WO2016036095A1 - 수지 분체의 제조방법 및 이를 위한 일체형 응집기 - Google Patents

수지 분체의 제조방법 및 이를 위한 일체형 응집기 Download PDF

Info

Publication number
WO2016036095A1
WO2016036095A1 PCT/KR2015/009161 KR2015009161W WO2016036095A1 WO 2016036095 A1 WO2016036095 A1 WO 2016036095A1 KR 2015009161 W KR2015009161 W KR 2015009161W WO 2016036095 A1 WO2016036095 A1 WO 2016036095A1
Authority
WO
WIPO (PCT)
Prior art keywords
latex
reaction tube
resin powder
agglomerator
integrated
Prior art date
Application number
PCT/KR2015/009161
Other languages
English (en)
French (fr)
Inventor
주민철
신민승
홍성원
이형섭
박상후
장석구
이루다
이원석
유근훈
최정수
김인수
김호훈
Original Assignee
(주) 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 엘지화학 filed Critical (주) 엘지화학
Priority to EP15804296.0A priority Critical patent/EP3020751B1/en
Priority to US14/900,043 priority patent/US10626227B2/en
Priority to CN201580001314.6A priority patent/CN105579478B/zh
Priority to JP2016546733A priority patent/JP6145581B2/ja
Publication of WO2016036095A1 publication Critical patent/WO2016036095A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/16Powdering or granulating by coagulating dispersions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/006Baffles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0066Stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1812Tubular reactors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C1/00Treatment of rubber latex
    • C08C1/14Coagulation
    • C08C1/15Coagulation characterised by the coagulants used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • C08F279/06Vinyl aromatic monomers and methacrylates as the only monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/18Increasing the size of the dispersed particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/14Treatment of polymer emulsions
    • C08F6/22Coagulation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/10Latex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/00768Baffles attached to the reactor wall vertical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/10Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2351/04Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to rubbers

Definitions

  • the present invention relates to a method for producing a resin powder, and more particularly, to perform a coagulation process using an acid coagulant in an integrated coagulant for coagulation and aging of latex, but the acid coagulant remaining after coagulation is also neutralized in the coagulator.
  • the present invention relates to a method for producing a resin powder which overcomes the disadvantages of residual coagulant and improves both heat and moisture resistance.
  • the polymer material formed by emulsion polymerization is preferably processed into powder for reducing the volume, various applications and ease of handling. In order to obtain the polymer material formed by emulsion polymerization in powder, it is required to aggregate, ripen, dehydrate and dry the latex formed by emulsion polymerization.
  • Agglomeration of emulsion latex (hereinafter referred to as ⁇ latex '') is a method of breaking the stability of latex particles stabilized by an emulsifier applied during emulsion polymerization by chemical method using various flocculants or mechanical method using mechanical force by applying strong shearing force. It can be performed by.
  • the chemical method breaks the stability by using a different flocculant depending on the type of emulsifier used to secure the stability of the latex, and in the case of breaking the stability using the mechanical method, the repulsive force between the emulsifiers is applied by applying a strong shear force to the latex. Overcome and let the latex particles and particles stick together.
  • FIG. 1 is a schematic flowchart of a latex resin powder production apparatus used in a "polymer slurry having a high solid content and a method for preparing the same" disclosed in Korean Patent Laid-Open Publication No. 2011-0083024 as an example of the prior art.
  • the apparatus largely comprises a latex storage tank (1), agglomeration tank (2), aging tank (6), dehydrator (8) and fluidized bed dryer (10).
  • the flocculant aqueous solution 4 is put into the flocculation tank 2, and it fills up to the tank top. Then, the steam 3 is introduced to raise the internal temperature to the coagulation temperature. After the coagulation tank temperature is raised to the coagulation temperature, latex is transferred from the latex storage tank 1 to the coagulation tank 2. The resulting slurry is then transferred to the slurry storage tank 7 via the aging tank 6.
  • dehydration proceeds continuously while supplying a slurry to the centrifugal dehydrator 8 using a pump.
  • the wastewater 9 generated by dehydration is discarded.
  • the dewatered slurry is then supplied to the fluidized bed dryer 10 together with the air.
  • the supplied air is dried in the dryer while moving the slurry up and down, and when the dried particles are supplied to the cyclone 1 (11) by air, the large particles of the genuine particles 12 fall to the bottom and are light and small fine. Particles are transferred to cyclone 2 (13) for recovery (14) and air is exhausted through line (15).
  • the device is not only difficult to stir the slurry with high viscosity, but also does not smoothly transfer the processing efficiency to the powder may be reduced. Therefore, there is a limitation that it is difficult to use a slurry of high solid content in order to increase the dehydration and drying efficiency, and there is also a problem that a lot of time, effort and energy is consumed in subsequent dehydration and drying.
  • the agglomerator provided with the agglomeration and aging integrally has a hollow reaction tube 106 through which latex passes and an inner side of the reaction tube 160 from an inner wall of the reaction tube 160.
  • At least one barrel pin protruding in a direction, a rotation axis extending along a central axis in a conveying direction (length direction) of the reaction tube, and at least one agitator protruding toward an inner wall of the reaction tube from an outer surface of the rotation shaft.
  • the at least one stirrer may be configured as an agglomerator 100 which is a discontinuous screw 210.
  • the cross section of the reaction tube 160 may be any polygon or circle, preferably may be circular.
  • the agglomerator 100 is designed to function as both agglomeration and aging, and the hollow reaction tube 160 through which latex passes and protrudes inwardly from the inner wall of the reaction tube 160 to the reaction tube 160.
  • At least one protruding agitator 150 the reaction tube 160 is connected to the latex input line 110, the flocculant input line 120 and the steam input line 130 is connected to the reaction tube 160 And into the latex and flocculant and steam.
  • the discontinuous screw 210 may be provided with 1 to 20, 4 to 16, or 8 to 12 in the agglomerator 100, the flow of fluid (non-condensed steam and latex) in the range
  • the discontinuous screw 210 is disposed in an appropriate number according to the length L of the flocculator 100. Can be.
  • a barrel pin 140 extending from the outside of the reaction tube 160 to the inside of the agglomerator 100 is fixed, and inside the reaction tube 160, the agitator 150 and / or the discontinuous screw ( 210 is rotatably fixed.
  • the reaction tube 160 of the agglomerator 100 includes one or more barrel pins 140 extending from the outside of the reaction tube 160 into the reaction tube 160. Accordingly, the reaction tube 160 rotates between the stirrer 150 and / or the discontinuous screw 210 between the barrel pins 140 fixed to the reaction tube 160.
  • the latex is in contact with the rotary blades of the stirrer 150 and / or the discontinuous screw 210 and receives mechanical force therefrom, thereby transferring the latex flowing into the barrel in the conveying direction.
  • a strong mechanical force that is, a shear force
  • the latex stabilized by the emulsifier added during the emulsion polymerization the state stabilized by a mechanical method is broken, thereby agglomerated, and the reaction tube ( It is matured in the second half of 160).
  • the barrel pin 140 may have any shape such as a circle, a triangle, an inclination, an ellipse, a diamond, a rectangle, and the like, and is not particularly limited.
  • the stirrer 150 anything such as a paddle, a screw, a biaxial screw, a pin, etc. Can be used
  • the reactor 100 comprising the discontinuous screw 210 is machined into a latex obtained by emulsion polymerization under the action of the barrel pin 140 and the internal stirrer 150 and / or the discontinuous screw 210. It is possible to control the moisture content by making mechanical force and using mechanical force.
  • the agglomerator 100 includes a latex inlet line 110, a coagulant inlet line 120, and a steam inlet line 130, and an agglomeration reaction occurs at a portion close to a position where latex, coagulant, and steam are introduced. Aging reactions occur in the latter half of the agglomerator, so that coagulation and maturation can be performed simultaneously in substantially the same agglomerator.
  • the surface treatment means may use a mixer type that induces mixing with the fluid through a strong shearing force such as an in-line mixer, and the mixing means performs simple mixing by changing the flow line of the fluid on a pipe such as a static mixer.
  • Mixer types can be used.
  • the thermal stability is improved when the metal ion flocculant is applied. In the application of, the heat resistance was improved but the thermal stability was lowered due to residual acid.
  • the present inventors use an integrated agglomerator which simultaneously implements agglomeration and maturation while continuing related studies, but use an acid agglomerate in the agglomeration process and the residual acid is neutralized in a specific section within the agglomerator.
  • the resin powder having improved thermal stability that could be secured when applying a conventional metal ion flocculant can be produced.
  • an object of the present invention is to perform the coagulation process using an acid coagulant in the unitary coagulant for coagulation and maturation of latex, but the acid coagulant remaining after coagulation is also removed by neutralization in the coagulant.
  • the present invention aims to provide a method for producing a resin powder which has been overcome and improved in both heat and heat resistance.
  • the present invention provides a process for agglomeration of latex by adding an organic acid at one point of the reactor in an integrated agglomerator for agglomeration and ripening of latex, and residual organic acid by adding a neutralizing agent at a point after the organic acid is added. It provides a method for producing a resin powder, characterized in that to carry out the neutralization step, and the step of aging the resin powder after the neutralization step continuously.
  • the neutralizing agent may be carried out at a point of 30 to 60% by weight of the water content of the resin powder, for example.
  • the latex input and the organic acid input may be performed within 0 to 20% of the feed direction from the end of the inlet side reaction tube to the end of the outlet side reaction tube, respectively.
  • the neutralizer may be added within 40 to 60% of the feed direction from the end of the inlet side reaction tube to the end of the outlet side reaction tube of the integrated aggregator.
  • the organic acid flocculant may be added in the range of 0.5 to 3.0 parts by weight based on 100 parts by weight of the latex.
  • the organic acid flocculant may be at least one selected from formic acid and acetic acid, for example.
  • the neutralizing agent may be, for example, at least one selected from caustic soda, caustic potassium, sodium carbonate, ammonium hydroxide, aniline, diethylamine, and hydrazine.
  • the neutralizing agent may be added in the range of 30 to 70% by weight, for example, based on the amount of the organic acid flocculant.
  • the flocculation step, the neutralization step, and the maturing step may be performed at 60 to 98 ° C. using steam, for example.
  • the latex can, for example, have a continuous flow in an integrated agglomerator.
  • the integrated agglomerator includes, for example, a latex inlet line, an organic acid inlet line, a neutralizer inlet line, and a resin powder discharge line along a conveying direction of the latex, and extend from the end of the inlet side reaction tube to the end of the outlet side reaction tube. It may include a mixing shaft with an impeller of.
  • the latex is for example styrene polymer latex, butadiene polymer latex, styrene-butadiene copolymer latex, alkyl acrylate polymer latex, alkyl methacrylate polymer latex, alkyl acrylate-acrylonitrile copolymer latex, acrylonitrile-butadiene airborne Copolymer latex, acrylonitrile-butadiene-styrene copolymer latex, acrylonitrile-alkyl acrylate-styrene copolymer latex, alkylmethacrylate-butadiene-styrene copolymer latex, and alkylacrylate-alkylmethacrylate copolymer It may be one or more selected from latex.
  • the present invention provides a hollow reaction tube through which latex passes, at least one barrel pin protruding inward from the inner wall of the reaction tube, and a rotating shaft extending along a central axis in a conveying direction of the reaction tube; And at least one impeller protruding from the outer surface of the rotating shaft toward the inner wall of the reaction tube, wherein the at least one impeller is replaced with a discontinuous screw, and a latex input line and an organic acid flocculant are injected into the inlet of the agglomerator.
  • Line and steam inlet line is provided, and the neutralizer inlet line is provided at the point past the inlet side of the flocculator provides an integrated flocculator for coagulation and maturation of the latex.
  • the latex input line and the organic acid flocculant input line may be connected to each other within 0 to 20% of the feed direction from the inlet side reaction tube end to the outlet side reaction tube end of the integrated aggregate.
  • the neutralizer input line may be connected within 40 to 60% of the feed direction from the inlet side reaction tube end to the outlet side reaction tube end of the integrated aggregator, for example.
  • an acid coagulant is used in an integrated coagulant for coagulation and aging of latex, but the remaining acid coagulant is also removed by neutralization in the coagulant, thereby improving both heat resistance and heat stability. It has the effect of providing powder.
  • 1 is a flow chart of a powder comprising a multi-stage agglomeration and maturation process of the latex according to the prior art.
  • FIG. 2 is a schematic cross-sectional view of an agglomerator in which agglomeration and maturation of latex according to the prior art is performed integrally.
  • FIG. 3 is a cross-sectional view of an agglomerator in which agglomeration and aging of the latex used in the present invention, which comprises a neutralizer input line 180, is included in the agglomerator shown in FIG.
  • the method for producing a resin powder according to the present invention includes, for example, an acid coagulation step of latex, an neutralization step of an acid coagulant used in the acid coagulation step, and aging of the resulting resin powder in an integrated coagulator for coagulation and aging of latex. Process, characterized in that to perform sequentially.
  • integrated agglomerator for agglomeration and aging of latex is a device capable of simultaneously implementing the agglomeration process and the aging process, and includes an integral mechanical coagulator (unless otherwise specified) shown in FIG.
  • the reactor shown in FIG. 3 includes a neutralizer input line 180 with respect to the reactor shown in FIG. 2, and is a sectional view showing a specific position.
  • the term "maturation" means to stay at a predetermined temperature so that the binding force is enhanced by interpenetration between the chains without adding other substances after the neutralization process or the addition of the neutralizing agent, or dehydrated and / or dried immediately after the neutralization process or the addition of the neutralizing agent.
  • the retention means to stay in the reaction tube for a certain time after the neutralizer is added in the integrated agglomerator for agglomeration and aging of the latex.
  • the residence time that is, the aging time is a time which is discharged from the reaction tube after the neutralizer is added, and is not particularly limited as long as it is immediately discharged after the neutralizer is added.
  • it is time to pass through 40 to 60. Specifically, it may be a time taken to pass a 40 to 100% section in the conveying direction from the end of the inlet side reaction tube of the integrated agglomerator to the end of the outlet side reaction tube.
  • the aging temperature is equal to or greater than the coagulation temperature, for example, may be 60 to 98 °C, or 85 to 95 °C specific examples.
  • the residence time may be, for example, 1.0 second to 30 minutes, 5 seconds to 20 minutes, 5 seconds to 10 minutes, 30 seconds to 5 minutes, or 1 minute to 2 minutes.
  • binder refers to an object in a state where a large number of solid particles are collected.
  • the term “powder” may be an object having an average particle diameter of 1 to 10000 ⁇ m or 10 to 2000 ⁇ m in a state where a large number of solid particles are collected.
  • slurry of the present disclosure is not particularly limited when used in the art, but may refer to a solution in which a resin powder is formed as an aggregate by adding a coagulant to latex.
  • the neutralization process is performed to remove residual acid of the acid flocculant, and is preferably performed after the flocculation process is sufficiently formed to form agglomerated particles.
  • the degree of cohesion increases, but the pH may be relatively high, and the input period of the neutralizing agent for performing the neutralization process may be set in consideration of the fact that it may cause foam generation.
  • performing a neutralization process in the 40 to 60% section, or 45 to 55% section in the transport direction from the inlet side (corresponding to the initial stage of the process) of the integrated agglomerator may increase the cohesion and reduce the foam generation.
  • The% section in the conveying direction is a section corresponding to the total length of the hollow reaction tube as 100%, as shown in Figure 3 below.
  • the neutralizing agent is preferably added at a point where the water content is 60 to 30% by weight, or 50 to 35% by weight, as measured by dehydrating the slurry being transferred in the integrated agglomerator, within this range. High cohesiveness and low foaming effect.
  • the moisture content of the said resin powder is measured based on the moisture analyzer of METTLER TOLEDO.
  • the neutralizing agent may be at least one selected from, for example, caustic soda, caustic potassium, sodium carbonate, ammonium hydroxide, aniline, diethylamine, hydrazine, and the like.
  • the pH of the slurry after the neutralizer is added may be 4.0 to 8.0, 4.5 to 8.0, 4.5 to 7.0, or 4.5 to 6.0. In this range, the degree of aggregation is high and the amount of foam generation is small.
  • the acid flocculant is preferably added to the extent that it does not excessively generate residual acid.
  • 0.5 to 3.0 parts by weight It can be added in the range of 0.5 to 2.5 parts by weight, 0.7 to 2.3 parts by weight, 0.5 to 1.5 parts by weight, or 0.7 to 1.2 parts by weight, and within this range there is an effect of excellent heat resistance and heat stability of the resin powder.
  • 100 parts by weight of polymer means 100 parts by weight of solid content of the polymer slurry.
  • the latex input and the organic acid input may be carried out within 0 to 20% of the feed direction from the end of the inlet reaction tube to the end of the reaction tube of the integrated agglomerator, for example, and has a high degree of coagulation within this range. have.
  • the organic acid input may be added at, for example, the same point or later point as the latex input.
  • the acid flocculant may be selected from organic acids such as formic acid and acetic acid, but not strong acids such as hydrochloric acid, sulfuric acid, phosphoric acid, and the like.
  • organic acids such as formic acid and acetic acid
  • strong acids such as hydrochloric acid, sulfuric acid, phosphoric acid, and the like.
  • the use of strong acids can cause problems that are difficult to apply on site (risk of corrosion and stability).
  • the formic acid may be added in the range of 0.5 to 2.0 parts by weight, 0.5 to 1.0 parts by weight, or 0.6 to 0.9 parts by weight based on 100 parts by weight of the polymer, and the heat resistance and heat stability of the resin powder within this range. Excellent effect.
  • the acetic acid may be added in the range of 0.5 to 2.0 parts by weight, 0.7 to 1.3 parts by weight, or 0.8 to 1.2 parts by weight based on 100 parts by weight of the polymer, and the effect of excellent heat resistance and heat stability of the resin powder within this range. There is.
  • water may be mixed with the organic acid flocculant or added respectively.
  • the water may be added together with steam, for example, in an amount such that the solids content of the latex is from 10 to 90% by weight, from 10 to 50% by weight, or from 20 to 40% by weight. This is less effective.
  • the neutralizing agent may have a content range sufficient to neutralize residual acid.
  • the amount of the neutralizing agent added to the neutralizing section (40 to 60% in the feeding direction from the inlet side of the reactor) is based on the amount of acid coagulant added. In the range of 30 to 75% by weight, or 45 to 70% by weight, the neutralization process can be efficiently performed without side reactions.
  • the neutralizing agent may be added in an amount of 0.2 to 0.75 moles, or 0.3 to 0.6 moles based on 1 mole of the organic acid flocculant, and the neutralizing step may be efficiently performed without side reactions within this range.
  • the acid coagulation step, the neutralization step, and the aging step may be performed in a conventional manner, and may be performed integrally under 60 to 98 ° C., 65 to 85 ° C., or 85 to 95 ° C. using steam as an example. And the coagulation and aging effects are large within this range.
  • the total residence time in the integrated flocculator may be, for example, within 0.5 to 30 minutes, 0.5 to 10 minutes, or 0.5 to 5 minutes.
  • the residence time of the polymer slurry may be reacted to exceed 30 minutes, but in this case, the size of the device is not economical due to the large size.
  • the solids content of the slurry containing the resin powder of the present invention prepared by the above process depends on the solids content of the latex, but is generally 25 to 60% by weight. When the solid content is less than 25% by weight, there may be a problem in that the flowability of the slurry is too high to secure the residence time of the slurry, and when the solid content is greater than 60% by weight, the slurry has a lower transfer force and the slurry is in the apparatus. There may be a problem that the driving is impossible to prevent.
  • the polymer slurry in which the agglomeration and aging proceeds is taken out of the reactor and transferred to the slurry storage tank. The flocculated and aged slurry is recovered as powder through a dehydration and drying process.
  • the dehydration step is not particularly limited in the case of the conventional dehydration step of the resin powder, for example, may be a step of dewatering the slurry containing the resin powder using a centrifugal dehydrator.
  • the drying process is not particularly limited in the case of the conventional drying process of the resin powder, for example, may be a process of drying the dehydrated resin powder using a fluidized bed dryer. At this time, air (air) is supplied to the fluidized bed dryer may be dried while flowing the resin powder.
  • the dried resin powder may be supplied to a cyclone, for example, and separated into genuine particles having large particles and fine particles having small particles.
  • the latex is not specified as long as it is a latex by emulsion polymerization.
  • the resin powder obtained by the above method may have, for example, a water content within 25% by weight, or 10 to 20% by weight, and has excellent effects of moist heat resistance and thermal stability within this range.
  • the integrated agglomerator for agglomeration and aging of the latex used in the present invention as shown in Figure 3, the hollow reaction tube through which the latex passes, and protrudes inward of the reaction tube from the inner wall of the reaction tube At least one barrel pin, a rotating shaft extending along a central axis of the reaction tube in a conveying direction, and at least one stirrer protruding from an outer surface of the rotating shaft toward an inner wall of the reaction tube, wherein the at least one stirrer includes: Including a non-continuous screw, the latex input line, acid coagulant input line and steam input line is provided on the inlet side of the flocculator, the line 180 for injecting the neutralizer is a specific section, that is, the inlet of the flocculator It is possible to use those provided in the 40 to 60% section in the conveying direction from the side.
  • neutralizing agent input line 180 may include the contents of the Korean Patent Application No. 2013-0159970 proposed in the related art.
  • the resin powder obtained by the above-described method may be improved in both heat and humidity (Hz) characteristics and thermal stability ( ⁇ b, ⁇ E).
  • the resin powder obtained by the method of the present invention has a moisture and heat resistance (Hz) characteristic equivalent to that of the resin which is aggregated with the acid flocculant and the neutralization step is not included, the resin is aggregated with the metal ion flocculant and the neutralization step is not included. It is possible to provide both thermal stability (( ⁇ b, ⁇ E) equivalent to.
  • Graft copolymer latex consisting of vinyl cyan compound-conjugated diene-based compound-aromatic vinyl compound is acrylonitrile (AN) -butadiene (BD) -styrene (SM) -methyl methacrylate (MMA) copolymer latex.
  • AN acrylonitrile
  • BD acrylonitrile
  • BD butadiene
  • SM styrene
  • MMA methyl methacrylate copolymer latex.
  • BD / SM / MMA 3/50/12/35 and solids content was 35% by weight.
  • the furnace used 0.7 parts by weight of formic acid based on 100 parts by weight of the total polymer (based on solids). At this time, while adding steam directly, the liquid water was added to the solid content of the slurry and mixed with formic acid to adjust the solid content to 30% by weight.
  • the residence time of the reaction tube was 1.5 minutes on average, and the aggregation and aging temperatures were 91 ° C.
  • the caustic soda is about 45% by weight based on the amount of the formic acid (polymer weight 100 weight) through the neutralizing agent input line 180, which is located in a 40 to 60% section (located at 50%) in the conveying direction of the integrated agglomerator of FIG. 0.3 parts by weight per part) was added and neutralization of the residual acid was carried out, and as soon as the neutralization was completed, ripening (pH 6.47) started and continued until the slurry was discharged out.
  • the aggregated slurry is drawn out through the stirrer and moved to the slurry storage tank.
  • the aggregated and aged slurry was recovered to the resin powder through a dehydration and drying process.
  • Example 1 Except that the neutralizing agent was not added in Example 1 (pH 4.72) was carried out in the same manner as in Example 1 to prepare a resin powder.
  • a resin powder was prepared in the same manner as in Example 1, except that 0.7 part by weight of formic acid used as an acid flocculant in Example 1 was replaced with 2 parts by weight of CaCl 2 as a metal ion flocculant (pH 6.3).
  • Example 1 0.7 parts by weight of formic acid was replaced with 1 part by weight of acetic acid, except that caustic soda content introduced through the neutralizer input line was also added in an amount of about 60 wt% based on the amount of acetic acid added at 0.3 part by weight (pH 8.0). In the same manner as in Example 1, a resin powder was prepared.
  • a resin powder was prepared in the same manner as in Example 2 except that the neutralizing agent was not added in pH 2 (pH 5.18).
  • a resin powder was prepared in the same manner as in Example 1, except that 0.7 parts by weight of formic acid, which was used as an acid flocculant in Example 1, was replaced with 0.7 parts by weight of a 5 wt% sulfuric acid aqueous solution (pH 5.1).
  • Example 1 the same experiment as in Example 1 was repeated except that the neutralizing agent input line 180 was positioned at 30% (in the range of 20 to 40%) instead of 50% in the conveying direction of the integrated agglomerator. However, it was confirmed that the aggregation is not well made.
  • Example 1 the same experiment as in Example 1 was repeated except that the neutralizer input line 180 was located at 70% point (in the range of 60 to 80%) instead of 50% point in the conveying direction of the integrated agglomerator.
  • the neutralizer input line 180 was located at 70% point (in the range of 60 to 80%) instead of 50% point in the conveying direction of the integrated agglomerator.
  • foam foam
  • L value, a value, and b value were measured using a color difference meter (Color Quest II, Hunter Lab Co.). Where L is brighter as it is closer to 100, a value is red as it is greater than 0, and green color as it is smaller than 0, and b value is yellow as it is larger than 0, based on 0. It means to have a color, and smaller than 0 means to have a blue color.
  • Humidity Heat (Tt, Tz) Corresponds to the haze value and light transmittance of 3mm sheets, each measured in ASTM oven with constant temperature and humidity, and then measured using ASTM D-1003.
  • ⁇ E [( ⁇ L) 2 + ( ⁇ a) 2 + ( ⁇ b) 2 ] 0.5
  • Moisture Content (wt%) Weight until water is evaporated at 150 ° C using a moisture meter (METTLER / TOLEDO HR83-P) so that the weight of the sample is no longer changed (less than 0.5 wt% residual moisture content). The change was measured.
  • the resin powder produced through the organic acid flocculation step, the neutralization step and the aging step according to the present invention improved the heat and moisture resistance and heat stability compared to the comparative example.
  • the resin powder of Example 1 using formic acid and the neutralization process used the organic acid flocculant, and the neutralization process provided the same or similar property values as those of the heat-and-moisture resistance obtained in Comparative Example 1, which was not applied. And a property value equivalent to or similar to the thermal stability obtained in Comparative Example 2 without using a neutralization process was provided.
  • Example 2 using an acetic acid and a neutralization process was used an acid coagulant, the neutralization process provided a characteristic value equivalent to or similar to the moist heat resistance characteristics obtained in Comparative Example 3, which is not applied, and the metal ion coagulant was used. Properties equivalent to or similar to the thermal stability that was obtained in Comparative Example 2, which was used and did not apply a neutralization process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

본 발명은 수지 분체의 제조방법 및 이를 위한 일체현 반응기에 관한 것으로, 본 발명에 따르면 라텍스의 응집과 숙성을 위한 일체형 응집기에 산 응집제를 사용하여 응집공정을 수행하되 잔류하는 산 응집제를 또한 반응기 내에서 중화에 의해 제거함에 따라 내습열과 열안정성이 모두 개선된 수지 분체를 제조할 수 있다.

Description

수지 분체의 제조방법 및 이를 위한 일체형 응집기
본 발명은 수지 분체의 제조방법에 관한 것으로, 보다 구체적으로는 라텍스의 응집과 숙성을 위한 일체형 응집기에 산 응집제를 사용하여 응집공정을 수행하되 응집후 잔류하는 산 응집제 또한 응집기 내에서 중화에 의해 제거함에 따라 잔류 응집제에 따른 단점을 극복하고 내습열과 열안정성이 모두 개선된 수지 분체를 제조하는 방법에 관한 것이다.
유화중합에 의해 형성되는 고분자 물질은 부피의 감소, 다양한 활용성 및 취급의 용이화를 위하여 분체로 가공되는 것이 바람직하다. 유화중합에 의해 형성되는 고분자 물질을 분체로 수득하기 위해서는, 유화중합에 의해 형성된 라텍스를 응집, 숙성 및 탈수 그리고 건조시킬 것이 요구된다.
유화중합 라텍스(이하 라텍스라 함)의 응집은 유화중합 동안에 가해진 유화제에 의해 안정화된 라텍스 입자들을 다양한 응집제를 이용하는 화학적인 방법 혹은 강한 전단력을 가하여 기계적인 힘을 이용하는 기계적인 방법으로 그 안정성을 깨뜨리는 것에 의하여 수행될 수 있다. 상기 화학적인 방법은 라텍스의 안정성을 확보하기 위해 사용한 유화제의 종류에 따라 다른 응집제를 사용하여 안정성을 깨뜨리며, 상기 기계적인 방법을 이용하여 안정성을 깨뜨리는 경우에는 라텍스에 강한 전단력을 가하여 유화제 간의 반발력을 이겨내고 라텍스 입자와 입자가 뭉치도록 한다.
도 1은 종래기술의 다단 응집에 관한 일례로서, 한국특허공개 제2011-0083024호에 개시된 "높은 고형분 함량을 가지는 고분자 슬러리 및 이의 제조방법"에 사용된 라텍스 수지 분체의 제조장치의 개략 흐름도이다. 상기 장치는 크게 라텍스 저장탱크(1), 응집탱크(2), 숙성탱크(6), 탈수기(8) 및 유동층 건조기(10)를 포함한다.
구체적으로, 응집탱크(2)에 응집제 수용액(4)을 투입하고 탱크 상부까지 채운다. 그리고 스팀(3)을 투입하여 내부 온도를 응집온도로 승온한다. 응집탱크 온도가 응집온도까지 승온 후 라텍스 저장탱크(1)에서 라텍스를 이송하여 응집탱크(2)로 투입한다. 이후 생성된 슬러리는 숙성탱크(6)을 거쳐 슬러리 저장 탱크(7)까지 이송한다.
그런 다음 펌프를 이용하여 원심탈수기(8)에 슬러리를 공급하면서 탈수를 연속하여 진행한다. 이때 탈수에 의해 생성된 폐수(9)는 버린다. 그리고 탈수된 슬러리를 에어와 함께 유동층 건조기(10)로 공급한다. 공급된 에어는 슬러리를 상하로 움직이게 하면서 건조기 내에서 건조시키고, 건조된 입자는 에어에 의해 싸이클론1(11)에 공급하면 입자가 큰 정품입자(12)는 하부로 떨어지고 가볍고 작은 파인(fine) 입자는 싸이클론2(13)으로 이송되어 회수(14)하고 에어는 라인(15)를 통해 배출된다. 그러나 상기 장치는 점도가 높은 슬러리를 교반시키기 어려울 뿐 아니라 이송도 원활하지 않아 분체로의 가공 효율이 떨어질 수 있다. 따라서 탈수 및 건조 효율을 높이기 위하여 높은 고형분 함량의 슬러리를 사용하기 어렵다는 제한이 있으며, 또한 후속하는 탈수 및 건조에서 많은 시간과 노력 및 에너지가 소모되는 문제가 있다.
이들을 개선하기 위해서 본 발명자들은 응집 및 숙성이 일체로 제공되는 응집기 관련 기술을 한국특허출원 제2013-0159970호로서 제안한 바 있다.
상기 응집 및 숙성이 일체로 제공되는 응집기는 도 2의 단면도로서 나타낸 바와 같이, 라텍스가 통과하는 중공의 반응관(106)과, 상기 반응관(160)의 내벽으로부터 상기 반응관(160)의 내측방향으로 돌출되는 적어도 1개 이상의 배럴핀과, 상기 반응관의 이송방향(길이방향)의 중심축을 따라 연장되는 회전축과, 상기 회전축의 외면으로부터 상기 반응관의 내벽 쪽으로 돌출되는 적어도 하나 이상의 교반기를 포함하되, 상기 적어도 하나 이상의 교반기가 비연속식 스크류(210)인 응집기(100)로 구성될 수 있다.
즉, 다수의 교반기(150)들 중의 적어도 하나 이상을 비연속식 스크류(210)로 대체하는 것에 의하여 라텍스의 난류 유동을 유도함으로써 라텍스와 응집제의 혼합효율을 증대시키고, 슬러리의 함수율을 감소시켜 탈수 및 건조 등과 같은 후 공정의 단순화 및 에너지 절감 효과를 높이고, 응집 과정에 소요되는 응집제의 양을 감량시키는 것에 의하여 수득되는 수지 분체의 색상을 개선시켜 품질 개선 효과를 제공하는 점에 특징이 있는 것이다. 상기 반응관(160)의 단면은 임의의 다각형 또는 원형이 될 수 있으며, 바람직하게는 원형이 될 수 있다.
상기 응집기(100)는 응집과 숙성을 겸하도록 고안된 것으로서, 라텍스가 통과하는 중공의 반응관(160)과, 상기 반응관(160)의 내벽으로부터 상기 반응관(160)의 내측 방향으로 돌출되는 적어도 1개 이상의 배럴핀(140)들과, 상기 반응관(160)의 이송방향의 중심축을 따라 연장되는 회전축(170)과, 상기 회전축(170)의 외면으로부터 상기 반응관(160)의 내벽 쪽으로 돌출되는 적어도 하나 이상의 교반기(150)를 포함하며, 상기 반응관(160)에는 라텍스 투입라인(110)과, 응집제 투입라인(120) 및 스팀 투입라인(130)들이 연결되어 상기 반응관(160) 내로 라텍스와 응집제 및 스팀을 공급하도록 구성된다.
상기 비연속식 스크류(210)는 상기 응집기(100) 내에 1 내지 20개, 4 내지 16개, 혹은 8 내지 12개가 구비될 수 있으며, 상기 범위일 때 유체(미응축 스팀 및 라텍스)의 흐름을 방해하고 라텍스의 난류 유동을 유도하여 스팀과 라텍스, 응집제의 혼합 효율을 증대시키는 효과가 있으나, 상기 비연속식 스크류(210)는 상기 응집기(100)의 길이(L)에 따라 적절한 수로 배치될 수 있다.
상기 응집기(100)에는 반응관(160) 외부에서 내부까지 연장되는 배럴핀(140)이 고정되어 있고, 상기 반응관(160)의 내부에는 교반기(150) 및/또는 상기 비연속식 스크류(210)가 회전가능하게 고정된다. 구체적으로는 상기 응집기(100)의 반응관(160)은 반응관(160) 외부로부터 반응관(160) 내부로 연장되는 1종 이상의 배럴핀(140)을 포함한다. 따라서, 상기 반응관(160)에는 반응관(160)에 고정된 상기 배럴핀(140)들 사이에서 상기 교반기(150) 및/또는 상기 비연속식 스크류(210)들이 회전하면서 상기 반응관(160) 내로 유입되는 라텍스를 이송방향으로 이송시키면서 결과적으로 상기 라텍스는 상기 교반기(150) 및/또는 상기 비연속식 스크류(210)의 회전날개들과 접촉하여 그로부터 기계적인 힘을 받아 상기 배럴핀(140)들에 부딪쳐서 강한 기계적인 힘, 즉 전단력을 받게 되며, 유화중합 시에 첨가된 유화제에 의해 안정화된 라텍스들이 기계적인 방법에 의하여 안정화된 상태가 깨어지고, 그에 따라 응집되게 되며, 상기 반응관(160)의 후반에서 숙성되게 된다.
상기 배럴핀(140)의 형태는 원형, 삼각형, 경사형, 타원형, 마름모형, 사각형 등 어떠한 것도 가능하며, 특별히 한정되지 않으며, 교반기(150)의 경우 패들, 스크류, 이축 스크류, 핀 등 어떠한 것도 사용 가능하다.
상기 비연속식 스크류(210)를 포함하는 상기 반응기(100)는 배럴핀(140)과 내부 교반기(150) 및/또는 비연속식 스크류(210)의 작용으로 유화 중합에 의해 수득되는 라텍스에 기계적인 힘을 만들어 기계적인 힘을 이용하여 함수율을 조절할 수 있다.
상기 응집기(100)는 라텍스 투입라인(110), 응집제 투입라인(120) 및 스팀 투입라인(130)을 포함하며, 라텍스, 응집제 및 스팀이 투입되는 위치에 가까운 부분에서 응집 반응이 일어나고, 상기 응집기의 후반부에서 숙성 반응이 일어나게 되어 실질적으로 동일한 응집기 내에서 응집과 숙성이 동시에 수행될 수 있다.
상기 표면처리 수단은 인라인 믹서 등과 같은 강한 전단력을 통해 유체와의 혼합을 유도하는 혼합기 타입을 사용할 수 있고, 상기 혼합 수단은 스테틱 믹서 등과 같은 배관 상에서 유체의 흐름 라인을 바꾸어 줌으로써 단순 혼합을 수행하는 혼합기 타입을 사용할 수 있다.
그러나, 상기 응집기의 사용에도 불구하고 사용한 응집제의 잔류에 따라 문제가 발생하는 것으로, 일례로 금속이온 응집제의 적용시 열안정성은 개선되지만 잔류금속으로 인하여 내습열이 저하되는 단점이 있었고, 산 응집제의 적용시엔 내습열은 개선되었으나 잔류 산으로 인하여 열안정성이 저하되는 단점이 있다.
이에, 응집제의 잔류 문제를 해결하고 나아가 금속이온 응집제 적용에 의해 확보되던 열안정성과 산 응집제 적용에 의해 확보되던 내습열을 동시에 제공할 수 있는 라텍스의 분체 제조 관련 기술 개발이 여전히 요구되는 실정이다.
상술한 종래 기술의 문제점을 해결하고자, 본 발명자들은 관련 연구를 계속하던 중 응집 및 숙성을 동시에 구현하는 일체형 응집기를 사용하되 응집공정에서 산 응집제를 사용하고 잔류 산은 상기 응집기 내에서 특정 구간에 중화시켜 제거함으로써 내습열 특성 개선에 부가하여 종래 금속이온 응집제 적용시 확보할 수 있었던 열안정성까지 개선시킨 수지 분체를 제조할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다.
즉, 본 발명의 목적은 라텍스의 응집과 숙성을 위한 일체형 응집기에 산 응집제를 사용하여 응집공정을 수행하되 응집후 잔류하는 산 응집제 또한 응집기 내에서 중화에 의해 제거함에 따라 잔류 응집제에 따른 단점을 극복하고 내습열과 열안정성이 모두 개선된 수지 분체를 제조하는 방법을 제공하려는데 있다.
상기의 목적을 달성하기 위하여, 본 발명은 라텍스의 응집과 숙성을 위한 일체형 응집기에서 반응기의 일 지점에서 유기산 투입에 의한 라텍스의 응집공정, 상기 유기산 투입 지점 이후의 지점에서 중화제 투입에 의한 잔류 유기산의 중화공정, 및 상기 중화공정 이후 수지 분체의 숙성공정을 연속적으로 수행하는 것을 특징으로 하는 수지 분체의 제조방법을 제공한다.
상기 중화제 투입은 일례로 수지 분체의 함수율 30 내지 60 중량%인 지점에서 수행할 수 있다.
상기 라텍스 투입 및 유기산 투입은 일례로 각각 상기 일체형 응집기의 입구측 반응관 끝에서부터 출구측 반응관 끝까지 이송방향으로 0 내지 20% 구간 내에서 수행할 수 있다.
상기 중화제 투입은 일례로 상기 일체형 응집기의 입구측 반응관 끝에서부터 출구측 반응관 끝까지 이송방향으로 40 내지 60% 구간 내에서 수행할 수 있다.
상기 유기산 응집제는 일례로 상기 라텍스 100 중량부 기준, 0.5 내지 3.0 중량부 범위 내로 투입할 수 있다.
상기 유기산 응집제는 일례로 포름산 및 초산 중에서 선택된 1종 이상일 수 있다.
상기 중화제는 일례로 가성소다, 가성칼륨, 탄산소다, 수산화암모늄, 아닐린, 디에틸아민, 및 히드라진 중에서 선택된 1종 이상일 수 있다.
상기 중화제는 일례로 유기산 응집제 투입량 기준, 30 내지 70 중량% 범위 내로 투입할 수 있다.
상기 응집공정, 중화공정, 및 숙성공정은 일례로 각각 스팀을 사용하여 60 내지 98 ℃ 하에 수행할 수 있다.
상기 라텍스는 일례로 일체형 응집기 내에서 연속적인 흐름을 가질 수 있다.
상기 일체형 응집기는 일례로 라텍스의 이송방향을 따라 라텍스 투입라인, 유기산 투입라인, 중화제 투입라인 및 수지 분체 배출라인을 포함하고, 응집기의 입구측 반응관 끝에서부터 출구측 반응관 끝까지 연장된, 복수의 임펠러가 달린 회전축(mixing shaft)을 포함할 수 있다.
상기 라텍스는 일례로 스티렌 중합체 라텍스, 부타디엔 중합체 라텍스, 스티렌-부타디엔 공중합체 라텍스, 알킬 아크릴레이트 중합체 라텍스, 알킬 메타아크릴레이트 중합체 라텍스, 알킬 아크릴레이트-아크릴로니트릴 공중합체 라텍스, 아크릴로니트릴-부타디엔 공중합체 라텍스, 아크릴로니트릴-부타디엔-스티렌 공중합체 라텍스, 아크릴로니트릴-알킬 아크릴레이트-스티렌 공중합체 라텍스, 알킬메타아크릴레이트-부타디엔-스티렌 공중합체 라텍스, 및 알킬아크릴레이트-알킬메타아크릴레이트 공중합체 라텍스 중에서 선택된 1종 이상일 수 있다.
본 발명은 라텍스가 통과하는 중공의 반응관과, 상기 반응관의 내벽으로부터 상기 반응관의 내측방향으로 돌출되는 적어도 1개 이상의 배럴핀과, 상기 반응관의 이송방향의 중심축을 따라 연장되는 회전축과, 상기 회전축의 외면으로부터 상기 반응관의 내벽 쪽으로 돌출되는 적어도 하나 이상의 임펠러를 포함하고, 상기 적어도 하나 이상의 임펠러가 비연속식 스크류로 치환되며, 상기 응집기의 입구측에 라텍스 투입라인, 유기산 응집제 투입라인 및 스팀 투입라인이 구비되고, 상기 응집기의 입구측을 지난 지점에 상기 중화제 투입라인이 구비된 것을 특징으로 하는 라텍스의 응집과 숙성을 위한 일체형 응집기를 제공한다.
상기 라텍스 투입라인 및 유기산 응집제 투입라인은 일례로 각각 상기 일체형 응집기의 입구측 반응관 끝에서부터 출구측 반응관 끝까지 이송방향으로 0 내지 20% 구간 내에 연결될 수 있다.
상기 중화제 투입라인은 일례로 상기 일체형 응집기의 입구측 반응관 끝에서부터 출구측 반응관 끝까지 이송방향으로 40 내지 60% 구간 내에 연결될 수 있다.
또한, 본 발명에 따르면, 상술한 방법에 의해 수득되며, 내습열(Hz)과 열안정성(Δb, ΔE)이 개선된 수지 분체를 제공한다.
본 발명에 따르면, 라텍스의 응집과 숙성을 위한 일체형 응집기에 산 응집제를 사용하여 응집공정을 수행하되 잔류하는 산 응집제 또한 응집기 내에서 중화에 의해 제거함에 따라 내습열과 열안정성이 모두 개선된 수지 분체를 제공하는 효과가 있다.
도 1은 종래 기술에 따른 라텍스의 다단 응집 및 숙성공정을 포함하는 분체의 제조 흐름도이다.
도 2는 종래 기술에 따른 라텍스의 응집 및 숙성이 일체로 수행되는 응집기의 개략적인 단면도이다.
도 3은 상기 도 2에 나타낸 응집기에 중화제 투입라인(180)을 포함하는 것을 특징으로 하는 본 발명에 사용된 라텍스의 응집 및 숙성이 일체로 수행되는 응집기의 단면도이다.
〔부호의 설명〕
100: 반응기 110, 11: 라텍스 투입라인
120, 12: 응집제 투입라인 130: 스팀 투입라인
140: 배럴핀 150: 교반기
180: 중화제 투입라인 210: 비연속식 스크류
1: 라텍스 저장탱크 2: 응집조
3: 숙성조 4: 탈수기
5: 건조기 13: 물 공급라인
14: 응집제 배출 15: 최종 고분자 분체
이하, 본 발명에 대하여 도면을 참조하여 상세하게 설명한다.
본 발명에 따른 수지 분체의 제조방법은, 일례로 라텍스의 응집과 숙성을 위한 일체형 응집기에서 라텍스의 산 응집공정, 상기 산 응집공정에 사용된 산 응집제의 중화공정, 및 생성된 수지 분체의 숙성공정,을 순차 수행하는 것을 특징으로 한다.
상기 용어 "라텍스의 응집과 숙성을 위한 일체형 응집기"는 응집공정과 숙성공정을 동시에 구현할 수 있는 장치로서, 일체형 기계식 응집장치(integral mechanical coagulator)를 포함하고, 달리 특정되지 않는 한 도 3에 나타낸 반응기를 지칭한다. 참고로, 도 3에 나타낸 반응기는 도 2에 나타낸 반응기에 대하여 중화제 투입라인(180)을 포함하고, 구체적인 위치를 제시한 단면도이다.
상기 용어 "숙성"은 중화공정 또는 중화제 투입 후 다른 물질을 첨가하지 않고 사슬 간 상호 침투에 의해 결합력이 강화되도록 소정 온도에서 체류시키거나, 중화공정 또는 중화제 투입 후 바로 탈수 및/또는 건조하지 않고 체류시키는 것을 의미하고, 상기 체류는 라텍스의 응집과 숙성을 위한 일체형 응집기 내에서 중화제 투입 후 반응관 내에 일정 시간 머물게 하는 것을 의미한다. 이때 체류 시간, 즉 숙성 시간은 중화제 투입 이후부터 반응관으로부터 배출되는 시간으로, 중화제 투입 이후 즉시 배출되지 않는 이상 특별히 제한되지 않으나, 일례로 응집과 숙성이 진행되는 반응관 전체의 길이를 100으로 할 때 40 내지 60을 통과하는데 걸리는 시간일 수 있다. 구체적으로는 일체형 응집기의 입구측 반응관 끝에서부터 출구측 반응관 끝까지 이송방향으로 40 내지 100% 구간을 통과하는데 걸리는 시간일 수 있다.
상기 숙성 온도는 일례로 응집온도와 같거나 그 이상이고, 구체적인 예로 60 내지 98 ℃, 또는 85 내지 95 ℃일 수 있다.
상기 체류시간은 일례로 1.0 초 내지 30분, 5초 내지 20분, 5초 내지 10분, 30 초 내지 5분, 또는 1분 내지 2분일 수 있다.
상기 용어 "분체"는 고체입자가 다수 집합한 상태에 있는 물체를 의미하고, 일례로 고체입자가 다수 집합한 상태에 있는 평균입경이 1 내지 10000 ㎛, 또는 10 내지 2000 ㎛인 물체일 수 있다.
본 기재의 "슬러리"는 이 기술분야에서 사용되는 의미인 경우 특별히 제한되지 않으나, 일례로 라텍스에 응집제가 투입되어 응집체로 수지 분체가 형성된 용액을 의미할 수 있다.
상기 중화공정은 산 응집제의 잔류 산을 제거하기 위하여 수행되는 것으로, 응집공정이 충분히 이루어져 응집 입자가 형성된 다음 수행되는 것이 바람직하며, 또한 상기 일체형 응집기의 공정 진행 방향 후단(공정 후기에 해당)으로 갈수록 응집도는 높아지지만 pH가 상대적으로 높아지게 되고 폼(foam) 발생의 원인이 될 수 있는 점을 고려하여 중화공정을 수행하기 위한 중화제의 투입 구간을 설정할 수 있다.
일례로 상기 일체형 응집기의 입구측(공정 초기에 해당)으로부터 이송방향으로 40 내지 60% 구간, 혹은 45 내지 55% 구간에서 중화공정을 수행하는 것이 응집도를 높이고 폼(foam) 발생은 낮출 수 있다.
상기 이송방향으로의 % 구간은 하기 도면 3에 나타낸 바와 같이 중공의 반응관의 전체 길이를 100%로 했을 때 해당하는 구간이다.
상기 중화제의 투입 위치가 일체형 응집기의 60 내지 100% 구간에서 뒤쪽으로 갈수록 잔류산의 치환이 미흡해지고 0 내지 40% 구간에서 앞쪽으로 갈수록 미응집이 발생한다.
또 다른 일례로, 상기 중화제는 일체형 응집기 내에서 이송 중인 슬러리를 탈수하여 측정했을 때의 함수율이 60 내지 30 중량%, 또는 50 내지 35 중량%인 지점에서 투입하는 것이 바람직하고, 이 범위 내에서 응집도는 높고 폼 발생은 낮은 효과가 있다.
상기 수지 분체의 함수율은 메틀러 토레도사의 수분 분석기에 의거하여 측정한다.
상기 중화제는 일례로 가성소다, 가성칼륨, 탄산소다, 수산화암모늄, 아닐린, 디에틸아민, 히드라진 등에서 선택된 1종 이상일 수 있다.
상기 중화공정은 일례로 중화제 투입 후 슬러리의 pH가 4.0 내지 8.0, 4.5 내지 8.0, 4.5 내지 7.0, 또는 4.5 내지 6.0일 수 있고, 이 범위 내에서 응집도가 높고 폼 발생량이 적은 효과가 있다.
상술한 바와 같이, 상기 일체형 응집기 내에서 중화공정까지 수행하는 것을 고려할 때 상기 산 응집제는 잔류 산을 과도하게 생성하지 않을 정도로 투입하는 것이 바람직하며, 일례로 고분자 100 중량부 기준, 0.5 내지 3.0 중량부, 0.5 내지 2.5 중량부, 0.7 내지 2.3 중량부, 0.5 내지 1.5 중량부, 혹은 0.7 내지 1.2 중량부 범위 내로 투입할 수 있고, 이 범위 내에서 수지 분체의 내습열 및 열안정성이 우수한 효과가 있다. 여기에서 고분자 100 중량부는 고분자 슬러리의 고형분 100 중량부를 의미한다.
상기 라텍스 투입 및 유기산 투입은 일례로 각각 상기 일체형 응집기의 입구측 반응관 끝에서부터 출구측 반응관 끝까지 이송방향으로 0 내지 20% 구간 내에서 수행할 수 있고, 이 범위 내에서 응집도가 높은 효과가 있다.
상기 유기산 투입은 일례로 상기 라텍스 투입과 같은 지점 또는 이후의 지점에서 투입될 수 있다.
상기 산 응집제는 염산, 황산, 인산 등과 같은 강산이 아닌 포름산 및 초산 등과 같은 유기산 중에서 선택될 수 있다. 참고로, 강산을 사용할 경우에는 현장에 적용(부식 및 안정 위험)이 어려운 문제가 발생할 수 있다.
구체적인 예로, 상기 포름산은 고분자 100 중량부 기준, 0.5 내지 2.0 중량부, 0.5 내지 1.0 중량부, 혹은 0.6 내지 0.9 중량부 범위 내로 투입할 수 있고, 이 범위 내에서 수지 분체의 내습열 및 열안정성이 우수한 효과가 있다.
또한, 상기 초산은 고분자 100 중량부 기준, 0.5 내지 2.0 중량부, 0.7 내지 1.3 중량부, 혹은 0.8 내지 1.2 중량부 범위 내로 투입할 수 있고, 이 범위 내에서 수지 분체의 내습열 및 열안정성이 우수한 효과가 있다.
여기서 물을 상기 유기산 응집제와 혼합 또는 각각 투입할 수 있다.
상기 물은 스팀과 함께 일례로 라텍스의 고형분 함량이 10 내지 90 중량%, 10 내지 50 중량%, 또는 20 내지 40 중량%로 되게 하는 양으로 투입할 수 있고, 이 범위 내에서 응집도가 높고 폼 발생량이 적은 효과가 있다.
상기 중화제는 상술한 바와 같이, 잔류 산을 중화할 정도의 함량 범위이면 충분하며, 일례로, 상기 중화 구간(반응기의 입구측으로부터 이송방향으로 40 내지 60% 구간)에 투입되는 양은 산 응집제 투입량 기준, 30 내지 75 중량%, 혹은 45 내지 70 중량% 범위 내이면 부반응 없이 효율적으로 중화공정을 수행할 수 있어 바람직하다.
또 다른 예로, 상기 중화제는 상기 유기산 응집제 1몰 기준으로 0.2 내지 0.75몰, 또는 0.3 내지 0.6몰의 양으로 투입될 수 있고, 이 범위 내에서 부반응 없이 효율적으로 중화공정을 수행할 수 있어 바람직하다.
본 발명에서 상기 산 응집공정, 중화공정, 및 숙성공정은 통상의 방식으로 수행될 수 있으며, 일례로 스팀을 사용하여 60 내지 98 ℃, 65 내지 85 ℃, 또는 85 내지 95 ℃하에 일체로 수행할 수 있고, 이 범위 내에서 응집 및 숙성 효과가 크다.
상기 일체형 응집기 내 총 체류시간은 일례로, 0.5 내지 30분, 0.5 내지 10분, 혹은 0.5 내지 5분 내일 수 있다.
본 발명에서는 상기 고분자 슬러리의 체류시간을 30분을 초과하도록 반응시킬 수도 있으나, 이러한 경우 장치 사이즈가 커져 경제적이지 못하다.
상기와 같은 과정으로 제조된 본 발명의 수지 분체를 포함하는 슬러리의 고형분 함량은 상기 라텍스의 고형분 함량에 따라 달라지나, 일반적으로 25 내지 60 중량%이다. 상기 고형분 함량이 25 중량% 미만인 경우에는 슬러리의 흐름성이 너무 높아 슬러리의 체류시간을 확보하지 못하게 되는 문제점이 있을 수 있고, 60 중량%를 초과하는 경우에는 슬러리의 이송력이 떨어져 슬러리가 장치 내부를 막아 운전이 불가능하게 되는 문제점이 있을 수 있다. 상기 응집과 숙성이 진행된 고분자 슬러리는 반응기 밖으로 빠져 나오게 되고, 슬러리 저장탱크로 이송되게 된다. 상기 응집 및 숙성된 슬러리는 탈수 및 건조 공정을 거쳐 분체로 회수된다.
상기 탈수공정은 종래 수지 분체의 탈수공정인 경우 특별히 제한되지 않으나, 일례로 수지 분체를 포함하는 슬러리를 원심탈수기를 이용하여 탈수하는 공정일 수 있다.
상기 건조공정은 종래 수지 분체의 건조공정인 경우 특별히 제한되지 않으나, 일례로 탈수된 수지 분체를 유동층 건조기를 이용하여 건조하는 공정일 수 있다. 이때 유동층 건조기에 에어(air)가 공급되어 수지 분체를 유동시키면서 건조시킬 수 있다.
상기 건조된 수지 분체는 일례로 싸이클론으로 공급하여 입자가 큰 정품입자와 입자가 작은 파인(fine)입자로 분리할 수 있다.
상기 라텍스는 유화중합에 의한 라텍스이면 특정하는 것은 아니며, 일례로 스티렌 중합체 라텍스, 부타디엔 중합체 라텍스, 스티렌-부타디엔 공중합체 라텍스, 알킬 아크릴레이트 중합체 라텍스, 알킬 메타아크릴레이트 중합체 라텍스, 알킬 아크릴레이트-아크릴로니트릴 공중합체 라텍스, 아크릴로니트릴-부타디엔 공중합체 라텍스, 아크릴로니트릴-부타디엔-스티렌 공중합체 라텍스, 아크릴로니트릴-알킬 아크릴레이트-스티렌 공중합체 라텍스, 알킬메타아크릴레이트-부타디엔-스티렌 공중합체 라텍스, 및 알킬아크릴레이트-알킬메타아크릴레이트 공중합체 라텍스 중에서 선택된 1종 이상일 수 있다.
상기 방법에 의해 수득된 수지 분체는 일례로 함수율이 25 중량% 이내, 혹은 10 내지 20 중량%일 수 있고, 이 범위 내에서 내습열 특성과 열안정성이 우수한 효과가 있다.
본 발명에 사용되는 상기 라텍스의 응집과 숙성을 위한 일체형 응집기는, 도 3에서 도시한 바와 같이, 라텍스가 통과하는 중공의 반응관과, 상기 반응관의 내벽으로부터 상기 반응관의 내측방향으로 돌출되는 적어도 1개 이상의 배럴핀과, 상기 반응관의 이송방향의 중심축을 따라 연장되는 회전축과, 상기 회전축의 외면으로부터 상기 반응관의 내벽 쪽으로 돌출되는 적어도 하나 이상의 교반기를 포함하고, 상기 적어도 하나 이상의 교반기가 비연속식 스크류를 포함하고, 상기 응집기의 입구측에 라텍스 투입라인, 산 응집제 투입라인 및 스팀 투입라인이 구비되되 상기 중화제를 투입하기 위한 라인(180)이 특정 구간, 즉 상기 응집기의 입구측으로부터 이송방향으로 40 내지 60% 구간 내에 구비된 것을 사용할 수 있다.
참고로, 상기 중화제 투입라인(180)을 제외하고는 관련하여 종래기술에 제시한 한국특허출원 제2013-0159970호 내 기재사항들을 포함할 수 있다.
상술한 방법에 의해 수득되는 수지 분체는 내습열(Hz) 특성과 열 안정성(Δb,ΔE)이 모두 개선된 것일 수 있다.
구체적으로, 본 발명의 방법에 의해 수득되는 수지 분체는 산 응집제로 응집하고 중화공정은 미포함한 수지와 동등한 정도의 내습열(Hz) 특성을 갖고, 금속이온 응집제로 응집하고 중화공정은 미포함한 수지와 동등한 정도의 열안정성((Δb,ΔE)을 모두 제공할 수 있다.
이하 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변경 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.
[실시예]
실시예 1
비닐시안 화합물-공액디엔계 화합물-방향족 비닐 화합물로 이루어진 그라프트 공중합체 라텍스는 아크릴로니트릴(AN)-부타디엔(BD)-스티렌(SM)-메틸메타크릴레이트(MMA) 공중합체 라텍스로서 AN/BD/SM/MMA=3/50/12/35이고, 고형분 함량은 35 중량%이었다.
상기 라텍스를, 도 3에 나타낸 바와 같은 일체형 응집기의 8개의 비연속식 스크류(A2/A1=0.33, α=3.60°)를 포함하는 반응관에, 12㎏/hr의 유량으로 투입하고, 응집제로는 포름산을 전체 고분자(고형분 기준) 중량 100 중량부에 대하여 0.7 중량부를 사용하였다. 이때 직접 스팀을 가하면서, 추가적으로 액체 상태의 물을 슬러리의 고형분 함량에 맞추어 포름산과 혼합하여 투입하여, 상기 고형분 함량을 30 중량%로 맞추었다.
반응관의 체류시간은 평균 1.5분, 응집 및 숙성 온도는 91℃로 하였다. 도 3의 일체형 응집기 중 이송방향으로 40 내지 60% 구간에 위치한(50% 지점에 위치시킴) 중화제 투입 라인(180)을 통하여 가성소다를 상기 포름산의 투입량 기준 45 중량% 정도(고분자 중량 100 중량부에 대하여 0.3 중량부에 해당)을 투입하고 잔류 산에 대한 중화를 수행하였으며, 상기 중화가 끝나자마자(pH 6.47) 숙성이 시작되어 슬러리가 밖으로 배출되기 전까지 계속 진행된다. 상기 응집된 슬러리는 교반기를 통하여 밖으로 빠져 나오게 되고, 슬러리 저장탱크로 이동하게 된다. 상기 응집 및 숙성된 슬러리는 탈수 및 건조 공정을 거쳐 수지 분체로 회수하였다.
비교예 1
상기 실시예 1에서 중화제를 미투입한 것을 제외하고는(pH 4.72) 상기 실시예 1과 동일하게 실시하여 수지 분체를 제조하였다.
비교예 2
상기 실시예 1에서 산 응집제로서 사용한 포름산 0.7 중량부를 금속이온 응집제로서 CaCl2 2 중량부로 대체한 것을 제외하고는(pH 6.3) 상기 실시예 1과 동일하게 실시하여 수지 분체를 제조하였다.
실시예 2
상기 실시예 1에서 포름산 0.7 중량부를 초산 1 중량부로 대체하고, 중화제 투입라인을 통해 투입되는 가성소다 함량 또한 0.3 중량부에서 초산 투입량 기준 60 중량% 정도를 투입한 것을 제외하고는(pH 8.0) 상기 실시예 1과 동일하게 실시하여 수지 분체를 제조하였다.
비교예 3
상기 실시예 2에서 중화제를 미투입한 것을 제외하고는(pH 5.18) 상기 실시예 2와 동일하게 실시하여 수지 분체를 제조하였다.
비교예 4
상기 실시예 1에서 산 응집제로서 사용한 포름산 0.7 중량부를 5 wt% 황산 수용액 0.7 중량부로 대체한 것을 제외하고는(pH 5.1) 상기 실시예 1과 동일하게 실시하여 수지 분체를 제조하였다.
참고예 1
상기 실시예 1에서 중화제 투입라인(180)이 일체형 응집기의 이송방향으로 50% 지점이 아닌 30% 지점(20 내지 40% 구간 내)에 위치한 것을 제외하고는 상기 실시예 1과 동일한 실험을 반복하였으나, 응집이 잘 이루어지지 않는 결과를 확인하였다.
참고예 2
상기 실시예 1에서 중화제 투입라인(180)이 일체형 응집기의 이송방향으로 50% 지점이 아닌 70% 지점(60 내지 80% 구간 내)에 위치한 것을 제외하고는 상기 실시예 1과 동일한 실험을 반복하였으나, 폼(foam)이 다량 발생하여 원활한 실험을 진행할 수 없었다.
[시험예]
상기 실시예 1 내지 2, 비교예 1 내지 4에서 제조된 라텍스 수지 분체의 색차(L,a,b), Tt 내습열, Hz 내습열, 광확산도 및 광투과율, 열안정성(Δb, ΔE)을 하기의 방법으로 측정하고, 그 결과를 표 1에 나타내었다.
* 분말의 색차: 색차계(Color Quest II, Hunter Lab Co.)를 이용하여 L값, a값, b값을 측정하였다. 여기서 L은 100 에 가까울수록 밝고, a값은 0을 기준으로 0보다 커질수록 붉은 색을 띠고, 0보다 작아질수록 녹색을 띠는 것을 의미하며, b값은 0을 기준으로 0보다 커질수록 노란 색을 띠는 것을 의미하고, 0보다 작아질수록 푸른 색을 띠는 것을 의미한다.
* 내습열(Tt,Tz): 온도와 습도가 일정한 오븐에 넣은 다음 ASTM D-1003을 사용하여 각각 측정한 3mm 시트의 헤이즈(haze value)와 전광선 투과율(light transmittance)에 해당한다.
* 열안정성(Δb, ΔE): 80 ℃ 오븐에 7일간 넣은 다음 측정한 b값과 기존 시편의 b 값과의 차이(Δb), 및 80 ℃ 오븐에 7일간 넣은 다음 측정한 L,a,b 값으로부터 하기 식을 사용하여 계산한 값과 기존 시편의 b 값과의 차이(ΔE)에 해당한다.
ΔE = [(ΔL)2 + (Δa)2 + (Δb)2]0.5
* 함수율(중량%): 수분 측정기(METTLER/TOLEDO HR83-P)를 사용하여 150℃에서 물이 모두 증발하여 샘플의 무게가 더 이상 변화가 없을 때(잔류 수분함량 0.5 중량% 이하)까지의 무게변화를 측정하였다.
구분 L a b Tt(내습열) Hz(내습열) Δb ΔE 함수율
(80℃, 7일) (80℃, 7일)
실시예 1 95.1 -1.1 0.3 89.5 12.6 0.8 0.8 22.4
비교예 1 95.3 -1.1 0.2 89.8 12.5 1.2 1.2 22.5
비교예 2 94.9 -0.9 0.2 76.5 38.5 0.9 0.9 21.9
실시예 2 95.4 -0.9 -0.1 90.8 13.9 3.6 3.65 22.4
비교예 3 95.3 -1.2 -0.1 90.3 13.7 4.5 4.6 22.2
비교예 4 94.1 -1.1 0.5 89.5 20.6 0.8 0.9 19
상기 표 1에 나타낸 바와 같이, 본 발명에 의한 유기산 응집공정, 중화공정 및 숙성공정을 거쳐 제조된 수지 분체는 비교예에 비하여 내습열 및 열안정성이 개선되었다.
구체적으로, 포름산을 사용하고 중화공정을 적용한 실시예 1의 수지 분체는 유기산 응집제를 사용하고 중화공정은 미적용한 비교예 1에서 확보되던 내습열 특성과 동등 내지 유사한 특성 값을 제공하였고, 금속이온 응집제를 사용하고 중화공정을 미적용한 비교예 2에서 확보되던 열안정성과 동등 내지 유사한 특성 값을 제공하였다.
또한, 초산을 사용하고 중화공정을 적용한 실시예 2의 수지 분체는 산 응집제를 사용하고 중화공정은 미적용한 비교예 3에서 확보되던 내습열 특성과 동등 내지 유사한 특성 값을 제공하였고, 금속이온 응집제를 사용하고 중화공정을 미적용한 비교예 2에서 확보되던 열안정성과 동등 내지 유사한 특성 값을 제공하였다.

Claims (15)

  1. 라텍스의 응집과 숙성을 위한 일체형 응집기에서 응집기의 일 지점에서 유기산 투입에 의한 라텍스의 응집공정, 상기 유기산 투입 지점 이후의 지점에서 중화제 투입에 의한 잔류 유기산의 중화공정, 및 상기 중화공정 이후 수지 분체의 숙성공정,을 연속적으로 수행하는 것을 특징으로 하는 수지 분체의 제조방법.
  2. 제1항에 있어서,
    상기 중화제 투입은 수지 분체의 함수율 60 내지 30 중량%인 지점에서 수행하는 것을 특징으로 하는 수지 분체의 제조방법.
  3. 제1항에 있어서,
    상기 라텍스 투입 및 유기산 투입은 각각 상기 일체형 응집기의 입구측 반응관 끝에서부터 출구측 반응관 끝까지 이송방향으로 0 내지 20% 구간 내에서 수행하는 것을 특징으로 하는 수지 분체의 제조방법.
  4. 제1항에 있어서,
    상기 중화제 투입은 상기 일체형 응집기의 입구측 반응관 끝에서부터 출구측 반응관 끝까지 이송방향으로 40 내지 60% 구간 내에서 수행하는 것을 특징으로 하는 수지 분체의 제조방법.
  5. 제1항에 있어서,
    상기 유기산 응집제는 상기 라텍스 100 중량부 기준, 0.5 내지 3.0 중량부 범위 내로 투입하는 것을 특징으로 하는 수지 분체의 제조방법.
  6. 제1항에 있어서,
    상기 유기산 응집제는 포름산 및 초산 중에서 선택된 1종 이상인 것을 특징으로 하는 수지 분체의 제조방법.
  7. 제1항에 있어서,
    상기 중화제는 가성소다, 가성칼륨, 탄산소다, 수산화암모늄, 아닐린, 디에틸아민, 및 히드라진 중에서 선택된 1종 이상인 것을 특징으로 하는 수지 분체의 제조방법.
  8. 제1항에 있어서,
    상기 중화제는 유기산 응집제 투입량 기준, 30 내지 70중량% 범위 내로 투입하는 것을 특징으로 하는 수지 분체의 제조방법.
  9. 제1항에 있어서,
    상기 응집공정, 중화공정, 및 숙성공정은 각각 스팀을 사용하여 60 내지 98 ℃ 하에 수행하는 것을 특징으로 하는 수지 분체의 제조방법.
  10. 제1항에 있어서,
    상기 라텍스는 일체형 응집기 내에서 연속적인 흐름을 갖는 것을 특징으로 하는 수지 분체의 제조방법.
  11. 제1항에 있어서,
    상기 일체형 응집기는 라텍스의 이송방향을 따라 라텍스 투입라인, 유기산 투입라인, 중화제 투입라인 및 수지 분체 배출라인을 포함하고, 응집기의 입구측 반응관 끝에서부터 출구측 반응관 끝까지 연장된, 복수의 임펠러가 달린 회전축(mixing shaft)을 포함하는 것을 특징으로 하는 수지 분체의 제조방법.
  12. 제1항에 있어서,
    상기 라텍스는 스티렌 중합체 라텍스, 부타디엔 중합체 라텍스, 스티렌-부타디엔 공중합체 라텍스, 알킬 아크릴레이트 중합체 라텍스, 알킬 메타아크릴레이트 중합체 라텍스, 알킬 아크릴레이트-아크릴로니트릴 공중합체 라텍스, 아크릴로니트릴-부타디엔 공중합체 라텍스, 아크릴로니트릴-부타디엔-스티렌 공중합체 라텍스, 아크릴로니트릴-알킬 아크릴레이트-스티렌 공중합체 라텍스, 알킬메타아크릴레이트-부타디엔-스티렌 공중합체 라텍스, 및 알킬아크릴레이트-알킬메타아크릴레이트 공중합체 라텍스 중에서 선택된 1종 이상인 것을 특징으로 하는 수지 분체의 제조방법.
  13. 라텍스가 통과하는 중공의 반응관과, 상기 반응관의 내벽으로부터 상기 반응관의 내측방향으로 돌출되는 적어도 1개 이상의 배럴핀과, 상기 반응관의 이송방향의 중심축을 따라 연장되는 회전축과, 상기 회전축의 외면으로부터 상기 반응관의 내벽 쪽으로 돌출되는 적어도 하나 이상의 임펠러를 포함하고, 상기 적어도 하나 이상의 임펠러가 비연속식 스크류로 치환되며, 상기 반응관의 입구측에 라텍스 투입라인, 유기산 응집제 투입라인 및 스팀 투입라인이 구비되고, 상기 반응관의 입구측을 지난 지점에 상기 중화제 투입라인이 구비된 것을 특징으로 하는 라텍스의 응집과 숙성을 위한 일체형 응집기.
  14. 제13항에 있어서,
    상기 라텍스 투입라인 및 유기산 응집제 투입라인은 각각 상기 일체형 응집기의 입구측 반응관 끝에서부터 출구측 반응관 끝까지 이송방향으로 0 내지 20% 구간 내에 연결되는 것을 특징으로 하는 라텍스의 응집과 숙성을 위한 일체형 응집기.
  15. 제13항에 있어서,
    상기 중화제 투입라인은 상기 일체형 응집기의 입구측 반응관 끝에서부터 출구측 반응관 끝까지 이송방향으로 40 내지 60% 구간 내에 연결되는 것을 특징으로 하는 라텍스의 응집과 숙성을 위한 일체형 응집기.
PCT/KR2015/009161 2014-09-03 2015-08-31 수지 분체의 제조방법 및 이를 위한 일체형 응집기 WO2016036095A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15804296.0A EP3020751B1 (en) 2014-09-03 2015-08-31 Method for preparing resin powder and integral coagulating device therefor
US14/900,043 US10626227B2 (en) 2014-09-03 2015-08-31 Method of preparing resin powder and integrated coagulator for the same
CN201580001314.6A CN105579478B (zh) 2014-09-03 2015-08-31 制备树脂粉末的方法和用于该方法的一体化凝固器
JP2016546733A JP6145581B2 (ja) 2014-09-03 2015-08-31 樹脂粉体の製造方法及びこのための一体型凝集器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140116653 2014-09-03
KR10-2014-0116653 2014-09-03
KR1020150115586A KR101777463B1 (ko) 2014-09-03 2015-08-17 수지 분체의 제조방법 및 이를 위한 일체형 응집기
KR10-2015-0115586 2015-08-17

Publications (1)

Publication Number Publication Date
WO2016036095A1 true WO2016036095A1 (ko) 2016-03-10

Family

ID=55582985

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/009161 WO2016036095A1 (ko) 2014-09-03 2015-08-31 수지 분체의 제조방법 및 이를 위한 일체형 응집기

Country Status (7)

Country Link
US (1) US10626227B2 (ko)
EP (1) EP3020751B1 (ko)
JP (1) JP6145581B2 (ko)
KR (1) KR101777463B1 (ko)
CN (1) CN105579478B (ko)
TW (1) TWI557161B (ko)
WO (1) WO2016036095A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190169320A1 (en) 2016-08-12 2019-06-06 Sabic Global Technologies B.V. Process for the production of polymers via emulsion polymerisation
EP3290445B1 (en) 2016-09-05 2018-10-31 SABIC Global Technologies B.V. Process for the production of a polymer using a compound comprising at least 2 unsaturated carbon-carbon bonds
KR102156190B1 (ko) 2016-12-13 2020-09-15 주식회사 엘지화학 열가소성 수지의 제조방법
KR102257966B1 (ko) * 2017-12-08 2021-05-28 주식회사 엘지화학 열가소성 수지 조성물의 제조방법 및 이로부터 제조된 열가소성 수지 조성물
KR102284111B1 (ko) * 2018-12-21 2021-08-02 주식회사 엘지화학 열가소성 수지의 제조방법, 이로부터 제조된 열가소성 수지 및 이를 포함하는 열가소성 수지 조성물
CN112876586B (zh) * 2021-01-18 2022-11-08 万华化学(四川)有限公司 一种abs接枝胶乳的凝聚方法
WO2024065073A1 (zh) * 2022-09-26 2024-04-04 深圳市华先医药科技有限公司 一种动态微通道管式连续流反应器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09104715A (ja) * 1995-10-11 1997-04-22 Ube Cycon Ltd ポリマーラテックスの凝集方法
JP2000007728A (ja) * 1998-06-18 2000-01-11 Asahi Chem Ind Co Ltd 凝集ラテックスの製造方法
KR20070041304A (ko) * 2005-10-13 2007-04-18 주식회사 엘지화학 고분자 라텍스 수지 분체의 제조방법
KR20090084332A (ko) * 2008-02-01 2009-08-05 주식회사 엘지화학 높은 고형분을 가지는 고분자 슬러리의 제조장치 및 이를이용한 제조방법
KR20110015074A (ko) * 2009-08-07 2011-02-15 주식회사 엘지화학 고분자 라텍스 수지 분체의 제조 장치 및 이를 이용한 고분자 라텍스 수지 분체의 제조 방법
KR20110083024A (ko) 2010-01-13 2011-07-20 주식회사 엘지화학 높은 고형분 함량을 가지는 고분자 슬러리 및 이의 제조방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4148991A (en) * 1974-12-13 1979-04-10 W Bar E Method of coagulating polymer latex emulsions
US4136251A (en) * 1977-09-12 1979-01-23 E. I. Du Pont De Nemours And Company Extrusion process for recovery of polymers from their dispersions in liquids
JPS58174401A (ja) * 1982-04-08 1983-10-13 Japan Synthetic Rubber Co Ltd 重合体ラテツクスの連続的凝固法および凝固装置
JPS6025451A (ja) 1983-07-18 1985-02-08 ウエイロン・エイ・リビングストン チユ−ブ状物品の超音波試験の為の方法及び装置
JPS60217224A (ja) * 1984-04-11 1985-10-30 Kureha Chem Ind Co Ltd ゴム含有グラフト共重合体の製造法
JPH03258801A (ja) 1990-03-07 1991-11-19 Kanegafuchi Chem Ind Co Ltd 高分子ラテックスを凝集粒子として回収する方法
JP2002241505A (ja) 2001-02-19 2002-08-28 Asahi Kasei Corp 凝集ラテックスの製造方法
KR100548626B1 (ko) 2003-10-29 2006-01-31 주식회사 엘지화학 고무라텍스 및 이의 제조방법
KR101637063B1 (ko) 2013-05-31 2016-07-06 주식회사 엘지화학 수지 분체 및 그 제조방법
KR101802021B1 (ko) 2014-11-07 2017-12-28 주식회사 엘지화학 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09104715A (ja) * 1995-10-11 1997-04-22 Ube Cycon Ltd ポリマーラテックスの凝集方法
JP2000007728A (ja) * 1998-06-18 2000-01-11 Asahi Chem Ind Co Ltd 凝集ラテックスの製造方法
KR20070041304A (ko) * 2005-10-13 2007-04-18 주식회사 엘지화학 고분자 라텍스 수지 분체의 제조방법
KR20090084332A (ko) * 2008-02-01 2009-08-05 주식회사 엘지화학 높은 고형분을 가지는 고분자 슬러리의 제조장치 및 이를이용한 제조방법
KR20110015074A (ko) * 2009-08-07 2011-02-15 주식회사 엘지화학 고분자 라텍스 수지 분체의 제조 장치 및 이를 이용한 고분자 라텍스 수지 분체의 제조 방법
KR20110083024A (ko) 2010-01-13 2011-07-20 주식회사 엘지화학 높은 고형분 함량을 가지는 고분자 슬러리 및 이의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3020751A4

Also Published As

Publication number Publication date
TWI557161B (zh) 2016-11-11
JP6145581B2 (ja) 2017-06-14
JP2016533426A (ja) 2016-10-27
EP3020751B1 (en) 2021-09-29
CN105579478A (zh) 2016-05-11
EP3020751A4 (en) 2017-04-05
EP3020751A1 (en) 2016-05-18
CN105579478B (zh) 2017-12-05
KR20160028357A (ko) 2016-03-11
US10626227B2 (en) 2020-04-21
TW201615703A (zh) 2016-05-01
KR101777463B1 (ko) 2017-09-12
US20180155507A1 (en) 2018-06-07

Similar Documents

Publication Publication Date Title
WO2016036095A1 (ko) 수지 분체의 제조방법 및 이를 위한 일체형 응집기
WO2011016625A2 (ko) 고분자 라텍스 수지 분체의 제조 장치 및 이를 이용한 고분자 라텍스 수지 분체의 제조 방법
US20140316058A1 (en) Elastomer Composite with Silica-Containing Filler and Methods to Produce Same
JPS6219441B2 (ko)
JP4334279B2 (ja) エマルジョンポリマーの製造法
WO2009032178A1 (en) An elastomer composite and method for producing it
JP6295374B2 (ja) エラストマー結合剤を含む機能化シリカ
WO2018110825A2 (ko) 열가소성 수지의 제조방법
KR101637063B1 (ko) 수지 분체 및 그 제조방법
CA1059696A (en) Latex coagulation process
CN112277179A (zh) 一种丁苯胶乳天然胶乳并用生胶湿法混炼方法
US10428187B2 (en) Method for producing mixture
WO2014196707A1 (ko) 고분자 라텍스 수지 분체의 제조장치 및 이를 이용한 고분자 라텍스 수지 분체의 제조방법
WO2005095496A1 (ja) ゴム状重合体の製造方法および製造装置
WO2015041443A1 (ko) 염화비닐계 나노복합체 조성물 및 염화비닐계 나노복합체의 제조방법
JP6412491B2 (ja) ウエットマスターバッチの製造方法
JPH0267304A (ja) 乳化重合によって調製されたゴム粉末の回収方法
US2511605A (en) Preparation of chlorinated polymers
KR100337761B1 (ko) 중합체라텍스의응고방법
KR20140141065A (ko) 직렬 스팀 투입에 의한 유화 중합 라텍스의 응집 방법 및 응집 장치
JPH0745592B2 (ja) 重合体ラテツクスからの重合体の分離回収方法
CN115368655A (zh) 专用于氯丁橡胶的硫化体系组合物及其制备方法
JPH0262151B2 (ko)
WO2020130254A1 (ko) 열가소성 수지의 제조방법, 이로부터 제조된 열가소성 수지 및 이를 포함하는 열가소성 수지 조성물
SU207836A1 (ko)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201580001314.6

Country of ref document: CN

REEP Request for entry into the european phase

Ref document number: 2015804296

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015804296

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14900043

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016546733

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15804296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE