WO2016031529A1 - 鋳物砂処理設備 - Google Patents

鋳物砂処理設備 Download PDF

Info

Publication number
WO2016031529A1
WO2016031529A1 PCT/JP2015/072509 JP2015072509W WO2016031529A1 WO 2016031529 A1 WO2016031529 A1 WO 2016031529A1 JP 2015072509 W JP2015072509 W JP 2015072509W WO 2016031529 A1 WO2016031529 A1 WO 2016031529A1
Authority
WO
WIPO (PCT)
Prior art keywords
sand
chamber
foundry sand
sieve
conveyor
Prior art date
Application number
PCT/JP2015/072509
Other languages
English (en)
French (fr)
Inventor
茂昭 山本
原田 久
Original Assignee
新東工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新東工業株式会社 filed Critical 新東工業株式会社
Priority to BR112017001787A priority Critical patent/BR112017001787A2/pt
Priority to CN201580006329.1A priority patent/CN105939798B/zh
Priority to JP2016545420A priority patent/JP6477711B2/ja
Priority to MX2017000961A priority patent/MX2017000961A/es
Publication of WO2016031529A1 publication Critical patent/WO2016031529A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/14Equipment for storing or handling the dressed mould material, forming part of a plant for preparing such material
    • B22C5/16Equipment for storing or handling the dressed mould material, forming part of a plant for preparing such material with conveyors or other equipment for feeding the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/04Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose by grinding, blending, mixing, kneading, or stirring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/04Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose by grinding, blending, mixing, kneading, or stirring
    • B22C5/0404Stirring by using vibrations while grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/06Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose by sieving or magnetic separating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/08Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose by sprinkling, cooling, or drying

Definitions

  • the present invention relates to a foundry sand treatment facility. More specifically, the present invention relates to a foundry sand treatment facility after the frame is released after casting and the casting is taken out.
  • foundry sand has been mold-molded and unframed (unmolded) after casting, the cast is taken out, and then sand-treated to be used again for mold molding (for example, JP (See Sho 59-229255).
  • JP See Sho 59-229255
  • conventional sand treatment equipment it had various functions before kneading, such as a magnetic separator to remove iron pieces, a rough sieve to remove sand blocks, a sand cooler to cool sand, and a hopper to store sand after cooling.
  • simple substances are arranged at appropriate intervals in the order of processes.
  • the conventional sand treatment facility also requires a single sand transport device (for example, a belt conveyor or a bucket elevator) having the respective functions, and the sand treatment facility as a whole requires a large installation volume. There was a problem. Along with this, there is a problem that the equipment cost becomes high.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a foundry sand treatment facility capable of reducing the facility volume and reducing the facility cost as the entire sand treatment facility.
  • the foundry sand treatment facility is a foundry sand treatment facility that disassembles the frame after casting and further processes the foundry sand after the casting is taken out.
  • Disposed in the lower part of the second chamber and stored in the second chamber Characterized in that it comprises a first conveyor for conveying the serial foundry sand, a.
  • the foundry sand that has been unframed after casting and further taken out of the foundry is supplied to the second chamber from the opening provided in the dividing wall by the sand radiating device.
  • the sand lump formed by agglomeration of the foundry sands contained in the foundry sand is pulverized by the sand radiating device.
  • the foundry sand supplied from the opening to the second chamber comes into contact with the air passing from the air inlet to the suction port, and the foundry sand is cooled.
  • the cooled foundry sand is stored in the second chamber.
  • the foundry sand stored in the second chamber is conveyed to the subsequent process by the first conveyor.
  • the functions of sand lump crushing, sand cooling, and sand storage can be satisfied with one facility, and the facility volume can be reduced.
  • the foundry sand stored in the second chamber can be conveyed by the first conveyor.
  • the sand radiating device includes a comb-toothed endless belt that radiates the foundry sand charged into the first chamber toward the second chamber,
  • the sand radiation is disposed above the endless belt with comb teeth and collides with a solid material of a predetermined size or more that is conveyed by the endless belt with comb teeth, crushes a lump of sand, or pushes back the solid material to emit the sand.
  • a gate plate to be dropped from the apparatus.
  • the sand mass is crushed by the sand radiating device, and the solid matter that is not crushed falls from the sand radiating device without being supplied to the second chamber, and can be collected as foreign matter. .
  • a foundry sand treatment facility includes a first sieve disposed below the sand radiating device in the first chamber, and a first chute disposed outside the first sieve. And a second chute disposed below the first sieve and having a lower end opened on the first conveyor, wherein the first sieve falls out of the foundry sand falling from the sand radiating device.
  • the foundry sand passing through the first chute is conveyed by the first conveyor via the second chute, and the foundry sand falling without passing through the first sieve is collected as foreign matter via the first chute.
  • the foundry sand that has not been supplied to the second chamber by the sand radiating device is charged into the first sieve disposed below the sand radiating device.
  • foundry sand smaller than the opening of the first sieve passes through the first sieve and is conveyed by the first conveyor via the second chute.
  • core glass, etc.” sand lump that could not be crushed by core glass, iron pieces or sand radiating device (hereinafter referred to as “core glass, etc.”), which is larger than the opening of the first sieve, must pass through the first sieve. It falls without being collected and is collected in a collection container such as a container as a foreign substance through the first chute.
  • the foreign matter contained in the foundry sand that has not been supplied to the second chamber by the sand radiating device can be efficiently recovered, and the eye that has not been supplied to the second chamber by the sand radiating device.
  • Fine foundry sand can be conveyed by the first conveyor.
  • the foundry sand treatment facility is characterized by comprising first vibration means for vibrating the first sieve.
  • first vibration means for vibrating the first sieve.
  • the foundry sand treatment facility is disposed so as to surround the front end portion of the first conveyor, and the lower portion is formed at the fork of the first discharge chute and the second discharge chute.
  • the third chute and the third chute are disposed below the front end portion of the first conveyor so as to be rotatable, and the first discharge chute side or the second discharge chute side by being rotated.
  • a second conveyor disposed below the first discharge chute, and the first discharge chute side of the foundry sand thrown in from the first conveyor Foundry sand that has passed through the second sieve located at the second conveyor is conveyed by the second conveyor via the first discharge chute and remains without passing through the second sieve located on the first discharge chute side. Rotate the second sieve with sand And recovering as foreign through the second discharge chute By.
  • the foundry sand transported by the first conveyor is put into the second sieve in the third chute from the front end of the first conveyor in the transport direction.
  • the dust is danced by the impact of the casting sand thrown into the second sieve, but the tip of the first conveyor is surrounded by the third chute, preventing the dust from diffusing out of the third chute.
  • foundry sand smaller than the opening of the second sieve passes through the second sieve and is conveyed by the second conveyor via the first discharge chute.
  • those larger than the opening of the second sieve, such as the core glass do not pass through the second sieve and remain as foreign substances.
  • the foreign matter remaining on the second sieve passes through the second discharge chute by rotating the second sieve toward the second discharge chute after completion of the transfer of the foundry sand by the first conveyor.
  • the foreign matter is collected in a collection container such as a container connected to the second discharge chute. According to this configuration, the foreign matter that has not been completely collected by the first sieve can be efficiently collected, and the foundry sand can be conveyed to a subsequent process.
  • the foundry sand treatment facility is characterized by comprising second vibration means for vibrating the second sieve. According to this structure, since the 2nd sieve vibrates with the 2nd vibration means, while being able to perform sieving with a foundry sand and a foreign material efficiently, clogging of a 2nd sieve can be prevented.
  • the first conveyor is a belt conveyor, and the tip of the first conveyor is a magnet pulley.
  • the iron pieces contained in the foundry sand conveyed by the first conveyor are adsorbed at the tip of the first conveyor by the magnetic force generated by the magnet pulley.
  • the magnet pulley further rotates and the first conveyor advances, the magnetic force of the magnet pulley with respect to the iron piece decreases, so the iron piece separates from the magnet pulley and falls, and passes through the second discharge chute as a foreign object to the container or the like. Collected.
  • the iron piece contained in the foundry sand conveyed by the first conveyor can be efficiently removed.
  • the foundry sand treatment facility is characterized by including a sand loading conveyor for charging the foundry sand into the first chamber. According to this configuration, the foundry sand that has been unframed after casting and further taken out of the cast can be continuously fed into the first chamber by the sand throwing conveyor.
  • the foundry sand processing facility is the sand temperature measuring means for measuring the temperature of the foundry sand conveyed by the sand feeding conveyor, and the casting whose temperature is measured by the sand temperature measuring means. And watering means for watering the sand.
  • the temperature of the foundry sand is measured by the sand temperature measuring means after being unloaded after casting and after the casting is taken out. After that, based on the measured foundry sand temperature, water is sprayed in an amount necessary for cooling the foundry sand. According to this structure, the amount of water required for cooling the foundry sand can be accurately sprayed onto the foundry sand.
  • the suction port is connected to a dust collector, and suction from the suction port is performed by the dust collector. According to this configuration, air can be passed from the air inlet to the suction port with a simple structure and efficiently, and dust generated in the hopper can be collected by the dust collector.
  • the air introduced into the second chamber from the air introduction port by the suction from the suction port is radiated from the sand radiating device to the second chamber.
  • the sand is in contact with the foundry sand, and the flow direction of the air introduced from the air introduction port into the second chamber by the suction from the suction port is radiated from the sand radiating device to the second chamber.
  • the direction is a direction opposite to the radial direction of the foundry sand.
  • the present invention as a whole sand treatment facility, it is possible to provide a foundry sand treatment facility capable of reducing the facility volume and reducing the facility cost.
  • the hopper 1 has a straight body 1-1 having the same cross-sectional shape downward and a lower end of the straight body 1-1 in the sectional side view (FIG. 2).
  • a reduced portion 1-2 that is connected and has a cross-sectional area that decreases in the downward direction.
  • the lower end of the reduced portion 1-2 is open.
  • a dividing wall 8 provided with an opening 9 is provided inside the hopper 1 perpendicular to the bottom surface, and the hopper 1 is divided into a first chamber 1a and a second chamber 1b.
  • a suction port 10 is connected to the partition wall 8 side on the upper surface of the second chamber 1b.
  • the suction port 10 is connected to a dust collector (not shown) that generates suction force.
  • an air introduction port 11 for introducing air into the second chamber 1b is connected to the side surface of the second chamber 1b opposite to the dividing wall 8 in communication.
  • 1st conveyor 12 is arrange
  • a belt conveyor constituted by a first front pulley 12a, a first rear pulley 12b, and a first belt 12c is disposed as the first conveyor 12.
  • the first belt 12c is stretched between the first front pulley 12a and the first rear pulley 12b.
  • the first front pulley 12a is provided with a V belt (not shown) and a V pulley (not shown).
  • a first conveyor drive motor (not shown) is rotatably disposed. By driving the first conveyor drive motor, the first belt 12c rotates in the transport direction (clockwise in FIG. 1). Further, the width of the first conveyor 12 is set so that the casting sand put in from the first chamber 1a and the second chamber 1b in the hopper 1 is efficiently conveyed, It is set to the same level or widely.
  • a gantry 1c is disposed as shown in FIGS. 1 and 2, and the sand radiating device 2 is installed on the gantry 1c.
  • the sand radiating device 2 is a device that radiates sand by rotating an endless belt 22 with comb teeth. Note that “radiating sand” means releasing sand diagonally upward or horizontally.
  • the endless belt 22 with comb teeth in the sand radiating device 2 is stretched between a sand radiating front pulley 23 and a sand radiating rear pulley 24.
  • the sand radiating front pulley 23 has a V belt 25a.
  • the sand radiation motor 25 is rotatably arranged via the V pulleys 25b and 25c.
  • the comb-toothed endless belt 22 rotates in the conveying direction (clockwise in FIG. 3).
  • the comb-toothed endless belt 22 has a plurality of comb teeth 22 a formed in parallel at intervals in the transport direction and the belt width direction.
  • the comb teeth 22a are preferably 10 mm to 30 mm in length and 1 mm to 15 mm in thickness.
  • the interval at which the comb-toothed endless belt 22 is attached in the conveying direction is preferably 20 mm or more and 50 mm or less.
  • the comb teeth 22a are preferably arranged at intervals of 5 mm to 50 mm in the width direction. Furthermore, in this embodiment, the sand radiation front pulley 23 is disposed above the sand radiation rear pulley 24, and the comb-toothed endless belt 22 is disposed to be inclined with respect to the horizontal plane. With this configuration, the sand radiating device 2 can radiate foundry sand obliquely upward. A constant space above the comb-toothed endless belt 22 is provided so as to be covered by the surrounding chute 26.
  • a rotating shaft 27 a is disposed above the sand radiation front pulley 23 in the surrounding chute 26.
  • a plurality of gate plates 27 aligned in the width direction of the endless belt 22 with comb teeth are provided so as to be rotatable about a rotation shaft 27a.
  • one end of each of the plurality of springs 28 is fixed to the upper end portion of each of the plurality of gate plates 27, and the other end of each of the plurality of springs 28 is located downstream of the gate plate 27 in the surrounding chute 26 (right side in FIG. 3). are fixed respectively. Due to the spring 28 and the rotating shaft 27a, the comb-toothed endless belt 22 and the gate plate 27 have a right-angle relationship.
  • the surrounding chute 26 has a stopper shaft (not shown) provided so that the conveying direction of the comb-toothed endless belt 22 and the gate plate 27 are perpendicular to each other. Further, a gap is secured between the lower end of each gate plate 27 and the tip of the comb teeth 22a, and the size of this gap is preferably 3 mm or more and 10 mm or less. In the present embodiment, the size of the gap between the lower end of the gate plate 27 and the tip of the comb tooth 22a is set to 5 mm.
  • a rotary shaft 29a is disposed above the sand radiating rear pulley 24 in the surrounding chute 26, and a plate member 29 is provided to be rotatable about the rotary shaft 29a.
  • the rotation direction of the plate member 29 is the sand radiation front pulley 23 side, and the rotation angle is up to about 90 degrees.
  • a stopper shaft (not shown) is provided so that the conveyance direction of the comb-toothed endless belt 22 and the plate member 29 are in a right angle relationship.
  • a gap is secured between the lower end portion of the plate member 29 and the tip of the comb teeth 22a of the endless belt 22 with comb teeth, and the size of the gap is preferably 3 mm or more and 10 mm or less. In the present embodiment, the size of the gap between the lower end of the plate member 29 and the tip of the comb teeth 22a is set to 5 mm.
  • a sand radiation guide 30 that is plate-shaped and can be rotated on an extension line in the conveyance direction of the comb-toothed endless belt 22, at the front end of the comb-toothed endless belt 22. It is arranged. With the sand radiation guide 30, the radiation angle of the foundry sand radiated from the sand radiation device 2 can be adjusted.
  • the sand throwing conveyor 19 is arranged so that the sand throwing belt 19b goes from the outside of the hopper 1 into the first chamber 1a in the hopper 1 and the leading end in the transport direction is above the endless belt 22 with comb teeth. It is arranged.
  • a sand throwing front pulley 19a disposed above the sand radiating device 2
  • a sand throwing rear pulley (not shown) disposed outside the hopper 1
  • sand throwing A belt conveyor constituted by a sand throwing belt 19b stretched between the front pulley 19a and the sand throwing rear pulley is disposed.
  • a sand throwing conveyor drive motor (not shown) is rotatably disposed on the sand throwing front pulley 19a via a V belt (not shown) and a V pulley (not shown). By driving the sand throwing conveyor drive motor, the sand throwing conveyor 19 rotates in the transport direction (clockwise in FIG. 1).
  • the sand throwing conveyor 19 includes a sand temperature measuring means 20 for measuring the temperature of the foundry sand conveyed by the sand throwing conveyor 19, and a foundry sand whose temperature has been measured by the sand temperature measuring means 20.
  • Watering means 21 for spraying water is disposed.
  • a thermocouple is disposed on the sand loading conveyor 19 as the sand temperature measuring means 20.
  • a known thermometer such as a resistance thermometer or a non-contact thermometer can be used.
  • a nozzle that can spray water into the foundry sand as a shower is disposed on the sand injection conveyor 19 as the water spray means 21.
  • a known device such as a device for spraying water can be used. Further, between the sand temperature measuring means 20 and the watering means 21, as shown in FIG. 1, an operation for determining the watering amount by the watering means 21 based on the sand temperature measured by the sand temperature measuring means 20. Means 20a is connected.
  • a known device having a calculation function such as an IC, a PLC, or a personal computer can be used.
  • the first sieve 3 is configured in a mesh shape, and the width of the opening in the inclination direction is preferably 15 mm or more and 35 mm or less, and the width of the opening in the direction perpendicular to the inclination is 3 mm or more and 10 mm or less. It is preferable to do.
  • variety of the opening of an inclination direction is 25 mm, and the width
  • the inclination angle ⁇ is smaller than 45 degrees, the foreign matter thrown in from the sand radiating device 2 remains on the first sieve 3, and if the inclination angle ⁇ is larger than 60 degrees, the foreign matter and foundry sand are first.
  • the first chute 3 passes through the first chute 5 without being sieved by the sieve 3 and is collected in the foreign matter collecting container 7.
  • the inclination angle ⁇ is 45 degrees.
  • the first vibrating means 4 may be disposed on the first sieve 3.
  • the first vibrating means 4 has a plate member (on the surface opposite to the sand radiating device 2 and a plate member) so that the foreign matter and casting sand introduced from the sand radiating device 2 do not collide with the first vibrating means 4. It is arranged on the first sieve 3 via a not-shown).
  • various means such as an eccentric motor or an air vibration cylinder that generates vibration by a cylinder by inputting air can be used.
  • an eccentric motor is used as the first vibrating means 4.
  • the inclination angle ⁇ of the first sieve 3 is preferably 15 degrees or more and 60 degrees or less.
  • the first chute 5 is respectively disposed from the two lower ends of the mountain-shaped first sieve 3 toward the foreign material collection container 7.
  • the first chute 5 is connected to the reduced portion 5a whose width decreases downward from the lower end of the first sieve 3 and the lower end of the reduced portion 5a, and the conduit portion 5b having the same width downward. And is composed of.
  • the second chute 6 in the first chamber 1 a is disposed below the first sieve 3 and between the pair of first chutes 5. The lower end of the second chute 6 opens on the first conveyor 12.
  • the first front pulley 12 a (the front end portion of the first conveyor 12) in the first conveyor 12 is surrounded by the third chute 13.
  • the third chute 13 is provided with an opening 13c, and the first belt 12c is disposed so as to pass through the opening 13c.
  • the first discharge chute 13a and the second discharge chute 13b are opened at the lower portion of the third chute 13 and are bifurcated.
  • the foundry sand and the like conveyed to the first conveyor 12 usually falls into the opening of the first discharge chute 13a.
  • the first discharge chute 13 a is opened toward the second conveyor 16, and the second discharge chute 13 b is opened toward the foreign material collection container 17.
  • a rotation means 14a is provided between the first discharge chute 13a and the second discharge chute 13b, and the first discharge chute is rotated by the rotation means 14a.
  • a second sieve 14 is disposed on the 13a side or the second discharge chute 13b side.
  • the rotating means 14a rotates the second sieve 14 between the first discharge chute 13a side and the second discharge chute 13b side by, for example, a motor and a gear train.
  • the rotating means 14a may rotate the second sieve 14 with a known device such as a motor and a cam, or hydraulic pressure, an air cylinder, a rack and a gear.
  • the 2nd sieve 14 is comprised by mesh shape, and the magnitude
  • the second vibrating means 15 may be disposed on the second sieve 14.
  • the second vibrating means 15 is disposed at the tip of a bar member 14b provided in the rotating means 14a.
  • various means such as an eccentric motor and an air vibration cylinder that generates vibration by the cylinder by inputting air can be used.
  • an eccentric motor is used as the second vibrating means 15.
  • the first conveyor drive motor, sand radiation motor 25 and sand throwing conveyor drive motor are driven.
  • the dust collector is operated to allow air to pass from the air inlet 11 to the suction port 10.
  • the sand throwing conveyor 19 is unframed after casting and further carrying the foundry sand after taking out the casting from the previous process.
  • the foundry sand transported by the sand throwing conveyor 19 is not only foundry sand, Contains sand lump formed by agglomeration of core glass, iron pieces and foundry sand. Hereinafter, it is also referred to as “cast sand”.
  • the amount (weight) of foundry sand conveyed from the previous process is made almost constant per unit area of the sand loading conveyor 19.
  • the temperature of the foundry sand or the like (open frame sand temperature T1) conveyed by the sand throwing conveyor 19 is measured by the foundry sand coming into contact with a thermocouple as the sand temperature measuring means 20.
  • the measured unframed sand temperature T1 is transmitted to the computing means 20a.
  • the specific heat of the foundry sand, the latent heat of water evaporation, and the temperature of the foundry sand in the second chamber 1b (cooling sand temperature T2) that are arbitrarily set are input in advance to the computing means 20a.
  • the amount of water to be sprinkled per unit area in the sand loading conveyor 19 necessary for lowering the temperature of the foundry sand from the unsealed sand temperature T1 to the cooled sand temperature T2 is calculated by the calculating means 20a. It is calculated by comparing with the latent heat of vaporization. Then, based on the calculated watering amount, water is sprayed from the watering means 21 toward the foundry sand or the like.
  • the endless belt 22 with comb teeth in the sand radiating device 2 is rotating, and sprinkled foundry sand or the like is fed from the sand throwing conveyor 19. Foundry sand or the like thrown into the sand radiating device 2 enters between the plurality of comb teeth 22a, passes between the gate plate 27 and the endless belt 22 with comb teeth, and is radiated toward the second chamber 1b. Also, the sand lump contained in the foundry sand and the like charged into the sand radiating device 2 is crushed by the rotating comb teeth 22a while colliding with the gate plate 27 to be in a sand state. It passes between the toothed endless belts 22 and radiates toward the second chamber 1b.
  • the core dust and the like contained in the foundry sand and the like put into the sand radiating device 2 is a foreign substance, and the sand collides with the gate plate 27 while maintaining the rotation speed of the endless belt 22 with comb teeth. It is bounced out of the surrounding chute 26 in the radiation device 2 and falls onto the first sieve 3.
  • the rotation speed of the endless belt 22 with comb teeth is preferably 2 m / s to 12 m / s. If the rotational speed of the comb-toothed endless belt 22 is slower than 2 m / s, the foundry sand cannot be emitted toward the second chamber 1b. Further, if the rotational speed of the endless belt 22 with comb teeth is faster than 12 m / s, the V belt 25a, the endless belt 22 with comb teeth, the sand radiating front pulley 23, and the sand radiating rear pulley 24 are consumed quickly. Deterioration due to collision with foundry sand and foreign matter is accelerated. In the present embodiment, the rotational speed of the endless belt 22 with comb teeth is 7 m / s.
  • Core dust and the like remaining in the sand radiating device 2 without falling on the first sieve 3 remain on the comb-toothed endless belt 22 with the sand radiating motor 25 stopped.
  • the core glass or the like can be dropped onto the first sieve 3 by rotating the plate member 29 about the rotation shaft 29a.
  • the core plate or the like rotates the gate plate 27 while extending the spring 28 fixed to the upper end portion of the gate plate 27. It is made to move, passing through the gap between the comb teeth 22a and the lower end of the gate plate 27, and radiated toward the second chamber 1b.
  • the core dust and the like emitted here are collected in the foreign material collection container 17 through the second sieve 14 described later.
  • the foundry sand radiated from the sand radiating device 2 enters the second chamber 1b through the opening 9, and is stored there.
  • the casting sand comes into contact with the air passing from the air inlet 11 toward the suction port 10 until it is radiated by the sand radiating device 2 and stored in the second chamber 1b.
  • the water adhering to the foundry sand evaporates and is cooled to the cooling sand temperature T2.
  • the dust that rises when the foundry sand comes into contact with air is collected by a dust collector.
  • the foundry sand stored in the second chamber 1b can impart an aging effect by providing moisture.
  • aging refers to bentonite that is contained in the foundry sand as a caking additive and is stored by giving moisture to bentonite that has been dehydrated by the heat of the molten metal during casting and has reduced caking strength. It means that water is permeated again to restore caking power.
  • the moisture applied to the foundry sand is water sprayed by the sprinkling means 21 and water that has not been evaporated from the foundry sand radiated by the sand projecting device 2.
  • the water for aging the foundry sand is added to the water required for cooling the foundry sand in the watering means 21 described above. Also good.
  • the foreign matter removed from the sand radiating device 2 falls toward the first sieve 3.
  • the foundry sand that adheres to the foreign matter and passes through the first sieve 3 smaller than the opening of the first sieve 3 is sent to the second chute 6 and stored.
  • the foreign matter that is larger than the opening of the first sieve 3 and cannot pass through the first sieve 3 falls and is sent from the first sieve 3 to the first chute 5 and passes through the reduced portion 5a and the conduit portion 5b in the first chute 5. Then, it is recovered into the foreign material recovery container 7.
  • the first sieve 3 When the foreign matter falls from the sand radiating device 2 toward the first sieve 3, the first sieve 3 may be vibrated by the first vibrating means 4. The amplitude and frequency of the first vibration means 4 can be changed according to the situation. The vibration of the first sieve 3 can prevent clogging of the first sieve 3. Moreover, since the foreign matter on the 1st sieve 3 can be easily sent below by the vibration of the 1st sieve 3, the inclination angle of the 1st sieve 3 can be made small.
  • Foundry sand or the like stored in the second chute 6 is conveyed by rotating the first belt 12c in the first conveyor 12, passes between the dividing wall 8 and the first belt 12c, and passes through the second chamber 1b. It is conveyed to. Moreover, the foundry sand stored in the second chamber 1b is conveyed by rotating the first belt 12c in the first conveyor 12, and between the right side surface of the hopper 1 and the first belt 12c shown in FIG. Is passed through the second chute 14 disposed in the third chute 13. At this time, the dust is danced by the impact of the casting sand thrown into the second sieve 14, but since the tip of the first conveyor 12 is surrounded by the third chute 13, the dust diffuses out of the third chute 13. None do.
  • the foundry sand that passes through the second sieve 14 smaller than the opening of the second sieve 14 passes through the first discharge chute 13a and onto the second conveyor 16. Fall. Since the second conveyor 16 is rotating toward the post-processing device (not shown), the foundry sand is conveyed to the post-processing device. On the other hand, the foreign matter that is larger than the opening of the second sieve 14 and cannot pass through the second sieve 14 remains on the second sieve 14. The foreign matter remaining on the second sieve 14 passes through the second discharge chute 13 b and is collected in the foreign matter collection container 17 by rotating the second sieve 14.
  • the post-processing apparatus includes, for example, a kneading apparatus that supplies caking material such as bentonite or water to the foundry sand and then kneads the foundry sand.
  • the second sieve 14 When the casting sand or the like falls from the first conveyor 12 toward the second sieve 14, the second sieve 14 may be vibrated by the second vibrating means 15. The amplitude and frequency of the second vibration means 15 can be changed according to the situation. The clogging of the second sieve 14 can be prevented by the vibration of the second sieve 14.
  • the first front pulley 12a may be a magnet pulley.
  • the fine iron piece in the foundry sand etc. currently conveyed by the 1st conveyor 12 is adsorb
  • the iron piece is separated from the magnet pulley, so that the attracting force due to the magnetic force is reduced.
  • the mountain-shaped first sieve 3 is disposed, but the shape of the first sieve 3 is not limited to the mountain shape.
  • the suction port 10 is connected in communication with the side of the dividing wall 8 on the upper surface of the second chamber 1 b, and the side surface of the air introducing port 11 opposite to the dividing wall 8 in the second chamber 1 b. It is connected in communication.
  • the sand radiating device 2 is installed in the first chamber 1a. Therefore, as shown in FIG. 5, the flow direction of the air (hereinafter referred to as fluid air) introduced from the air introduction port 11 to the second chamber 1 b by suction from the suction port 10 is the second from the sand radiating device 2. It becomes a direction opposite to the radial direction of the foundry sand radiated to the chamber 1b.
  • opposite direction means that in FIG. 1, air flows from right to left and casting sand is radiated from left to right. That is, the angle of each movement direction projected on the horizontal plane is in the range of 90 ° (right angle direction) to 180 ° (directly opposite direction).
  • the contact between the flowing air and the casting sand radiated from the sand radiating device 2 causes heat transfer from the casting sand radiated from the sand radiating device 2 to the flowing air. Furthermore, moisture contained in the foundry sand evaporates. Therefore, the foundry sand radiated from the sand radiating device 2 is cooled. According to this embodiment, since the flowing air and the foundry sand radiated from the sand radiating device 2 are in contact with each other while moving in the opposite direction, the heat from the foundry sand radiated from the sand radiating device 2 to the flowing air. The movement becomes efficient. Moreover, water tends to evaporate from the foundry sand.
  • the dust collector is connected to the suction port 10 and sucks air introduced from the air introduction port 11 into the second chamber 1b. Therefore, compared with the case where the dust collector is not connected to the suction port 10, the flow speed of the fluidized air is increased. That is, the frequency of discharging the air in the second chamber 1b heated by the contact with the casting sand radiated from the sand radiating device 2 from the suction port 10 is increased, and the room temperature air outside the second chamber 1b is air. The frequency of taking in into the 2nd chamber 1b from the inlet 11 becomes high. Therefore, the temperature of the air in the second chamber 1b and the flowing air can always be kept near the temperature outside the second chamber 1b.
  • the temperature of the air in the second chamber 1b and the temperature of the flowing air can always be kept near the temperature outside the second chamber 1b, heat exchange between the foundry sand radiated from the sand radiating device 2 and the air can be performed efficiently. Can do. Moreover, since the temperature of the air in the second chamber 1b and the flowing air can always be kept near the humidity outside the second chamber 1b, the moisture from the foundry sand can be efficiently evaporated.
  • the adjustment board 50 located so that the flow direction of flowing air may be adjusted in the 2nd chamber 1b as needed.
  • the adjustment plate 50 can adjust the flow direction of the flowing air and cool the foundry sand radiated from the sand radiating device 2 efficiently.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Combined Means For Separation Of Solids (AREA)
  • Disintegrating Or Milling (AREA)

Abstract

 砂処理設備全体として、設備容積を小さくすることができると共に設備費用を低減することができる鋳物砂処理設備を提供する。鋳込み後に解枠して、更に鋳物を取り出した後の鋳物砂を処理する、鋳物砂処理設備は、第一室(1a)と第二室(1b)とに分割壁(8)によって分割にされたホッパ(1)と、第一室(1a)の内部に配設されると共に第一室(1a)内に投入された鋳物砂の砂塊を粉砕し、砂塊粉砕後の鋳物砂を放射して前記分割壁(8)に設けられた開口部(9)から第二室(1b)へ供給する砂放射装置(2)と、第二室(1b)に連通接続された空気導入口(11)及び吸引口(10)と、第二室(1b)の下部に配設されると共に、第二室(1b)に貯蔵されている鋳物砂を搬送する第一コンベア(12)と、を備える。これにより、鋳物砂における砂塊粉砕と冷却と貯蔵を一つの設備で行うことができる。

Description

鋳物砂処理設備
 本発明は、鋳物砂処理設備に関する。より詳しくは、鋳込み後に解枠されて鋳物が取り出された後の、鋳物砂処理設備に関する。
 従来、鋳物砂は鋳型造型されて鋳込み後に解枠(解型)され、鋳物が取り出され、その後、砂処理をすることにより、再度鋳型造型に使用されるようになっている(例えば、特開昭59-229255参照)。従来の砂処理設備を見ると、鉄片を除去するマグネットセパレータ、砂塊を除去する荒篩、砂を冷却するサンドクーラー、冷却後の砂を貯蔵するホッパなど、混練前にそれぞれの機能を持った単体が工程順に適宜、間隔をおいて配設されるのが一般的であった。
 しかし、従来の砂処理設備では、それぞれの機能を持った単体間の砂搬送装置(例えば、ベルトコンベアやバケットエレベータ等)も必要になり、砂処理設備全体として、大きな設置容積が必要になるという問題があった。また、それに伴い、設備費用も高額になるという問題があった。
 本発明は、上記問題に鑑みてなされたもので、砂処理設備全体として、設備容積を小さくすることができると共に設備費用を低減することができる鋳物砂処理設備を提供することを目的とする。
 上記の目的を達成するために、本発明の第1の態様に係る鋳物砂処理設備は、鋳込み後に解枠して、更に鋳物を取り出した後の鋳物砂を処理する、鋳物砂処理設備であって、鋳物を取り出した後の鋳物砂を受け入れる第一室と、前記第一室で受け入れた鋳物砂を貯蔵する第二室とに分割壁によって分割されたホッパと、前記第一室の内部に配設されると共に前記第一室内に投入された前記鋳物砂の砂塊を粉砕し、砂塊粉砕後の前記鋳物砂を放射して前記分割壁に設けられた開口部から前記第二室へ供給する砂放射装置と、前記第二室に連通接続された、空気を前記第二室に導入する空気導入口及び前記空気導入口から導入された空気を前記第二室から吸引する吸引口と、前記第二室の下部に配設されると共に、前記第二室に貯蔵されている前記鋳物砂を搬送する第一コンベアと、を備えていることを特徴とする。
 上記鋳物砂処理設備によれば、鋳込み後に解枠して、更に鋳物を取り出した後の鋳物砂は砂放射装置によって、分割壁に設けられた開口部から第二室へ供給される。この際、鋳物砂に含有している、鋳物砂同士が凝集して形成されている砂塊は、砂放射装置によって粉砕される。また、空気が空気導入口から吸引口に向けて通過している。開口部から第二室へ供給される鋳物砂と空気導入口から吸引口に向けて通過している空気とが接触して、鋳物砂が冷却される。さらに冷却された鋳物砂は第二室に貯蔵される。そして、第二室に貯蔵されている鋳物砂は、第一コンベアによって後工程に搬送される。本構成によれば、砂塊粉砕と砂冷却と砂貯蔵の機能を、一つの設備で満たすことができ、設備容積を小さくすることができる。また、第一コンベアにより、第二室に貯蔵されている鋳物砂を搬送することができる。
 本発明の第2の態様に係る鋳物砂処理設備では、前記砂放射装置は、前記第一室内に投入された前記鋳物砂を前記第二室に向けて放射する櫛歯付エンドレスベルトと、前記櫛歯付エンドレスベルトの上方に配置され、前記櫛歯付エンドレスベルトで搬送される所定の大きさ以上の固形物が衝突し、砂塊を破砕し、または、前記固形物を押し戻して前記砂放射装置から落下させる、ゲート板とを備える。上記鋳物砂処理設備によれば、砂放射装置により、砂塊は破砕され、破砕されない固形物は前記第二室に供給されずに、前記砂放射装置から落下し、異物として回収することができる。
 本発明の第3の態様に係る鋳物砂処理設備は、前記第一室における前記砂放射装置の下方に配設された第一篩と、前記第一篩の外側に配設された第一シュートと、前記第一篩の下方に配設され、前記第一コンベア上に下端が開口する第二シュートと、を備えており、前記砂放射装置から落下する前記鋳物砂の内、前記第一篩を通過した鋳物砂は前記第二シュートを介して前記第一コンベアで搬送され、前記第一篩を通過せずに落下した鋳物砂は前記第一シュートを介して異物として回収することを特徴とする。
 上記鋳物砂処理設備によれば、砂放射装置により第二室に供給されなかった鋳物砂は、砂放射装置の下方に配設された第一篩に投入される。ここで、第一篩の目開きよりも小さい鋳物砂は、第一篩を通過し、第二シュートを介して第一コンベアで搬送される。一方、中子ガラや鉄片や砂放射装置で粉砕しきれなかった砂塊等(以降、「中子ガラ等」という)、第一篩の目開きよりも大きいものは、第一篩を通過せずに落下し、第一シュートを介して異物としてコンテナ等の回収容器内に回収される。本構成によれば、砂放射装置により第二室に供給されなかった鋳物砂に含有される異物を、効率良く回収することができると共に、砂放射装置により第二室に供給されなかった目の細かな鋳物砂を、第一コンベアにより搬送することができる。
 本発明の第4の態様に係る鋳物砂処理設備は、前記第一篩を振動させる第一振動手段を備えたことを特徴とする。本構成によれば、第一篩は第一振動手段により振動しているため、鋳物砂と異物との篩分けを効率良く行うことができると共に、第一篩の目詰まりを防ぐことができる。さらに、第一篩上の異物を下流に搬送しやすい。
 本発明の第5の態様に係る鋳物砂処理設備は、前記第一コンベアの先端部を包囲して配設されると共に、下位部が第一排出シュート及び第二排出シュートの二股に形成された第三シュートと、前記第三シュート内における前記第一コンベアの先端部の下方に回動可能に配設されると共に、回動されることにより前記第一排出シュート側又は前記第二排出シュート側に位置する第二篩と、前記第一排出シュートの下方に配設された第二コンベアと、を備えており、前記第一コンベアから投入される前記鋳物砂の内、前記第一排出シュート側に位置した前記第二篩を通過した鋳物砂は前記第一排出シュートを介して前記第二コンベアで搬送され、前記第一排出シュート側に位置した前記第二篩を通過せずに残存した鋳物砂を、前記第二篩を回動させることにより前記第二排出シュートを介して異物として回収することを特徴とする。
 上記鋳物砂処理設備によれば、第一コンベアによって搬送された鋳物砂は、第一コンベアの搬送方向先端部から第三シュートにおける第二篩に投入される。この際、鋳物砂が第二篩に投入された衝撃により粉塵が舞うが、第一コンベアの先端部は第三シュートによって包囲されているため、粉塵が第三シュートの外に拡散することを防止する。第二篩に投入された鋳物砂の内、第二篩の目開きよりも小さい鋳物砂は、第二篩を通過し、第一排出シュートを介して第二コンベアで搬送される。一方、中子ガラ等、第二篩の目開きよりも大きいものは、第二篩を通過せずに異物として残存する。また、第二篩に残存した異物は、第一コンベアによる鋳物砂の搬送終了後、第二篩を第二排出シュート側に回動することにより、第二排出シュートを通過する。そして異物は、第二排出シュートと繋がっているコンテナ等の回収容器内に回収される。本構成によれば、第一篩によって回収しきれていなかった異物を効率良く回収することができると共に、鋳物砂を後工程に搬送することができる。
 本発明の第6の態様に係る鋳物砂処理設備は、前記第二篩を振動させる第二振動手段を備えたことを特徴とする。本構成によれば、第二篩は第二振動手段により振動しているため、鋳物砂と異物との篩分けを効率良く行うことができると共に、第二篩の目詰まりを防ぐことができる。
 本発明の第7の態様に係る鋳物砂処理設備では、前記第一コンベアはベルトコンベアであって、前記第一コンベアの先端部はマグネットプーリであることを特徴とする。
 上記鋳物砂処理設備によれば、第一コンベアによって搬送される鋳物砂に含有している鉄片が、マグネットプーリの発生している磁力により、第一コンベア先端部で吸着される。そこからさらにマグネットプーリが回転し、第一コンベアが進行すると、鉄片に対するマグネットプーリの磁力が低下するため、鉄片はマグネットプーリから分離して落下し、第二排出シュートを介して異物としてコンテナ等に回収される。本構成によれば、第一コンベアにより搬送されてきた鋳物砂に含有している鉄片を、効率良く除去することができる。
 本発明の第8の態様に係る鋳物砂処理設備は、前記第一室内に前記鋳物砂を投入する砂投入コンベアを備えたことを特徴とする。本構成によれば、鋳込み後に解枠して、更に鋳物を取り出した後の鋳物砂を、砂投入コンベアにより連続的に第一室内に投入することができる。
 本発明の第9の態様に係る鋳物砂処理設備は、前記砂投入コンベアによって搬送される前記鋳物砂の温度を測定する砂温度測定手段と、前記砂温度測定手段により温度が測定された前記鋳物砂に散水する散水手段と、を備えたことを特徴とする。
 上記鋳物砂処理設備によれば、砂投入コンベアによって搬送されており、鋳込み後に解枠して、更に鋳物を取り出した後の鋳物砂の温度が砂温度測定手段により測定される。その後、測定した鋳物砂温度に基づいて、鋳物砂を冷却するために必要な量の水を散水する。本構成によれば、鋳物砂を冷却するために必要な量の水を、的確に鋳物砂に散水することができる。
 本発明の第10の態様に係る鋳物砂処理設備では、前記吸引口は集塵機に連通接続されており、前記吸引口からの吸引は前記集塵機によって行うことを特徴とする。本構成によれば、簡便な構造で効率良く、空気導入口から吸引口へ空気を通過させ、ホッパ内に発生した粉塵を集塵機で集塵することができる。
 本発明の第11の態様に係る鋳物砂処理設備では、前記吸引口からの吸引により前記空気導入口から前記第二室に導入される空気が前記砂放射装置から前記第二室に放射される前記鋳物砂と接触するようになっており、前記吸引口からの吸引により前記空気導入口から前記第二室に導入される空気の流れ方向が前記砂放射装置から前記第二室に放射される前記鋳物砂の放射方向と反対方向にされていることを特徴とする。本構成によれば、砂放射装置から第二室に放射される鋳物砂を、吸引口からの吸引により空気導入口から第二室に導入される空気によって、効率良く冷却することができる。
 本発明によれば、砂処理設備全体として、設備容積を小さくすることができると共に設備費用を低減することができる鋳物砂処理設備を提供できる。
 この出願は、日本国で2014年8月29日に出願された特願2014-174669号および2015年3月24日に出願された特願2015-0630384号に基づいており、その内容は本出願の内容として、その一部を形成する。
 また、本発明は以下の詳細な説明により更に完全に理解できるであろう。しかしながら、詳細な説明および特定の実施例は、本発明の望ましい実施の形態であり、説明の目的のためにのみ記載されているものである。この詳細な説明から、種々の変更、改変が、当業者にとって明らかだからである。
 出願人は、記載された実施の形態のいずれをも公衆に献上する意図はなく、開示された改変、代替案のうち、特許請求の範囲内に文言上含まれないかもしれないものも、均等論下での発明の一部とする。
 本明細書あるいは請求の範囲の記載において、名詞及び同様な指示語の使用は、特に指示されない限り、または文脈によって明瞭に否定されない限り、単数および複数の両方を含むものと解釈すべきである。本明細書中で提供されたいずれの例示または例示的な用語(例えば、「等」)の使用も、単に本発明を説明し易くするという意図であるに過ぎず、特に請求の範囲に記載しない限り本発明の範囲に制限を加えるものではない。
一実施形態における鋳物砂処理設備の構成を示す一部断面正面図である。 一実施形態における鋳物砂処理設備の構成を示す一部断面左側面図であり、図1の左側部分の断面図である。 一実施形態における砂放射装置の構成を示す正面図である。 一実施形態における砂放射装置の構成を示す左側面図である。 一実施形態における流動空気の流れ方向と砂放射装置から放射される鋳物砂の放射方向とを示す模式図である。
 本発明の鋳物砂処理設備における実施形態の一例を、添付図面を参照して説明する。以下の説明において上下左右方向は特に断りのない限り図中における方向を指す。なお、本発明は本実施形態の構成に限られず、必要に応じて適宜変更することができる。
 図1及び図2に示すように、ホッパ1は、断面側面図(図2)において、下方に向かって同じ横断面形状を持つ直胴部1-1と、直胴部1-1の下端に連結し、下方に向かって横断面の面積が縮小する縮小部1-2と、を備えており、縮小部1-2下端は開口している。また、開口部9を設けている分割壁8が図1に示すようにホッパ1内部に底面に垂直に設けられており、ホッパ1は第一室1aと第二室1bとに分割される。
 第二室1b上面の分割壁8側には、図1で示すように吸引口10が連通接続されている。また、吸引口10には、吸引力を発生させる集塵機(図示せず)が連通接続されている。さらに、第二室1bにおける分割壁8と反対側の側面には、空気を第二室1bに導入する空気導入口11が連通接続されている。
 第一室1a及び第二室1bの開口する下端の下方には、第一コンベア12が配設されている。本実施形態では、第一コンベア12として、第一フロントプーリ12aと、第一リアプーリ12bと、第一ベルト12cで構成されているベルトコンベアが配設されている。第一ベルト12cは、第一フロントプーリ12aと第一リアプーリ12bの間に張られており、第一フロントプーリ12aには、Vベルト(図示せず)及びVプーリ(図示せず)を介して第一コンベア駆動モータ(図示せず)が回転可能に配設されている。第一コンベア駆動モータを駆動することにより、第一ベルト12cが搬送方向(図1における時計回り)に回転する。さらに、第一コンベア12の幅は、ホッパ1における第一室1a及び第二室1bから投入される鋳物砂を効率良く搬送するため、図2に示す縮小部1-2下端の開口幅hと同程度若しくは広く設定されている。
 ホッパ1における第一室1aには、図1及び図2に示されるように架台1cが配設されており、砂放射装置2が架台1cの上に設置される。砂放射装置2は、櫛歯付エンドレスベルト22を回転することにより、砂を放射する装置である。なお「砂を放射する」とは、斜め上方あるいは水平へ向けて砂を放つことを指す。図3に示されるように、砂放射装置2における櫛歯付エンドレスベルト22は、砂放射フロントプーリ23と砂放射リアプーリ24の間に張られており、砂放射フロントプーリ23には、Vベルト25a及びVプーリ25b・25cを介して砂放射モータ25が回転可能に配設されている。砂放射モータ25を駆動させることにより、櫛歯付エンドレスベルト22が搬送方向(図3における時計回り)に回転する。また、図3に示されるように、櫛歯付エンドレスベルト22には複数の櫛歯22aが、搬送方向及びベルト幅方向において、間隔を置いて平行に形成されている。櫛歯22aについて、長さは10mm以上30mm以下、太さは1mm以上15mm以下が好適である。櫛歯付エンドレスベルト22の搬送方向に取付けられる間隔は20mm以上50mm以下が好適である。櫛歯22aは幅方向には5mm以上50mm以下の間隔で配列されるのが好ましい。さらに、本実施形態では、砂放射フロントプーリ23は砂放射リアプーリ24よりも上方に配設されており、櫛歯付エンドレスベルト22は水平面に対して傾斜して配設されている。この構成により、砂放射装置2は鋳物砂を斜め上方向に放射することができる。そして、櫛歯付エンドレスベルト22の上方における一定空間は、包囲シュート26によって、覆うように設けられている。
 図3および図4に示されるように、包囲シュート26における砂放射フロントプーリ23上方には回転軸27aが配設されている。櫛歯付エンドレスベルト22の幅方向に整列した複数のゲート板27が回転軸27aを中心に回動可能に設けられている。また、複数のゲート板27の上端部には複数のばね28の一端がそれぞれ固定されており、包囲シュート26におけるゲート板27より下流側(図3の右側)には複数のばね28の他端がそれぞれ固定されている。ばね28及び回転軸27aにより、櫛歯付エンドレスベルト22とゲート板27は直角関係となる。本実施形態では包囲シュート26に、櫛歯付エンドレスベルト22の搬送方向とゲート板27が直角関係となるように設けられているストッパ軸(図示せず)が存在する。さらに、それぞれのゲート板27における下端部と櫛歯22a先端とは隙間が確保されており、この隙間の大きさは3mm以上10mm以下が好適である。本実施形態において、ゲート板27における下端部と櫛歯22a先端との隙間の大きさは5mmに設定されている。
 また、図3に示されるように、包囲シュート26における砂放射リアプーリ24上方には回転軸29aが配設されており、板部材29が回転軸29aを中心に回動可能に設けられている。本実施形態において、板部材29の回動方向は砂放射フロントプーリ23側であり、回動角度は90度程度までである。また、本実施形態において、櫛歯付エンドレスベルト22の搬送方向と板部材29が直角関係となるように、ストッパ軸(図示せず)が設けられている。さらに、板部材29における下端部と櫛歯付エンドレスベルト22における櫛歯22a先端とは隙間が確保されており、この隙間の大きさは3mm以上10mm以下が好適である。本実施形態において、板部材29における下端部と櫛歯22a先端との隙間の大きさは5mmに設定されている。
 櫛歯付エンドレスベルト22における搬送方向先端部には、図3に示されるように、櫛歯付エンドレスベルト22における搬送方向の延長線上に、板形状であって回動可能な砂放射ガイド30が配設されている。砂放射ガイド30により、砂放射装置2から放射される鋳物砂の放射角度を調整することができる。
 図1に示されるホッパ1の左側面には、開口部18が設けられている。また砂投入ベルト19bが、ホッパ1の外からホッパ1における第一室1a内に向かうように、且つ、搬送方向先端部が櫛歯付エンドレスベルト22の上方にくるように、砂投入コンベア19が配設されている。本実施形態では、砂投入コンベア19として、砂放射装置2の上方に配設された砂投入フロントプーリ19aと、ホッパ1の外部に配設された砂投入リアプーリ(図示せず)と、砂投入フロントプーリ19aと砂投入リアプーリの間に張られている砂投入ベルト19bによって構成されているベルトコンベアが配設されている。さらに、砂投入フロントプーリ19aには、Vベルト(図示せず)及びVプーリ(図示せず)を介して砂投入コンベア駆動モータ(図示せず)が回転可能に配設されている。砂投入コンベア駆動モータを駆動させることにより、砂投入コンベア19が搬送方向(図1における時計回り)に回転する。
 砂投入コンベア19には、図1に示されるように、砂投入コンベア19によって搬送される鋳物砂の温度を測定する砂温度測定手段20と、砂温度測定手段20により温度が測定された鋳物砂に散水する散水手段21と、が配設されている。本実施形態において、砂温度測定手段20として、砂投入コンベア19上に熱電対が配設されている。なお、砂温度測定手段20としては、抵抗温度計、非接触温度計等、公知の温度計を用いることができる。また散水手段21として、鋳物砂へシャワー状に散水することができるノズルが砂投入コンベア19上に配設されている。なお、散水手段21としては、水を噴霧する装置等、公知の装置を用いることができる。さらに、砂温度測定手段20と散水手段21との間には、図1に示されるように、砂温度測定手段20によって測定された砂温度に基づいて、散水手段21による散水量を決定する演算手段20aが接続されている。演算手段20aとしては、IC、PLC、パーソナルコンピュータ等、演算機能を有する公知の装置を用いることができる。
 第一室1aにおける砂放射装置2の下方には、図2に示すように山形の第一篩3が配設されている。第一篩3は網目状に構成されており、傾斜方向の目開きの幅は、15mm以上35mm以下とすることが好適であり、傾斜と垂直方向の目開きの幅は、3mm以上10mm以下とすることが好適である。本実施形態の第一篩3について、傾斜方向の目開きの幅は25mmであり、傾斜と垂直方向の目開きの幅は5mmである。また、水平面に対する第一篩3の傾斜角度αは、45度以上60度以下が好適である。45度よりも傾斜角度αが小さいと、砂放射装置2から投入された異物が第一篩3上に残存してしまい、60度よりも傾斜角度αが大きいと、異物及び鋳物砂が第一篩3により篩分けられることなく第一篩3から第一シュート5を通過し、異物回収コンテナ7へ回収されてしまう。本実施形態において、傾斜角度αは45度である。
 また、第一篩3には、図2に示されるように、第一振動手段4が配設されていてもよい。本実施形態において第一振動手段4は、砂放射装置2から投入される異物及び鋳物砂が第一振動手段4に衝突しないよう、砂放射装置2と反対側の面に、且つ、板部材(図示せず)を介して第一篩3に配設されている。また、第一振動手段4として、偏心モータや空気を入力することでシリンダによる振動を発生させるエア振動シリンダ等、種々の手段を用いることができる。本実施形態では第一振動手段4として、偏心モータを用いている。第一振動手段4が第一篩3に配設されている場合、第一篩3の傾斜角度αは、15度以上60度以下が好適である。
 第一シュート5は、図2で示すように、山形の第一篩3における二箇所の下端から異物回収コンテナ7に向かってそれぞれ配設されている。本実施形態において、第一シュート5は、第一篩3の下端から下方に向かって幅が短くなる縮小部5aと、縮小部5a下端に連結し、下方に向かって同じ幅を持つ導管部5bと、で構成されている。また、第一室1aにおける第二シュート6は、第一篩3の下方、且つ、一対の第一シュート5の間に配設されている。第二シュート6の下端は、第一コンベア12上に開口している。
 第一コンベア12における第一フロントプーリ12a(第一コンベア12の先端部)は、第三シュート13により包囲されている。第三シュート13には開口部13cが設けられており、第一ベルト12cが開口部13cを通るように配設されている。また、第三シュート13の下位部には、第一排出シュート13aと第二排出シュート13bがそれぞれ開口して設けられ二股となっている。第一コンベア12に搬送された鋳物砂等は、通常は第一排出シュート13aの開口に落下する。第一排出シュート13aは第二コンベア16に向かって開口されており、第二排出シュート13bは異物回収コンテナ17に向かって開口されている。
 第一排出シュート13aと第二排出シュート13bとの間には、図1に示されるように、回動手段14aが設けられており、回動手段14aによって回動されることにより第一排出シュート13a側又は第二排出シュート13b側に位置される第二篩14が配設されている。回動手段14aは、例えばモータとギア列により、第二篩14を第一排出シュート13a側と第二排出シュート13b側の間で回動する。回動手段14aは、モータとカム、あるいは油圧あるいはエアシリンダとラックとギア等、公知の装置で第二篩14を回動させてもよい。また、第二篩14は網目状に構成されており、目開きの大きさは、3mm以上10mm以下が好適である。本実施形態の第二篩14について、目開きの大きさは、5mmである。さらに、第二篩14は第一フロントプーリ12aの下方に配設されている。
 また、第二篩14には、第二振動手段15が配設されていてもよい。本実施形態において第二振動手段15は図1に示されるように、回動手段14aに設けられている棒部材14bの先端に配設されている。また、第二振動手段15として、偏心モータや空気を入力することでシリンダによる振動を発生させるエア振動シリンダ等、種々の手段を用いることができる。本実施形態では第二振動手段15として、偏心モータを用いている。
 次に、本実施形態の鋳物砂処理装置による砂処理方法の一例を、添付図面を参照して説明する。
 第一コンベア駆動モータと砂放射モータ25と砂投入コンベア駆動モータを駆動させる。また同時に、集塵機を作動させ、空気導入口11から吸引口10へ空気を通過させる。また砂投入コンベア19は、鋳込み後に解枠して、更に鋳物を取り出した後の鋳物砂を前工程から搬送しており、砂投入コンベア19が搬送している鋳物砂は鋳物砂の他に、中子ガラ・鉄片・鋳物砂が凝集して形成されている砂塊を含有している。以降、「鋳物砂等」ともいう。
 前工程から搬送されてくる鋳物砂等の量(重量)は、砂投入コンベア19の単位面積当たりでほぼ一定にならされている。砂投入コンベア19により搬送されている鋳物砂等の温度(解枠砂温度T1)は、鋳物砂が砂温度測定手段20としての熱電対に接触することで測定される。測定された解枠砂温度T1は、演算手段20aに伝達される。演算手段20aには予め、鋳物砂の比熱と水の蒸発潜熱と任意に設定される第二室1bにおける鋳物砂の温度(冷却砂温度T2)とが入力されている。そして演算手段20aにより、解枠砂温度T1から冷却砂温度T2まで鋳物砂の温度を下げるために必要な、砂投入コンベア19における単位面積当たりに散水すべき量を、鋳物砂の比熱と水の蒸発潜熱とを比較して算出する。そして、算出された散水量に基づき、散水手段21より鋳物砂等に向けて散水する。
 砂放射装置2における櫛歯付エンドレスベルト22は回転しており、ここに、砂投入コンベア19から、散水された鋳物砂等が投入される。砂放射装置2に投入された鋳物砂等は複数の櫛歯22aの間に入り、ゲート板27と櫛歯付エンドレスベルト22の間を通過して第二室1bへ向けて放射される。また、砂放射装置2に投入された、鋳物砂等に含有している砂塊は、ゲート板27に衝突しながら、回転する櫛歯22aによって粉砕され砂の状態になり、ゲート板27と櫛歯付エンドレスベルト22の間を通過して第二室1bへ向けて放射される。一方、砂放射装置2に投入された、鋳物砂等に含有している中子ガラ等は異物であり、櫛歯付エンドレスベルト22の回転速度を維持したままゲート板27と衝突することで砂放射装置2における包囲シュート26の外へ向けて跳ね返され、第一篩3に落下する。
 櫛歯付エンドレスベルト22の回転速度は、2m/s~12m/sが好適である。櫛歯付エンドレスベルト22の回転速度が2m/sより遅いと、鋳物砂を第二室1bへ向けて放射することができない。さらに、櫛歯付エンドレスベルト22の回転速度が12m/sより速いと、Vベルト25a・櫛歯付エンドレスベルト22・砂放射フロントプーリ23・砂放射リアプーリ24の消耗が早くなり、櫛歯22aの鋳物砂や異物との衝突による劣化が早くなってしまう。本実施形態において、櫛歯付エンドレスベルト22の回転速度は7m/sである。
 第一篩3に落下することなく砂放射装置2に残存した中子ガラ等は、砂放射モータ25を停止させた状態で、櫛歯付エンドレスベルト22上に残存している。この中子ガラ等は、板部材29を、回転軸29aを中心に回動することにより第一篩3に落下させることができる。
 中子ガラ等がゲート板27の下端部と櫛歯22aとの間に噛み込んだ場合、中子ガラ等がゲート板27の上端部に固定されているばね28を伸ばしながらゲート板27を回動させ、櫛歯22aとゲート板27の下端部との隙間を広げながら通過して第二室1bに向かって放射される。ここで放射された中子ガラ等は、後述する第二篩14を介して、異物回収コンテナ17に回収される。
 砂放射装置2から放射された鋳物砂は、開口部9を通って第二室1bに入り、そこで貯蔵される。ここで鋳物砂は、砂放射装置2によって放射されてから第二室1bに貯蔵されるまでの間に、空気導入口11から吸引口10に向かって通る空気に接触することで、空気と熱交換されることに加え、鋳物砂に付着している水分が蒸発して冷却砂温度T2まで冷却される。また、鋳物砂と空気が接触する際に舞い上がる粉塵は、集塵機によって回収される。
 第二室1bに貯蔵されている鋳物砂は、水分を与えることにより熟成の効果を付与することができる。ここで熟成とは、鋳物砂に粘結材として含有されており、鋳込み時の溶融金属の熱により脱水して粘結力が低下しているベントナイトに、水分を与えて貯蔵することにより、ベントナイトに水分を再び浸透させ、粘結力を回復させることをいう。本実施形態において、鋳物砂に与える水分は、散水手段21により散水された水であり、且つ、砂投射装置2によって放射された鋳物砂から蒸発されなかった水である。第2室1bに貯蔵されている鋳物砂を熟成させる場合、前述の散水手段21にて、鋳物砂を熟成させるための水を、鋳物砂を冷却させるために必要な水に加えて散水してもよい。ここで、鋳物砂を熟成させる時間を延長するために、第一コンベア12を停止させることも可能である。
 砂放射装置2から除去された異物は、第一篩3に向かって落下する。第一篩3に落下した異物のうち、異物に付着しており、第一篩3の目開きよりも小さく第一篩3を通過する鋳物砂は、第二シュート6に送られて貯蔵される。一方、第一篩3の目開きよりも大きく第一篩3を通過できない異物は落下し、第一篩3から第一シュート5に送られ第一シュート5における縮小部5a・導管部5bを通過し、異物回収コンテナ7へ回収される。これらの構成により、砂放射装置2から除去された異物について、異物と異物に付着している鋳物砂とに、効率良く分別することができる。
 砂放射装置2から第一篩3に向かって異物が落下する際、第一篩3を第一振動手段4によって振動させてもよい。第一振動手段4の振幅及び振動数は、状況に応じて変更することができる。第一篩3の振動により、第一篩3の目詰まりを防ぐことができる。また、第一篩3の振動により、第一篩3上の異物を下方へ送り易くすることができるため、第一篩3の傾斜角度を小さくすることができる。
 第二シュート6に貯蔵されている鋳物砂等は、第一コンベア12における第一ベルト12cを回転することで搬送され、分割壁8と第一ベルト12cとの間を通過して第二室1bへ搬送される。また、第二室1bに貯蔵されている鋳物砂は、第一コンベア12における第一ベルト12cを回転することで搬送され、図1に示されるホッパ1の右側面と第一ベルト12cとの間を通過して、第三シュート13内に配設されている第二篩14に投入される。この際、鋳物砂が第二篩14に投入された衝撃により粉塵が舞うが、第一コンベア12の先端部は第三シュート13によって包囲されているため、粉塵が第三シュート13の外に拡散することはない。
 第二篩14に投入された鋳物砂等のうち、第二篩14の目開きよりも小さく第二篩14を通過する鋳物砂は、第一排出シュート13aを通過して第二コンベア16上に落下する。第二コンベア16は後工程装置(図示せず)に向かって回転しているため、鋳物砂は後工程装置に搬送される。一方、第二篩14の目開きよりも大きく第二篩14を通過できない異物は、第二篩14上に残存する。第二篩14上に残存した異物は、第二篩14を回動することにより、第二排出シュート13bを通過して異物回収コンテナ17に回収される。これらの構成により、第二篩14上に投入された鋳物砂等について、鋳物砂と異物とに、効率良く分別することができる。ここで、後工程装置とは例えば、鋳物砂にベントナイト等の粘結材や水を供給し、その後鋳物砂を混練する混練装置等が挙げられる。
 第一コンベア12から第二篩14に向かって鋳物砂等が落下する際、第二篩14を第二振動手段15によって振動させてもよい。第二振動手段15の振幅及び振動数は、状況に応じて変更することができる。第二篩14の振動により、第二篩14の目詰まりを防ぐことができる。
 本実施形態において、第一フロントプーリ12aをマグネットプーリとしてもよい。この構成によれば、第一コンベア12によって搬送されている鋳物砂等中の細かい鉄片が、第一ベルト12cを介してマグネットプーリの磁力により吸着される。それから更に第一ベルト12cが回転すると、鉄片がマグネットプーリから離れることで磁力による吸着力が低下し、マグネットプーリから離れ、第二排出シュート13bを通過して異物回収コンテナに回収される。これらの構成により、第一篩3及び第二篩14によって分離することができない細かな鉄片も、効率良く除去することができる。
 本実施形態において、山形の第一篩3が配設されているが、第一篩3の形状は山形に限定されない。例えば、一つの傾斜面から成る第一篩3を砂放射装置2の下方に配設しても良い。この場合、第一シュート5は一つの傾斜面から成る第一篩3における一箇所の下端から異物回収コンテナ7に向かって配設される。
 次に、吸引口10からの吸引により空気導入口11から第二室1bに導入される空気の流れ方向と砂放射装置2から第二室1bに放射される鋳物砂の放射方向との特徴について、以下に述べる。
 本実施形態において図1に示すように、吸引口10が第二室1b上面の分割壁8側に連通接続されており、空気導入口11が第二室1bにおける分割壁8と反対側の側面に連通接続されている。また、砂放射装置2が第一室1aに設置されている。そのため、図5に示すように、吸引口10からの吸引により空気導入口11から第二室1bに導入される空気(以下、流動空気とする)の流れ方向は、砂放射装置2から第二室1bに放射される鋳物砂の放射方向と反対方向になる。なお、「反対方向」とは、図1において、空気は右から左に向かって流れ、鋳物砂は左から右に向かって放射されることをいう。すなわち、水平面に投影したそれぞれの移動方向の角度が、90°(直角方向)から180°(正反対方向)の範囲であることをいう。
 流動空気と砂放射装置2から放射される鋳物砂とが接触することにより、砂放射装置2から放射される鋳物砂から流動空気への熱移動が発生する。さらに、鋳物砂に含まれる水分が蒸発する。そのため、砂放射装置2から放射される鋳物砂は冷却される。本実施形態によれば、流動空気と砂放射装置2から放射される鋳物砂とが、反対方向に動きながら接触しているため、砂放射装置2から放射される鋳物砂から流動空気への熱移動が効率の良いものとなる。また、鋳物砂から水分が蒸発し易い。
 また、本実施形態において、集塵機が吸引口10に連通接続されており、空気導入口11から第二室1bに導入される空気を吸引している。そのため、集塵機が吸引口10に連通接続されていない場合と比較して、流動空気の流れ速度が速くなる。つまり、砂放射装置2から放射される鋳物砂との接触により暖められた第二室1b内の空気を吸引口10から排出する頻度が高くなり、かつ、第二室1b外の常温空気を空気導入口11から第二室1b内に取り入れる頻度が高くなる。よって、第二室1b内の空気と流動空気の温度を常に第二室1b外の温度付近に保つことができる。第二室1b内の空気と流動空気の温度を常に第二室1b外の温度付近に保つことができるため、砂放射装置2から放射される鋳物砂と空気との熱交換を効率良く行うことができる。また、第二室1b内の空気と流動空気の温度を常に第二室1b外の湿度付近に保つことができるため、鋳物砂からの水分の蒸発を効率よく行うことができる。
 なお、必要に応じて図5に示すように、第二室1b内に流動空気の流れ方向を調整するように位置する調整板50を配設しても良い。調整板50により、流動空気の流れ方向を調整し、効率良く砂放射装置2から放射される鋳物砂を冷却することができる。
 以上、本発明の一実施形態について説明したが、本発明は、上記に限定されるものではなく、上記以外にも、その趣旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。
 以下に本明細書および図面で用いた主な符号を、まとめて示す。
1      ホッパ
 1a    第一室
 1b    第二室
 1c    架台
 1-1   直胴部
 1-2   縮小部
2      砂放射装置
3      第一篩
4      第一振動手段
5      第一シュート
 5a    縮小部
 5b    導管部
6      第二シュート
7      異物回収コンテナ
8      分割壁
9      開口部
10     吸引口
11     空気導入口
12     第一コンベア
 12a   第一フロントプーリ(マグネットプーリ)
 12b   第一リアプーリ
 12c   第一ベルト
13     第三シュート
 13a   第一排出シュート
 13b   第二排出シュート
 13c   開口部
14     第二篩
 14a   回動手段
 14b   棒部材
15     第二振動手段
16     第二コンベア
17     異物回収コンテナ
18     開口部
19     砂投入コンベア
 19a   砂投入フロントプーリ
 19b   砂投入ベルト
20     砂温度測定手段
20a    演算手段
21     散水手段
22     櫛歯付エンドレスベルト
 22a   櫛歯
23     砂放射フロントプーリ
24     砂放射リアプーリ
25     砂放射モータ
 25a   Vベルト
 25b   Vプーリ
 25c   Vプーリ
26     包囲シュート
27     ゲート板
 27a   回転軸
28     ばね
29     板部材
 29a   回転軸
30     砂放射ガイド
50     調整板

Claims (11)

  1.  鋳込み後に解枠して、更に鋳物を取り出した後の鋳物砂を処理する、鋳物砂処理設備であって、
     鋳物を取り出した後の鋳物砂を受け入れる第一室と、前記第一室で受け入れた鋳物砂を貯蔵する第二室とに分割壁によって分割されたホッパと、
     前記第一室の内部に配設されると共に前記第一室内に投入された前記鋳物砂の砂塊を粉砕し、砂塊粉砕後の前記鋳物砂を放射して前記分割壁に設けられた開口部から前記第二室へ供給する砂放射装置と、
     前記第二室に連通接続された、空気を前記第二室に導入する空気導入口及び前記空気導入口から導入された空気を前記第二室から吸引する吸引口と、
     前記第二室の下部に配設されると共に、前記第二室に貯蔵されている前記鋳物砂を搬送する第一コンベアと、
    を備えていることを特徴とする鋳物砂処理設備。
  2.  前記砂放射装置は、
     前記第一室内に投入された前記鋳物砂を前記第二室に向けて放射する櫛歯付エンドレスベルトと、
     前記櫛歯付エンドレスベルトの上方に配置され、前記櫛歯付エンドレスベルトで搬送される所定の大きさ以上の固形物が衝突し、砂塊を破砕し、または、前記固形物を押し戻して前記砂放射装置から落下させる、ゲート板とを備える、
     請求項1に記載の鋳物砂処理設備。
  3.  前記第一室における前記砂放射装置の下方に配設された第一篩と、
     前記第一篩の外側に配設された第一シュートと、
     前記第一篩の下方に配設され、前記第一コンベア上に下端が開口する第二シュートと、
    を備えており、
     前記砂放射装置から落下する前記鋳物砂の内、前記第一篩を通過した鋳物砂は前記第二シュートを介して前記第一コンベアで搬送され、前記第一篩を通過せずに落下した鋳物砂は前記第一シュートを介して異物として回収することを特徴とする請求項2に記載の鋳物砂処理設備。
  4.  前記第一篩を振動させる第一振動手段を備えたことを特徴とする請求項3に記載の鋳物砂処理設備。
  5.  前記第一コンベアの先端部を包囲して配設されると共に、下位部が第一排出シュート及び第二排出シュートの二股に形成された第三シュートと、
     前記第三シュート内における前記第一コンベアの先端部の下方に回動可能に配設されると共に、回動されることにより前記第一排出シュート側又は前記第二排出シュート側に位置する第二篩と、
     前記第一排出シュートの下方に配設された第二コンベアと、
    を備えており、
     前記第一コンベアから投入される前記鋳物砂の内、前記第一排出シュート側に位置した前記第二篩を通過した鋳物砂は前記第一排出シュートを介して前記第二コンベアで搬送され、前記第一排出シュート側に位置した前記第二篩を通過せずに残存した鋳物砂は、前記第二篩を回動させることにより前記第二排出シュートを介して異物として回収することを特徴とする請求項3又は請求項4に記載の鋳物砂処理設備。
  6.  前記第二篩を振動させる第二振動手段を備えたことを特徴とする請求項5に記載の鋳物砂処理設備。
  7.  前記第一コンベアはベルトコンベアであって、
     前記第一コンベアの先端部はマグネットプーリであることを特徴とする請求項6に記載の鋳物砂処理設備。
  8.  前記第一室内に前記鋳物砂を投入する砂投入コンベアを備えたことを特徴とする請求項7に記載の鋳物砂処理設備。
  9.  前記砂投入コンベアによって搬送される前記鋳物砂の温度を測定する砂温度測定手段と、
     前記砂温度測定手段により温度が測定された前記鋳物砂に散水する散水手段と、
    を備えたことを特徴とする請求項8に記載の鋳物砂処理設備。
  10.  前記吸引口は集塵機に連通接続されており、
     前記吸引口からの吸引は前記集塵機によって行うことを特徴とする請求項9に記載の鋳物砂処理設備。
  11.  前記吸引口からの吸引により前記空気導入口から前記第二室に導入される空気が前記砂放射装置から前記第二室に放射される前記鋳物砂と接触するようになっており、
     前記吸引口からの吸引により前記空気導入口から前記第二室に導入される空気の流れ方向が前記砂放射装置から前記第二室に放射される前記鋳物砂の放射方向と反対方向にされていることを特徴とする請求項10に記載の鋳物砂処理設備。
PCT/JP2015/072509 2014-08-29 2015-08-07 鋳物砂処理設備 WO2016031529A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112017001787A BR112017001787A2 (pt) 2014-08-29 2015-08-07 sistema para condicionar areia de fundição
CN201580006329.1A CN105939798B (zh) 2014-08-29 2015-08-07 造型砂处理设备
JP2016545420A JP6477711B2 (ja) 2014-08-29 2015-08-07 鋳物砂処理設備
MX2017000961A MX2017000961A (es) 2014-08-29 2015-08-07 Un sistema para acondicionar arena de fundicion.

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014174669 2014-08-29
JP2014-174669 2014-08-29
JP2015-060384 2015-03-24
JP2015060384 2015-03-24

Publications (1)

Publication Number Publication Date
WO2016031529A1 true WO2016031529A1 (ja) 2016-03-03

Family

ID=55399427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072509 WO2016031529A1 (ja) 2014-08-29 2015-08-07 鋳物砂処理設備

Country Status (5)

Country Link
JP (1) JP6477711B2 (ja)
CN (1) CN105939798B (ja)
BR (1) BR112017001787A2 (ja)
MX (1) MX2017000961A (ja)
WO (1) WO2016031529A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108637168A (zh) * 2018-07-20 2018-10-12 河南省矿发起重机有限公司 一种铸造模具砂土循环再利用装置
EP3701208A4 (en) * 2017-10-25 2021-09-01 Finn Recycling OY HEAT RECOVERY OR SAND PURIFICATION
CN114905005A (zh) * 2022-02-15 2022-08-16 江西樟树市福铃内燃机配件有限公司 一种内燃机配件砂处理生产线及其生产工艺
CN116921635A (zh) * 2023-08-08 2023-10-24 安徽祥东高端装备股份有限公司 一种热芯盒射芯机的自动防堵加砂装置
CN117505775A (zh) * 2024-01-04 2024-02-06 淄博通普真空设备有限公司 铸造砂冷却机

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS455607Y1 (ja) * 1966-08-15 1970-03-18
JPS4721226Y1 (ja) * 1969-06-04 1972-07-14
JPS5170207U (ja) * 1974-11-26 1976-06-03

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003025042A (ja) * 2001-07-11 2003-01-28 Nippon Kokan Pipe Fittings Mfg Co Ltd 粉粒体の偏析解消方法及び装置
JP2003103341A (ja) * 2001-09-28 2003-04-08 Sintokogio Ltd 生型造型機への鋳物砂供給装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS455607Y1 (ja) * 1966-08-15 1970-03-18
JPS4721226Y1 (ja) * 1969-06-04 1972-07-14
JPS5170207U (ja) * 1974-11-26 1976-06-03

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3701208A4 (en) * 2017-10-25 2021-09-01 Finn Recycling OY HEAT RECOVERY OR SAND PURIFICATION
US11619447B2 (en) 2017-10-25 2023-04-04 Finn Recycling Oy Thermal recovery or cleaning of sand
CN108637168A (zh) * 2018-07-20 2018-10-12 河南省矿发起重机有限公司 一种铸造模具砂土循环再利用装置
CN114905005A (zh) * 2022-02-15 2022-08-16 江西樟树市福铃内燃机配件有限公司 一种内燃机配件砂处理生产线及其生产工艺
CN116921635A (zh) * 2023-08-08 2023-10-24 安徽祥东高端装备股份有限公司 一种热芯盒射芯机的自动防堵加砂装置
CN116921635B (zh) * 2023-08-08 2024-03-19 安徽祥东高端装备股份有限公司 一种热芯盒射芯机的自动防堵加砂装置
CN117505775A (zh) * 2024-01-04 2024-02-06 淄博通普真空设备有限公司 铸造砂冷却机
CN117505775B (zh) * 2024-01-04 2024-03-05 淄博通普真空设备有限公司 铸造砂冷却机

Also Published As

Publication number Publication date
JP6477711B2 (ja) 2019-03-06
CN105939798A (zh) 2016-09-14
JPWO2016031529A1 (ja) 2017-06-08
CN105939798B (zh) 2019-01-11
MX2017000961A (es) 2017-05-01
BR112017001787A2 (pt) 2018-07-17

Similar Documents

Publication Publication Date Title
JP6477711B2 (ja) 鋳物砂処理設備
EP3017912B1 (en) Polishing device and polishing method
US20190143373A1 (en) Separator device and shot processing apparatus
US8714363B2 (en) Supplying filtered granular material using an angled sieve
KR101207726B1 (ko) 운송설비의 운송물 탑재 유도장치
JP2011079121A (ja) 鋼板のショットブラスト方法およびその設備
JP6015466B2 (ja) ショット処理装置
RU2707773C2 (ru) Охлаждающее устройство для охлаждения сыпучего материала
WO2013162007A1 (ja) 造粒粉冷却装置及びこれを備えた造粒装置
JP3221828U (ja) 磁力選別装置及び異物選別システム
JP6846057B2 (ja) 食品の異物選別システム
KR101428424B1 (ko) 주물용 회수사 처리시스템
WO2012111237A1 (ja) 投射材分別装置およびショット処理装置
US4102056A (en) Method and apparatus for introducing a particulate or pulverulent material into a flow of gas
CN207981266U (zh) 一种用于颚式破碎机的除尘装置
CN110586265A (zh) 一种控温球磨机
JP2019022882A (ja) 粒子から成る材料混合物を均質化および分離するための装置
JP4844898B2 (ja) 回収鋳型砂の冷却方法
JPS61150768A (ja) 振動装置
RU170900U1 (ru) Устройство разравнивания и разгрузки зерна для площадки активного вентилирования
JP3987144B2 (ja) 粘稠物搬送装置
JP2011085367A (ja) 振動乾燥装置
US2724930A (en) Apparatus for abrasive treatment of articles
RU2622667C1 (ru) Устройство для смешения и измельчения дисперсных материалов
JP2022055021A (ja) 投入装置、材料混合装置及び材料投入方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835273

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545420

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/000961

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835273

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017001787

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017001787

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170127