WO2016031624A1 - シート状物とその製造方法 - Google Patents

シート状物とその製造方法 Download PDF

Info

Publication number
WO2016031624A1
WO2016031624A1 PCT/JP2015/073106 JP2015073106W WO2016031624A1 WO 2016031624 A1 WO2016031624 A1 WO 2016031624A1 JP 2015073106 W JP2015073106 W JP 2015073106W WO 2016031624 A1 WO2016031624 A1 WO 2016031624A1
Authority
WO
WIPO (PCT)
Prior art keywords
artificial leather
fiber
sheet
sea
ultrafine
Prior art date
Application number
PCT/JP2015/073106
Other languages
English (en)
French (fr)
Inventor
一 西村
行博 松崎
西村 誠
金子 誠
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN201580043989.7A priority Critical patent/CN106661826B/zh
Priority to JP2016545448A priority patent/JP6583276B2/ja
Priority to EP15835034.8A priority patent/EP3187655B1/en
Priority to KR1020177000605A priority patent/KR102407583B1/ko
Priority to US15/504,912 priority patent/US11021838B2/en
Publication of WO2016031624A1 publication Critical patent/WO2016031624A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0004Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using ultra-fine two-component fibres, e.g. island/sea, or ultra-fine one component fibres (< 1 denier)
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0011Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using non-woven fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0015Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using fibres of specified chemical or physical nature, e.g. natural silk
    • D06N3/0036Polyester fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/004Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using flocked webs or pile fabrics upon which a resin is applied; Teasing, raising web before resin application
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/04Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N3/10Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds with styrene-butadiene copolymerisation products or other synthetic rubbers or elastomers except polyurethanes
    • D06N3/106Elastomers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/14Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/28Formation of filaments, threads, or the like while mixing different spinning solutions or melts during the spinning operation; Spinnerette packs therefor
    • D01D5/30Conjugate filaments; Spinnerette packs therefor
    • D01D5/36Matrix structure; Spinnerette packs therefor
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M2101/32Polyesters
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2201/00Chemical constitution of the fibres, threads or yarns
    • D06N2201/02Synthetic macromolecular fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2203/00Macromolecular materials of the coating layers
    • D06N2203/06Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06N2203/068Polyurethanes
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2209/00Properties of the materials
    • D06N2209/16Properties of the materials having other properties
    • D06N2209/1635Elasticity
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N2211/00Specially adapted uses
    • D06N2211/12Decorative or sun protection articles
    • D06N2211/28Artificial leather
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2501/00Wearing apparel
    • D10B2501/04Outerwear; Protective garments
    • D10B2501/043Footwear

Definitions

  • the present invention relates to a sheet-like material having high mechanical properties, flexibility, lightness and quality, and a method for producing the same.
  • a sheet-like material such as artificial leather that have mechanical properties, flexibility, and lightweight properties are required.
  • a sheet-like material such as artificial leather excellent in lightness
  • the fiber structure formed from ultrafine fibers is, for example, generally a fiber structure composed of ultrafine fibers obtained by selectively dissolving and removing only sea components from a fiber structure composed of sea-island type composite fibers. .
  • the fiber structure formed from ultrafine fibers is, for example, generally a fiber structure composed of ultrafine fibers obtained by selectively dissolving and removing only sea components from a fiber structure composed of sea-island type composite fibers.
  • the sea component is selectively removed or by press treatment for adjusting the thickness, the gap between the fibers is greatly increased. Therefore, there has been a problem that sufficient lightness cannot be obtained.
  • a method of using a fiber structure formed from hollow fibers as a sheet-like material is known.
  • an artificial leather including a polyester hollow fiber having an apparent fineness of 2.0 denier, a single hollow portion, and a hollow ratio of 40 to 85% has been proposed (see Patent Document 1).
  • an ultrafine fiber (A) having a single fiber fineness of 0.5 dtex or less and a single fiber fineness of 5 dtex or less and 5 to 50 hollow portions in a cross section, and the total area ratio of the hollow portions is 25 to
  • a base material for artificial leather made of a entangled nonwoven fabric and an elastic polymer has been proposed (see Patent Document 2).
  • an artificial leather base made of a nonwoven fabric and an elastic polymer made of a hollow fiber having 5 to 50 hollow portions in the fiber cross section has been proposed (see Patent Document 3).
  • the fineness was as thick as 3.5 dtex, and the flexibility was poor.
  • an artificial leather made of ultrafine fibers having a single fiber fineness of 0.1 dtex or less and having a hollow portion has been proposed (see Patent Document 4).
  • Japanese Patent No. 3924360 Japanese Unexamined Patent Publication No. 2002-242077 Japanese Patent No. 4004938 Japanese Patent No. 4869462
  • the fibers constituting the hollow artificial leather obtained by the above-mentioned conventional proposal have a single fiber fineness of 0.1 dtex, and the maximum number of hollows is one, and the cross section of the fiber lacks stability. It was.
  • an object of the present invention is to provide a sheet-like material having high mechanical properties, flexibility, lightness, and quality, and a method for manufacturing the same, in view of the above-described problems of the prior art.
  • Another object of the present invention is to provide a silver-coated artificial leather having high mechanical properties, flexibility, light weight, and excellent bending resistance.
  • the present invention solves the above-mentioned problems, and the artificial leather of the present invention comprises a nonwoven fabric and an elastic polymer mainly composed of ultrafine hollow fibers having an average single fiber diameter of 0.05 to 10 ⁇ m.
  • the average single fiber diameter of the ultrafine hollow fiber is in the range of 0.1 to 6 ⁇ m.
  • the sheet material of the present invention is an artificial leather having napping on at least one side.
  • the sheet material of the present invention is silver-tone artificial leather.
  • the ultra-fine hollow fiber used in the present invention is formed from a composite fiber having a structure in which an easily-eluting component sea component is arranged in the easily-eluting component sea component, and the easily-eluting component sea component is further arranged in the island component. can do.
  • a sheet-like material suitable for artificial leather having high mechanical properties / flexibility similar to that of solid fibers and lightness by hollow fibers by applying ultrafine fibers having hollow portions to artificial leather Is obtained.
  • the sheet-like material of the present invention by applying ultrafine fibers having a hollow part to a silver-tone artificial leather, high mechanical properties, flexibility and lightness due to hollow fibers and fibers similar to solid fibers This makes it possible to obtain an artificial leather with a silver tone that is superior in bending resistance and has a quality due to the softening.
  • the sheet-like material of the present invention is a sheet-like material comprising a nonwoven fabric mainly composed of ultrafine hollow fibers having an average single fiber diameter of 0.05 to 10 ⁇ m and an elastic polymer as constituent components, A sheet-like material having 2 to 60 hollow portions.
  • the ultrafine hollow fiber having a hollow portion constituting the sheet-like material of the present invention and forming a nonwoven fabric has an average single fiber diameter in the range of 0.05 to 10 ⁇ m.
  • the average single fiber diameter is 0.05 ⁇ m or more, sufficient mechanical strength can be maintained for the sheet-like material, and when the average single fiber diameter is 10 ⁇ m or less, flexibility in artificial leather can be obtained.
  • a more preferable range of the average single fiber diameter is 0.1 to 6 ⁇ m.
  • Examples of the polymer constituting the ultrafine hollow fiber having a hollow portion that constitutes the sheet-like material of the present invention and forms a nonwoven fabric include polyester, polyamide, polyolefin, polyphenylene sulfide, and the like.
  • Polycondensation polymers typified by polyesters and polyamides often have high melting points, and in the case of physical properties such as mechanical properties when used as sheets of artificial leather using fibers made of these polycondensation polymers. Since it shows a good performance, it is preferably used in the present invention.
  • polyester examples include polyethylene terephthalate, polybutylene terephthalate, and potytrimethylene terephthalate.
  • polyamide examples include nylon 6, nylon 66, nylon 610, nylon 12, and the like.
  • the polymer constituting the ultrafine hollow fiber used in the present invention can contain additives such as particles, flame retardant and antistatic agent.
  • the ultrafine hollow fiber having a hollow portion suitably used for the artificial leather of the present invention includes, for example, a measuring plate having a plurality of measuring holes for measuring a polymer stream of sea island components described in JP-A-2011-174215, It can be produced by using a composite spinneret capable of forming various cross-sectional shapes by combining a distribution plate having a plurality of distribution holes with a merging groove for combining discharged polymer flows from a plurality of metering holes.
  • the number of hollow portions of the ultrafine hollow fiber having hollow portions forming the artificial leather of the present invention is 2 to 60.
  • wall surfaces supports that cross the fiber cross section
  • the rigidity of the ultrafine hollow fibers can be improved as compared with the case of one hollow portion. It becomes possible, and the crushing of the ultrafine hollow fiber can be suppressed.
  • the upper limit of the number of hollow parts is 60 or less when it is obtained by removing an easily eluted component (polymer), it is easy to remove the easily eluted polymer.
  • the number of hollow portions is more preferably in the range of 3 to 40.
  • the surface area is increased as compared with the case where the number of hollows is 0 or 1, so that it is easy to be dyed in a dark color during dyeing.
  • the structure is such that the hollow is not easily crushed while having lightness. .
  • the method for measuring the number of hollow portions in the ultrafine fiber is, for example, observing a cross section perpendicular to the length direction of the ultrafine fiber in the artificial leather at a magnification of 3000 using a scanning electron microscope, and a field of view of 30 ⁇ m ⁇ 30 ⁇ m. The average value of the number of hollows in the diameter of 30 single fibers extracted at random is calculated.
  • the hollow portion may be continuous or discontinuous in the length direction of the ultrafine fiber. From the viewpoint of the surface state and strength, it is preferable that no hollow hole is formed on the side surface of the fiber.
  • a desired shape such as a round shape or a polygonal shape can be taken according to the purpose, but a round shape is preferable from the viewpoint of the shape stability of the fiber cross section.
  • a round shape is preferable from the viewpoint of the shape stability of the fiber cross section.
  • concentric circle shape, a geometric pattern, etc. can be formed.
  • the ultrafine fiber hollow fiber with a hollow part improves the dispersibility of the nap and improves the quality and touch when the nap is formed on the surface of the artificial leather, because the fiber becomes lighter. Becomes better.
  • the ultrafine hollow fiber having a hollow portion forming the nonwoven fabric constituting the artificial leather of the present invention is obtained from a sea-island type composite fiber.
  • the ultrafine hollow fiber used in the present invention has a form in which the sea-island type composite fiber has a more easily soluble seawater component in the island component area in addition to the easily soluble sea (outer sea) component and the hardly soluble island component. It can be obtained by forming a composite fiber, that is, a so-called Nakaumi Irishima type composite fiber.
  • the Nakaumi-Iriumi-island type composite fiber joins, for example, a measuring plate having a plurality of measuring holes for measuring the polymer flow of sea-island components and a discharged polymer flow from the plurality of measuring holes, as described in JP-A-2011-174215. It can be manufactured by using a composite spinneret that can form various cross-sectional shapes by combining a distribution plate having a plurality of distribution holes in the merge groove.
  • the ultrafine fiber having a hollow portion can be obtained by dissolving and removing the outer sea component and the middle sea component with a solvent or the like.
  • the open sea component and the Nakaumi component in the Nakaumi Ikumijima type composite fiber may use the same polymer or different polymers, but from the viewpoint of easy formation of the hollow structure, it is the same as the open sea component or the open sea component. It is a preferred embodiment to use components that are more easily eluted (dissolved).
  • the Nakaumi Irishima-type composite fiber used in the sheet-like material of the present invention preferably has a shrinkage of 10 to 40% at a temperature of 98 ° C., more preferably 12 to 35%.
  • a shrinkage rate within the above range, the quality of the product when used as artificial leather can be improved.
  • the shrinkage rate is measured by first applying a load of 50 mg / dtex to a bundle of composite fibers and marking 30.0 cm (L 0 ). Then, it is treated in hot water at a temperature of 98 ° C. for 10 minutes, the length (L 1 ) before and after the treatment is measured, and (L 0 ⁇ L 1 ) / L 0 ⁇ 100 is calculated. The measurement is carried out three times, and the average value is taken as the shrinkage rate.
  • a nonwoven fabric formed by intertwining a bundle of ultrafine hollow fibers is preferably used from the viewpoints of surface uniformity and strength of the artificial leather.
  • the ultrafine fibers may be somewhat separated from each other, may be bonded or not bonded, may be partially bonded, and the ultrafine fibers are aggregated. It can also take forms.
  • Nonwoven fabrics used in the artificial leather of the present invention include short fiber nonwoven fabrics obtained by forming staple webs using a card or cross wrap and then needle punching or water jet punching, a spunbond method or melt blown.
  • a long-fiber nonwoven fabric obtained by a method or the like, a nonwoven fabric obtained by a papermaking method, or the like can be employed.
  • short fiber nonwoven fabrics and spunbond nonwoven fabrics are preferably used because those having good thickness uniformity and the like can be obtained.
  • a non-woven fabric formed by entanglement of a bundle of ultrafine hollow fibers is preferably used from the viewpoint of surface uniformity and strength of the artificial leather with silver.
  • the ultrafine hollow fibers are somewhat separated from each other, bonded or not bonded, partially bonded, and aggregated with the ultrafine fibers. You can also.
  • the nonwoven fabric constituting the sheet-like material of the present invention can be mixed with other fibers in addition to the ultrafine hollow fibers.
  • other fiber types to be mixed include fibers made of thermoplastic resins such as polyester, polyamide, polyolefin, and polyphenylene sulfide.
  • the single fiber fineness of the composite fiber used in the present invention is preferably in the range of 2 to 10 dtex, more preferably in the range of 3 to 9 dtex, from the viewpoint of entanglement such as the needle punching process.
  • sea-island composite fibers are preferably used from the viewpoints of luxury, quality and touch when used for artificial leather.
  • the nonwoven fabric used in the present invention can be laminated with a woven fabric or a knitted fabric on the nonwoven fabric for the purpose of improving the strength.
  • the nonwoven fabric and the woven or knitted fabric are laminated and integrated with a needle punch, in order to prevent damage to the fibers constituting the woven or knitted fabric by the needle punch, it is preferable that the yarn of the woven or knitted fabric is a strong twisted yarn.
  • the number of twists of the yarn constituting the woven or knitted fabric is preferably in the range of 700 T / m to 4500 T / m.
  • the fiber diameter of the single fiber which comprises a woven / knitted fabric is the same as the fiber diameter of the ultrafine hollow fiber of the nonwoven fabric which consists of an ultrafine hollow fiber, or a fiber with a still thinner fiber diameter can be used.
  • the above-described nonwoven fabric contains an elastic polymer. Due to the binder effect of the elastic polymer, it is possible not only to prevent the ultrafine fibers from falling out of the artificial leather, but also to impart an appropriate cushioning property.
  • polyurethane polyurethane, polyurea, polyurethane / polyurea elastomer, polyacrylic acid, acrylonitrile / butadiene elastomer, styrene / butadiene elastomer, etc.
  • polyurethane is preferred from the viewpoint of flexibility and cushioning properties. Used.
  • polyurethane examples include at least one polymer diol selected from polymer diols such as polyester diol having an average molecular weight of 500 to 3000, polyether diol, polycarbonate diol, or polyester polyether diol, and 4,4′-diphenylmethane.
  • polymer diols such as polyester diol having an average molecular weight of 500 to 3000, polyether diol, polycarbonate diol, or polyester polyether diol, and 4,4′-diphenylmethane.
  • At least one diisocyanate selected from aromatic diisocyanates such as diisocyanates, alicyclic diisocyanates such as isophorone diisocyanate, and aliphatic diisocyanates such as hexamethylene diisocyanate, ethylene glycol, butanediol, ethylenediamine and 4,4 ′ -Polyurethane obtained by reacting at least one low molecular weight compound having two or more active hydrogen atoms such as diaminodiphenylmethane at a predetermined molar ratio and its Modified products thereof.
  • aromatic diisocyanates such as diisocyanates, alicyclic diisocyanates such as isophorone diisocyanate, and aliphatic diisocyanates
  • hexamethylene diisocyanate ethylene glycol, butanediol, ethylenediamine and 4,4 ′ -Polyurethane obtained by reacting at least one low molecular weight compound having two or
  • the mass average molecular weight of the polyurethane elastomer is preferably 50,000 to 300,000.
  • the mass average molecular weight is preferably 50,000 or more, more preferably 100,000 or more, and further preferably 150,000 or more, the strength of the artificial leather can be maintained and the composite fiber can be prevented from falling off. Further, by setting the mass average molecular weight to 300,000 or less, more preferably 250,000 or less, it is possible to suppress the increase in the viscosity of the polyurethane solution and to easily impregnate the nonwoven fabric.
  • the elastic polymer may contain an elastomer resin such as polyester, polyamide, and polyolefin, an acrylic resin, and an ethylene-vinyl acetate resin.
  • an elastomer resin such as polyester, polyamide, and polyolefin, an acrylic resin, and an ethylene-vinyl acetate resin.
  • the elastic polymer used in the present invention may include pigments such as carbon black, dye antioxidants, antioxidants, light-proofing agents, antistatic agents, dispersants, softeners, coagulation modifiers, difficulty if necessary.
  • Additives such as a flame retardant, an antibacterial agent and a deodorant can be blended.
  • the elastic polymer either an elastic polymer dissolved in an organic solvent or an elastic polymer dispersed in water can be used.
  • the content of the elastic polymer is preferably 5 to 200% by mass with respect to the nonwoven fabric in which the ultrafine hollow fibers are entangled.
  • the surface state, cushioning properties, hardness, strength, etc. of the artificial leather can be adjusted.
  • the content is 5% by mass or more, more preferably 20% by mass or more, and still more preferably 30% by mass or more, fiber dropping can be reduced.
  • the content is 200% by mass or less, more preferably 100% by mass or less, and still more preferably 80% by mass or less, a state in which ultrafine fibers are uniformly dispersed on the sheet surface can be obtained.
  • the basis weight of the artificial leather comprising the ultrafine hollow fiber of the present invention is preferably in the range of 100 to 500 g / m 2 .
  • the basis weight is preferably 100 g / m 2 or more, more preferably 150 g / m 2 or more, sufficient form stability and dimensional stability can be obtained for artificial leather.
  • the basis weight is preferably 500 g / m 2 or less, more preferably 300 g / m 2 or less, sufficient flexibility can be obtained for the artificial leather.
  • the basis weight of the sheet-like material before applying the coating layer made of an elastic polymer is preferably in the range of 100 to 1500 g / m 2 .
  • the basis weight is preferably 100 g / m 2 or more, more preferably 150 g / m 2 or more, and further preferably 200 g / m 2 or more, sufficient shape stability and dimensional stability can be obtained for the artificial leather substrate.
  • the basis weight is preferably 1500 g / m 2 or less, more preferably 1200 g / m 2 or less, and even more preferably 1000 g / m 2 or less, the base material artificial leather, and thus, the silver-tone artificial leather is sufficiently flexible. Is obtained.
  • the thickness of the sheet material of the present invention is preferably in the range of 0.1 to 10 mm.
  • the thickness preferably 0.1 mm or more, and preferably 0.3 mm or more, sufficient form stability and dimensional stability can be obtained.
  • sufficient flexibility can be obtained by setting the thickness to preferably 10 mm or less, more preferably 5 mm or less.
  • the sheet-like material of the present invention it is preferable that at least one surface is napped. By doing so, a fine touch can be obtained when a suede-like artificial leather is used.
  • the silver-tone artificial leather of the present invention it is important to form a coating layer (silver surface layer) made of an elastic polymer on the sheet-like material.
  • a coating layer silicone surface layer
  • the same polyurethane as described above is preferably used from the viewpoint of flexibility and cushioning properties.
  • the thickness of the silver layer is preferably in the range of 0.03 to 3 mm, and more preferably in the range of 0.05 to 0.5 mm.
  • the silver-tone artificial leather of the present invention can be further laminated with second and third coating layers (silver surface layers) on the coating layer in order to improve the wear resistance of the product.
  • the thicknesses of the second silver surface layer and the third silver surface layer are preferably in the range of 0.01 to 2 mm, more preferably in the range of 0.02 to 1 mm.
  • the thickness of the silver-tone artificial leather after forming the silver surface layer is preferably in the range of 0.2 to 12 mm, more preferably in the range of 0.4 to 5 mm.
  • thermoplastic resins having different solubility in a solvent or the like are used as a sea component and an island component, Dissolve and remove the components using a solvent, etc., and sea-island type composite fibers that make the island components ultrafine fibers, and multiple thermoplastic resins are arranged alternately in a radial or multi-layer fashion on the fiber cross section, and each component is separated by separation By doing so, it is possible to employ peelable composite fibers that are split into ultrafine fibers.
  • sea-island type composite fibers can be produced.
  • it can be achieved by arranging the distribution holes in the island component of the sea-island type composite fiber so that the mid-sea component can be formed.
  • the fiber entangled body (nonwoven fabric) constituting the sheet-like material of the present invention can obtain a fiber entangled body (nonwoven fabric) by a step of creating a composite fiber web and a step of entanglement the composite fiber web. From the obtained non-woven fabric, the polymer of the easily soluble component of the composite fiber is dissolved or removed or separated or divided by physical or chemical action, and before and / or after raising the fibers,
  • the artificial polymer can be obtained by applying the elastic polymer to the nonwoven fabric, substantially solidifying and solidifying the elastic polymer, and raising the surface to form a nap on the surface and uniformizing the thickness. Artificial leather is obtained through a process of finishing by dyeing.
  • the ultrafine hollow fiber having a hollow portion constituting the sheet-like material of the present invention has 2 to 60 hollow portions in the ultrafine hollow fiber having an average fiber diameter of 0.05 to 10 ⁇ m.
  • the formation of the hollow portion is preferably obtained from a precisely controlled sea-island type composite fiber, and an ultrafine structure having a hollow portion is formed by forming a mid-sea component in the island component of the sea-island type fiber and dissolving and removing the mid-sea component. Hollow fibers can be obtained.
  • the composite fiber used in the present invention is preferably given buckling crimp. This is because buckling crimps improve the entanglement between the fibers when a short fiber nonwoven fabric is formed, and enables high density and high entanglement.
  • a normal stuffing box type crimper is preferably used, but in order to obtain a preferable crimp retention coefficient in the present invention, the processing fineness, crimper temperature, crimper weight and It is a preferable aspect to adjust the indentation pressure and the like as appropriate.
  • the crimp retention coefficient of the ultrafine fiber generating fiber to which buckling crimp is imparted is preferably in the range of 3.5 to 15, more preferably in the range of 4 to 10.
  • the crimp retention coefficient is 3.5 or more, the rigidity in the thickness direction of the nonwoven fabric is improved when the nonwoven fabric is formed, and the entanglement property in the entanglement process such as needle punching can be maintained.
  • the crimp retention coefficient is expressed by the following equation.
  • -Crimp retention coefficient (W / L-L 0 ) 1/2
  • W Crimp extinction load (load when crimp is fully extended: mg / dtex)
  • L Fiber length under crimp extinction load (cm)
  • L 0 Fiber length (cm) under 6 mg / dtex. Mark 30.0 cm.
  • a load of 100 mg / dtex is applied to the sample, and then the load is increased in increments of 10 mg / dtex to confirm the state of crimping.
  • a load is applied until the crimp is fully extended, and the length of the marking (elongation from 30.0 cm) in a state where the crimp is fully extended is measured.
  • Dissolution removal of the sea component of the composite fiber used in the production of the sheet-like material of the present invention and the mid-sea component in the ultrafine fiber is performed before, after applying, and after raising the elastic polymer in the production of artificial leather. This can be done at any later stage.
  • a method for obtaining the nonwoven fabric constituting the sheet-like material of the present invention a method in which the fiber web is entangled with a needle punch or a water jet punch, a spun bond method, a melt blow method, a paper making method, or the like is employed.
  • a method of undergoing a treatment such as needle punching or water jet punching is preferably used for obtaining the above-described ultrafine fiber bundle mode.
  • the non-woven fabric may be formed by laminating and integrating the non-woven fabric and the woven or knitted fabric, and a method of integrating these by needle punch, water jet punch or the like is preferably used.
  • the number of needle barbs is preferably 1-9. By using one or more needle barbs, efficient fiber entanglement becomes possible. On the other hand, by making the needle barb preferably 9 or less, fiber damage can be suppressed.
  • the number of composite fibers such as ultrafine fiber generating fibers caught on the barb is determined by the shape of the barb and the diameter of the composite fiber. Therefore, the barb shape of the needle used in the needle punching process has a kick-up of 0-50 ⁇ m, an undercut angle of 0-40 °, a throat depth of 40-80 ⁇ m, and a throat length of 0.5. Those having a thickness of ⁇ 1.0 mm are preferably used.
  • the number of punching is preferably 1000 to 8000 / cm 2 .
  • the number of punchings is preferably 1000 / cm 2 or more, denseness can be obtained and high-precision finishing can be obtained.
  • the number of punching is preferably 8000 / cm 2 or less, deterioration of workability, fiber damage, and strength reduction can be prevented.
  • the barb direction of the needle of the needle punch is preferably 90 ⁇ 25 ° which is perpendicular to the traveling direction of the woven / knitted fabric and the nonwoven fabric. This makes it difficult to hook easily damaged wefts.
  • water jet punching process it is preferable to perform the water in a columnar flow state. Specifically, it is a preferred embodiment that water is ejected from a nozzle having a diameter of 0.05 to 1.0 mm at a pressure of 1 to 60 MPa.
  • the apparent density of the nonwoven fabric composed of the composite fiber after the needle punching process or the water jet punching process is preferably 0.15 to 0.45 g / cm 3 .
  • the apparent density preferably 0.15 g / cm 3 or more, the artificial leather has sufficient form stability and dimensional stability.
  • the apparent density is preferably 0.45 g / cm 3 or less, a sufficient space for applying the elastic polymer can be maintained.
  • the non-woven fabric made of the Nakaumi-Irishima-type ultrafine fiber generating fiber thus obtained is contracted by dry heat or wet heat or both, and further densified.
  • Solvent that dissolves the sea component and the mid-sea component that forms the hollow portion in the ultra-fine fiber (island component) from the ultra-fine fiber-generating fiber of the composite fiber such as sodium hydroxide if the sea component is polylactic acid or copolymer polyester
  • An aqueous alkali solution can be used. If the Nakaumi component can be dissolved and removed with the same solvent as the sea component, an ultrafine hollow fiber can be produced by a single dissolution treatment, which is a preferable aspect from the simplicity of the process.
  • the ultrafine fiber generation processing can be performed by immersing a nonwoven fabric made of ultrafine fiber generation type fibers in a solvent and squeezing it.
  • ultrafine fiber generation processing known apparatuses such as a continuous dyeing machine, a vibro-washer type seawater removal machine, a liquid dyeing machine, a Wins dyeing machine, and a jigger dyeing machine can be used. Further, the ultrafine fiber generation processing can be performed before the napping treatment or can be performed after the napping treatment.
  • the elastic polymer may be applied before the ultrafine fiber generation processing, or may be applied after the ultrafine fiber generation processing or after forming the hollow portion.
  • N, N'-dimethylformamide, dimethyl sulfoxide, or the like is preferably used as a solvent used when polyurethane is imparted as an elastic polymer, but it should be used as a water-dispersed polyurethane liquid in which polyurethane is dispersed as an emulsion in water. You can also.
  • the elastic polymer is applied to the non-woven fabric by immersing the non-woven fabric in an elastic polymer solution dissolved in a solvent, and then dried to substantially solidify and solidify the elastic polymer.
  • a solvent-based polyurethane solution it can be solidified by immersing it in an insoluble solvent, and in the case of a water-dispersed polyurethane liquid having gelling properties, a dry coagulation method for drying after gelation, etc. Can be solidified. In drying, it is preferable to heat at a temperature that does not impair the performance of the nonwoven fabric and the elastic polymer.
  • the sheet-like material of the present invention it is preferable that at least one surface is raised.
  • the napping treatment can be performed using sandpaper, a roll sander or the like.
  • the napping treatment can be performed using sandpaper, a roll sander or the like.
  • uniform and dense napping can be formed.
  • it is preferable to reduce the grinding load In order to reduce the grinding load, for example, it is more preferable to use multi-stage buffing with three or more buff stages, and set the sandpaper count used in each stage within the range of No. 120 to No. 600 of JIS regulations. It is.
  • the sheet-like material of the present invention can contain functional agents such as dyes, pigments, softeners, pilling inhibitors, antibacterial agents, deodorants, water repellents, light proofing agents, and weathering agents.
  • functional agents such as dyes, pigments, softeners, pilling inhibitors, antibacterial agents, deodorants, water repellents, light proofing agents, and weathering agents.
  • the sheet-like material of the present invention is preferably dyed.
  • a liquid flow dyeing machine is preferably used because it can be softened by adding a stagnation effect simultaneously with dyeing artificial leather.
  • the dyeing temperature is preferably 70 to 140 ° C.
  • a disperse dye is preferably used when the ultrafine hollow fiber is a polyester fiber. Further, reduction washing can be performed after dyeing.
  • finishing treatments such as softeners such as silicone, antistatic agents, water repellents, flame retardants, and light proofing agents can be performed.
  • the finishing treatment can be performed after dyeing or in the same bath as dyeing.
  • a method for forming a coating layer (silver surface layer) made of an elastic polymer a method of coating polyurethane on a sheet-like material or the like can be used.
  • a laminating method in which an adhesive is applied onto a sheet-like material, the sheet-like material and the coating layer are bonded together and dried is also a preferable method.
  • the second and third layers may be laminated on the coating layer, and a conventionally known method can be used for the lamination.
  • the coating amount of the silver layer is preferably in the range of 30 to 300 g / m 2 , more preferably in the range of 50 to 200 g / m 2 .
  • the sheet-like material of the present invention has flexibility, mechanical properties and light weight, it is used for shoes, bags, sports shoes, miscellaneous goods, clothing, automobile interior materials, disc curtains such as CDs and DVDs, polishing cloths, and cleaning. It is suitably used for industrial materials such as tape and wiping cloth. Moreover, it can use suitably as artificial leather with silver by forming silver surfaces, such as a polyurethane, on the surface.
  • Melting point of polymer The melting point of the polymer was determined by using DSC-7 manufactured by Perkin Elmer, Inc., and the peak top temperature at which the polymer melted at 2nd run was determined as the melting point of the polymer. At this time, the rate of temperature increase was 16 ° C./min, and the sample amount was 10 mg. The measurement was performed twice, and the average value was taken as the melting point.
  • MFR Polymer melt flow rate
  • Average single fiber diameter of ultrafine fibers in the sheet-like material The average single fiber diameter was observed in a cross section perpendicular to the thickness direction of the nonwoven fabric containing ultrafine fibers with a scanning electron microscope (VE-7800 manufactured by SEM KEYENCE) at a magnification of 3000, and was not observed within a 30 ⁇ m ⁇ 30 ⁇ m field of view.
  • the diameters of 50 single fibers extracted randomly were measured. However, this was performed at three locations, the diameters of a total of 150 single fibers were measured, and the average value was calculated by rounding off the numbers after the decimal point.
  • the ultrafine fiber has a deformed cross section, first, the cross-sectional area of the single fiber was measured, and the diameter of the single fiber was calculated by calculating the diameter when the cross section was regarded as a circle.
  • Apparent density of sheet-like material The apparent density was measured in terms of basis weight (g / m 2 ) according to JIS L1913 6.2 (2010), and the thickness (mm) was measured by Dial Thickness Gauge Co., Ltd., Ozaki Seisakusho, trade name “Peacock H” (registered trademark). Was measured. The apparent density (g / cm 3 ) was calculated using the basis weight and thickness values.
  • Martindale wear test JIS L1096 (1999) 8.17.5 E method (Martindale method) Evaluation of weight loss of artificial leather after wearing 20000 times in a wear resistance test measured according to furniture load (12 kPa) did. A wear loss of 10.0 mg or less was considered good performance.
  • Product surface quality The obtained artificial leather was subjected to sensory evaluation by sensory evaluation by 20 healthy men and women. The evaluation was that the napped lengths were uniform and the dispersibility of the napped fibers was good, 5 was the best, 1 was the worst, and was judged in increments of 5 to 1. . The evaluation result was 4 or more, and the quality was good. 5: napped lengths, sufficient dispersibility, and good touch. 4: The napped length is slightly disturbed, but the fibers are dispersed and the touch is good. 3: Some parts with long or short nap are mixed and fiber dispersion is slightly poor. 2: Napped fibers are disturbed, many fibers are poorly dispersed, and the touch is also poor. 1: Napped fibers are sparse, fibers are not dispersed, and touch is rough.
  • Flexibility of artificial leather with silver The softness was determined in increments of 5 to 1 according to the tactile sensation when the artificial leather with silver was cut into a circle of ⁇ 250 mm and grasped with the palm. The evaluation result was 4 or more, and the flexibility was good. 5: Having flexibility and moderate rebound. 4: Has flexibility and resilience, but slightly less. 3: Slightly flexible and less repulsive. 2: Inflexible and slightly repulsive. Or There is some flexibility and no rebound. 1: Hard and flexible, with no rebound, and paper-like.
  • Buckling resistance of silver-finished artificial leather For buckling resistance, cut silver-finished artificial leather into a circle of ⁇ 250 mm, fold it in half with the silver surface layer of the circular sample inside, and place a weight of 5 kg on the position 5 cm from the fold. The bent shape generated after standing was visually observed, and judged and evaluated in 0.5 increments from the next 5.0 to 0.0. Evaluation results of 3.5 or more and 5 were evaluated as good wrinkles. 5: No wrinkle generation. 4: Folding wrinkles are slightly visible but are almost inconspicuous and recovered by stretching 3: Wrinkled wrinkles are scattered, but are almost recovered by stretching 2: Folding wrinkles are observed, and slightly recovering by stretching thing. 1: Strong wrinkles are seen, and even if they are stretched, they do not recover.
  • Example 1 ⁇ Raw cotton> (Island component polymer) Polyethylene terephthalate (PET) having a melting point of 260 ° C. and MFR of 46.5 was used.
  • PET polyethylene terephthalate
  • sea-island type composite fiber had a single fiber fineness of 4.2 dtex, an ultrafine fiber diameter of 4.4 ⁇ m, and a shrinkage at a temperature of 98 ° C. of 18.3%.
  • This composite fiber was cut into a fiber length of 51 mm to obtain a raw cotton of sea-island type composite fiber.
  • ⁇ Nonwoven fabric> Using the raw cotton, a laminated fiber web was formed through a card and a cross wrapper process. Next, using a needle punch machine in which one needle having a total barb depth of 0.075 mm was implanted into the obtained laminated fiber web, a needle punch was performed at a needle depth of 7 mm and a number of punches of 2700 / cm 2. And a nonwoven fabric having a basis weight of 750 g / m 2 and an apparent density of 0.236 g / cm 3 was produced.
  • the nonwoven fabric (sea removal sheet) made of ultrafine fibers thus obtained is immersed in a DMF (dimethylformamide) solution of polycarbonate polyurethane having a solid content adjusted to 12%, and then in an aqueous solution having a DMF concentration of 30%. To solidify the polyurethane. Thereafter, PVA and DMF were removed with hot water, and dried with hot air at a temperature of 110 ° C. for 10 minutes to obtain a sheet-like material having a polyurethane mass of 27 mass% with respect to the mass of the ultrafine fibers comprising the island components. .
  • DMF dimethylformamide
  • the half-cut in the thickness direction was performed by a half-cut having an endless band knife, and the non-half-cut face was ground in three steps using a JIS # 150 sandpaper to form napped hair, thereby producing an artificial leather. Furthermore, it dye
  • Example 2 ⁇ Raw cotton> (Island component polymer and sea component polymer) The same island component polymer and sea component polymer used in Example 1 were used.
  • the sea-island composite fiber was used in the same manner as in Example 1 except that the sea-island polymer and the island-component polymer were used, the sea-island composite fiber had a fineness of 6.1 dtex, and the fiber diameter of the ultrafine fiber was 5.5 ⁇ m. Obtained raw cotton.
  • Example 3 ⁇ Raw cotton> (Island component polymer and sea component polymer) The same island component polymer and sea component polymer used in Example 1 were used.
  • each of the 12 islands has 6 islands in the sea, 12 islands / hole, 6 islands / sea island type compound spinneret, A raw material of sea-island type composite fiber was obtained in the same manner as in Example 1 except that the fineness of the composite fiber was 7.5 dtex and the fiber diameter of the ultrafine fiber was 7.0 ⁇ m.
  • Example 4 ⁇ Raw cotton> (Island component polymer and sea component polymer) The same island component polymer and sea component polymer used in Example 1 were used.
  • Example 5 ⁇ Raw cotton> (Island component polymer and sea component polymer) The same island component polymer and sea component polymer used in Example 1 were used.
  • Example 6 ⁇ Raw cotton> (Island component polymer and sea component polymer) The same island component polymer and sea component polymer used in Example 1 were used.
  • each island has 160 islands, and each island has 160 islands / hole, 2 islands / sea island type compound spinneret and sea island type.
  • a raw cotton of sea-island type composite fiber was obtained in the same manner as in Example 1 except that the fineness of the composite fiber was 4.6 tex and the fiber diameter of the ultrafine fiber was 1.5 ⁇ m.
  • Example 7 ⁇ Raw cotton> (Island component polymer) Nylon 6 having a melting point of 220 ° C. and an MFR of 58.0 was used as the island component polymer.
  • Example 8 ⁇ Raw cotton> (Island component polymer) Nylon 610 having a melting point of 220 ° C. and an MFR of 45.0 was used as the island component polymer.
  • Example 9 ⁇ Raw cotton> (Island component polymer) The same island component polymer as used in Example 7 was used.
  • PET obtained by copolymerizing 8.5 mol% of sodium 5-sulfoisophthalate having a melting point of 240 ° C. and an MFR of 100 was used.
  • each of the eight islands has six islands in each island, and the island-and-sea compound spinneret with the number of islands 8 / hole and the number of islands 6 / island
  • a raw cotton of sea-island type composite fiber was obtained in the same manner as in Example 1 except that the fineness of the composite fiber was 11.3 tex and the fiber diameter of the ultrafine fiber was 10.5 ⁇ m.
  • each of the 8 islands has 70 islands in each island, and 8 islands / hole, 70 islands / sea island type composite spinneret with sea island type,
  • a raw cotton of sea-island type composite fiber was obtained in the same manner as in Example 1 except that the fineness of the composite fiber was 11.3 tex and the fiber diameter of the ultrafine fiber was 10.5 ⁇ m.
  • each of the 16 islands has one island's Nakaumi component.
  • a raw cotton of sea-island type composite fiber was obtained in the same manner as in Example 1 except that the fineness of the composite fiber was 4.2 tex and the fiber diameter of the ultrafine fiber was 4.4 ⁇ m.
  • ⁇ Artificial leather> A sheet-like material, artificial leather, and artificial leather (product) were obtained in the same manner as in Example 1 except that the above-described nonwoven fabric was used. The flexibility of the obtained artificial leather (product) was 3 and poor. Further, the Martindale abrasion loss was 6.3 mg, and the surface quality was 4.0. The results are shown in Table 1.
  • the sea island type composite fiber has a fineness of 4.7 tex.
  • a raw cotton of sea-island type composite fiber was obtained in the same manner as in Example 1 except that the fiber diameter of the ultrafine fiber was 4.4 ⁇ m.
  • ⁇ Artificial leather> A sheet-like material, artificial leather, and artificial leather (product) were obtained in the same manner as in Example 1 except that the above-described nonwoven fabric was used. The flexibility of the obtained artificial leather (product) was 3 and poor. Further, the Martindale abrasion loss was 6.0 mg, and the surface quality was 3.6. The results are shown in Table 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Synthetic Leather, Interior Materials Or Flexible Sheet Materials (AREA)
  • Multicomponent Fibers (AREA)

Abstract

 本発明は、高い機械特性、柔軟性、軽量性および品位を備えたシート状物とその製造方法を提供する。 本発明のシート状物は、平均単繊維径が0.05~10μmの範囲の極細中空繊維を主体とする不織布と弾性重合体を構成成分として備えるシート状物であって、前記の極細中空繊維中に中空部を2~60個有するシート状物である。

Description

シート状物とその製造方法
 本発明は、高い機械的特性、柔軟性、軽量性および品位を兼ね備えたシート状物とその製造方法に関するものである。
 靴、鞄およびスポーツシューズ等の用途においては、機械的特性、柔軟性および軽量性を兼ね備えた人工皮革等のシート状物が求められている。軽量性に優れた人工皮革等のシート状物としては、極細繊維から形成された繊維構造体を含むシート状物が古くから知られている。極細繊維から形成された繊維構造体は、例えば、海島型複合繊維からなる繊維構造体から、海成分のみを選択的に溶解除去することにより得られる極細繊維からなる繊維構造体が一般的である。このような方法を用いることにより、極細繊維からなる繊維構造体を得ることはできるが、海成分を選択除去する際、あるいは、厚みを調整するためのプレス処理等によって、繊維間の空隙が大幅に減少するために、軽量性が十分に得られないという課題があった。このような課題を解決するために、中空繊維から形成された繊維構造体をシート状物として用いる方法が知られている。
 具体的に、見かけ繊度が2.0デニールで、中空部が1個で中空率が40~85%のポリエステル系中空繊維を含む人工皮革が提案されている(特許文献1参照。)。
 また、単繊維繊度が0.5デシテックス以下の極細繊維(A)と単繊維繊度が5デシテックス以下で横断面に5~50個の中空部を有し、その中空部の総面積率が25~50%の範囲であり、その中空部1個の占める面積が5%以下の繊維(B)とが、極細繊維(A)/繊維(B)が重量比で20/80~80/20で三次元絡合されている不織布と弾性重合体からなる人工皮革用基材が提案されている(特許文献2参照。)。
 また別に、繊維横断面に5~50個の中空部を有する中空繊維からなる不織布と弾性重合体からなる人工皮革基体が提案されているが(特許文献3参照。)、この提案では、単繊維繊度は3.5デシテックスと太く、柔軟性に乏しいものであった。また別に、単繊維繊度が0.1デシテックス以下で中空部を有する極細繊維からなる人工皮革が提案されている(特許文献4参照。)。
日本特許第3924360号公報 日本特開2002-242077号公報 日本特許第4004938号公報 日本特許第4869462号公報
 しかしながら、上記従来の提案により得られる中空型人工皮革を構成する繊維は、単繊維繊度が0.1デシテックスで、その中空個数は最大で1個であり、繊維断面の安定性に欠けるものであった。
 そこで本発明の目的は、上記従来技術の課題に鑑み、高い機械特性、柔軟性、軽量性、および品位を備えたシート状物とその製造方法を提供することにある。
 また、本発明の他の目的は、高い機械特性、柔軟性、軽量性およびを備え、かつ耐屈曲性に優れた銀付調人工皮革を提供することにある。
 すなわち、本発明は、上記の課題を解決せんとするものであり、本発明の人工皮革は、平均単繊維径が0.05~10μmの極細中空繊維を主体とする不織布と弾性重合体を構成成分として備えるシート状物であって、前記の極細中空繊維中に中空部を2~60個有することを特徴とするシート状物である。
 本発明のシート状物の好ましい態様によれば、前記の極細中空繊維の平均単繊維径は0.1~6μmの範囲である。
 本発明のシート状物の好ましい態様によれば、本発明のシート状物は少なくとも片面に立毛を有する人工皮革である。
 本発明のシート状物の好ましい態様によれば、本発明のシート状物は銀付調人工皮革である。
 本発明で用いられる極細中空繊維は、易溶出成分の海成分中に難溶出成分の島成分を配し、さらに前記島成分中に易溶出成分の海成分を配した構造を有する複合繊維から形成することができる。
 本発明によれば、中空部を有する極細繊維を人工皮革に適用することにより、中実繊維同様の高い機械的特性・柔軟性、中空繊維による軽量性を兼ね備えた人工皮革に好適なシート状物が得られる。
 また、本発明のシート状物によれば、中空部を有する極細繊維を銀付調人工皮革に適用することにより、中実繊維同様の高い機械的特性、柔軟性および中空繊維による軽量性および繊維が柔軟になることによる品位を兼ね備えた耐屈曲性に優れた銀付調人工皮革が得られる。
 本発明のシート状物は、平均単繊維径が0.05~10μmの極細中空繊維を主体とする不織布と弾性重合体を構成成分として備えるシート状物であって、前記の極細中空繊維中に中空部を2~60個有することを特徴とするシート状物である。
 本発明のシート状物を構成し不織布を形成する中空部を有する極細中空繊維は、平均単繊維径が0.05~10μmの範囲であることが重要である。平均単繊維径を0.05μm以上とすることにより、シート状物に十分な機械的強度を維持することができ、また平均単繊維径を10μm以下とすることにより人工皮革における柔軟性が得られる。平均単繊維径のより好ましい範囲は、0.1~6μmの範囲である。
 本発明のシート状物を構成し不織布を形成する、中空部を有する極細中空繊維を構成するポリマーとしては、例えば、ポリエステル、ポリアミド、ポリオレフィンおよびポリフェニレンスルフィド等を挙げることができる。ポリエステルやポリアミドに代表される重縮合系ポリマーは、融点が高いものが多く、これらの重縮合系ポリマーからなる繊維を用いて人工皮革等のシート状物とした場合に、機械特性等の物性において良好な性能を示すことから本発明で好ましく用いられる。
 ポリエステルの具体例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレートおよびポチトリメチレンテレフタレート等を挙げることができる。また、ポリアミドの具体例としては、ナイロン6、ナイロン66、ナイロン610およびナイロン12等を挙げることができる。
 本発明で用いられる極細中空繊維を構成するポリマーには、粒子、難燃剤および帯電防止剤等の添加剤を含有させることができる。
 本発明の人工皮革に好適に用いられる中空部を有する極細中空繊維は、例えば、特開2011-174215号公報に記載の海島成分のポリマー流を、計量する複数の計量孔を有する計量板と、複数の計量孔からの吐出ポリマー流を合流する合流溝に、複数の分配孔を有する分配板を組み合わせることにより、様々な断面形状を形成可能な複合紡糸口金を用いることにより作製することができる。
 本発明の人工皮革を形成する中空部を有する極細中空繊維の中空部の個数は、2~60個であることが重要である。中空部を2個以上とすることにより、各中空部の間に壁面(繊維断面を横切る支え)が形成されるため、中空部が1個の場合よりも極細中空繊維の剛性を向上させることが可能となり、極細中空繊維の潰れを抑制することができる。
 中空部の個数の上限は、易溶出成分(ポリマー)の除去により得る場合は60個以下とすることにより、易溶出ポリマーの除去が容易になる。中空部の個数はより好ましくは、3~40個の範囲である。中空部分が2個以上存在することにより、中空個数が0または1個の場合よりも表面積が増えるため、染色時に濃色に染まりやすい。また、銀付調人工皮革を形成した場合に、軽量性を有しながら、中空がつぶれにくいという構造であることから、耐屈曲性が向上するため製品の耐久性の観点からも好ましい態様である。
 極細繊維中の中空部の個数の測定方法は、例えば、人工皮革中の極細繊維の長さ方向に垂直な断面を、走査型電子顕微鏡を用いて、3000倍で観察し、30μm×30μmの視野内で無作為に抽出した30本の単繊維直径中の中空個数の平均値を算出するものである。
 ここでいう中空部は、極細繊維の長さ方向に連続していても、不連続でもよい。表面状態や強度の観点から、繊維側面には中空からなる穴は形成されていないことが好ましい。
 中空部の断面形状としては、丸型や多角形等、目的に応じて所望の形状をとることができるが、繊維断面の形態安定性の観点から、丸型が好ましい。また、中空部の断面中の配列方法としては、同心円状や、幾何学模様等を形成させることができる。
 また、中空部を有する極細繊中空維は、人工皮革表面に立毛を形成した場合に、繊維が軽量となるため、中空部を有さない場合よりも立毛の分散性が向上し、品位とタッチが良好となる。
 本発明の人工皮革を構成する不織布を形成する中空部を有する極細中空繊維は、海島型複合繊維から得ることが好ましい態様である。本発明で用いられる極細中空繊維は、海島型複合繊維の、易溶性の海(外海)成分と難溶性の島成分に加えて、島成分の区域内部にさらに易溶性の中海成分を有する形態の複合繊維、いわば中海入海島型複合繊維を形成することにより得ることができる。
 中海入海島型複合繊維は、例えば特開2011-174215号公報に記載の、海島成分のポリマー流を計量する複数の計量孔を有する計量板と、複数の計量孔からの吐出ポリマー流を合流する合流溝に複数の分配孔を有する分配板を組み合わせることにより様々な断面形状を形成可能な複合紡糸口金を用いることにより、作製することができる。
 外海成分と中海成分を、溶剤等により溶解除去することにより、中空部分を有する極細繊維を得ることができる。
 中海入海島型複合繊維における外海成分と中海成分は、同一ポリマーを用いることも、それぞれ異なるポリマーを用いても良いが、中空構造形成の容易性の観点から、外海成分と同じか、あるいは外海成分より溶出(溶解)しやすい成分を用いることが好ましい態様である。
 本発明のシート状物で用いられる中海入海島型複合繊維は、98℃の温度における収縮率が、10~40%であることが好ましく、より好ましくは12~35%である。収縮率を上記の範囲とすることにより、人工皮革として用いた場合の製品の品位を向上させることができる。
 収縮率の測定法は、具体的には、まず、複合繊維の束に50mg/dtexの荷重をかけ、30.0cmをマーキングする(L)。その後、98℃の温度の熱水中で10分間処理し、処理前後の長さ(L)を測定し、(L-L)/L×100を算出する。測定は3回実施し、その平均値を収縮率とするものである。
 本発明では、極細中空繊維の束(極細繊維束)が絡合してなる不織布が、人工皮革の表面の均一性と強力等の観点から好ましく用いられる。
 極細繊維束の形態としては、極細繊維同士が多少離れていてもよく、結合していても結合していなくてもよく、部分的に結合していてもよく、極細繊維同士が凝集している形態をとることもできる。
 本発明の人工皮革で用いられる不織布としては、短繊維をカードやクロスラッパーを用いて積層ウェブを形成させた後に、ニードルパンチやウォータジェットパンチを施して得られる短繊維不織布、スパンボンド法やメルトブロー法などから得られる長繊維不織布、および抄紙法で得られる不織布などを採用することができる。中でも、短繊維不織布やスパンボンド不織布は、厚み均一性等が良好なものが得られるため好ましく用いられる。
 本発明では、極細中空繊維の束(極細中空繊維束)が絡合してなる不織布が、銀付調人工皮革の表面の均一性と強力等の観点から好ましく用いられる。
 極細中空繊維束の形態としては、極細中空繊維同士が多少離れていること、結合もしくは結合していないこと、部分的に結合していること、および極細繊維同士が凝集している形態をとることもできる。
 本発明のシート状物を構成する不織布には、前記の極細中空繊維だけでなく、他の繊維を混合させることができる。混合させる他の繊維の種類としては、例えば、ポリエステル、ポリアミド、ポリオレフィンおよびポリフェニレンスルフィド等の熱可塑性樹脂からなる繊維を挙げることができる。
 本発明で用いられる複合繊維の単繊維繊度は、ニードルパンチ工程等の絡合性の観点から、2~10dtexの範囲が好ましく、より好ましくは3~9dtexの範囲である。
 また、本発明で用いられる複合繊維の種類については、後述するように、人工皮革用とした場合の高級感、品位およびタッチ等の観点から、海島型複合繊維が好ましく用いられる。
 本発明で用いられる不織布は、強度を向上させることなどの目的で、不織布に織物や編物を積層し裏張りすることができる。不織布と織編物をニードルパンチで積層一体化する場合には、織編物を構成する繊維のニードルパンチによる損傷を防ぐため、織編物の糸条を強撚糸とすることが好ましい態様である。織編物を構成する糸条の撚数は、700T/m~4500T/mであることが好ましい範囲である。また、織編物を構成する単繊維の繊維径は、極細中空繊維からなる不織布の極細中空繊維の繊維径と同じか、もしくはさらに細い繊維径の繊維を用いることができる。
 本発明のシート状物は、前記した不織布等が弾性重合体を含有していることが重要である。弾性重合体のバインダー効果により、極細繊維が人工皮革から抜け落ちるのを防止することができるだけでなく、適度なクッション性を付与することが可能となる。
 本発明では、弾性重合体として、ポリウレタン、ポリウレア、ポリウレタン・ポリウレアエラストマー、ポリアクリル酸、アクリロニトリル・ブタジエンエラストマーおよびスチレン・ブタジエンエラストマーなどを用いることができるが、柔軟性とクッション性の観点からポリウレタンが好ましく用いられる。
 ポリウレタンとしては、例えば、平均分子量500~3000のポリエステルジオール、ポリエーテルジオール、ポリカーボネートジオール、あるいはポリエステルポリエーテルジオール等のポリマージオール等から選ばれた少なくとも1種類のポリマージオールと、4,4’-ジフェニルメタンジイソシアネート等の芳香族系、イソホロンジイソシアネート等の脂環族系およびヘキサメチレンジイソシアネート等の脂肪族系のジイソシアネート等から選ばれた少なくとも1種類のジイソシアネートと、エチレングリコール、ブタンジオール、エチレンジアミンおよび4,4’-ジアミノジフェニルメタン等の2個以上の活性水素原子を有する少なくとも1種類の低分子化合物を、所定のモル比で反応させて得られたポリウレタンおよびその変性物が挙げられる。
 ポリウレタン系エラストマーの質量平均分子量は、好ましくは50,000~300,000である。質量平均分子量を50,000以上、より好ましくは100,000以上、さらに好ましくは150,000以上とすることにより、人工皮革の強度を保持し、また複合繊維の脱落を防ぐことができる。また、質量平均分子量を300,000以下、より好ましくは250,000以下とすることにより、ポリウレタン溶液の粘度の増大を抑えて不織布への含浸を行いやすくすることができる。
 また、弾性重合体には、ポリエステル系、ポリアミド系およびポリオレフィン系などのエラストマー樹脂、アクリル樹脂、およびエチレン-酢酸ビニル樹脂などを含有させることができる。
 また、本発明で用いられる弾性重合体には、必要に応じてカーボンブラック等の顔料、染料酸化防止剤、酸化防止剤、耐光剤、帯電防止剤、分散剤、柔軟剤、凝固調整剤、難燃剤、抗菌剤および防臭剤などの添加剤を配合させることができる。
 また、弾性重合体としては、有機溶剤中に溶解させてなる弾性重合体でも、水中に分散させてなる弾性重合体でも、いずれも用いることができる。
 弾性重合体の含有率は、極細中空繊維が絡合してなる不織布に対し、5~200質量%であることが好ましい。弾性重合体の含有量によって、人工皮革の表面状態、クッション性、硬度および強度などを調節することができる。含有量が5質量%以上、より好ましくは20質量%以上、さらに好ましくは30質量%以上とすることにより、繊維脱落を少なくすることができる。一方、含有量を200質量%以下、より好ましくは100質量%以下、さらに好ましくは80質量%以下とすることにより、極細繊維がシート表面上に均一分散した状態を得ることができる。
 本発明の極細中空繊維からなる人工皮革の目付は、100~500g/mの範囲であることが好ましい。目付を好ましくは100g/m以上、より好ましくは150g/m以上とすることにより、人工皮革に十分な形態安定性と寸法安定性が得られる。一方、目付を好ましくは500g/m以下、より好ましくは300g/m以下とすることにより、人工皮革に十分な柔軟性が得られる。
 また、銀付調人工皮革とする場合、弾性重合体からなる被覆層を付与する前の段階のシート状物の目付は、100~1500g/mの範囲であることが好ましい。目付を好ましくは100g/m以上、より好ましくは150g/m以上、さらに好ましくは200g/m以上とすることにより、人工皮革基材に十分な形態安定性と寸法安定性が得られる。一方、目付を好ましくは1500g/m以下、より好ましくは1200g/m以下、さらに好ましくは1000g/m以下とすることにより、基材人工皮革、ひいては銀付調人工皮革に十分な柔軟性が得られる。
 本発明のシート状物の厚さは、0.1~10mmの範囲であることが好ましい。厚さを好ましくは0.1mm以上、好ましくは0.3mm以上とすることにより、十分な形態安定性と寸法安定性が得られる。一方、厚さを好ましくは10mm以下、より好ましくは5mm以下とすることにより十分な柔軟性が得られる。
 本発明のシート状物は、少なくとも片面に立毛処理が施されていることが好ましい態様である。このようにすることにより、スエード調人工皮革としたときに緻密なタッチが得られる。
 本発明の銀付調人工皮革は、上記のシート状物上に、弾性重合体からなる被覆層(銀面層)を形成することが重要である。ここで用いられる弾性重合体としては、柔軟性およびクッション性等の観点から、前述したものと同様のポリウレタンが好ましく用いられる。
 銀面層の厚さは、0.03~3mmの範囲であることが好ましく、より好ましくは、0.05~0.5mmの範囲である。
 本発明の銀付調人工皮革は、前記の被覆層上に、製品の耐摩耗性を向上させるために、さらに第2および第3の被覆層(銀面層)を積層させることができる。第2の銀面層と第3の銀面層の厚みは、0.01~2mmの範囲であることが好ましく、より好ましくは、0.02~1mmの範囲である。
 また、銀面層形成後の銀付調人工皮革の厚さは、0.2~12mmの範囲であることが好ましく、より好ましくは0.4~5mmの範囲である。
 次に、本発明のシート状物等とその製造方法について説明する。
 本発明の人工皮革を構成する中空部を有する極細中空繊維を得る方法としては、溶剤等への溶解性の異なる2成分以上の熱可塑性樹脂を海成分と島成分に用い、後工程で、海成分を、溶剤等を用いて溶解除去することによって島成分を極細繊維とする海島型複合繊維や、複数の熱可塑性樹脂を繊維断面に放射状または多層状に交互に配置し、各成分を剥離分割することによって極細繊維に割繊する剥離型複合繊維などを採用することができる。具体的に、前記の特開2011-174215号公報に記載の海島成分のポリマー流を、計量する複数の計量孔を有する計量板と、複数の計量孔からの吐出ポリマー流を合流する合流溝に、複数の分配孔を有する分配板を組み合わせることにより、様々な断面形状を形成可能な複合紡糸口金を用いることにより、海島型複合繊維を作製することができる。本発明の極細中空繊維においては、分配孔を海島型複合繊維の島成分中に、中海成分を形成可能なように配列することにより達成することが可能である。
 本発明のシート状物を構成する繊維絡合体(不織布)は、複合繊維ウェブを作成する工程と、その複合繊維ウェブに絡合処理を施す工程により繊維絡合体(不織布)を得ることができる。得られた不織布から複合繊維の易溶性成分のポリマーを溶解除去あるいは物理的または化学的作用により剥離または分割し、極細繊維化する前および/または後/または起毛処理の後に、ポリウレタンを主成分とした弾性重合体を不織布に付与し、弾性重合体を実質的に凝固し固化させる工程、および起毛処理を施し表面に立毛を形成し厚みを均一化することにより人工皮革を得ることができ、さらに染色加工により仕上げを行う工程を経て人工皮革を得る。
 本発明のシート状物を構成する中空部を有する極細中空繊維は、平均繊維径が0.05~10μmの極細中空繊維中に2~60個の中空部分を有することが重要である。中空部の形成は、精密に制御された海島型複合繊維から得ることが好ましく、海島型繊維の島成分中に中海成分を形成させ、その中海成分を溶解除去することにより、中空部を有する極細中空繊維を得ることができる。
 本発明で用いられる複合繊維は、座屈捲縮が付与されていることが好ましい。それは、座屈捲縮により、短繊維不織布を形成した場合の繊維間の絡合性が向上し、高密度と高絡合化が可能となるためである。複合繊維に座屈捲縮を付与するためには、通常のスタッフィングボックス型のクリンパーが好ましく用いられるが、本発明において好ましい捲縮保持係数を得るためには、処理繊度、クリンパー温度、クリンパー加重および押込み圧力等を適宜調整することが好ましい態様である。
 座屈捲縮が付与された極細繊維発生型繊維の捲縮保持係数としては、3.5~15の範囲であることが好ましく、より好ましくは4~10の範囲である。捲縮保持係数が3.5以上であることにより、不織布を形成した際に不織布の厚み方向の剛性が向上し、ニードルパンチ等の絡合工程における絡合性を維持することが可能である。また、捲縮保持係数を15以下とすることにより、捲縮がかかりすぎることなく、カーディングにおける繊維ウェッブの開繊性に優れる。
ここでいう捲縮保持係数とは、次の式で表されるものである。
・捲縮保持係数=(W/L-L1/2
 W:捲縮消滅荷重(捲縮が伸びきった時点の荷重:mg/dtex)
 L:捲縮消滅荷重下の繊維長(cm)
 L:6mg/dtex下での繊維長(cm)。30.0cmをマーキングする。
 測定の方法としては、まず、試料に100mg/dtexの荷重をかけ、その後、10mg/dtex刻みで荷重を増加させ、捲縮の状態を確認する。捲縮が伸びきるまで荷重を加えていき、捲縮が伸びきった状態における、マーキングの長さ(30.0cmからの伸び)を測定する。
 本発明のシート状物の製造に用いられる複合繊維の海成分および極細繊維中の中海成分の溶解除去は、人工皮革を作製する場合の弾性重合体を付与する前、付与した後、および起毛処理後のいずれの段階で行うことができる。
 本発明のシート状物を構成する不織布を得る方法としては、前述のとおり、繊維ウェブをニードルパンチやウォータジェットパンチにより絡合させる方法、スパンボンド法、メルトブロー法、および抄紙法などを採用することができ、中でも、前述のような極細繊維束の態様とする上で、ニードルパンチやウォータジェットパンチなどの処理を経る方法が好ましく用いられる。
 不織布は、前述のように、不織布と織編物を積層一体化させてもよく、これらをニードルパンチやウォータジェットパンチ等により一体化する方法が好ましく用いられる。
 ニードルパンチ処理に用いられるニードルにおいては、ニードルバーブ(切りかき)の数は好ましくは1~9本である。ニードルバーブを好ましくは1本以上とすることにより、効率的な繊維の絡合が可能となる。一方、ニードルバーブを好ましくは9本以下とすることにより、繊維損傷を抑えることができる。
 バーブに引っかかる極細繊維発生型繊維等の複合繊維の本数は、バーブの形状と複合繊維の直径によって決定される。そのため、ニードルパンチ工程で用いられる針のバーブ形状は、キックアップが0~50μmであり、アンダーカットアングルが0~40°であり、スロートデプスが40~80μmであり、そしてスロートレングスが0.5~1.0mmのものが好ましく用いられる。
 また、パンチング本数は、1000~8000本/cmであることが好ましい。パンチング本数を好ましくは1000本/cm以上とすることにより、緻密性が得られ高精度の仕上げを得ることができる。一方、パンチング本数を好ましくは8000本/cm以下とすることにより、加工性の悪化、繊維損傷および強度低下を防ぐことができる。
 また、織編物と極細繊維発生型繊維からなる不織布を積層一体化する場合、ニードルパンチのニードルのバーブ方向は、織編物と不織布の進行方向に対して好ましくは直行する90±25°とすることにより、損傷しやすい緯糸を引掛けにくくなる。
 また、ウォータジェットパンチ処理を行う場合には、水は柱状流の状態で行うことが好ましい。具体的には、直径0.05~1.0mmのノズルから圧力1~60MPaで水を噴出させることが好ましい態様である。
 ニードルパンチ処理あるいはウォータジェットパンチ処理後の複合繊維からなる不織布の見掛け密度は、0.15~0.45g/cmであることが好ましい。見掛け密度を好ましくは0.15g/cm以上とすることにより、人工皮革が十分な形態安定性と寸法安定性が得られる。一方、見掛け密度を好ましくは0.45g/cm以下とすることにより、弾性重合体を付与するための十分な空間を維持することができる。
 このようにして得られた中海入海島型の極細繊維発生型繊維からなる不織布は、緻密化の観点から、乾熱もしくは湿熱またはその両者によって収縮させ、さらに高密度化することが好ましい態様である。
 複合繊維の極細繊維発生型繊維から海成分および極細繊維(島成分)中の中空部を形成する中海成分を溶解する溶剤としては、海成分がポリ乳酸や共重合ポリエステルであれば水酸化ナトリウム等のアルカリ水溶液を用いることができる。中海成分は、海成分と同様の溶媒で溶解除去できると一度の溶解処理で極細中空繊維が製造できるため、プロセスの簡便性からも好ましい態様である。
 また、極細繊維発生加工(脱海処理)は、溶剤中に極細繊維発生型繊維からなる不織布を浸漬し、窄液することによって行うことができる。
 また、極細繊維発生加工には、連続染色機、バイブロウォッシャー型脱海機、液流染色機、ウィンス染色機およびジッガー染色機等の公知の装置を用いることができる。また、極細繊維発生加工は、立毛処理前に行うことができ、また立毛処理後に行うこともできる。
 弾性重合体は、極細繊維発生加工の前に付与してもよく、極細繊維発生加工の後、または中空部分形成後に付与することもできる。
 弾性重合体としてポリウレタンを付与させる際に用いられる溶媒としては、N,N’-ジメチルホルムアミドやジメチルスルホキシド等が好ましく用いられるが、ポリウレタンを水中にエマルジョンとして分散させた水分散型ポリウレタン液として用いることもできる。
 溶媒に溶解した弾性重合体溶液に、不織布を浸漬する等して弾性重合体を不織布に付与し、その後、乾燥することによって弾性重合体を実質的に凝固し固化させる。溶剤系のポリウレタン溶液の場合は、非溶解性の溶剤に浸漬することにより凝固させることができ、ゲル化性を有する水分散型ポリウレタン液の場合は、ゲル化させた後乾燥する乾式凝固方法等で凝固させることができる。乾燥にあたっては、不織布および弾性重合体の性能が損なわない程度の温度で加熱することが好ましい。
 本発明のシート状物は、少なくとも片面が立毛されていることが好ましい態様である。本発明の銀付調人工皮革については、銀面層形成に先立ち、シート状物の表面の少なくとも片面を立毛させることができる。立毛処理は、サンドペーパーやロールサンダーなどを用いて行うことができる。立毛処理は、サンドペーパーやロールサンダーなどを用いて行うことができる。特に、サンドペーパーを用いることにより、均一かつ緻密な立毛を形成することができる。さらに、シート状物の表面に均一な立毛を形成させるためには、研削負荷を小さくすることが好ましい。研削負荷を小さくするためには、例えば、バフ段数を3段以上の多段バッフィングとし、各段に使用するサンドペーパーの番手を、JIS規定の120番~600番の範囲とすることがより好ましい態様である。
 本発明のシート状物には、例えば、染料、顔料、柔軟剤、ピリング防止剤、抗菌剤、消臭剤、撥水剤、耐光剤および耐候剤等の機能性薬剤を含有させることができる。
 本発明のシート状物には、染色を施すことが好ましい。染色手段としては、人工皮革を染色すると同時に揉み効果を加えて柔軟化できることから、液流染色機が好ましく用いられる。染色温度は、70~140℃の温度であることが好ましい。染料は、極細中空繊維がポリエステル繊維の場合は、分散染料が好ましく用いられる。また、染色後に還元洗浄を行うことができる。
 また、染色の均一性を向上させる目的で、染色時に染色助剤を用いることが好ましい。さらに、シリコーンなどの柔軟剤、帯電防止剤、撥水剤、難燃剤および耐光剤等の仕上げ処理を行うことができる。仕上げ処理は、染色後でも染色と同浴でも行うことができる。
 弾性重合体からなる被覆層(銀面層)の形成方法としては、シート状物上にポリウレタンをコーティングする方法等を用いることができる。シート状物上に接着剤を塗布しシート状物と被覆層とを張り合わせて乾燥させる、ラミネート法も好ましい方法である。また、被覆層上に、耐摩耗性を向上させるために、第2および第3層を積層してもよく、積層の方法は従来公知の方法を用いることができる。銀面層の積層塗布量は、30~300g/mの範囲が好ましく、より好ましくは、50~200g/mの範囲である。
 本発明のシート状物は、柔軟性、機械物性および軽量性をあわせもつため、靴、鞄、スポーツシューズ、雑貨用途、衣料、自動車内装材、CD、DVD等のディスク用カーテン、研磨布、クリーニングテープおよびワイピングクロス等の工業資材用途等として好適に用いられる。また、表面にポリウレタン等の銀面を形成することにより、銀付人工皮革として好適に用いることができる。
 次に、実施例により、本発明のシート状物とその製造方法について説明する。
 [測定方法および評価用加工方法]
 (1)ポリマーの融点:
 融点は、パーキンエルマー社(Perkin Elmaer)製DSC-7を用いて、2nd runでポリマーの溶融を示すピークトップ温度をポリマーの融点とした。このときの昇温速度は16℃/分で、サンプル量は10mgとした。測定は2回行い、その平均値を融点とした。
 (2)ポリマーのメルトフローレイト(MFR):
 試料ペレット4~5gを、MFR計電気炉のシリンダーに入れ、東洋精機製メルトインデクサー(S101)を用いて、荷重2160gf、温度285℃の条件で、10分間に押し出される樹脂の量(g)を測定した。同様の測定を3回繰り返し、平均値をMFRとした。
  (3)シート状物中の極細繊維の平均単繊維径:
 平均単繊維径は、極細繊維を含む不織布の厚み方向に垂直な断面を、走査型電子顕微鏡(SEM キーエンス社製VE-7800型)で、3000倍で観察し、30μm×30μmの視野内で無作為に抽出した50本の単繊維直径を測定した。ただし、これを3ヶ所で行い、合計150本の単繊維の直径を測定し、小数点以下を四捨五入して平均値を算出した。極細繊維が異形断面の場合、まず単繊維の断面積を測定し、当該断面を円形と見立てた場合の直径を算出することによって単繊維の直径を求めた。
  (4)極細繊維中の中空部個数:
  中空部個数は、シート状物中の極細繊維の長さ方向に垂直な断面を、走査型電子顕微鏡(SEM)を用いて、3000倍で観察し、30μm×30μmの視野内で無作為に抽出した30本の単繊維直径中の中空個数の平均値を算出した。
 (5)シート状物の見掛け密度:
 見掛け密度は、JIS L1913 6.2(2010)に準じて目付(g/m)を測定し、ダイヤルシックネスゲージ(株)尾崎製作所、商品名“ピーコックH”(登録商標)により厚み(mm)を測定した。目付と厚みの値を用い、見掛け密度(g/cm)を算出した。
 (6)人工皮革の柔軟性:
 柔軟性は、人工皮革をφ250mmの円形に切断し、手のひらで握ったときの触感により、次の5~1の範囲内の1刻みで判定した。評価結果が4以上で、柔軟性良好とした。
5:柔軟性を有し、かつ適度な反発感があるもの。
4:柔軟性を有し、反発感があるが、若干少ないもの。
3:柔軟性が若干あり、反発感が少ないもの。
2:柔軟性がなく、反発感が若干あるもの。または、
柔軟性が若干あり、反発感のないもの。
1:柔軟性がなく硬く、反発感がなく、ペーパーライクなもの。
 (7)マーチンデール摩耗試験:
 JIS L1096(1999)8.17.5 E法(マーチンデール法)家具用荷重(12kPa)に準じて測定される耐摩耗試験において、20000回の回数を摩耗した後の人工皮革の質量減を評価した。摩耗減量10.0mg以下を、性能良好とした。
 (8)製品の表面品位:
 得られた人工皮革を、健康な男女20名による官能評価によって官能評価を実施した。評価は、立毛長がそろっていること、立毛繊維の分散性が良好なことについて、5が最も良好であるとし、1が最も不良とし、5~1の間の範囲内の1刻みで判定した。評価結果が4以上で、品位良好とした。
5:立毛長がそろっており、分散性が十分でかつ、タッチが良好なもの。
4:立毛長に若干乱れがあるが、繊維が分散しており、タッチも良好なもの。
3:一部立毛が長いまたは短いものが混在しており、繊維の分散が若干不良なもの。
2:立毛繊維に乱れがあり、繊維の分散が不良なものが多く、タッチも悪いもの。
1:立毛繊維がまばらで、繊維が分散しておらず、タッチがざらついているもの。
 (9)銀付人工皮革の柔軟性:
 柔軟性は、銀付人工皮革をφ250mmの円形に切断し、手のひらで握ったときの触感により、次の5~1の範囲内の1刻みで判定した。評価結果が4以上で、柔軟性良好とした。
5:柔軟性を有し、かつ適度な反発感があるもの。
4:柔軟性を有し、反発感があるが、若干少ないもの。
3:柔軟性が若干あり、反発感が少ないもの。
2:柔軟性がなく、反発感が若干あるもの。または、
 柔軟性が若干あり、反発感のないもの。
1:柔軟性がなく硬く、反発感がなく、ペーパーライクなもの。
 (10)銀付調人工皮革の耐座屈性:
 耐座屈性については、銀付調人工皮革をφ250mmの円形に切断し、円形試料の銀面層を内側にして半分に折り、折れ部から5cmの位置に加重5kgの重りを乗せ、1時間静置した後に発生する折り曲げ形状を目視により観察し、次の5.0~0.0の段階の0.5刻みで判定し評価した。評価結果が、3.5以上5のものを折れシワ性良好とした。
5:折れシワの発生のないもの。
4:折れシワが若干見られるがほとんど目立たず、伸ばすことで回復するもの
3:折れシワが散見されるが、伸ばすことでほぼ回復するもの
2:折れシワが見られ、伸ばすことで若干回復するもの。
1:強い折れシワが見られ、伸ばしても回復しないもの。
 [実施例1]
 <原綿>
 (島成分ポリマー)
 融点が260℃で、MFRが46.5のポリエチレンテレフタレート(PET)を用いた。
 (海成分ポリマー)
 JIS K7206に準じて測定したビカット軟化点が100℃で、MFRが120のポリスチレン(PSt)を用いた。
 (紡糸・延伸)
 上記の海成分ポリマーと島成分ポリマーを用い、16島で各島中に4島の中海成分を有する、島数16/ホール、中海数4/島の海島型複合紡糸口金を用いて、紡糸温度が285℃で、島成分/中海成分/海成分の質量比率が55/15/30の条件で溶融紡糸した。
 次いで、85℃の温度の延伸液浴中でトータル倍率が3.0倍となるように2段延伸し、スタッフィングボックス型のクリンパーを用いて捲縮を付与し海島型複合繊維を得た。得られた海島型複合繊維は、単繊維繊度が4.2dtexで、極細繊維の繊維径が4.4μmで、98℃の温度における収縮率は18.3%であった。この複合繊維を繊維長51mmにカットして、海島型複合繊維の原綿を得た。
 <不織布>
 上記の原綿を用い、カードとクロスラッパー工程を経て積層繊維ウェブを形成した。次いで、得られた積層繊維ウェブに、トータルバーブデプスが0.075mmのニードル1本を植込んだニードルパンチ機を用いて、針深度が7mmで、パンチ本数が2700本/cmでニードルパンチを施し、目付が750g/mで、見掛け密度が0.236g/cmの不織布を作製した。
 <人工皮革>
 上記の不織布を98℃の温度の熱水で収縮させた後、これに13%の濃度のPVA(ポリビニルアルコール)水溶液を含浸し、120℃の温度の熱風で10分間乾燥することにより、不織布の質量に対するPVA質量が25質量%の不織布を得た。このようにして得られた不織布を、トリクロロエチレン中に浸漬して海成分を溶解除去し、極細繊維からなる不織布(脱海シート)を得た。このようにして得られた極細繊維からなる不織布(脱海シート)を、固形分濃度を12%に調整したポリカーボネート系ポリウレタンのDMF(ジメチルホルムアミド)溶液に浸漬し、次いでDMF濃度30%の水溶液中でポリウレタンを凝固させた。その後、PVAおよびDMFを熱水で除去し、110℃の温度の熱風で10分間乾燥することにより、島成分からなる前記の極細繊維の質量に対するポリウレタン質量が27質量%のシート状物を得た。その後、エンドレスのバンドナイフを有する半裁により厚み方向に半裁し、非半裁面をJIS#150番のサンドペーパーを用いて3段研削し、立毛を形成させて人工皮革を作製した。さらに、サーキュラー乾燥機を用いて分散染料により染色を行い、人工皮革(製品)を得た。得られた人工皮革(製品)の柔軟性は、5と良好であった。また、マーチンデール摩耗減量は6.5mgで、表面品位は4.7と良好であった。結果を表1に示す。
  <銀付調人工皮革>
 上記の人工皮革の半裁面上に、ポリエーテル系ポリウレタンをナイフコーターにより、付量110g/mとなるようにコーティングし、DMF濃度が30%の水溶液中で凝固させた。その後、剥離紙上に形成した、ポリエーテル・ポリカーボネート系ポリウレタンからなるトップ層(100g/m)を接着剤にて最外層に接着させ、銀付調人工皮革とした。
 得られた銀付調人工皮革の柔軟性は、5と良好であった。また、耐座屈性は、4.5と良好であった。結果を表1に示す。
 [実施例2]
 <原綿>
 (島成分ポリマーと海成分ポリマー)
 実施例1で用いたものと同じ島成分ポリマーと海成分ポリマーを用いた。
 (紡糸・延伸)
 上記の海成分ポリマーと島成分ポリマーを用い、海島型複合繊維の繊度を6.1dtexとし、極細繊維の繊維径を5.5μmとしたこと以外は、実施例1と同様にして海島型複合繊維の原綿を得た。
 <不織布>
 上記の原綿を用い、実施例1と同様にして加工を実施し不織布を作製した。
 <人工皮革>
 上記の不織布を用いたこと以外は、実施例1と同様にしてシート状物、人工皮革および人工皮革(製品)を得た。得られた人工皮革(製品)の柔軟性は、5と良好であった。また、マーチンデール摩耗減量は6.2mgで、表面品位は4.6と良好であった。結果を表1に示す。
 <銀付調人工皮革>
 上記の人工皮革を用いたこと以外は、実施例1と同じ方法で銀付調人工皮革を得た。得られた銀付調人工皮革の柔軟性は、5と良好であった。また、耐座屈性は4.5と良好であった。結果を表1に示す。
 [実施例3]
 <原綿>
 (島成分ポリマーと海成分ポリマー)
 実施例1で用いたものと同じ島成分ポリマーと海成分ポリマーを用いた。
 (紡糸・延伸)
 上記の海成分ポリマーと島成分ポリマーを用い、12島で各島中に6島の中海成分を有する、島数12/ホール、中海数6/島の海島型複合紡糸口金を用いて、海島型複合繊維の繊度を7.5dtexとし、極細繊維の繊維径を7.0μmとしたこと以外は、実施例1と同様にして海島型複合繊維の原綿を得た。
 <不織布>
 上記の原綿を用い、実施例1と同様にして加工を実施し不織布を作製した。
 <人工皮革>
 上記の不織布を用いたこと以外は、実施例1と同様にしてシート状物、人工皮革および人工皮革(製品)を得た。得られた人工皮革(製品)の柔軟性は、4と良好であった。また、マーチンデール摩耗減量は6.0mgで、表面品位は4.1と良好であった。結果を表1に示す。
 <銀付調人工皮革>
 上記の人工皮革を用いたこと以外は、実施例1と同じ方法で銀付調人工皮革を得た。得られた銀付調人工皮革の柔軟性は、4と良好であった。また、耐座屈性は4.5と良好であった。結果を表1に示す。
 [実施例4]
 <原綿>
 (島成分ポリマーと海成分ポリマー)
 実施例1で用いたものと同じ島成分ポリマーと海成分ポリマーを用いた。
 (紡糸・延伸)
 上記の海成分ポリマーと島成分ポリマーを用い、8島で各島中に48島の中海成分を有する、島数8/ホール、中海数48/島の海島型複合紡糸口金を用いて、海島型複合繊維の繊度を7.6dtexとし、極細繊維の繊維径を8.6μmとしたこと以外は、実施例1と同様にして海島型複合繊維の原綿を得た。
 <不織布>
 上記の原綿を用い、実施例1と同様にして加工を実施し不織布を作製した。
 <人工皮革>
上記の不織布を用いたこと以外は、実施例1と同様にしてシート状物、人工皮革および人工皮革(製品)を得た。得られた人工皮革(製品)の柔軟性は、4と良好であった。また、マーチンデール摩耗減量は5.7mgで、表面品位は3.7と良好であった。結果を表1に示す。
 <銀付調人工皮革>
 上記の人工皮革を用いたこと以外は、実施例1と同じ方法で銀付調人工皮革を得た。得られた銀付調人工皮革の柔軟性は、4と良好であった。また、耐座屈性は4.0であった。結果を表1に示す。
 [実施例5]
 <原綿>
 (島成分ポリマーと海成分ポリマー)
 実施例1で用いたものと同じ島成分ポリマーと海成分ポリマーを用いた。
 (紡糸・延伸)
 上記の海成分ポリマーと島成分ポリマーを用い、37島で各島中に3島の中海成分を有する、島数37/ホール、中海数3/島の海島型複合紡糸口金を用いて、海島型複合繊維の繊度を3.1texとし、極細繊維の繊維径を2.5μmとしたこと以外は、実施例1と同様にして海島型複合繊維の原綿を得た。
 <不織布>
 上記の原綿を用い、実施例1と同様にして加工を実施し不織布を作製した。
 <人工皮革>
 上記の不織布を用いたこと以外は、実施例1と同様にしてシート状物、人工皮革および人工皮革(製品)を得た。得られた人工皮革(製品)の柔軟性は、5と良好であった。また、マーチンデール摩耗減量は7.9mgで、表面品位は4.6と良好であった。結果を表1に示す。
 <銀付調人工皮革>
 上記のようにして得られた人工皮革を用いたこと以外は、実施例1と同様にして、銀付調人工皮革を得た。得られた銀付調人工皮革の柔軟性は、5と良好であった。また、耐座屈性は3.5であった。結果を表1に示す。
 [実施例6]
 <原綿>
 (島成分ポリマーと海成分ポリマー)
 実施例1で用いたものと同じ島成分ポリマーと海成分ポリマーを用いた。
 (紡糸・延伸)
 上記の海成分ポリマーと島成分ポリマーを用い、160島で各島中に2島の中海成分を有する、島数160/ホール、中海数2/島の海島型複合紡糸口金を用いて、海島型複合繊維の繊度を4.6texとし、極細繊維の繊維径を1.5μmとしたこと以外は、実施例1と同様にして海島型複合繊維の原綿を得た。
 <不織布>
 上記の原綿を用い、実施例1と同様にして加工を実施し不織布を作製した。
 <人工皮革>
 上記の不織布を用いたこと以外は、実施例1と同様にしてシート状物、人工皮革および人工皮革(製品)を得た。得られた人工皮革(製品)の柔軟性は、4と良好であった。また、マーチンデール摩耗減量は8.9mgで、表面品位は4.5と良好であった。結果を表1に示す。
 <銀付調人工皮革>
 上記の人工皮革を用いたこと以外は、実施例1と同じ方法で銀付調人工皮革を得た。得られた銀付調人工皮革の柔軟性は、4と良好であった。また、耐座屈性は3.5であった。結果を表1に示す。
 [実施例7]
 <原綿>
 (島成分ポリマー)
 融点が220℃で、MFRが58.0のナイロン6を島成分ポリマーとして用いた。
 (海成分ポリマー)
 実施例1で用いたものと同じ海成分ポリマーを用いた。
 (紡糸・延伸)
 上記の海成分ポリマーと島成分ポリマーを用いたこと以外は、実施例1と同様にして海島型複合繊維の原綿を得た。
 <不織布>
 上記の原綿を用い、実施例1と同様にして加工を実施し不織布を作製した。
 <人工皮革>
 上記の不織布を用い、実施例1と同様にして得られた人工皮革を含金染料(“Irgalan”Red 2GL)[チバスペシャリティケミカルズ社製]を4.0%owf、浴比1:100、pH=7、温度90℃、時間60分の条件で染色した後、水洗し乾燥し染色後の人工皮革(製品)を得た。
 得られた人工皮革(製品)の柔軟性は、5と良好であった。また、マーチンデール摩耗減量は7.9mgで、表面品位は4.3と良好であった。結果を表1に示す。
 <銀付調人工皮革>
 上記の人工皮革を用いたこと以外は、実施例1と同じ方法で銀付調人工皮革を得た。得られた銀付調人工皮革の柔軟性は、5と良好であった。また、耐座屈性は3.5であった。結果を表1に示す。
 [実施例8]
 <原綿>
 (島成分ポリマー)
 融点が220℃で、MFRが45.0のナイロン610を島成分ポリマーとして用いた。
 (海成分ポリマー)
 実施例1で用いたものと同じ海成分ポリマーを用いた。
 (紡糸・延伸)
 上記の海成分ポリマーと島成分ポリマーを用いたこと以外は、実施例1と同様にして海島型複合繊維の原綿を得た。
 <不織布>
 上記の原綿を用い、実施例1と同様にして加工を実施し不織布を作製した。
 <人工皮革>
 上記の不織布を用い、実施例7と同様にして、染色後の人工皮革(製品)を得た。
 得られた人工皮革(製品)の柔軟性は、5と良好であった。また、マーチンデール摩耗減量は7.6mgで、表面品位は4.4と良好であった。結果を表1に示す。
 <銀付調人工皮革>
 上記の人工皮革を用いたこと以外は、実施例1と同じ方法で銀付調人工皮革を得た。得られた銀付調人工皮革の柔軟性は、5と良好であった。また、耐座屈性は4.0であった。結果を表1に示す。
 [実施例9]
 <原綿>
 (島成分ポリマー)
 実施例7で用いたものと同じ島成分ポリマーを用いた。
 (海成分ポリマー)
 融点が240℃で、MFRが100の5-スルホイソフタル酸ナトリウムを8.5モル%共重合したPETを用いた。
 (紡糸・延伸)
 上記の海成分ポリマーと島成分ポリマーを用いたこと以外は、実施例1と同様にして海島型複合繊維の原綿を得た。
 <不織布>
 上記の原綿を用い、実施例1と同様にして加工を実施し、不織布を作製した。
 <人工皮革>
 上記の不織布を用い、海成分の溶解除去に90℃の温度に加熱した濃度20g/Lの水酸化ナトリウム水溶液を用いて30分間処理したこと以外は、実施例7と同様にして、染色後の人工皮革を得た。
 得られた人工皮革(製品)の柔軟性は、5と良好であった。また、マーチンデール摩耗減量は8.7mgで、表面品位は4.2と良好であった。結果を表1に示す。
 <銀付調人工皮革>
 上記の人工皮革を用いたこと以外は、実施例1と同様にして、銀付調人工皮革を得た。得られた銀付調人工皮革の柔軟性は、4と良好であった。また、耐座屈性は3.5であった。結果を表1に示す。
 [比較例1]
 <原綿>
 (島成分ポリマーと海成分ポリマー)
 実施例1で用いたものと同じ島成分ポリマーと海成分ポリマーを用いた。
 (紡糸・延伸)
 上記の海成分ポリマーと島成分ポリマーを用い、8島で各島中に6島の中海成分を有する、島数8/ホール、中海数6/島の海島型複合紡糸口金を用いて、海島型複合繊維の繊度を11.3texとし、極細繊維の繊維径を10.5μmとしたこと以外は、実施例1と同様にして海島型複合繊維の原綿を得た。
 <不織布>
 上記の原綿を用い、実施例1と同様にして加工を実施し不織布を作製した。
 <人工皮革>
 上記の不織布を用いたこと以外は、実施例1と同様にしてシート状物、人工皮革および人工皮革(製品)を得た。得られた人工皮革(製品)の柔軟性は、3と不良であった。また、マーチンデール摩耗減量は5.4mgで、表面品位は3.3であった。結果を表1に示す。
 <銀付調人工皮革>
 上記の人工皮革を用いたこと以外は、実施例1と同じ方法で銀付調人工皮革を得た。得られた銀付調人工皮革の柔軟性は、3であり、耐座屈性は3.0であった。結果を表1に示す。
 [比較例2]
 <原綿>
 (島成分ポリマーと海成分ポリマー)
 実施例1で用いたものと同じ島成分ポリマーと海成分ポリマーを用いた。
 (紡糸・延伸)
 上記の海成分ポリマーと島成分ポリマーを用い、8島で各島中に70島の中海成分を有する、島数8/ホール、中海数70/島の海島型複合紡糸口金を用いて、海島型複合繊維の繊度を11.3texとし、極細繊維の繊維径を10.5μmとしたこと以外は、実施例1と同様にして海島型複合繊維の原綿を得た。
 <不織布>
 上記の原綿を用い、実施例1と同様にして加工を実施し不織布を作製した。
 <人工皮革>
 上記の不織布を用いたこと以外は、実施例1と同様にしてシート状物、人工皮革および人工皮革(製品)を得た。得られた人工皮革(製品)の柔軟性は、極細繊維内部の海成分が溶解しきれず、2と不良であった。また、マーチンデール摩耗減量は5.1mgで、表面品位は3.1であった。結果を表1に示す。
 <銀付調人工皮革>
 上記の人工皮革を用いたこと以外は、実施例1と同じ方法で銀付調人工皮革を得た。得られた銀付調人工皮革の柔軟性は、2であり、耐座屈性は、2.5であった。結果を表1に示す。
 [比較例3]
 <原綿>
 (島成分ポリマーと海成分ポリマー)
 実施例1で用いたものと同じ島成分ポリマーと海成分ポリマーを用いた。
 (紡糸・延伸)
 上記の海成分ポリマーと島成分ポリマーを用い、16島で各島中に1島の中海成分を有する、島数16/ホール、中海数1/島の海島型複合紡糸口金を用いて、海島型複合繊維の繊度を4.2texとし、極細繊維の繊維径を4.4μmとしたこと以外は、実施例1と同様にして海島型複合繊維の原綿を得た。
 <不織布>
 上記の原綿を用い、実施例1と同様にして加工を実施し不織布を作製した。
 <人工皮革>
上記の不織布を用いたこと以外は、実施例1と同様にしてシート状物、人工皮革および人工皮革(製品)を得た。得られた人工皮革(製品)の柔軟性は、3と不良であった。また、マーチンデール摩耗減量は6.3mgで、表面品位は4.0であった。結果を表1に示す。
 <銀付調人工皮革>
 上記の人工皮革を用いたこと以外は、実施例1と同じ方法で銀付調人工皮革を得た。得られた銀付調人工皮革の柔軟性は、3であり、耐座屈性は2.0であった。結果を表1に示す。
 [比較例4]
 <原綿>
 (島成分ポリマーと海成分ポリマー)
 実施例1で用いたものと同じ島成分ポリマーと海成分ポリマーを用いた。
 (紡糸・延伸)
 上記の海成分ポリマーと島成分ポリマーを用い、中海成分を有さない、16島成分(中海成分0)/ホールの海島型複合紡糸口金を用いて、海島型複合繊維の繊度を4.7texとし、極細繊維の繊維径を4.4μmとしたこと以外は、実施例1と同様にして海島型複合繊維の原綿を得た。
 <不織布>
 上記の原綿を用い、実施例1と同様にして加工を実施し不織布を作製した。
 <人工皮革>
 上記の不織布を用いたこと以外は、実施例1と同様にしてシート状物、人工皮革および人工皮革(製品)を得た。得られた人工皮革(製品)の柔軟性は、3と不良であった。また、マーチンデール摩耗減量は6.0mgで、表面品位は3.6であった。結果を表1に示す。
 <銀付調人工皮革>
 上記の人工皮革を用いたこと以外は、実施例1と同じ方法で銀付調人工皮革を得た。得られた銀付調人工皮革の柔軟性は、3であり、耐座屈性は2.5であった。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001

Claims (5)

  1.  平均単繊維径が0.05~10μmの範囲の極細中空繊維を主体とする不織布と弾性重合体を構成成分として備えるシート状物であって、前記極細中空繊維の繊維横断面において中空部を2~60個有することを特徴とするシート状物。
  2.  極細中空繊維の平均単繊維径が0.1~6μmの範囲であることを特徴とする請求項1記載のシート状物。
  3.  シート状物が少なくとも片面に立毛を有する人工皮革であることを特徴とする請求項1または2記載のシート状物。
  4.  シート状物が銀付調人工皮革であることを特徴とする請求項1または2記載のシート状物。
  5.  請求項1~4のいずれかに記載のシート状物の製造方法であって、極細中空繊維を、易溶出成分の海成分中に難溶出成分の島成分を配し、さらに前記島成分中に易溶出成分の中海成分を配した構造を有する複合繊維から形成することを特徴とするシート状物の製造方法。
PCT/JP2015/073106 2014-08-28 2015-08-18 シート状物とその製造方法 WO2016031624A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580043989.7A CN106661826B (zh) 2014-08-28 2015-08-18 片状物及其制造方法
JP2016545448A JP6583276B2 (ja) 2014-08-28 2015-08-18 シート状物とその製造方法
EP15835034.8A EP3187655B1 (en) 2014-08-28 2015-08-18 Sheet material and manufacturing method thereof
KR1020177000605A KR102407583B1 (ko) 2014-08-28 2015-08-18 시트 형상물과 그 제조 방법
US15/504,912 US11021838B2 (en) 2014-08-28 2015-08-18 Sheet material and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014173849 2014-08-28
JP2014-173849 2014-08-28
JP2015038805 2015-02-27
JP2015-038805 2015-02-27

Publications (1)

Publication Number Publication Date
WO2016031624A1 true WO2016031624A1 (ja) 2016-03-03

Family

ID=55399520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073106 WO2016031624A1 (ja) 2014-08-28 2015-08-18 シート状物とその製造方法

Country Status (7)

Country Link
US (1) US11021838B2 (ja)
EP (1) EP3187655B1 (ja)
JP (1) JP6583276B2 (ja)
KR (1) KR102407583B1 (ja)
CN (1) CN106661826B (ja)
TW (1) TWI641634B (ja)
WO (1) WO2016031624A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066542A (ja) * 2015-09-29 2017-04-06 東レ株式会社 シート状物およびその製造方法
EP3816343A1 (en) 2019-10-30 2021-05-05 Asahi Kasei Kabushiki Kaisha Artificial leather and production method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109137538A (zh) * 2018-10-19 2019-01-04 江苏尚科聚合新材料有限公司 一种柔软人工皮革及其制备方法
KR102527156B1 (ko) * 2021-05-17 2023-04-27 도레이첨단소재 주식회사 다층구조 멜트블로운 부직포 및 이의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100780A (ja) * 1997-09-29 1999-04-13 Teijin Ltd 高中空ポリエステル系繊維よりなる人工皮革
JP2004204358A (ja) * 2002-12-24 2004-07-22 Kuraray Co Ltd スエード調人工皮革
JP2011214210A (ja) * 2010-03-16 2011-10-27 Toray Ind Inc シート状物およびその製造方法
JP2013194336A (ja) * 2012-03-21 2013-09-30 Kuraray Co Ltd 銀付調人工皮革およびその製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58156012A (ja) * 1982-03-05 1983-09-16 Toray Ind Inc ウルトラファインプラスチックチュ−ブの製法
US4756947A (en) * 1984-06-19 1988-07-12 Toray Industries, Inc. Grained artificial leather having good color fastness of ultrafine polyamide fibers
JPS616306A (ja) * 1985-05-31 1986-01-13 Toray Ind Inc ウルトラフアインプラスチツクチユーブ構造物及びその製法
GB8615517D0 (en) 1986-06-25 1986-07-30 Fusion Equipment Ltd Butt-welding of pipes
US5882794A (en) * 1994-09-30 1999-03-16 E. I. Du Pont De Nemours And Company Synthetic fiber cross-section
JP4065592B2 (ja) * 1997-02-20 2008-03-26 帝人ファイバー株式会社 高中空ポリエステル繊維、これを用いてなる織編物、パイル繊維製品及び不織布構造体並びに中空ポリエステル繊維の製造方法
JP4869462B2 (ja) * 1999-11-02 2012-02-08 株式会社クラレ 人工皮革基体
JP2002242077A (ja) * 2001-02-13 2002-08-28 Kuraray Co Ltd 人工皮革基体およびその製造方法
JP2007002350A (ja) 2005-06-22 2007-01-11 Kuraray Co Ltd 皮革様シート
JP5740877B2 (ja) * 2010-09-10 2015-07-01 東レ株式会社 極細繊維
JP5703785B2 (ja) 2010-01-29 2015-04-22 東レ株式会社 複合口金
JP5443296B2 (ja) * 2010-07-30 2014-03-19 株式会社クラレ 不織布及び人工皮革用基材の製造方法
JP2014065979A (ja) * 2012-09-24 2014-04-17 Kuraray Co Ltd 皮革様シートおよび皮革様シートの製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100780A (ja) * 1997-09-29 1999-04-13 Teijin Ltd 高中空ポリエステル系繊維よりなる人工皮革
JP2004204358A (ja) * 2002-12-24 2004-07-22 Kuraray Co Ltd スエード調人工皮革
JP2011214210A (ja) * 2010-03-16 2011-10-27 Toray Ind Inc シート状物およびその製造方法
JP2013194336A (ja) * 2012-03-21 2013-09-30 Kuraray Co Ltd 銀付調人工皮革およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3187655A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017066542A (ja) * 2015-09-29 2017-04-06 東レ株式会社 シート状物およびその製造方法
EP3816343A1 (en) 2019-10-30 2021-05-05 Asahi Kasei Kabushiki Kaisha Artificial leather and production method therefor

Also Published As

Publication number Publication date
TWI641634B (zh) 2018-11-21
EP3187655A1 (en) 2017-07-05
CN106661826A (zh) 2017-05-10
KR102407583B1 (ko) 2022-06-10
JP6583276B2 (ja) 2019-10-02
CN106661826B (zh) 2020-03-06
KR20170047209A (ko) 2017-05-04
US11021838B2 (en) 2021-06-01
EP3187655A4 (en) 2018-01-10
US20170254018A1 (en) 2017-09-07
JPWO2016031624A1 (ja) 2017-06-15
EP3187655B1 (en) 2023-12-06
TW201619251A (zh) 2016-06-01

Similar Documents

Publication Publication Date Title
JP4419549B2 (ja) 極細短繊維不織布および皮革様シート状物ならびにそれらの製造方法
JP6733673B2 (ja) 皮革様布帛
JP5593379B2 (ja) 皮革様シート
JP6583276B2 (ja) シート状物とその製造方法
KR101644209B1 (ko) 인공 피혁, 필라멘트 낙합 웹 및 그들의 제조 방법
JP6972564B2 (ja) シート状物
JP6613764B2 (ja) 人工皮革およびその製造方法
JP6623646B2 (ja) シート状物
JP6241072B2 (ja) 海島型複合繊維
JP6090156B2 (ja) 複合繊維、人工皮革用基体および人工皮革
JP2006241620A (ja) ヌバック調皮革様シート状物ならびにその製造方法
JP6065440B2 (ja) 人工皮革
JP2018053404A (ja) シート状物
JP6094096B2 (ja) 複合繊維およびそれを用いてなる人工皮革用基体
JP2019060060A (ja) シート状物
JP2019065450A (ja) シート状物
JP5903303B2 (ja) 伸縮性人工皮革
JP5903302B2 (ja) 伸縮性人工皮革
JP2018123443A (ja) 布帛およびその製造方法
JP2018003191A (ja) シート状物およびその製造方法ならびに銀付人工皮革
JP2001192976A (ja) 人工皮革用基材およびその製造方法
JP2016011477A (ja) 人工皮革用基体およびその製造方法
JP2018123437A (ja) 皮革様布帛
JP2013044073A (ja) 人工皮革およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545448

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177000605

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015835034

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15504912

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE