WO2016029563A1 - 全自动洗衣机及控制方法 - Google Patents

全自动洗衣机及控制方法 Download PDF

Info

Publication number
WO2016029563A1
WO2016029563A1 PCT/CN2014/091404 CN2014091404W WO2016029563A1 WO 2016029563 A1 WO2016029563 A1 WO 2016029563A1 CN 2014091404 W CN2014091404 W CN 2014091404W WO 2016029563 A1 WO2016029563 A1 WO 2016029563A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
rotor
shaft
pulsator
stator
Prior art date
Application number
PCT/CN2014/091404
Other languages
English (en)
French (fr)
Inventor
吕佩师
许升
杨林
Original Assignee
青岛海尔洗衣机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔洗衣机有限公司 filed Critical 青岛海尔洗衣机有限公司
Priority to KR1020177007713A priority Critical patent/KR102278276B1/ko
Priority to EP14900370.9A priority patent/EP3187643B1/en
Priority to US15/505,364 priority patent/US10612179B2/en
Priority to JP2017508646A priority patent/JP6452069B2/ja
Publication of WO2016029563A1 publication Critical patent/WO2016029563A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • D06F37/40Driving arrangements  for driving the receptacle and an agitator or impeller, e.g. alternatively
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F17/00Washing machines having receptacles, stationary for washing purposes, wherein the washing action is effected solely by circulation or agitation of the washing liquid
    • D06F17/06Washing machines having receptacles, stationary for washing purposes, wherein the washing action is effected solely by circulation or agitation of the washing liquid by rotary impellers
    • D06F17/08Driving arrangements for the impeller
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06FLAUNDERING, DRYING, IRONING, PRESSING OR FOLDING TEXTILE ARTICLES
    • D06F37/00Details specific to washing machines covered by groups D06F21/00 - D06F25/00
    • D06F37/30Driving arrangements 
    • D06F37/304Arrangements or adaptations of electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the invention relates to a washing machine, in particular to a fully automatic washing machine and a control method for driving a pulsator and an inner barrel by using a double-rotor direct drive motor.
  • the rotation of the pulsator and the inner barrel of the conventional pulsator washing machine is that the motor drives the belt through the pulley to transmit the power to the deceleration clutch.
  • the deceleration clutch passes through the internal gear structure to convert the high rotation speed of the motor into a lower requirement in the washing process of the washing machine.
  • the speed, and according to different washing modes, the deceleration clutch uses different gear structures and transmits different directions of rotation and rotation to the pulsator.
  • the deceleration clutch and the motor are laterally arranged at the bottom of the tub, the overall system structure is relatively large.
  • the deceleration clutch is located at the center of the outer tub, the motor is offset from the central portion, and the center of the entire structure of the bottom of the outer tub is offset from the center hole of the outer tub.
  • washing machines In order to reduce the noise and vibration generated during the working process of the washing machine, many washing machines adopt a direct drive motor, and the pulley belt device is removed.
  • the longitudinal connection of the deceleration clutch is directly connected to the motor, so that the center of gravity of the bottom structure of the outer tub is basically rotated in the outer tub. The location of the center hole. This structure improves the transmission efficiency and stability of the motor while reducing the noise during operation.
  • the deceleration clutch is usually equipped with an intermediate gear structure. Due to the relatively large structure, the entire system is relatively large in the longitudinal direction. Therefore, the overall noise and vibration effects are not ideal.
  • the Chinese patent application No. 00120729.6 discloses a washing machine power direct drive device comprising: a disc type speed regulating motor; a washing shaft and a motor output shaft; a dehydration shaft rotatably supported on the washing shaft; and a motor built-in electromagnetic clutch, respectively
  • the washing shaft and the dewatering shaft are fixed; the motor has a built-in electric brake, which is fixed to the dewatering shaft.
  • the motor power is directly driven by the switching of the electromagnetic clutch to the washing shaft and simultaneously to the washing shaft and the dewatering shaft.
  • the built-in electromagnetic clutch of the motor adopts the structure, the structure is complicated, the cost is high, and the service life is short.
  • Chinese Patent Application No. 00120729.6 discloses a new direct-drive clutch washing machine which uses direct motor drive
  • the pulsator shaft is directly fixed to the motor output shaft, and the rotating shaft sleeve is set on the output shaft of the motor, the rotating sleeve is fixedly connected with the washing cylinder and synchronously rotated; and a floating clutch mechanism is provided, which has two working states. In the dehydrated state, the floating clutch mechanism falls and is meshed with the output shaft and the rotating sleeve of the motor to realize synchronous rotation of the output shaft and the rotating sleeve and drive the washing cylinder to rotate.
  • the floating clutch mechanism In the washing state, the floating clutch mechanism floats up and is disconnected from the output shaft of the motor; although the washing device of the washing machine has a relatively simple structure, a simple manufacturing process and a low cost, the water quantity requirement for the washing machine is higher, if the water level is higher Low, it is difficult to raise the floating clutch mechanism, even if the water level is high, the floating clutch mechanism can also be pressed due to the washing and turning of the laundry.
  • a fully automatic washing machine having the application number of 201320560102.X which comprises an outer tub, an inner tub, a pulsator and a driving device, the driving device comprising at least two rotors and at least one stator, wherein one rotor and inner drum The shaft is connected, and a rotor is connected to the pulsator shaft;
  • the driving device is a variable frequency direct drive motor, the rotor, the stator, the inner barrel shaft and the pulsator shaft are coaxially arranged, the inner barrel shaft is hollow, and the pulsator shaft is disposed in the inner barrel shaft;
  • the pulsator rotates in the same direction as the inner barrel, or rotates in opposite directions, or one of the pulsator and the inner barrel rotates, and the pulsator rotates at the same speed as the inner barrel at the same time when dehydrating.
  • the optimal working range of the direct drive motor driving rotor is 600-800 rpm
  • the energy consumption is relatively small at this time, and if the rotor is controlled to rotate at a low speed, High consumption, need to consume additional energy consumption to control the low speed, and consume much higher energy consumption than using high speed.
  • the above structure adopts a scheme in which the double rotor directly drives the pulsator and the inner barrel to rotate, and during washing, the inner barrel and the wave
  • the rotation speed of the wheel is low, generally 100-150 rev / min. If the two rotors are maintained at low speed during washing and rinsing, high additional energy consumption is required, which affects the laundry washing ratio due to the washing process.
  • the rotational speed of the control pulsator to agitate the clothes and the water flow accounts for a large proportion, and if the two rotors maintain two low rotational speeds together, more energy consumption is required.
  • the washing process controls the change of the pulsator rotation speed
  • the rotor shifting directly acts on the pulsator shaft and the pulsator.
  • the rotation speed changes hard and there is no buffer, which causes the clothes to entangle, affecting the washing effect and the loss to the rotor and the pulsator shaft. .
  • the present invention has been made in view of the above.
  • the technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide a completely driven fully automatic washing machine, which uses a speed reduction mechanism to cooperate with a rotor of a double rotor direct drive motor driving pulsator to relatively improve the rotor of the driving pulsator during washing. Speed to save energy.
  • Another object of the present invention is to provide a control method for the fully automatic washing machine.
  • a fully automatic washing machine including the outside a drum, an inner tub, a pulsator and a driving device
  • the driving device comprises two rotors, a stator and a speed reducing mechanism
  • a rotor is driven by a speed reduction mechanism to drive the pulsator to rotate
  • the other rotor drives the inner bucket to rotate at the same speed as the rotor .
  • the speed reduction mechanism includes a rotatable outer casing, a gear mechanism disposed in the outer casing, an inner barrel shaft, a pulsator shaft and an input shaft, and the inner barrel shaft is a sleeve structure, one end is connected to the inner barrel, and the other end is connected to the outer casing, and the outer casing is connected to the outer casing.
  • the pulsator shaft is coaxially disposed in the inner barrel shaft, one end is connected to the pulsator, and the other end is connected to the gear mechanism output, one end of the input shaft is connected to the other rotor, and the other end is connected to the input of the gear mechanism.
  • the two rotors are an inner rotor and an outer rotor
  • the stator is a central concave disk-shaped structure, which includes a central bearing seat, an open inner rotor mounting groove, a stator winding, and an opening from the inside to the outside.
  • the gear mechanism comprises a sun gear, an inner ring gear and planetary gears respectively meshed with the sun gear and the inner ring gear, the sun gear is mounted on the input shaft, the planetary gear is mounted on the planetary carrier, the planetary carrier and the planetary carrier
  • the pulsator shaft is connected, the lower end of the inner ring gear is provided with a lower end cover, and the lower end cover is directly or indirectly connected to the stator.
  • the gear mechanism comprises a sun gear, an inner ring gear and a transmission gear respectively meshed with the sun gear and the inner ring gear, the sun gear is mounted on the input shaft, the inner ring gear is connected with the pulsator shaft, and the transmission gear passes through the gear shaft Installed on the lower end cap, the lower end cap is directly or indirectly connected to the stator.
  • the gear mechanism includes an input gear, an output gear, and a transmission gear respectively meshed with the input gear and the output gear, the input gear is mounted on the input shaft, the output gear is mounted on the pulsator shaft, and the transmission gear is a double gear.
  • the upper gear and the lower gear are included, the upper gear meshes with the output gear, the lower gear meshes with the input gear, the transmission gear is mounted on the lower end cover through the gear shaft, and the lower end cover is directly or indirectly connected to the stator.
  • the lower end cover is connected to the input sleeve, the input sleeve is mounted outside the input shaft, and the input sleeve is splined to the stator.
  • the speed reduction mechanism of the speed reduction mechanism is 1/10-1/2.
  • the two rotors are an inner rotor and an outer rotor
  • the stator is a disc-shaped structure
  • the speed reduction mechanism is located in the middle concave cavity of the stator
  • the inner rotor is connected with the inner barrel shaft
  • the outer rotor is decelerated
  • the input shaft of the mechanism is connected
  • the output shaft of the speed reduction mechanism is connected to the pulsator.
  • the outer casing of the speed reduction mechanism in the alternative may be rotated, and the rotating outer casing is integrally connected with the inner rotor.
  • the gear mechanism is the same as the above embodiments; or the outer casing is fixed integrally with the stator, and the inner rotor is covered above the outer casing.
  • the lower end cover of the speed reduction mechanism is integrally formed with the outer casing, and the other gear transmission relationships are the same as those of the above embodiments.
  • the stator is a disc-shaped structure
  • the speed reduction mechanism is located in the middle concave cavity of the stator
  • the two rotors are outer rotors respectively located above and below the speed reduction mechanism
  • the speed reduction mechanism The stator and the stator are arranged between the upper and lower rotors, the upper rotor is connected with the inner drum shaft, the lower rotor is connected with the input shaft of the speed reduction mechanism, and the output shaft of the speed reduction mechanism is connected with the pulsator.
  • the speed reduction mechanism in the present scheme is an independent structure, including a casing, an input shaft, an output shaft and a gear mechanism, and the outer casing and the stator are integrally fixed, and the lower end cover of the speed reduction mechanism is integrated with the outer casing, and other gear transmission relationships are the same as the above solutions. .
  • the two rotor driving pulsators rotate in the same direction or in the opposite direction as the inner tub, and when the dehydration, the pulsator rotates at the same speed as the inner tub.
  • the two rotors rotate together for a set time, and after the inner barrel and the pulsator rotate in the same direction, the rotor that controls the rotation of the driving pulsator is in a free state, and only the rotor that drives the inner barrel to rotate is controlled to rotate at a high speed.
  • the rotor that controls the rotation of the drive pulsator rotates together with the rotor that controls the rotation of the inner barrel, keeping the inner barrel and the pulsator rotating in the same direction at the same speed.
  • the present invention has the following advantageous effects compared with the prior art.
  • the washing machine of the present invention drives the inner tub and the pulsator to rotate respectively through the double rotors.
  • the speed reduction mechanism is used on the rotor for driving the pulsator, the speed reduction distribution method using the two outputs of one input power is improved. Transmission efficiency and stability.
  • the clutch for changing the washing and dehydrating condition is not used, space and cost are saved, the installation structure is simple, the weight and volume of the driving system are reduced to some extent, and the control of the invention is more convenient because the deceleration clutch device is removed.
  • the washing and dehydration conversion is smooth.
  • the invention Compared with the double rotor directly driving the inner barrel and the pulsator, the invention has the effect of reducing energy consumption.
  • the two rotors of the direct drive motor After a long time of detection, it is found that the two rotors of the direct drive motor have an optimum working range of rotation speed, such as 600 rpm, within the range of their own parameters. /min has the lowest energy consumption when working at the same time. If the two rotors are controlled to drive the inner barrel and the pulsator at a low speed, the electric energy consumed is the highest, even if the same time is operated at a speed higher than the optimal working range, the energy consumption is higher than that. The low energy consumption during low speed operation is low.
  • the present invention only controls the low rotation speed of the inner barrel rotor, and the deceleration of the speed reduction mechanism is used to maintain the rotor of the driving pulsor within the optimal operating speed range, thereby saving 20%-40% of energy. Consumption.
  • the rotor is directly mounted on the pulsator shaft, and a speed reduction mechanism is provided between the rotor of the present invention and the pulsator drive.
  • the change of the rotational speed of the rotor is reflected on the pulsator to have a certain buffer, and the turning of the clothes is soft, and the clothing is reduced. The entanglement between.
  • FIG. 4 are respectively schematic diagrams showing different installation structures of the washing machine driving device of the present invention.
  • 5 to 8 are respectively schematic views of different structures of the speed reduction mechanism of the present invention.
  • the fully automatic washing machine of the present invention comprises an outer tub 1, an inner tub 2, a pulsator 3 and a driving device.
  • the driving device comprises two rotors 41, 42, a stator 43 and a speed reducing mechanism 5.
  • the speed reduction mechanism 5 When one rotor 41 is decelerated by the speed reduction mechanism 5, the drive pulsator 3 is rotated, and the other rotor 42 drives the inner tub 2 to rotate at the same speed as the rotor 42.
  • the two rotors 41 and 42 are controlled to drive the pulsator 3 and the inner tub 2 to rotate at different speeds in the same direction during washing, or the pulsator 3 and the inner tub 2 rotate in opposite directions, and the pulsator 3 and the inner tub 2 are driven in the same direction when dehydrating. Rotate at the same speed.
  • the speed reduction mechanism 5 described in this embodiment includes a rotatable outer casing 51, a gear mechanism 6 provided inside the outer casing 51, an inner tub shaft 21, a pulsator shaft 31, and an input shaft 52, and the outer casing 51.
  • the inner barrel shaft 21 is relatively independently rotated, and the inner barrel shaft 21 is a sleeve structure.
  • One end is connected to the inner barrel 2, the other end is connected to the outer casing 51, and the outer casing 51 is connected to the rotor 42.
  • the pulsator shaft 31 is coaxially disposed in the inner barrel shaft 21, and one end is The pulsator 3 is connected, and the other end is connected to the power output end of the gear mechanism 6.
  • the input shaft 52 has one end connected to the rotor 41 and the other end connected to the power input end of the gear mechanism 6.
  • the two rotors of the direct drive motor 4 are an inner rotor 41 and an outer rotor 42, respectively.
  • the stator 43 is a centrally concave disc-shaped structure, which includes a central bearing seat 431 and an inner rotor opening downward from the inside to the outside.
  • the slot 432, the stator winding 433, the outer rotor mounting groove 434 with the opening upward, and the mounting seat 435 at the outer edge and the outer tub are fixed, the speed reducing mechanism 5 is located at the center recess of the stator 43, and the outer rotor 42 is disposed above the stator 43.
  • the outer rotor 42 has a cavity at the center thereof, and the inner wall of the cavity is connected to the speed reduction mechanism casing 51.
  • the inner rotor 41 is disposed below the stator 43 and is connected to the input shaft 52.
  • the gear mechanism 6 of the speed reduction mechanism of the present embodiment includes a sun gear 61, an inner ring gear 62, and a planetary gear 63 meshing with the sun gear 61 and the inner ring gear 62, respectively, and the sun gear 61 is mounted on the input shaft 52.
  • the plurality of planetary gears 63 are mounted on the planetary carrier 64.
  • the planetary carrier 64 is coupled to the pulsator shaft 31.
  • the lower end of the inner ring gear 62 is provided with a lower end cover 65.
  • the lower end cover 65 is directly connected to the upper surface of the stator 43 (refer to the figure). 1); or, connected to the input bushing 53, the input bushing 53 is mounted outside the input shaft 52, and the input bushing 53 is splined to the stator 43 (see Fig. 2).
  • the speed reduction ratio of the above-described speed reduction mechanism is 1/10-1/2, and the speed reduction ratio is 1/5 as an example.
  • the washing process of the washing machine and the inner rotor 41 are at a speed of 600 rpm.
  • the sun gear 61 rotates forward, and after being decelerated by the planetary gear 63 and the planetary carrier 64, the pulsator shaft 31 rotates forward at a speed of 120 rpm, and at this time, if the outer rotor 42 is driven to 100
  • the speed of the revolution/minute is reversed to drive the inner barrel shaft 21 to rotate, the inner barrel 2 and the pulsator 3 are formed as each other.
  • the outer rotor 42 In the reverse dual-power washing mode; or, the outer rotor 42 is driven to rotate the inner drum shaft 21 at a speed of 80 rpm, so that the inner tub 2 and the pulsator 3 are rotationally washed at different speeds.
  • the outer rotor 41 is driven five times faster than the outer rotor 42 to rotate in the same direction as the outer rotor 42.
  • the gear mechanism 6 of the speed reduction mechanism of the present embodiment includes a sun gear 66, an inner ring gear 62, and a transmission gear 67 that meshes with the sun gear 66 and the inner ring gear 62, respectively.
  • the sun gear 66 is mounted on the input shaft 52.
  • the inner ring gear 62 is connected to the pulsator shaft 31, and the transmission gear 67 is mounted on the lower end cover 65 through the gear shaft.
  • the lower end cover 65 is directly connected to the upper surface of the stator 43 (refer to FIG. 1); or, the input shaft sleeve 53 is connected, input The sleeve 53 is mounted outside the input shaft 52, and the input sleeve 53 is splined to the stator 43 (see Fig. 2).
  • the speed reduction mechanism takes the reduction ratio of 1/6 as an example.
  • the inner rotor 41 rotates forward at a speed of 600 rpm
  • the input shaft 52 rotates forward
  • the central gear 66 rotates forward, through the transmission gear. 67.
  • the pulsator shaft 31 is reversed at a speed of 100 rpm.
  • the outer rotor 42 is driven to rotate the inner drum shaft 21 at a speed of 100 rpm, the inner tub 2 is formed.
  • the pulsator 3 is in a reversed dual-power washing mode; or, the outer rotor 42 is driven to reversely rotate the inner drum shaft 21 at a speed of 80 rpm, so that the inner tub 2 and the pulsator 3 are rotationally washed at different speeds.
  • the outer rotor 41 is driven five times faster than the outer rotor 42 to rotate in the opposite direction to the outer rotor 42.
  • the gear mechanism 6 of the speed reduction mechanism of the present embodiment includes an input gear 68, an output gear 69, and a transmission gear 60 that meshes with the input gear 68 and the output gear 69, respectively, and the input gear 68 is mounted on the input shaft 52.
  • the output gear 69 is mounted on the pulsator shaft 31.
  • the transmission gear 60 is a double gear, including an upper gear 601 and a lower gear 602.
  • the upper gear 601 meshes with the output gear 69
  • the lower gear 602 meshes with the input gear 68, and the transmission gear 60 passes through the gear shaft.
  • Mounted on the lower end cover 65, the lower end cover 65 is directly connected to the upper surface of the stator 43 (refer to FIG. 1); or, connected to the input bushing 53, the input bushing 53 is mounted outside the input shaft 52, and the input bushing 53 and the stator 43 spline connection (see Figure 2).
  • the gear mechanism of this embodiment takes the reduction ratio 1/4 as an example, and cooperates with the direct drive motor 4 of the first embodiment.
  • the inner rotor 41 rotates forward at a speed of 600 rpm, and the input shaft 52 rotates forward.
  • the input gear 68 rotates forward, and after being decelerated by the transmission gear 60 and the output gear 69, the pulsator shaft 31 rotates forward at a speed of 120 rpm.
  • the outer rotor 42 is driven to reversely drive the inner barrel shaft at a speed of 90 rpm.
  • the difference between this embodiment and the first embodiment is that although the two rotors 41, 42 of the direct drive motor 4 are also an inner rotor and an outer rotor, the rotor 42 that drives the inner drum 2 to rotate is inside.
  • the rotor 41 is driven by the speed reduction mechanism 5 to drive the pulsator 3 to rotate.
  • the rotor 41 is an outer rotor, the stator 43 has a disk-shaped structure, the speed reduction mechanism 5 is located in the intermediate concave cavity of the stator 43, and the outer periphery of the stator 43 is formed with the outer barrel.
  • a relatively fixed mount 44, the inner rotor 42 is located above the speed reduction mechanism 5, and is connected to the inner drum shaft 21, and the outer rotor 41 is located below the speed reduction mechanism 5, and is connected to the input shaft 52 of the speed reduction mechanism 5, and the output shaft of the speed reduction mechanism is
  • the pulsator shaft 31 is connected to the pulsator 3.
  • the outer casing of the speed reduction mechanism 5 may be rotated, and the rotating outer casing is integrally connected with the inner rotor.
  • the gear mechanism is the same as the above embodiments of the second embodiment to the fifth embodiment; or the outer casing 51 of the speed reduction mechanism 5 of the embodiment
  • the inner rotor is fixedly coupled to the stator 43 and the inner rotor is covered above the outer casing (see FIG. 3).
  • the lower end cover 65 of the speed reduction mechanism is connected to the outer casing 51 as an integral structure, and the other gear transmission relationships are the same as those of the above embodiments.
  • the stator of the direct drive motor 4 of the present embodiment has a disk-shaped structure, and the speed reduction mechanism 5 is located in the intermediate concave cavity of the stator 43, and the two rotors 41 and 42 are both outer rotors, respectively located in the speed reduction mechanism. Above and below 5, the speed reduction mechanism 5 and the stator 43 are fitted between the upper and lower rotors 41, 42.
  • the stator 43 is fixed to the outer tub 1 by a mounting seat 44 extending from between the two rotors, and the upper rotor 42 is fixed.
  • the lower rotor 41 is connected to the input shaft 52 of the speed reduction mechanism 5, and the output shaft of the speed reduction mechanism is the pulsator shaft 31, and is connected to the pulsator 3.
  • the speed reduction mechanism in the present embodiment is a separate structure, including a housing 51, an input shaft 52, an output shaft 31, and a gear mechanism.
  • the housing 51 is fixed integrally with the stator 43 and the lower end cover 65 and the housing 51 of the speed reduction mechanism are provided.
  • the other gear transmission relationships are the same as those described above.
  • the gear mechanism in the speed reduction mechanism of the present invention is not limited to the structure in the second embodiment to the fourth embodiment, and other gear transmission structures capable of achieving output deceleration are applicable to the present invention; the structure of the two rotors of the present invention is also not limited to the embodiment.
  • the structure, such as the speed reduction mechanism of the first embodiment may also be a separate structure (see Fig. 8), the outer casing being fixed to the stator, and the outer rotor covering the outer casing and the stator (see Fig. 4).
  • the two rotor driving pulsators rotate in the same direction or in the opposite direction as the inner tub, and when the dehydration, the pulsator rotates at the same speed as the inner tub.
  • the two rotors rotate together for a set time. After the inner barrel and the pulsator rotate in the same direction, the rotor that controls the rotation of the driving pulsator is in a free state, and only the rotor that drives the inner barrel to rotate is controlled to rotate at a high speed.
  • the rotor that controls the rotation of the drive pulsator rotates together with the rotor that controls the rotation of the inner barrel, keeping the inner barrel and the pulsator rotating in the same direction at the same speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Power Engineering (AREA)
  • Main Body Construction Of Washing Machines And Laundry Dryers (AREA)
  • Control Of Washing Machine And Dryer (AREA)
  • Accessory Of Washing/Drying Machine, Commercial Washing/Drying Machine, Other Washing/Drying Machine (AREA)

Abstract

一种全自动洗衣机及控制方法,洗衣机包括外桶(1)、内桶(2)、波轮(3)及驱动装置,所述的驱动装置包括两个转子(41、42)、一个定子(43)和一减速机构(5),一转子(41)通过减速机构(5)减速后驱动波轮(3)转动,另一转子(42)驱动内桶(2)与该转子(42)同样速度转动。所述的减速机构(5)包括可转动的外壳(51)、设于外壳内的齿轮机构(6)、内桶轴(21)、波轮轴(31)和输入轴(52),内桶轴(21)为轴套结构,一端与内桶(2)连接,另一端与外壳(51)连接,外壳(51)与一转子(42)连接,波轮轴(31)同轴设于内桶轴(21)中,一端与波轮(3)连接,另一端与齿轮机构(6)输出连接,输入轴(52)一端与另一转子(41)连接,另一端与齿轮机构(6)输入连接。洗涤时,两转子驱动波轮(3)与内桶(2)同向或反向转动,脱水时波轮(3)与内桶(2)同向同速转动。节约能耗、输出稳定、传动效率高。

Description

全自动洗衣机及控制方法 技术领域
本发明涉及一种洗衣机,尤其是一种使用双转子直驱电机驱动波轮和内桶转动的全自动洗衣机及控制方法。
背景技术
传统的波轮洗衣机其波轮和内桶的转动是电机通过皮带轮带动皮带把动力传给减速离合器,减速离合器通过其内部的齿轮结构,把电机的高转速转化成洗衣机不同洗涤过程中需要的较低转速,同时根据不同的洗涤方式,减速离合器使用不同的齿轮结构,传递给波轮不同的转动方向和转动形式。
这种结构中,由于减速离合器和电机横向排列在外桶底部,使得整个系统结构比较庞大。另一方面,减速离合器位于外桶的中心部位,电机偏离中心部位的位置,外桶底部整个结构的中心偏离外桶的中心孔。在洗衣机工作过程中,电机带动减速离合器工作的同时,本身转动过程中相对外桶中心产生一力矩,增加了整个系统的不稳定性,洗衣机在洗涤过程中产生的噪音和振动都比较大。
为了降低洗衣机工作过程中产生的噪音和振动现象,现有很多洗衣机采用直驱电机,去掉皮带轮皮带装置,减速离合器直接纵向的安装连接在电机上,这样外桶底部结构的重心基本在外桶的旋转中心孔的位置。这种结构,提高了电机的传动效率和稳定性,同时降低了运行过程中的噪音。
但是在现有更改直驱电机后的结构中,由于直驱电机转速大,通常减速离合器都装有中间齿轮结构。由于结构比较庞大,使得整个系统在纵向上高度比较大。因此整个噪音效果和振动效果还不是太理想。
申请号为00120729.6的中国专利公开了一种洗衣机动力直驱装置包括:盘式调速电机;洗涤轴暨电机输出轴;旋转支承于洗涤轴上的脱水轴;电机内置式电磁离合器,其分别与洗涤轴和脱水轴固定;电机内置式失电制动器,其与脱水轴固定。电机动力经电磁离合器的切换直接驱动洗涤轴和同时传递给洗涤轴与脱水轴。该结构采用的电机内置式电磁离合器结构复杂、成本高且使用寿命较短。
申请号为00120729.6的中国专利公开了一种新型直驱离合的洗衣机,它采用电机直接驱 动,波轮轴直接与电机输出轴固联,在电机的输出轴上套装有旋转轴套,旋转轴套与洗涤筒固定连接并同步转动;还设置有浮动式离合机构,它有两个工作状态:即脱水状态下,浮动式离合机构下落并与电机的输出轴和旋转轴套共同啮合连接,以实现输出轴和旋转轴套同步转动并带动洗涤筒旋转。洗涤状态下,浮动式离合机构上浮并与电机的输出轴处于脱离连接的状态;本洗衣机离合装置虽然相对结构简单,制作工艺简单,成本低,但是对于洗衣机洗涤时水量要求较高,若水位较低,则很难将浮动式离合机构升起,即使水位高,由于衣物洗涤翻动时也同样能压住浮动式离合机构。
申请人之前申请的申请号为201320560102.X的一种全自动洗衣机,包括外桶、内桶、波轮及驱动装置,所述的驱动装置包括至少两个转子和至少一个定子,其中一转子与内桶轴连接,还有一转子与波轮轴连接;所述的驱动装置为变频直驱电机,所述的转子、定子、内桶轴及波轮轴同轴设置,内桶轴中空,波轮轴设于内桶轴中;所述的洗衣机洗涤时波轮与内桶同向转动,或者互为反向转动,或者波轮、内桶之一转动,脱水时波轮与内桶同向同速转动。
但是,经过多次实验发现,其还存在如下缺陷:由于直驱电机驱动转子最佳工作范围为600-800转/分钟的转速,此时能耗相对较少,若控制转子以低速转动反而能耗较高,需要消耗额外的能耗以控制该低转速,比使用高转速消耗能耗高很多,而上述结构采用双转子分别直接驱动波轮和内桶转动的方案,在洗涤时,内桶和波轮的转速较低,一般为100-150转/分钟,若同时维持两个转子在洗涤和漂洗时的低转速,则需要较高的额外能耗,由于洗涤过程,在影响衣物洗净比的因素中,控制波轮搅动衣物和水流的转速占了很大的比例,双转子若一起维持两个低转速,则需要更多的能耗。
另外,由于洗涤过程控制波轮转速的变化较多,转子变速直接作用在波轮轴和波轮上,转速变化生硬,没有缓冲,导致衣物缠绕,影响洗涤效果且对转子和波轮轴的损耗较大。
有鉴于此特提出本发明。
发明内容
本发明要解决的技术问题在于克服现有技术的不足,提供一种全新驱动的全自动洗衣机,使用减速机构与双转子直驱电机驱动波轮的转子配合,相对提高洗涤时驱动波轮的转子转速,以节约能耗。
本发明的另一目的在于提供该全自动洗衣机的控制方法。
为解决上述技术问题,本发明采用技术方案的基本构思是:一种全自动洗衣机,包括外 桶、内桶、波轮及驱动装置,所述的驱动装置包括两个转子、一个定子和一减速机构,一转子通过减速机构减速后驱动波轮转动,另一转子驱动内桶与该转子同样速度转动。
进一步的,所述的减速机构包括可转动的外壳、设于外壳内的齿轮机构、内桶轴、波轮轴和输入轴,内桶轴为轴套结构,一端与内桶连接,另一端与外壳连接,外壳与一转子连接,波轮轴同轴设于内桶轴中,一端与波轮连接,另一端与齿轮机构输出连接,输入轴一端与另一转子连接,另一端与齿轮机构输入连接。
进一步的,所述的两个转子为内转子和外转子,定子为一中心下凹的盘形结构,由内向外依次包括中心的轴承座、开口向下的内转子安装槽、定子绕组、开口向上的外转子安装槽及位于外缘与外桶相对固定的安装座,减速机构位于定子的中心下凹处,外转子设于定子的上方,与定子的形状匹配,中心具有一容纳减速机构的凹腔,凹腔内壁与减速机构外壳连接,内转子设于定子的下方,与输入轴连接。
进一步的,所述的齿轮机构包括太阳齿轮、内齿圈及分别与太阳齿轮和内齿圈啮合的行星齿轮,太阳齿轮安装于输入轴上,行星齿轮安装于行星轮架上,行星轮架与波轮轴连接,内齿圈下端设有下端盖,下端盖直接或间接与定子连接。
进一步的,所述的齿轮机构包括中心齿轮、内齿圈及分别与中心齿轮和内齿圈啮合的传动齿轮,中心齿轮安装于输入轴上,内齿圈与波轮轴连接,传动齿轮通过齿轮轴安装于下端盖上,下端盖直接或间接与定子连接。
进一步的,所述的齿轮机构包括输入齿轮、输出齿轮、及分别与输入齿轮和输出齿轮啮合的传动齿轮,输入齿轮安装于输入轴上,输出齿轮安装于波轮轴上,传动齿轮为双联齿轮,包括上齿轮和下齿轮,上齿轮与输出齿轮啮合,下齿轮与输入齿轮啮合,传动齿轮通过齿轮轴安装在下端盖上,下端盖直接或间接与定子连接。
进一步的,所述的下端盖与输入轴套连接,输入轴套安装在输入轴的外部,输入轴套与定子花键连接。
进一步的,所述的减速机构减速比为1/10-1/2。
上述方案的替换方案为:所述的两个转子为内转子和外转子,定子为一盘形结构,减速机构位于定子的中间凹形空腔内,内转子与内桶轴连接,外转子与减速机构的输入轴连接,减速机构的输出轴与波轮连接。
该替换方案中的减速机构外壳可以是转动的,转动的外壳与内转子连接为一体,此时,齿轮机构与上述各方案相同;或者外壳与定子固定为一体,内转子覆盖在外壳的上方,上述各方案中减速机构的下端盖与外壳为一体结构,其它齿轮传动关系与上述各方案相同。
或者,更进一步的替换方案为,所述的定子为一盘形结构,减速机构位于定子的中间凹形空腔内,两个转子均为外转子,分别位于减速机构的上方和下方,减速机构和定子装配在上下两转子之间,上方转子与内桶轴连接,下方转子与减速机构的输入轴连接,减速机构的输出轴与波轮连接。
本方案中减速机构为一独立的结构,包括外壳、输入轴、输出轴和齿轮机构,外壳与定子固定为一体,减速机构的下端盖与外壳为一体结构,其它齿轮传动关系与上述各方案相同。
本发明所述全自动洗衣机的控制方法,洗涤时,两转子驱动波轮与内桶同向或反向转动,脱水时波轮与内桶同向同速转动。
进一步的,脱水时,两转子先一起转动设定时间,内桶和波轮均同向转动后,再控制驱动波轮转动的转子呈自由状态,只控制驱动内桶转动的转子高速转动。
或者,脱水时,整个脱水过程,控制驱动波轮转动的转子与控制驱动内桶转动的转子一起转动,保持内桶和波轮同速同向转动。
采用上述技术方案后,本发明与现有技术相比具有以下有益效果。
本发明所述的洗衣机,通过双转子分别驱动内桶和波轮转动,虽然在驱动波轮转动的转子上使用减速机构,相对于现有的采用一个输入动力两个输出的减速分配方式,提高了传动效率和稳定性。另外,由于不使用洗涤脱水工况转换的离合器,仍然节约了空间和成本,安装结构简单,一定程度上降低了驱动系统的重量、体积,由于去掉制减速离合装置,使得本发明控制更方便,洗涤脱水转换平稳。
本发明相对于双转子直接驱动内桶和波轮的方式,具有降低能耗的效果,经过长时间的检测发现,直驱电机两个转子在本身参数范围内以最佳工作范围的转速如600转/分钟工作时能耗最低,若同时控制两个转子分别低转速驱动内桶和波轮转动,则消耗的电能最高,即使以高于最佳工作范围的转速运行相同的时间,其能耗也比低转速运行时的能耗低,本发明只控制驱动内桶转子的低转速,利用减速机构的减速维持驱动波轮的转子在其最佳运行的转速范围内,能够节约20%-40%的能耗。
另外,相对于转子直接安装在波轮轴上,本发明转子与波轮驱动之间设有减速机构,转子转速变化在波轮上体现为具有一定的缓冲,衣物翻动的转向柔和,减小衣物之间的缠绕。
附图说明
图1至图4分别是本发明洗衣机驱动装置不同安装结构示意图;
图5至图8分别是本发明减速机构不同结构示意图。
具体实施方式
下面结合附图对本发明的具体实施方式作进一步详细的描述。
如图1至图4所示,本发明所述的全自动洗衣机,包括外桶1、内桶2、波轮3及驱动装置,驱动装置包括两个转子41、42、一个定子43和减速机构5,一转子41通过减速机构5减速后驱动波轮3转动,另一转子42驱动内桶2与该转子42同样速度转动。
本发明洗衣机,洗涤时控制两转子41、42分别带动波轮3与内桶2同向不同速转动,或者波轮3与内桶2互为反向转动,脱水时带动波轮3与内桶2同向同速转动。
实施例一
如图1和图2所示,本实施例中所述的减速机构5包括可转动的外壳51、设于外壳51内部的齿轮机构6、内桶轴21、波轮轴31和输入轴52,外壳51与齿轮机构6相对独立转动,内桶轴21为轴套结构,一端与内桶2连接,另一端与外壳51连接,外壳51与转子42连接,波轮轴31同轴设于内桶轴21中,一端与波轮3连接,另一端与齿轮机构6动力输出端连接,输入轴52一端与转子41连接,另一端与齿轮机构6动力输入端连接。
所述直驱电机4的两个转子分别为内转子41和外转子42,定子43为一中心下凹的盘形结构,由内向外依次包括中心的轴承座431、开口向下的内转子安装槽432、定子绕组433、开口向上的外转子安装槽434及位于外缘与外桶相对固定的安装座435,减速机构5位于定子43的中心下凹处,外转子42设于定子43的上方,与定子43的形状匹配,外转子42中心具有一容纳减速机构的凹腔,凹腔内壁与减速机构外壳51连接,内转子41设于定子43的下方,与输入轴52连接。
实施例二
如图5所示,本实施例减速机构的齿轮机构6包括太阳齿轮61、内齿圈62及分别与太阳齿轮61和内齿圈62啮合的行星齿轮63,太阳齿轮61安装于输入轴52上,行星齿轮63为多个,安装于行星轮架64上,行星轮架64与波轮轴31连接,内齿圈62下端设有下端盖65,下端盖65直接与定子43上表面连接(参阅图1);或者,与输入轴套53连接,输入轴套53安装在输入轴52的外部,输入轴套53与定子43花键连接(参阅图2)。
上述减速机构的减速比为1/10-1/2,以减速比1/5为例,与实施例一的直驱电机4配合,洗衣机洗涤过程,内转子41以600转/分钟的速度正转,输入轴52正转,带动太阳齿轮61正转,经行星齿轮63、行星轮架64减速后,波轮轴31以120转/分钟的速度正转,此时,若驱动外转子42以100转/分钟的速度反向带动内桶轴21转动,则形成内桶2和波轮3互为 反向的双动力洗涤方式;或者,驱动外转子42以80转/分钟的速度正向带动内桶轴21转动,使得内桶2和波轮3同向不同速转动洗涤。脱水时,则驱动内转子41以外转子42五倍的速度与外转子42同向转动。
实施例三
如图6所示,本实施例减速机构的齿轮机构6包括中心齿轮66、内齿圈62及分别与中心齿轮66和内齿圈62啮合的传动齿轮67,中心齿轮66安装于输入轴52上,内齿圈62与波轮轴31连接,传动齿轮67通过齿轮轴安装于下端盖65上,下端盖65直接与定子43上表面连接(参阅图1);或者,与输入轴套53连接,输入轴套53安装在输入轴52的外部,输入轴套53与定子43花键连接(参阅图2)。
该减速机构以减速比1/6为例,结合实施例一,洗衣机洗涤过程,内转子41以600转/分钟的速度正转,输入轴52正转,带动中心齿轮66正转,经传动齿轮67、内齿圈62减速后,波轮轴31以100转/分钟的速度反转,此时,若驱动外转子42以100转/分钟的速度正向带动内桶轴21转动,则形成内桶2和波轮3互为反向的双动力洗涤方式;或者,驱动外转子42以80转/分钟的速度反向带动内桶轴21转动,使得内桶2和波轮3同向不同速转动洗涤。脱水时,则驱动内转子41以外转子42五倍的速度与外转子42互为反向转动。
实施例四
如图7所示,本实施例减速机构的齿轮机构6包括输入齿轮68、输出齿轮69、及分别与输入齿轮68和输出齿轮69啮合的传动齿轮60,输入齿轮68安装于输入轴52上,输出齿轮69安装于波轮轴31上,传动齿轮60为双联齿轮,包括上齿轮601和下齿轮602,上齿轮601与输出齿轮69啮合,下齿轮602与输入齿轮68啮合,传动齿轮60通过齿轮轴安装在下端盖65上,下端盖65直接与定子43上表面连接(参阅图1);或者,与输入轴套53连接,输入轴套53安装在输入轴52的外部,输入轴套53与定子43花键连接(参阅图2)。
本实施例的齿轮机构以减速比1/4为例,与实施例一的直驱电机4配合,洗衣机洗涤过程,内转子41以600转/分钟的速度正转,输入轴52正转,带动输入齿轮68正转,经传动齿轮60、输出齿轮69减速后,波轮轴31以120转/分钟的速度正转,此时,若驱动外转子42以90转/分钟的速度反向带动内桶轴21转动,则形成内桶2和波轮3互为反向的双动力洗涤方式;或者,驱动外转子42以80转/分钟的速度正向带动内桶轴21转动,使得内桶2和波轮3同向不同速转动洗涤。脱水时,则驱动内转子41以外转子42五倍的速度与外转子42同向转动。
实施例五
如图3所示,本实施例与上述实施例一的区别在于,虽然直驱电机4的两个转子41、42也为一内转子和一外转子,但驱动内桶2转动的转子42为内转子,通过减速机构5减速驱动波轮3转动的转子41为外转子,定子43为一盘形结构,减速机构5位于定子43的中间凹形空腔内,定子43外周翻边形成与外桶1相对固定的安装座44,内转子42位于减速机构5的上方,与内桶轴21连接,外转子41位于减速机构5的下方,与减速机构5的输入轴52连接,减速机构的输出轴即为波轮轴31,与波轮3连接。
本实施例中减速机构5外壳可以是转动的,转动的外壳与内转子连接为一体,此时,齿轮机构与上述实施例二至实施例五各方案相同;或者本实施例减速机构5外壳51与定子43固定连接为一体,内转子覆盖在外壳的上方(参阅图3),上述各方案中减速机构的下端盖65与外壳51连接为一体结构,其它齿轮传动关系与上述各方案相同。
实施例六
如图4所示,本实施例直驱电机4的定子为一盘形结构,减速机构5位于定子43的中间凹形空腔内,两个转子41、42均为外转子,分别位于减速机构5的上方和下方,配合将减速机构5和定子43装配在上下两转子41、42之间,定子43通过一从两转子之间伸出的安装座44与外桶1相对固定,上方转子42与内桶轴连接,下方转子41与减速机构5的输入轴52连接,减速机构的输出轴即为波轮轴31,与波轮3连接。
如图8所示,本方案中减速机构为一独立的结构,包括外壳51、输入轴52、输出轴31和齿轮机构,外壳51与定子43固定为一体,减速机构的下端盖65与外壳51为一体安装结构,其它齿轮传动关系与上述各方案相同。
本发明减速机构中的齿轮机构并不局限实施例二至实施例四中的结构,其它能实现输出减速的齿轮传动结构均适用于本发明;本发明两转子的结构同样不局限于实施例中的结构,例如实施例一中的减速机构也可为独立的结构(参阅图8),外壳与定子固定,外转子覆盖在外壳和定子的上方(参阅图4)。
实施例七
本发明所述全自动洗衣机的控制方法,洗涤时,两转子驱动波轮与内桶同向或反向转动,脱水时波轮与内桶同向同速转动。
脱水时,两转子先一起转动设定时间,内桶和波轮均同向转动后,再控制驱动波轮转动的转子呈自由状态,只控制驱动内桶转动的转子高速转动。
或者,脱水时,整个脱水过程,控制驱动波轮转动的转子与控制驱动内桶转动的转子一起转动,保持内桶和波轮同速同向转动。
上述实施例中的实施方案可以进一步组合或者替换,且实施例仅仅是对本发明的优选实施例进行描述,并非对本发明的构思和范围进行限定,在不脱离本发明设计思想的前提下,本领域中专业技术人员对本发明的技术方案作出的各种变化和改进,均属于本发明的保护范围。

Claims (12)

  1. 一种全自动洗衣机,包括外桶、内桶、波轮及驱动装置,其特征在于:所述的驱动装置包括两个转子、一个定子和一减速机构,一转子通过减速机构减速后驱动波轮转动,另一转子驱动内桶与该转子同样速度转动。
  2. 根据权利要求1所述的全自动洗衣机,其特征在于:所述的减速机构包括可转动的外壳、设于外壳内的齿轮机构、内桶轴、波轮轴和输入轴,内桶轴为轴套结构,一端与内桶连接,另一端与外壳连接,外壳与一转子连接,波轮轴同轴设于内桶轴中,一端与波轮连接,另一端与齿轮机构输出连接,输入轴一端与另一转子连接,另一端与齿轮机构输入连接。
  3. 根据权利要求2所述的全自动洗衣机,其特征在于:所述的两个转子为内转子和外转子,定子为一中心下凹的盘形结构,由内向外依次包括中心的轴承座、开口向下的内转子安装槽、定子绕组、开口向上的外转子安装槽及位于外缘与外桶相对固定的安装座,减速机构位于定子的中心下凹处,外转子设于定子的上方,与定子的形状匹配,中心具有一容纳减速机构的凹腔,凹腔内壁与减速机构外壳连接,内转子设于定子的下方,与输入轴连接。
  4. 根据权利要求2所述的全自动洗衣机,其特征在于:所述的齿轮机构包括太阳齿轮、内齿圈及分别与太阳齿轮和内齿圈啮合的行星齿轮,太阳齿轮安装于输入轴上,行星齿轮安装于行星轮架上,行星轮架与波轮轴连接,内齿圈下端设有下端盖,下端盖直接或间接与定子连接。
  5. 根据权利要求2所述的全自动洗衣机,其特征在于:所述的齿轮机构包括中心齿轮、内齿圈及分别与中心齿轮和内齿圈啮合的传动齿轮,中心齿轮安装于输入轴上,内齿圈与波轮轴连接,传动齿轮通过齿轮轴安装于下端盖上,下端盖直接或间接与定子连接。
  6. 根据权利要求2所述的全自动洗衣机,其特征在于:所述的齿轮机构包括输入齿轮、输出齿轮、及分别与输入齿轮和输出齿轮啮合的传动齿轮,输入齿轮安装于输入轴上,输出齿轮安装于波轮轴上,传动齿轮为双联齿轮,包括上齿轮和下齿轮,上齿轮与输出齿轮啮合,下齿轮与输入齿轮啮合,传动齿轮通过齿轮轴安装在下端盖上,下端盖直接或间接与定子连接。
  7. 根据权利要求4-6任一所述的全自动洗衣机,其特征在于:所述的下端盖与输入轴套连接,输入轴套安装在输入轴的外部,输入轴套与定子花键连接。
  8. 根据权利要求1-6任一所述的全自动洗衣机,其特征在于:所述的减速机构减速比 为1/10-1/2。
  9. 根据权利要求1所述的全自动洗衣机,其特征在于:所述的两个转子为内转子和外转子,定子为一盘形结构,减速机构位于定子的中间凹形空腔内,内转子与内桶轴连接,外转子与减速机构的输入轴连接,减速机构的输出轴与波轮连接。
  10. 根据权利要求1所述的全自动洗衣机,其特征在于:所述的定子为一盘形结构,减速机构位于定子的中间凹形空腔内,两个转子均为外转子,分别位于减速机构的上方和下方,减速机构和定子装配在上下两转子之间,上方转子与内桶轴连接,下方转子与减速机构的输入轴连接,减速机构的输出轴与波轮连接。
  11. 一种如权利要求1-10任一所述全自动洗衣机的控制方法,其特征在于:洗涤时,两转子驱动波轮与内桶同向或反向转动,脱水时波轮与内桶同向同速转动。
  12. 根据权利要求11所述的控制方法,其特征在于:脱水时,两转子先一起转动设定时间,内桶和波轮均同向转动后,再控制驱动波轮转动的转子呈自由状态,只控制驱动内桶转动的转子高速转动。
PCT/CN2014/091404 2014-08-26 2014-11-18 全自动洗衣机及控制方法 WO2016029563A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177007713A KR102278276B1 (ko) 2014-08-26 2014-11-18 전자동 세탁기 및 제어방법
EP14900370.9A EP3187643B1 (en) 2014-08-26 2014-11-18 Fully automatic washing machine and control method
US15/505,364 US10612179B2 (en) 2014-08-26 2014-11-18 Automatic washing machine and control method
JP2017508646A JP6452069B2 (ja) 2014-08-26 2014-11-18 全自動洗濯機および制御方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410425002.5A CN105401377B (zh) 2014-08-26 2014-08-26 全自动洗衣机及控制方法
CN201410425002.5 2014-08-26

Publications (1)

Publication Number Publication Date
WO2016029563A1 true WO2016029563A1 (zh) 2016-03-03

Family

ID=55398704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091404 WO2016029563A1 (zh) 2014-08-26 2014-11-18 全自动洗衣机及控制方法

Country Status (6)

Country Link
US (1) US10612179B2 (zh)
EP (1) EP3187643B1 (zh)
JP (1) JP6452069B2 (zh)
KR (1) KR102278276B1 (zh)
CN (1) CN105401377B (zh)
WO (1) WO2016029563A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112532000A (zh) * 2020-11-27 2021-03-19 李亚兵 新型直流无楞次特效发电机

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10326323B2 (en) 2015-12-11 2019-06-18 Whirlpool Corporation Multi-component rotor for an electric motor of an appliance
US11255036B2 (en) * 2016-07-28 2022-02-22 Samsung Electronics Co., Ltd. Washing machine
US10704180B2 (en) 2016-09-22 2020-07-07 Whirlpool Corporation Reinforcing cap for a tub rear wall of an appliance
US10693336B2 (en) 2017-06-02 2020-06-23 Whirlpool Corporation Winding configuration electric motor
CN107313210A (zh) * 2017-06-15 2017-11-03 广西科技大学鹿山学院 分层式洗衣机
US10954621B2 (en) * 2017-12-20 2021-03-23 Samsung Electronics Co., Ltd. Washing machine and motor
CN108611803B (zh) * 2018-04-27 2024-03-01 广东威灵电机制造有限公司 滚筒洗衣机
CN109487500A (zh) * 2018-11-16 2019-03-19 惠而浦(中国)股份有限公司 一种双电机直驱全自动洗衣机
CN109629175A (zh) * 2018-11-16 2019-04-16 惠而浦(中国)股份有限公司 一种复合式多动力驱动装置
CN111197224B (zh) * 2018-11-20 2022-04-29 无锡小天鹅电器有限公司 洗衣机
CN111764091B (zh) * 2019-04-01 2022-07-19 青岛海尔洗衣机有限公司 一种波轮洗衣机及其控制方法
CN111850942B (zh) * 2019-04-01 2022-07-19 青岛海尔洗衣机有限公司 一种洗衣机的控制方法
US11329537B2 (en) * 2019-05-02 2022-05-10 X Development Llc Super-synchronous motor/generator
US11773525B2 (en) 2019-05-02 2023-10-03 Whirlpool Corporation Double-rotor washing type drum washing machine
CN110629447A (zh) * 2019-07-10 2019-12-31 青岛海尔洗衣机有限公司 波轮洗衣机
CN112663276A (zh) * 2019-10-16 2021-04-16 青岛海尔洗衣机有限公司 一种洗衣机及其控制方法
CN112746458A (zh) * 2019-10-16 2021-05-04 青岛海尔洗衣机有限公司 一种洗衣机及其控制方法
CN112663289A (zh) * 2019-10-16 2021-04-16 青岛海尔洗衣机有限公司 一种洗衣机及其控制方法
CN112746459A (zh) * 2019-10-16 2021-05-04 青岛海尔洗衣机有限公司 一种洗衣机及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108596A (ja) * 1982-12-13 1984-06-23 松下電器産業株式会社 遠心脱水洗濯機
CN1743535A (zh) * 2004-08-31 2006-03-08 Lg电子株式会社 洗衣机及其控制方法
KR20080064317A (ko) * 2007-01-04 2008-07-09 엘지전자 주식회사 모터 및 이를 구비한 드럼 세탁기
CN102877269A (zh) * 2012-10-22 2013-01-16 安徽聚隆传动科技股份有限公司 一种洗衣机电机直驱传动减速机构
CN204138927U (zh) * 2014-08-26 2015-02-04 青岛海尔洗衣机有限公司 全自动洗衣机

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108595A (ja) * 1982-12-13 1984-06-23 松下電器産業株式会社 遠心脱水洗濯機
KR0130534B1 (ko) * 1994-07-12 1998-04-09 김광호 세탁기용 리니어 모터
CN1151596C (zh) 2000-07-12 2004-05-26 北京东方渴望科技发展有限公司 洗衣机动力直驱装置
KR100469256B1 (ko) * 2002-05-14 2005-02-02 엘지전자 주식회사 세탁기 구동부의 방진구조
US6834407B2 (en) * 2002-12-17 2004-12-28 General Electric Company Method and apparatus for electronically commutated motor washer agitation controller
KR100504867B1 (ko) * 2003-01-16 2005-07-29 엘지전자 주식회사 인덕션모터를 구비한 드럼 세탁기
AU2004210281B2 (en) * 2003-02-06 2009-09-10 Lg Electronics Inc. Waching machine
US20060042022A1 (en) 2004-08-31 2006-03-02 Lg Electronics Inc. Washing machine and method for controlling the same
KR101228043B1 (ko) * 2011-06-08 2013-01-30 주식회사 아모텍 직결식 세탁기의 구동장치
KR101368243B1 (ko) * 2011-11-10 2014-02-27 주식회사 아모텍 세탁기용 모터, 세탁기 모터 제조방법 및 이를 구비한 세탁기
WO2014112839A1 (ko) 2013-01-21 2014-07-24 주식회사 아모텍 다중 모터 구동장치와 이를 이용한 세탁기용 모터 구동장치 및 그 방법
CN203530710U (zh) 2013-05-10 2014-04-09 海尔集团公司 全自动洗衣机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108596A (ja) * 1982-12-13 1984-06-23 松下電器産業株式会社 遠心脱水洗濯機
CN1743535A (zh) * 2004-08-31 2006-03-08 Lg电子株式会社 洗衣机及其控制方法
KR20080064317A (ko) * 2007-01-04 2008-07-09 엘지전자 주식회사 모터 및 이를 구비한 드럼 세탁기
CN102877269A (zh) * 2012-10-22 2013-01-16 安徽聚隆传动科技股份有限公司 一种洗衣机电机直驱传动减速机构
CN204138927U (zh) * 2014-08-26 2015-02-04 青岛海尔洗衣机有限公司 全自动洗衣机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3187643A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112532000A (zh) * 2020-11-27 2021-03-19 李亚兵 新型直流无楞次特效发电机

Also Published As

Publication number Publication date
US20170268150A1 (en) 2017-09-21
CN105401377B (zh) 2019-08-27
EP3187643A4 (en) 2017-08-16
KR102278276B1 (ko) 2021-07-16
JP6452069B2 (ja) 2019-01-16
CN105401377A (zh) 2016-03-16
EP3187643B1 (en) 2018-12-12
EP3187643A1 (en) 2017-07-05
JP2017529141A (ja) 2017-10-05
US10612179B2 (en) 2020-04-07
KR20170044700A (ko) 2017-04-25

Similar Documents

Publication Publication Date Title
WO2016029563A1 (zh) 全自动洗衣机及控制方法
CN104141212B (zh) 全自动洗衣机
CN101153436B (zh) 双波轮多动力全自动洗衣机
CN104178968A (zh) 洗衣机及其控制方法
KR100493305B1 (ko) 듀얼 모터 드럼세탁기
CN204138927U (zh) 全自动洗衣机
CN104099744A (zh) 一种洗衣机及其洗涤方法
CN102051790A (zh) 洗衣机直驱离合装置
CN201258400Y (zh) 双重动力波轮
EP3702514B1 (en) Drum washing machine
CN203530710U (zh) 全自动洗衣机
CN105375682B (zh) 双转子直驱电机
WO2020200225A1 (zh) 一种波轮洗衣机及其控制方法
CN205024470U (zh) 一种滚筒洗衣机减速离合器与滚筒洗衣机
CN200992648Y (zh) 双波轮多动力全自动洗衣机
CN205275971U (zh) 一种滚筒洗衣机减速离合器与滚筒洗衣机
CN2441829Y (zh) 洗衣机动力直驱装置
CN209443247U (zh) 一种双电机直驱全自动洗衣机
KR20210029814A (ko) 세탁기의 구동 시스템 및 이를 구비하는 드럼 세탁기
CN204258536U (zh) 双转子直驱电机
CN109487500A (zh) 一种双电机直驱全自动洗衣机
CN202705734U (zh) 一种全自动洗衣机的减速离合器
CN106637825B (zh) 一种滚筒洗衣机减速离合器与滚筒洗衣机及洗涤方法
CN110835827A (zh) 顶开式双动力洗衣机
WO2020200224A1 (zh) 一种洗衣机的控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900370

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508646

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15505364

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014900370

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014900370

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177007713

Country of ref document: KR

Kind code of ref document: A