is preferably 30 to 45 bases, and 35 to 40 bases. More preferred is 37 bases.
  • PCR reagents applied to the secondary amplification step include, for example, Multiplex PCR-Assay Kit (Takara Bio Inc.), Multiplex PCR Asssay Kit Ver2 (Takara Bio Inc.), KAPA Library Amplification Kit (Nippon Genetics ( Co., Ltd.), Platinum® Multiplex® PCR® Master® Mix® Kit (Life Technologies, Platinum is a registered trademark).
  • multiplex PCR it is preferable to examine the reaction conditions because the optimum temperature for annealing may differ for each primer pair.
  • the number of PCR cycles in the secondary amplification step is 10 to 30 in order to avoid losing information on chromosome aneuploidy due to over-amplification.
  • a cycle is preferred. It is preferable to set the number of PCR cycles based on the result of a real-time PCR study. PCR may change reaction temperature and / or reaction time in the middle.
  • the secondary amplification product It is preferable to purify the secondary amplification product. Purification is performed using, for example, QIAquick PCR-Purification Kit (QIAGEN) or AMPure XP Kit (BECMAN COULTER). The amount of the secondary amplification product can be confirmed, for example, by measuring the concentration using NanoDrop (Thermo Fisher Fisher), BioAnalyzer (Agilent), or Quantus Fluorometer (Promega).
  • QIAquick PCR-Purification Kit QIAGEN
  • AMPure XP Kit BECMAN COULTER
  • the amount of the secondary amplification product can be confirmed, for example, by measuring the concentration using NanoDrop (Thermo Fisher Fisher), BioAnalyzer (Agilent), or Quantus Fluorometer (Promega).
  • the tertiary amplification step is a step for obtaining a tertiary amplification product by performing amplification using a labeled secondary amplification product as a template and a primer pair that anneals to the first label.
  • the tertiary amplification step is preferably realized by PCR.
  • the primer used in the tertiary amplification step is a primer that anneals to the first label.
  • the base length of the sequence annealed to the first label in the primer is preferably the same as the base length of the first label, specifically, 15 to 20 bases are preferable, and 17 bases are more preferable.
  • the second addition step is a step of adding a second label to both ends of the tertiary amplification product to obtain a labeled tertiary amplification product.
  • the second label is an oligonucleotide and is added to the tertiary amplification product for the purpose of analyzing the amplification product with a next-generation sequencer.
  • the second label added to one end of the tertiary amplification product and the second label added to the other end may have the same or different base sequences.
  • the labels added to both ends of the tertiary amplification product are collectively referred to as “second labels” regardless of the difference in both base sequences.
  • the second label is an oligonucleotide added to the tertiary amplification product for the purpose of analyzing the amplification product with the next-generation sequencer
  • its base sequence is designed according to the analysis principle of the next-generation sequencer (next) Details of the generation sequencer will be described later).
  • An example of the base length of the second label is 59 to 64 bases.
  • examples of the second label include the following pair of oligonucleotides.
  • One of the following two oligonucleotides is added to one end of the tertiary amplification product and the other is added to the other end of the tertiary amplification product.
  • the index sequence may be present in at least one of the two oligonucleotides to be paired, and is preferably present in both from the viewpoint of improving analysis accuracy.
  • the lead array can be provided with a first label. In that case, the lead array need not be provided separately.
  • the second label is not limited to the above example.
  • Examples of the method for adding the second label to both ends of the tertiary amplification product include ligation by DNA ligase and addition by PCR.
  • addition by PCR is preferable.
  • the addition by PCR means that, by performing PCR using a primer having the base sequence of the second label at the 5 ′ end, a tertiary amplification product having the second label added to both ends is obtained. .
  • the tertiary amplification process and the second addition process are performed together.
  • adding the second label by PCR may be referred to as “indexed PCR”.
  • PCR reagents applied to the tertiary amplification process include Multiplex PCR-Assay Kit (Takara Bio Inc.), Multiplex PCR Asssay Kit Ver2 (Takara Bio Inc.), KAPA Library Amplification Kit (Nippon Genetics Co., Ltd.) ), Platinum Multiplex PCR Master Mix Kit (Life Technologies). In the method of the present disclosure, it is preferable to use Multiplex PCR PCR Assay Kit (Takara Bio Inc.).
  • the number of PCR cycles in the tertiary amplification step is 5 to 18 cycles in order to avoid losing information on chromosome aneuploidy due to over-amplification. Is preferred. It is preferable to set the number of PCR cycles based on the result of a real-time PCR study. PCR may change reaction temperature and / or reaction time in the middle.
  • tertiary amplification product It is preferable to purify the tertiary amplification product. Purification is performed using, for example, QIAquick PCR-Purification Kit (QIAGEN) or AMPure XP Kit (BECMAN COULTER). The amount of the tertiary amplification product is measured using NanoDrop (Thermo Fisher Fisher), BioAnalyzer (Agilent), Quantus Fluorometer (Promega), and KAPA Library Quantification Kits (Nippon Genetics). It can be confirmed.
  • QIAquick PCR-Purification Kit QIAGEN
  • AMPure XP Kit BECMAN COULTER
  • the sequence analysis step is a step of determining the base sequence and the amplification amount of each of a plurality of target regions from the tertiary amplification product.
  • the sequence analysis step is preferably performed by a next-generation sequencer in terms of the accuracy and speed of analysis, the number of samples that can be processed at one time, and the like.
  • next generation sequencer means a sequencer classified as compared with a capillary sequencer (called a first generation sequencer) using the Sanger method.
  • Next generation sequencers include second generation, third generation, fourth generation, and sequencers that will be developed in the future.
  • the most popular next-generation sequencer at present is a sequencer based on the principle of determining a base sequence by capturing fluorescence or light emission linked to complementary strand synthesis by DNA polymerase or complementary strand binding by DNA ligase. Specific examples include MiSeq (Illumina), HiSeq2000 (Illumina, HiSeq is a registered trademark), Roche454 (Roche).
  • the next-generation sequencer is preferably Illumina's MiSeq or HiSeq2000.
  • MiSeq can measure up to 96 PCR products at a time.
  • the 96 kinds of PCR products may be one multiplex PCR product or a mixture of multiple multiplex PCR products.
  • the quantification is performed using, for example, BioAnalyzer (Agilent), Quantus Fluorometer (Promega) or KAPA Library Quantification Kits (Japan Genetics).
  • next-generation sequencer such as MiSeq, Burrows-Wheeler Aligner (BWA)
  • BWA Burrows-Wheeler Aligner
  • SAMtools and BEDtools it is preferable to analyze gene polymorphisms, gene mutations, and chromosome numbers using these analysis means.
  • the presence or absence of chromosome aneuploidy is detected from the base sequence of the target region and the amplification amount obtained in the sequence analysis step.
  • the details of the sequence analysis step and the aneuploidy detection method will be described later by taking as an example the case of using nucleated red blood cells in maternal blood as a sample.
  • the biological sample collected from the pregnant mother may be any tissue that is known to contain fetal cells, such as maternal blood, umbilical cord blood, amniotic fluid, chorionic tissue, and placental tissue.
  • fetal cells such as maternal blood, umbilical cord blood, amniotic fluid, chorionic tissue, and placental tissue.
  • maternal peripheral blood is preferable from the viewpoint of suppressing the invasiveness to the pregnant mother body as much as possible.
  • blood includes blood samples such as blood itself and blood diluted with physiological saline; stored blood obtained by adding an additive such as glucose or an anticoagulant to blood; fractions thereof; It is.
  • Peripheral blood of pregnant mother includes leukocytes such as eosinophils, neutrophils, basophils, mononuclear cells, and lymphocytes from the mother; mature red blood cells from the mother; nucleated red blood cells from the mother Blood cells such as fetal nucleated red blood cells; In the method of the present disclosure, it is preferable to discriminate fetal nucleated red blood cells from these blood cells and obtain chromosomal DNA from fetal nucleated red blood cells. Fetal nucleated red blood cells are said to be present in maternal blood from about 6 weeks after pregnancy. Therefore, the blood in the method of the present disclosure may be a blood sample prepared from peripheral blood collected from a pregnant mother about 6 weeks after pregnancy or from peripheral blood collected from a pregnant mother about 6 weeks after pregnancy. preferable.
  • Fetal nucleated red blood cells are red blood cell precursors that pass through the placenta and are present in the maternal blood. When the mother is pregnant, fetal red blood cells can be nucleated. Since nucleated red blood cells have chromosomes, fetal chromosomes and fetal genes can be obtained by isolating fetal nucleated red blood cells. Fetal nucleated red blood cells are said to be present in a ratio of about 1 in 10 6 cells in maternal blood, and the probability of existence is very low in peripheral blood of the pregnant mother.
  • Fetal nucleated red blood cells can be identified and isolated from other blood cells present in blood collected from the pregnant mother by, for example, density gradient centrifugation and image analysis.
  • Nucleated red blood cells can be separated from plasma components and other blood cells present in the blood by density gradient centrifugation.
  • a known method may be applied to density gradient centrifugation for separating nucleated red blood cells.
  • nucleated red blood cells are fractionated by centrifuging and centrifuging blood diluted with physiological saline on a discontinuous density gradient in which two types of media with different densities (specific gravity) are layered on a centrifuge tube. It can be concentrated.
  • the density of maternal blood cells including fetal nucleated red blood cells.
  • the expected density of fetal nucleated red blood cells is about 1.065 to 1.095 g / mL
  • the density of maternal blood cells is about 1.070 to 1.120 g / mL for red blood cells
  • 1.090 to 1.110 for eosinophils is about 1.065 to 1.95 g / mL
  • the density (specific gravity) of the medium to be stacked is set in order to separate fetal nucleated red blood cells with a density of about 1.065 to 1.095 g / mL from other blood cells. Since the density of the center of fetal nucleated red blood cells is about 1.080 g / mL, fetal nucleated red blood cells are present at the interface by layering two different density media adjacent to this density. It is possible to collect fractions.
  • the density of the lower layer medium is 1.08 g / mL to 1.10 g / mL (more preferably 1.08 g / mL to 1.09 g / mL), and the density of the upper layer medium is 1.06 g / mL to 1.08 g / mL (more Preferably, it is 1.065 g / mL to 1.08 g / mL).
  • the lower layer medium and the upper layer medium may be the same type or different types, and the same type of medium is preferably used.
  • Percoll which is a dispersion of 15 to 30 nm in diameter of silica silicate coated with polyvinylpyrrolidone, Ficoll- which is a neutral hydrophilic polymer rich in side chains made from sucrose.
  • Examples include Paque (registered trademark), Histopaque (registered trademark) containing polysucrose and sodium ditrizoate.
  • Percoll and / or Histopaque Percoll is commercially available with a density of 1.130, and it is possible to prepare a density gradient by diluting with water. Histopaque can prepare density gradients using commercially available media of density 1.077 and media of density 1.119 and water.
  • the two-layer discontinuous density gradient is formed in the centrifuge tube as follows, for example.
  • the lower layer medium in a temperature state not lower than the freezing point and not higher than 14 ° C. preferably not higher than 8 ° C.
  • the lower layer medium is accommodated in the bottom of the centrifuge tube and then not higher than 14 ° C. ( It is preferably stored and cooled at a temperature of 8 ° C. or lower.
  • the upper layer medium is overlaid on the lower layer medium.
  • the blood cell image analysis is performed by acquiring and analyzing blood cell morphology information on a substrate (preferably a transparent substrate) for the purpose of selecting fetal nucleated red blood cell candidates.
  • a fraction containing nucleated red blood cells obtained by density gradient centrifugation is applied onto a transparent substrate (preferably a slide glass) and dried to prepare a sample for image analysis. From this specimen, blood cell morphology information is obtained and analyzed, and fetal nucleated red blood cell candidates are selected.
  • the specimen for image analysis is preferably stained with blood cells in order to facilitate observation of blood cells.
  • the method for staining blood cells is not particularly limited, and may be performed by a known method. Examples of the blood cell staining method include Giemsa staining and May Grünwald Giemsa staining.
  • Blood cell morphology information is acquired from specimens and analyzed by a system equipped with an optical microscope, digital camera, slide glass stage, optical transport system, image processing personal computer (PC), control PC, and display. It is preferred that The optical transport system includes, for example, an objective lens and a CCD camera.
  • the image processing PC includes, for example, a processing system that performs data analysis and data storage.
  • the control PC includes, for example, a control system for controlling the position of the slide glass stage and the entire process.
  • Fetus-derived nucleated red blood cell candidates can be identified by the ratio of the nucleus area to the cytoplasm area, the circularity of the nucleus, the area of the nucleus, and the like. In terms of certainty, a cell satisfying at least one of the ratio of the nuclear area to the cytoplasmic area and the circularity of the nucleus (preferably both conditions) is identified as a fetus-derived nucleated red blood cell candidate. Is preferred.
  • the nuclei may be ranked in the order close to a perfect circle or an ellipse, and may be used in the subsequent steps with priority from the highest ranking.
  • the origin of nucleated red blood cells is determined and fetal-derived cells are not included in the plurality of higher ranks, the plurality of cells having the next highest rank may be analyzed. .
  • the cells identified as nucleated red blood cells are collected one by one from the transparent substrate, for example, with a micromanipulator equipped with a glass instrument. Chromosomal DNA is extracted from the collected cells and becomes a template for the primary amplification step.
  • Nucleated erythrocytes in blood collected from the mother's body contain both nucleated erythrocytes from the mother and nucleated red blood cells from the fetus, and it is necessary to identify the nucleated red blood cells from the fetus.
  • a method for identifying an individual based on a gene sequence there is a method of examining an allele and detecting a gene polymorphism present therein. For example, a method of detecting STR (short tandem repeat), which is a kind of gene polymorphism, is applied to discriminate between father and son, and SNP (Single Nucleotide Polymorphism) is used to identify individuals.
  • STR short tandem repeat
  • SNP Single Nucleotide Polymorphism
  • a method to detect is applied.
  • fetal-derived cells and maternal-derived cells are discriminated by differences in STR and / or SNP on alleles.
  • it is preferable to increase the certainty of identification of fetus-derived cells by obtaining leukocytes (the leukocytes are almost certain to be mother-derived) and analyzing STR and / or SNP in the same manner.
  • Y chromosome detection in boys When the fetus is confirmed to be a boy by ultrasonography of the mother's body, it can be identified as a nucleated red blood cell derived from the fetus by confirming that the Y chromosome is present in the isolated nucleated red blood cell. .
  • a FISH (Fluorescence in situ hybridization) method using a fluorescent probe specific to the Y chromosome is known.
  • An example of the FISH method test kit is CEP X / Y DNA Probe Kit (Abbott, CEP is a registered trademark).
  • a primer pair having a base sequence specific to the Y chromosome is prepared, and PCR is used to confirm the presence or absence of the amplification, thereby identifying a nucleated red blood cell derived from a male fetus. Is preferred.
  • chromosome aneuploidy For chromosomes obtained from cells identified as fetal nucleated red blood cells, the amount of amplified product is analyzed, for example, by a next-generation sequencer. As a standard (or reference), the amount of amplification product is analyzed with a next-generation sequencer, for example, for chromosomes obtained from cells identified as maternally derived nucleated red blood cells. If the fetus has no chromosomal aneuploidy, the amount of amplified product from the mother and the amount of amplified product from the fetus are expected to be approximately 1: 1.
  • the amount of the amplification product derived from the mother and the amount of the amplification product derived from the fetus is expected to be approximately 1: 1.5 (or 2: 3). Is done.
  • a cutoff value may be determined in advance by the following method, and this cutoff value may be used for interpretation of the analysis result. Analyzing the ratio of the amount of amplification product derived from the fetus to the amount of amplification product derived from the mother by using the method of the present disclosure from biological samples collected from multiple maternals who have become pregnant with a fetus without chromosome aneuploidy And find its distribution.
  • the ratio of the amount of the amplified product derived from the fetus to the amount of the amplified product derived from the mother is analyzed by the method of the present disclosure from biological samples collected from a plurality of mothers who are known to have become pregnant with a trisomy fetus. Ask for. A region where these two distributions do not overlap is defined as a cutoff value. Compare this cut-off value with the ratio of the amount of amplified product from the fetus to the amount of amplified product from the mother in the test. If the ratio is less than or equal to the cut-off value, the fetus is not trisomy and the ratio is cut If it is greater than or equal to the off value, it can be interpreted that the fetus is trisomy.
  • Example 1 [Collecting peripheral blood] As an anticoagulant, 7 mL of peripheral blood was collected from one pregnant volunteer in a 7 mL blood collection tube containing 10.5 mg of sodium salt of EDTA (ethylenediaminetetraacetic acid). Thereafter, the blood was diluted with physiological saline. Blood collection from pregnant volunteers was performed after obtaining informed consent.
  • EDTA ethylenediaminetetraacetic acid
  • the slide glass 1 was held with one hand, and one drop of the collected fraction was spotted on one end thereof. Hold another glass slide 2 with the other hand, one end is brought into contact with the glass slide 1 at an angle of 30 degrees, the lower surface of the glass slide 2 is touched to the fraction, and is surrounded by two glass slides by capillary action. Expanded the fraction in the space created. Next, the glass slide 2 was slid in the direction of the area opposite to the area where the fraction of the glass slide 1 was placed while keeping the above angle, and the fraction was uniformly applied onto the glass slide 1. After the application, it was sufficiently dried by blowing air over 1 hour.
  • An optical microscope including an electric XY stage, an objective lens and a CCD camera, a control unit including an XY stage control unit and a Z direction control unit, an analysis unit including an image input unit, an image processing unit, and an XY position recording unit And an image analysis system including The specimen slide was placed on an XY stage, focused and scanned on the specimen slide, an image was taken from the optical microscope into the analysis unit, and nucleated red blood cells were searched.
  • Cells satisfying the following formulas (a) and (b) were detected by image analysis, identified as nucleated red blood cell candidates, and XY positions were recorded.
  • C is the area of the cytoplasm
  • N is the area of the nucleus
  • L is the length of the major axis of the nucleus, or the major axis of the ellipse circumscribing the complex-shaped nucleus.
  • a glass needle and a glass tube were operated with a micromanipulator, and using these glass instruments, 11 identified nucleated red blood cell candidates were collected one by one from the specimen slide.
  • Pre-Amp Cocktail (4.8 ⁇ L of Pre-Amp Reaction Mix and 0.2 ⁇ L of Pre-Amp Enzyme) was prepared, and 5 ⁇ L was added to the reaction solution after cell lysis to make a total of 15 ⁇ L.
  • a reaction corresponding to step (ii) of the PicoPLEX WGA Kit was performed. That is, after denaturing DNA at 95 ° C / 2 minutes, 95 ° C / 15 seconds, 15 ° C / 50 seconds, 25 ° C / 40 seconds, 35 ° C / 30 seconds, 65 ° C / 40 seconds, and 75 ° C / 40 seconds. 30 cycles were performed.
  • the obtained amplification product was purified by removing impurities such as primers and buffer components using QIAquick® PCR® Purification® Kit (QIAGEN).
  • concentration of the amplified product after purification was measured using a Quantus® Fluorometer® dsDNA® System (Promega), and the amount of amplified product in each cell was 45 ng to 90 ng (corresponding to 9000 times to 18000 times the amount of chromosomal DNA of one human cell). ).
  • Each primer is an oligonucleotide with a total of 37 bases consisting of a base sequence of 17 bases of the first label and a base sequence of 20 bases complementary to the target region, and the base sequence of the first label is at the 5 ′ end. positioned.
  • the base sequence of the first label on the forward primer was CGCTCTTCCGATCTCTG (SEQ ID NO: 1)
  • the base sequence of the first label on the reverse primer was CGCTCTTCCGATCTGAC (SEQ ID NO: 2).
  • All primers were mixed at a final concentration of 25 nmol / L to prepare a primer mix solution.
  • 10 ng from the primary amplification product (whole genome amplification product) was used in the secondary amplification step.
  • Multiplex PCR was performed using Multiplex PCR-Assay Kit (Takara Bio Inc.). 10 ng of the primary amplification product obtained from each cell as a template, 8 ⁇ L of primer mix solution, 0.125 ⁇ L of Multiplex PCR Mix1, 12.5 ⁇ L of Multiplex PCR Mix2, and water were mixed to prepare a reaction solution (final solution volume 25 ⁇ L) ).
  • the PCR reaction was denatured at 94 ° C./60 seconds, followed by 15 cycles of 94 ° C./30 seconds, 60 ° C./90 seconds, and 72 ° C./30 seconds. The number of PCR cycles was set in advance based on the results of real-time PCR.
  • the obtained amplification product was purified by removing impurities such as primers and buffer components using QIAquick® PCR® Purification® Kit (QIAGEN).
  • concentration of the amplified product after purification was measured using Quantus® Fluorometer® dsDNA® System (Promega). It was confirmed that the amount of amplified product of each cell was in the range of 300 ng to 600 ng (corresponding to 30 to 60 times the amount of template).
  • oligonucleotides were designed as primer pairs used for tertiary amplification.
  • An oligonucleotide having a flow cell binding sequence (P5 sequence provided by Illumina), an index sequence for sample identification, and a sequence that anneals to the first label in order from the 5 ′ end.
  • D501 provided by Illumina was used.
  • An oligonucleotide having a flow cell binding sequence (P7 sequence provided by Illumina), an index sequence for sample identification, and a sequence that anneals to the first label in order from the 5 ′ end.
  • any one of D701 to D711 provided by Illumina was used for every 11 cells.
  • PCR was performed using Multiplex PCR PCR Assay kit (Takara Bio Inc.). The reaction mixture was prepared by mixing 5 ng using the secondary amplification product as a template, 1 ⁇ L each of the primers (1.25 ⁇ mol / L), 0.125 ⁇ L of Multiplex PCR Mix1, 12.5 ⁇ L of Multiplex PCR Mix2, and water (final solution) Volume 25 ⁇ L).
  • the PCR reaction was denatured at 94 ° C./3 minutes, followed by 5 cycles of 94 ° C./45 seconds, 50 ° C./60 seconds, and 72 ° C./30 seconds, and then 94 ° C./45 seconds, 55 ° C./60 seconds. And 72 ° C./30 seconds for 11 cycles.
  • the number of PCR cycles was set in advance based on the results of real-time PCR.
  • the obtained amplification product was purified using AMPure XP XP Kit (BECMAN COULTER).
  • the concentration of the amplified product after purification was measured using BioAnalyzer (Agilent).
  • BioAnalyzer Agilent
  • KAPA® Library® Quantification® Kits KAPA® Library® Quantification® Kits (Nippon Genetics Co., Ltd.) was used. It was confirmed that the amount of amplification product of each cell was in the range of 50 ng to 75 ng (corresponding to 10 to 15 times the amount of template).
  • the amount of amplification product of 4 regions of chromosome 21 of nucleated erythrocytes identified as fetal origin was determined using MiSeq.
  • the amount of amplification products of 4 regions of chromosome 21 of 10 nucleated cells identified as mother-derived was determined using MiSeq.
  • the quantitative ratios of the amounts of amplified products in the four regions were calculated between the fetal cell and the maternal cell, the values were close to 1: 1 in all cases, and the fetus was aneuploid on chromosome 21. It was estimated not to have. Similarly, it was estimated that the fetus has no aneuploidy for chromosomes 13, 18, 18 and X.
  • ⁇ Comparative Example 1> One cell collected from the specimen slide was used as a material. Except that PicoPLEX WGA Kit steps (i) to (iii) were performed in the primary amplification step to obtain an amplification product of 500,000 times the amount of chromosomal DNA of one human cell. Attempts were made to detect the presence or absence of chromosome aneuploidy. However, there was a large variation between the amounts of amplified products in the 16 regions, which was far from the level at which the presence or absence of aneuploidy could be detected.
  • ⁇ Comparative example 2> One cell collected from the specimen slide was used as a material. Detection of the presence or absence of chromosome aneuploidy was attempted in the same manner as in Example 1 except that PCR was performed 30 cycles in the secondary amplification step to obtain an amplification product 500 times the amount of the template. However, there was a large variation between the amounts of amplified products in the 16 regions, which was far from the level at which the presence or absence of aneuploidy could be detected.

Abstract

 妊娠母体より採取された生体試料から得た染色体DNAを増幅して一次増幅産物を得る一次増幅工程と、一次増幅産物を鋳型として複数の目的領域の多重増幅を行い二次増幅産物を得る二次増幅工程と、二次増幅産物の両末端に標識を付加し標識された二次増幅産物を得る工程と、標識された二次増幅産物を鋳型として標識にアニールするプライマー対を用いて増幅を行い三次増幅産物を得る三次増幅工程と、三次増幅産物から複数の目的領域の塩基配列と増幅量とを決定する工程と、を含み、一次増幅工程がDNAの総量を6000倍~30000倍に増幅し、二次増幅工程がDNAの総量を3倍~150倍に増幅する、胎児染色体の異数性の有無を検出する方法。

Description

胎児染色体の異数性の有無を検出する方法
 本発明は、胎児染色体の異数性の有無を検出する方法に関する。
 出生前遺伝学的検査として、従来、羊水穿刺により採取した羊水から胎児由来細胞を単離し、胎児由来細胞中の染色体を調べる羊水染色体検査が行われてきた。しかし、羊水穿刺には流産を引き起こす危険性がある。
 一方、妊娠母体の血液中に存在する胎児由来の無細胞DNA、又は、妊娠母体の血液中に存在する胎児由来細胞の染色体DNAを解析して、胎児染色体の異常を検出する検査が、非侵襲な出生前遺伝学的検査として知られている。
 非侵襲な出生前遺伝学的検査の中でも、胎児由来の無細胞DNAを解析する検査は、既に実用化されている。一方、胎児由来細胞の染色体DNAを解析する検査は、いまだ実用に至っていない。その理由として、胎児由来細胞(例えば、胎児由来の有核赤血球)が母体血数ml中に1個程度しか存在しない希少細胞であることが挙げられる。しかし、胎児由来細胞の染色体DNAを解析できれば、より検査精度に優れた非侵襲な出生前遺伝学的検査が期待できる。
 ただし、胎児由来細胞の染色体DNAを解析するためには、解析に十分な量のDNAを得る目的で、微量の染色体DNAからDNAを増幅する必要がある。その際、染色体の異数性(例えばトリソミー、モノソミー)を検出するためには、異数性を忠実に再現しながらDNAを増幅することが求められる。
 ところで、ヒト末梢血からDNAを採取し、多段階のDNA増幅を行って得た増幅産物から配列情報を得て、疾患の診断や親子鑑定をする方法が、例えば、特許第4404553号公報、特表2014-502845号公報、特表2004-511215号公報、及び特開平6-327476号公報に開示されている。また、多重増幅反応を行って、複数の核酸量の初期比率を定量する方法が、特表2006-505268号公報に開示されている。
 特許第4404553号公報、特表2014-502845号公報、特表2004-511215号公報、特開平6-327476号公報、及び特表2006-505268号公報に開示されているように、試料中にわずかに存在するDNAを増幅し、配列情報やDNA量比を解析する技術が知られている。しかし、上記文献に開示された技術は、染色体の異数性の検出力を向上させる観点でなされた技術ではない。また、上記文献のいずれにも、DNAを増幅させるポリメラーゼ連鎖反応のサイクル数に関する記載はあっても、増幅前後のDNA量の倍率に関する記載はない。
 本発明の一実施形態は、上記状況のもとになされた。
 本発明の一実施形態は、検出力に優れる、胎児染色体の異数性の有無を検出する方法を提供することを目的とする。
 前記課題を解決するための具体的手段には、以下の態様が含まれる。
[1] 妊娠母体より採取された生体試料から得た染色体DNAを増幅して一次増幅産物を得る一次増幅工程と、一次増幅産物を鋳型として、複数のプライマー対を用いて複数の目的領域の多重増幅を行い、二次増幅産物を得る二次増幅工程と、二次増幅産物の両末端に、オリゴヌクレオチドである第一の標識を付加し、標識された二次増幅産物を得る第一付加工程と、標識された二次増幅産物を鋳型として、第一の標識にアニールするプライマー対を用いて増幅を行い、三次増幅産物を得る三次増幅工程と、三次増幅産物から複数の目的領域の塩基配列と増幅量とを決定する配列解析工程と、を含み、一次増幅工程が、DNAの総量を6000倍以上30000倍以下に増幅する工程であり、二次増幅工程が、DNAの総量を3倍以上150倍以下に増幅する工程である、胎児染色体の異数性の有無を検出する方法。
[2] 三次増幅工程が、DNAの総量を6倍以上24倍以下に増幅する工程である、[1]に記載の、胎児染色体の異数性の有無を検出する方法。
[3] 配列解析工程が、次世代シークエンサーを用いて行われる、[1]又は[2]に記載の、胎児染色体の異数性の有無を検出する方法。
[4] 三次増幅産物の両末端に、オリゴヌクレオチドである第二の標識を付加し、標識された三次増幅産物を得る第二付加工程を、さらに含む、[1]~[3]のいずれか1項に記載の、胎児染色体の異数性の有無を検出する方法。
[5] 三次増幅工程で用いるプライマーが、第二の標識の塩基配列を5’末端に有し、三次増幅工程を行うことにより、三次増幅産物の両末端に第二の標識が付加されて、標識された三次増幅産物が得られ、こうして三次増幅工程と第二付加工程とが共に行われる、[4]に記載の、胎児染色体の異数性の有無を検出する方法。
[6] 二次増幅工程で用いるプライマーが、第一の標識の塩基配列を5’末端に有し、二次増幅工程を行うことにより、二次増幅産物の両末端に第一の標識が付加されて、標識された二次増幅産物が得られ、こうして二次増幅工程と第一付加工程とが共に行われる、[1]~[5]のいずれか1項に記載の、胎児染色体の異数性の有無を検出する方法。
[7] 一次増幅工程が、染色体DNAから全ゲノム増幅を行う工程である、[1]~[6]のいずれか1項に記載の、胎児染色体の異数性の有無を検出する方法。
[8] 染色体DNAが、1細胞から得た染色体DNAであり、一次増幅工程が、1細胞から全ゲノム増幅を行う工程である、[1]~[7]のいずれか1項に記載の、胎児染色体の異数性の有無を検出する方法。
[9] 生体試料が、血液であり、染色体DNAが、血液中の細胞から得た染色体DNAである、[1]~[8]のいずれか1項に記載の、胎児染色体の異数性の有無を検出する方法。
[10] 血液中の細胞が有核赤血球である、[9]に記載の、胎児染色体の異数性の有無を検出する方法。
[11] 血液中の細胞が、密度勾配遠心分離と画像解析とにより単離された細胞である、[9]又は[10]に記載の、胎児染色体の異数性の有無を検出する方法。
 本発明の一実施形態によれば、検出力に優れる、胎児染色体の異数性の有無を検出する方法が提供される。
 本明細書において「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。
 本明細書において組成物中の各成分の量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計量を意味する。
 以下に、本発明の実施の形態について説明する。これらの説明及び実施例は本発明を例示するものであり、本発明の範囲を制限するものではない。
 本開示の方法は、妊娠母体より採取された生体試料から染色体DNAを得て、染色体DNA上の複数の領域を増幅し、胎児染色体の異数性の有無を検出する方法である。本開示の方法は、一次増幅工程、二次増幅工程、及び三次増幅工程により、DNAを多段階に増幅し、増幅産物の塩基配列と量とを決定して、胎児染色体の異数性の有無を検出する。本開示の方法は、例えば、13番染色体、18番染色体、及び21番染色体のトリソミー;性染色体の過剰;等を検出する出生前遺伝学的検査に適用される。
 本開示の方法において、一次増幅工程、二次増幅工程、及び三次増幅工程は、DNAポリメラーゼを用いてDNAを増幅する。一次増幅工程は、DNAの総量を6000倍~30000倍に増幅する工程であり、二次増幅工程は、DNAの総量を3倍~150倍に増幅する工程である。
 本開示の方法は、一次増幅工程及び二次増幅工程における、DNA総量の増幅倍率(増幅後のDNA総量÷増幅前のDNA総量)を上記の範囲とすることにより、胎児染色体の異数性の有無の検出力に優れる。その理由は、特定のメカニズムに拘束されるものではないが、以下に説明するメカニズムによるものと推測される。
 DNAポリメラーゼによるDNA増幅は、増幅領域の塩基配列、増幅領域の長さ、プライマー配列の特異性、反応温度、反応時間などによって、増幅領域ごとに増幅され易さ(増幅効率)が相違し、増幅サイクルを重ねるたびに増幅効率の差が蓄積し、結果、増幅領域間の増幅産物量比がもとのDNA量比を再現しない場合がある。
 また、DNA増幅方法の一つであるポリメラーゼ連鎖反応(polymerase chain reaction;PCR)は、理論的にはサイクル数を重ねることでDNAを指数関数的に増幅させる反応であるが、実際にはサイクル数を重ねるとDNA濃度(つまり増幅産物量)はプラトーに達する。そのため、サイクル数が過剰であると、もとのDNA量に差があっても増幅産物量はほぼ同じになってしまい、もとのDNA量比の情報が失われてしまう。
 これに対して、本開示の方法においては、一次増幅工程におけるDNA総量の増幅倍率を30000倍以下にする。増幅倍率が30000倍超であると、この増幅倍率を実現するために相応の増幅サイクル数が必要になり、増幅サイクルを重ねるたびに増幅効率の差が蓄積し、結果、増幅領域間の増幅産物量比が、染色体におけるもとのDNA量比からかけ離れてしまう。それ故、本開示の方法において、一次増幅工程におけるDNA総量の増幅倍率は30000倍以下である。一次増幅工程におけるDNA総量の増幅倍率が30000倍以下であると、一次増幅工程によって増幅される個々の増幅領域それぞれの増幅倍率もおよそ30000倍以下の範囲に収まり、そして、増幅倍率の分布にばらつきが少なく、染色体の異数性の情報が保たれる。例えば、DNA総量の増幅倍率が10000倍の場合、個々の増幅領域それぞれの増幅倍率は10000倍付近に分布しておりばらつきが少ない。
 上記メカニズムと同じことが二次増幅工程におけるDNA総量の増幅倍率についても言える。それ故、本開示の方法において、二次増幅工程におけるDNA総量の増幅倍率は150倍以下である。また、二次増幅工程は通常PCRで行われるところ、染色体の異数性の情報が過増幅により失われてしまうことを避ける観点でも、増幅サイクル数は多過ぎないことがよく、DNA総量の増幅倍率は150倍以下である。二次増幅工程におけるDNA総量の増幅倍率が150倍以下であると、二次増幅工程によって増幅される個々の増幅領域それぞれの増幅倍率もおよそ150倍以下の範囲に収まり、そして、増幅倍率の分布にばらつきが少なく、染色体の異数性の情報が保たれる。例えば、DNA総量の増幅倍率が100倍の場合、個々の増幅領域それぞれの増幅倍率は100倍付近に分布しておりばらつきが少ない。
 一方で、生体試料中の微量な染色体DNAから解析に十分な量のDNAを得る必要があるので、一次増幅工程におけるDNA総量の増幅倍率は6000倍以上であり、二次増幅工程におけるDNA総量の増幅倍率は3倍以上である。
 上記の理由により、一次増幅工程は、DNAの総量を6000倍~30000倍に増幅する工程であり、より好ましくは6000倍~25000倍に増幅する工程であり、更に好ましくは6000倍~20000倍に増幅する工程である。
 上記の理由により、二次増幅工程は、DNAの総量を3倍~150倍に増幅する工程であり、より好ましくは3倍~100倍に増幅する工程であり、更に好ましくは3倍~60倍に増幅する工程である。
 本開示の方法において、三次増幅工程におけるDNA総量の増幅倍率は、特に制限されるものではない。三次増幅工程は、鋳型となるDNAの長さがある程度揃っており、また、使用するプライマー対が通常は1種に限られるので、一次増幅工程および二次増幅工程ほどはDNA増幅に関する前記問題が顕現化しないと考えられる。ただし、二次増幅工程と同じ理由及びメカニズムにより、三次増幅工程におけるDNA総量の増幅倍率は、6倍~24倍であることが好ましく、6倍~20倍であることがより好ましく、6倍~15倍であることが更に好ましい。三次増幅工程におけるDNA総量の増幅倍率が上記の範囲であると、胎児染色体の異数性の有無の検出力により優れる。
 以上に説明した一次増幅工程、二次増幅工程、及び三次増幅工程によって多段階に増幅された最終の増幅産物、つまり三次増幅産物の全部又は一部が、配列解析工程で配列解析用装置にかけられる物質である。三次増幅産物は、いわばシークエンス用ライブラリーである。本開示の方法においては、複数の目的領域間の三次増幅産物量比が染色体DNAにおけるもとのDNA量比(即ち、染色体の異数性)をよく再現しており、したがって、本開示の方法によれば、染色体の異数性の有無を精度よく検出できる。
 以下、各工程について詳細に説明する。
[一次増幅工程]
 一次増幅工程は、妊娠母体より採取された生体試料から得た染色体DNAを増幅して、一次増幅産物を得る工程である。一次増幅工程は、DNAポリメラーゼが行う、DNA鎖の合成反応であってよい。妊娠母体より採取された生体試料については、後述する。
 一次増幅は、全ゲノム増幅(whole genome amplification;WGA)にて行うことが好ましい。全ゲノム増幅は、例えば、生体試料に含まれる微量な染色体DNA断片や、単一細胞から得た微量な染色体DNAを増幅することが可能であり、染色体DNAの解析を容易にする。
 全ゲノム増幅の方法は、特に制限されず、公知の方法で行ってよい。全ゲノム増幅は、例えば、界面活性剤とタンパク質分解酵素を用いて細胞を溶解させる工程と、細胞から溶出したゲノムDNAを鋳型にしてDNAポリメラーゼによってDNAを増幅する工程と、を含む。
 全ゲノム増幅は、市販の試薬を適用して行ってよい。PCRに基く試薬としては、例えば、PicoPLEX WGA Kit(New England Biolabs社)、GenomePlex Single Cell Whole Genome Amplification Kit(Sigma-Aldrich社)、国際公開第2012/166425号に開示のMALBAC法(Multiple Annealing and Looping-Based Amplification Cycles)に係る試薬が挙げられる。鎖置換型DNA合成反応に基く試薬としては、例えば、GenomiPhi DNA Amplification Kit(GEヘルスケア社、GenomiPhiは登録商標)、REPLI-g Single Cell Kit(QIAGEN社、REPLI-gは登録商標)が挙げられる。本開示の方法においては、PicoPLEX WGA Kit(New England Biolabs社)を用いることが好ましい。
 PicoPLEX WGA Kit(New England Biolabs社)は、(i)Sample Preparation、(ii)DNA Pre-Amplification、(iii)DNA Amplification、の3工程を1つの反応容器中で順次行うキットである。
 工程(i)は、ゲノムDNAを1細胞から抽出する工程であり、界面活性剤及びタンパク質分解酵素を含有するバッファーを用いて細胞を溶解する。
 工程(ii)は、細胞から抽出されたゲノムDNA、ランダムプライマー、及び耐熱性DNAポリメラーゼを用いて、DNAをプレ増幅する工程である。
 工程(iii)は、耐熱性DNAポリメラーゼを用いてPCRを行い、DNAを増幅する工程である。
 一次増幅工程にPicoPLEX WGA Kit(New England Biolabs社)を適用する場合、DNA総量が6000倍~30000倍に増幅されるように、工程(i)及び工程(ii)を行い、工程(iii)を省略することが好ましく、さらに、工程(ii)の増幅サイクル数を調節することが好ましい。
 一次増幅工程の終了後には、アガロースゲル電気泳動を行って、一次増幅産物の有無を確認することが好ましい。一次増幅産物は、精製することが好ましい。精製は、例えば、QIAquick PCR Purification Kit(QIAGEN社、QIAquickは登録商標)を用いて行う。一次増幅産物の量は、例えば、NanoDrop(登録商標、Thermo Fisher Scientific社)、BioAnalyzer(Agilent社)、Quantus Fluorometer(Promega社)を用いて濃度を測定することで確認し得る。
[二次増幅工程、第一付加工程]
 二次増幅工程は、一次増幅産物を鋳型として、複数のプライマー対を用いて、複数の目的領域の多重増幅を行い、二次増幅産物を得る工程である。二次増幅産物は、複数種類の増幅産物の混合物である。二次増幅工程は、PCRにより実現されることが好ましく、即ち多重PCR(マルチプレックスPCR)が好ましい。
 二次増幅工程に用いるプライマー対は、胎児染色体の異数性を検出する目的で設計されるプライマー対であり、複数箇所の染色体位置(目的領域)に対応する複数のプライマー対である。目的領域の長さ、即ち増幅される領域の長さは、例えば100~180塩基対である。プライマーにおける目的領域に相補的な塩基配列は、15~25塩基が好ましく、20塩基がより好ましい。
 第一付加工程は、二次増幅産物の両末端に第一の標識を付加し、標識された二次増幅産物を得る工程である。第一の標識は、オリゴヌクレオチドであり、三次増幅工程に使用するプライマーがアニールする配列である。二次増幅産物の一方の末端に付加される第一の標識と、もう一方の末端に付加される第一の標識とは、塩基配列が同じでもよく異なっていてもよい。本開示においては、両者の塩基配列の異同にかかわらず、二次増幅産物の両末端に付加される標識は「第一の標識」と総称される。
 第一の標識は、三次増幅工程に使用するプライマーがアニールする配列であるので、第一の標識を二次増幅産物間で共通にすることにより、三次増幅工程において1種のプライマー対でPCRを行うことが可能になる。第一の標識は、15~20塩基が好ましく、17塩基がより好ましい。
 第一の標識を二次増幅産物の両末端に付加する方法としては、例えば、DNAリガーゼによるライゲーション、PCRによる付加が挙げられ、本開示の方法においては、PCRによる付加が好ましい。PCRによる付加とは、つまり、第一の標識の塩基配列を5’末端に有するプライマーを用いてPCRを行うことによって、両末端に第一の標識が付加された二次増幅産物を得ることである。この場合、二次増幅工程と第一付加工程とが共に行われることになる。
 二次増幅工程に用いるプライマーが、第一の標識の塩基配列と、目的領域に相補的な塩基配列とを有する場合、プライマー全体の長さは、30~45塩基が好ましく、35~40塩基がより好ましく、37塩基が更に好ましい。
 二次増幅工程のマルチプレックスPCRには、一般的なPCRに用いられる耐熱性DNAポリメラーゼ及び反応バッファーを用いることが可能である。二次増幅工程に適用するPCR試薬としては、例えば、Multiplex PCR Assay Kit(タカラバイオ(株)社)、Multiplex PCR Assay Kit ver2(タカラバイオ(株)社)、KAPA Library Amplification Kit(日本ジェネティクス(株)社)、Platinum Multiplex PCR Master Mix Kit(ライフテクノロジーズ社、Platinumは登録商標)が挙げられる。本開示の方法においては、Multiplex PCR Assay Kit(タカラバイオ(株)社)を用いることが好ましい。マルチプレックスPCRは、プライマー対ごとにアニーリングの至適温度が異なることがあるため、反応条件の検討をすることが好ましい。
 染色体の異数性の有無を検出する本開示の方法においては、染色体の異数性の情報が過増幅により失われてしまうことを避けるため、二次増幅工程のPCRのサイクル数は10~30サイクルが好ましい。PCRのサイクル数は、リアルタイムPCRによる検討を予め行って、その結果に基き設定することが好ましい。PCRは、その途中で、反応温度及び/又は反応時間を変更してもよい。
 二次増幅産物は、精製することが好ましい。精製は、例えば、QIAquick PCR Purification Kit(QIAGEN社)、AMPure XP Kit(BECMAN COULTER社)を用いて行う。二次増幅産物の量は、例えば、NanoDrop(Thermo Fisher Scientific社)、BioAnalyzer(Agilent社)、Quantus Fluorometer(Promega社)を用いて濃度を測定することで確認し得る。
[三次増幅、第二付加工程]
 三次増幅工程は、標識された二次増幅産物を鋳型として、第一の標識にアニールするプライマー対を用いて増幅を行い、三次増幅産物を得る工程である。三次増幅工程は、PCRにより実現されることが好ましい。
 三次増幅工程に用いるプライマーは、第一の標識にアニールするプライマーである。プライマーにおける、第一の標識にアニールする配列の塩基長は、第一の標識の塩基長と同じであることが好ましく、具体的には、15~20塩基が好ましく、17塩基がより好ましい。
 第二付加工程は、三次増幅産物の両末端に第二の標識を付加し、標識された三次増幅産物を得る工程である。第二の標識は、オリゴヌクレオチドであり、増幅産物の解析を次世代シークエンサーで行うことを目的に三次増幅産物に付加される。三次増幅産物の一方の末端に付加される第二の標識と、もう一方の末端に付加される第二の標識とは、塩基配列が同じでもよく異なっていてもよい。本開示においては、両者の塩基配列の異同にかかわらず、三次増幅産物の両末端に付加される標識は「第二の標識」と総称される。
 第二の標識は、増幅産物の解析を次世代シークエンサーで行うことを目的に三次増幅産物に付加されるオリゴヌクレオチドであるので、その塩基配列は、次世代シークエンサーの解析原理に従って設計される(次世代シークエンサーの詳細は後述する)。第二の標識の塩基長は、一例として59~64塩基が挙げられる。
 次世代シークエンサーとしてIllumina社のMiSeq又はHiSeq2000を使用する場合、第二の標識としては、例えば下記の一対のオリゴヌクレオチドが挙げられる。下記の2つのオリゴヌクレオチドの一方が、三次増幅産物の一方の末端に付加され、もう一方が、三次増幅産物のもう一方の末端に付加される。
・フローセル上に固定されたオリゴヌクレオチドにハイブリダイズするP5配列と、6~8塩基からなるサンプル識別配列(インデックス配列)と、シークエンスプライマーがアニールする配列(リード配列)と、を有するオリゴヌクレオチド。
・フローセル上に固定されたオリゴヌクレオチドにハイブリダイズするP7配列と、6~8塩基からなるサンプル識別配列(インデックス配列)と、シークエンスプライマーがアニールする配列(リード配列)と、を有するオリゴヌクレオチド。
 インデックス配列は、対となる2つのオリゴヌクレオチドの少なくとも一方にあればよく、解析精度を上げる観点で両方にあることが好ましい。リード配列には、第一の標識をあてることができ、その場合はリード配列を別途設けなくてよい。
 上記の例は一例であって、本開示の方法において、第二の標識が上記の例に限定されるものではない。
 第二の標識を三次増幅産物の両末端に付加する方法としては、例えば、DNAリガーゼによるライゲーション、PCRによる付加が挙げられ、本開示の方法においては、PCRによる付加が好ましい。PCRによる付加とは、つまり、第二の標識の塩基配列を5’末端に有するプライマーを用いてPCRを行うことによって、両末端に第二の標識が付加された三次増幅産物を得ることである。この場合、三次増幅工程と第二付加工程とが共に行われることになる。
 以下、第二の標識をPCRによって付加することを、「インデックス付加PCR」ということがある。
 三次増幅工程に適用するPCR試薬としては、Multiplex PCR Assay Kit(タカラバイオ(株)社)、Multiplex PCR Assay Kit ver2(タカラバイオ(株)社)、KAPA Library Amplification Kit(日本ジェネティクス(株)社)、Platinum Multiplex PCR Master Mix Kit(ライフテクノロジーズ社)が挙げられる。本開示の方法においては、Multiplex PCR Assay Kit(タカラバイオ(株)社)を用いることが好ましい。
 染色体の異数性の有無を検出する本開示の方法においては、染色体の異数性の情報が過増幅により失われてしまうことを避けるため、三次増幅工程のPCRのサイクル数は5~18サイクルが好ましい。PCRのサイクル数は、リアルタイムPCRによる検討を予め行って、その結果に基き設定することが好ましい。PCRは、その途中で、反応温度及び/又は反応時間を変更してもよい。
 三次増幅産物は、精製することが好ましい。精製は、例えば、QIAquick PCR Purification Kit(QIAGEN社)、AMPure XP Kit(BECMAN COULTER社)を用いて行う。三次増幅産物の量は、例えば、NanoDrop(Thermo Fisher Scientific社)、BioAnalyzer(Agilent社)、Quantus Fluorometer(Promega社)、KAPA Library Quantification Kits(日本ジェネティクス(株)社)を用いて濃度を測定することで確認し得る。
[配列解析工程]
 配列解析工程は、三次増幅産物から複数の目的領域それぞれの塩基配列と増幅量とを決定する工程である。配列解析工程は、解析の精度及び速さ、1度に処理可能な試料数の多さ等の点で、次世代シークエンサーによって行われることが好ましい。
 本開示において次世代シークエンサー(Next Generation Sequencer;NGS)とは、サンガー法を利用したキャピラリーシークエンサー(第一世代シークエンサーと呼ばれる)に対比して分類されるシークエンサーを意味する。次世代シークエンサーは、第二世代、第三世代、第四世代、及び今後開発されるシークエンサーを含む。現時点で最も普及している次世代シークエンサーは、DNAポリメラーゼによる相補鎖合成又はDNAリガーゼによる相補鎖結合に連動した蛍光又は発光をとらえ塩基配列を決定する原理のシークエンサーである。具体的には、MiSeq(Illumina社)、HiSeq2000(Illumina社、HiSeqは登録商標)、Roche454(Roche社)等が挙げられる。
 本開示の方法において、次世代シークエンサーとしては、Illumina社のMiSeq及びHiSeq2000が好適である。MiSeqは、最大96種類のPCR産物を1回で測定することが可能である。96種類のPCR産物は、1つのマルチプレックスPCR産物でもよく、複数のマルチプレックスPCR産物の混合物でもよい。複数のマルチプレックスPCR産物を混合してMiSeqで解析する場合には、それぞれのPCR産物を精度高く定量することが望ましい。定量は、例えば、BioAnalyzer(Agilent社)、Quantus Fluorometer(Promega社)又はKAPA Library Quantification Kits(日本ジェネティクス(株)社)を用いて行う。
 MiSeq等の次世代シークエンサーで得られた配列データをアライメントする手段としては、Burrows-Wheeler Aligner(BWA)が挙げられ、BWAによって既知のヒトゲノム配列へ配列データをマッピングすることが好ましい。遺伝子を解析する手段としては、SAMtools及びBEDtoolsが挙げられ、これらの解析手段により遺伝子多型、遺伝子変異、及び染色体数を解析することが好ましい。
 配列解析工程で得た、目的領域の塩基配列と増幅量とから、染色体の異数性の有無が検出される。配列解析工程および異数性の検出方法の詳細については、母体血中の有核赤血球を試料にした場合を例にして後述する。
[妊娠母体より採取された生体試料]
 妊娠母体より採取された生体試料は、母体血、臍帯血、羊水、絨毛組織、胎盤組織など、胎児由来細胞が存在することが知られている組織であればよい。生体試料としては、妊娠母体への侵襲性を極力抑える観点で、母体末梢血が好ましい。本開示において血液には、血液そのもの、及び、生理食塩水で希釈した血液;血液にグルコースや抗血液凝固剤等の添加剤を加えた保存血液;これらの分画物;などの血液試料が含まれる。
[妊娠母体の末梢血]
 妊娠母体の末梢血には、母親由来の好酸球、好中球、好塩基球、単核球、リンパ球等の白血球;母親由来の、核のない成熟した赤血球;母親由来の有核赤血球;胎児由来の有核赤血球;などの血液細胞が含まれる。本開示の方法においては、これらの血液細胞から胎児由来の有核赤血球を識別し、胎児由来の有核赤血球から染色体DNAを得ることが好ましい。胎児由来の有核赤血球は、妊娠後6週程度から母体血中に存在するといわれている。したがって、本開示の方法における血液は、妊娠後6週程度以降の妊娠母体より採取した末梢血、又は、妊娠後6週程度以降の妊娠母体より採取した末梢血から調製した血液試料であることが好ましい。
 胎児由来の有核赤血球は、胎盤を通過して母体の血液中に存在する、赤血球前駆体である。母体が妊娠中には、胎児の赤血球は有核であり得る。有核赤血球には染色体が存在するため、胎児由来の有核赤血球を単離することで、胎児染色体および胎児遺伝子の入手が可能となる。胎児由来の有核赤血球は、母体血中の細胞の約10個に1個の割合で存在しているといわれており、妊娠母体の抹消血中には非常に存在確率が低い。
 胎児由来の有核赤血球は、例えば、密度勾配遠心分離と画像解析とにより、妊娠母体より採取された血液中に存在するその他の血液細胞と識別され、単離され得る。
[有核赤血球の密度勾配遠心分離(有核赤血球の濃縮)]
 有核赤血球は、密度勾配遠心分離により、血液中に存在する血漿成分やその他の血液細胞と分離され得る。有核赤血球を分離するための密度勾配遠心分離は、公知の方法を適用してよい。例えば、密度(比重)の異なる2種類の媒体を遠沈管に重層した不連続密度勾配の上に、生理食塩水で希釈した血液を重層して遠心を行うことにより、有核赤血球を分画し濃縮できる。
 国際公開第2012/023298号に、胎児由来の有核赤血球を含めた母体の血球の密度が記載されている。その記載によると、想定される胎児由来の有核赤血球の密度は、1.065~1.095g/mL程度、母親の血球の密度は、赤血球が1.070~1.120g/mL程度、好酸球が1.090~1.110g/mL程度、好中球が1.075~1.100g/mL程度、好塩基球が1.070~1.080g/mL程度、リンパ球が1.060~1.080g/mL程度、単核球が1.060~1.070g/mL程度である。
 密度1.065~1.095g/mL程度の胎児由来の有核赤血球を、ほかの血液細胞と分離するために、積層する媒体の密度(比重)が設定される。胎児由来の有核赤血球の中心の密度は1.080g/mL程度であるため、この密度をはさむ2つの異なる密度の媒体を隣接して重層することで、その界面に胎児由来の有核赤血球を有する画分を集めることが可能となる。好ましくは、下層の媒体の密度を1.08g/mL~1.10g/mL(より好ましくは1.08g/mL~1.09g/mL)、上層の媒体の密度を1.06g/mL~1.08g/mL(より好ましくは1.065g/mL~1.08g/mL)とする。本開示の方法においては、下層の媒体と上層の媒体は同じ種類でも異なる種類でもよく、同じ種類の媒体を用いることが好ましい。
 媒体としては、ポリビニルピロリドンでコートされた直径15nm~30nmのケイ酸コロイド粒子分散液であるPercoll(登録商標)、ショ糖から作られた側鎖に富んだ中性の親水性ポリマーであるFicoll-Paque(登録商標)、ポリスクロースとジアトリゾ酸ナトリウムを含むHistopaque(登録商標)等が挙げられる。本開示の方法においては、Percoll及び/又はHistopaqueを使用することが好ましい。Percollは、密度1.130の製品が市販されており、水で希釈することで密度勾配を調製することが可能である。Histopaqueは、市販されている密度1.077の媒体及び密度1.119の媒体と水とを用いて密度勾配を調製することが可能である。
 2層の不連続密度勾配は、例えば以下のようにして遠沈管に形成する。まず、凝固点以上かつ14℃以下(好ましくは8℃以下)の温度状態にある下層の媒体を遠沈管の底部に収容する、又は、下層の媒体を遠沈管の底部に収容したのち14℃以下(好ましくは8℃以下)の温度下で保存して冷却する。次に、下層の媒体の上に上層の媒体を重層する。
[血液細胞の画像解析]
 血液細胞の画像解析は、胎児由来の有核赤血球の候補を選ぶ目的で、基板(好ましくは透明基板)上の血液細胞の形態情報を取得して解析する。
 血液細胞を画像解析するために、密度勾配遠心分離により得た有核赤血球を含む画分を、透明基板(好ましくはスライドガラス)上に塗布し乾燥させ、画像解析用の標本を作製する。この標本から血液細胞の形態情報を取得して解析し、胎児由来の有核赤血球の候補を選ぶ。
 画像解析用の標本は、血液細胞の観察を容易にするために、血液細胞が染色されることが好ましい。血液細胞の染色法は、特に制限されず、公知の方法で行ってよい。血液細胞の染色法としては、例えば、ギムザ染色、メイ・グリュンワルド・ギムザ染色が挙げられる。
 血液細胞の形態情報は、光学顕微鏡、デジタルカメラ、スライドガラス用のステージ、光学搬送系、画像処理用パーソナルコンピュータ(PC)、制御用PC、及びディスプレイを装備したシステムによって、標本から取得され画像解析されることが好ましい。光学搬送系は、例えば、対物レンズとCCDカメラを備える。画像処理用PCは、例えば、データ解析、データ記憶を行う処理系を備える。制御用PCは、例えば、スライドガラス用のステージの位置制御や、全体の処理を制御する制御系を備える。
 胎児由来の有核赤血球の候補は、細胞質の面積に対する核の面積の割合、核の円形度、核の面積、等によって識別可能である。確実性の観点で、細胞質の面積に対する核の面積の割合、及び核の円形度、の少なくとも一方の条件(好ましくは両方の条件)を満たす細胞を、胎児由来の有核赤血球候補として識別することが好ましい。
 細胞質の面積に対する核の面積の割合については、下記の式(a)を満たす細胞を選択することが好ましい。核の円形度については、下記の式(b)を満たす細胞を選択することが好ましい。
(a)0.25<(N/C)<1.0
(b)0.65<(N/(L×L))<0.785
 式中、Cは、細胞質の面積、Nは、核の面積、Lは、核の長径の長さ、又は、複雑な形をした核に外接する楕円の長径の長さ、である。
 式(a)及び式(b)を満たす細胞の中で、核の形状が真円あるいは楕円に近い順に順位をつけ、順位の高いものから優先して以降の工程に供してもよい。また、有核赤血球の由来を判別する工程まで行って、順位の高い複数個の中に胎児由来の細胞が含まれていなかった場合、次に順位の高い複数個の細胞を解析してもよい。
 有核赤血球として識別された細胞は、例えば、ガラス器具を備えたマイクロマニピュレータで、透明基板上から1個ずつ回収される。回収された細胞から染色体DNAが抽出されて一次増幅工程の鋳型となる。
[胎児由来の有核赤血球の同定]
 妊娠母体より採取された血液中の有核赤血球には、母親由来の有核赤血球と胎児由来の有核赤血球とが混在しており、胎児由来の有核赤血球であることの同定が必要となる。遺伝子配列により個人を識別する方法としては、対立遺伝子を調べてそこに存在する遺伝子多型を検出する方法が挙げられる。一例として、父子関係の判別には、遺伝子多型の一種であるSTR(short tandem repeat)を検出する方法が適用されており、個人の識別には、SNP(Single Nucleotide Polymorphism、一塩基多型)を検出する方法が適用されている。本開示の方法においては、配列解析工程で得た配列情報に基き、例えば、対立遺伝子上のSTR及び/又はSNPの差異により胎児由来細胞と母親由来細胞とを識別する。好ましくは、白血球(白血球は母親由来であることがほぼ確実である)を取得して、STR及び/又はSNPを同様に解析することで、胎児由来細胞の同定の確実性を高めることが好ましい。
[男児の場合のY染色体検出]
 妊娠母体の超音波検査で胎児が男児であると確認されている場合、単離した有核赤血球内にY染色体が存在することを確認すれば、胎児由来の有核赤血球であると同定し得る。細胞内のY染色体の有無を検出する方法としては、Y染色体特異的な蛍光プローブを用いるFISH(Fluorescence in situ hybridization)法が知られている。FISH法の検査キットの一例として、CEP X/Y DNA Probe Kit(Abbott社、CEPは登録商標)が挙げられる。本開示の方法においては、Y染色体に特異的な塩基配列を有するプライマー対を作製しPCRを用い、その増幅の有無を確認することにより、男児の胎児由来の有核赤血球であることを同定するのが好ましい。
[染色体の異数性の有無の検出]
 胎児由来の有核赤血球と同定された細胞から得た染色体について、増幅産物量を例えば次世代シークエンサーで解析する。基準(あるいは参照)として、母親由来の有核赤血球と同定された細胞から得た染色体について、増幅産物量を例えば次世代シークエンサーで解析する。胎児が染色体の異数性を有しなければ、母親由来の増幅産物量と胎児由来の増幅産物量とは、ほぼ1:1の量比になると予想される。増幅領域が位置する染色体が胎児においてトリソミーである場合には、母親由来の増幅産物量と胎児由来の増幅産物量とは、ほぼ1:1.5(あるいは2:3)の量比になると予想される。
 本開示の方法においては、下記の方法で、カットオフ値を予め決定しておき、このカットオフ値を解析結果の解釈に使用してもよい。
 染色体の異数性を有しない胎児を妊娠したことが判明している複数母体より採取された生体試料から、本開示の方法によって母親由来の増幅産物量に対する胎児由来の増幅産物量の比を解析し、その分布を求める。また、トリソミーの胎児を妊娠したことが判明している複数母体より採取された生体試料から、本開示の方法によって母親由来の増幅産物量に対する胎児由来の増幅産物量の比を解析し、その分布を求める。この2つの分布が重ならない領域をカットオフ値とする。このカットオフ値と、検査対象における母親由来の増幅産物量に対する胎児由来の増幅産物量の比とを比較して、その比がカットオフ値以下であれば胎児はトリソミーでなく、その比がカットオフ値以上であれば胎児はトリソミーである、との解釈をなし得る。
 以下に実施例を挙げて、本発明をさらに具体的に説明する。以下の実施例に示す材料、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
<実施例1>
[末梢血の採取]
 抗凝固剤としてEDTA(エチレンジアミン四酢酸)のナトリウム塩10.5mg入りの7mL採血管に、妊婦ボランティア1名から末梢血7mLを採取した。その後、生理食塩水を用いて血液を希釈した。妊婦ボランティアからの採血は、インフォームドコンセントを得た上で行った。
[密度勾配遠心分離による有核赤血球の濃縮]
 Percoll液(シグマアルドリッチ社製)を使用して、密度1.070の液と密度1.095の液を調製し、遠沈管に密度1.095の液2mLを入れ、4℃下に30分間置き冷却した。その後、密度1.095の液の上に、密度1.070の液2mLを、界面が乱れないようにゆっくり重層した。続けて、密度1.070の液の上に、希釈した血液11mLをゆっくり重層し、遠心分離を2000rpmで20分間行った。次いで、密度1.070の液と密度1.095の液の間に沈積した画分を、ピペットを用いて採取した。
[基板への血液の塗布]
 片手でスライドガラス1を保持し、その一端に、採取した画分を1滴点着した。もう一方の手で別のスライドガラス2を持ち、一端をスライドガラス1に30度の角度で接触させ、スライドガラス2の接触下面を画分に触れさせ、毛管現象により2枚のスライドガラスに囲まれた空間に画分を広げた。次に上記角度を保ったまま、スライドガラス2を、スライドガラス1の画分を置いた領域と反対の領域の方向に滑らせて、スライドガラス1上に画分を均一に塗布した。塗布後、送風により1時間以上かけて十分に乾燥させた。
[血液細胞の染色]
 画分を塗布したスライドガラス1をメイ・グリュンワルド染色液に3分間浸漬し、次いでリン酸緩衝液に浸漬して洗浄後、ギムザ染色液(リン酸緩衝液で希釈して濃度3%(v/v)とした)に10分間浸漬した。次いで、純水で洗浄後、乾燥させた。こうして、画像解析用の標本スライドを複数枚作製した。
[画像解析による有核赤血球の識別]
 電動XYステージ、対物レンズ及びCCDカメラを備えた光学顕微鏡と、XYステージ制御部及びZ方向制御部を備えた制御部と、画像入力部、画像処理部、及びXY位置記録部を備えた解析部と、を備えた画像解析システムを準備した。標本スライドをXYステージに乗せて、標本スライド上に焦点を合わせてスキャンし、光学顕微鏡から画像を解析部に取り込み、有核赤血球を探索した。
 画像解析によって、下記の式(a)及び式(b)を満たす細胞を検出し、有核赤血球候補として識別し、XY位置を記録した。
(a)0.25<(N/C)<1.0
(b)0.65<(N/(L×L))<0.785
 式中、Cは、細胞質の面積、Nは、核の面積、Lは、核の長径の長さ、又は、複雑な形をした核に外接する楕円の長径の長さ、である。
[有核赤血球の回収]
 ガラス針とガラス管をマイクロマニピュレータで操作し、これらガラス器具を使って、識別した有核赤血球候補11個を1個ずつ、標本スライド上から回収した。
[一次増幅工程(全ゲノム増幅)]
 回収した11個の細胞それぞれについて、PicoPLEX WGA Kit(New England Biolabs社)を用いて全ゲノム増幅を行った。PicoPLEX WGA Kitの添付文書に則り、1細胞を収容したPCRチューブに5μLのCell Extraction Bufferを添加後、Extraction Cocktail(Extraction Enzyme Dilution Bufferを4.8μL、Cell Ectraction Enzymeを0.2μLの混合液)を5μL加え、合計10μLとした。その後、75℃/10分及び95℃/4分の細胞溶解反応を行った。次に、Pre-Amp Cocktail(Pre-Amp Reaction Mixを4.8μL、Pre-Amp Enzymeを0.2μLの混合液)を調製し、細胞溶解後の反応液に5μL添加し、合計15μLとした。DNAの増幅反応として、PicoPLEX WGA Kitの工程(ii)にあたる反応を行った。即ち95℃/2分でDNAを変性した後、95℃/15秒、15℃/50秒、25℃/40秒、35℃/30秒、65℃/40秒、及び75℃/40秒を30サイクル行った。
 得られた増幅産物は、QIAquick PCR Purification Kit(QIAGEN社)を用いて、プライマーやバッファー成分等の不純物を除去することで精製した。精製後の増幅産物の濃度を、Quantus Fluorometer dsDNA System(Promega社)を用いて測定し、各細胞の増幅産物量が45ng~90ng(ヒト細胞1個の染色体DNA量の9000倍~18000倍に相当)の範囲内にあることを確認した。
[二次増幅工程および第一付加工程(マルチプレックスPCR)]
 胎児由来細胞を同定する目的、並びに、染色体の異数性を解析する目的で、染色体上の16箇所の領域を増幅する、16対のプライマー対を設計した。16箇所の領域は、内部にSNPを有する領域とした。16箇所の領域が位置する遺伝子名、及び16箇所の領域の塩基長は、表1に示すとおりである。
Figure JPOXMLDOC01-appb-T000001
 各プライマーは、第一の標識の塩基配列17塩基と、目的領域に相補的な塩基配列20塩基と、からなる計37塩基のオリゴヌクレオチドであり、5’末端に第一の標識の塩基配列が位置している。フォワードプライマー上の第一の標識の塩基配列は、CGCTCTTCCGATCTCTG(配列番号1)とし、リバースプライマー上の第一の標識の塩基配列は、CGCTCTTCCGATCTGAC(配列番号2)とした。
 全プライマーを終濃度が各25nmol/Lとなるように混合し、プライマーミックス液を調製した。
 一次増幅産物(全ゲノム増幅産物)から10ngを二次増幅工程に使用した。マルチプレックスPCRは、Multiplex PCR Assay Kit(タカラバイオ(株)社)を用いて反応を行った。各細胞から得た一次増幅産物を鋳型として10ng、プライマーミックス液を8μL、Multiplex PCR Mix1を0.125μL、Multiplex PCR Mix2を12.5μL、及び水を混合し反応液を調製した(最終液量25μL)。PCR反応は、94℃/60秒で変性した後、94℃/30秒、60℃/90秒、及び72℃/30秒を15サイクル行った。PCRのサイクル数は、予めリアルタイムPCRによる検討を行い、その結果に基づき設定した。
 得られた増幅産物は、QIAquick PCR Purification Kit(QIAGEN社)を用いて、プライマーやバッファー成分等の不純物を除去することで精製した。精製後の増幅産物の濃度を、Quantus Fluorometer dsDNA System(Promega社)を用いて測定した。各細胞の増幅産物量が300ng~600ng(鋳型量の30倍~60倍に相当)の範囲内にあることを確認した。
[三次増幅工程および第二付加工程(インデックス付加PCR)]
 三次増幅に用いるプライマー対として、下記のオリゴヌクレオチドを設計した。
・5’末端から順に、フローセル結合用配列(Illumina社が提供しているP5配列)、サンプル識別用のインデックス配列、及び第一の標識にアニールする配列を有するオリゴヌクレオチド。インデックス配列としては、Illumina社が提供しているD501を用いた。
・5’末端から順に、フローセル結合用配列(Illumina社が提供しているP7配列)、サンプル識別用のインデックス配列、及び第一の標識にアニールする配列を有するオリゴヌクレオチド。インデックス配列としては、Illumina社が提供しているD701~D711のいずれかを11個の細胞ごとに用いた。
 標識された二次増幅産物から5ngを三次増幅工程に使用した。PCRは、Multiplex PCR Assay kit(タカラバイオ(株)社)を用いて反応を行った。二次増幅産物を鋳型として5ng、プライマー(1.25μmol/L)を各1μL、Multiplex PCR Mix1を0.125μL、Multiplex PCR Mix2を12.5μL、及び水を混合し反応液を調製した(最終液量25μL)。PCR反応は、94℃/3分で変性した後、94℃/45秒、50℃/60秒、及び72℃/30秒を5サイクル行い、その後、94℃/45秒、55℃/60秒、及び72℃/30秒を11サイクル行った。PCRのサイクル数は、予めリアルタイムPCRによる検討を行い、その結果に基づき設定した。
 得られた増幅産物を、AMPure XP Kit(BECMAN COULTER社)を用いて精製した。精製後の増幅産物の濃度を、BioAnalyzer(Agilent社)を用いて測定した。より正確な増幅産物の定量として、KAPA Library Quantification Kits(日本ジェネティクス(株)社)を用いて定量を行った。各細胞の増幅産物量が、50ng~75ng(鋳型量の10倍~15倍に相当)の範囲内にあることを確認した。
 各増幅工程について、細胞11個の増幅産物量及び増幅倍率をまとめると表2のとおりである。
Figure JPOXMLDOC01-appb-T000002
[配列解析工程]
 11個の細胞由来の三次増幅産物を混合し、MiSeq(Illumina社)及びMiSeq Reagent Kit v2 300 Cycle(Illumina社)を用いてシークエンスを行った。得られたFastQファイルを、BWA(Burrows-Wheeler Aligner)を用いてヒトリファレンスゲノム(hg19)へマッピングを行い、SAMtoolsにより遺伝子多型情報を抽出し、BEDtoolsにより各増幅領域のシークエンスリード数を算出することで解析を行った。
[細胞の由来の同定]
 13番染色体、18番染色体、及び21番染色体から増幅した領域のSNPを解析したところ、11個の細胞のうち1個の細胞が異なるSNP情報を有することが確認された。別途、核の形状から白血球と予想される細胞を、標本スライド上からマイクロマニピュレータを用いて回収し、11個の細胞と同様にしてDNAを増幅しSNPを調べたところ、上記1個の細胞以外の10個の細胞のSNPと、白血球と予想される細胞のSNPとが一致することが確認された。以上の解析により、1個の細胞が胎児由来の有核赤血球であり、10個の細胞が母親由来の有核細胞であることが確認された。
[異数性の有無の検出]
 胎児由来と同定された有核赤血球の21番染色体の4領域の増幅産物量を、MiSeqを用いて決定した。また、母親由来と同定された有核細胞10個の21番染色体の4領域の増幅産物量を、MiSeqを用いて決定した。胎児由来の細胞と母親由来の各細胞との間で4領域の増幅産物量それぞれの量比を計算したところ、いずれにおいても1:1に近い値であり、胎児は21番染色体に異数性を有しないことが推定された。
 同様にして、13番染色体、18番染色体、X染色体、及びY染色体についても、胎児は異数性を有しないことが推定された。
<比較例1>
 標本スライドから回収した1細胞を材料とした。一次増幅工程においてPicoPLEX WGA Kitの工程(i)~工程(iii)を行って、ヒト細胞1個の染色体DNA量の50万倍の増幅産物を得たこと以外は、実施例1と同様にして、染色体の異数性の有無の検出を試みた。しかし、16領域の増幅産物量の間にばらつきが大きく、異数性の有無を検出できるレベルから大きく外れた。
<比較例2>
 標本スライドから回収した1細胞を材料とした。二次増幅工程においてPCRを30サイクル行って、鋳型量の500倍の増幅産物を得たこと以外は、実施例1と同様にして、染色体の異数性の有無の検出を試みた。しかし、16領域の増幅産物量の間にばらつきが大きく、異数性の有無を検出できるレベルから大きく外れた。
 2014年9月11日に出願された日本国特許出願2014-185060号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (11)

  1.  妊娠母体より採取された生体試料から得た染色体DNAを増幅して一次増幅産物を得る一次増幅工程と、
     前記一次増幅産物を鋳型として、複数のプライマー対を用いて複数の目的領域の多重増幅を行い、二次増幅産物を得る二次増幅工程と、
     前記二次増幅産物の両末端に、オリゴヌクレオチドである第一の標識を付加し、標識された二次増幅産物を得る第一付加工程と、
     前記標識された二次増幅産物を鋳型として、前記第一の標識にアニールするプライマー対を用いて増幅を行い、三次増幅産物を得る三次増幅工程と、
     前記三次増幅産物から前記複数の目的領域の塩基配列と増幅量とを決定する配列解析工程と、
     を含み、
     前記一次増幅工程が、DNAの総量を6000倍以上30000倍以下に増幅する工程であり、
     前記二次増幅工程が、DNAの総量を3倍以上150倍以下に増幅する工程である、
    胎児染色体の異数性の有無を検出する方法。
  2.  前記三次増幅工程が、DNAの総量を6倍以上24倍以下に増幅する工程である、請求項1に記載の、胎児染色体の異数性の有無を検出する方法。
  3.  前記配列解析工程が、次世代シークエンサーを用いて行われる、請求項1又は請求項2に記載の、胎児染色体の異数性の有無を検出する方法。
  4.  前記三次増幅産物の両末端に、オリゴヌクレオチドである第二の標識を付加し、標識された三次増幅産物を得る第二付加工程を、さらに含む、
     請求項1~請求項3のいずれか1項に記載の、胎児染色体の異数性の有無を検出する方法。
  5.  前記三次増幅工程で用いるプライマーが、前記第二の標識の塩基配列を5’末端に有し、
     前記三次増幅工程を行うことにより、前記三次増幅産物の両末端に前記第二の標識が付加されて、前記標識された三次増幅産物が得られ、こうして前記三次増幅工程と前記第二付加工程とが共に行われる、
     請求項4に記載の、胎児染色体の異数性の有無を検出する方法。
  6.  前記二次増幅工程で用いるプライマーが、前記第一の標識の塩基配列を5’末端に有し、
     前記二次増幅工程を行うことにより、前記二次増幅産物の両末端に前記第一の標識が付加されて、前記標識された二次増幅産物が得られ、こうして前記二次増幅工程と前記第一付加工程とが共に行われる、
     請求項1~請求項5のいずれか1項に記載の、胎児染色体の異数性の有無を検出する方法。
  7.  前記一次増幅工程が、前記染色体DNAから全ゲノム増幅を行う工程である、請求項1~請求項6のいずれか1項に記載の、胎児染色体の異数性の有無を検出する方法。
  8.  前記染色体DNAが、1細胞から得た染色体DNAであり、前記一次増幅工程が、1細胞から全ゲノム増幅を行う工程である、請求項1~請求項7のいずれか1項に記載の、胎児染色体の異数性の有無を検出する方法。
  9.  前記生体試料が、血液であり、前記染色体DNAが、血液中の細胞から得た染色体DNAである、請求項1~請求項8のいずれか1項に記載の、胎児染色体の異数性の有無を検出する方法。
  10.  前記血液中の細胞が有核赤血球である、請求項9に記載の、胎児染色体の異数性の有無を検出する方法。
  11.  前記血液中の細胞が、密度勾配遠心分離と画像解析とにより単離された細胞である、請求項9又は請求項10に記載の、胎児染色体の異数性の有無を検出する方法。
PCT/JP2015/062893 2014-09-11 2015-04-28 胎児染色体の異数性の有無を検出する方法 WO2016038929A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15840802.1A EP3192879A1 (en) 2014-09-11 2015-04-28 Method for detecting presence/absence of fetal chromosomal aneuploidy
CN201580045175.7A CN106661633A (zh) 2014-09-11 2015-04-28 胎儿染色体有无非整倍性的检测方法
JP2016547714A JPWO2016038929A1 (ja) 2014-09-11 2015-04-28 胎児染色体の異数性の有無を検出する方法
US15/427,050 US20170152555A1 (en) 2014-09-11 2017-02-08 Method for detecting presence or absence of heteroploidy of fetal chromosome

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014185060 2014-09-11
JP2014-185060 2014-09-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/427,050 Continuation US20170152555A1 (en) 2014-09-11 2017-02-08 Method for detecting presence or absence of heteroploidy of fetal chromosome

Publications (1)

Publication Number Publication Date
WO2016038929A1 true WO2016038929A1 (ja) 2016-03-17

Family

ID=55458692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062893 WO2016038929A1 (ja) 2014-09-11 2015-04-28 胎児染色体の異数性の有無を検出する方法

Country Status (5)

Country Link
US (1) US20170152555A1 (ja)
EP (1) EP3192879A1 (ja)
JP (1) JPWO2016038929A1 (ja)
CN (1) CN106661633A (ja)
WO (1) WO2016038929A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101874262B1 (ko) * 2017-11-15 2018-07-03 김재환 시공간 초월 온라인 탐방 운동 시스템
US11452928B2 (en) * 2019-07-02 2022-09-27 Jae Hwan Kim System for providing virtual exercising place

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007147073A2 (en) * 2006-06-14 2007-12-21 Living Microsystems, Inc. Diagnosis of fetal abnormalities using polymorphisms including short tandem repeats
WO2013057568A1 (en) * 2011-10-18 2013-04-25 Multiplicom Nv Fetal chromosomal aneuploidy diagnosis
WO2013075100A1 (en) * 2011-11-17 2013-05-23 Cellscape Corporation Methods, devices, and kits for obtaining and analyzing cells
JP2014507141A (ja) * 2011-02-09 2014-03-27 ナテラ, インコーポレイテッド 非侵襲的出生前倍数性呼び出しのための方法
WO2014099919A2 (en) * 2012-12-19 2014-06-26 Ariosa Diagnostics, Inc. Noninvasive detection of fetal aneuploidy in egg donor pregnancies

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5641628A (en) * 1989-11-13 1997-06-24 Children's Medical Center Corporation Non-invasive method for isolation and detection of fetal DNA
CN1266104A (zh) * 2000-01-10 2000-09-13 山东省医药生物技术研究中心 一种多重归一化基因扩增方法
US6605451B1 (en) * 2000-06-06 2003-08-12 Xtrana, Inc. Methods and devices for multiplexing amplification reactions
FR2824144B1 (fr) * 2001-04-30 2004-09-17 Metagenex S A R L Methode de diagnostic prenatal sur cellule foetale isolee du sang maternel
JP2008154467A (ja) * 2006-12-21 2008-07-10 Olympus Corp 核酸の増幅方法とこれを用いた核酸の解析方法
JP6328934B2 (ja) * 2010-12-22 2018-05-23 ナテラ, インコーポレイテッド 非侵襲性出生前親子鑑定法
EP2714938B1 (en) * 2011-05-27 2017-11-15 President and Fellows of Harvard College Methods of amplifying whole genome of a single cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007147073A2 (en) * 2006-06-14 2007-12-21 Living Microsystems, Inc. Diagnosis of fetal abnormalities using polymorphisms including short tandem repeats
JP2014507141A (ja) * 2011-02-09 2014-03-27 ナテラ, インコーポレイテッド 非侵襲的出生前倍数性呼び出しのための方法
WO2013057568A1 (en) * 2011-10-18 2013-04-25 Multiplicom Nv Fetal chromosomal aneuploidy diagnosis
WO2013075100A1 (en) * 2011-11-17 2013-05-23 Cellscape Corporation Methods, devices, and kits for obtaining and analyzing cells
WO2014099919A2 (en) * 2012-12-19 2014-06-26 Ariosa Diagnostics, Inc. Noninvasive detection of fetal aneuploidy in egg donor pregnancies

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AKIHIKO SEKIZAWA: "Botaiketsu o Mochiita Taiji Idenshi Shindan no Genjo", SYMPOSIUM ON JAPAN SOCIETY OF PERINATAL AND NEONATAL MEDICINE SHOROKUSHU, vol. 32, 1 September 2014 (2014-09-01), pages 51 - 55, XP008185479 *
LIAO GJ. ET AL.: "Targeted massively parallel sequencing of maternal plasma DNA permits efficient and unbiased detection of fetal alleles", CLIN. CHEM., vol. 57, no. 1, 2011, pages 92 - 101, XP002674771, DOI: doi:10.1373/CLINCHEM.2010.154336 *
See also references of EP3192879A4 *
ZIMMERMANN B. ET AL.: "Noninvasive prenatal aneuploidy testing of chromosomes 13, 18, 21, X, and Y, using targeted sequencing of polymorphic loci", PRENAT. DIAGN., vol. 32, no. 13, 2012, pages 1233 - 1241, XP055119823, DOI: doi:10.1002/pd.3993 *

Also Published As

Publication number Publication date
EP3192879A4 (en) 2017-07-19
EP3192879A1 (en) 2017-07-19
JPWO2016038929A1 (ja) 2017-04-27
US20170152555A1 (en) 2017-06-01
CN106661633A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
AU2020200418B2 (en) Generating cell-free DNA libraries directly from blood
US11306358B2 (en) Method for determining genetic condition of fetus
US20180355418A1 (en) Chromosome number determination method
WO2016038929A1 (ja) 胎児染色体の異数性の有無を検出する方法
US20180355433A1 (en) Chromosome number determination method
JP2016067268A (ja) 胎児の染色体異数性の非侵襲的判別方法
WO2016042830A1 (ja) 胎児染色体の解析方法
WO2016052405A1 (ja) 胎児の染色体異数性の非侵襲的判別方法および判別システム
JP6312835B2 (ja) 有核赤血球の選別方法
WO2017057076A1 (ja) 有核赤血球の取得方法および有核赤血球の識別方法
WO2016021310A1 (ja) 胎児の染色体の検査方法
WO2016021309A1 (ja) 有核赤血球の選別方法
JP2016063764A (ja) ヒト血液に含まれる希少細胞の単離方法、及び、遺伝子関連検査の方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016547714

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015840802

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015840802

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE