WO2016027820A1 - 光伝送システムにおける局側装置、光伝送システム及び光伝送方法 - Google Patents
光伝送システムにおける局側装置、光伝送システム及び光伝送方法 Download PDFInfo
- Publication number
- WO2016027820A1 WO2016027820A1 PCT/JP2015/073195 JP2015073195W WO2016027820A1 WO 2016027820 A1 WO2016027820 A1 WO 2016027820A1 JP 2015073195 W JP2015073195 W JP 2015073195W WO 2016027820 A1 WO2016027820 A1 WO 2016027820A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical
- optical transceiver
- identification number
- logical link
- selection
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2854—Wide area networks, e.g. public data networks
- H04L12/2856—Access arrangements, e.g. Internet access
- H04L12/2858—Access network architectures
- H04L12/2861—Point-to-multipoint connection from the data network to the subscribers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/27—Arrangements for networking
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/40—Transceivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/2854—Wide area networks, e.g. public data networks
- H04L12/2856—Access arrangements, e.g. Internet access
- H04L12/2869—Operational details of access network equipments
- H04L12/2878—Access multiplexer, e.g. DSLAM
- H04L12/2879—Access multiplexer, e.g. DSLAM characterised by the network type on the uplink side, i.e. towards the service provider network
- H04L12/2885—Arrangements interfacing with optical systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q11/0067—Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/28—Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
- H04L12/44—Star or tree networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04Q—SELECTING
- H04Q11/00—Selecting arrangements for multiplex systems
- H04Q11/0001—Selecting arrangements for multiplex systems using optical switching
- H04Q11/0062—Network aspects
- H04Q2011/0064—Arbitration, scheduling or medium access control aspects
Definitions
- the present invention relates to a station in an optical transmission system that performs frame transfer processing between a plurality of subscriber-side devices (ONU: Optical Network Unit) connected via optical transmission paths (PON: Passive Optical Network) and a host device.
- ONU Optical Network Unit
- PON Passive Optical Network
- the present invention relates to a side device (OLT: Optical Line Terminal), an optical transmission system, and an optical transmission method.
- 10G-EPON 10 Gigabit Ethernet Passive Optical Network: Ethernet is a registered trademark
- 10G-EPON 10-times high-speed transmission is possible as compared with GE-PON (Gigabit Ethernet Passive Optical Network: see Non-Patent Document 1) that is already widely used.
- Fig. 13 shows the outline of the configuration of the GE-PON system.
- the OLT 100 transfers frames between a plurality of ONUs 3 connected via the optical splitter 2 and a host device (not shown).
- the GE-PON OLT 100 includes an optical transceiver 11 and a PON control circuit 12.
- the optical transceiver 11 converts the downstream frame (downstream electrical signal DS) to the optical signal to the ONU 3 connected via the optical splitter 2, and the upstream frame (optical signal) electrical signal from the ONU 3. Photoelectric conversion to (upstream electrical signal US) is performed.
- the maximum number of ONUs 3 that can be connected to one optical transceiver 11 is 32, which is defined by the IEEE standard. Therefore, when it is necessary to connect 33 or more ONUs 3 as a station that accommodates the ONU 3, generally, as shown in FIG. 14, a plurality of optical splitters 2 are provided between the OLT 100 and the ONU 3, A plurality of optical transceivers 11 and a plurality of PON control circuits 12 are used.
- the maximum number of ONUs that can be connected to one optical transceiver is 32, which is defined by the IEEE standard.
- the PON control device for 10G-EPON requires higher performance (10 times the data transfer rate) than the PON control device for GE-PON, the cost of the device (such as the purchase price of the device) also increases. . Therefore, as a problem for adopting the 10G-EPON system, it is a problem to reduce the system cost (connection cost) per ONU as much as possible.
- the optical amplifier has a problem that the cost of the device (such as the purchase price of the device) is higher than that of a component for an electric circuit (such as LSI).
- the present invention has been made to solve such problems, and its object is to further reduce the system cost (connection cost) per ONU in a PON system, particularly a 10G-EPON system. is there.
- a frame is transferred between a plurality of subscriber-side devices and higher-level devices connected via first to Nth (N ⁇ 2) optical splitters.
- the first to N-th optical splitters are connected one-to-one, and the electrical signal is converted from the downstream electrical signal to the subscriber-side device into the optical signal.
- the first to Nth optical transceivers that perform the photoelectric conversion of the optical signal to the upstream electrical signal and one optical transceiver from the first to Nth optical transceivers are selected and input from the selected one optical transceiver
- a selection / distribution circuit that outputs the transmitted upstream electrical signal and distributes and outputs the downstream electrical signal to the first to Nth optical transceivers, and a plurality of subscriber-side devices, the plurality of subscriber-side devices Simultaneously send upstream frames
- a control circuit for controlling the selection / distribution circuit The selection / distribution circuit waits for reception of a registration request frame sent from the control circuit from an unregistered subscriber side device.
- the timing of the discovery window, the grant timing which is the reception period of the uplink frame from the registered subscriber side device, and the logical link identification number for the logical link with the registered subscriber side device assigned to the grant A selection control unit that selects one optical transceiver from the first to Nth optical transceivers is provided.
- the OLT is configured by N optical transceivers, one PON control circuit, and one selection / distribution circuit, N ⁇ 32 ONUs can be accommodated in the OLT.
- N ⁇ 32 ONUs can be accommodated in the OLT.
- connection cost connection cost
- FIG. 1 is a diagram illustrating a configuration example of a PON system according to a first embodiment (first embodiment) of the present invention.
- FIG. 2 is a diagram illustrating a configuration example of a selection / distribution circuit in the OLT according to the first embodiment.
- FIG. 3 is a diagram illustrating a structure of an optical transceiver selection table used in the selection / distribution circuit in the OLT according to the first embodiment.
- FIG. 4 is a flowchart illustrating a procedure in which the uplink signal selection control unit of the selection / distribution circuit in the OLT according to the first embodiment generates an optical transceiver selection signal.
- FIG. 1 is a diagram illustrating a configuration example of a PON system according to a first embodiment (first embodiment) of the present invention.
- FIG. 2 is a diagram illustrating a configuration example of a selection / distribution circuit in the OLT according to the first embodiment.
- FIG. 3 is a diagram illustrating a structure of an optical transceiver selection table used in
- FIG. 5 is a flowchart illustrating a procedure in which the upstream signal selection control unit of the selection / distribution circuit in the OLT according to the first embodiment registers the identification number of the optical transceiver in the entry of the optical transceiver selection table.
- FIG. 6 is a time chart illustrating an example of the operation of the uplink signal selection control unit of the selection / distribution circuit in the OLT according to the first embodiment.
- FIG. 8 is a diagram illustrating an optical transceiver identification number stored with the logical link identification number of the optical transceiver selection table as an entry number.
- FIG. 9 is a diagram illustrating a configuration example of a selection / distribution circuit in the OLT according to the second embodiment.
- FIG. 10 is a diagram illustrating a structure of an optical transceiver selection table used in the selection / distribution circuit in the OLT according to the second embodiment.
- FIG. 11 is a flowchart illustrating a procedure in which the uplink signal selection control unit in the OLT according to the second embodiment registers the optical transceiver identification number in association with the logical link identification number in the optical transceiver selection table.
- FIG. 12 is a flowchart illustrating a procedure in which the uplink signal selection control unit in the OLT according to the second embodiment updates the valid timer value of each entry in the optical transceiver selection table.
- FIG. 13 is a diagram illustrating a configuration example of a conventional GE-PON system.
- FIG. 14 is a diagram showing another configuration example of the conventional GE-PON system.
- FIG. 1 is a configuration example of a PON system according to the first embodiment (Embodiment 1) of the present invention.
- the OLT 1 (1A) includes N (N ⁇ 2: N is an integer of 2 or more) optical transceivers 11 (11-0 to 11-N ⁇ 1 ), one PON control circuit 12, and It is constituted by one selection / distribution circuit 13.
- one optical transceiver 11 has a light transmission path including the optical splitter 2 between the OLT 1A and the ONU 3 as a PON section, and up to 32 ONUs 3 are commonly connected via the single optical splitter 2. Yes.
- the optical transceivers 11-0 ⁇ 11-N -1 are connected to the optical splitters 2-0 ⁇ 2-N -1, 32 units at the maximum in each of the optical splitters 2-0 ⁇ 2-N -1 ONU3 is connected. Therefore, the OLT 1A accommodates N ⁇ 32 ONUs 3 in total. The OLT 1A transfers a frame between the plurality of ONUs 3 and the upper apparatus 4 connected via the optical splitter 2.
- the difference in configuration between this PON system and the conventional PON system shown in FIG. 14 is that the PON system according to the present embodiment is provided with one PON control circuit 12 for one OLT 1.
- One selection / distribution circuit 13 is provided between the PON control circuit 12 and the N optical transceivers 11-0 to 11-N- 1 .
- the PON control circuit 12 controls the plurality of ONUs 3 so that the plurality of ONUs 3 do not transmit uplink frames at the same time.
- the PON control circuit 12 includes a control signal output unit 12-1, and outputs an optical transceiver selection control signal SC from the control signal output unit 12-1 to the selection / distribution circuit 13.
- Selection and distribution circuit 13 on the basis of the optical transceiver selection control signal SC, N number of optical transceivers 11-0 ⁇ 11-N 1 -1 single optical transceiver 11-s (s is 0 ⁇ N-1 And an upstream electrical signal US [s] output from the selected optical transceiver 11-s is output to the PON control circuit 12, and a downstream electrical signal DS from the PON control circuit 12 is selected.
- N optical transceivers 11-0 to 11-N- 1 are distributed and output to N optical transceivers 11-0 to 11-N- 1 .
- FIG. 2 shows a configuration example of the selection / distribution circuit 13 in the OLT 1A.
- the selection / distribution circuit 13A includes a downlink signal distribution unit 13-1, an uplink signal selection unit 13-2, and an uplink signal selection control unit 13-3.
- the downlink signal distribution unit 13-1 generates N downlink electric signals DS [0] to DS [N-1] by duplicating the downlink electric signal DS input from the PON control circuit 12, and generates this downstream electric signal DS [0] ⁇ DS [N -1] , respectively toward the optical transceiver 11-0 ⁇ 11-N -1 outputs.
- the uplink signal selection unit 13-2 selects one optical transceiver 11-s from the N optical transceivers 11-0 to 11-N- 1, and the uplink electrical signal output by the selected optical transceiver 11-s. US [s] is output to the PON control circuit 12.
- the uplink signal selection unit 13-2 upstream electric signal of the N, each of the N optical transceivers 11-0 ⁇ 11-N -1 is outputted US [0] Type the ⁇ US [N-1] Then, one upstream electrical signal US [s] is selected from the inputted N upstream electrical signals US [0] to US [N ⁇ 1] and output to the PON control circuit 12.
- the upstream signal selection control unit 13-3 receives the optical transceiver selection control signal SC (SCA) from the PON control circuit 12, generates the optical transceiver selection signal s, and the upstream signal selection unit 13-2. Output to.
- the optical transceiver selection signal s is a signal for the uplink signal selection unit 13-2 to select one optical transceiver 11-s from the N optical transceivers 11-0 to 11-N- 1 .
- the upstream signal selection control unit 13-3A receives the discovery window signal SD, the grant signal SG, and the newly registered logical link identification number k as the optical transceiver selection control signal SCA from the PON control circuit 12.
- the discovery window signal SD is a signal indicating the timing of the discovery window that waits for reception of a registration request frame from the unregistered ONU 3.
- the grant signal SG is a signal indicating a grant timing which is a reception period of an upstream frame from the registered ONU 3 and a logical link identification number g for a logical link with the registered ONU 3 assigned to the grant.
- the discovery window signal SD and the grant signal SG are used to generate the optical transceiver selection signal s.
- the newly registered logical link identification number k is used to create an optical transceiver selection table TB to be described later.
- Uplink signal selection control unit 13-3A includes one optical transceivers 11-d of the N optical transceivers 11-0 ⁇ 11-N -1 and (d is an integer in the range of 0 ⁇ N-1)
- the identification number d of the specified optical transceiver is stored as a discovery target optical transceiver identification number which is a variable in the uplink signal selection control unit 13-3A.
- the identification number d of this optical transceiver is stored in the memory 13-31 in the upstream signal selection control unit 13-3A.
- the uplink signal selection control unit 13-3A updates the value of the discovery target optical transceiver identification number d at the timing when the discovery window signal SD input from the PON control circuit 12 indicates the start of the discovery window.
- the upstream electrical output from one optical transceiver 11-d specified by the discovery-target optical transceiver identification number d after the update An optical transceiver selection signal s (a signal having a value of d) for selecting the signal US [d] as the upstream electrical signal US [s] is generated.
- the generation of the optical transceiver selection signal s is performed by the selection unit 13-32 in the uplink signal selection control unit 13-3A.
- the PON control circuit 12 selects one optical transceiver selected from the N optical transceivers 11-0 to 11-N- 1 in one discovery window. Only the registration request frame from the ONU 3 connected to the 11-d through the optical splitter 2-d is accepted. Upon receiving the registration request frame, the PON control circuit 12 outputs the logical link identification number for the logical link with the ONU 3 registered as a newly registered logical link identification number k to the uplink signal selection control unit 13-3A. As a result, the uplink signal selection control unit 13-3A can associate the identification number d of the optical transceiver with the logical link identification number k.
- the uplink signal selection control unit 13-3A determines this logical link identification from the logical link identification number g of the grant signal SG output from the PON control circuit 12.
- the optical transceiver identification number e corresponding to the number g can be acquired, and the optical transceiver 11 specified by the acquired optical transceiver identification number e can be selected.
- the registration request frame from the ONU 3 connected to one selected optical transceiver is passed to the PON control circuit 12, and the registration request from the ONU 3 connected to another optical transceiver is received.
- the frame is discarded, the value of the discovery target optical transceiver identification number d, which is a variable in the uplink signal selection control unit 13-3A, is updated for each discovery window, so that the N discovery windows are updated.
- the PON control circuit 12 can accept registration request frames from all the ONUs 3.
- the uplink signal selection control unit 13-3A is an opportunity to establish a logical link with the ONU 3 indicated by the logical link identification number k.
- the optical transceiver identification number d selected by the selection / distribution circuit 13A during the discovery window in which the registration request frame is received is associated with the logical link identification number k, and the optical transceiver in the memory 13-31 is associated with the logical link identification number k.
- the storage of the optical transceiver identification number d in association with the logical link identification number k in the optical transceiver selection table TB that is, the registration of the optical transceiver identification number d in association with the logical link identification number k This is performed by the registration unit 13-33 in the signal selection control unit 13-3A.
- the uplink signal selection control unit 13-3A associates the optical transceiver selection table with the logical link identification number g indicated by the grant signal SG during the period when the grant signal SG input from the PON control circuit 12 indicates grant.
- the optical transceiver identification number e stored in the TB is acquired, and the upstream electrical signal US [e] output from the optical transceiver 11-e specified based on the acquired optical transceiver identification number e is used as the upstream electrical signal.
- An optical transceiver selection signal s (a signal having a value of e) for selection as US [s] is generated.
- the generation of the optical transceiver selection signal s at this time is also performed by the selection unit 13-32 in the uplink signal selection control unit 13-3A.
- the PON control circuit 12 prevents the plurality of ONUs 3 from transmitting upstream frames simultaneously to all the ONUs 3 connected to the optical splitters 2-0 to 2-N- 1 , that is, only one ONU 3 is used. Performs uplink band allocation (grant allocation) so that transmits an uplink frame.
- the PON control circuit 12 generates these signals so that the period in which the grant signal SG indicates the grant and the period in which the discovery window signal SD indicates the discovery window do not overlap on the time axis.
- the optical transceiver selection signal s based on the delay of transmission of the signals SG and SD from the PON control circuit 12 to the upstream signal selection control unit 13-3A and the signals SG and SD in the upstream signal selection control unit 13-3A, the optical transceiver selection signal s , Delay in transmission of the optical transceiver selection signal s from the upstream signal selection control unit 13-3A to the upstream signal selection unit 13-2, and the optical transceiver selection signal s in the upstream signal selection unit 13-2. Since there is a delay until the uplink electrical signal US [s] is selected based on the PON control circuit 12, the PON control circuit 12 outputs the grant signal SG and the discovery window signal SD to be output to the uplink signal selection control unit 13-3A. It is desirable that the timing be generated at a timing before the total time of the above-described delay from the timing based on the electrical signal US [s].
- the PON control circuit 12 may use the grant signal SG as a signal indicating the start timing of the grant and the discovery window signal SD as a signal indicating the start timing of the discovery window.
- the uplink signal selection control unit 13-3A When the signal indicating the start timing is used, the uplink signal selection control unit 13-3A generates the optical transceiver selection signal s based on this signal when the grant signal SG or the discovery window signal SD is input. Then, during the period until the grant signal SG or the discovery window signal SD is input, the operation of the generated optical transceiver selection signal s is not changed.
- the logical link identification number assigned to each logical link being linked up is not the LLID defined in the 10G-EPON or GE-PON standard, but the PON control circuit 12 is assigned to each logical link being linked up. You may use the serial number assigned to it.
- the LLID is a value expressed in a 15-bit length, but when the number of ONUs 3 connected to each optical splitter 2 is 32 and one LLID is assigned to each ONU 3, only N ⁇ 32 of the LLID values are used. Therefore, when the optical transceiver selection table TB is created using the LLID as an entry number, most entries are not used and memory is wasted. On the other hand, if a serial number that can be expressed with a bit length smaller than that of LLID is used as the logical link identification number, and the optical transceiver identification number is stored using this serial number as the entry number, memory waste can be reduced.
- the optical transceiver selection table TBA can be realized with a small memory.
- FIG. 3 shows the structure of the optical transceiver selection table TB (TBA) in the uplink signal selection control unit 13-3A.
- a logical link identification number is used as an entry number.
- the value of the optical transceiver identification number stored in association with the logical link identification number is stored in the entry whose logical link identification number is the entry number.
- the optical transceiver identification number associated with the logical link identification number 0 is stored in the entry [0]
- the optical transceiver identification number associated with the logical link identification number k is stored in the entry [k].
- the entry [K-1] stores the identification number of the optical transceiver associated with the logical link identification number K-1.
- K is the table size (maximum number of entries) of the optical transceiver selection table TBA.
- the upstream signal selection control unit 13-3A acquires the optical transceiver identification number e from the entry of the optical transceiver selection table TBA whose logical link identification number g indicated by the grant signal SG input from the PON control circuit 12 is the entry number.
- the optical transceiver 11-e is identified based on the acquired optical transceiver identification number e, and the upstream electrical signal US [e] output from the identified optical transceiver 11-e is selected as the upstream electrical signal US [s].
- An optical transceiver selection signal s for generating is generated.
- the uplink signal selection control unit 13-3A updates the value of the discovery target optical transceiver identification number d, and the updated discovery target optical transceiver identification
- An optical transceiver selection signal s for selecting the upstream electrical signal US [d] output from one optical transceiver 11-d specified by the number d as the upstream electrical signal US [s] is generated.
- the upstream signal selection control unit 13-3A performs the processing shown in the flowchart of FIG. 4 at the time when the upstream signal selection control unit 13-3A can operate, for example, the power supply to the OLT 1A or the subsequent OLT 1A. Start immediately after initialization and until the operation of the uplink signal selection control unit 13-3A is stopped, for example, a reinitialization instruction for the selection / distribution circuit 13A including the uplink signal selection control unit 13-3A or to the OLT 1A Repeat until the power supply stops.
- Step S102 It is determined whether or not the discovery window signal SD input to the uplink signal selection control unit 13-3A indicates the discovery window start timing. In this determination, if YES, the process proceeds to step S103, and if NO, the process proceeds to step S105.
- Step S104 The value of the optical transceiver selection signal s output toward the uplink signal selection unit 13-2 is changed to the value of the discovery target optical transceiver identification number d updated in step S103.
- s d.
- an optical transceiver selection signal s having d as its value is generated. Thereafter, the process returns to step S102 via step S108. If the stop is confirmed in step S108, the process of this procedure is terminated.
- Step S105 It is determined whether or not the grant signal SG input to the uplink signal selection control unit 13-3A indicates the grant start timing. In this determination, if YES, the process proceeds to step S106, and if NO, the process returns to step S102.
- Step S106 The value e of the entry [g], which is the logical link identification number g indicated by the grant signal SG input in step S105, is read from the optical transceiver selection table TBA managed by the uplink signal selection control unit 13-3A. Next, the process proceeds to step S107.
- Step S107 The value of the optical transceiver selection signal s output toward the upstream signal selection unit 13-2 is changed to the value e of the entry [g] read out in step S106.
- s e.
- an optical transceiver selection signal s having e as its value is generated. Thereafter, the process returns to step S102 via step S108. If the stop is confirmed in step S108, the process of this procedure is terminated.
- the value of the discovery target optical transceiver identification number d is incremented and updated. If the existence of an unregistered ONU connected to the optical transceiver is known in advance for each optical transceiver, it is not registered. It is also possible to update the discovery target optical transceiver identification number d so as to exclude the optical transceiver not connected to the ONU from the selection target. By doing in this way, the average time until registering an unregistered ONU can be shortened.
- the uplink signal selection control unit 13-3 A in the optical transceiver selection table TBA having the input logical link identification number k as an entry number.
- the discovery target optical transceiver identification d which is a variable in the uplink signal selection control unit 13-3A at that time, is stored (registered) in the entry.
- uplink signal selection control section 13-3A receives an entry (a newly registered logical link identification number k from PON control circuit 12) in optical transceiver selection table TBA, logical link identification number k
- logical link identification number k The procedure for registering the identification number of the optical transceiver in the entry) in which is the entry number will be described.
- the upstream signal selection control unit 13-3A performs the processing shown in the flowchart of FIG. 5 at the time when the upstream signal selection control unit 13-3A can operate, for example, power supply to the OLT 1A or the subsequent OLT 1A. Start immediately after initialization and until the operation of the uplink signal selection control unit 13-3A is stopped, for example, a reinitialization instruction for the selection / distribution circuit 13A including the uplink signal selection control unit 13-3A or to the OLT 1A Repeat until the power supply stops.
- the uplink signal selection control unit 13-3A repeats the process shown in FIG. 5 each time a newly registered logical link identification number k is input as an interrupt operation during the execution of the process shown in FIG.
- Step S201 It is determined whether or not a newly registered logical link identification number k is input to the uplink signal selection control unit 13-3A. In this determination, if YES, the process proceeds to step S202. If NO, the determination of step S201 is repeated (the process remains in step S201 until a newly registered logical link identification number k is input).
- the downstream signal distribution unit 13-1 The downstream electrical signal DS from the PON control circuit 12 is monitored at, and when the registration frame transmitted to the newly registered ONU 3 by the PON control circuit 12 is detected in the downstream signal distribution unit 13-1, the detected registration is detected.
- the newly registered logical link identification number k included in the frame is sent to the uplink signal selection control unit 13-3A, and the optical transceiver identification is entered in the entry of the optical transceiver selection table TBA whose entry number is the newly registered logical link identification number k. It is also possible to register the number d.
- the newly registered logical link identification number is registered. It is also possible to store both k and the optical transceiver identification number d in the new entry of the optical transceiver selection table TB.
- the uplink signal selection control unit 13-3A has the optical transceiver selection table TBA.
- the value of the logical link identification number stored in each entry of 'and the value of the logical link identification number g indicated by the grant signal SG are compared, and the identification of the optical transceiver stored in the entry whose value matches in this comparison Get the number e.
- the discovery window signal SD indicates the start of the discovery window at t1
- the value of the discovery target optical transceiver identification number d which is a variable in the uplink signal selection control unit 13-3A, is updated at t2.
- the value is incremented, and the discovery target optical transceiver identification number d changes from 0 to 1.
- the value of the optical transceiver selection signal s is changed to 1 which is the value of the discovery-target optical transceiver identification number d after the update.
- the upstream electrical signal US [1] is selected during the immediately following discovery window period, and among the frames that arrive within this period, the registration request frame included in the upstream electrical signal US [1], that is, the optical transceiver.
- a registration request frame from a new ONU 3 connected to 11-1 through the optical splitter 2-1 is input to the PON control circuit 12.
- F (0,1) and F (1,1) are signals including a registration request frame.
- the optical transceiver identification number e corresponding to the value 2 of the logical link identification number g of the grant signal SG is set to the optical transceiver selection table TBA.
- the value of the optical transceiver selection signal s is changed to 0 which is the value of the acquired identification number e of the optical transceiver at t4.
- the upstream electrical signal US [0] is selected during the immediately following grant period, so that the logical link between the optical transceiver 11-0 and the ONU 3 connected via the optical splitter 2-0 is logical link identification.
- the upstream frame from the linked ONU 3 is input to the PON control circuit 12.
- the value of the discovery target optical transceiver identification number d which is a variable in the uplink signal selection control unit 13-3A, is updated. In this update, the process of returning the value to 0 is performed, and the discovery target optical transceiver identification number d changes from 1 to 0. Further, the value of the optical transceiver selection signal s is changed to 0 which is the value of the discovery target optical transceiver identification number d after the update.
- the upstream electrical signal US [0] is selected during the immediately following discovery window period, and the registration request frame included in the upstream electrical signal US [1] among the frames that arrive within this period, that is, the optical transceiver.
- a registration request frame from a new ONU 3 connected to 11-0 via the optical splitter 2-0 is input to the PON control circuit 12.
- the OLT 1A to which the present invention is applied has a discovery window generated inside the PON control circuit 12 in order that the PON control circuit 12 controls the start timing and duration of the discovery window and grant.
- the signal SD and the grant signal SG are passed to the upstream signal selection control unit 13-3A. Accordingly, the upstream signal selection control unit 13-3A can select the optical transceiver 11 that receives the discovery window and the grant before receiving the registration request frame and the upstream electrical signal US from the ONU 3.
- a method of selecting the upstream electrical signal for example, a method of determining which optical transceiver from which the upstream electrical signal is selected using the LOS signal of the optical transceiver is conceivable.
- the method using the LOS signal since the selection is switched after the upstream electrical signal arrives, a part of the synchronization pattern at the beginning of the upstream electrical signal is not input to the subsequent circuit, and the synchronization is performed to compensate for it. It is necessary to extend the pattern.
- switching is performed in accordance with the arrival time of the upstream electrical signal predicted by the OLT, so that a problem that a part of the synchronization pattern is not input to the subsequent circuit does not occur. No pattern expansion is required. As a result, the uplink throughput is not reduced due to the expansion of the synchronization pattern, and the uplink throughput can be improved.
- FIG. 9 is a diagram illustrating a configuration example of the selection / distribution circuit 13 (13B) in the OLT 1 (1B) according to the second embodiment.
- the difference from the configuration of the selection / distribution circuit 13A of the first embodiment is the optical transceiver selection control signal SC input from the PON control circuit 12 by the upstream signal selection control unit 13-3 (13-3B).
- the optical transceiver selection control signal SC (SCA) of the first embodiment includes the newly registered logical link identification number k in order to know the logical link identification number for the registered logical link with the ONU 3.
- the optical transceiver selection control signal SC (SCB) of the second embodiment does not include the newly registered logical link identification number k.
- the uplink signal selection control unit 13-3A when the uplink signal selection control unit 13-3A receives a newly registered logical link identification number k from the PON control circuit 12, it establishes a logical link with the ONU 3 indicated by the logical link identification number k.
- An optical transceiver selection table TB is created by associating the identification number d of the optical transceiver selected by the selection / distribution circuit 13A with the logical link identification number k during the period of the discovery window that received the registration request frame that triggered the transmission. (TBA). That is, in the first embodiment, the uplink signal selection control unit 13-3A uses the newly registered logical link identification number k input from the PON control circuit 12, and sets the logical link identification number, the optical transceiver identification number, Was associated.
- the uplink signal selection control unit 13-3B does not input the newly registered logical link identification number k from the PON control circuit 12, but the logical link identification included in the grant signal SG. It is determined whether or not the number g is registered in the optical transceiver selection table TB. If it is determined that the number g is not registered, the logical link identification number and the optical link are obtained using the logical link identification number g included in the grant signal SG. Corresponds to the identification number of the transceiver.
- FIG. 10 shows the structure of the optical transceiver selection table TB (TBB) used in the second embodiment.
- TBB optical transceiver selection table
- the logical link identification number is used as the entry number, and the optical transceiver identification number stored in association with this logical link identification number is stored. Is stored in the entry whose logical link identification number is the entry number.
- the value of a valid timer for managing the valid time of the entry is stored.
- the value of the valid timer is decreased with the passage of time, and when the valid timer value becomes 0, the entry is determined to be invalid.
- the valid timer value of the entry having the logical link identification number as the entry number is read and the valid timer value is greater than zero. If it is a value, it is determined that the logical link identification number has been registered in the optical transceiver selection table TBB. If the valid timer value is 0, the logical link identification number is registered in the optical transceiver selection table TBB. Not determined, that is, it is determined as unregistered.
- the uplink signal selection control unit 13-3B registers the optical transceiver identification number in association with the logical link identification number in the optical transceiver selection table TBB will be described.
- the uplink signal selection control unit 13-3B performs the processing according to the procedure shown in the flowchart of FIG. 11 when the operation of the uplink signal selection control unit 13-3B becomes possible, for example, supply of power to the OLT 1B, The time point that starts immediately after the initialization of the OLT 1B and until the operation of the uplink signal selection control unit 13-3B is stopped, for example, the reinitialization instruction of the selection / distribution circuit 13B including the uplink signal selection control unit 13-3B, Repeat until the power supply to OLT 1B is stopped.
- Step S302 It is determined whether or not the discovery window signal SD input to the uplink signal selection control unit 13-3B indicates the discovery window start timing. In this determination, if YES, the process proceeds to step S303, and if NO, the process proceeds to step S305.
- Step S305 It is determined whether or not the grant signal SG input to the uplink signal selection control unit 13-3B indicates the grant start timing. In this determination, if YES, the process proceeds to step S306, and if NO, the process returns to step S302.
- Step S306 From the optical transceiver selection table TBB managed by the uplink signal selection control unit 13-3B, the entry [g] whose entry number is the logical link identification number g indicated by the grant signal SG input in step S305 is read. Next, the process proceeds to step S307.
- Step S307 Whether or not the logical link identification number g is already registered in the optical transceiver selection table TBB is determined based on the valid timer value of the entry [g] read from the optical transceiver selection table TBB in step S306. If the valid timer value of the entry [g] is larger than 0 (in the case of YES), it is determined that the logical link identification number g has been registered, and the process proceeds to step S309. When the valid timer value of entry [g] is 0 (in the case of NO), it is determined that the logical link identification number g has not been registered, and the process proceeds to step S308.
- step S308 the discovery target optical transceiver identification number d is set to the optical transceiver identification number of the entry [g] read from the optical transceiver selection table TBB.
- the value indicating the optical transceiver selected during the previous discovery window is registered as the optical transceiver identification number corresponding to the logical link identification number g determined to be unregistered in step S307. .
- the process proceeds to step S309.
- step S309 the valid timer initial value T is set in the valid timer of the entry [g] read from the optical transceiver selection table TBB. This valid timer value is counted down as time passes, but when the PON control circuit 12 outputs the grant signal SG indicating the logical link identification number g, the valid timer value is returned to the valid timer initial value T by the procedure of step S309. . Therefore, only when the grant signal SG does not indicate the logical link identification number g within the time defined by the initial value T of the valid timer, the value of the valid timer becomes 0 and the logical link identification number g is not yet set. It will be in the registration state. This corresponds to the disconnection of the logical link indicated by the logical link identification number g. Next, the process proceeds to step S310.
- the value of the discovery target optical transceiver identification number d is updated by increment, but if there is an unregistered ONU connected to the optical transceiver for each optical transceiver in advance, It is also possible to update the discovery target optical transceiver identification number d so that the optical transceiver not connected to the ONU is excluded from the selection. As a result, the average time required to register an unregistered ONU can be shortened.
- FIG. 12 a procedure for updating the valid timer value of each entry of the optical transceiver selection table TBB will be described. As described with reference to FIG. 11, the valid timer value of each entry of the optical transceiver selection table TBB is down-counted as time elapses, and FIG. 12 shows a procedure for down-counting this valid timer value.
- the uplink signal selection control unit 13-3B performs the processing shown in the flowchart of FIG. 12 when the operation of the uplink signal selection control unit 13-3B becomes possible, for example, the power supply to the OLT 1B and the subsequent OLT 1B Starting from immediately after initialization, until the operation of the uplink signal selection control unit 13-3B is stopped, for example, to the reinitialization instruction of the selection / distribution circuit 13B including the uplink signal selection control unit 13-3B or to the OLT 1B Repeat until the power supply stops.
- the uplink signal selection control unit 13-3B repeats the process shown in FIG. 12 every time the valid timer unit time T0 elapses as an interrupt operation during execution of the process shown in FIG.
- Step S401 Wait for the expiration of the valid timer unit time T0.
- the valid timer value of each entry in the optical transceiver selection table TBB is decreased by one.
- the valid timer value of each entry is decremented by 1 every time the valid timer unit time T0 elapses from the valid timer initial value T, it is determined that the logical link indicated by the logical link identification number of the entry has been disconnected. Therefore, the grant of the logical link during link-up needs to appear in the uplink signal within T (effective timer initial value) ⁇ T0 (effective timer unit time) time.
- the process proceeds to step S402.
- Step S402 The following steps S403 to S405 are performed for each entry (entry number k) of the optical transceiver selection table TBB. According to the procedures of steps S403 to S405, the value of the valid timer of each entry in the optical transceiver selection table TBB is decreased by 1 (the entry of the valid timer value 0 is not decreased).
- Step S403 The entry [k] with the entry number k is read from the optical transceiver selection table TBB, and the process proceeds to step S404.
- Step S404 If the valid timer value of the entry [k] read in step S403 is greater than 0, the process proceeds to step S405, and if the valid timer value is 0, the process proceeds to step S406.
- Step S405 The valid timer value of entry [g] is set to a value decremented ( ⁇ 1). Thereafter, the process proceeds to step S406.
- Step S406 When the procedure of steps S403 to S405 is performed on all entries of the optical transceiver selection table TBB, the process returns to step S401. When there is an unexecuted entry, the procedure of steps S403 to S405 is performed on the remaining entries. The process returns to step S402. If the stop is confirmed in step S407, the process of this procedure is terminated.
- the PON control circuit 12 reuses the logical link identification number g for the logical link with the newly registered ONU 3 after the logical link of the logical link identification number g that has been linked up is disconnected.
- the time from the disconnection should be measured, and the reuse should be suspended until the elapsed time from the disconnection becomes equal to or greater than T (effective timer initial value) ⁇ T0 (effective timer unit time). That is, the logical link with the ONU 3 newly registered within the reuse hold time is not the logical link identification number g pending reuse, but another logical link for which unused or reuse hold time has elapsed.
- An identification number should be assigned.
- the second embodiment is different from the first embodiment in that the uplink signal selection control unit does not have to pass the newly registered logical link identification number k from the PON control circuit 12 to the uplink signal selection control unit 13-3B.
- 13-3B itself can determine whether or not the logical link identification number g of the grant signal SG is newly registered, so that the processing in the PON control circuit 12 can be reduced.
- the newly registered logical link identification number k is uploaded from the PON control circuit 12 within a period from when the logical link between the unregistered ONU 3 and the OLT 1A is established until the OLT 1A grants a grant for the logical link. It is necessary to pass to the signal control selection unit 13-3A and store the optical transceiver identification number d in the optical transceiver selection table TA in association with the logical link identification number k.
- such a process in the PON control circuit 12 is not necessary, so that the PON control circuit 12 can be easily realized.
- the present invention can be used as a station side device, an optical transmission system, and an optical transmission method in an optical transmission system such as 10G-EPON.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Computing Systems (AREA)
- Small-Scale Networks (AREA)
- Optical Communication System (AREA)
Abstract
Description
〔実施の形態1〕
図1は、この発明の第1の実施形態(実施の形態1)に係るPONシステムの構成例である。
本手順の開始直後に、上り信号選択部13-2に向けて出力する光トランシーバ選択信号sの値を初期化する。本例では、初期化された値をs=0とする。また、上り信号選択制御部13-3A内の変数であるディスカバリ対象光トランシーバ識別番号dの値を初期化する。本例では、初期化された値をd=0とする。次に、ステップS102に移行する。
上り信号選択制御部13-3Aに入力されるディスカバリ・ウインドウ信号SDが、ディスカバリ・ウインドウの開始タイミングを示すか否かの判定を行う。この判定において、YESの場合はステップS103、NOの場合はステップS105に移行する。
上り信号選択制御部13-3A内の変数であるディスカバリ対象光トランシーバ識別番号dの値をインクリメントする。ただし、インクリメント前にディスカバリ対象光トランシーバ識別番号dの値がN-1だった場合は、0に更新する。本例では、d=(d+1)%Nとする(左辺のdは更新後の値、右辺側のdは更新前の値であり、演算子%は剰余演算を表す)。次に、ステップS104に移行する。
上り信号選択部13-2に向けて出力する光トランシーバ選択信号sの値を、ステップS103で更新されたディスカバリ対象光トランシーバ識別番号dの値に変更する。本例では、s=dとする。その結果、dをその値とする光トランシーバ選択信号sが生成される。その後、ステップS108を経て、ステップS102に戻る。ステップS108で停止を確認すれば、本手順の処理を終了する。
上り信号選択制御部13-3Aに入力されるグラント信号SGが、グラントの開始タイミングを示すか否かの判定を行う。この判定において、YESの場合はステップS106に移行し、NOの場合はステップS102に戻る。
上り信号選択制御部13-3Aが管理する光トランシーバ選択テーブルTBAから、エントリ番号がステップS105で入力されたグラント信号SGが示す論理リンク識別番号gであるエントリ[g]の値eを読み出す。次に、ステップS107に移行する。
上り信号選択部13-2に向けて出力する光トランシーバ選択信号sの値を、ステップS106で読み出したエントリ[g]の値eに変更する。本例では、s=eとする。その結果、eをその値とする光トランシーバ選択信号sが生成される。その後、ステップS108を経て、ステップS102に戻る。ステップS108で停止を確認すれば、本手順の処理を終了する。
上り信号選択制御部13-3Aに新規登録の論理リンク識別番号kが入力されたか否かの判定を行う。この判定において、YESの場合はステップS202に移行し、NOの場合はステップS201の判定を繰り返す(新規登録の論理リンク識別番号kが入力されるまでステップS201に留まる)。
上り信号選択制御部13-3Aが管理する光トランシーバ選択テーブルTBAのエントリ番号kに、上り信号選択制御部13-3A内の変数であるディスカバリ対象光トランシーバ識別番号dを格納する。このようにして、光トランシーバの識別番号dが登録される。本例では、エントリ[k]=dとなる。その後、ステップS203を経て、ステップS201に戻る。ステップS20で停止を確認すれば、本手順の処理を終了する。
次に、図9を参照して、実施の形態2のOLTについて説明する。図9は、実施の形態2のOLT1(1B)内の選択・分配回路13(13B)の構成例を示す図である。実施の形態1の選択・分配回路13Aの構成との違いは、上り信号選択制御部13-3(13-3B)がPON制御回路12から入力する光トランシーバ選択制御信号SCにある。
本手順の開始直後に、上り信号選択部13-2に向けて出力する光トランシーバ選択信号sの値を初期化する。本例では、初期化された値をs=0とする。また、上り信号選択制御部13-3B内の変数であるディスカバリ対象光トランシーバ識別番号dの値を初期化する。本例では、初期化された値をd=0とする。また、光トランシーバ選択テーブルTBBの全エントリについて、論理リンクが未登録となるよう初期化する。本例では、全エントリの初期化された有効タイマ値を0とする。次に、ステップS302に移行する。
上り信号選択制御部13-3Bに入力されるディスカバリ・ウインドウ信号SDが、ディスカバリ・ウインドウの開始タイミングを示すか否かの判定を行う。この判定において、YESの場合はステップS303、NOの場合はステップS305に移行する。
上り信号選択制御部13-3B内の変数であるディスカバリ対象光トランシーバ識別番号dの値をインクリメントする。ただし、インクリメント前にディスカバリ対象光トランシーバ識別番号dの値がN-1だった場合は、0に更新する。本例では、d=(d+1)%Nとする(左辺のdは更新後の値、右辺側のdは更新前の値であり、演算子%は剰余演算を表す)。次に、ステップS304に移行する。
上り信号選択部13-2に向けて出力する光トランシーバ選択信号sの値を、ステップS303で更新されたディスカバリ対象光トランシーバ識別番号dの値に変更する。本例では、s=dとする。その後、ステップS311を経て、ステップS302に戻る。ステップS311で停止を確認すれば、本手順の処理を終了する。
上り信号選択制御部13-3Bに入力されるグラント信号SGが、グラントの開始タイミングを示すか否かの判定を行う。この判定において、YESの場合はステップS306に移行し、NOの場合はステップS302に戻る。
上り信号選択制御部13-3Bが管理する光トランシーバ選択テーブルTBBから、エントリ番号がステップS305で入力されたグラント信号SGが示す論理リンク識別番号gであるエントリ[g]を読み出す。次に、ステップS307に移行する。
ステップS306で光トランシーバ選択テーブルTBBから読み取ったエントリ[g]の有効タイマの値により、論理リンク識別番号gが光トランシーバ選択テーブルTBBに登録済であるか否かを判定する。エントリ[g]の有効タイマ値が0より大きい場合(YESの場合)には、論理リンク識別番号gが登録済であると判定し、ステップS309に移行する。また、エントリ[g]の有効タイマ値が0の場合(NOの場合)には、論理リンク識別番号gが未登録であると判定し、ステップS308に移行する。
ステップS306で光トランシーバ選択テーブルTBBから読み取ったエントリ[g]の光トランシーバの識別番号に、ディスカバリ対象光トランシーバ識別番号dをセットする。これにより、ステップS307で未登録と判定した論理リンク識別番号gに対応する光トランシーバの識別番号として、直前のディスカバリ・ウインドウの期間中に選択していた光トランシーバを指し示す値を登録したことになる。次に、ステップS309に移行する。
ステップS306で光トランシーバ選択テーブルTBBから読み取ったエントリ[g]の有効タイマに、有効タイマ初期値Tをセットする。この有効タイマ値は時間の経過に伴ってダウンカウントされるが、論理リンク識別番号gを示すグラント信号SGをPON制御回路12が出力した時点で、ステップS309の手順によって有効タイマ初期値Tに戻る。このため、有効タイマ初期値Tによって規定される時間内にグラント信号SGが論理リンク識別番号gを示すことがなかった場合にのみ、有効タイマの値が0となって論理リンク識別番号gが未登録の状態となる。これは、論理リンク識別番号gが指し示す論理リンクが切断されたことに相当する。次に、ステップS310に移行する。
上り信号選択部13-2に向けて出力する光トランシーバ選択信号sの値を、エントリ[g]の光トランシーバの識別番号eに変更する。本例では、s=eとする。その後、その後、ステップS311を経て、ステップS302に戻る。ステップS311で停止を確認すれば、本手順の処理を終了する。
有効タイマ単位時間T0の経過を待つ。本手順では、有効タイマ単位時間T0を経過する毎に、光トランシーバ選択テーブルTBBの各エントリの有効タイマの値を1づつ減少させる。各エントリの有効タイマ値は、有効タイマ初期値Tから有効タイマ単位時間T0を経過する毎に1づつ減少して0となるとき、そのエントリの論理リンク識別番号が指し示す論理リンクが切断されたと判断されるので、リンクアップ中の論理リンクのグラントは、T(有効タイマ初期値)×T0(有効タイマ単位時間)時間以内に上り信号中に現れる必要がある。次に、ステップS402に移行する。
光トランシーバ選択テーブルTBBの各エントリ(エントリ番号k)の各々について、下記のステップS403~S405の手順を行う。このステップS403~S405の手順によって、光トランシーバ選択テーブルTBBの各エントリの有効タイマの値が1づつ減少されることになる(有効タイマ値が0のエントリについては減少されない)。
光トランシーバ選択テーブルTBBからエントリ番号kのエントリ[k]を読み出し、ステップS404に移行する。
ステップS403で読み出したエントリ[k]の有効タイマ値が0より大きい場合にはステップS405に移行し、有効タイマ値が0となっている場合にはステップS406に移行する。
エントリ[g]の有効タイマ値をデクリメント(-1)した値にセットする。その後、ステップS406に移行する。
光トランシーバ選択テーブルTBBの全エントリに対してステップS403~S405の手順を実施した場合はステップS401に戻り、未実施のエントリがある場合は、残りのエントリについてステップS403~S405の手順を実施するためステップS402に戻る。また、ステップS407で停止を確認すれば、本手順の処理を終了する。
以上、実施の形態を参照して本発明を説明したが、本発明は上記の実施の形態に限定されるものではない。本発明の構成や詳細には、本発明の技術思想の範囲内で当業者が理解し得る様々な変更をすることができる。また、各実施の形態については、矛盾しない範囲で任意に組み合わせて実施することができる。
Claims (7)
- 第1~第N(N≧2)の光スプリッタを介して接続された複数の加入者側装置と上位装置との間でフレームを転送処理する、光伝送システムにおける局側装置において、
前記第1~第Nの光スプリッタに1対1で接続され、前記加入者側装置への下り電気信号の光信号への電気光変換と、前記加入者側装置からの光信号の上り電気信号への光電気変換とを行う第1~第Nの光トランシーバと、
前記第1~第Nの光トランシーバから1つの光トランシーバを選択し、選択した前記1つの光トランシーバから入力された上り電気信号を出力するとともに、下り電気信号を前記第1~第Nの光トランシーバに分配して出力する選択・分配回路と、
前記複数の加入者側装置を、前記複数の加入者側装置が同時に上りフレームを送信しないように制御するとともに、前記選択・分配回路を制御する制御回路とを備え、
前記選択・分配回路は、
前記制御回路から送られてくる、未登録の加入者側装置からの登録要求フレームの受信を待ち受けるディスカバリ・ウインドウのタイミングと、登録済の加入者側装置からの上りフレームの受信期間であるグラントのタイミングおよびそのグラントに割り当てられる登録済の加入者側装置との論理リンクに対する論理リンク識別番号とを基に、前記第1~第Nの光トランシーバから1つの光トランシーバを選択する選択制御部を有する
ことを特徴とする、光伝送システムにおける局側装置。 - 請求項1に記載された、光伝送システムにおける局側装置において、
前記選択制御部は、
登録済の加入者側装置との論理リンクに対する論理リンク識別番号と光トランシーバの識別番号との対応関係を示す光トランシーバ選択テーブルと、
前記グラントの期間中に、そのグラントに割り当てられる登録済の加入者側装置との論理リンクに対する論理リンク識別番号に対応する光トランシーバの識別番号を前記光トランシーバ選択テーブルから取得し、この取得した光トランシーバの識別番号に基づいて前記第1~第Nの光トランシーバから1つの光トランシーバを選択する選択部とを有する
ことを特徴とする、光伝送システムにおける局側装置。 - 請求項2に記載された、光伝送システムにおける局側装置において、
前記選択制御部は、
前記ディスカバリ・ウインドウの期間中に新規登録された加入者側装置との論理リンクに対する論理リンク識別番号を取得し、この取得した論理リンク識別番号とそのディスカバリ・ウインドウの期間中に選択していた光トランシーバの識別番号との対応関係を前記光トランシーバ選択テーブルに登録する登録部をさらに有する
ことを特徴とする、光伝送システムにおける局側装置。 - 請求項2に記載された、光伝送システムにおける局側装置において、
前記選択制御部は、
前記グラントの期間中にそのグラントに割り当てられる登録済の加入者側装置との論理リンクに対する論理リンク識別番号を取得し、この論理リンク識別番号が前記光トランシーバ選択テーブルに登録済であるか否かを判定し、未登録と判定した場合、そのグラントに割り当てられる登録済の加入者側装置との論理リンクに対する論理リンク識別番号と直前の前記ディスカバリ・ウインドウの期間中に選択していた光トランシーバの識別番号とを対応づけて前記光トランシーバ選択テーブルに登録する登録部をさらに有する
ことを特徴とする、光伝送システムにおける局側装置。 - 請求項1に記載された、光伝送システムにおける局側装置において、
前記制御回路は、
未登録の加入者側装置からの登録要求フレームの受信を待ち受けるディスカバリ・ウインドウのタイミングと、登録済の加入者側装置からの上りフレームの受信期間であるグラントのタイミングおよびそのグラントに割り当てられる登録済の加入者側装置との論理リンクに対する論理リンク識別番号とを示す光トランシーバ選択制御信号を、前記選択・分配回路に出力する制御信号出力部を有し、
前記選択制御部は、
前記加入者側装置との論理リンクを確立する契機となった登録要求フレームを受信した前記ディスカバリ・ウインドウの期間中に選択していた光トランシーバの識別番号を、前記加入者側装置との論理リンクに対する論理リンク識別番号に対応づけて記憶する光トランシーバ選択テーブルと、
前記光トランシーバ選択制御信号が示すディスカバリ・ウインドウの期間中に、前記第1~第Nの光トランシーバから1つの光トランシーバを選択し、前記光トランシーバ選択制御信号が示すグラントの期間中に、前記光トランシーバ選択制御信号が示す論理リンク識別番号に対応づけて前記光トランシーバ選択テーブルに記憶されている光トランシーバの識別番号を取得し、この取得した光トランシーバの識別番号に基づいて第1~第Nの光トランシーバから1つの光トランシーバを選択する選択部とを有する
ことを特徴とする、光伝送システムにおける局側装置。 - 第1~第N(N≧2)の光スプリッタと、この第1~第Nの光スプリッタに接続された複数の加入者側装置と、この第1~第Nの光スプリッタに接続された複数の加入者側装置と上位装置との間でフレームを転送処理する局側装置とを備えた光伝送システムにおいて、
前記局側装置は、
前記第1~第Nの光スプリッタに1対1で接続され、前記加入者側装置への下り電気信号の光信号への電気光変換と、前記加入者側装置からの光信号の上り電気信号への光電気変換とを行う第1~第Nの光トランシーバと、
前記第1~第Nの光トランシーバから1つの光トランシーバを選択し、選択した前記1つの光トランシーバから入力された上り電気信号を出力するとともに、下り電気信号を前記第1~第Nの光トランシーバに分配して出力する選択・分配回路と、
前記複数の加入者側装置を、前記複数の加入者側装置が同時に上りフレームを送信しないように制御するとともに、前記選択・分配回路を制御する制御回路とを備え、
前記選択・分配回路は、
前記制御回路から送られてくる、未登録の加入者側装置からの登録要求フレームの受信を待ち受けるディスカバリ・ウインドウのタイミングと、登録済の加入者側装置からの上りフレームの受信期間であるグラントのタイミングおよびそのグラントに割り当てられる登録済の加入者側装置との論理リンクに対する論理リンク識別番号とを基に、前記第1~第Nの光トランシーバから1つの光トランシーバを選択する選択制御部を有する
ことを特徴とする、光伝送システム。 - 第1~第N(N≧2)の光スプリッタと、この第1~第Nの光スプリッタに接続された複数の加入者側装置と、前記第1~第Nの光スプリッタと上位装置との間に設けられた局側装置とを備え、前記局側装置において、前記第1~第Nの光スプリッタに接続された複数の加入者側装置と前記上位装置との間のフレームを転送処理する光伝送方法において、
前記局側装置に、
前記第1~第Nの光スプリッタに1対1で接続され、前記加入者側装置への下り電気信号の光信号への電気光変換と、前記加入者側装置からの光信号の上り電気信号への光電気変換とを行う第1~第Nの光トランシーバと、
前記第1~第Nの光トランシーバから1つの光トランシーバを選択し、選択した前記1つの光トランシーバから入力された上り電気信号を出力するとともに、下り電気信号を前記第1~第Nの光トランシーバに分配して出力する選択・分配回路と、
前記複数の加入者側装置を、前記複数の加入者側装置が同時に上りフレームを送信しないように制御するとともに、前記選択・分配回路を制御する制御回路とを設け、
前記選択・分配回路において、
前記制御回路から送られてくる、未登録の加入者側装置からの登録要求フレームの受信を待ち受けるディスカバリ・ウインドウのタイミングと、登録済の加入者側装置からの上りフレームの受信期間であるグラントのタイミングおよびそのグラントに割り当てられる登録済の加入者側装置との論理リンクに対する論理リンク識別番号とを基に、前記第1~第Nの光トランシーバから1つの光トランシーバを選択する
ことを特徴とする、光伝送方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/505,559 US9954617B2 (en) | 2014-08-22 | 2015-08-19 | Station-side apparatus in optical transmission system, optical transmission system, and optical transmission method |
JP2016544224A JP6182271B2 (ja) | 2014-08-22 | 2015-08-19 | 光伝送システムにおける局側装置、光伝送システム及び光伝送方法 |
EP15833120.7A EP3185487B1 (en) | 2014-08-22 | 2015-08-19 | Station-side device in optical transmission system, optical transmission system and optical transmission method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014169169 | 2014-08-22 | ||
JP2014-169169 | 2014-08-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016027820A1 true WO2016027820A1 (ja) | 2016-02-25 |
Family
ID=55350764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/073195 WO2016027820A1 (ja) | 2014-08-22 | 2015-08-19 | 光伝送システムにおける局側装置、光伝送システム及び光伝送方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US9954617B2 (ja) |
EP (1) | EP3185487B1 (ja) |
JP (1) | JP6182271B2 (ja) |
TW (1) | TWI584605B (ja) |
WO (1) | WO2016027820A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220329321A1 (en) * | 2019-09-02 | 2022-10-13 | Nippon Telegraph And Telephone Corporation | Communication apparatus, and communication method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011211262A (ja) * | 2010-03-27 | 2011-10-20 | Sumitomo Electric Ind Ltd | 局側装置および帯域割り当て方法 |
Family Cites Families (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3598952B2 (ja) * | 2000-08-10 | 2004-12-08 | 日本電気株式会社 | Atm−pon二重化システム、局側光網終端装置、加入者側光網終端装置、およびatm−pon二重化方法 |
US6868232B2 (en) * | 2001-02-12 | 2005-03-15 | Lucent Technologies Inc. | Fast protection switching by snooping on upstream signals in an optical network |
US6470032B2 (en) * | 2001-03-20 | 2002-10-22 | Alloptic, Inc. | System and method for synchronizing telecom-related clocks in ethernet-based passive optical access network |
US20020135843A1 (en) * | 2001-03-20 | 2002-09-26 | Dumitru Gruia | Point-to-multipoint optical access network distributed with central office interface capacity |
KR100547715B1 (ko) * | 2003-03-12 | 2006-01-31 | 삼성전자주식회사 | 코드분할 다중화를 적용한 수동형 광 가입자 망 |
JPWO2004091123A1 (ja) * | 2003-04-02 | 2006-07-06 | 住友電気工業株式会社 | 光増幅機能を有する光通信システム |
US7545813B2 (en) * | 2003-08-26 | 2009-06-09 | Teknovus, Inc. | Method and apparatus for registering multiple remote nodes in an ethernet passive optical network |
KR100584383B1 (ko) * | 2004-01-20 | 2006-05-26 | 삼성전자주식회사 | 광선로가입자장치들의 링크 상태를 관리하기 위한광선로종단장치 및 이를 적용한 기가비트 이더넷 기반의수동 광가입자망 |
TWI248263B (en) * | 2004-05-10 | 2006-01-21 | Ind Tech Res Inst | Passive optical network with protection mechanism and its method of relocation |
US20060171714A1 (en) | 2005-02-02 | 2006-08-03 | Calix Networks, Inc. | Electrically shared passive optical network |
US20060257149A1 (en) * | 2005-05-16 | 2006-11-16 | Hirth Ryan E | Method and apparatus for accommodating multiple optical segments in an Ethernet passive optical network |
US20070019957A1 (en) * | 2005-07-19 | 2007-01-25 | Chan Kim | Dynamic bandwidth allocation apparatus and method in Ethernet Passive Optical Network, and EPON master apparatus using the same |
JP4696759B2 (ja) * | 2005-07-29 | 2011-06-08 | Kddi株式会社 | 光終端システム |
JP4687332B2 (ja) * | 2005-08-25 | 2011-05-25 | 日本電気株式会社 | 光アクセスネットワークのセンタ側装置および光アクセスネットワークのデータ信号送出方法 |
JP2007074234A (ja) * | 2005-09-06 | 2007-03-22 | Hitachi Communication Technologies Ltd | 伝送装置 |
JP4028570B2 (ja) * | 2005-11-11 | 2007-12-26 | 株式会社日立コミュニケーションテクノロジー | Onu管理方法および光伝送路終端装置 |
US7760734B2 (en) * | 2005-12-09 | 2010-07-20 | Electronics And Telecommunications Research Institute | TDMA passive optical network OLT system for broadcast service |
US7590139B2 (en) * | 2005-12-19 | 2009-09-15 | Teknovus, Inc. | Method and apparatus for accommodating TDM traffic in an ethernet passive optical network |
KR100800688B1 (ko) * | 2005-12-26 | 2008-02-01 | 삼성전자주식회사 | 파장분할다중방식 수동형 광네트워크 시스템의 광송신기제어 장치 및 그 방법 |
KR101359812B1 (ko) * | 2006-03-31 | 2014-02-07 | 브리티쉬 텔리커뮤니케이션즈 파블릭 리미티드 캄퍼니 | 광통신망에 지국을 도입하는 방법 및 그 지국 |
JP2007324853A (ja) * | 2006-05-31 | 2007-12-13 | Oki Electric Ind Co Ltd | 光通信システム |
JP4992472B2 (ja) * | 2006-07-26 | 2012-08-08 | 日本電気株式会社 | Ponシステム、局側装置及びそれらに用いる冗長化方法 |
CN101636942B (zh) * | 2007-03-27 | 2012-10-03 | 富士通株式会社 | 光通信基站、光信号转换装置以及光信号转换方法 |
JP4839266B2 (ja) * | 2007-06-07 | 2011-12-21 | 株式会社日立製作所 | 光通信システム |
JP4941379B2 (ja) * | 2008-03-28 | 2012-05-30 | 住友電気工業株式会社 | 局側装置、その制御方法およびそのコンピュータ・プログラム |
GB0813308D0 (en) * | 2008-07-21 | 2008-08-27 | Tyco Electronics Raychem Nv | Optical fibre networks |
JP4700094B2 (ja) * | 2008-10-24 | 2011-06-15 | 株式会社日立製作所 | 光アクセスシステム及び光回線装置 |
US8600234B2 (en) * | 2009-04-01 | 2013-12-03 | Broadcom Corporation | Method and apparatus for link sharing among multiple epons |
CN101854566B (zh) * | 2009-04-02 | 2014-08-13 | 华为技术有限公司 | 无源光网络保护方法、主备切换控制设备和系统 |
CN102075820B (zh) * | 2009-11-23 | 2015-05-20 | 中兴通讯股份有限公司 | 在无源光网络中测距的方法和装置 |
US8548327B2 (en) * | 2009-12-15 | 2013-10-01 | Broadcom Corporation | Dynamic management of polling rates in an ethernet passive optical network (EPON) |
US8254386B2 (en) * | 2010-03-26 | 2012-08-28 | Verizon Patent And Licensing, Inc. | Internet protocol multicast on passive optical networks |
JP5066591B2 (ja) | 2010-07-07 | 2012-11-07 | 日本電信電話株式会社 | 双方向光増幅器及びponシステム及びponシステムの通信方法 |
US8565601B2 (en) * | 2010-12-08 | 2013-10-22 | Mitsubishi Electric Corporation | Communication method for optical communication system, optical communication system, slave station apparatus, control device, and computer program |
US8699326B2 (en) * | 2011-01-31 | 2014-04-15 | Telefonaktiebolaget L M Ericsson (Publ) | Optical network automatic protection switching |
US8526815B2 (en) * | 2011-05-19 | 2013-09-03 | Pmc-Sierra Israel Ltd. | Dynamic bandwidth allocation for congestion management in PON channel aggregation |
KR101516135B1 (ko) * | 2011-10-19 | 2015-04-29 | 니폰 덴신 덴와 가부시끼가이샤 | 광 네트워크 시스템 |
US20130121684A1 (en) * | 2011-11-10 | 2013-05-16 | Alcatel-Lucent Usa Inc. | Apparatus And Method For Providing Protection In A Passive Optical Network |
JP5853822B2 (ja) * | 2012-03-29 | 2016-02-09 | 沖電気工業株式会社 | 加入者側装置登録方法 |
CN102687427A (zh) * | 2012-04-11 | 2012-09-19 | 华为技术有限公司 | 无源光网络的测距方法、系统和装置 |
US8913887B2 (en) | 2012-05-30 | 2014-12-16 | Broadcom Corporation | Passive optical fiber plant analysis |
WO2014071309A2 (en) * | 2012-11-05 | 2014-05-08 | Huawei Technologies Co., Ltd. | System and method for passive optical network communication |
EP2997684B1 (en) * | 2013-05-15 | 2018-10-31 | ZTE Corporation | Using noisy window for uncalibrated optical network unit activation |
-
2015
- 2015-08-19 EP EP15833120.7A patent/EP3185487B1/en active Active
- 2015-08-19 WO PCT/JP2015/073195 patent/WO2016027820A1/ja active Application Filing
- 2015-08-19 US US15/505,559 patent/US9954617B2/en active Active
- 2015-08-19 JP JP2016544224A patent/JP6182271B2/ja active Active
- 2015-08-21 TW TW104127374A patent/TWI584605B/zh active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011211262A (ja) * | 2010-03-27 | 2011-10-20 | Sumitomo Electric Ind Ltd | 局側装置および帯域割り当て方法 |
Non-Patent Citations (2)
Title |
---|
See also references of EP3185487A4 * |
SENOO, YUMIKO ET AL.: "Dynamic load-balancing by monitoring traffic volume for lambda-tunable WDM/TDM-PON", IEICE COMMUNICATIONS EXPRESS, vol. 2, no. 11, 22 November 2013 (2013-11-22), pages 501 - 506, XP009500238, Retrieved from the Internet <URL:https://www.jstage.jst.go.jp/article/comex/2/11/2_501/_article> [retrieved on 20151026] * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220329321A1 (en) * | 2019-09-02 | 2022-10-13 | Nippon Telegraph And Telephone Corporation | Communication apparatus, and communication method |
US11888524B2 (en) * | 2019-09-02 | 2024-01-30 | Nippon Telegraph And Telephone Corporation | Communication apparatus, and communication method |
Also Published As
Publication number | Publication date |
---|---|
EP3185487A1 (en) | 2017-06-28 |
TWI584605B (zh) | 2017-05-21 |
EP3185487B1 (en) | 2018-12-12 |
JP6182271B2 (ja) | 2017-08-16 |
JPWO2016027820A1 (ja) | 2017-04-27 |
US20170272167A1 (en) | 2017-09-21 |
EP3185487A4 (en) | 2018-01-17 |
US9954617B2 (en) | 2018-04-24 |
TW201613297A (en) | 2016-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4551280B2 (ja) | 光アクセス網システム | |
JP5651548B2 (ja) | 局側装置、光ネットワークシステム | |
KR102402781B1 (ko) | 데이터 전송 방법, 관련 장치 및 시스템 | |
US10193630B2 (en) | Station-side device and optical transmission system | |
JP5600210B2 (ja) | 局側装置 | |
CN108028972A (zh) | 一种光网络单元注册的方法、装置及系统 | |
JP6182271B2 (ja) | 光伝送システムにおける局側装置、光伝送システム及び光伝送方法 | |
JP6013299B2 (ja) | 光伝送システムにおける局側装置及び光伝送システム | |
JP5640877B2 (ja) | 通信システム、親局装置および通信回線切替方法 | |
JP6093282B2 (ja) | 光通信システム、通信制御方法及び局側光回線終端装置 | |
JP5329572B2 (ja) | 帯域制御回路 | |
JP2011166328A (ja) | 光伝送システム、局側光終端装置及び上り送信制御方法 | |
JP5795550B2 (ja) | 光伝送システムにおける局側装置およびフレーム転送方法 | |
JP7122914B2 (ja) | 光通信システム、光通信装置、制御方法、及び制御プログラム | |
JP6093281B2 (ja) | 光通信システム、信号送信制御方法及び局側光回線終端装置 | |
JP5942751B2 (ja) | Wdm/tdm−pon方式用の局側装置及び光通信ネットワークシステム | |
KR101629568B1 (ko) | Twdm pon 시스템에서 동적 상향 파장과 동적 전송 대역을 동시에 할당하는 동적 할당 장치 및 방법 | |
JP6267145B2 (ja) | 局側装置および光伝送システム | |
JP5661665B2 (ja) | 分岐光アクセスシステムおよび方法 | |
JP5661664B2 (ja) | 分岐光アクセスシステムおよび方法 | |
JP5748285B2 (ja) | フレーム転送装置および方法 | |
WO2016157626A1 (ja) | 局側装置および通信制御方法 | |
JP2016165053A (ja) | 局側装置および光伝送システム | |
CN111182376A (zh) | Onu终端上线的方法、系统和olt设备 | |
JP2017034429A (ja) | 局側装置および光伝送システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15833120 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016544224 Country of ref document: JP Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015833120 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15505559 Country of ref document: US Ref document number: 2015833120 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |