WO2016027820A1 - 光伝送システムにおける局側装置、光伝送システム及び光伝送方法 - Google Patents

光伝送システムにおける局側装置、光伝送システム及び光伝送方法 Download PDF

Info

Publication number
WO2016027820A1
WO2016027820A1 PCT/JP2015/073195 JP2015073195W WO2016027820A1 WO 2016027820 A1 WO2016027820 A1 WO 2016027820A1 JP 2015073195 W JP2015073195 W JP 2015073195W WO 2016027820 A1 WO2016027820 A1 WO 2016027820A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical transceiver
identification number
logical link
selection
Prior art date
Application number
PCT/JP2015/073195
Other languages
English (en)
French (fr)
Inventor
健治 川合
勇輝 有川
川村 智明
田中 伸幸
重松 智志
直樹 三浦
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US15/505,559 priority Critical patent/US9954617B2/en
Priority to JP2016544224A priority patent/JP6182271B2/ja
Priority to EP15833120.7A priority patent/EP3185487B1/en
Publication of WO2016027820A1 publication Critical patent/WO2016027820A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2858Access network architectures
    • H04L12/2861Point-to-multipoint connection from the data network to the subscribers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2854Wide area networks, e.g. public data networks
    • H04L12/2856Access arrangements, e.g. Internet access
    • H04L12/2869Operational details of access network equipments
    • H04L12/2878Access multiplexer, e.g. DSLAM
    • H04L12/2879Access multiplexer, e.g. DSLAM characterised by the network type on the uplink side, i.e. towards the service provider network
    • H04L12/2885Arrangements interfacing with optical systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/44Star or tree networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects

Definitions

  • the present invention relates to a station in an optical transmission system that performs frame transfer processing between a plurality of subscriber-side devices (ONU: Optical Network Unit) connected via optical transmission paths (PON: Passive Optical Network) and a host device.
  • ONU Optical Network Unit
  • PON Passive Optical Network
  • the present invention relates to a side device (OLT: Optical Line Terminal), an optical transmission system, and an optical transmission method.
  • 10G-EPON 10 Gigabit Ethernet Passive Optical Network: Ethernet is a registered trademark
  • 10G-EPON 10-times high-speed transmission is possible as compared with GE-PON (Gigabit Ethernet Passive Optical Network: see Non-Patent Document 1) that is already widely used.
  • Fig. 13 shows the outline of the configuration of the GE-PON system.
  • the OLT 100 transfers frames between a plurality of ONUs 3 connected via the optical splitter 2 and a host device (not shown).
  • the GE-PON OLT 100 includes an optical transceiver 11 and a PON control circuit 12.
  • the optical transceiver 11 converts the downstream frame (downstream electrical signal DS) to the optical signal to the ONU 3 connected via the optical splitter 2, and the upstream frame (optical signal) electrical signal from the ONU 3. Photoelectric conversion to (upstream electrical signal US) is performed.
  • the maximum number of ONUs 3 that can be connected to one optical transceiver 11 is 32, which is defined by the IEEE standard. Therefore, when it is necessary to connect 33 or more ONUs 3 as a station that accommodates the ONU 3, generally, as shown in FIG. 14, a plurality of optical splitters 2 are provided between the OLT 100 and the ONU 3, A plurality of optical transceivers 11 and a plurality of PON control circuits 12 are used.
  • the maximum number of ONUs that can be connected to one optical transceiver is 32, which is defined by the IEEE standard.
  • the PON control device for 10G-EPON requires higher performance (10 times the data transfer rate) than the PON control device for GE-PON, the cost of the device (such as the purchase price of the device) also increases. . Therefore, as a problem for adopting the 10G-EPON system, it is a problem to reduce the system cost (connection cost) per ONU as much as possible.
  • the optical amplifier has a problem that the cost of the device (such as the purchase price of the device) is higher than that of a component for an electric circuit (such as LSI).
  • the present invention has been made to solve such problems, and its object is to further reduce the system cost (connection cost) per ONU in a PON system, particularly a 10G-EPON system. is there.
  • a frame is transferred between a plurality of subscriber-side devices and higher-level devices connected via first to Nth (N ⁇ 2) optical splitters.
  • the first to N-th optical splitters are connected one-to-one, and the electrical signal is converted from the downstream electrical signal to the subscriber-side device into the optical signal.
  • the first to Nth optical transceivers that perform the photoelectric conversion of the optical signal to the upstream electrical signal and one optical transceiver from the first to Nth optical transceivers are selected and input from the selected one optical transceiver
  • a selection / distribution circuit that outputs the transmitted upstream electrical signal and distributes and outputs the downstream electrical signal to the first to Nth optical transceivers, and a plurality of subscriber-side devices, the plurality of subscriber-side devices Simultaneously send upstream frames
  • a control circuit for controlling the selection / distribution circuit The selection / distribution circuit waits for reception of a registration request frame sent from the control circuit from an unregistered subscriber side device.
  • the timing of the discovery window, the grant timing which is the reception period of the uplink frame from the registered subscriber side device, and the logical link identification number for the logical link with the registered subscriber side device assigned to the grant A selection control unit that selects one optical transceiver from the first to Nth optical transceivers is provided.
  • the OLT is configured by N optical transceivers, one PON control circuit, and one selection / distribution circuit, N ⁇ 32 ONUs can be accommodated in the OLT.
  • N ⁇ 32 ONUs can be accommodated in the OLT.
  • connection cost connection cost
  • FIG. 1 is a diagram illustrating a configuration example of a PON system according to a first embodiment (first embodiment) of the present invention.
  • FIG. 2 is a diagram illustrating a configuration example of a selection / distribution circuit in the OLT according to the first embodiment.
  • FIG. 3 is a diagram illustrating a structure of an optical transceiver selection table used in the selection / distribution circuit in the OLT according to the first embodiment.
  • FIG. 4 is a flowchart illustrating a procedure in which the uplink signal selection control unit of the selection / distribution circuit in the OLT according to the first embodiment generates an optical transceiver selection signal.
  • FIG. 1 is a diagram illustrating a configuration example of a PON system according to a first embodiment (first embodiment) of the present invention.
  • FIG. 2 is a diagram illustrating a configuration example of a selection / distribution circuit in the OLT according to the first embodiment.
  • FIG. 3 is a diagram illustrating a structure of an optical transceiver selection table used in
  • FIG. 5 is a flowchart illustrating a procedure in which the upstream signal selection control unit of the selection / distribution circuit in the OLT according to the first embodiment registers the identification number of the optical transceiver in the entry of the optical transceiver selection table.
  • FIG. 6 is a time chart illustrating an example of the operation of the uplink signal selection control unit of the selection / distribution circuit in the OLT according to the first embodiment.
  • FIG. 8 is a diagram illustrating an optical transceiver identification number stored with the logical link identification number of the optical transceiver selection table as an entry number.
  • FIG. 9 is a diagram illustrating a configuration example of a selection / distribution circuit in the OLT according to the second embodiment.
  • FIG. 10 is a diagram illustrating a structure of an optical transceiver selection table used in the selection / distribution circuit in the OLT according to the second embodiment.
  • FIG. 11 is a flowchart illustrating a procedure in which the uplink signal selection control unit in the OLT according to the second embodiment registers the optical transceiver identification number in association with the logical link identification number in the optical transceiver selection table.
  • FIG. 12 is a flowchart illustrating a procedure in which the uplink signal selection control unit in the OLT according to the second embodiment updates the valid timer value of each entry in the optical transceiver selection table.
  • FIG. 13 is a diagram illustrating a configuration example of a conventional GE-PON system.
  • FIG. 14 is a diagram showing another configuration example of the conventional GE-PON system.
  • FIG. 1 is a configuration example of a PON system according to the first embodiment (Embodiment 1) of the present invention.
  • the OLT 1 (1A) includes N (N ⁇ 2: N is an integer of 2 or more) optical transceivers 11 (11-0 to 11-N ⁇ 1 ), one PON control circuit 12, and It is constituted by one selection / distribution circuit 13.
  • one optical transceiver 11 has a light transmission path including the optical splitter 2 between the OLT 1A and the ONU 3 as a PON section, and up to 32 ONUs 3 are commonly connected via the single optical splitter 2. Yes.
  • the optical transceivers 11-0 ⁇ 11-N -1 are connected to the optical splitters 2-0 ⁇ 2-N -1, 32 units at the maximum in each of the optical splitters 2-0 ⁇ 2-N -1 ONU3 is connected. Therefore, the OLT 1A accommodates N ⁇ 32 ONUs 3 in total. The OLT 1A transfers a frame between the plurality of ONUs 3 and the upper apparatus 4 connected via the optical splitter 2.
  • the difference in configuration between this PON system and the conventional PON system shown in FIG. 14 is that the PON system according to the present embodiment is provided with one PON control circuit 12 for one OLT 1.
  • One selection / distribution circuit 13 is provided between the PON control circuit 12 and the N optical transceivers 11-0 to 11-N- 1 .
  • the PON control circuit 12 controls the plurality of ONUs 3 so that the plurality of ONUs 3 do not transmit uplink frames at the same time.
  • the PON control circuit 12 includes a control signal output unit 12-1, and outputs an optical transceiver selection control signal SC from the control signal output unit 12-1 to the selection / distribution circuit 13.
  • Selection and distribution circuit 13 on the basis of the optical transceiver selection control signal SC, N number of optical transceivers 11-0 ⁇ 11-N 1 -1 single optical transceiver 11-s (s is 0 ⁇ N-1 And an upstream electrical signal US [s] output from the selected optical transceiver 11-s is output to the PON control circuit 12, and a downstream electrical signal DS from the PON control circuit 12 is selected.
  • N optical transceivers 11-0 to 11-N- 1 are distributed and output to N optical transceivers 11-0 to 11-N- 1 .
  • FIG. 2 shows a configuration example of the selection / distribution circuit 13 in the OLT 1A.
  • the selection / distribution circuit 13A includes a downlink signal distribution unit 13-1, an uplink signal selection unit 13-2, and an uplink signal selection control unit 13-3.
  • the downlink signal distribution unit 13-1 generates N downlink electric signals DS [0] to DS [N-1] by duplicating the downlink electric signal DS input from the PON control circuit 12, and generates this downstream electric signal DS [0] ⁇ DS [N -1] , respectively toward the optical transceiver 11-0 ⁇ 11-N -1 outputs.
  • the uplink signal selection unit 13-2 selects one optical transceiver 11-s from the N optical transceivers 11-0 to 11-N- 1, and the uplink electrical signal output by the selected optical transceiver 11-s. US [s] is output to the PON control circuit 12.
  • the uplink signal selection unit 13-2 upstream electric signal of the N, each of the N optical transceivers 11-0 ⁇ 11-N -1 is outputted US [0] Type the ⁇ US [N-1] Then, one upstream electrical signal US [s] is selected from the inputted N upstream electrical signals US [0] to US [N ⁇ 1] and output to the PON control circuit 12.
  • the upstream signal selection control unit 13-3 receives the optical transceiver selection control signal SC (SCA) from the PON control circuit 12, generates the optical transceiver selection signal s, and the upstream signal selection unit 13-2. Output to.
  • the optical transceiver selection signal s is a signal for the uplink signal selection unit 13-2 to select one optical transceiver 11-s from the N optical transceivers 11-0 to 11-N- 1 .
  • the upstream signal selection control unit 13-3A receives the discovery window signal SD, the grant signal SG, and the newly registered logical link identification number k as the optical transceiver selection control signal SCA from the PON control circuit 12.
  • the discovery window signal SD is a signal indicating the timing of the discovery window that waits for reception of a registration request frame from the unregistered ONU 3.
  • the grant signal SG is a signal indicating a grant timing which is a reception period of an upstream frame from the registered ONU 3 and a logical link identification number g for a logical link with the registered ONU 3 assigned to the grant.
  • the discovery window signal SD and the grant signal SG are used to generate the optical transceiver selection signal s.
  • the newly registered logical link identification number k is used to create an optical transceiver selection table TB to be described later.
  • Uplink signal selection control unit 13-3A includes one optical transceivers 11-d of the N optical transceivers 11-0 ⁇ 11-N -1 and (d is an integer in the range of 0 ⁇ N-1)
  • the identification number d of the specified optical transceiver is stored as a discovery target optical transceiver identification number which is a variable in the uplink signal selection control unit 13-3A.
  • the identification number d of this optical transceiver is stored in the memory 13-31 in the upstream signal selection control unit 13-3A.
  • the uplink signal selection control unit 13-3A updates the value of the discovery target optical transceiver identification number d at the timing when the discovery window signal SD input from the PON control circuit 12 indicates the start of the discovery window.
  • the upstream electrical output from one optical transceiver 11-d specified by the discovery-target optical transceiver identification number d after the update An optical transceiver selection signal s (a signal having a value of d) for selecting the signal US [d] as the upstream electrical signal US [s] is generated.
  • the generation of the optical transceiver selection signal s is performed by the selection unit 13-32 in the uplink signal selection control unit 13-3A.
  • the PON control circuit 12 selects one optical transceiver selected from the N optical transceivers 11-0 to 11-N- 1 in one discovery window. Only the registration request frame from the ONU 3 connected to the 11-d through the optical splitter 2-d is accepted. Upon receiving the registration request frame, the PON control circuit 12 outputs the logical link identification number for the logical link with the ONU 3 registered as a newly registered logical link identification number k to the uplink signal selection control unit 13-3A. As a result, the uplink signal selection control unit 13-3A can associate the identification number d of the optical transceiver with the logical link identification number k.
  • the uplink signal selection control unit 13-3A determines this logical link identification from the logical link identification number g of the grant signal SG output from the PON control circuit 12.
  • the optical transceiver identification number e corresponding to the number g can be acquired, and the optical transceiver 11 specified by the acquired optical transceiver identification number e can be selected.
  • the registration request frame from the ONU 3 connected to one selected optical transceiver is passed to the PON control circuit 12, and the registration request from the ONU 3 connected to another optical transceiver is received.
  • the frame is discarded, the value of the discovery target optical transceiver identification number d, which is a variable in the uplink signal selection control unit 13-3A, is updated for each discovery window, so that the N discovery windows are updated.
  • the PON control circuit 12 can accept registration request frames from all the ONUs 3.
  • the uplink signal selection control unit 13-3A is an opportunity to establish a logical link with the ONU 3 indicated by the logical link identification number k.
  • the optical transceiver identification number d selected by the selection / distribution circuit 13A during the discovery window in which the registration request frame is received is associated with the logical link identification number k, and the optical transceiver in the memory 13-31 is associated with the logical link identification number k.
  • the storage of the optical transceiver identification number d in association with the logical link identification number k in the optical transceiver selection table TB that is, the registration of the optical transceiver identification number d in association with the logical link identification number k This is performed by the registration unit 13-33 in the signal selection control unit 13-3A.
  • the uplink signal selection control unit 13-3A associates the optical transceiver selection table with the logical link identification number g indicated by the grant signal SG during the period when the grant signal SG input from the PON control circuit 12 indicates grant.
  • the optical transceiver identification number e stored in the TB is acquired, and the upstream electrical signal US [e] output from the optical transceiver 11-e specified based on the acquired optical transceiver identification number e is used as the upstream electrical signal.
  • An optical transceiver selection signal s (a signal having a value of e) for selection as US [s] is generated.
  • the generation of the optical transceiver selection signal s at this time is also performed by the selection unit 13-32 in the uplink signal selection control unit 13-3A.
  • the PON control circuit 12 prevents the plurality of ONUs 3 from transmitting upstream frames simultaneously to all the ONUs 3 connected to the optical splitters 2-0 to 2-N- 1 , that is, only one ONU 3 is used. Performs uplink band allocation (grant allocation) so that transmits an uplink frame.
  • the PON control circuit 12 generates these signals so that the period in which the grant signal SG indicates the grant and the period in which the discovery window signal SD indicates the discovery window do not overlap on the time axis.
  • the optical transceiver selection signal s based on the delay of transmission of the signals SG and SD from the PON control circuit 12 to the upstream signal selection control unit 13-3A and the signals SG and SD in the upstream signal selection control unit 13-3A, the optical transceiver selection signal s , Delay in transmission of the optical transceiver selection signal s from the upstream signal selection control unit 13-3A to the upstream signal selection unit 13-2, and the optical transceiver selection signal s in the upstream signal selection unit 13-2. Since there is a delay until the uplink electrical signal US [s] is selected based on the PON control circuit 12, the PON control circuit 12 outputs the grant signal SG and the discovery window signal SD to be output to the uplink signal selection control unit 13-3A. It is desirable that the timing be generated at a timing before the total time of the above-described delay from the timing based on the electrical signal US [s].
  • the PON control circuit 12 may use the grant signal SG as a signal indicating the start timing of the grant and the discovery window signal SD as a signal indicating the start timing of the discovery window.
  • the uplink signal selection control unit 13-3A When the signal indicating the start timing is used, the uplink signal selection control unit 13-3A generates the optical transceiver selection signal s based on this signal when the grant signal SG or the discovery window signal SD is input. Then, during the period until the grant signal SG or the discovery window signal SD is input, the operation of the generated optical transceiver selection signal s is not changed.
  • the logical link identification number assigned to each logical link being linked up is not the LLID defined in the 10G-EPON or GE-PON standard, but the PON control circuit 12 is assigned to each logical link being linked up. You may use the serial number assigned to it.
  • the LLID is a value expressed in a 15-bit length, but when the number of ONUs 3 connected to each optical splitter 2 is 32 and one LLID is assigned to each ONU 3, only N ⁇ 32 of the LLID values are used. Therefore, when the optical transceiver selection table TB is created using the LLID as an entry number, most entries are not used and memory is wasted. On the other hand, if a serial number that can be expressed with a bit length smaller than that of LLID is used as the logical link identification number, and the optical transceiver identification number is stored using this serial number as the entry number, memory waste can be reduced.
  • the optical transceiver selection table TBA can be realized with a small memory.
  • FIG. 3 shows the structure of the optical transceiver selection table TB (TBA) in the uplink signal selection control unit 13-3A.
  • a logical link identification number is used as an entry number.
  • the value of the optical transceiver identification number stored in association with the logical link identification number is stored in the entry whose logical link identification number is the entry number.
  • the optical transceiver identification number associated with the logical link identification number 0 is stored in the entry [0]
  • the optical transceiver identification number associated with the logical link identification number k is stored in the entry [k].
  • the entry [K-1] stores the identification number of the optical transceiver associated with the logical link identification number K-1.
  • K is the table size (maximum number of entries) of the optical transceiver selection table TBA.
  • the upstream signal selection control unit 13-3A acquires the optical transceiver identification number e from the entry of the optical transceiver selection table TBA whose logical link identification number g indicated by the grant signal SG input from the PON control circuit 12 is the entry number.
  • the optical transceiver 11-e is identified based on the acquired optical transceiver identification number e, and the upstream electrical signal US [e] output from the identified optical transceiver 11-e is selected as the upstream electrical signal US [s].
  • An optical transceiver selection signal s for generating is generated.
  • the uplink signal selection control unit 13-3A updates the value of the discovery target optical transceiver identification number d, and the updated discovery target optical transceiver identification
  • An optical transceiver selection signal s for selecting the upstream electrical signal US [d] output from one optical transceiver 11-d specified by the number d as the upstream electrical signal US [s] is generated.
  • the upstream signal selection control unit 13-3A performs the processing shown in the flowchart of FIG. 4 at the time when the upstream signal selection control unit 13-3A can operate, for example, the power supply to the OLT 1A or the subsequent OLT 1A. Start immediately after initialization and until the operation of the uplink signal selection control unit 13-3A is stopped, for example, a reinitialization instruction for the selection / distribution circuit 13A including the uplink signal selection control unit 13-3A or to the OLT 1A Repeat until the power supply stops.
  • Step S102 It is determined whether or not the discovery window signal SD input to the uplink signal selection control unit 13-3A indicates the discovery window start timing. In this determination, if YES, the process proceeds to step S103, and if NO, the process proceeds to step S105.
  • Step S104 The value of the optical transceiver selection signal s output toward the uplink signal selection unit 13-2 is changed to the value of the discovery target optical transceiver identification number d updated in step S103.
  • s d.
  • an optical transceiver selection signal s having d as its value is generated. Thereafter, the process returns to step S102 via step S108. If the stop is confirmed in step S108, the process of this procedure is terminated.
  • Step S105 It is determined whether or not the grant signal SG input to the uplink signal selection control unit 13-3A indicates the grant start timing. In this determination, if YES, the process proceeds to step S106, and if NO, the process returns to step S102.
  • Step S106 The value e of the entry [g], which is the logical link identification number g indicated by the grant signal SG input in step S105, is read from the optical transceiver selection table TBA managed by the uplink signal selection control unit 13-3A. Next, the process proceeds to step S107.
  • Step S107 The value of the optical transceiver selection signal s output toward the upstream signal selection unit 13-2 is changed to the value e of the entry [g] read out in step S106.
  • s e.
  • an optical transceiver selection signal s having e as its value is generated. Thereafter, the process returns to step S102 via step S108. If the stop is confirmed in step S108, the process of this procedure is terminated.
  • the value of the discovery target optical transceiver identification number d is incremented and updated. If the existence of an unregistered ONU connected to the optical transceiver is known in advance for each optical transceiver, it is not registered. It is also possible to update the discovery target optical transceiver identification number d so as to exclude the optical transceiver not connected to the ONU from the selection target. By doing in this way, the average time until registering an unregistered ONU can be shortened.
  • the uplink signal selection control unit 13-3 A in the optical transceiver selection table TBA having the input logical link identification number k as an entry number.
  • the discovery target optical transceiver identification d which is a variable in the uplink signal selection control unit 13-3A at that time, is stored (registered) in the entry.
  • uplink signal selection control section 13-3A receives an entry (a newly registered logical link identification number k from PON control circuit 12) in optical transceiver selection table TBA, logical link identification number k
  • logical link identification number k The procedure for registering the identification number of the optical transceiver in the entry) in which is the entry number will be described.
  • the upstream signal selection control unit 13-3A performs the processing shown in the flowchart of FIG. 5 at the time when the upstream signal selection control unit 13-3A can operate, for example, power supply to the OLT 1A or the subsequent OLT 1A. Start immediately after initialization and until the operation of the uplink signal selection control unit 13-3A is stopped, for example, a reinitialization instruction for the selection / distribution circuit 13A including the uplink signal selection control unit 13-3A or to the OLT 1A Repeat until the power supply stops.
  • the uplink signal selection control unit 13-3A repeats the process shown in FIG. 5 each time a newly registered logical link identification number k is input as an interrupt operation during the execution of the process shown in FIG.
  • Step S201 It is determined whether or not a newly registered logical link identification number k is input to the uplink signal selection control unit 13-3A. In this determination, if YES, the process proceeds to step S202. If NO, the determination of step S201 is repeated (the process remains in step S201 until a newly registered logical link identification number k is input).
  • the downstream signal distribution unit 13-1 The downstream electrical signal DS from the PON control circuit 12 is monitored at, and when the registration frame transmitted to the newly registered ONU 3 by the PON control circuit 12 is detected in the downstream signal distribution unit 13-1, the detected registration is detected.
  • the newly registered logical link identification number k included in the frame is sent to the uplink signal selection control unit 13-3A, and the optical transceiver identification is entered in the entry of the optical transceiver selection table TBA whose entry number is the newly registered logical link identification number k. It is also possible to register the number d.
  • the newly registered logical link identification number is registered. It is also possible to store both k and the optical transceiver identification number d in the new entry of the optical transceiver selection table TB.
  • the uplink signal selection control unit 13-3A has the optical transceiver selection table TBA.
  • the value of the logical link identification number stored in each entry of 'and the value of the logical link identification number g indicated by the grant signal SG are compared, and the identification of the optical transceiver stored in the entry whose value matches in this comparison Get the number e.
  • the discovery window signal SD indicates the start of the discovery window at t1
  • the value of the discovery target optical transceiver identification number d which is a variable in the uplink signal selection control unit 13-3A, is updated at t2.
  • the value is incremented, and the discovery target optical transceiver identification number d changes from 0 to 1.
  • the value of the optical transceiver selection signal s is changed to 1 which is the value of the discovery-target optical transceiver identification number d after the update.
  • the upstream electrical signal US [1] is selected during the immediately following discovery window period, and among the frames that arrive within this period, the registration request frame included in the upstream electrical signal US [1], that is, the optical transceiver.
  • a registration request frame from a new ONU 3 connected to 11-1 through the optical splitter 2-1 is input to the PON control circuit 12.
  • F (0,1) and F (1,1) are signals including a registration request frame.
  • the optical transceiver identification number e corresponding to the value 2 of the logical link identification number g of the grant signal SG is set to the optical transceiver selection table TBA.
  • the value of the optical transceiver selection signal s is changed to 0 which is the value of the acquired identification number e of the optical transceiver at t4.
  • the upstream electrical signal US [0] is selected during the immediately following grant period, so that the logical link between the optical transceiver 11-0 and the ONU 3 connected via the optical splitter 2-0 is logical link identification.
  • the upstream frame from the linked ONU 3 is input to the PON control circuit 12.
  • the value of the discovery target optical transceiver identification number d which is a variable in the uplink signal selection control unit 13-3A, is updated. In this update, the process of returning the value to 0 is performed, and the discovery target optical transceiver identification number d changes from 1 to 0. Further, the value of the optical transceiver selection signal s is changed to 0 which is the value of the discovery target optical transceiver identification number d after the update.
  • the upstream electrical signal US [0] is selected during the immediately following discovery window period, and the registration request frame included in the upstream electrical signal US [1] among the frames that arrive within this period, that is, the optical transceiver.
  • a registration request frame from a new ONU 3 connected to 11-0 via the optical splitter 2-0 is input to the PON control circuit 12.
  • the OLT 1A to which the present invention is applied has a discovery window generated inside the PON control circuit 12 in order that the PON control circuit 12 controls the start timing and duration of the discovery window and grant.
  • the signal SD and the grant signal SG are passed to the upstream signal selection control unit 13-3A. Accordingly, the upstream signal selection control unit 13-3A can select the optical transceiver 11 that receives the discovery window and the grant before receiving the registration request frame and the upstream electrical signal US from the ONU 3.
  • a method of selecting the upstream electrical signal for example, a method of determining which optical transceiver from which the upstream electrical signal is selected using the LOS signal of the optical transceiver is conceivable.
  • the method using the LOS signal since the selection is switched after the upstream electrical signal arrives, a part of the synchronization pattern at the beginning of the upstream electrical signal is not input to the subsequent circuit, and the synchronization is performed to compensate for it. It is necessary to extend the pattern.
  • switching is performed in accordance with the arrival time of the upstream electrical signal predicted by the OLT, so that a problem that a part of the synchronization pattern is not input to the subsequent circuit does not occur. No pattern expansion is required. As a result, the uplink throughput is not reduced due to the expansion of the synchronization pattern, and the uplink throughput can be improved.
  • FIG. 9 is a diagram illustrating a configuration example of the selection / distribution circuit 13 (13B) in the OLT 1 (1B) according to the second embodiment.
  • the difference from the configuration of the selection / distribution circuit 13A of the first embodiment is the optical transceiver selection control signal SC input from the PON control circuit 12 by the upstream signal selection control unit 13-3 (13-3B).
  • the optical transceiver selection control signal SC (SCA) of the first embodiment includes the newly registered logical link identification number k in order to know the logical link identification number for the registered logical link with the ONU 3.
  • the optical transceiver selection control signal SC (SCB) of the second embodiment does not include the newly registered logical link identification number k.
  • the uplink signal selection control unit 13-3A when the uplink signal selection control unit 13-3A receives a newly registered logical link identification number k from the PON control circuit 12, it establishes a logical link with the ONU 3 indicated by the logical link identification number k.
  • An optical transceiver selection table TB is created by associating the identification number d of the optical transceiver selected by the selection / distribution circuit 13A with the logical link identification number k during the period of the discovery window that received the registration request frame that triggered the transmission. (TBA). That is, in the first embodiment, the uplink signal selection control unit 13-3A uses the newly registered logical link identification number k input from the PON control circuit 12, and sets the logical link identification number, the optical transceiver identification number, Was associated.
  • the uplink signal selection control unit 13-3B does not input the newly registered logical link identification number k from the PON control circuit 12, but the logical link identification included in the grant signal SG. It is determined whether or not the number g is registered in the optical transceiver selection table TB. If it is determined that the number g is not registered, the logical link identification number and the optical link are obtained using the logical link identification number g included in the grant signal SG. Corresponds to the identification number of the transceiver.
  • FIG. 10 shows the structure of the optical transceiver selection table TB (TBB) used in the second embodiment.
  • TBB optical transceiver selection table
  • the logical link identification number is used as the entry number, and the optical transceiver identification number stored in association with this logical link identification number is stored. Is stored in the entry whose logical link identification number is the entry number.
  • the value of a valid timer for managing the valid time of the entry is stored.
  • the value of the valid timer is decreased with the passage of time, and when the valid timer value becomes 0, the entry is determined to be invalid.
  • the valid timer value of the entry having the logical link identification number as the entry number is read and the valid timer value is greater than zero. If it is a value, it is determined that the logical link identification number has been registered in the optical transceiver selection table TBB. If the valid timer value is 0, the logical link identification number is registered in the optical transceiver selection table TBB. Not determined, that is, it is determined as unregistered.
  • the uplink signal selection control unit 13-3B registers the optical transceiver identification number in association with the logical link identification number in the optical transceiver selection table TBB will be described.
  • the uplink signal selection control unit 13-3B performs the processing according to the procedure shown in the flowchart of FIG. 11 when the operation of the uplink signal selection control unit 13-3B becomes possible, for example, supply of power to the OLT 1B, The time point that starts immediately after the initialization of the OLT 1B and until the operation of the uplink signal selection control unit 13-3B is stopped, for example, the reinitialization instruction of the selection / distribution circuit 13B including the uplink signal selection control unit 13-3B, Repeat until the power supply to OLT 1B is stopped.
  • Step S302 It is determined whether or not the discovery window signal SD input to the uplink signal selection control unit 13-3B indicates the discovery window start timing. In this determination, if YES, the process proceeds to step S303, and if NO, the process proceeds to step S305.
  • Step S305 It is determined whether or not the grant signal SG input to the uplink signal selection control unit 13-3B indicates the grant start timing. In this determination, if YES, the process proceeds to step S306, and if NO, the process returns to step S302.
  • Step S306 From the optical transceiver selection table TBB managed by the uplink signal selection control unit 13-3B, the entry [g] whose entry number is the logical link identification number g indicated by the grant signal SG input in step S305 is read. Next, the process proceeds to step S307.
  • Step S307 Whether or not the logical link identification number g is already registered in the optical transceiver selection table TBB is determined based on the valid timer value of the entry [g] read from the optical transceiver selection table TBB in step S306. If the valid timer value of the entry [g] is larger than 0 (in the case of YES), it is determined that the logical link identification number g has been registered, and the process proceeds to step S309. When the valid timer value of entry [g] is 0 (in the case of NO), it is determined that the logical link identification number g has not been registered, and the process proceeds to step S308.
  • step S308 the discovery target optical transceiver identification number d is set to the optical transceiver identification number of the entry [g] read from the optical transceiver selection table TBB.
  • the value indicating the optical transceiver selected during the previous discovery window is registered as the optical transceiver identification number corresponding to the logical link identification number g determined to be unregistered in step S307. .
  • the process proceeds to step S309.
  • step S309 the valid timer initial value T is set in the valid timer of the entry [g] read from the optical transceiver selection table TBB. This valid timer value is counted down as time passes, but when the PON control circuit 12 outputs the grant signal SG indicating the logical link identification number g, the valid timer value is returned to the valid timer initial value T by the procedure of step S309. . Therefore, only when the grant signal SG does not indicate the logical link identification number g within the time defined by the initial value T of the valid timer, the value of the valid timer becomes 0 and the logical link identification number g is not yet set. It will be in the registration state. This corresponds to the disconnection of the logical link indicated by the logical link identification number g. Next, the process proceeds to step S310.
  • the value of the discovery target optical transceiver identification number d is updated by increment, but if there is an unregistered ONU connected to the optical transceiver for each optical transceiver in advance, It is also possible to update the discovery target optical transceiver identification number d so that the optical transceiver not connected to the ONU is excluded from the selection. As a result, the average time required to register an unregistered ONU can be shortened.
  • FIG. 12 a procedure for updating the valid timer value of each entry of the optical transceiver selection table TBB will be described. As described with reference to FIG. 11, the valid timer value of each entry of the optical transceiver selection table TBB is down-counted as time elapses, and FIG. 12 shows a procedure for down-counting this valid timer value.
  • the uplink signal selection control unit 13-3B performs the processing shown in the flowchart of FIG. 12 when the operation of the uplink signal selection control unit 13-3B becomes possible, for example, the power supply to the OLT 1B and the subsequent OLT 1B Starting from immediately after initialization, until the operation of the uplink signal selection control unit 13-3B is stopped, for example, to the reinitialization instruction of the selection / distribution circuit 13B including the uplink signal selection control unit 13-3B or to the OLT 1B Repeat until the power supply stops.
  • the uplink signal selection control unit 13-3B repeats the process shown in FIG. 12 every time the valid timer unit time T0 elapses as an interrupt operation during execution of the process shown in FIG.
  • Step S401 Wait for the expiration of the valid timer unit time T0.
  • the valid timer value of each entry in the optical transceiver selection table TBB is decreased by one.
  • the valid timer value of each entry is decremented by 1 every time the valid timer unit time T0 elapses from the valid timer initial value T, it is determined that the logical link indicated by the logical link identification number of the entry has been disconnected. Therefore, the grant of the logical link during link-up needs to appear in the uplink signal within T (effective timer initial value) ⁇ T0 (effective timer unit time) time.
  • the process proceeds to step S402.
  • Step S402 The following steps S403 to S405 are performed for each entry (entry number k) of the optical transceiver selection table TBB. According to the procedures of steps S403 to S405, the value of the valid timer of each entry in the optical transceiver selection table TBB is decreased by 1 (the entry of the valid timer value 0 is not decreased).
  • Step S403 The entry [k] with the entry number k is read from the optical transceiver selection table TBB, and the process proceeds to step S404.
  • Step S404 If the valid timer value of the entry [k] read in step S403 is greater than 0, the process proceeds to step S405, and if the valid timer value is 0, the process proceeds to step S406.
  • Step S405 The valid timer value of entry [g] is set to a value decremented ( ⁇ 1). Thereafter, the process proceeds to step S406.
  • Step S406 When the procedure of steps S403 to S405 is performed on all entries of the optical transceiver selection table TBB, the process returns to step S401. When there is an unexecuted entry, the procedure of steps S403 to S405 is performed on the remaining entries. The process returns to step S402. If the stop is confirmed in step S407, the process of this procedure is terminated.
  • the PON control circuit 12 reuses the logical link identification number g for the logical link with the newly registered ONU 3 after the logical link of the logical link identification number g that has been linked up is disconnected.
  • the time from the disconnection should be measured, and the reuse should be suspended until the elapsed time from the disconnection becomes equal to or greater than T (effective timer initial value) ⁇ T0 (effective timer unit time). That is, the logical link with the ONU 3 newly registered within the reuse hold time is not the logical link identification number g pending reuse, but another logical link for which unused or reuse hold time has elapsed.
  • An identification number should be assigned.
  • the second embodiment is different from the first embodiment in that the uplink signal selection control unit does not have to pass the newly registered logical link identification number k from the PON control circuit 12 to the uplink signal selection control unit 13-3B.
  • 13-3B itself can determine whether or not the logical link identification number g of the grant signal SG is newly registered, so that the processing in the PON control circuit 12 can be reduced.
  • the newly registered logical link identification number k is uploaded from the PON control circuit 12 within a period from when the logical link between the unregistered ONU 3 and the OLT 1A is established until the OLT 1A grants a grant for the logical link. It is necessary to pass to the signal control selection unit 13-3A and store the optical transceiver identification number d in the optical transceiver selection table TA in association with the logical link identification number k.
  • such a process in the PON control circuit 12 is not necessary, so that the PON control circuit 12 can be easily realized.
  • the present invention can be used as a station side device, an optical transmission system, and an optical transmission method in an optical transmission system such as 10G-EPON.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Abstract

 OLT(1)を、N個の光トランシーバ(11)と、1個のPON制御回路(12)と、1つの選択・分配回路(13)とで構成する。PON制御回路(12)から選択・分配回路(13)へ光トランシーバ選択制御信号(SC)を渡す。光トランシーバ選択制御信号(SC)は、ディスカバリ・ウインドウのタイミングとグラントのタイミングおよびそのグラントに割り当てられる登録済のONUの論理リンク識別番号(登録済のONUとの論理リンクに対する論理リンク識別番号)を示す。選択・分配回路(13)は、PON制御回路(12)からの光トランシーバ選択制御信号(SC)を基に、光トランシーバ(11-0~11-N-1)から1つの光トランシーバ〔11-s(sは0~N-1の範囲内の整数)〕を選択する。

Description

光伝送システムにおける局側装置、光伝送システム及び光伝送方法
 この発明は、光伝送路(PON:Passive Optical Network)を介して接続された複数の加入者側装置(ONU:Optical Network Unit)と上位装置との間でフレームを転送処理する光伝送システムにおける局側装置(OLT:Optical Line Terminal)、光伝送システム及び光伝送方法に関する。
 2009年にIEEE802.3avにおいて10G-EPON(10 Gigabit Ethernet Passive Optical Network:Ethernetは登録商標)の標準化が完了した。10G-EPONの特徴は、既に広く普及しているGE-PON(Gigabit Ethernet Passive Optical Network:非特許文献1参照)の10倍の高速伝送が可能なことである。
 図13に関連するGE-PONシステムの構成の概要を示す。このGE-PONシステムにおいて、OLT100は光スプリッタ2を介して接続された複数のONU3と上位装置(図示せず)との間でフレームを転送処理する。
 GE-PON用のOLT100は、光トランシーバ11とPON制御回路12とを内蔵している。OLT100において、光トランシーバ11は、光スプリッタ2を介して接続されたONU3への下りフレーム(下り電気信号DS)の光信号への電気光変換と、ONU3からの上りフレーム(光信号)の電気信号(上り電気信号US)への光電気変換とを行う。
 OLT100において、1個の光トランシーバ11に接続可能なONU3の台数は最大で32台とIEEE規格で規定されている。そのため、ONU3を収容する局として、33台以上のONU3を接続する必要がある場合は、一般的には、図14に示すように、OLT100とONU3との間に複数の光スプリッタ2を設け、複数の光トランシーバ11と、複数のPON制御回路12とが使用される。
 10G-EPONシステムにおいても1個の光トランシーバに接続可能なONUの台数は最大で32台とIEEE規格で規定されている。しかし、10G-EPON用のPON制御装置は、GE-PON用のPON制御装置より高性能(10倍のデータ転送速度)が要求されるので、装置のコスト(装置の購入価格等)も高くなる。したがって、10G-EPONシステムを採用するための課題として、ONU1台あたりのシステムコスト(接続コスト)をできるだけ小さくすることが課題となっている。
 上記の課題の対策の1つとして、1個の光トランシーバに接続可能なONUの台数を拡大することにより、ONU1台あたりの光トランシーバとPON制御回路の個数を減らすことが考えられる。例えば、光増幅器を使用することにより33台以上のONUを接続可能とする技術が提案されている(例えば、特許文献1参照)。
 しかし、光増幅器は装置のコスト(装置の購入価格等)が電気回路用の部品(LSI等)と比較すると高くなるという課題が有る。
特開2012-19353号公報
「技術基礎講座〔GE-PON技術〕第1回 PONとは」、NTT技術ジャーナル、Vol.17、No.8、pp.71-74、2005.
 本発明は、このような課題を解決するためになされたもので、その目的とするところは、PONシステム、特に10G-EPONシステムにおけるONU1台あたりのシステムコスト(接続コスト)をより小さくすることにある。
 このような目的を達成するために本発明は、第1~第N(N≧2)の光スプリッタを介して接続された複数の加入者側装置と上位装置との間でフレームを転送処理する、光伝送システムにおける局側装置において、第1~第Nの光スプリッタに1対1で接続され、加入者側装置への下り電気信号の光信号への電気光変換と、加入者側装置からの光信号の上り電気信号への光電気変換とを行う第1~第Nの光トランシーバと、第1~第Nの光トランシーバから1つの光トランシーバを選択し、選択した1つの光トランシーバから入力された上り電気信号を出力するとともに、下り電気信号を第1~第Nの光トランシーバに分配して出力する選択・分配回路と、複数の加入者側装置を、これらの複数の加入者側装置が同時に上りフレームを送信しないように制御するとともに、選択・分配回路を制御する制御回路とを備え、選択・分配回路は、制御回路から送られてくる、未登録の加入者側装置からの登録要求フレームの受信を待ち受けるディスカバリ・ウインドウのタイミングと、登録済の加入者側装置からの上りフレームの受信期間であるグラントのタイミングおよびそのグラントに割り当てられる登録済の加入者側装置との論理リンクに対する論理リンク識別番号とを基に、第1~第Nの光トランシーバから1つの光トランシーバを選択する選択制御部を有することを特徴とする。
 本発明によれば、N個の光トランシーバと1個のPON制御回路と1つの選択・分配回路とでOLTを構成するようにしたので、このOLTにN×32台のONUを収容させることができるようになり、PONシステム、特に10G-EPONシステムにおけるONU1台あたりのシステムコスト(接続コスト)を小さくすることが可能となる。
図1は、本発明の第1の実施形態(実施の形態1)に係るPONシステムの構成例を示す図である。 図2は、実施の形態1のOLT内の選択・分配回路の構成例を示す図である。 図3は、実施の形態1のOLT内の選択・分配回路で用いる光トランシーバ選択テーブルの構造を示す図である。 図4は、実施の形態1のOLT内の選択・分配回路の上り信号選択制御部が光トランシーバ選択信号を生成する手順を示すフローチャートである。 図5は、実施の形態1のOLT内の選択・分配回路の上り信号選択制御部が光トランシーバ選択テーブルのエントリに光トランシーバの識別番号を登録する手順を示すフローチャートである。 図6は、実施の形態1のOLT内の選択・分配回路の上り信号選択制御部の動作の例を示すタイムチャートである。 図7は、光トランシーバの個数NをN=2とした実施の形態1のOLT内の選択・分配回路の構成を示す図である。 図8は、光トランシーバ選択テーブルの論理リンク識別番号をエントリ番号として記憶された光トランシーバの識別番号を例示する図である。 図9は、実施の形態2のOLT内の選択・分配回路の構成例を示す図である。 図10は、実施の形態2のOLT内の選択・分配回路で用いる光トランシーバ選択テーブルの構造を示す図である。 図11は、実施の形態2のOLT内の上り信号選択制御部が光トランシーバ選択テーブルに論理リンク識別番号と対応づけて光トランシーバの識別番号を登録する手順を示すフローチャートである。 図12は、実施の形態2のOLT内の上り信号選択制御部が光トランシーバ選択テーブルの各エントリの有効タイマ値を更新する手順を示すフローチャートである。 図13は、従来のGE-PONシステムの構成例を示す図である。 図14は、従来のGE-PONシステムの別の構成例を示す図である。
 以下、本発明の実施の形態を図面に基づいて詳細に説明する。
〔実施の形態1〕
 図1は、この発明の第1の実施形態(実施の形態1)に係るPONシステムの構成例である。
 このPONシステムにおいて、OLT1(1A)は、N(N≧2:Nは2以上の整数)個の光トランシーバ11(11-0~11-N-1)と、1個のPON制御回路12と、1つの選択・分配回路13とによって構成されている。
 OLT1Aにおいて、1つの光トランシーバ11は、OLT1AとONU3との間の光スプリッタ2を含む光の伝送路をPON区間とし、1つの光スプリッタ2を介して最大で32台のONU3が共通接続されている。
 すなわち、光トランシーバ11-0~11-N-1が光スプリッタ2-0~2-N-1にそれぞれ接続されており、光スプリッタ2-0~2-N-1のそれぞれに最大で32台のONU3が接続されている。したがって、OLT1Aは、トータルでN×32台のONU3を収容している。OLT1Aは、この光スプリッタ2を介して接続された複数のONU3と上位装置4との間で、フレームを転送処理する。
 このPONシステムと図14に示した従来のPONシステムとの構成上の違いは、本実施の形態に係るPONシステムは、1つのOLT1に対し、PON制御回路12が1個設けられ、この1個のPON制御回路12とN個の光トランシーバ11-0~11-N-1との間に1つの選択・分配回路13が設けられている点である。PON制御回路12は、複数のONU3が同時に上りフレームを送信しないように、複数のONU3を制御する。また、PON制御回路12は、制御信号出力部12-1を備え、この制御信号出力部12-1より選択・分配回路13に光トランシーバ選択制御信号SCを出力する。
 選択・分配回路13(13A)は、光トランシーバ選択制御信号SCに基づいて、N個の光トランシーバ11-0~11-N-1から1つの光トランシーバ11-s(sは0~N-1の範囲内の整数)を選択し、その選択した光トランシーバ11-sが出力する上り電気信号US[s]をPON制御回路12に対して出力するとともに、PON制御回路12からの下り電気信号DSをN個の光トランシーバ11-0~11-N-1に分配出力する。
 図2にOLT1A内の選択・分配回路13の構成例を示す。選択・分配回路13Aは、下り信号分配部13-1と、上り信号選択部13-2と、上り信号選択制御部13-3とから構成されている。
 下り信号分配部13-1は、PON制御回路12から入力した下り電気信号DSを複製することによって、N本の下り電気信号DS[0]~DS[N-1]を生成し、この生成した下り電気信号DS[0]~DS[N-1]をそれぞれ光トランシーバ11-0~11-N-1に向けて出力する。
 上り信号選択部13-2は、N個の光トランシーバ11-0~11-N-1から1個の光トランシーバ11-sを選択し、その選択した光トランシーバ11-sが出力する上り電気信号US[s]をPON制御回路12に向けて出力する。
 すなわち、上り信号選択部13-2は、N個の光トランシーバ11-0~11-N-1の各々が出力したN本の上り電気信号US[0]~US[N-1]を入力し、この入力されるN本の上り電気信号US[0]~US[N-1]の中から1つの上り電気信号US[s]を選択してPON制御回路12に向けて出力する。
 上り信号選択制御部13-3(13-3A)は、PON制御回路12からの光トランシーバ選択制御信号SC(SCA)を受けて、光トランシーバ選択信号sを生成し、上り信号選択部13-2に向けて出力する。ここで、光トランシーバ選択信号sは、上り信号選択部13-2がN個の光トランシーバ11-0~11-N-1から1個の光トランシーバ11-sを選択するための信号である。
 上り信号選択制御部13-3Aには、PON制御回路12から光トランシーバ選択制御信号SCAとして、ディスカバリ・ウインドウ信号SDと、グラント信号SGと、新規登録の論理リンク識別番号kとが入力される。ここで、ディスカバリ・ウインドウ信号SDは、未登録のONU3からの登録要求フレームの受信を待ち受けるディスカバリ・ウインドウのタイミングを示す信号である。グラント信号SGは、登録済のONU3からの上りフレームの受信期間であるグラントのタイミングおよびそのグラントに割り当てられる登録済のONU3との論理リンクに対する論理リンク識別番号gを示す信号である。
 なお、ディスカバリ・ウインドウ信号SDとグラント信号SGとは、光トランシーバ選択信号sを生成するために用いられる。新規登録の論理リンク識別番号kは、後述する光トランシーバ選択テーブルTBを作成するために用いられる。
 上り信号選択制御部13-3Aは、N個の光トランシーバ11-0~11-N-1のうちの1個の光トランシーバ11-d(dは0~N-1の範囲内の整数)を特定する光トランシーバの識別番号dを、上り信号選択制御部13-3A内の変数であるディスカバリ対象光トランシーバ識別番号として記憶する。この光トランシーバの識別番号dは上り信号選択制御部13-3A内のメモリ13-31に記憶される。
 さらに、上り信号選択制御部13-3Aは、PON制御回路12から入力されたディスカバリ・ウインドウ信号SDがディスカバリ・ウインドウの開始を示したタイミングにおいて、ディスカバリ対象光トランシーバ識別番号dの値を更新するとともに、ディスカバリ・ウインドウ信号SDがディスカバリ・ウインドウのタイミングであることを示している期間中は、更新後のディスカバリ対象光トランシーバ識別番号dによって特定される1個の光トランシーバ11-dが出力する上り電気信号US[d]を上り電気信号US[s]として選択するための光トランシーバ選択信号s(値がdの信号)を生成する。この光トランシーバ選択信号sの生成は上り信号選択制御部13-3A内の選択部13-32によって行われる。
 上り信号選択制御部13-3Aの処理によって、PON制御回路12は、1回のディスカバリ・ウインドウでは、N個の光トランシーバ11-0~11-N-1のうち選択された1個の光トランシーバ11-dに光スプリッタ2-dを介して接続されるONU3からの登録要求フレームのみを受け付ける。PON制御回路12は、登録要求フレームを受け付けることによって登録されたONU3との論理リンクに対する論理リンク識別番号を新規登録の論理リンク識別番号kとして、上り信号選択制御部13-3Aに出力する。これにより、上り信号選択制御部13-3Aにおいて、光トランシーバの識別番号dと論理リンク識別番号kとを対応づけることが可能となる。
 これにより、光トランシーバと論理リンクとの対応を知ることができるため、上り信号選択制御部13-3Aは、PON制御回路12が出力したグラント信号SGの論理リンク識別番号gから、この論理リンク識別番号gに対応する光トランシーバの識別番号eを取得して、この取得した光トランシーバの識別番号eによって特定される光トランシーバ11を選択することができる。
 なお、1回のディスカバリ・ウインドウでは、選択した1個の光トランシーバに接続されるONU3からの登録要求フレームのみがPON制御回路12に渡され、他の光トランシーバに接続されるONU3からの登録要求フレームは廃棄されることになるが、上り信号選択制御部13-3A内の変数であるディスカバリ対象光トランシーバ識別番号dの値をディスカバリ・ウインドウ毎に更新することによって、N回のディスカバリ・ウインドウによって、全てのONU3からの登録要求フレームをPON制御回路12が受け付けることができる。
 また、上り信号選択制御部13-3Aは、PON制御回路12から新規登録の論理リンク識別番号kが入力されたとき、この論理リンク識別番号kが指し示すONU3との論理リンクを確立する契機となった登録要求フレームを受信したディスカバリ・ウインドウの期間中に選択・分配回路13Aが選択していた光トランシーバの識別番号dを、論理リンク識別番号kに対応づけて、メモリ13-31内の光トランシーバ選択テーブルTBに記憶する。この光トランシーバ選択テーブルTBへの論理リンク識別番号kに対応づけての光トランシーバの識別番号dの記憶は、すなわち論理リンク識別番号kに対応づけての光トランシーバの識別番号dの登録は、上り信号選択制御部13-3A内の登録部13-33によって行われる。
 さらに、上り信号選択制御部13-3Aは、PON制御回路12から入力されたグラント信号SGがグラントを示す期間中は、このグラント信号SGが示す論理リンク識別番号gに対応づけて光トランシーバ選択テーブルTBに記憶されている光トランシーバの識別番号eを取得し、この取得した光トランシーバの識別番号eに基づいて特定される光トランシーバ11-eが出力する上り電気信号US[e]を上り電気信号US[s]として選択するための光トランシーバ選択信号s(値がeの信号)を生成する。この際の光トランシーバ選択信号sの生成も上り信号選択制御部13-3A内の選択部13-32によって行われる。
 なお、PON制御回路12は、光スプリッタ2-0~2-N-1に接続されているすべてのONU3に対して、複数のONU3が同時に上りフレームを送信しないように、すなわち1台のONU3だけが上りフレームを送信するように、上り帯域割当(グラント割当)を行う。
 また、PON制御回路12は、グラント信号SGがグラントを示す期間とディスカバリ・ウインドウ信号SDがディスカバリ・ウインドウであることを示す期間が時間軸上で重ならないように、これらの信号を生成する。
 ここで、PON制御回路12から上り信号選択制御部13-3Aへの信号SG,SDの伝達の遅延、上り信号選択制御部13-3A内での信号SG,SDに基づいて光トランシーバ選択信号sを生成するまでの遅延、上り信号選択制御部13-3Aから上り信号選択部13-2への光トランシーバ選択信号sの伝達の遅延、上り信号選択部13-2内で光トランシーバ選択信号sに基づいて上り電気信号US[s]を選択するまでの遅延があるため、PON制御回路12は、上り信号選択制御部13-3Aに向けて出力するグラント信号SGおよびディスカバリ・ウインドウ信号SDを、上り電気信号US[s]に基づくタイミングよりも上記の遅延の合計時間だけ手前のタイミングで生成することが望ましい。
 また、PON制御回路12は、グラント信号SGをグラントの開始タイミングを示す信号とし、ディスカバリ・ウインドウ信号SDをディスカバリ・ウインドウの開始タイミングを示す信号としてもよい。このような開始タイミングを示す信号を用いる場合、上り信号選択制御部13-3Aは、グラント信号SGあるいはディスカバリ・ウインドウ信号SDを入力された時点で、この信号に基づいて光トランシーバ選択信号sを生成し、その後グラント信号SGまたはディスカバリ・ウインドウ信号SDを入力するまでの期間は生成した光トランシーバ選択信号sの値を変更しない動作とする。
 また、リンクアップ中の各論理リンクに割り当てられる論理リンク識別番号として、10G-EPONあるいはGE-PONの標準規格に規定されているLLIDではなく、PON制御回路12がリンクアップ中の各論理リンクに対して割り当てたシリアル番号を使用してもよい。
 LLIDは15ビット長で表現される値であるが、各光スプリッタ2に接続するONU3の台数が32で、各ONU3に1個のLLIDを割り当てた場合、LLIDの値のうちN×32個のみが使用されるので、LLIDをエントリ番号として光トランシーバ選択テーブルTBを作成するようにした場合は、ほとんどのエントリが使用されずメモリの無駄が生じる。これに対し、論理リンク識別番号としてLLIDよりも少ないビット長で表現可能なシリアル番号を用い、このシリアル番号をエントリ番号として光トランシーバの識別番号を記憶させるようにすれば、メモリの無駄を削減でき、小規模のメモリによって光トランシーバ選択テーブルTBAを実現できるという効果が得られる。
 図3に、上り信号選択制御部13-3Aにおける光トランシーバ選択テーブルTB(TBA)の構造を示す。この光トランシーバ選択テーブルTBAでは、エントリ番号として論理リンク識別番号を用いている。この論理リンク識別番号に対応づけて記憶する光トランシーバの識別番号の値は、論理リンク識別番号がエントリ番号となったエントリに格納される。例えば、エントリ〔0〕には論理リンク識別番号0に対応づけた光トランシーバの識別番号が格納され、エントリ〔k〕には論理リンク識別番号kに対応づけた光トランシーバの識別番号が格納され、エントリ〔K-1〕には論理リンク識別番号K-1に対応づけた光トランシーバの識別番号が格納される。なお、この場合のKは、光トランシーバ選択テーブルTBAのテーブルサイズ(最大エントリ数)である。
 上り信号選択制御部13-3Aは、PON制御回路12から入力されたグラント信号SGが示す論理リンク識別番号gがエントリ番号である光トランシーバ選択テーブルTBAのエントリから光トランシーバの識別番号eを取得し、この取得した光トランシーバの識別番号eに基づいて光トランシーバ11-eを特定し、この特定した光トランシーバ11-eが出力する上り電気信号US[e]を上り電気信号US[s]として選択するための光トランシーバ選択信号sを生成する。
 また、上り信号選択制御部13-3Aは、PON制御回路12からディスカバリ・ウインドウ信号SDが入力された場合、ディスカバリ対象光トランシーバ識別番号dの値を更新するとともに、更新後のディスカバリ対象光トランシーバ識別番号dによって特定される1個の光トランシーバ11-dが出力する上り電気信号US[d]を上り電気信号US[s]として選択するための光トランシーバ選択信号sを生成する。
 図4を参照して、上り信号選択制御部13-3Aが、光トランシーバ選択信号sを生成する手順を説明する。
 上り信号選択制御部13-3Aは、図4のフローチャートにより示された処理を、上り信号選択制御部13-3Aの動作が可能となった時点、例えば、OLT1Aへの電源供給やその後のOLT1Aの初期化直後から開始し、上り信号選択制御部13-3Aの動作が停止されるまでの時点、例えば、上り信号選択制御部13-3Aを含む選択・分配回路13Aの再初期化指示やOLT1Aへの電源供給停止まで、繰り返す。
〔ステップS101〕
 本手順の開始直後に、上り信号選択部13-2に向けて出力する光トランシーバ選択信号sの値を初期化する。本例では、初期化された値をs=0とする。また、上り信号選択制御部13-3A内の変数であるディスカバリ対象光トランシーバ識別番号dの値を初期化する。本例では、初期化された値をd=0とする。次に、ステップS102に移行する。
〔ステップS102〕
 上り信号選択制御部13-3Aに入力されるディスカバリ・ウインドウ信号SDが、ディスカバリ・ウインドウの開始タイミングを示すか否かの判定を行う。この判定において、YESの場合はステップS103、NOの場合はステップS105に移行する。
〔ステップS103〕
 上り信号選択制御部13-3A内の変数であるディスカバリ対象光トランシーバ識別番号dの値をインクリメントする。ただし、インクリメント前にディスカバリ対象光トランシーバ識別番号dの値がN-1だった場合は、0に更新する。本例では、d=(d+1)%Nとする(左辺のdは更新後の値、右辺側のdは更新前の値であり、演算子%は剰余演算を表す)。次に、ステップS104に移行する。
〔ステップS104〕
 上り信号選択部13-2に向けて出力する光トランシーバ選択信号sの値を、ステップS103で更新されたディスカバリ対象光トランシーバ識別番号dの値に変更する。本例では、s=dとする。その結果、dをその値とする光トランシーバ選択信号sが生成される。その後、ステップS108を経て、ステップS102に戻る。ステップS108で停止を確認すれば、本手順の処理を終了する。
〔ステップS105〕
 上り信号選択制御部13-3Aに入力されるグラント信号SGが、グラントの開始タイミングを示すか否かの判定を行う。この判定において、YESの場合はステップS106に移行し、NOの場合はステップS102に戻る。
〔ステップS106〕
 上り信号選択制御部13-3Aが管理する光トランシーバ選択テーブルTBAから、エントリ番号がステップS105で入力されたグラント信号SGが示す論理リンク識別番号gであるエントリ[g]の値eを読み出す。次に、ステップS107に移行する。
〔ステップS107〕
 上り信号選択部13-2に向けて出力する光トランシーバ選択信号sの値を、ステップS106で読み出したエントリ[g]の値eに変更する。本例では、s=eとする。その結果、eをその値とする光トランシーバ選択信号sが生成される。その後、ステップS108を経て、ステップS102に戻る。ステップS108で停止を確認すれば、本手順の処理を終了する。
 上記の手順において、ディスカバリ対象光トランシーバ識別番号dの値をインクリメントして更新しているが、光トランシーバ別に、光トランシーバに接続される未登録のONUの有無が予め分かっている場合は、未登録のONUを接続していない光トランシーバを選択対象から除外するように、ディスカバリ対象光トランシーバ識別番号dを更新することも可能である。このようにすることによって、未登録のONUを登録するまでの平均時間を短縮することができる。
 上り信号選択制御部13-3Aは、PON制御回路12から新規登録の論理リンク識別番号kが入力されると、その入力された論理リンク識別番号kをエントリ番号とする光トランシーバ選択テーブルTBA中のエントリに、その時の上り信号選択制御部13-3A内の変数であるディスカバリ対象光トランシーバ識別dを格納(登録)する。
 図5を参照して、上り信号選択制御部13-3Aが、光トランシーバ選択テーブルTBAのエントリ(PON制御回路12から新規登録の論理リンク識別番号kが入力されたときにその論理リンク識別番号kがエントリ番号となるエントリ)に、光トランシーバの識別番号を登録する手順を説明する。
 上り信号選択制御部13-3Aは、図5のフローチャートにより示された処理を、上り信号選択制御部13-3Aの動作が可能となった時点、例えば、OLT1Aへの電源供給やその後のOLT1Aの初期化直後から開始し、上り信号選択制御部13-3Aの動作が停止されるまでの時点、例えば、上り信号選択制御部13-3Aを含む選択・分配回路13Aの再初期化指示やOLT1Aへの電源供給停止まで、繰り返す。上り信号選択制御部13-3Aは、図4に示した処理を実行中の割り込み動作として、新規登録の論理リンク識別番号kが入力される毎に、図5に示した処理を繰り返す。
〔ステップS201〕
 上り信号選択制御部13-3Aに新規登録の論理リンク識別番号kが入力されたか否かの判定を行う。この判定において、YESの場合はステップS202に移行し、NOの場合はステップS201の判定を繰り返す(新規登録の論理リンク識別番号kが入力されるまでステップS201に留まる)。
〔ステップS202〕
 上り信号選択制御部13-3Aが管理する光トランシーバ選択テーブルTBAのエントリ番号kに、上り信号選択制御部13-3A内の変数であるディスカバリ対象光トランシーバ識別番号dを格納する。このようにして、光トランシーバの識別番号dが登録される。本例では、エントリ[k]=dとなる。その後、ステップS203を経て、ステップS201に戻る。ステップS20で停止を確認すれば、本手順の処理を終了する。
 なお、未登録のONU3とOLT1A間の論理リンクを確立してからこの論理リンクに対するグラントをOLT1Aが与えるまでの期間内に、上記の手順を完了しておく必要がある。
 また、PON制御回路12から入力される新規登録の論理リンク識別番号kがエントリ番号となる光トランシーバ選択テーブルTBAのエントリに光トランシーバの識別番号dを登録する代わりに、下り信号分配部13-1においてPON制御回路12からの下り電気信号DSを監視するようにし、下り信号分配部13-1においてPON制御回路12が新規登録したONU3に対して送信する登録フレームを検出したとき、この検出した登録フレームに含まれる新規登録の論理リンク識別番号kを上り信号選択制御部13-3Aに送り、この新規登録の論理リンク識別番号kがエントリ番号となる光トランシーバ選択テーブルTBAのエントリに光トランシーバの識別番号dを登録するようにすることも可能である。
 また、PON制御回路12から入力される新規登録の論理リンク識別番号kがエントリ番号となる光トランシーバ選択テーブルTBAのエントリに光トランシーバの識別番号dを登録する代わりに、新規登録の論理リンク識別番号kと光トランシーバの識別番号dの両方を、光トランシーバ選択テーブルTBの新規エントリに格納することも可能である。
 新規登録の論理リンク識別番号kと光トランシーバの識別番号dの両方を新規エントリに格納する光トランシーバ選択テーブルTBをTBA’とした場合、上り信号選択制御部13-3Aでは、光トランシーバ選択テーブルTBA’の各エントリに格納されている論理リンク識別番号の値と、グラント信号SGが示す論理リンク識別番号gの値とを比較し、この比較において値が一致したエントリに格納された光トランシーバの識別番号eを取得する。
 図6に示すタイムチャートを参照して、上り信号選択制御部13-3Aの動作の例を説明する。なお、この例において、光トランシーバ11の個数Nは、図7に示すようにN=2とし、光トランシーバ選択テーブルTBAに格納された光トランシーバの識別番号は、図8に示すように、エントリ番号0,1,2,3の順に0,1,0,1となっている状態であり、タイムチャートが示す期間中の光トランシーバ選択テーブルTBAの更新はないものとする。
(1)ディスカバリ・ウインドウ信号SDがt1においてディスカバリ・ウインドウの開始を示すことを契機に、t2において上り信号選択制御部13-3A内の変数であるディスカバリ対象光トランシーバ識別番号dの値を更新する。この更新では、値のインクリメントが行われ、ディスカバリ対象光トランシーバ識別番号dは、0から1に変わる。さらに、光トランシーバ選択信号sの値は、更新後のディスカバリ対象光トランシーバ識別番号dの値である1に変更される。これによって、直後のディスカバリ・ウインドウ期間中は上り電気信号US[1]が選択され、この期間内に到着するフレームのうち、上り電気信号US[1]に含まれる登録要求フレーム、つまり、光トランシーバ11-1と光スプリッタ2-1を介して接続された新規のONU3からの登録要求フレームが、PON制御回路12に入力されることになる。なお、図6中、F(0,1)、F(1,1)は、登録要求フレームを含む信号である。
(2)次に、t3においてグラント信号SGがグラントの開始を示すことを契機に、このグラント信号SGの論理リンク識別番号gの値2に対応する光トランシーバの識別番号eを光トランシーバ選択テーブルTBAから取得し、t4において光トランシーバ選択信号sの値を、この取得した光トランシーバの識別番号eの値である0に変更する。これによって、直後のグラント期間中は上り電気信号US[0]が選択されるので、光トランシーバ11-0と光スプリッタ2-0を介して接続されたONU3との論理リンクであり、論理リンク識別番号2が指し示す論理リンクについて、そのリンクされたONU3からの上りフレームがPON制御回路12に入力されることになる。なお、図6中、F(0,2)は論理リンク識別番号=2のグラントである。
(3)次に、t5においてグラント信号SGがグラントの開始を示すことを契機に、このグラント信号SGの論理リンク識別番号gの値3に対応する光トランシーバの識別番号eを光トランシーバ選択テーブルTBAから取得し、t6において光トランシーバ選択信号sの値を、この取得した光トランシーバの識別番号eの値である1に変更する。これによって、直後のグラント期間中は上り電気信号US[1]が選択されるので、光トランシーバ11-1と光スプリッタ2-1を介して接続されたONU3との論理リンクであり、論理リンク識別番号3が指し示す論理リンクについて、そのリンクされたONU3からの上りフレームがPON制御回路12に入力されることになる。なお、図6中、F(1,2)は論理リンク識別番号=3のグラントである。
(4)t7においてディスカバリ・ウインドウ信号SDがディスカバリ・ウインドウの開始を示すことを契機に、上り信号選択制御部13-3A内の変数であるディスカバリ対象光トランシーバ識別番号dの値を更新する。この更新では、値を0に戻す処理が行われ、ディスカバリ対象光トランシーバ識別番号dは、1から0に変わる。さらに、光トランシーバ選択信号sの値を、更新後のディスカバリ対象光トランシーバ識別番号dの値である0に変更する。これによって、直後のディスカバリ・ウインドウ期間中は上り電気信号US[0]が選択され、この期間内に到着するフレームのうち、上り電気信号US[1]に含まれる登録要求フレーム、つまり、光トランシーバ11-0と光スプリッタ2-0を介して接続された新規のONU3からの登録要求フレームが、PON制御回路12に入力されることになる。
 上記のタイムチャートが示すように、本発明を適用したOLT1Aは、PON制御回路12がディスカバリ・ウインドウやグラントの開始タイミングやその継続時間を制御するためにPON制御回路12内部で生成するディスカバリ・ウインドウ信号SDやグラント信号SGを、上り信号選択制御部13-3Aに渡す。これによって、上り信号選択制御部13-3Aは、ディスカバリ・ウインドウやグラントを受ける光トランシーバ11の選択を、ONU3からの登録要求フレームや上り電気信号USを受信するよりも前に行うことができる。
 受信あるいは受信断の解除を検知してから光トランシーバ11を選択し受信信号をPON制御回路12に渡す手順では、光トランシーバ11に信号が入力されてから選択が完了するまでに要する時間内に入力された信号はPON制御回路12に入力されないので、ONU3が送信する上り信号のうち有意な信号を含まないバースト先頭に位置する同期パターンを伸長しておく必要があるが、本発明の適用によって信号全てをPON制御回路12に入力することができるため、バースト先頭に位置する同期パターンを伸長する必要がなく、上りのスループットが向上する、という効果が得られる。
 上り電気信号を選択する方式として、例えば、光トランシーバのLOS信号を利用して、どの光トランシーバからの上り電気信号を選択するかを決める方式が考えられる。しかし、LOS信号を用いた方式では、上り電気信号が到着した後に選択が切り替わるので、上り電気信号の先頭の同期パターンの一部が、後段の回路に入力されず、それを補うために、同期パターンの伸長が必要となる。これに対し、本実施の形態の方式では、OLTが予測する上り電気信号の到着時刻に合わせて切替を行うので、同期パターンの一部が後段の回路に入力されないという問題は発生せず、同期パターンの伸長が不要となる。これにより、同期パターンの伸長に伴う上りのスループットの低下が発生せず、上りのスループットを向上させることができるようになる。
〔実施の形態2〕
 次に、図9を参照して、実施の形態2のOLTについて説明する。図9は、実施の形態2のOLT1(1B)内の選択・分配回路13(13B)の構成例を示す図である。実施の形態1の選択・分配回路13Aの構成との違いは、上り信号選択制御部13-3(13-3B)がPON制御回路12から入力する光トランシーバ選択制御信号SCにある。
 すなわち、実施の形態1の光トランシーバ選択制御信号SC(SCA)には、登録されたONU3との論理リンクに対する論理リンク識別番号を知るために、新規登録の論理リンク識別番号kが含まれていたが、実施の形態2の光トランシーバ選択制御信号SC(SCB)には、新規登録の論理リンク識別番号kが含まれていない。
 実施の形態1において、上り信号選択制御部13-3Aは、PON制御回路12から新規登録の論理リンク識別番号kを入力されたとき、この論理リンク識別番号kが指し示すONU3との論理リンクを確立する契機となった登録要求フレームを受信したディスカバリ・ウインドウの期間中に選択・分配回路13Aが選択していた光トランシーバの識別番号dを論理リンク識別番号kに対応づけて、光トランシーバ選択テーブルTB(TBA)に記憶するものとしていた。すなわち、実施の形態1において、上り信号選択制御部13-3Aは、PON制御回路12から入力される新規登録の論理リンク識別番号kを利用して、論理リンク識別番号と光トランシーバの識別番号との対応づけを行っていた。
 これに対し、実施の形態2においては、上り信号選択制御部13-3Bは、PON制御回路12から新規登録の論理リンク識別番号kを入力するのではなく、グラント信号SGに含まれる論理リンク識別番号gが光トランシーバ選択テーブルTBに登録済であるか否かを判定し、未登録と判定した場合、そのグラント信号SGに含まれる論理リンク識別番号gを利用して、論理リンク識別番号と光トランシーバの識別番号との対応づけを行う。
 図10に、実施の形態2で使用する光トランシーバ選択テーブルTB(TBB)の構造を示す。この光トランシーバ選択テーブルTBBでも、実施の形態1で使用した光トランシーバ選択テーブルTBAと同様に、エントリ番号として論理リンク識別番号を用い、この論理リンク識別番号に対応づけて記憶する光トランシーバの識別番号の値を、論理リンク識別番号がエントリ番号となったエントリに格納する。
 但し、この光トランシーバ選択テーブルTBBにおいて、エントリには、光トランシーバの識別番号の値のほかに、エントリの有効時間を管理するための有効タイマの値を格納する。この有効タイマの値を、時間の経過に伴って減少させ、有効タイマの値が0となった時点で、エントリを無効と判定する。論理リンク識別番号が光トランシーバ選択テーブルTBBに登録済であるか否かを判定するとき、論理リンク識別番号をエントリ番号とするエントリの有効タイマの値を読み取って、有効タイマの値が0より大きい値となっている場合に、論理リンク識別番号が光トランシーバ選択テーブルTBBに登録済と判定し、有効タイマの値が0である場合には、論理リンク識別番号が光トランシーバ選択テーブルTBBには登録されていない、すなわち未登録と判定する。
 図11を参照して、上り信号選択制御部13-3Bが、光トランシーバ選択テーブルTBBに論理リンク識別番号と対応づけて光トランシーバの識別番号を登録する手順を説明する。
 上り信号選択制御部13-3Bは、図11のフローチャートにより示された手順による処理を、上り信号選択制御部13-3Bの動作が可能となった時点、例えば、OLT1Bへの電源供給やその後のOLT1Bの初期化直後から開始し、上り信号選択制御部13-3Bの動作が停止されるまでの時点、例えば、上り信号選択制御部13-3Bを含む選択・分配回路13Bの再初期化指示やOLT1Bへの電源供給停止まで、繰り返す。
〔ステップS301〕
 本手順の開始直後に、上り信号選択部13-2に向けて出力する光トランシーバ選択信号sの値を初期化する。本例では、初期化された値をs=0とする。また、上り信号選択制御部13-3B内の変数であるディスカバリ対象光トランシーバ識別番号dの値を初期化する。本例では、初期化された値をd=0とする。また、光トランシーバ選択テーブルTBBの全エントリについて、論理リンクが未登録となるよう初期化する。本例では、全エントリの初期化された有効タイマ値を0とする。次に、ステップS302に移行する。
〔ステップS302〕
 上り信号選択制御部13-3Bに入力されるディスカバリ・ウインドウ信号SDが、ディスカバリ・ウインドウの開始タイミングを示すか否かの判定を行う。この判定において、YESの場合はステップS303、NOの場合はステップS305に移行する。
〔ステップS303〕
 上り信号選択制御部13-3B内の変数であるディスカバリ対象光トランシーバ識別番号dの値をインクリメントする。ただし、インクリメント前にディスカバリ対象光トランシーバ識別番号dの値がN-1だった場合は、0に更新する。本例では、d=(d+1)%Nとする(左辺のdは更新後の値、右辺側のdは更新前の値であり、演算子%は剰余演算を表す)。次に、ステップS304に移行する。
〔ステップS304〕
 上り信号選択部13-2に向けて出力する光トランシーバ選択信号sの値を、ステップS303で更新されたディスカバリ対象光トランシーバ識別番号dの値に変更する。本例では、s=dとする。その後、ステップS311を経て、ステップS302に戻る。ステップS311で停止を確認すれば、本手順の処理を終了する。
〔ステップS305〕
 上り信号選択制御部13-3Bに入力されるグラント信号SGが、グラントの開始タイミングを示すか否かの判定を行う。この判定において、YESの場合はステップS306に移行し、NOの場合はステップS302に戻る。
〔ステップS306〕
 上り信号選択制御部13-3Bが管理する光トランシーバ選択テーブルTBBから、エントリ番号がステップS305で入力されたグラント信号SGが示す論理リンク識別番号gであるエントリ[g]を読み出す。次に、ステップS307に移行する。
〔ステップS307〕
 ステップS306で光トランシーバ選択テーブルTBBから読み取ったエントリ[g]の有効タイマの値により、論理リンク識別番号gが光トランシーバ選択テーブルTBBに登録済であるか否かを判定する。エントリ[g]の有効タイマ値が0より大きい場合(YESの場合)には、論理リンク識別番号gが登録済であると判定し、ステップS309に移行する。また、エントリ[g]の有効タイマ値が0の場合(NOの場合)には、論理リンク識別番号gが未登録であると判定し、ステップS308に移行する。
〔ステップS308〕
 ステップS306で光トランシーバ選択テーブルTBBから読み取ったエントリ[g]の光トランシーバの識別番号に、ディスカバリ対象光トランシーバ識別番号dをセットする。これにより、ステップS307で未登録と判定した論理リンク識別番号gに対応する光トランシーバの識別番号として、直前のディスカバリ・ウインドウの期間中に選択していた光トランシーバを指し示す値を登録したことになる。次に、ステップS309に移行する。
〔ステップS309〕
 ステップS306で光トランシーバ選択テーブルTBBから読み取ったエントリ[g]の有効タイマに、有効タイマ初期値Tをセットする。この有効タイマ値は時間の経過に伴ってダウンカウントされるが、論理リンク識別番号gを示すグラント信号SGをPON制御回路12が出力した時点で、ステップS309の手順によって有効タイマ初期値Tに戻る。このため、有効タイマ初期値Tによって規定される時間内にグラント信号SGが論理リンク識別番号gを示すことがなかった場合にのみ、有効タイマの値が0となって論理リンク識別番号gが未登録の状態となる。これは、論理リンク識別番号gが指し示す論理リンクが切断されたことに相当する。次に、ステップS310に移行する。
〔ステップS310〕
 上り信号選択部13-2に向けて出力する光トランシーバ選択信号sの値を、エントリ[g]の光トランシーバの識別番号eに変更する。本例では、s=eとする。その後、その後、ステップS311を経て、ステップS302に戻る。ステップS311で停止を確認すれば、本手順の処理を終了する。
 上記の手順において、ディスカバリ対象光トランシーバ識別番号dの値をインクリメントによって更新しているが、光トランシーバ別に、光トランシーバに接続される未登録のONUの有無が予め分かっている場合は、未登録のONUを接続していない光トランシーバを選択から除外するように、ディスカバリ対象光トランシーバ識別番号dを更新する手順も可能である。これによって、未登録のONUを登録するまでの平均時間を短縮することができる。
 図12を参照して、光トランシーバ選択テーブルTBBの各エントリの有効タイマ値を更新する手順を説明する。図11を用いて説明したように、光トランシーバ選択テーブルTBBの各エントリの有効タイマ値を、時間の経過に伴ってダウンカウントするが、図12はこの有効タイマ値をダウンカウントする手順を示す。
 上り信号選択制御部13-3Bは、図12のフローチャートにより示された処理を、上り信号選択制御部13-3Bの動作が可能となった時点、例えば、OLT1Bへの電源供給やその後のOLT1Bの初期化直後から開始し、上り信号選択制御部13-3Bの動作が停止されるまでの時点、例えば、上り信号選択制御部13-3Bを含む選択・分配回路13Bの再初期化指示やOLT1Bへの電源供給停止まで、繰り返す。上り信号選択制御部13-3Bは、図11に示した処理を実行中の割り込み動作として、有効タイマ単位時間T0が経過する毎に、図12に示した処理を繰り返す。
〔ステップS401〕
 有効タイマ単位時間T0の経過を待つ。本手順では、有効タイマ単位時間T0を経過する毎に、光トランシーバ選択テーブルTBBの各エントリの有効タイマの値を1づつ減少させる。各エントリの有効タイマ値は、有効タイマ初期値Tから有効タイマ単位時間T0を経過する毎に1づつ減少して0となるとき、そのエントリの論理リンク識別番号が指し示す論理リンクが切断されたと判断されるので、リンクアップ中の論理リンクのグラントは、T(有効タイマ初期値)×T0(有効タイマ単位時間)時間以内に上り信号中に現れる必要がある。次に、ステップS402に移行する。
〔ステップS402〕
 光トランシーバ選択テーブルTBBの各エントリ(エントリ番号k)の各々について、下記のステップS403~S405の手順を行う。このステップS403~S405の手順によって、光トランシーバ選択テーブルTBBの各エントリの有効タイマの値が1づつ減少されることになる(有効タイマ値が0のエントリについては減少されない)。
〔ステップS403〕
 光トランシーバ選択テーブルTBBからエントリ番号kのエントリ[k]を読み出し、ステップS404に移行する。
〔ステップS404〕
 ステップS403で読み出したエントリ[k]の有効タイマ値が0より大きい場合にはステップS405に移行し、有効タイマ値が0となっている場合にはステップS406に移行する。
〔ステップS405〕
 エントリ[g]の有効タイマ値をデクリメント(-1)した値にセットする。その後、ステップS406に移行する。
〔ステップS406〕
 光トランシーバ選択テーブルTBBの全エントリに対してステップS403~S405の手順を実施した場合はステップS401に戻り、未実施のエントリがある場合は、残りのエントリについてステップS403~S405の手順を実施するためステップS402に戻る。また、ステップS407で停止を確認すれば、本手順の処理を終了する。
 なお、PON制御回路12が、リンクアップしていた論理リンク識別番号gの論理リンクが切断された後、新規登録されたONU3との論理リンクに対して論理リンク識別番号gを再利用する場合は、切断からの時間を計測し、この切断からの経過時間がT(有効タイマ初期値)×T0(有効タイマ単位時間)以上となるまで、再利用を保留するべきである。つまり、再利用の保留時間内に新規登録されたONU3との論理リンクには、再利用保留中である論理リンク識別番号gではなく、未使用か再利用の保留時間が経過した別の論理リンク識別番号を割り当てるべきである。
 このように、実施の形態2は、実施の形態1とは異なり、新規登録の論理リンク識別番号kをPON制御回路12から上り信号選択制御部13-3Bに渡さなくとも、上り信号選択制御部13-3B自身で、グラント信号SGの論理リンク識別番号gが新規登録であるか否かを判定できるため、PON制御回路12における処理を軽減することができる。
 実施の形態1では、未登録のONU3とOLT1A間の論理リンクを確立してから論理リンクに対するグラントをOLT1Aが与えるまでの期間内に、新規登録の論理リンク識別番号kをPON制御回路12から上り信号制御選択部13-3Aに渡し、さらに、論理リンク識別番号kと対応づけて光トランシーバの識別番号dを光トランシーバ選択テーブルTAに記憶する必要がある。
 つまり、実施の形態1では、PON制御回路12が未登録のONU3とOLT1A間の論理リンクを確立してから論理リンクの論理リンク識別番号kを上り信号選択制御部13-3Aに渡すまでの処理を短時間に完了する必要がある。しかし、実施の形態2ではPON制御回路12でのそのような処理は不要となるため、PON制御回路12を容易に実現できるという効果が得られる。
〔実施の形態の拡張〕
 以上、実施の形態を参照して本発明を説明したが、本発明は上記の実施の形態に限定されるものではない。本発明の構成や詳細には、本発明の技術思想の範囲内で当業者が理解し得る様々な変更をすることができる。また、各実施の形態については、矛盾しない範囲で任意に組み合わせて実施することができる。
 本発明は、10G-EPONなどの光伝送システムにおける局側装置、光伝送システム及び光伝送方法として用いることが可能である。
 1(1A,1B)…OLT(局側装置)、2(2-0~2-N-1)…光スプリッタ、3…ONU(加入者側装置)、4…上位装置、11(11-0~11-N-1)…光トランシーバ、12…PON制御回路、12-1…制御信号出力部、13(13A,13B)…選択・分配回路、13-1…下り信号分配部、13-2…上り信号選択部、13-3(13-3A,13-3B)…上り信号選択制御部、13-1…メモリ、13-2…選択部、13-3…登録部、TB(TBA,TBB)…光トランシーバ選択テーブル。

Claims (7)

  1.  第1~第N(N≧2)の光スプリッタを介して接続された複数の加入者側装置と上位装置との間でフレームを転送処理する、光伝送システムにおける局側装置において、
     前記第1~第Nの光スプリッタに1対1で接続され、前記加入者側装置への下り電気信号の光信号への電気光変換と、前記加入者側装置からの光信号の上り電気信号への光電気変換とを行う第1~第Nの光トランシーバと、
     前記第1~第Nの光トランシーバから1つの光トランシーバを選択し、選択した前記1つの光トランシーバから入力された上り電気信号を出力するとともに、下り電気信号を前記第1~第Nの光トランシーバに分配して出力する選択・分配回路と、
     前記複数の加入者側装置を、前記複数の加入者側装置が同時に上りフレームを送信しないように制御するとともに、前記選択・分配回路を制御する制御回路とを備え、
     前記選択・分配回路は、
     前記制御回路から送られてくる、未登録の加入者側装置からの登録要求フレームの受信を待ち受けるディスカバリ・ウインドウのタイミングと、登録済の加入者側装置からの上りフレームの受信期間であるグラントのタイミングおよびそのグラントに割り当てられる登録済の加入者側装置との論理リンクに対する論理リンク識別番号とを基に、前記第1~第Nの光トランシーバから1つの光トランシーバを選択する選択制御部を有する
     ことを特徴とする、光伝送システムにおける局側装置。
  2.  請求項1に記載された、光伝送システムにおける局側装置において、
     前記選択制御部は、
     登録済の加入者側装置との論理リンクに対する論理リンク識別番号と光トランシーバの識別番号との対応関係を示す光トランシーバ選択テーブルと、
     前記グラントの期間中に、そのグラントに割り当てられる登録済の加入者側装置との論理リンクに対する論理リンク識別番号に対応する光トランシーバの識別番号を前記光トランシーバ選択テーブルから取得し、この取得した光トランシーバの識別番号に基づいて前記第1~第Nの光トランシーバから1つの光トランシーバを選択する選択部とを有する
     ことを特徴とする、光伝送システムにおける局側装置。
  3.  請求項2に記載された、光伝送システムにおける局側装置において、
     前記選択制御部は、
     前記ディスカバリ・ウインドウの期間中に新規登録された加入者側装置との論理リンクに対する論理リンク識別番号を取得し、この取得した論理リンク識別番号とそのディスカバリ・ウインドウの期間中に選択していた光トランシーバの識別番号との対応関係を前記光トランシーバ選択テーブルに登録する登録部をさらに有する
     ことを特徴とする、光伝送システムにおける局側装置。
  4.  請求項2に記載された、光伝送システムにおける局側装置において、
     前記選択制御部は、
     前記グラントの期間中にそのグラントに割り当てられる登録済の加入者側装置との論理リンクに対する論理リンク識別番号を取得し、この論理リンク識別番号が前記光トランシーバ選択テーブルに登録済であるか否かを判定し、未登録と判定した場合、そのグラントに割り当てられる登録済の加入者側装置との論理リンクに対する論理リンク識別番号と直前の前記ディスカバリ・ウインドウの期間中に選択していた光トランシーバの識別番号とを対応づけて前記光トランシーバ選択テーブルに登録する登録部をさらに有する
     ことを特徴とする、光伝送システムにおける局側装置。
  5.  請求項1に記載された、光伝送システムにおける局側装置において、
     前記制御回路は、
     未登録の加入者側装置からの登録要求フレームの受信を待ち受けるディスカバリ・ウインドウのタイミングと、登録済の加入者側装置からの上りフレームの受信期間であるグラントのタイミングおよびそのグラントに割り当てられる登録済の加入者側装置との論理リンクに対する論理リンク識別番号とを示す光トランシーバ選択制御信号を、前記選択・分配回路に出力する制御信号出力部を有し、
     前記選択制御部は、
     前記加入者側装置との論理リンクを確立する契機となった登録要求フレームを受信した前記ディスカバリ・ウインドウの期間中に選択していた光トランシーバの識別番号を、前記加入者側装置との論理リンクに対する論理リンク識別番号に対応づけて記憶する光トランシーバ選択テーブルと、
     前記光トランシーバ選択制御信号が示すディスカバリ・ウインドウの期間中に、前記第1~第Nの光トランシーバから1つの光トランシーバを選択し、前記光トランシーバ選択制御信号が示すグラントの期間中に、前記光トランシーバ選択制御信号が示す論理リンク識別番号に対応づけて前記光トランシーバ選択テーブルに記憶されている光トランシーバの識別番号を取得し、この取得した光トランシーバの識別番号に基づいて第1~第Nの光トランシーバから1つの光トランシーバを選択する選択部とを有する
     ことを特徴とする、光伝送システムにおける局側装置。
  6.  第1~第N(N≧2)の光スプリッタと、この第1~第Nの光スプリッタに接続された複数の加入者側装置と、この第1~第Nの光スプリッタに接続された複数の加入者側装置と上位装置との間でフレームを転送処理する局側装置とを備えた光伝送システムにおいて、
     前記局側装置は、
     前記第1~第Nの光スプリッタに1対1で接続され、前記加入者側装置への下り電気信号の光信号への電気光変換と、前記加入者側装置からの光信号の上り電気信号への光電気変換とを行う第1~第Nの光トランシーバと、
     前記第1~第Nの光トランシーバから1つの光トランシーバを選択し、選択した前記1つの光トランシーバから入力された上り電気信号を出力するとともに、下り電気信号を前記第1~第Nの光トランシーバに分配して出力する選択・分配回路と、
     前記複数の加入者側装置を、前記複数の加入者側装置が同時に上りフレームを送信しないように制御するとともに、前記選択・分配回路を制御する制御回路とを備え、
     前記選択・分配回路は、
     前記制御回路から送られてくる、未登録の加入者側装置からの登録要求フレームの受信を待ち受けるディスカバリ・ウインドウのタイミングと、登録済の加入者側装置からの上りフレームの受信期間であるグラントのタイミングおよびそのグラントに割り当てられる登録済の加入者側装置との論理リンクに対する論理リンク識別番号とを基に、前記第1~第Nの光トランシーバから1つの光トランシーバを選択する選択制御部を有する
     ことを特徴とする、光伝送システム。
  7.  第1~第N(N≧2)の光スプリッタと、この第1~第Nの光スプリッタに接続された複数の加入者側装置と、前記第1~第Nの光スプリッタと上位装置との間に設けられた局側装置とを備え、前記局側装置において、前記第1~第Nの光スプリッタに接続された複数の加入者側装置と前記上位装置との間のフレームを転送処理する光伝送方法において、
     前記局側装置に、
     前記第1~第Nの光スプリッタに1対1で接続され、前記加入者側装置への下り電気信号の光信号への電気光変換と、前記加入者側装置からの光信号の上り電気信号への光電気変換とを行う第1~第Nの光トランシーバと、
     前記第1~第Nの光トランシーバから1つの光トランシーバを選択し、選択した前記1つの光トランシーバから入力された上り電気信号を出力するとともに、下り電気信号を前記第1~第Nの光トランシーバに分配して出力する選択・分配回路と、
     前記複数の加入者側装置を、前記複数の加入者側装置が同時に上りフレームを送信しないように制御するとともに、前記選択・分配回路を制御する制御回路とを設け、
     前記選択・分配回路において、
     前記制御回路から送られてくる、未登録の加入者側装置からの登録要求フレームの受信を待ち受けるディスカバリ・ウインドウのタイミングと、登録済の加入者側装置からの上りフレームの受信期間であるグラントのタイミングおよびそのグラントに割り当てられる登録済の加入者側装置との論理リンクに対する論理リンク識別番号とを基に、前記第1~第Nの光トランシーバから1つの光トランシーバを選択する
     ことを特徴とする、光伝送方法。
PCT/JP2015/073195 2014-08-22 2015-08-19 光伝送システムにおける局側装置、光伝送システム及び光伝送方法 WO2016027820A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/505,559 US9954617B2 (en) 2014-08-22 2015-08-19 Station-side apparatus in optical transmission system, optical transmission system, and optical transmission method
JP2016544224A JP6182271B2 (ja) 2014-08-22 2015-08-19 光伝送システムにおける局側装置、光伝送システム及び光伝送方法
EP15833120.7A EP3185487B1 (en) 2014-08-22 2015-08-19 Station-side device in optical transmission system, optical transmission system and optical transmission method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014169169 2014-08-22
JP2014-169169 2014-08-22

Publications (1)

Publication Number Publication Date
WO2016027820A1 true WO2016027820A1 (ja) 2016-02-25

Family

ID=55350764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073195 WO2016027820A1 (ja) 2014-08-22 2015-08-19 光伝送システムにおける局側装置、光伝送システム及び光伝送方法

Country Status (5)

Country Link
US (1) US9954617B2 (ja)
EP (1) EP3185487B1 (ja)
JP (1) JP6182271B2 (ja)
TW (1) TWI584605B (ja)
WO (1) WO2016027820A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220329321A1 (en) * 2019-09-02 2022-10-13 Nippon Telegraph And Telephone Corporation Communication apparatus, and communication method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011211262A (ja) * 2010-03-27 2011-10-20 Sumitomo Electric Ind Ltd 局側装置および帯域割り当て方法

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3598952B2 (ja) * 2000-08-10 2004-12-08 日本電気株式会社 Atm−pon二重化システム、局側光網終端装置、加入者側光網終端装置、およびatm−pon二重化方法
US6868232B2 (en) * 2001-02-12 2005-03-15 Lucent Technologies Inc. Fast protection switching by snooping on upstream signals in an optical network
US6470032B2 (en) * 2001-03-20 2002-10-22 Alloptic, Inc. System and method for synchronizing telecom-related clocks in ethernet-based passive optical access network
US20020135843A1 (en) * 2001-03-20 2002-09-26 Dumitru Gruia Point-to-multipoint optical access network distributed with central office interface capacity
KR100547715B1 (ko) * 2003-03-12 2006-01-31 삼성전자주식회사 코드분할 다중화를 적용한 수동형 광 가입자 망
JPWO2004091123A1 (ja) * 2003-04-02 2006-07-06 住友電気工業株式会社 光増幅機能を有する光通信システム
US7545813B2 (en) * 2003-08-26 2009-06-09 Teknovus, Inc. Method and apparatus for registering multiple remote nodes in an ethernet passive optical network
KR100584383B1 (ko) * 2004-01-20 2006-05-26 삼성전자주식회사 광선로가입자장치들의 링크 상태를 관리하기 위한광선로종단장치 및 이를 적용한 기가비트 이더넷 기반의수동 광가입자망
TWI248263B (en) * 2004-05-10 2006-01-21 Ind Tech Res Inst Passive optical network with protection mechanism and its method of relocation
US20060171714A1 (en) 2005-02-02 2006-08-03 Calix Networks, Inc. Electrically shared passive optical network
US20060257149A1 (en) * 2005-05-16 2006-11-16 Hirth Ryan E Method and apparatus for accommodating multiple optical segments in an Ethernet passive optical network
US20070019957A1 (en) * 2005-07-19 2007-01-25 Chan Kim Dynamic bandwidth allocation apparatus and method in Ethernet Passive Optical Network, and EPON master apparatus using the same
JP4696759B2 (ja) * 2005-07-29 2011-06-08 Kddi株式会社 光終端システム
JP4687332B2 (ja) * 2005-08-25 2011-05-25 日本電気株式会社 光アクセスネットワークのセンタ側装置および光アクセスネットワークのデータ信号送出方法
JP2007074234A (ja) * 2005-09-06 2007-03-22 Hitachi Communication Technologies Ltd 伝送装置
JP4028570B2 (ja) * 2005-11-11 2007-12-26 株式会社日立コミュニケーションテクノロジー Onu管理方法および光伝送路終端装置
US7760734B2 (en) * 2005-12-09 2010-07-20 Electronics And Telecommunications Research Institute TDMA passive optical network OLT system for broadcast service
US7590139B2 (en) * 2005-12-19 2009-09-15 Teknovus, Inc. Method and apparatus for accommodating TDM traffic in an ethernet passive optical network
KR100800688B1 (ko) * 2005-12-26 2008-02-01 삼성전자주식회사 파장분할다중방식 수동형 광네트워크 시스템의 광송신기제어 장치 및 그 방법
KR101359812B1 (ko) * 2006-03-31 2014-02-07 브리티쉬 텔리커뮤니케이션즈 파블릭 리미티드 캄퍼니 광통신망에 지국을 도입하는 방법 및 그 지국
JP2007324853A (ja) * 2006-05-31 2007-12-13 Oki Electric Ind Co Ltd 光通信システム
JP4992472B2 (ja) * 2006-07-26 2012-08-08 日本電気株式会社 Ponシステム、局側装置及びそれらに用いる冗長化方法
CN101636942B (zh) * 2007-03-27 2012-10-03 富士通株式会社 光通信基站、光信号转换装置以及光信号转换方法
JP4839266B2 (ja) * 2007-06-07 2011-12-21 株式会社日立製作所 光通信システム
JP4941379B2 (ja) * 2008-03-28 2012-05-30 住友電気工業株式会社 局側装置、その制御方法およびそのコンピュータ・プログラム
GB0813308D0 (en) * 2008-07-21 2008-08-27 Tyco Electronics Raychem Nv Optical fibre networks
JP4700094B2 (ja) * 2008-10-24 2011-06-15 株式会社日立製作所 光アクセスシステム及び光回線装置
US8600234B2 (en) * 2009-04-01 2013-12-03 Broadcom Corporation Method and apparatus for link sharing among multiple epons
CN101854566B (zh) * 2009-04-02 2014-08-13 华为技术有限公司 无源光网络保护方法、主备切换控制设备和系统
CN102075820B (zh) * 2009-11-23 2015-05-20 中兴通讯股份有限公司 在无源光网络中测距的方法和装置
US8548327B2 (en) * 2009-12-15 2013-10-01 Broadcom Corporation Dynamic management of polling rates in an ethernet passive optical network (EPON)
US8254386B2 (en) * 2010-03-26 2012-08-28 Verizon Patent And Licensing, Inc. Internet protocol multicast on passive optical networks
JP5066591B2 (ja) 2010-07-07 2012-11-07 日本電信電話株式会社 双方向光増幅器及びponシステム及びponシステムの通信方法
US8565601B2 (en) * 2010-12-08 2013-10-22 Mitsubishi Electric Corporation Communication method for optical communication system, optical communication system, slave station apparatus, control device, and computer program
US8699326B2 (en) * 2011-01-31 2014-04-15 Telefonaktiebolaget L M Ericsson (Publ) Optical network automatic protection switching
US8526815B2 (en) * 2011-05-19 2013-09-03 Pmc-Sierra Israel Ltd. Dynamic bandwidth allocation for congestion management in PON channel aggregation
KR101516135B1 (ko) * 2011-10-19 2015-04-29 니폰 덴신 덴와 가부시끼가이샤 광 네트워크 시스템
US20130121684A1 (en) * 2011-11-10 2013-05-16 Alcatel-Lucent Usa Inc. Apparatus And Method For Providing Protection In A Passive Optical Network
JP5853822B2 (ja) * 2012-03-29 2016-02-09 沖電気工業株式会社 加入者側装置登録方法
CN102687427A (zh) * 2012-04-11 2012-09-19 华为技术有限公司 无源光网络的测距方法、系统和装置
US8913887B2 (en) 2012-05-30 2014-12-16 Broadcom Corporation Passive optical fiber plant analysis
WO2014071309A2 (en) * 2012-11-05 2014-05-08 Huawei Technologies Co., Ltd. System and method for passive optical network communication
EP2997684B1 (en) * 2013-05-15 2018-10-31 ZTE Corporation Using noisy window for uncalibrated optical network unit activation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011211262A (ja) * 2010-03-27 2011-10-20 Sumitomo Electric Ind Ltd 局側装置および帯域割り当て方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3185487A4 *
SENOO, YUMIKO ET AL.: "Dynamic load-balancing by monitoring traffic volume for lambda-tunable WDM/TDM-PON", IEICE COMMUNICATIONS EXPRESS, vol. 2, no. 11, 22 November 2013 (2013-11-22), pages 501 - 506, XP009500238, Retrieved from the Internet <URL:https://www.jstage.jst.go.jp/article/comex/2/11/2_501/_article> [retrieved on 20151026] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220329321A1 (en) * 2019-09-02 2022-10-13 Nippon Telegraph And Telephone Corporation Communication apparatus, and communication method
US11888524B2 (en) * 2019-09-02 2024-01-30 Nippon Telegraph And Telephone Corporation Communication apparatus, and communication method

Also Published As

Publication number Publication date
EP3185487A1 (en) 2017-06-28
TWI584605B (zh) 2017-05-21
EP3185487B1 (en) 2018-12-12
JP6182271B2 (ja) 2017-08-16
JPWO2016027820A1 (ja) 2017-04-27
US20170272167A1 (en) 2017-09-21
EP3185487A4 (en) 2018-01-17
US9954617B2 (en) 2018-04-24
TW201613297A (en) 2016-04-01

Similar Documents

Publication Publication Date Title
JP4551280B2 (ja) 光アクセス網システム
JP5651548B2 (ja) 局側装置、光ネットワークシステム
KR102402781B1 (ko) 데이터 전송 방법, 관련 장치 및 시스템
US10193630B2 (en) Station-side device and optical transmission system
JP5600210B2 (ja) 局側装置
CN108028972A (zh) 一种光网络单元注册的方法、装置及系统
JP6182271B2 (ja) 光伝送システムにおける局側装置、光伝送システム及び光伝送方法
JP6013299B2 (ja) 光伝送システムにおける局側装置及び光伝送システム
JP5640877B2 (ja) 通信システム、親局装置および通信回線切替方法
JP6093282B2 (ja) 光通信システム、通信制御方法及び局側光回線終端装置
JP5329572B2 (ja) 帯域制御回路
JP2011166328A (ja) 光伝送システム、局側光終端装置及び上り送信制御方法
JP5795550B2 (ja) 光伝送システムにおける局側装置およびフレーム転送方法
JP7122914B2 (ja) 光通信システム、光通信装置、制御方法、及び制御プログラム
JP6093281B2 (ja) 光通信システム、信号送信制御方法及び局側光回線終端装置
JP5942751B2 (ja) Wdm/tdm−pon方式用の局側装置及び光通信ネットワークシステム
KR101629568B1 (ko) Twdm pon 시스템에서 동적 상향 파장과 동적 전송 대역을 동시에 할당하는 동적 할당 장치 및 방법
JP6267145B2 (ja) 局側装置および光伝送システム
JP5661665B2 (ja) 分岐光アクセスシステムおよび方法
JP5661664B2 (ja) 分岐光アクセスシステムおよび方法
JP5748285B2 (ja) フレーム転送装置および方法
WO2016157626A1 (ja) 局側装置および通信制御方法
JP2016165053A (ja) 局側装置および光伝送システム
CN111182376A (zh) Onu终端上线的方法、系统和olt设备
JP2017034429A (ja) 局側装置および光伝送システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15833120

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016544224

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015833120

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15505559

Country of ref document: US

Ref document number: 2015833120

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE