WO2016031285A1 - ダンパ及びダンパの製造方法 - Google Patents

ダンパ及びダンパの製造方法 Download PDF

Info

Publication number
WO2016031285A1
WO2016031285A1 PCT/JP2015/059453 JP2015059453W WO2016031285A1 WO 2016031285 A1 WO2016031285 A1 WO 2016031285A1 JP 2015059453 W JP2015059453 W JP 2015059453W WO 2016031285 A1 WO2016031285 A1 WO 2016031285A1
Authority
WO
WIPO (PCT)
Prior art keywords
resonance frequency
motor
damper
capacitor
unsprung
Prior art date
Application number
PCT/JP2015/059453
Other languages
English (en)
French (fr)
Inventor
栗城信晴
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201580045486.3A priority Critical patent/CN106795937B/zh
Priority to US15/506,570 priority patent/US10518599B2/en
Priority to JP2016544978A priority patent/JP6267799B2/ja
Priority to DE112015003944.9T priority patent/DE112015003944T5/de
Publication of WO2016031285A1 publication Critical patent/WO2016031285A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/06Characteristics of dampers, e.g. mechanical dampers
    • B60G17/08Characteristics of fluid dampers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0152Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the action on a particular type of suspension unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G13/00Resilient suspensions characterised by arrangement, location or type of vibration dampers
    • B60G13/14Resilient suspensions characterised by arrangement, location or type of vibration dampers having dampers accumulating utilisable energy, e.g. compressing air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/0152Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the action on a particular type of suspension unit
    • B60G17/0157Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the action on a particular type of suspension unit non-fluid unit, e.g. electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/016Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
    • B60G17/0165Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input to an external condition, e.g. rough road surface, side wind
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/512Means responsive to load action, i.e. static load on the damper or dynamic fluid pressure changes in the damper, e.g. due to changes in velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/20Type of damper
    • B60G2202/24Fluid damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/30Spring/Damper and/or actuator Units
    • B60G2202/31Spring/Damper and/or actuator Units with the spring arranged around the damper, e.g. MacPherson strut
    • B60G2202/312The spring being a wound spring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/41Fluid actuator
    • B60G2202/416Fluid actuator using a pump, e.g. in the line connecting the lower chamber to the upper chamber of the actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/60Vehicles using regenerative power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2401/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60G2401/17Magnetic/Electromagnetic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2401/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60G2401/25Capacitance type, e.g. as level indicator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/02Supply or exhaust flow rates; Pump operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/18Automatic control means
    • B60G2600/188Spectral analysis; Transformations
    • B60G2600/1884Laplace
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/60Signal noise suppression; Electronic filtering means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/73Electrical control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/90System Controller type
    • B60G2800/91Suspension Control
    • B60G2800/916Body Vibration Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/001Specific functional characteristics in numerical form or in the form of equations
    • F16F2228/004Force or pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F2228/00Functional characteristics, e.g. variability, frequency-dependence
    • F16F2228/04Frequency effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • F16F9/182Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein comprising a hollow piston rod
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/10Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium using liquid only; using a fluid of which the nature is immaterial
    • F16F9/14Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect
    • F16F9/16Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts
    • F16F9/18Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein
    • F16F9/19Devices with one or more members, e.g. pistons, vanes, moving to and fro in chambers and using throttling effect involving only straight-line movement of the effective parts with a closed cylinder and a piston separating two or more working spaces therein with a single cylinder and of single-tube type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall

Definitions

  • the present invention relates to a damper that regenerates energy of input vibration and a method of manufacturing the damper.
  • US 2004/0150361 A1 Although active control is performed on a controlled object input, passive input is handled for inputs other than the controlled object. It is an object of the present invention to provide an electromagnetic suspension system for a vehicle which can not only simplify active control but also improve energy efficiency ([0003] to [0005]).
  • the vehicle electromagnetic suspension system (abstract, FIG. 3) of US 2004/0150361 A1 is interposed in parallel with the spring element 7 between the sprung and unsprung and driven by the electric motor 8
  • the electromagnetic actuator 4 is provided.
  • the motor controller 17 is configured to calculate displacement input to the electromagnetic actuator 4 and to control the electric motor 8 so as to obtain an optimum damping force according to the displacement input.
  • an electric damping element (electric resistor 20 or the like which passively generates a damping force by dynamic braking of the electric motor 8 against displacement input from under the spring.
  • An electrical resonant circuit 21) is connected in parallel with the electric motor 8.
  • the electrical resonant circuit 21 is a resonant frequency tuned to the unsprung resonant frequency (eg, 10 Hz to 20 Hz) and includes a resistor R, a coil L and a capacitor C ([0049]) .
  • the active control referred to here is current control of the electric motor 8 for the purpose of low frequency vibration control including attitude control ([0041]).
  • the active control using the current control of the electric motor 8 corresponds to the control target input in the low frequency range including the sprung resonance frequency. Further, passive control using the electric resonance circuit 21 in which the resistance R, the coil L and the capacitor C are combined corresponds to the control target input near the unsprung resonance frequency.
  • the present invention has been made in consideration of the above problems, and it is possible to improve the energy efficiency for damping the input vibration corresponding to the unsprung resonance frequency and the sprung resonance frequency.
  • the purpose is to provide a manufacturing method.
  • a damper includes a damper main body disposed in parallel with a spring, an electromagnetic motor generating a damping force on the spring by regenerating energy of input vibration input to the damper main body, and the electromagnetic motor And an electric resonance frequency specified by an inductance of the electromagnetic motor and a capacity of the capacitor is set within ⁇ 20% of an unsprung resonance frequency.
  • an electric resonance frequency specified by an inductance of the electromagnetic motor and a capacity of the capacitor is set within ⁇ 20% of an unsprung resonance frequency.
  • the component of the input vibration corresponding to the sprung resonance frequency is passively suppressed.
  • the electrical resonance frequency specified by the inductance of the electromagnetic motor and the capacity of the capacitor is set within ⁇ 20% of the unsprung resonance frequency.
  • the component of the input vibration corresponding to the sprung resonance frequency is passively suppressed. Therefore, it is possible to suppress the component of the input vibration corresponding to each of the unsprung resonance frequency and the sprung resonance frequency without actively controlling the electromagnetic motor.
  • the electrical resonance frequency may be set to a value equal to the unsprung resonance frequency. This makes it possible to use the negative spring effect very effectively.
  • the electromagnetic motor may be, for example, a direct current motor or a commutator type single phase alternating current motor.
  • a commutator type single-phase alternating current motor is used as the electromagnetic motor, the moment of inertia can be significantly reduced as compared with a general direct current motor having an iron core in the rotor. Therefore, for example, when the damper according to the present invention is used for a suspension device of a vehicle, it is possible to prevent the deterioration of the riding comfort when the high frequency road surface vibration occurs.
  • a method of manufacturing a damper according to the present invention includes: a damper main body disposed in parallel with a spring; an electromagnetic motor generating a damping force on the spring by regenerating energy of input vibration input to the damper main body; A method of manufacturing a damper including an electromagnetic motor and a capacitor electrically connected in series, wherein an electrical resonance frequency specified by an inductance of the electromagnetic motor and a capacitance of the capacitor is within ⁇ 20% of an unsprung resonance frequency.
  • passively suppressing the component of the input vibration corresponding to the sprung resonance frequency by selecting the capacitance of the capacitor to be It features.
  • the capacitor in accordance with the specification of the electromagnetic motor, it is possible to easily achieve the above effect.
  • FIG. 5A is a diagram showing an example of the relationship between the frequency and the amplitude for the transfer function at each electrical resonance frequency specified from the inductance of the electromagnetic motor and the capacitance of the capacitor.
  • 5B is a diagram showing an example of the relationship between the frequency and the phase for the transfer function for each of the electric resonance frequencies. It is a figure which shows the example of the relationship of a frequency and power spectral density about sprung mass acceleration for every said electrical resonance frequency. It is a figure which shows the example of the relationship of a frequency and power spectral density about unsprung mass acceleration for every said electrical resonance frequency. It is a time chart which shows an example of change of voltage of a capacitor in the embodiment. It is sectional drawing which shows simply the structure of the electromagnetic motor which concerns on a modification.
  • FIG. 1 is a schematic configuration view schematically showing a part of a vehicle 10 equipped with a suspension device 12 having a damper 22 according to an embodiment of the present invention.
  • the suspension device 12 has coil springs 20 and dampers 22 corresponding to the respective wheels 24.
  • the coil spring 20 is disposed between the vehicle body 26 and the spring seat 48 and absorbs vibration (road surface vibration) input from the road surface 300 to the wheels 24.
  • the damper 22 damps the displacement of the coil spring 20 (or the vehicle body 26). As shown in FIG. 1, the damper 22 includes a damper main body 30, a hydraulic mechanism 32, and a motor circuit 34.
  • the damper body 30 includes a hydraulic cylinder 40, a piston head 42, a piston rod 44 and a piston valve 46 in addition to the spring seat 48.
  • the hydraulic cylinder 40 is a cylindrical member, and the inside thereof is divided into a first hydraulic chamber 50 and a second hydraulic chamber 52 by the piston head 42.
  • the first hydraulic chamber 50 and the second hydraulic chamber 52 are filled with oil.
  • the piston rod 44 fixes a piston head 42 having a diameter substantially equal to the inner circumferential surface of the hydraulic cylinder 40 at one end, and the other end is fixed to the vehicle body 26.
  • the piston valve 46 is formed in the piston head 42 and communicates the first hydraulic chamber 50 with the second hydraulic chamber 52.
  • the spring seat 48 is formed on the outer periphery of the hydraulic cylinder 40 and supports one end of the coil spring 20.
  • the damper main body 30 functions as an actuator by having the above-mentioned structure.
  • the hydraulic mechanism 32 controls the flow of oil in the damper 22, and includes a hydraulic pump 60, an oil flow path 62, an accumulator 64, and an electromagnetic motor 66 (hereinafter also referred to as "motor 66").
  • the motor 66 generates the damping force Fd on the coil spring 20 by regenerating the energy of the input vibration input to the damper main body 30.
  • the motor 66 of the present embodiment is a direct current (DC) type, but may be an alternating current (AC) type.
  • the motor circuit 34 is a circuit electrically connected to the motor 66, and includes a capacitor 70 (first power storage device) and a battery 72 (second power storage device, electrical load).
  • a capacitor 70 first power storage device
  • a battery 72 second power storage device, electrical load
  • the inductance L of the motor 66 and the resistance R of the motor 66 are shown together.
  • the capacitor 70 charges the regenerative power of the electromagnetic motor 66, and supplies the charged power to the battery 72 or another electric device (not shown) (for example, an audio device, a navigation device, a display device of an instrument panel).
  • the capacitor 70 of the present embodiment is a polarized capacitor.
  • the battery 72 charges the regenerative power of the electromagnetic motor 66 or the discharge power of the capacitor 70, and supplies the charged electric power to the other electric device.
  • the motor circuit 34 is highly reliable in operation because of its simple configuration.
  • FIG. 2 shows how the unsprung member 80 and the sprung member 82 approach in this embodiment.
  • FIG. 3 shows how the unsprung member 80 and the sprung member 82 are separated in this embodiment.
  • a torque Tp is generated on the rotation shaft of the hydraulic pump 60.
  • the rotary shaft of the hydraulic pump 60 is connected to the rotary shaft of the electromagnetic motor 66 (described briefly in FIGS. 1 to 3). Therefore, the torque Tp (output torque) from the rotation shaft of the hydraulic pump 60 is input to the rotation shaft of the motor 66.
  • torque Tm input torque
  • the features of the present embodiment include setting the electric resonance frequency ⁇ m in consideration of the negative spring effect, and providing the damper 22 (hydraulic mechanism 32) with a configuration for using the polar capacitor 70. .
  • the electrical resonance frequency ⁇ m (hereinafter also referred to as “resonance frequency ⁇ m”) is a value specified from the inductance L of the motor 66 and the capacitance C of the capacitor 70. That is, the electrical resonance frequency ⁇ m is 1 / ⁇ 2 ⁇ (L ⁇ C) ⁇ .
  • FIG. 4 is a view showing an equivalent model for explaining the operation of the suspension device 12 of the present embodiment.
  • the contents of various values in FIG. 4 are as follows.
  • x 0 Vertical displacement of road surface 300 [m]
  • x 1 Vertical displacement of the unsprung member 80 [m]
  • x 2 Vertical displacement of the spring upper member 82 [m]
  • M 1 Mass [kg] of the unsprung member 80
  • M 2 Mass [kg] of the spring upper member 82
  • k 1 spring constant of the unsprung member 80 [N / m]
  • k 2 spring constant of the coil spring 20 [N / m]
  • C 2 Damping coefficient of the damper body 30 [N / m / s]
  • u Control amount of the electromagnetic motor 66
  • the unsprung member 80 includes, for example, a wheel 24 and a hydraulic cylinder 40.
  • the sprung member 82 includes, for example, a vehicle body 26, a piston head 42 and a piston rod 44.
  • the control amount u of the motor 66 in the present embodiment can be represented by, for example, regenerative energy.
  • the “ ⁇ 2 ⁇ Imp (x 2 ′ ′ -x 1 ′ ′)” in the first term on the right side of the equation (7) indicates a negative spring effect. That is, since the unsprung member 80 repeatedly moves up and down with respect to the sprung member 82, the positional relationship between the unsprung member 80 and the sprung member 82 can be approximated by a trigonometric function. For this reason, it can be said that “ ⁇ 2 ⁇ Imp (x 2 ′ ′ -x 1 ′ ′)” is equivalent to “K (x 2 ⁇ x 1 )” (K is a spring constant). Further, the first term of the right side of the equation (7) includes “-”.
  • the first term on the right side of the equation (7) means a force in the opposite direction to the coil spring 20.
  • the first term on the right side of the equation (7) exhibits an effect of suppressing the vibration of the sprung resonance frequency ⁇ 2 or the periphery thereof.
  • the force Fa generated in the damper main body 30 produces a negative spring effect at or near the sprung resonance frequency ⁇ 2. Therefore, if the electric resonance frequency ⁇ m of the motor 66 and the motor circuit 34 is set based on the unsprung resonance frequency ⁇ 1, it is possible to effectively exhibit the damping effect on both the sprung and unsprung states. .
  • FIG. 5A shows an example of the relationship between the frequency fg and the amplitude Mg for the transfer function G at each electrical resonance frequency ⁇ m specified from the inductance L of the motor 66 and the capacitance C of the capacitor 70.
  • FIG. 5B shows an example of the relationship between the frequency fg and the phase Pg for the transfer function G at each electrical resonance frequency ⁇ m. 5A and 5B are combined to construct a Bode diagram showing frequency characteristics of the damper 22 in the present embodiment.
  • lines 200 and 210 have a resonance frequency ⁇ m which is approximately 6.5% higher than the unsprung resonance frequency ⁇ 1 (in this embodiment, 76.6 [rad / s]) (this embodiment)
  • a first example in which 81.6 [rad / s]) is given is shown.
  • Lines 202 and 212 show a second example in which the resonance frequency ⁇ m is equal to the unsprung resonance frequency ⁇ 1.
  • the lines 204 and 214 show a third example in which the resonance frequency ⁇ m is a frequency (in the present embodiment, 63.2 [rad / s]) smaller than the unsprung resonance frequency ⁇ 1.
  • Lines 206 and 216 show a comparative example in which the resonance frequency ⁇ m is a frequency approximately 50.0% smaller than the unsprung resonance frequency ⁇ 1 (53.6 [rad / s] in this embodiment).
  • the first example, the second example, the third example and the comparative example in the frequency range Rrq (hereinafter, also referred to as “ride comfort control range Rrq”) that affects the ride comfort of the occupant of the vehicle 10, the first example, the second example, the third example and the comparative example In either case, the amplitude Mg does not change so much, but the phase Pg changes.
  • FIG. 6 shows an example of the relationship between the frequency f2 and the power spectral density D2 for the sprung mass acceleration x 2 ′ ′ at each electrical resonance frequency ⁇ m.
  • the numerical value of the frequency f2 shown on the horizontal axis of FIG. 6 it should be noted that the actual numerical value is multiplied by 1 / 3.14 in order to make it easy to understand in Hz. Is).
  • lines 220, 222, 224, 226, and 228 respectively indicate first to third examples and first and second comparative examples.
  • the first to third examples of FIG. 6 correspond to the first to third examples of FIGS. 5A and 5B.
  • the first comparative example of FIG. 6 corresponds to the comparative example of FIGS. 5A and 5B.
  • the second comparative example of FIG. 6 performs active control without LC resonance.
  • the occupants of the vehicle 10 are sensitive to vibrations in relatively low frequency regions (eg, 3-8 Hz).
  • relatively low frequency regions eg, 3-8 Hz.
  • the power spectral density D2 tends to decrease as the resonance frequency ⁇ m approaches the unsprung resonance frequency ⁇ 1. This means that the damping effect on the spring tends to be higher as the resonance frequency ⁇ m approaches the unsprung resonance frequency ⁇ 1.
  • FIG. 7 shows an example of the relationship between the frequency f1 and the power spectral density D1 for the unsprung mass acceleration x 1 ′ ′ at each electrical resonance frequency ⁇ m.
  • lines 230, 232, 234, and 236 respectively indicate first and second examples and a first and second comparative example as in FIG. 6 (the third example is omitted).
  • the first and second examples and the first and second comparative examples in FIG. 7 correspond to the first and second examples and the first and second comparative examples in FIG.
  • the unsprung mass acceleration x 1 ′ ′ affects the steering stability of the vehicle 10.
  • the power spectral density D1 is approximately equal in the relatively high frequency region Rhi. Therefore, the same steering stability can be realized for any of the examples.
  • the capacitor 70 As a countermeasure therefor, it is conceivable to make the capacitor 70 a nonpolar capacitor.
  • existing non-polar capacitors are often unsuitable for mounting in, for example, a vehicle 10 due to their relatively large size.
  • the damper 22 (hydraulic mechanism 32) has a configuration that reduces the possibility of damaging the durability of the capacitor 70.
  • capacitor voltage Vc the voltage of the capacitor 70 (hereinafter referred to as "capacitor voltage Vc") is biased to one of the polarities. Therefore, even if a polarized capacitor is used as the capacitor 70, the possibility of impairing the durability can be reduced.
  • FIG. 8 is a time chart showing an example of the change of the voltage (capacitor voltage Vc) of the capacitor 70 in the present embodiment. As can be seen from FIG. 8, it can be seen that the capacitor voltage Vc is biased to the positive side.
  • the electrical resonance frequency ⁇ m specified by the inductance L of the electromagnetic motor 66 and the capacitance C of the capacitor 70 is set to the unsprung resonance frequency ⁇ 1 or its neighboring value (FIGS. 5 to 7) See first to third examples of
  • the component of the input vibration corresponding to the unsprung resonance frequency ⁇ 1 is passively suppressed (see FIGS. 6 and 7). Therefore, it is possible to suppress the component of the input vibration corresponding to each of the unsprung resonance frequency ⁇ 1 and the sprung resonance frequency ⁇ 2 without actively controlling the electromagnetic motor 66.
  • the force Fa includes the effect (negative spring effect) of reducing the component of the input vibration corresponding to the sprung resonance frequency ⁇ 2.
  • the force Fa includes the effect (negative spring effect) of reducing the component of the input vibration corresponding to the sprung resonance frequency ⁇ 2.
  • the capacitance C of the capacitor 70 is selected such that the electrical resonance frequency ⁇ m becomes the unsprung resonance frequency ⁇ 1 or a value near the unsprung resonance frequency ⁇ 1, the above effect can be easily obtained by selecting the capacitor 70 according to the specifications of the It is possible to play
  • the coil spring 20 is used as a spring for absorbing road surface vibration (input vibration) (FIG. 1).
  • input vibration road surface vibration
  • other types of springs for example, leaf springs.
  • the damper 22 provided with the hydraulic mechanism 32 was used (FIG. 1).
  • the present invention is not limited thereto.
  • configurations such as a ball screw type, a rack and pinion type, a direct type (linear motor) and the like are applicable.
  • the polar capacitor 70 is used in the damper 22 which does not include the hydraulic mechanism 32, the equivalent gear ratio ⁇ is changed depending on whether the motor 66 rotates forward or reverse (for example, the one-way clutch is a rotating shaft of the motor 66). Or, it is also possible to use an arrangement arranged on another rotation shaft connected thereto.
  • the piston rod 44 is disposed on the side of the vehicle body 26 (FIG. 1, etc.).
  • the present invention is not limited to this, and it is also possible to dispose the piston rod 44 on the wheel 24 side.
  • the electromagnetic motor 66 is a direct current type. However, for example, from the viewpoint of control of the negative spring effect or the capacitor 70 with polarity, this is not the only option.
  • the motor 66 may be alternating current type.
  • FIG. 9 is a cross-sectional view schematically showing the configuration of an electromagnetic motor 66a (hereinafter also referred to as "motor 66a") according to a modification.
  • the motor 66a is a commutator type single-phase AC motor.
  • the motor 66 a includes a rotor 240 and a stator 242.
  • a commutator 246 formed on the rotation shaft 244 of the rotor 240 is in contact with the brush 248 of the stator 242.
  • the commutator 246 and the brush 248 are configured as slip rings.
  • the commutator type single-phase AC motor 66a as shown in FIG. 9 when used, the following effects are obtained. That is, in comparison with a general DC motor having an iron core in the rotor 240, the commutator type single phase AC motor 66a can reduce the moment of inertia significantly. Therefore, for example, when the damper 22 including the motor 66a of FIG. 9 is used for the suspension device 12 of the vehicle 10, it is possible to prevent the deterioration of the ride comfort when the high frequency road surface vibration occurs.
  • the capacitance C is selected so that the electrical resonance frequency ⁇ m specified by the inductance L of the motor 66 and the capacitance C of the capacitor 70 is within ⁇ 20% of the unsprung resonance frequency ⁇ 1.
  • the present invention is not limited thereto.
  • the electric resonance frequency ⁇ m be within ⁇ 20% of the unsprung resonance frequency ⁇ 1.
  • the capacitor 70 is a polar capacitor.
  • a nonpolar capacitor it is also possible to use a nonpolar capacitor as the capacitor 70.
  • the battery 72 is connected to the capacitor 70, and the power of the capacitor 70 is charged to the battery 72 (FIG. 1).
  • the present invention is not limited thereto.
  • another electrical device for example, an audio device, a navigation device, a display device of an instrument panel
  • the battery 72 can be omitted.
  • the electrical resonance frequency ⁇ m and the like are set in consideration of the negative spring effect.
  • the present invention is not limited to this.
  • a polar capacitor 70 may be used to use LC resonance as in US 2004/0150361 A1 for damping of the unsprung resonance frequency ⁇ 1 or its surrounding range.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Vehicle Body Suspensions (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

 ばね下共振周波数及びばね上共振周波数に対応する入力振動を減衰するためのエネルギ効率を改善することが可能なダンパ及びダンパの製造方法を提供する。ダンパ(22)では、電磁モータ(66)のインダクタンス(L)及びキャパシタ(70)の容量(C)により特定される電気共振周波数がばね下共振周波数の±20%以内に設定されることで、ばね下共振周波数に対応する入力振動に加え、ばね上共振周波数に対応する入力振動が受動的に抑制される。

Description

ダンパ及びダンパの製造方法
 本発明は、入力振動のエネルギを回生するダンパ及びダンパの製造方法に関する。
 米国特許出願公開第2004/0150361号公報(以下「US 2004/0150361 A1」という。)では、制御対象入力に対してアクティブな制御を行いながらも、制御対象以外の入力に対してはパッシブに対処することができ、アクティブ制御が簡単になるばかりでなく、エネルギ効率を向上させることができる車両用電磁サスペンション装置を提供することを目的としている([0003]~[0005])。
 当該目的を達成するため、US 2004/0150361 A1の車両用電磁サスペンション装置(要約、図3)は、ばね上とばね下との間にばね要素7と並列に介装され、電気モータ8により駆動される電磁アクチュエータ4を備える。モータコントローラ17は、電磁アクチュエータ4への変位入力を演算し、変位入力に応じた最適な減衰力になるように電気モータ8を制御するように構成される。電気モータ8の制御回路(要約、図4、図7)には、ばね下からの変位入力に対し電気モータ8の発電制動によりパッシブに減衰力を発生する電気的減衰要素(電気抵抗器20又は電気共振回路21)を、電気モータ8と並列に接続する。
 電気的減衰要素のうち電気共振回路21(図7)は、ばね下共振周波数(例えば、10Hz~20Hz)に合わせた共振周波数であり、抵抗RとコイルLとコンデンサCを含む([0049])。これにより、ばね上共振周波数を含む低周波数域の制御対象入力に対する効果的なアクティブ制御と、共振周波数であるばね下共振周波数付近の制御対象入力に対する効果的なパッシブ制御との両立を達成することができるとされている([0065]、図9)。ここにいうアクティブ制御は、姿勢制御を含む低周波振動制御を目的とした電気モータ8の電流制御とされている([0041])。
 上記のように、US 2004/0150361 A1では、電気モータ8の電流制御を用いるアクティブ制御により、ばね上共振周波数を含む低周波数域の制御対象入力に対応する。また、抵抗RとコイルLとコンデンサCを合わせた電気共振回路21を用いるパッシブ制御により、ばね下共振周波数付近の制御対象入力に対応する。
 アクティブ制御は、姿勢制御を含む低周波振動制御を目的とした電気モータ8の電流制御であるため([0041])、ばね上共振周波数に対応する入力振動を減衰するためには電気モータ8でのエネルギ消費が発生する。このため、US 2004/0150361 A1では、ばね下共振周波数及びばね上共振周波数に対応する入力振動を減衰するためのエネルギ効率の観点で改善の余地がある。
 本発明は上記のような課題を考慮してなされたものであり、ばね下共振周波数及びばね上共振周波数に対応する入力振動を減衰するためのエネルギ効率を改善することが可能なダンパ及びダンパの製造方法を提供することを目的とする。
 本発明に係るダンパは、ばねと並列に配置されたダンパ本体と、前記ダンパ本体に入力される入力振動のエネルギを回生することで前記ばねに対する減衰力を発生させる電磁モータと、前記電磁モータと電気的に直列に接続されたキャパシタとを備えるものであって、前記電磁モータのインダクタンス及び前記キャパシタの容量により特定される電気共振周波数がばね下共振周波数の±20%以内に設定されることで、前記ばね下共振周波数に対応する前記入力振動の成分に加え、ばね上共振周波数に対応する前記入力振動の成分が受動的に抑制されることを特徴とする。
 本発明によれば、電磁モータのインダクタンス及びキャパシタの容量により特定される電気共振周波数をばね下共振周波数の±20%以内に設定する。これにより、ばね下共振周波数に対応する入力振動の成分に加え、ばね上共振周波数に対応する入力振動の成分を受動的に抑制する。従って、電磁モータをアクティブ制御することなしに、ばね下共振周波数及びばね上共振周波数それぞれに対応する入力振動の成分を抑制することが可能となる。
 すなわち、本発明の発明者は、電気共振周波数をばね下共振周波数又はその近傍値(例えば、ばね下共振周波数の±20%以内)に設定した場合、アクチュエータとしてのダンパ本体に発生する力には、ばね上共振周波数に対応する入力振動の成分を低減する効果(以下「負ばね効果」という。)が顕著に現れることを発見した。このため、US 2004/0150361 A1と異なり、ばね上共振周波数に対応する入力振動について電磁モータによるアクティブ制御を行わなくても、ばね下共振周波数及びばね上共振周波数それぞれに対応する入力振動の成分を抑制することが可能となる。従って、ばね上共振周波数に対応する入力振動の成分を抑制するために電力消費をすることなく、むしろ回生により電力を蓄えることで、エネルギ利用効率を改善することが可能となる。なお、「負ばね効果」との名称は、ばねとは反対の作用を奏することに因んでいる。また、負ばね効果の理論的根拠については後述する。
 前記電気共振周波数が前記ばね下共振周波数と等しい値に設定されてもよい。これにより、負ばね効果を非常に有効に利用することが可能となる。
 前記電磁モータは、例えば、直流モータ又は整流子型単相交流モータとすることができる。電磁モータとして整流子型単相交流モータを用いた場合、ロータに鉄心を有する一般的な直流モータと比較して、慣性モーメントを大幅に減少させることができる。従って、例えば、本発明に係るダンパを車両のサスペンション装置に用いた場合、高周波の路面振動が発生した際の乗り心地の悪化を防止することが可能となる。
 本発明に係るダンパの製造方法は、ばねと並列に配置されたダンパ本体と、前記ダンパ本体に入力される入力振動のエネルギを回生することで前記ばねに対する減衰力を発生させる電磁モータと、前記電磁モータと電気的に直列に接続されたキャパシタとを備えるダンパの製造方法であって、前記電磁モータのインダクタンス及び前記キャパシタの容量により特定される電気共振周波数がばね下共振周波数の±20%以内となるように前記キャパシタの容量を選択することで、前記ばね下共振周波数に対応する前記入力振動の成分に加え、ばね上共振周波数に対応する前記入力振動の成分を受動的に抑制することを特徴とする。これにより、電磁モータの仕様に合わせてキャパシタを選択することで、簡易に上記効果を奏することが可能となる。
本発明の一実施形態に係るダンパを有するサスペンション装置を搭載した車両の一部を簡略的に示す概略構成図である。 前記実施形態において、ばね下部材とばね上部材が接近するときの様子を示す図である。 前記実施形態において、前記ばね下部材と前記ばね上部材が離間するときの様子を示す図である。 前記実施形態の前記サスペンション装置の動作を説明するための等価モデルを示す図である。 図5Aは、伝達関数について周波数と振幅の関係の例を、電磁モータのインダクタンス及びキャパシタの容量から特定される電気共振周波数毎に示す図である。図5Bは、前記伝達関数について前記周波数と位相の関係の例を、前記電気共振周波数毎に示す図である。 ばね上加速度について周波数とパワースペクトル密度の関係の例を、前記電気共振周波数毎に示す図である。 ばね下加速度について周波数とパワースペクトル密度との関係の例を、前記電気共振周波数毎に示す図である。 前記実施形態におけるキャパシタの電圧の変化の一例を示すタイムチャートである。 変形例に係る電磁モータの構成を簡略的に示す断面図である。
A.一実施形態
[A1.車両10の構成]
(A1-1.車両10の全体構成)
 図1は、本発明の一実施形態に係るダンパ22を有するサスペンション装置12を搭載した車両10の一部を簡略的に示す概略構成図である。サスペンション装置12は、各車輪24に対応するコイルばね20及びダンパ22を有する。
(A1-2.コイルばね20)
 コイルばね20は、車体26とスプリングシート48との間に配置され、路面300から車輪24に入力される振動(路面振動)を吸収する。
(A1-3.ダンパ22)
(A1-3-1.ダンパ22の全体構成)
 ダンパ22は、コイルばね20(又は車体26)の変位を減衰させる。図1に示すように、ダンパ22は、ダンパ本体30と、油圧機構32と、モータ回路34とを備える。
(A1-3-2.ダンパ本体30)
 ダンパ本体30は、スプリングシート48に加え、油圧シリンダ40、ピストンヘッド42、ピストンロッド44及びピストンバルブ46を備える。油圧シリンダ40は、円筒状の部材であり、ピストンヘッド42により、その内部が第1油圧室50及び第2油圧室52に区画される。第1油圧室50及び第2油圧室52には油が充填されている。ピストンロッド44は、油圧シリンダ40の内周面と略等しい直径のピストンヘッド42をその一端に固定すると共に、他端が車体26に固定されている。ピストンバルブ46は、ピストンヘッド42内に形成され、第1油圧室50と第2油圧室52とを連通させる。スプリングシート48は、油圧シリンダ40の外周に形成されてコイルばね20の一端を支持する。なお、上記のような構成を有することにより、ダンパ本体30は、アクチュエータとして機能する。
(A1-3-3.油圧機構32)
 油圧機構32は、ダンパ22における油の流通を制御するものであり、油圧ポンプ60と、油流路62と、アキュムレータ64と、電磁モータ66(以下「モータ66」ともいう。)とを備える。モータ66は、ダンパ本体30に入力される入力振動のエネルギを回生することでコイルばね20に対する減衰力Fdを発生させる。本実施形態のモータ66は、直流(DC)式であるが、交流(AC)式としてもよい。
(A1-3-4.モータ回路34)
 モータ回路34は、モータ66と電気的に連結された回路であり、キャパシタ70(第1蓄電装置)と、バッテリ72(第2蓄電装置、電気負荷)を備える。なお、図1のモータ回路34では、モータ66のインダクタンスLとモータ66の抵抗Rを併せて図示している。モータ66とモータ回路34を組み合わせることにより、モータ66の逆起電力によりモータ反力Fmr(換言すると、コイルばね20に対する減衰力Fd)を発生させることが可能となる。加えて、モータ66による回生により発電を行うことができる。
 キャパシタ70は、電磁モータ66の回生電力を充電し、バッテリ72又は図示しない他の電気機器(例えば、オーディオ機器、ナビゲーション装置、インスツルメントパネルの表示装置)に対して充電した電力を供給する。本実施形態のキャパシタ70は、有極性キャパシタである。バッテリ72は、電磁モータ66の回生電力又はキャパシタ70の放電電力を充電し、前記他の電気機器に対して充電した電力を供給する。
 モータ回路34は、構成が簡素であるため、動作の信頼性が高い。
[A2.ダンパ22の動作]
 図2は、本実施形態において、ばね下部材80とばね上部材82が接近するときの様子を示す。図3は、本実施形態において、ばね下部材80とばね上部材82が離間するときの様子を示す。
 図2に示すように、路面300から路面入力Finがあると、これに伴ってばね下部材80(車輪24、油圧シリンダ40等)がばね上部材82(車体26、ピストンヘッド42、ピストンロッド44等)に向かって接近する(矢印100参照)。この際、ピストンヘッド42に対する圧力は、主として下面90に作用する。これにより、油圧機構32(油流路62等)内の油は、矢印102で示す方向に流れる。
 これに伴って、油圧ポンプ60の回転軸にトルクTpが発生する。油圧ポンプ60の回転軸は、電磁モータ66の回転軸に連結されている(図1~図3では簡略的に記載している。)。このため、油圧ポンプ60の回転軸からのトルクTp(出力トルク)は、モータ66の回転軸に入力される。以下では、モータ66に発生するトルク(入力トルク)をトルクTm又は入力トルクTmという。
 モータ66への入力トルクTmに伴ってモータ66が回転すると、モータ66は、入力トルクTmに対応した発電(換言すると、入力振動のエネルギの回生)を行う。これにより、モータ回路34内には電圧Vmが発生し、電流Iが流れる。モータ66が入力トルクTmに対応した発電を行う際、逆起電力が発生し、モータ66の回転軸には反力Trが発生する。当該反力Trが油圧ポンプ60の回転軸に発生すると、路面入力Finに伴って油に作用する力(矢印102参照)に対する反力として作用する。これに伴って、ばね下部材80(車輪24、油圧シリンダ40等)にはコイルばね20に対する減衰力Fdが発生する。従って、コイルばね20の振動を収束させることが可能となる。
 一方、図3に示すように、路面300から路面入力Foutがあると、これに伴ってばね下部材80(車輪24、油圧シリンダ40等)がばね上部材82(車体26、ピストンヘッド42、ピストンロッド44等)から離間する(矢印110参照)。この際、ピストンヘッド42に対する圧力は、主として上面92に作用する。これにより、油圧機構32(油流路62等)内の油は、矢印112で示す方向に流れる。これに伴って、ポンプ60及びモータ66は図2の場合と反対に作動する。これに伴い、モータ66の電圧Vm及び電流Iの向きは、図2と反対になる。
[A3.ダンパ22の減衰特性]
 次に、本実施形態におけるダンパ22の減衰特性について説明する。本実施形態の特徴には、負ばね効果を考慮して電気共振周波数ωmを設定することと、有極性のキャパシタ70を使用するための構成をダンパ22(油圧機構32)が備えることが含まれる。電気共振周波数ωm(以下「共振周波数ωm」ともいう。)は、モータ66のインダクタンスLとキャパシタ70の容量Cから特定される値である。すなわち、電気共振周波数ωmは、1/{2√(L・C)}である。上記各特徴については以下に詳述する。
(A3-1.定義)
 図4は、本実施形態のサスペンション装置12の動作を説明するための等価モデルを示す図である。図4における各種の値の内容は、下記の通りである。
 x0:路面300の上下方向変位量[m]
 x1:ばね下部材80の上下方向変位量[m]
 x2:ばね上部材82の上下方向変位量[m]
 M1:ばね下部材80の質量[kg]
 M2:ばね上部材82の質量[kg]
 k1:ばね下部材80のばね定数[N/m]
 k2:コイルばね20のばね定数[N/m]
 C2:ダンパ本体30の減衰係数[N/m/s]
 u:電磁モータ66の制御量
 ばね下部材80としては、例えば、車輪24及び油圧シリンダ40が含まれる。ばね上部材82としては、例えば、車体26、ピストンヘッド42及びピストンロッド44が含まれる。なお、本実施形態におけるモータ66の制御量uは、例えば、回生エネルギで示すことができる。
(A3-2.ダンパ本体30(アクチュエータ)に発生する力Fa(負ばね効果))
(A3-2-1.理論的な説明)
 次に、ダンパ本体30(アクチュエータ)に発生する力Faに言及しながら、負ばね効果を説明する。
 本実施形態のダンパ22では、次の関係が成り立つ。
 Fa=λ・Tp                (1)
 λ=θ/(x2-x1)             (2)
 Imp・θ’’=Tm-Tp          (3)
 L・I’’+R・I’+I/C+Vm’=0   (4)
 Tm=Ke・I                (5)
 Vm=Ke・θ’               (6)
 式(1)~式(6)における各種数値の内容は、下記の通りである。
 C:キャパシタ70の容量[F]
 Fa:ダンパ本体30(アクチュエータ)に発生する力[N]
 I:モータ回路34に流れる電流[A]
 I’:モータ回路34に流れる電流の速度[A/s]
 I’’:モータ回路34に流れる電流の加速度[A/s/s]
 Imp:油圧ポンプ60及びモータ66の慣性モーメント[kg・m2
 Ke:モータ66の誘起電圧定数(=モータ66のトルク定数)
 L:モータ66のリアクタンス[Ω]
 R:モータ66の抵抗[Ω]
 Tm:モータ66のトルク[N・m]
 Tp:油圧ポンプ60のトルク[N・m]
 Vm:モータ66の出力電圧(モータ電圧)[V]
 Vm’:モータ電圧Vmの時間微分値[V]
 x1:ばね下部材80の上下方向変位量[m]
 x2:ばね上部材82の上下方向変位量[m]
 λ:等価ギヤ比[-]
 θ:モータ66の回転軸の回転角度[deg]
 θ’:モータ66の回転軸の回転速度[deg/s]
 θ’’:モータ66の回転軸の回転加速度[deg/s/s]
 式(1)~式(6)についてラプラス変換を行うと、ダンパ本体30(アクチュエータ)に発生する力Faは、次の式(7)で表すことが可能である。
Figure JPOXMLDOC01-appb-M000001
 式(7)の右辺第1項の「-λ2・Imp(x2’’-x1’’)」は、負ばね効果を示す。すなわち、ばね下部材80はばね上部材82に対して上下方向の進退を繰り返すため、ばね下部材80とばね上部材82の位置関係は三角関数で近似することが可能である。このため、「λ2・Imp(x2’’-x1’’)」は、「K(x2-x1)」と同等といえる(Kはばね定数である。)。また、式(7)の右辺第1項は「-」を含む。このため、式(7)の右辺第1項は、コイルばね20と逆向きの力を意味することとなる。その結果、式(7)の右辺第1項は、ばね上共振周波数ω2又はその周辺の振動を抑制する効果を発揮することとなる。
 式(7)の右辺第2項の「-λ2・Ke2・s/{L・s2+R・s+(1/C)}・(x2’-x1’)」は、ダンパ本体30(アクチュエータ)による減衰力を示す。
 式(7)を伝達関数Fa/(x2’-x1’)の形で表すと、次の式(8)となる。
Figure JPOXMLDOC01-appb-M000002
 上記のように、ダンパ本体30(アクチュエータ)に発生する力Faは、ばね上共振周波数ω2又はその近傍について負ばね効果を生じる。このため、モータ66及びモータ回路34の電気共振周波数ωmをばね下共振周波数ω1を基準として設定すれば、ばね上及びばね下のいずれについても制振効果を効果的に発揮することが可能となる。
(A3-2-2.伝達関数Gの例)
 上記のような負ばね効果を踏まえ、モータ66及びモータ回路34の電気共振周波数ωmをばね下共振周波数ω1を基準として設定した例について、比較例と対比しながら説明する。
 図5Aは、伝達関数Gについての周波数fgと振幅Mgの関係の例を、モータ66のインダクタンスL及びキャパシタ70の容量Cから特定される電気共振周波数ωm毎に示す。図5Bは、伝達関数Gについての周波数fgと位相Pgの関係の例を、電気共振周波数ωm毎に示す。図5A及び図5Bを合わせて、本実施形態におけるダンパ22の周波数特性を示すボード線図を構成する。
 図5A及び図5Bにおいて、線200、210は、共振周波数ωmをばね下共振周波数ω1(本実施形態では、76.6[rad/s])よりも約6.5%大きい周波数(本実施形態では、81.6[rad/s])とした第1例を示す。線202、212は、共振周波数ωmをばね下共振周波数ω1と等しい値とした第2例を示す。線204、214は、共振周波数ωmをばね下共振周波数ω1よりも約17.5%小さい周波数(本実施形態では、63.2[rad/s])とした第3例を示す。線206、216は、共振周波数ωmをばね下共振周波数ω1よりも約30.0%小さい周波数(本実施形態では、53.6[rad/s])とした比較例を示す。
 図5A及び図5Bにおいて、車両10の乗員の乗り心地に影響する周波数領域Rrq(以下「乗り心地制御領域Rrq」ともいう。)では、第1例、第2例、第3例及び比較例のいずれについてもそれほど振幅Mgが変化しないが、位相Pgが変化している。
(A3-2-3.ばね上の特性の例)
 図6は、ばね上加速度x2’’について周波数f2とパワースペクトル密度D2の関係の例を、電気共振周波数ωm毎に示す。図6の横軸に示す周波数f2の数値については、単位Hzで理解し易くするため、いずれも実際の数値を「1/3.14」倍していることに留意されたい(図7も同様である。)。図6において、線220、222、224、226、228は、それぞれ第1例~第3例及び第1・第2比較例を示す。図6の第1例~第3例は、図5A、図5Bの第1例~第3例に対応する。図6の第1比較例は、図5A及び図5Bの比較例に対応する。図6の第2比較例は、LC共振を伴わずにアクティブ制御を行うものである。
 一般に、車両10の乗員は、比較的低周波の領域(例えば、3~8Hz)の振動に敏感である。図6からわかるように、比較的低周波の領域Rlowでは、共振周波数ωmがばね下共振周波数ω1に近づくほどパワースペクトル密度D2が低減する傾向にある。このことは、共振周波数ωmがばね下共振周波数ω1に近づくほどばね上の制振効果が高い傾向にあることを意味している。
(A3-2-4.ばね下の特性の例)
 図7は、ばね下加速度x1’’について周波数f1とパワースペクトル密度D1の関係の例を、電気共振周波数ωm毎に示す。図7において、線230、232、234、236は、図6と同様、それぞれ第1例・第2例及び第1・第2比較例を示す(第3例については省略している。)。図7の第1例・第2例及び第1・第2比較例は、図6の第1例・第2例及び第1・第2比較例に対応する。
 一般に、ばね下加速度x1’’は、車両10の操縦安定性に影響する。図7からわかるように、比較的高周波の領域Rhiでは、パワースペクトル密度D1が略同等である。このため、いずれの例についても同等の操縦安定性を実現可能である。
(A3-3.有極性のキャパシタ70を使用可能とする構成)
(A3-3-1.前提)
 上記のような負ばね効果を発生させる前提として、路面入力Fin、Fout(図2及び図3)に伴う上下運動によるモータ66の正転又は逆転によりモータ回路34においてLC共振を発生させる必要がある。モータ回路34をLC共振させる場合、モータ66の出力電圧Vmが正の値と負の値で連続的に切り替わる。ここで、キャパシタ70が有極性であると、キャパシタ70の耐久性を損うおそれがある。
 そのための対策として、キャパシタ70を無極性キャパシタにすることが考えられる。しかしながら、既存の無極性キャパシタは、寸法が比較的大きくなるため、例えば、車両10に搭載するのに不向きであることが多い。
 そこで、本実施形態では、キャパシタ70を有極性キャパシタにした場合であっても、キャパシタ70の耐久性を損う可能性を低くするような構成をダンパ22(油圧機構32)に持たせる。
(A3-3-2.具体的内容)
 キャパシタ70を有極性キャパシタにした場合であっても、キャパシタ70の耐久性を損う可能性を低くするため、本実施形態ではモータ66の正転における発電量と逆転における発電量とを相違させる構成を用いる。
 図2に示すように、ばね下部材80とばね上部材82が接近するとき、ばね上部材82に含まれるピストンヘッド42は、ばね下部材80に接近する。この際、ピストンヘッド42に対する圧力は、主として下面90に作用する。
 一方、図3に示すように、ばね下部材80とばね上部材82が離間するとき、ばね上部材82に含まれるピストンヘッド42は、ばね下部材80から離間する。この際、ピストンヘッド42に対する圧力は、主として上面92に作用する。
 図2及び図3から明らかなように、本実施形態では、ピストンロッド44は、車体26側に固定され、ばね上部材82に含まれる。このため、下面90の表面積Alowと比較して上面92の表面積Aupは小さい。従って、モータ66の回転軸の回転角度θの変化量又は等価ギヤ比λ{=θ/(x2-x1)}は、ばね下部材80とばね上部材82が接近するとき(図2)とばね下部材80とばね上部材82が離間するとき(図3)とで異なる。具体的には、接近するときの方が、離間するときよりも、回転角度θの変化量及び等価ギヤ比λが大きくなる。
 接近するときと離間するときとで等価ギヤ比λが異なると、接近するときと離間するときとでモータ66の回生電力も異なる。このため、キャパシタ70の電圧(以下「キャパシタ電圧Vc」という。)は、一方の極性に偏ることとなる。従って、キャパシタ70として有極性キャパシタを用いても耐久性を損う可能性を低くすることが可能となる。
(A3-3-3.キャパシタ70の電圧変化の例)
 図8は、本実施形態におけるキャパシタ70の電圧(キャパシタ電圧Vc)の変化の一例を示すタイムチャートである。図8からわかるように、キャパシタ電圧Vcは正の方に偏位していることがわかる。
[A4.本実施形態における効果]
 以上のような本実施形態によれば、電磁モータ66のインダクタンスL及びキャパシタ70の容量Cにより特定される電気共振周波数ωmをばね下共振周波数ω1又はその近傍値に設定する(図5~図7の第1例~第3例参照)。これにより、ばね下共振周波数ω1に対応する入力振動の成分に加え、ばね上共振周波数ω2に対応する入力振動の成分を受動的に抑制する(図6及び図7参照)。従って、電磁モータ66をアクティブ制御することなしに、ばね下共振周波数ω1及びばね上共振周波数ω2それぞれに対応する入力振動の成分を抑制することが可能となる。
 すなわち、本発明の発明者は、電気共振周波数ωmをばね下共振周波数ω1又はその近傍値(例えば、ばね下共振周波数ω1の±20%以内)に設定した場合、ダンパ本体30(アクチュエータ)に発生する力Faには、ばね上共振周波数ω2に対応する入力振動の成分を低減する効果(負ばね効果)が含まれることを発見した。このため、US 2004/0150361 A1と異なり、ばね上共振周波数ω2に対応する入力振動について電磁モータ66によるアクティブ制御を行わなくても、ばね下共振周波数ω1及びばね上共振周波数ω2それぞれに対応する入力振動の成分を抑制することが可能となる。従って、ばね上共振周波数ω2に対応する入力振動の成分を抑制するために電力消費をすることなく、むしろ回生により電力を蓄えることで、エネルギ利用効率を改善することが可能となる。
 また、電気共振周波数ωmがばね下共振周波数ω1又はその近傍値となるようにキャパシタ70の容量Cを選択した場合、電磁モータ66の仕様に合わせてキャパシタ70を選択することで、簡易に上記効果を奏することが可能となる。
B.変形例
 なお、本発明は、上記実施形態に限らず、本明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。例えば、以下の構成を採用することができる。
[B1.適用対象]
 上記実施形態では、サスペンション装置12又はダンパ22を車両10に適用した例を説明した(図1)。しかしながら、例えば、負ばね効果又は有極性のキャパシタ70の利用に着目すれば、これに限らない。例えば、その他の装置(例えば、船舶、飛行機、エレベータ、測定装置又は製造装置)にサスペンション装置12又はダンパ22を適用することも可能である。
[B2.サスペンション装置12]
(B2-1.コイルばね20)
 上記実施形態では、路面振動(入力振動)を吸収するためのばねとしてコイルばね20を用いた(図1)。しかしながら、例えば、路面振動(入力振動)を吸収する観点からすれば、その他の種類のばね(例えば、板ばね)を用いることも可能である。
(B2-2.ダンパ22)
 上記実施形態では、油圧機構32を備えるダンパ22を用いた(図1)。しかしながら、例えば、負ばね効果又は有極性のキャパシタ70の観点からすれば、これに限らない。例えば、ボールねじ式、ラック&ピニオン式、ダイレクト式(リニアモータ)等の構成を適用可能である。なお、油圧機構32を備えないダンパ22において有極性のキャパシタ70を用いる場合、モータ66の正転時と逆転時とで等価ギヤ比λを変化させる構成(例えば、ワンウェイクラッチをモータ66の回転軸又はこれに連結された他の回転軸に配置した構成)を用いることも可能である。
 上記実施形態では、ピストンロッド44を車体26側に配置した(図1等)。しかしながら、例えば、負ばね効果又は有極性のキャパシタ70の観点からすれば、これに限らず、ピストンロッド44を車輪24側に配置することも可能である。
(B2-3.油圧機構32)
 上記実施形態では、モータ66による減衰力Fdを、油を介して伝達した(図2及び図3)。しかしながら、例えば、モータ66による減衰力Fdを伝達する観点からすれば、油以外の流体(例えば、エア)を用いることも可能である。
(B2-4.電磁モータ66)
 上記実施形態では、電磁モータ66は、直流式であった。しかしながら、例えば、負ばね効果又は有極性のキャパシタ70の制御の観点からすれば、これに限らない。例えば、モータ66は、交流式としてもよい。
 図9は、変形例に係る電磁モータ66a(以下「モータ66a」ともいう。)の構成を簡略的に示す断面図である。モータ66aは、整流子型単相交流モータである。図9に示すように、モータ66aは、ロータ240とステータ242とを備える。ロータ240の回転軸244に形成された整流子246は、ステータ242のブラシ248に接している。本変形例では、整流子246とブラシ248はスリップリングとして構成される。
 図9に示すような整流子型単相交流モータ66aを用いる場合、次の効果を奏する。すなわち、ロータ240に鉄心を有する一般的な直流モータと比較して、整流子型単相交流モータ66aは、慣性モーメントを大幅に減少させることができる。従って、例えば、図9のモータ66aを備えるダンパ22を車両10のサスペンション装置12に用いた場合、高周波の路面振動が発生した際の乗り心地の悪化を防止することが可能となる。
(B2-5.キャパシタ70)
 上記実施形態では、モータ66のインダクタンスL及びキャパシタ70の容量Cにより特定される電気共振周波数ωmがばね下共振周波数ω1の±20%以内となるように容量Cを選択した。しかしながら、例えば、負ばね効果又は有極性のキャパシタ70の観点からすれば、これに限らない。例えば、モータ66のインダクタンスLとは別にインダクタンスを設けることで電気共振周波数ωmがばね下共振周波数ω1の±20%以内となるようにすることも可能である。
 上記実施形態では、キャパシタ70を有極性キャパシタとした。しかしながら、例えば、ダンパ22の用途又は負ばね効果の観点からすれば、キャパシタ70として無極性キャパシタを用いることも可能である。
(B2-6.バッテリ72)
 上記実施形態では、キャパシタ70に対してバッテリ72を接続して、キャパシタ70の電力をバッテリ72に充電させた(図1)。しかしながら、例えば、負ばね効果又は有極性のキャパシタ70の観点からすれば、これに限らない。例えば、バッテリ72の代わりに他の電気機器(例えば、オーディオ機器、ナビゲーション装置、インスツルメントパネルの表示装置)をキャパシタ70に接続することも可能である。或いは、バッテリ72を省略することも可能である。
[B3.負ばね効果]
 上記実施形態では、負ばね効果を考慮して電気共振周波数ωm等を設定した。しかしながら、例えば、有極性のキャパシタ70を用いる観点からすれば、これに限らない。例えば、電気共振周波数ωmをばね上共振周波数ω2又はその近傍に合わせて設定する構成に有極性のキャパシタ70を適用することも可能である。或いは、US 2004/0150361 A1のようなLC共振をばね下共振周波数ω1又はその周辺の範囲の制振に用いるために有極性のキャパシタ70を用いてもよい。

Claims (4)

  1.  ばね(20)と並列に配置されたダンパ本体(30)と、
     前記ダンパ本体(30)に入力される入力振動のエネルギを回生することで前記ばね(20)に対する減衰力を発生させる電磁モータ(66、66a)と、
     前記電磁モータ(66、66a)と電気的に直列に接続されたキャパシタ(70)と
     を備えるダンパ(22)であって、
     前記電磁モータ(66、66a)のインダクタンス及び前記キャパシタ(70)の容量により特定される電気共振周波数がばね下共振周波数の±20%以内に設定されることで、前記ばね下共振周波数に対応する前記入力振動の成分に加え、ばね上共振周波数に対応する前記入力振動の成分が受動的に抑制される
     ことを特徴とするダンパ(22)。
  2.  請求項1に記載のダンパ(22)において、
     前記電気共振周波数は、前記ばね下共振周波数と等しい値に設定される
     ことを特徴とするダンパ(22)。
  3.  請求項1又は2に記載のダンパ(22)において、
     前記電磁モータ(66、66a)は、整流子型単相交流モータである
     ことを特徴とするダンパ(22)。
  4.  ばね(20)と並列に配置されたダンパ本体(30)と、前記ダンパ本体(30)に入力される入力振動のエネルギを回生することで前記ばね(20)に対する減衰力を発生させる電磁モータ(66、66a)と、前記電磁モータ(66、66a)と電気的に直列に接続されたキャパシタ(70)とを備えるダンパ(22)の製造方法であって、
     前記電磁モータ(66、66a)のインダクタンス及び前記キャパシタ(70)の容量により特定される電気共振周波数がばね下共振周波数の±20%以内となるように前記キャパシタ(70)の容量を選択することで、前記ばね下共振周波数に対応する前記入力振動の成分に加え、ばね上共振周波数に対応する前記入力振動の成分を受動的に抑制する
     ことを特徴とするダンパ(22)の製造方法。
PCT/JP2015/059453 2014-08-28 2015-03-26 ダンパ及びダンパの製造方法 WO2016031285A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580045486.3A CN106795937B (zh) 2014-08-28 2015-03-26 减震器及减震器的制造方法
US15/506,570 US10518599B2 (en) 2014-08-28 2015-03-26 Damper and damper manufacturing method
JP2016544978A JP6267799B2 (ja) 2014-08-28 2015-03-26 ダンパ及びダンパの製造方法
DE112015003944.9T DE112015003944T5 (de) 2014-08-28 2015-03-26 Dämpfer und Dämpferherstellungsverfahren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-174104 2014-08-28
JP2014174104 2014-08-28

Publications (1)

Publication Number Publication Date
WO2016031285A1 true WO2016031285A1 (ja) 2016-03-03

Family

ID=55399191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059453 WO2016031285A1 (ja) 2014-08-28 2015-03-26 ダンパ及びダンパの製造方法

Country Status (5)

Country Link
US (1) US10518599B2 (ja)
JP (1) JP6267799B2 (ja)
CN (1) CN106795937B (ja)
DE (1) DE112015003944T5 (ja)
WO (1) WO2016031285A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10300760B1 (en) 2015-03-18 2019-05-28 Apple Inc. Fully-actuated suspension system
KR20180106202A (ko) * 2017-03-17 2018-10-01 주식회사 만도 차량용 쇽업소버
US10814690B1 (en) 2017-04-18 2020-10-27 Apple Inc. Active suspension system with energy storage device
US11358431B2 (en) 2017-05-08 2022-06-14 Apple Inc. Active suspension system
US10899340B1 (en) 2017-06-21 2021-01-26 Apple Inc. Vehicle with automated subsystems
US11173766B1 (en) 2017-09-07 2021-11-16 Apple Inc. Suspension system with locking structure
US11065931B1 (en) 2017-09-15 2021-07-20 Apple Inc. Active suspension system
GB2566546B (en) * 2017-09-19 2019-12-18 Jaguar Land Rover Ltd An actuator system
GB2566543B (en) * 2017-09-19 2020-02-05 Jaguar Land Rover Ltd An actuator system
US11124035B1 (en) 2017-09-25 2021-09-21 Apple Inc. Multi-stage active suspension actuator
US10960723B1 (en) 2017-09-26 2021-03-30 Apple Inc. Wheel-mounted suspension actuators
US11285773B1 (en) 2018-09-12 2022-03-29 Apple Inc. Control system
US11634167B1 (en) 2018-09-14 2023-04-25 Apple Inc. Transmitting axial and rotational movement to a hub
US11440366B1 (en) * 2018-10-03 2022-09-13 ClearMotion, Inc. Frequency dependent pressure and/or flow fluctuation mitigation in hydraulic systems
US10947999B2 (en) 2019-05-29 2021-03-16 Stephen Rodney Fine Hydraulic-magnetic driven pistons and method of use
US11345209B1 (en) 2019-06-03 2022-05-31 Apple Inc. Suspension systems
US11179991B1 (en) 2019-09-23 2021-11-23 Apple Inc. Suspension systems
US11938922B1 (en) 2019-09-23 2024-03-26 Apple Inc. Motion control system
US11707961B1 (en) 2020-04-28 2023-07-25 Apple Inc. Actuator with reinforcing structure for torsion resistance
US11828339B1 (en) 2020-07-07 2023-11-28 Apple Inc. Vibration control system
EP4319998A1 (en) 2021-06-07 2024-02-14 Apple Inc. Mass damper system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160348A (ja) * 1984-01-28 1985-08-21 Yoshizumi Kobayashi フライホイ−ル内蔵式自転複合電動機による電力貯蔵式動力装置
JPH04244407A (ja) * 1991-01-31 1992-09-01 Nippondenso Co Ltd サスペンション制御装置
JP2004237824A (ja) * 2003-02-05 2004-08-26 Nissan Motor Co Ltd 車両用電磁サスペンション装置
JP2011201474A (ja) * 2010-03-26 2011-10-13 Toyota Motor Corp 車両のサスペンション装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6891304B1 (en) * 2000-09-06 2005-05-10 Quebec Metal Powders Limited Brush DC motors and AC commutator motor structures with concentrated windings
JP2004299559A (ja) * 2003-03-31 2004-10-28 Tokico Ltd アクチュエータの制御方法及びその方法を用いたサスペンション装置
CN100486824C (zh) * 2003-12-08 2009-05-13 上海汇众汽车制造有限公司 电机蓄能式主动悬架
US8843274B2 (en) * 2010-05-11 2014-09-23 Toyota Jidosha Kabushiki Kaisha Suspension device
US8596430B2 (en) * 2010-06-17 2013-12-03 Toyota Jidosha Kabushiki Kaisha Electrical shock absorber
US10968939B2 (en) * 2011-08-25 2021-04-06 Infastech Intellectual Properties Pte. Ltd. Tapered lobular driver and fastener
US9217484B2 (en) * 2012-03-27 2015-12-22 Beijing West Industries Amplitude sensitive hydraulic damper
DE102012106915B4 (de) * 2012-07-30 2020-07-16 Hermann Schwelling Aktenvernichter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160348A (ja) * 1984-01-28 1985-08-21 Yoshizumi Kobayashi フライホイ−ル内蔵式自転複合電動機による電力貯蔵式動力装置
JPH04244407A (ja) * 1991-01-31 1992-09-01 Nippondenso Co Ltd サスペンション制御装置
JP2004237824A (ja) * 2003-02-05 2004-08-26 Nissan Motor Co Ltd 車両用電磁サスペンション装置
JP2011201474A (ja) * 2010-03-26 2011-10-13 Toyota Motor Corp 車両のサスペンション装置

Also Published As

Publication number Publication date
CN106795937A (zh) 2017-05-31
US10518599B2 (en) 2019-12-31
JP6267799B2 (ja) 2018-01-24
JPWO2016031285A1 (ja) 2017-04-27
DE112015003944T5 (de) 2017-05-11
US20170253101A1 (en) 2017-09-07
CN106795937B (zh) 2019-01-22

Similar Documents

Publication Publication Date Title
WO2016031285A1 (ja) ダンパ及びダンパの製造方法
JP5937159B2 (ja) ダンパ
EP2681061B1 (en) A suspension control system
JP4396611B2 (ja) 車両用懸架シリンダ装置
JP5293821B2 (ja) 車両用ダンパシステム
JP2009274600A (ja) 車両用サスペンションシステム
JPH0398455A (ja) 電子機械変換装置
JP4894545B2 (ja) 車両用サスペンションシステム
JP2004215375A (ja) 発電ダンパ装置
JP2007118714A (ja) 車両制振装置
JP2009179319A (ja) 電磁サスペンション制御装置
JP2001310736A (ja) 電磁サスペンション制御装置
JP2009214836A (ja) 電磁サスペンション
JP2011098688A (ja) 車両用サスペンション装置
JP2011189774A (ja) 車両用サスペンション装置
JP5429369B2 (ja) 車両用サスペンション装置
JP6480202B2 (ja) サスペンション制御装置
JP4858292B2 (ja) 車両用サスペンションシステム
JP5272799B2 (ja) 車両用サスペンションシステム
JP2017218041A (ja) ばね下振動制御装置及びサスペンション装置
JP4775250B2 (ja) 車両用サスペンションシステム
JP2008114745A (ja) 車両用サスペンションシステム
JP2012111393A (ja) 車両のサスペンション装置
JP5316360B2 (ja) ショックアブソーバ装置
JP2013001139A (ja) サスペンション装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836722

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544978

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15506570

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015003944

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836722

Country of ref document: EP

Kind code of ref document: A1