WO2016027351A1 - 運転支援装置及び運転支援方法 - Google Patents

運転支援装置及び運転支援方法 Download PDF

Info

Publication number
WO2016027351A1
WO2016027351A1 PCT/JP2014/071902 JP2014071902W WO2016027351A1 WO 2016027351 A1 WO2016027351 A1 WO 2016027351A1 JP 2014071902 W JP2014071902 W JP 2014071902W WO 2016027351 A1 WO2016027351 A1 WO 2016027351A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
standby position
unit
left turn
driving support
Prior art date
Application number
PCT/JP2014/071902
Other languages
English (en)
French (fr)
Inventor
良貴 高木
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to EP14900080.4A priority Critical patent/EP3185233A4/en
Priority to US15/504,516 priority patent/US9911330B2/en
Priority to RU2017108762A priority patent/RU2638328C1/ru
Priority to JP2016543547A priority patent/JP6269840B2/ja
Priority to PCT/JP2014/071902 priority patent/WO2016027351A1/ja
Priority to MX2017002012A priority patent/MX358892B/es
Priority to BR112017002830-1A priority patent/BR112017002830B1/pt
Priority to CN201480081375.3A priority patent/CN106575477B/zh
Publication of WO2016027351A1 publication Critical patent/WO2016027351A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18154Approaching an intersection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W40/09Driving style or behaviour
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/095Traffic lights
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/09623Systems involving the acquisition of information from passive traffic signs by means mounted on the vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/802Longitudinal distance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2555/00Input parameters relating to exterior conditions, not covered by groups B60W2552/00, B60W2554/00
    • B60W2555/60Traffic rules, e.g. speed limits or right of way

Definitions

  • the present invention relates to a driving support device and a driving support method for supporting driving of a vehicle.
  • Patent Document 1 does not propose a stop position that takes into account a blind spot caused by a vehicle waiting for a right or left turn from an oncoming lane, because the support method for the right or left turn is not limited to risk notification to the driver.
  • an object of the present invention is to provide a driving support device and a driving support method that can make a host vehicle wait for a right or left turn at a position that takes into account the risk and efficiency when making a right or left turn. .
  • the object detection unit detects an object ahead of the host vehicle, and the host vehicle is detected after a predetermined time based on the current position of the host vehicle and the travel route of the host vehicle in the road information.
  • left / right turn information indicating that a right / left turn is made across the opposite lane at the intersection is detected, and right / left turn information is detected
  • the right / left turn from the opposite lane is detected based on the detection result of the object detection unit and the road information. It is determined whether there is a waiting vehicle waiting in the intersection, and the blind spot in the oncoming lane of the object detection unit formed by the waiting vehicle is estimated. Based on the estimated blind spot, the vehicle turns right or left. Set the standby area to wait.
  • FIG. 1 is a block diagram illustrating a basic configuration of the driving support apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a schematic block diagram illustrating a basic configuration of a vehicle on which the driving support apparatus according to the first embodiment of the present invention is mounted.
  • FIG. 3 is a flowchart for explaining the operation of the driving support apparatus according to the first embodiment of the present invention.
  • FIG. 4 is a diagram for explaining the operation of the driving support apparatus according to the first embodiment of the present invention.
  • FIG. 5 is a diagram for explaining the operation of the driving support apparatus according to the first embodiment of the present invention.
  • FIG. 6 is a diagram for explaining the operation of the driving support apparatus according to the first embodiment of the present invention.
  • FIG. 1 is a block diagram illustrating a basic configuration of the driving support apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a schematic block diagram illustrating a basic configuration of a vehicle on which the driving support apparatus according to the first embodiment of the present invention is mounted.
  • FIG. 7 is a diagram for explaining the operation of the driving support apparatus according to the first embodiment of the present invention.
  • FIG. 8 is a block diagram illustrating a basic configuration of the driving support apparatus according to the second embodiment of the present invention.
  • FIG. 9 is a flowchart for explaining the operation of the driving support apparatus according to the second embodiment of the present invention.
  • FIG. 10 is a flowchart for explaining in detail the processing in step S21 of the flowchart of FIG.
  • FIG. 11 is a diagram for explaining the operation of the driving support apparatus according to the second embodiment of the present invention.
  • FIG. 12 is a diagram for explaining an Ackermann turning model.
  • the driving support device As shown in FIG. 1, the driving support device according to the first embodiment of the present invention is supplied with various information by the information supply unit 1 and the information supply unit 1, and processes calculations necessary for the operation of the driving support device.
  • a processing unit 2 a vehicle control unit 3, and an output unit 5.
  • the driving support device As shown in FIG. 2, the driving support device according to the first embodiment is mounted on a vehicle and supports driving when the host vehicle C turns right or left.
  • the own vehicle C may be an automatically driven vehicle that automatically drives a set travel route, or may be a vehicle that travels in response to an operation of the driver.
  • the information supply unit 1 includes a road information acquisition unit 11, a vehicle position acquisition unit 12, an object detection unit 13, and a right / left turn information detection unit 14.
  • the road information acquisition unit 11 acquires road information on which the vehicle C can travel and outputs the road information to the processing unit 2.
  • the road information acquisition part 11 is comprised from the car navigation apparatus etc. which hold
  • the road information includes road width, radius of curvature, intersection size, number of lanes, type, legal speed, and the like.
  • the own vehicle position acquisition unit 12 acquires the current position of the own vehicle C in the road information acquired by the road information acquisition unit 11.
  • the own vehicle position acquisition unit 12 includes a positioning device 121 such as a global positioning system (GPS) receiver, a gyro sensor 122, a rudder angle sensor 123, and a vehicle speed sensor 124.
  • the own vehicle position acquisition unit 12 complements the position acquired by the positioning device 121 with the detection results of the gyro sensor 122, the rudder angle sensor 123, the vehicle speed sensor 124, and an external recognition sensor such as a camera, and the current position of the own vehicle C. Get as.
  • GPS global positioning system
  • the object detection unit 13 detects an object in front of the host vehicle C.
  • the object detection unit 13 is configured by an external recognition sensor such as a laser range finder having an angular resolution and a distance resolution, for example.
  • a plurality of object detection units 13 may be provided so as to detect not only the front of the host vehicle C but also the objects around the host vehicle C, and may include an external recognition sensor such as a camera.
  • the right / left turn information detection unit 14 makes a right / left turn across the opposite lane at the intersection after a predetermined time based on the current position and travel route of the own vehicle C in the road information acquired by the road information acquisition unit 11. Detects left / right turn information indicating that it is to be performed.
  • the right / left turn information detection unit 14 may be configured by the same car navigation device as the road information acquisition unit 11, for example. In the car navigation device, the travel route is set in advance on a digital map which is road information by the user. Further, the right / left turn information detection unit 14 may detect right / left turn information by a driver's turn signal operation.
  • the processing unit 2 includes a standby vehicle determination unit 21, a blind spot estimation unit 22, a standby area setting unit 23, a right / left turn required time calculation unit 24, a vehicle head time calculation unit 25, and a standby position setting unit 26.
  • Each unit constituting the processing unit 2 is a display as a logical structure, and may be configured as integral hardware or may be configured as separate hardware.
  • the standby vehicle determination unit 21 determines whether there is a standby vehicle that waits at the intersection indicated by the right / left turn information from the oncoming lane. to decide.
  • the standby vehicle determination unit 21 determines whether there is a standby vehicle based on the detection result of the object detection unit 13 and the road information acquired by the road information acquisition unit 11.
  • the standby vehicle determination unit 21 recognizes the standby vehicle by assigning the detection result of the object detection unit 13 to the digital map of the road information acquisition unit 11 using the current position of the host vehicle C.
  • the blind spot estimation unit 22 estimates the blind spot in the oncoming lane of the object detection unit 13 that can be formed by the standby vehicle or the like detected by the standby vehicle determination unit 21. Based on the blind spot estimated by the blind spot estimator 22, the standby area setting unit 23 determines the opposite lane necessary for the vehicle C to make a safe left or right turn while the host vehicle C waits for a right or left turn. A standby area that can be detected is set.
  • the right / left turn required time calculation unit 24 Based on the road information acquired by the road information acquisition unit 11, the right / left turn required time calculation unit 24 completes after starting a right / left turn at each position in the stand-by area where the vehicle C can wait for a right / left turn. Each required time Tb until calculation is calculated.
  • the standby possible area is an area from the position where the vehicle C can stop before the stop line of the intersection to the vicinity of the center of the intersection, for example.
  • the right / left turn required time calculation unit 24 calculates the required time Tb based on the size of the intersection indicated by the right / left turn information detected by the right / left turn information detection unit 14 and the turning curvature of the host vehicle C.
  • the required time Tb is the time from when the vehicle C starts turning right and left until it reaches a position that does not hinder the movement of an object (another vehicle) moving within the intersection.
  • the vehicle head time calculation unit 25 determines the vehicle head time (THW: time headway) for a vehicle traveling in the opposite lane until the host vehicle C enters the intersection indicated by the right / left turn information detected by the right / left turn information detection unit 14. Ta is calculated.
  • the head time Ta corresponds to the traffic volume of the oncoming lane.
  • the vehicle head time calculation unit 25 calculates the time from when a vehicle traveling straight on the oncoming lane passes a predetermined point in the intersection until the next succeeding vehicle passes the same point, or one oncoming straight vehicle is within the intersection. The average value, minimum value, etc. of the time passing through the predetermined distance are calculated as the vehicle head time Ta.
  • the vehicle head time calculation unit 25 recognizes the position of the oncoming vehicle by assigning the detection result of the object detection unit 13 to the digital map of the road information acquisition unit 11 using the current position of the host vehicle C.
  • the standby position setting unit 26 is a standby set by the standby region setting unit 23 based on the required time Tb calculated by the right / left turn required time calculation unit 24 and the vehicle head time Ta calculated by the vehicle head time calculation unit 25. In the area, a standby position where the own vehicle C waits for a right or left turn is set. For example, the standby position setting unit 26 sets the standby position so that the required time Tb and the vehicle head time Ta are close to each other.
  • the vehicle control unit 3 includes a drive unit 31 that drives the host vehicle C in the front-rear direction, a brake 32 that brakes the host vehicle C, and an EPS (Electric Power that changes the traveling direction of the host vehicle C. Steering) motor 33 and the like.
  • the drive unit 31 includes, for example, a motor that rotates the wheels 42 and an inverter that drives the motor.
  • the EPS motor 33 changes the direction of the front wheel 42 by being driven according to the rotation of the steering wheel 41.
  • the configuration of the vehicle control unit 3 is an example, and for example, the drive unit 31 may be another configuration such as an internal combustion engine, and the EPS motor 33 may be a hydraulic steering system.
  • the output unit 5 notifies the user of various information according to the control of the processing unit 2.
  • the output unit 5 includes, for example, a display device that displays light, images, characters, and the like, and an output device such as a speaker that outputs sound.
  • the host vehicle C equipped with the driving support device according to the first embodiment generates a travel route to the destination set in the car navigation device by the user, and at the intersection on the travel route, displays the opposite lane.
  • the case of making a right turn across will be described.
  • the following explanation is for the case where the vehicle C complies with traffic regulations that regulate left-hand traffic, but even if it is traffic regulations that regulate right-hand traffic, it can be similarly applied to the case of making a left turn across the oncoming lane. .
  • step S101 the processing unit 2 acquires the current position of the vehicle C in the road information and the detection result by the object detection unit 13 from the vehicle position acquisition unit 12 at a predetermined sampling cycle.
  • step S102 the right / left turn information detection unit 14 determines whether to detect right / left turn information indicating that the own vehicle C makes a right turn across the opposite lane at the intersection after a predetermined time. If right / left turn information is not detected, the process proceeds to step S103. If right / left turn information is detected, the process proceeds to step S104. In step S103, the host vehicle C continues normal driving and returns to step S101.
  • step S ⁇ b> 104 the vehicle head time calculation unit 25 calculates the vehicle head time Ta for the oncoming straight vehicle based on the road information, the current position of the host vehicle C, and the detection result of the object detection unit 13. For example, in FIG. 4, the vehicle D ⁇ b> 2 and the vehicle D ⁇ b> 3 correspond to oncoming straight vehicles with respect to the host vehicle C.
  • the vehicle head time calculation unit 25 calculates, as the vehicle head time Ta, the time from when the vehicle D2 passes a predetermined point in the intersection until the vehicle D3 passes the same point.
  • step S105 the processing unit 2 determines whether or not the vehicle C can enter the intersection.
  • the processing unit 2 can, for example, display a signal from an object detection unit 13 such as a camera that functions as a traffic signal at an intersection and a signal detection unit that detects a signal displayed on the traffic signal.
  • an object detection unit 13 such as a camera that functions as a traffic signal at an intersection
  • a signal detection unit that detects a signal displayed on the traffic signal.
  • step S106 the processing unit 2 guides the host vehicle C so that the host vehicle C stops just before the stop line that becomes the boundary of the intersection as shown in FIG. 4, and returns the process to step S101.
  • the processing unit 2 controls the vehicle control unit 3 to drive the host vehicle C so as to stop immediately before the stop line.
  • the processing unit 2 provides a voice or image to the driver via the output unit 5 so that the host vehicle C stops immediately before the stop line. To guide. Further, the processing unit 2 may stop the traveling vehicle C by the brake 32 immediately before the stop line.
  • step S107 the left / right turn required time calculation unit 24 sets each position x at a predetermined interval in the traveling direction (x direction) of the host vehicle C in the standby possible region R1 as a temporary standby position, as shown in FIG.
  • the right turn completion position that does not hinder the movement of other vehicles moving within the intersection is, for example, the position of the host vehicle C indicated by a broken line in FIG.
  • the position at which the vehicle enters the leftmost lane may be the right turn completion position, and may be changed as appropriate according to traffic conditions and the like.
  • step S108 the processing unit 2 determines whether or not the host vehicle C is waiting for a right turn at the standby position set by the standby position setting unit 26. If it is waiting, the process proceeds to step S109. If it is not waiting, the process proceeds to step S115.
  • step S109 the standby vehicle determination unit 21 determines whether there is a standby vehicle that waits in the intersection for a right turn from the oncoming lane. For example, in FIG. 4, a vehicle D1 that stops within an intersection corresponds to a standby vehicle. If there is a standby vehicle, the process proceeds to step S110. If there is a standby vehicle, the process proceeds to step S112.
  • step S110 the standby position setting unit 26, as shown in FIG. 5, on the basis of the headway time Ta calculated respectively with each required time Tb x in step S104 and step S107, the vehicle C will wait for a right turn A standby position P1 is set.
  • step S111 the standby position setting unit 26 guides the host vehicle C to the standby position P1, and returns the process to step S101.
  • the standby position setting unit 26 controls the vehicle control unit 3 to drive the host vehicle C so as to stop at the standby position P1.
  • the standby position setting unit 26 guides the driver via the output unit 5 so that the host vehicle C stops at the standby position P1 when the host vehicle C is a vehicle that travels according to the driver's operation. .
  • the standby position setting unit 26 may stop the traveling vehicle C at the standby position P1 by the brake 32.
  • the blind spot estimation unit 22 estimates a blind spot in the oncoming lane of the object detection unit 13 formed by the standby vehicle detected by the standby vehicle determination unit 21 for each position in the standby possible region R1. For example, as shown in FIG. 6, the blind spot estimation unit 22 estimates the blind spot of the object detection unit 13 formed by the vehicle D ⁇ b> 1 that is a standby vehicle. The blind spot estimation unit 22 detects the position of the standby vehicle based on the road information, the current position of the host vehicle C, and the detection result of the object detection unit 13, and assigns the position of the host vehicle C and the standby vehicle to the digital map. In the example shown in FIG.
  • the blind spot is formed in the opposite lane on the right side of the straight line L1 connecting the object detection unit 13 and the end of the vehicle D1.
  • the blind spot estimation unit 22 may estimate the blind spot based on the detection field of view, the angular resolution, and the distance resolution of the object detection unit 13.
  • the blind spot estimation unit 22 estimates the blind spot for each position in the x direction and the y direction (left and right direction of the host vehicle C) orthogonal to the x direction in the standby possible region R1. For example, when the guidance method of the host vehicle C is the brake 32 or the output unit 5, the blind spot estimation unit 22 is limited to the y direction position of the host vehicle C on the stop line, and estimates the blind spot for each position in the x direction. It may be. In addition, when the guidance method of the host vehicle C is automatic driving, the blind spot estimation unit 22 limits each position in the x direction to a position in the y direction that is close to the opposite lane side in the traveling lane in order to improve the visibility as much as possible. The blind spot may be estimated.
  • the blind spot estimation unit 22 is in the y direction near the opposite lane side in order to guide the output unit 5 to a position close to the opposite lane side in the traveling lane.
  • the blind spot may be estimated limited to the position.
  • Each position in the x direction used by the blind spot estimation unit 22 for estimation of the blind spot is each position used for calculating the required time Tb in step S107.
  • the dead angle is smaller as the position of the own vehicle C waiting for a right turn is closer, but the required time Tb x required for the right turn is longer.
  • step S113 the standby area setting unit 23, as shown in FIG. 7, is based on the blind spot estimated by the blind spot estimation unit 22, while the host vehicle C waits for a right turn, from the host vehicle C to the oncoming lane to be seen.
  • a standby area R2 in which the distance can be predicted is set in the standby possible area R1.
  • the standby area R2 is an area where, for example, the distance to the oncoming lane to be detected by the object detection unit 13 can be detected.
  • the standby area setting unit 23 determines the distance that the oncoming lane should be looked at based on the legal speed of the oncoming lane included in the road information.
  • step S114 the standby position setting unit 26, based on the headway time Ta calculated respectively with each required time Tb x in step S104 and step S107, sets the stand-by position P1 to the vehicle C will wait for a right turn.
  • Standby position setting unit 26 the time required Tb x is a temporary waiting position of the headway time Ta becomes close waiting area R2, is set as the standby position P1, the process proceeds to step S111.
  • step S115 the processing unit 2 can turn right from the standby position set by the standby position setting unit 26 based on the road information, the current position of the own vehicle C, and the detection result of the object detection unit 13. Determine whether or not. If the processing unit 2 is, for example, the position of the nearest facing straight vehicle at the intersection, based on the legal speed of the opposite lane, the opposite straight vehicle reaches the intersection within the required time period Tb x in the standby position of the vehicle C By judging whether or not it is possible to make a right turn. If a right turn is possible, the process proceeds to step S116. If a right turn is not possible, the process proceeds to step S117.
  • step S116 the processing unit 2 guides the host vehicle C so that the host vehicle C starts a right turn, and returns the process to step S101.
  • the processing unit 2 controls the vehicle control unit 3 to drive the host vehicle C and start a right turn.
  • the processing unit 2 guides the driver by voice, image, or the like via the output unit 5 so that the host vehicle C starts making a right turn. Do.
  • step S117 the processing unit 2 continues the state where the host vehicle C stands by at the standby position P1.
  • step S117 when the blind spot estimation unit 22 determines that the estimated blind spot at the standby position P1 has deteriorated due to the standby vehicle or the like detected by the standby vehicle determination unit 21, the blind spot is deteriorated via the output unit 5. This may be notified to the driver and encouraged to secure the field of view.
  • the processing unit 2 may transfer the operation authority to the driver.
  • step S117 the standby position setting unit 26 sets the standby position P1 in the standby region R2 as the standby time elapses when the object detection unit 13 that functions as the subsequent vehicle detection unit detects the subsequent vehicle. You may make it perform the correction process which changes sequentially to the center side of an intersection.
  • the standby position setting unit 26 sequentially changes the standby position P1 to the center of the intersection in the standby region R2 until the signal detected by the object detection unit 13 that functions as the signal detection unit is switched. Correction processing may be performed.
  • the risk of making a right or left turn by setting the standby region R2 in consideration of the blind spot of the object detection unit 13 formed in the opposite lane ahead of the host vehicle C.
  • the vehicle C can be made to wait for a left or right turn at a position that takes into account the efficiency.
  • the driving support device by setting the standby position P1 based on the head time Ta for the straight vehicle in the opposite lane and the required time Tb required for turning left and right, traffic on the opposite lane It is possible to make the vehicle C wait for a right or left turn at a position that takes into account the amount.
  • the driving assistance apparatus which concerns on 1st Embodiment, by calculating the required time Tb required for the left-right turn based on the magnitude
  • the own vehicle C can wait for a left or right turn.
  • the driving support device by setting the standby position P1 so that the vehicle head time Ta and the required time Tb are close to each other, the efficiency at the time of the right turn is further increased while taking the risk into consideration. Can be improved.
  • a blind spot is accurately estimated with respect to an actual blind spot by estimating a blind spot based on the angle resolution of the object detection part 13, and the position of a waiting vehicle. be able to.
  • the driving assistance apparatus when the estimated blind spot deteriorates, it can reduce starting a right turn with a large blind spot by notifying a user.
  • the discomfort given to the subsequent vehicle can be reduced by gradually changing the standby position P1 to the center of the intersection.
  • the operation of the oncoming vehicle due to the signal switching is performed by gradually changing the standby position P1 to the center side of the intersection until the display of the traffic signal at the intersection is switched. In anticipation of this, you can make a right or left turn smoothly.
  • the processing unit 2A includes a virtual trajectory estimation unit 27, a first standby position setting unit 28, and a second standby position setting unit 29.
  • a virtual trajectory estimation unit 27 a first standby position setting unit 28, and a second standby position setting unit 29.
  • Other configurations not described in the second embodiment are substantially the same as those in the first embodiment and are omitted because they are duplicated.
  • the virtual trajectory estimation unit 27 determines a virtual trajectory when the vehicle from the opposite lane makes a right / left turn based on the size of the intersection or the like. presume.
  • the blind spot estimation unit 22 estimates a virtual blind spot in the opposite lane of the object detection unit 13 based on the virtual trajectory estimated by the virtual track estimation unit 27 and the angular resolution of the object detection unit 13.
  • the first standby position setting unit 28 sets a first standby position in which the opposite lane to be seen from the host vehicle C can be seen in the standby possible area R ⁇ b> 1.
  • the second standby position setting unit 29 sets the second standby position closer to the center of the intersection than the first standby position set by the first standby position setting unit 28 in the standby possible region R1.
  • step S108 When it is determined in step S108 that the host vehicle C is waiting for a right turn at the standby position set by the standby position setting unit 26, in step S21, the first standby position setting unit 28 is in the standby possible region R1. A first standby position is set.
  • step S21 the virtual trajectory estimation unit 27 estimates a virtual trajectory B of the vehicle assuming a vehicle that makes a right turn from the oncoming lane, as shown in FIG.
  • the virtual trajectory estimation unit 27 estimates a virtual trajectory using, for example, an Ackermann turning model.
  • Equations (1) and (2) are differential equations for the path length z in the x and y directions, respectively.
  • Expression (3) is a differential equation with respect to the path length z in the posture direction of the host vehicle C.
  • ⁇ (3) ⁇ is the steering angle of the tire
  • L W is a wheel base
  • kappa denotes a turning curvature.
  • the trajectory is a clothoid curve where ⁇ is monotonically increasing, a constant curvature curve is a constant portion, and a clothoid curve is a monotone decreasing portion.
  • the rudder angle returns to the neutral position.
  • the path length zmax and the maximum turning curvature ⁇ max are determined by the size of the intersection.
  • the integral value of ⁇ indicated by the trapezoid indicates the final vehicle posture and is 90 ° in the case of an intersection where the lanes are orthogonal, but can be set according to the intersection angle of the intersection.
  • the virtual trajectory estimation unit 27 sets a predetermined virtual vehicle length Lx and virtual vehicle width Ly to each coordinate.
  • the track B at the left front end or the left rear end of the virtual vehicle is calculated.
  • the track B is a boundary line on the left side of the region R ⁇ b> 3 indicating the locus of the virtual vehicle turning right from the opposite side.
  • step S212 the blind spot estimation unit 22 estimates a virtual blind spot in the oncoming lane of the object detection unit 13 for each position in the standby possible region R1, based on the virtual trajectory B estimated in step S211. .
  • the blind spot estimation unit 22 estimates the blind spot for each position in the x direction and the y direction (left and right direction of the host vehicle C) orthogonal to the x direction in the standby possible region R1. For example, when the guidance method of the host vehicle C is the brake 32 or the output unit 5, the blind spot estimation unit 22 is limited to the y direction position of the host vehicle C on the stop line, and estimates the blind spot for each position in the x direction. It may be. In addition, when the guidance method of the host vehicle C is automatic driving, the blind spot estimation unit 22 limits each position in the x direction to a position in the y direction that is close to the opposite lane side in the traveling lane in order to improve the visibility as much as possible. The blind spot may be estimated.
  • the blind spot estimation unit 22 is in the y direction near the opposite lane side in order to guide the output unit 5 to a position close to the opposite lane side in the traveling lane.
  • the blind spot may be estimated limited to the position.
  • Each position in the x direction used by the blind spot estimation unit 22 for estimation of the blind spot is each position used for calculating the required time Tb in step S107.
  • the blind spot estimation unit 22 estimates the virtual blind spot of the object detection unit 13 formed by the virtual trajectory B estimated by the virtual trajectory estimation unit 27, for example, as shown in FIG.
  • the blind spot estimation unit 22 assigns the own vehicle C and the virtual track B to the digital map.
  • the virtual blind spot is formed in the opposite lane on the right side of each tangent line between the object detection unit 13 and the track B at each position in the standby possible region R1.
  • the blind spot estimation unit 22 may estimate the blind spot based on the detection field of view, the angular resolution, and the distance resolution of the object detection unit 13. For example, assuming that the object detection unit 13 for detecting the front is mounted at the center in the vehicle width direction of the host vehicle C, the tangent of the track B passing through the coordinates of the object detection unit 13 in the standby possible region R1 in the intersection is calculate.
  • the coordinates of the object detection unit 13 in the standby region R1 are set to [x R1 , y R1 ] ⁇ R1 and discretized with a predetermined resolution, and each [x R1 , y R1 ] is used as a base point and the trajectory
  • the arc tangent is calculated when each [x z , y z ] of B is the end point.
  • a line connecting the end point and the start point corresponding to the inflection point of the calculated arctangent becomes a tangent.
  • step S213 based on the virtual blind spot estimated in step S212, the first standby position setting unit 28 predicts the distance from the vehicle C to the oncoming lane to be viewed while the vehicle C waits for a right turn.
  • a first standby position where the standby can be performed is set in the standby possible region R1.
  • the first standby position is an area where the distance to the oncoming lane to be detected by the object detection unit 13 can be detected, for example.
  • the first standby position setting unit 28 determines the distance that the oncoming lane should be seen based on the legal speed of the oncoming lane included in the road information.
  • the second standby position setting unit 29 sets a second standby position in the standby possible region R1 on the center side of the intersection from the first standby position set in step S21.
  • the second standby position setting unit 29 sets the second standby position based on the first standby position, the turning curvature of the host vehicle C, and the rate of change of the curvature.
  • the second standby position setting a temporary standby position in the standby region R1 where the time required Tb x is closer headway time Ta, may be set as the second waiting position.
  • step S23 the standby position setting unit 26 sets a standby position P1 where the host vehicle C waits for a right turn between the first standby position and the second standby position set in step S21 and step S22, respectively.
  • the process proceeds to step S111.
  • the series of processes in steps S21 to S23 may be performed when the object detection unit 13 does not detect a waiting vehicle waiting for a right turn from the oncoming lane. Further, the series of processes in steps S21 to S23 may be performed in a separate routine in parallel with the series of processes shown in steps S109 to S114 of the flowchart of FIG.
  • the standby position setting unit 26 basically sets the standby position P1 on the first standby position side where there is a high possibility that a large field of view can be secured.
  • the standby position P1 is set on the second standby position side when there is no standby vehicle waiting for a right turn on the opposite side and there is a right turnable vehicle between the opposing straight-ahead vehicles. You may make it do.
  • the standby position setting unit 26 may perform a correction process of sequentially changing the standby position P1 to the second standby position side after a predetermined time has elapsed since the host vehicle C reached the standby position P1.
  • the standby position setting unit 26 sequentially changes the standby position P1 to the second standby position side when a vehicle that makes a right turn from the oncoming lane is not detected within a predetermined time after the host vehicle C reaches the standby position P1. It may be.
  • step S117 the standby position setting unit 26 sets the standby position P1 to the second standby position side as the standby time elapses when the object detection unit 13 that functions as the subsequent vehicle detection unit detects the subsequent vehicle. Correction processing that sequentially changes may be performed.
  • step S117 the standby position setting unit 26 performs a correction process of sequentially changing the standby position P1 to the second standby position until the signal detected by the object detection unit 13 functioning as the signal detection unit is switched. You may do it.
  • the host vehicle C by estimating a virtual blind spot formed in the oncoming lane ahead of the host vehicle C, the host vehicle C is positioned at a position that takes into account a change in the subsequent traffic situation. You can wait for a left or right turn.
  • the efficiency at the time of the right turn can be further improved while considering the risk by estimating the virtual blind spot based on the size of the intersection.
  • the driving support device by setting the standby position P1 based on the head time Ta for a vehicle traveling straight on the opposite lane and the required time Tb required for turning right and left, traffic on the opposite lane
  • the vehicle C can be made to wait for a left or right turn at a position that takes into account the amount.
  • the driving assistance apparatus which concerns on 2nd Embodiment, by calculating the required time Tb required for the left-right turn based on the magnitude
  • the own vehicle C can wait for a left or right turn.
  • the driving assistance apparatus which concerns on 2nd Embodiment, it can reduce that a right turn is started with a large blind spot by notifying a user when the estimated blind spot deteriorates.
  • the standby position P1 is changed to the second standby position side that is advantageous for the right turn according to the standby time at the standby position P1, thereby waiting on the front side of the intersection. It is possible to reduce a sense of incongruity to the occupant during the operation.
  • the standby position P1 is changed to the 2nd standby position side according to the standby time in the standby position P1.
  • the discomfort given to the subsequent vehicle can be reduced by gradually changing the standby position P1 to the center of the intersection.
  • the standby position P1 is gradually changed to the center side of the intersection so that the operation of the oncoming vehicle due to the switching of the signal is performed. In anticipation of this, you can make a right or left turn smoothly.
  • the host vehicle C can wait for a right or left turn at a position that takes into account the risk and efficiency when making a right or left turn.
  • a driving support device and a driving support method that can be provided can be provided.

Abstract

 運転支援装置は、物体検出部が自車の前方の物体を検出し、道路情報における自車の現在位置及び自車の走行経路に基づいて、所定時間後に自車が交差点で対向車線を横切って右左折を行うことを示す右左折情報を検出し、右左折情報が検出された場合において、物体検出部の検出結果及び道路情報に基づいて、対向車線からの右左折を交差点内で待機する待機車両が存在するか否かを判断し、待機車両により形成される物体検出部の対向車線における死角を推定し、推定された死角に基づいて、自車が右左折を待機する待機領域を設定する。

Description

運転支援装置及び運転支援方法
 本発明は、車両の運転を支援する運転支援装置及び運転支援方法に関する。
 前方の物体を検出するセンサを有する車両が、交差点で対向車線を横切って右左折を行う場面において、右左折を待機する間、対向車線からの右左折を待機する車両により、対向車線にセンサの死角が生じることがある。これに対して、対向車線からの車両によるセンサの死角の度合いに応じた右左折のリスクを運転者に報知する運転支援装置が提案されている(特許文献1参照)。
特開2011-90582号公報
 しかしながら、特許文献1に記載の技術は、右左折に対する支援方法が運転者へのリスク報知に留まり、対向車線からの右左折を待機する車両による死角を考慮した停止位置を提案するものではない。
 本発明は、上記問題点を鑑み、右左折をする場合のリスクと効率を考慮した位置で自車に右左折を待機させることができる運転支援装置及び運転支援方法を提供することを目的とする。
 本発明の一態様に係る運転支援装置は、物体検出部が自車の前方の物体を検出し、道路情報における自車の現在位置及び自車の走行経路に基づいて、所定時間後に自車が交差点で対向車線を横切って右左折を行うことを示す右左折情報を検出し、右左折情報が検出された場合において、物体検出部の検出結果及び道路情報に基づいて、対向車線からの右左折を交差点内で待機する待機車両が存在するか否かを判断し、待機車両により形成される物体検出部の対向車線における死角を推定し、推定された死角に基づいて、自車が右左折を待機する待機領域を設定する。
図1は、本発明の第1実施形態に係る運転支援装置の基本的な構成を説明するブロック図である。 図2は、本発明の第1実施形態に係る運転支援装置が搭載される車両の基本的な構成を説明する模式的なブロック図である。 図3は、本発明の第1実施形態に係る運転支援装置の動作を説明するフローチャートである。 図4は、本発明の第1実施形態に係る運転支援装置の動作を説明する図である。 図5は、本発明の第1実施形態に係る運転支援装置の動作を説明する図である。 図6は、本発明の第1実施形態に係る運転支援装置の動作を説明する図である。 図7は、本発明の第1実施形態に係る運転支援装置の動作を説明する図である。 図8は、本発明の第2実施形態に係る運転支援装置の基本的な構成を説明するブロック図である。 図9は、本発明の第2実施形態に係る運転支援装置の動作を説明するフローチャートである。 図10は、図9のフローチャートのステップS21における処理を詳細に説明するフローチャートである。 図11は、本発明の第2実施形態に係る運転支援装置の動作を説明する図である。 図12は、アッカーマンの旋回モデルを説明する図である。
 次に、図面を参照して、本発明の第1及び第2実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付し、重複する説明を省略する。
(第1実施形態)
 本発明の第1実施形態に係る運転支援装置は、図1に示すように、情報供給部1と、情報供給部1により種々の情報を供給され、運転支援装置の動作に必要な演算を処理する処理部2と、車両制御部3と、出力部5とを備える。第1実施形態に係る運転支援装置は、図2に示すように、車両に搭載され、自車Cの右左折時の運転を支援する。自車Cは、設定された走行経路を自動的に運転する自動運転車両であってもよく、ドライバーの操作に応じて走行する車両であってもよい。
 情報供給部1は、道路情報取得部11と、自車位置取得部12と、物体検出部13と、右左折情報検出部14とを備える。道路情報取得部11は、自車Cの走行可能な道路情報を取得し、処理部2に出力する。道路情報取得部11は、例えば、道路情報としてデジタル地図を保有するカーナビゲーション装置等から構成される。道路情報は、道路の幅、曲率半径、交差点の大きさ、車線の数、種類及び法定速度等を含む。
 自車位置取得部12は、道路情報取得部11により取得される道路情報における自車Cの現在位置を取得する。自車位置取得部12は、全地球測位システム(GPS)受信機等の測位装置121と、ジャイロセンサ122と、舵角センサ123と、車速センサ124とを備える。自車位置取得部12は、測位装置121により取得された位置を、ジャイロセンサ122、舵角センサ123、車速センサ124及びカメラ等の外界認識センサの検出結果により補完し、自車Cの現在位置として取得する。
 物体検出部13は、自車Cの前方の物体を検出する。物体検出部13は、例えば、角度分解能及び距離分解能を有するレーザーレンジファインダ等の外界認識センサから構成される。物体検出部13は、自車Cの前方のみでなく、自車Cの周囲の物体を検出するように複数設けられてもよく、カメラ等の外界認識センサを含むようにしてもよい。
 右左折情報検出部14は、道路情報取得部11により取得される道路情報における自車Cの現在位置及び走行経路に基づいて、所定時間後に自車Cが交差点で対向車線を横切って右左折を行うことを示す右左折情報を検出する。右左折情報検出部14は、例えば、道路情報取得部11と同一カーナビゲーション装置により構成されるようにしてもよい。カーナビゲーション装置において、走行経路は、予めユーザにより道路情報であるデジタル地図上に設定される。また、右左折情報検出部14は、ドライバーのウインカー操作により、右左折情報を検出するようにしてもよい。
 処理部2は、待機車両判断部21と、死角推定部22と、待機領域設定部23と、右左折所要時間算出部24と、車頭時間算出部25と、待機位置設定部26とを有する。処理部2を構成する各部は、論理構造としての表示であり、それぞれ一体のハードウェアとして構成されてもよく、別個のハードウェアとして構成されてもよい。
 待機車両判断部21は、右左折情報検出部14により右左折情報が検出された場合において、対向車線からの右左折を右左折情報が示す交差点内で待機する待機車両が存在するか否かを判断する。待機車両判断部21は、物体検出部13の検出結果及び道路情報取得部11により取得される道路情報に基づいて、待機車両が存在するか否かを判断する。待機車両判断部21は、自車Cの現在位置を用いて物体検出部13の検出結果を道路情報取得部11のデジタル地図に割り付けることにより待機車両を認識する。
 死角推定部22は、待機車両判断部21により検出された待機車両等により形成され得る物体検出部13の対向車線における死角を推定する。待機領域設定部23は、死角推定部22により推定された死角に基づいて、自車Cが右左折を待機する間、物体検出部13が自車Cの安全な右左折に必要な対向車線を検出することができる待機領域を設定する。
 右左折所要時間算出部24は、道路情報取得部11により取得される道路情報に基づいて、自車Cが右左折を待機可能な待機可能領域内の各位置において右左折を開始してから完了するまでの各所要時間Tbを算出する。待機可能領域は、例えば自車Cが交差点の停止線の手前で停止できる位置から交差点の中央付近までの領域である。右左折所要時間算出部24は、右左折情報検出部14により検出された右左折情報が示す交差点の大きさや、自車Cの旋回曲率に基づいて所要時間Tbを算出する。所要時間Tbは、自車Cが右左折を開始してから、交差点内を移動する物体(他車)の移動を妨げない位置に到達するまでの時間である。
 車頭時間算出部25は、自車Cが、右左折情報検出部14により検出された右左折情報が示す交差点に進入するまでの間に、対向車線の直進車に対する車頭時間(THW:time headway)Taを算出する。車頭時間Taは、対向車線の交通量に対応する。車頭時間算出部25は、対向車線を直進する車両が交差点内の所定の地点を通過してから次の後続車が同じ地点を通過するまでの時間、又は、1台の対向直進車が交差点内の所定の距離を通過する時間の、平均値、最小値等を、車頭時間Taとして算出する。車頭時間算出部25は、自車Cの現在位置を用いて物体検出部13の検出結果を道路情報取得部11のデジタル地図に割り付けることにより、対向直進車の位置を認識する。
 待機位置設定部26は、右左折所要時間算出部24により算出された所要時間Tbと、車頭時間算出部25により算出された車頭時間Taとに基づいて、待機領域設定部23により設定された待機領域内において、自車Cが右左折を待機する待機位置を設定する。待機位置設定部26は、例えば、所要時間Tbと車頭時間Taとが近い値になるように待機位置を設定する。
 車両制御部3は、図2に示すように、自車Cを前後方向に駆動する駆動部31と、自車Cを制動するブレーキ32と、自車Cの進行方向を変更するEPS(Electric Power Steering)モータ33等からなる。駆動部31は、例えば、車輪42を回転させるモータ及びモータを駆動するインバータからなる。EPSモータ33は、ステアリングホイール41の回転に応じて駆動することにより、前方の車輪42の方向を変更する。車両制御部3の構成は例示であり、例えば、駆動部31は内燃機関、EPSモータ33は油圧操舵系等、他の構成であってもよい。
 出力部5は、処理部2の制御に応じて、ユーザに種々の情報を通知する。出力部5は、例えば、光、画像、文字等を表示する表示装置や、音声を出力するスピーカ等の出力装置から構成される。
―運転支援方法―
 図3のフローチャートを用いて、第1実施形態に係る運転支援装置による運転支援方法の一例を説明する。以下において、第1実施形態に係る運転支援装置が搭載された自車Cが、ユーザによりカーナビゲーション装置に設定された目的地までの走行経路を生成し、走行経路上の交差点において、対向車線を横切って右折を行う場合について説明する。以下の説明は、自車Cが左側通行を規定する交通法規に従う場合であるが、右側通行を規定する交通法規であっても、対向車線を横切って左折を行う場合について同様に適用可能である。
 先ず、ステップS101において、処理部2は、所定のサンプリング周期で、自車位置取得部12から道路情報における自車Cの現在位置及び物体検出部13による検出結果を取得する。
 ステップS102において、右左折情報検出部14は、所定時間後に自車Cが交差点で対向車線を横切って右折を行うことを示す右左折情報を検出するか否かを判定する。右左折情報を検出しない場合、ステップS103に処理を進め、右左折情報を検出する場合ステップS104に処理を進める。ステップS103において、自車Cは通常の走行を継続し、ステップS101に処理を戻す。
 ステップS104において、車頭時間算出部25は、道路情報、自車Cの現在位置及び物体検出部13の検出結果に基づいて、対向直進車に対する車頭時間Taを算出する。例えば、図4において、車両D2及び車両D3が自車Cに対する対向直進車に該当する。車頭時間算出部25は、車両D2が交差点内の所定の地点を通過してから車両D3が同じ地点を通過するまでの時間を車頭時間Taとして算出する。
 ステップS105において、処理部2は、自車Cが交差点に進入可能か否かを判断する。処理部2は、例えば、交差点の信号機及び信号機に表示される信号を検出する信号検出部として機能するカメラ等の物体検出部13から、信号の表示が交差点に進入可能である、且つ自車Cの前方に障害物がない場合に進入可能であると判断する。交差点に進入不可である場合、ステップS106に処理を進め、交差点に進入可能である場合、ステップS107に処理を進める。
 ステップS106において、処理部2は、図4に示すように交差点の境界となる停止線の直前で自車Cが停止するように、自車Cを誘導し、ステップS101に処理を戻す。処理部2は、自車Cが自動運転車両である場合、車両制御部3を制御することにより、停止線の直前で停止するように自車Cを駆動させる。処理部2は、自車Cがドライバーの操作に応じて走行する車両である場合、自車Cが停止線の直前で停止するように、出力部5を介して音声や画像等によりドライバーに対して誘導を行う。また、処理部2は、走行する自車Cをブレーキ32により停止線の直前で停止させるようにしてもよい。
 ステップS107において、右左折所要時間算出部24は、図4に示すように、待機可能領域R1内の自車Cの進行方向(x方向)における所定間隔の各位置xを仮待機位置として、各位置について、所要時間Tbを算出する。例えば、自車Cが停止線で停止する位置をx=0とし、交差点の中央付近まで到達する位置をx=Aとすると、所定時間Tb(x=0~A)は、自車Cが各位置xにおいて右折を開始してから交差点内を移動する他車の移動を妨げない位置に到達するまでの各時間である。自車Cは、待機可能領域R1内の各位置xにおいて、進行方向に進行する姿勢で停車するものとする。交差点内を移動する他車の移動を妨げない右折完了位置は、例えば図4において破線で示す自車Cの位置である。右折先の車線が複数存在する場合、最左端の車線に進入する位置を右折完了位置としてもよく、交通状況等に応じて適宜変更するようにしてもよい。
 ステップS108において、処理部2は、自車Cが待機位置設定部26により設定された待機位置において右折を待機しているか否かを判断する。待機中である場合、ステップS109に処理を進め、待機中でない場合、ステップS115に処理を進める。
 ステップS109において、待機車両判断部21は、対向車線からの右折を交差点内で待機する待機車両が存在するか否かを判断する。例えば、図4において、交差点内で停車する車両D1が待機車両に該当する。待機車両が存在する場合、ステップS110に処理を進め、待機車両が存在する場合、ステップS112に処理を進める。
 ステップS110において、待機位置設定部26は、図5に示すように、ステップS104及びステップS107においてそれぞれ算出された車頭時間Taと各所要時間Tbとに基づいて、自車Cが右折を待機する待機位置P1を設定する。待機位置設定部26は、所要時間Tbが車頭時間Ta近くなる待機可能領域R1内の仮待機位置を、待機位置P1として設定する。
 ステップS111において、待機位置設定部26は、待機位置P1に自車Cを誘導し、ステップS101に処理を戻す。待機位置設定部26は、自車Cが自動運転車両である場合、車両制御部3を制御することにより、待機位置P1で停止するように自車Cを駆動させる。待機位置設定部26は、自車Cがドライバーの操作に応じて走行する車両である場合、自車Cが待機位置P1で停止するように、出力部5を介してドライバーに対して誘導を行う。また、待機位置設定部26は、走行する自車Cをブレーキ32により待機位置P1で停止させるようにしてもよい。
 ステップS112において、死角推定部22は、待機可能領域R1内の各位置について、待機車両判断部21により検出された待機車両により形成される、物体検出部13の対向車線における死角を推定する。死角推定部22は、例えば、図6に示すように、待機車両である車両D1により形成される物体検出部13の死角を推定する。死角推定部22は、道路情報、自車Cの現在位置及び物体検出部13の検出結果に基づいて、待機車両の位置を検出し、自車C及び待機車両の位置をデジタル地図に割り付ける。図6に示す例において、死角は、物体検出部13と車両D1の端部とを結ぶ直線L1より右側の対向車線において形成される。死角推定部22は、物体検出部13の検出視野、角度分解能及び距離分解能に基づいて、死角を推定するようにしてもよい。
 死角推定部22は、待機可能領域R1内のx方向及びx方向に直交するy方向(自車Cの左右方向)における各位置についてそれぞれ死角を推定する。例えば、死角推定部22は、自車Cの誘導方法がブレーキ32や出力部5による場合、停止線における自車Cのy方向位置に限定して、x方向の各位置について死角を推定するようにしてもよい。また、死角推定部22は、自車Cの誘導方法が自動運転による場合、極力見通しを良くするために、走行車線のうち対向車線側に近いy方向位置に限定して、x方向の各位置について死角を推定するようにしてもよい。なお、ブレーキ32や出力部5による誘導の場合であっても、走行車線のうち対向車線側に近い位置に出力部5により誘導するために、死角推定部22は、対向車線側に近いy方向位置に限定して死角を推定するようにしてもよい。死角推定部22が死角の推定に用いるx方向の各位置は、ステップS107において所要時間Tbの算出に用いた各位置である。
 例えば図6に示すように、対向側に右折を待機する車両D1が存在する場合、右折を待機する自車Cの位置が手前であるほど死角は小さいが右折に必要な所要時間Tbが長く、交差点の中央側であるほど所要時間Tbは短いが死角が大きい。
 ステップS113において、待機領域設定部23は、図7に示すように、死角推定部22が推定した死角に基づいて、自車Cが右折を待機する間、自車Cから見通すべき対向車線までの距離を見通すことができる待機領域R2を待機可能領域R1内に設定する。待機領域R2は、例えば、物体検出部13が検出すべき対向車線までの距離を検出することができる領域である。待機領域設定部23は、道路情報に含まれる対向車線の法定速度に基づいて、対向車線の見通すべき距離を決定する。
 ステップS114において、待機位置設定部26は、ステップS104及びステップS107においてそれぞれ算出された車頭時間Taと各所要時間Tbとに基づいて、自車Cが右折を待機する待機位置P1を設定する。待機位置設定部26は、所要時間Tbが車頭時間Ta近くなる待機領域R2内の仮待機位置を、待機位置P1として設定し、ステップS111に処理を進める。
 ステップS115において、処理部2は、道路情報、自車Cの現在位置及び物体検出部13の検出結果に基づいて、自車Cが待機位置設定部26により設定された待機位置からの右折が可能か否かを判断する。処理部2は、例えば、交差点に最も近い対向直進車の位置と、対向車線の法定速度とに基づいて、自車Cの待機位置における所要時間Tb以内に交差点に対向直進車が到達するか否かを判断することにより、右折が可能か否かを判断する。右折が可能な場合、ステップS116に処理を進め、右折が不可能な場合、ステップS117に処理を進める。
 ステップS116において、処理部2は、自車Cが右折を開始するように、自車Cを誘導し、ステップS101に処理を戻す。処理部2は、自車Cが自動運転車両である場合、車両制御部3を制御することにより、自車Cを駆動して右折を開始させる。処理部2は、自車Cがドライバーの操作に応じて走行する車両である場合、自車Cが右折を開始するように、出力部5を介して音声や画像等によりドライバーに対して誘導を行う。
 ステップS117において、処理部2は、自車Cが待機位置P1において待機する状態を継続する。また、ステップS117において、死角推定部22は、推定した待機位置P1における死角が、待機車両判断部21により検出された待機車両等により悪化したと判断する場合、出力部5を介して死角が悪化したことをドライバーに通知し、視野の確保を促すようにしてもよい。自車Cが自動運転車両の場合、処理部2は、操作権限をドライバーに移譲するようにしてもよい。
 また、ステップS117において、待機位置設定部26は、後続車検出部として機能する物体検出部13により後続車が検出される場合、待機時間の経過に応じて、待機位置P1を待機領域R2内で交差点の中央側に逐次変更する補正処理を行うようにしてもよい。また、ステップS117において、待機位置設定部26は、信号検出部として機能する物体検出部13により検出された信号が切り替わるまでに、待機位置P1を待機領域R2内で交差点の中央側に逐次変更する補正処理を行うようにしてもよい。
 第1実施形態に係る運転支援装置によれば、自車Cの前方の対向車線に形成される物体検出部13の死角を考慮した待機領域R2を設定することにより、右左折をする場合のリスクと効率を考慮した位置で自車Cに右左折を待機させることができる。
 また、第1実施形態に係る運転支援装置によれば、対向車線の直進車に対する車頭時間Taと右左折に必要な所要時間Tbとに基づいて待機位置P1を設定することにより、対向車線の交通量を考慮した位置で自車Cに右左折を待機させることができる。
 また、第1実施形態に係る運転支援装置によれば、交差点の大きさに基づいて右左折に必要な所要時間Tbを算出することにより、複数車線等、様々な交差点の形状に応じた位置で自車Cに右左折を待機させることができる。
 また、第1実施形態に係る運転支援装置によれば、車頭時間Taと所要時間Tbとが近い値になるように待機位置P1を設定することにより、リスクを考慮しつつ右折時の効率を更に向上することができる。
 また、第1実施形態に係る運転支援装置によれば、物体検出部13の角度分解能及び待機車両の位置に基づいて、死角を推定することにより、実際の死角に対して精度よく死角を推定することができる。
 また、第1実施形態に係る運転支援装置によれば、推定した死角が悪化した場合にユーザに通知することにより、死角が大きいまま右折が開始されることを低減することができる。
 また、第1実施形態に係る運転支援装置によれば、後続車が存在する場合に徐々に待機位置P1を交差点の中央側に変更することにより、後続車に与える違和感を低減することができる。
 また、第1実施形態に係る運転支援装置によれば、交差点の信号機の表示が切り替わるまでの間、徐々に待機位置P1を交差点の中央側に変更することにより、信号の切り替わりによる対向車両の動作を見越してスムーズに右左折を行うことができる。
(第2実施形態)
 本発明の第2実施形態に係る運転支援装置は、図8に示すように、処理部2Aが、仮想軌道推定部27と、第1待機位置設定部28と、第2待機位置設定部29とを更に有する点において第1実施形態と異なる。第2実施形態において説明しない他の構成は、第1実施形態と実質的に同様であり重複するため省略する。
 仮想軌道推定部27は、右左折情報検出部14により右左折情報が検出された場合において、交差点の大きさ等に基づいて、対向車線からの車両が右左折を行うときの仮想的な軌道を推定する。死角推定部22は、仮想軌道推定部27により推定された仮想的な軌道と物体検出部13の角度分解能に基づいて、物体検出部13の対向車線における仮想的な死角を推定する。
 第1待機位置設定部28は、死角推定部22により推定された仮想的な死角に基づいて、待機可能領域R1内に、自車Cから見通すべき対向車線を見通すことができる第1待機位置を設定する。第2待機位置設定部29は、待機可能領域R1内の、第1待機位置設定部28により設定された第1待機位置より交差点の中央側に、第2待機位置を設定する。待機位置設定部26は、右左折所要時間算出部24により算出される所要時間Tbと車頭時間算出部25により算出される車頭時間Taとに基づいて、第1待機位置と第2待機位置との間において自車Cが右左折を待機する待機位置を設定する。
―運転支援方法―
 図9のフローチャートを用いて、第2実施形態に係る運転支援装置による運転支援方法の一例を説明する。ステップS101~S108,S111,S115~S117における処理の説明は、第1実施形態における図3の説明と実質的に同様であり、重複するため省略する。
 ステップS108において自車Cが待機位置設定部26により設定された待機位置において右折を待機していると判断される場合、ステップS21において、第1待機位置設定部28は、待機可能領域R1内に第1待機位置を設定する。
 以下、図10のフローチャートを用いて、ステップS21における処理を詳細に説明する。ステップS211において、仮想軌道推定部27は、図11に示すように、対向車線から右折を行う車両を想定し、車両の仮想的な軌道Bを推定する。仮想軌道推定部27は、例えばアッカーマンの旋回モデルを用いて仮想的な軌道を推定する。
 アッカーマンの旋回モデルは、式(1)~(3)のように示される。式(1)及び式(2)は、それぞれx方向及びy方向における経路長zに対する微分方程式である。式(3)は、自車Cの姿勢方向における経路長zに対する微分方程式である。式(1)~(3)において、δはタイヤの転舵角、Lはホイールベース、κは旋回曲率を意味する。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 例えば、図12に示すような旋回曲率κをモデル入力とするとき、軌道は、κが単調増加している部分はクロソイド曲線、一定の部分は曲率一定曲線、単調減少している部分はクロソイド曲線となり、最終的には舵角が中立位置に戻る。経路長zmax及び最大旋回曲率κmaxは、交差点の大きさによって決定される。台形で示されるκの積分値は、最終的な車両姿勢を示し、車線が直交する交差点の場合、90°となるが、交差点の交差角度に応じて設定されることができる。
 式(1)~(3)による軌跡の各座標は、仮想車両の後輪軸の中心の位置を表すので、仮想軌道推定部27は、各座標に所定の仮想車両長Lx及び仮想車両幅Lyを用いてオフセットさせることにより、仮想車両の左前端又は左後端の軌道Bを算出する。軌道Bは、[x,y](z=0~zmax)というベクトル形式で算出される。図11に示す例において、軌道Bは、対向側から右折する仮想車両の軌跡を示す領域R3の左側の境界線である。
 ステップS212において、死角推定部22は、ステップS211において推定された仮想的な軌道Bに基づいて、待機可能領域R1内の各位置について、物体検出部13の対向車線における仮想的な死角を推定する。
 死角推定部22は、待機可能領域R1内のx方向及びx方向に直交するy方向(自車Cの左右方向)における各位置についてそれぞれ死角を推定する。例えば、死角推定部22は、自車Cの誘導方法がブレーキ32や出力部5による場合、停止線における自車Cのy方向位置に限定して、x方向の各位置について死角を推定するようにしてもよい。また、死角推定部22は、自車Cの誘導方法が自動運転による場合、極力見通しを良くするために、走行車線のうち対向車線側に近いy方向位置に限定して、x方向の各位置について死角を推定するようにしてもよい。なお、ブレーキ32や出力部5による誘導の場合であっても、走行車線のうち対向車線側に近い位置に出力部5により誘導するために、死角推定部22は、対向車線側に近いy方向位置に限定して死角を推定するようにしてもよい。死角推定部22が死角の推定に用いるx方向の各位置は、ステップS107において所要時間Tbの算出に用いた各位置である。
 死角推定部22は、例えば、図11に示すように、仮想軌道推定部27により推定された仮想的な軌道Bにより形成される物体検出部13の仮想的な死角を推定する。死角推定部22は、自車C及び仮想的な軌道Bをデジタル地図に割り付ける。図11に示す例において、仮想的な死角は、待機可能領域R1内の各位置における物体検出部13と軌道Bとの各接線より右側の対向車線においてそれぞれ形成される。
 死角推定部22は、物体検出部13の検出視野、角度分解能及び距離分解能に基づいて、死角を推定するようにしてもよい。例えば、前方を検出する物体検出部13が自車Cの車幅方向における中央部に搭載されているとして、交差点内の待機可能領域R1における物体検出部13の座標を通る、軌道Bの接線を算出する。具体的には、待機可能領域R1における物体検出部13の座標を[xR1,yR1]∈R1として、所定の分解能で離散化を行い、各[xR1,yR1]を基点とし、軌道Bの各[x,y]を終点としたときのアークタンジェントを算出する。算出されたアークタンジェントの変局点に該当する終点と始点を結んだ線が接線となる。
 ステップS213において、第1待機位置設定部28は、ステップS212において推定された仮想的な死角に基づいて、自車Cが右折を待機する間、自車Cから見通すべき対向車線までの距離を見通すことができる第1待機位置を待機可能領域R1内に設定する。第1待機位置は、例えば、物体検出部13が検出すべき対向車線までの距離を検出することができる領域である。第1待機位置設定部28は、道路情報に含まれる対向車線の法定速度に基づいて、対向車線の見通すべき距離を決定する。ステップS213における処理を完了することにより、ステップS21の処理が完了され、ステップS22に処理を進める。
 ステップS22において、第2待機位置設定部29は、ステップS21において設定された第1待機位置より交差点の中央側の待機可能領域R1内に、第2待機位置を設定する。第2待機位置設定部29は、例えば、第1待機位置及び自車Cの旋回曲率及び曲率の変化率の制限に基づいて、第2待機位置を設定する。或いは、第2待機位置設定は、所要時間Tbが車頭時間Ta近くなる待機可能領域R1内の仮待機位置を、第2待機位置として設定するようにしてもよい。
 ステップS23において、待機位置設定部26は、ステップS21及びステップS22においてそれぞれ設定された第1待機位置と第2待機位置との間において、自車Cが右折を待機する待機位置P1を設定し、ステップS111に処理を進める。
 ステップS21~S23における一連の処理は、物体検出部13により対向車線からの右折を待機する待機車両が検出されない場合に行われてもよい。また、ステップS21~S23における一連の処理は、待機車両の有無に関わらず、図3のフローチャートのステップS109~S114に示す一連の処理と平行して別ルーチンで行われるようにしてもよい。
 待機位置設定部26は、基本的に視野を大きく確保できる可能性が高い第1待機位置側に待機位置P1を設定する。待機位置P1は、対向側に右折を待機する待機車両が存在しせず、対向直進車の各車間の中から右折可能な車間が存在する場合に、第2待機位置側に待機位置P1を設定するようにしてもよい。
 ステップS117において、待機位置設定部26は、自車Cが待機位置P1に到達してから所定時間経過後に待機位置P1を第2待機位置側に逐次変更する補正処理を行うようにしてもよい。待機位置設定部26は、自車Cが待機位置P1に到達してから所定時間内に、対向車線から右折を行う車両が検出されない場合、待機位置P1を第2待機位置側に逐次変更するようにしてもよい。
 また、ステップS117において、待機位置設定部26は、後続車検出部として機能する物体検出部13により後続車が検出される場合、待機時間の経過に応じて、待機位置P1を第2待機位置側に逐次変更する補正処理を行うようにしてもよい。また、ステップS117において、待機位置設定部26は、信号検出部として機能する物体検出部13により検出された信号が切り替わるまでに、待機位置P1を第2待機位置側に逐次変更する補正処理を行うようにしてもよい。
 第2実施形態に係る運転支援装置によれば、自車Cの前方の対向車線に形成される仮想的な死角を推定することにより、後の交通状況の変化を考慮した位置で自車Cに右左折を待機させることができる。
 また、第2実施形態に係る運転支援装置によれば、交差点の大きさに基づいて仮想的な死角を推定することにより、リスクを考慮しつつ右折時の効率を更に向上することができる。
 また、第2実施形態に係る運転支援装置によれば、対向車線の直進車に対する車頭時間Taと右左折に必要な所要時間Tbとに基づいて待機位置P1を設定することにより、対向車線の交通量を考慮した位置で自車Cに右左折を待機させることができる
 また、第2実施形態に係る運転支援装置によれば、交差点の大きさに基づいて右左折に必要な所要時間Tbを算出することにより、複数車線等、様々な交差点の形状に応じた位置で自車Cに右左折を待機させることができる。
 また、第2実施形態に係る運転支援装置によれば、推定した死角が悪化した場合にユーザに通知することにより、死角が大きいまま右折が開始されることを低減することができる。
 また、第2実施形態に係る運転支援装置によれば、待機位置P1での待機時間に応じて右折に有利な第2待機位置側に待機位置P1を変更することにより、交差点の手前側で待機する際の乗員への違和感を低減することができる。
 また、第2実施形態に係る運転支援装置によれば、対向側の右左折車両が存在しない場合に、待機位置P1での待機時間に応じて第2待機位置側に待機位置P1を変更することにより、適切に右左折可能な機会を増加することができる。
 また、第2実施形態に係る運転支援装置によれば、後続車が存在する場合に徐々に待機位置P1を交差点の中央側に変更することにより、後続車に与える違和感を低減することができる。
 また、第2実施形態に係る運転支援装置によれば、交差点の信号機の表示が切り替わるまでの間、徐々に待機位置P1を交差点の中央側に変更することにより、信号の切り替わりによる対向車両の動作を見越してスムーズに右左折を行うことができる。
(その他の実施形態)
 上記のように、本発明は上記の実施形態によって記載したが、この開示の一部をなす論述及び図面は本発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。このように、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
 本発明によれば、自車Cの前方の対向車線に形成される死角を考慮することにより、右左折をする場合のリスクと効率を考慮した位置で自車Cに右左折を待機させることができる運転支援装置及び運転支援方法を提供することができる。
 11 道路情報取得部
 12 自車位置取得部
 13 物体検出部
 14 右左折情報検出部
 21 待機車両判断部
 22 死角推定部
 23 待機領域設定部
 24 右左折所要時間算出部
 25 車頭時間算出部
 26 待機位置設定部
 27 仮想軌道推定部

Claims (18)

  1.  自車の走行可能な道路情報を取得する道路情報取得部と、
     前記道路情報における前記自車の現在位置を取得する自車位置取得部と、
     前記自車の前方の物体を検出する物体検出部と、
     所定時間後に前記自車が交差点で対向車線を横切って右左折を行うことを示す右左折情報を検出する右左折情報検出部と、
     前記右左折情報検出部により前記右左折情報が検出された場合において、前記道路情報、前記現在位置及び前記物体検出部の検出結果に基づいて、前記対向車線からの右左折を前記交差点内で待機する待機車両が存在するか否かを判断する待機車両判断部と、
     前記待機車両により形成される前記物体検出部の前記対向車線における死角を推定する死角推定部と、
     前記死角推定部により推定された前記死角に基づいて、前記自車が右左折を待機する間前記物体検出部が前記対向車線を検出することができる待機領域を設定する待機領域設定部と
     を備えることを特徴とする運転支援装置。
  2.  前記自車が右左折を開始してから完了するまでの各所要時間を算出する右左折所要時間算出部と、
     前記道路情報、前記現在位置及び前記物体検出部の検出結果に基づいて、前記自車が前記交差点に進入するまでの間に、前記対向車線の直進車に対する車頭時間を算出する車頭時間算出部と、
     前記所要時間と前記車頭時間とに基づいて、前記待機領域内において前記自車が右左折を待機する待機位置を設定する待機位置設定部と
     を更に備えることを特徴とする請求項1に記載の運転支援装置。
  3.  前記右左折所要時間算出部は、前記交差点の大きさに基づいて、前記自車が前記待機位置から前記交差点内を移動する物体の移動を妨げない位置に到達するまでの時間を前記所要時間として算出することを特徴とする請求項2に記載の運転支援装置。
  4.  前記待機位置設定部は、前記車頭時間と前記所要時間とが近い値になるように前記待機位置を設定することを特徴とする請求項2又は3に記載の運転支援装置。
  5.  前記死角推定部は、前記物体検出部の角度分解能及び前記待機車両の位置に基づいて、前記死角を推定することを特徴とする請求項1から4のいずれか1項に記載の運転支援装置。
  6.  前記死角推定部は、前記待機位置設定部により設定された前記待機位置で前記自車が右左折を待機する間、推定した前記死角が悪化した場合にユーザに通知することを特徴とする請求項2から4のいずれか1項に記載の運転支援装置。
  7.  前記自車に後続する後続車を検出する後続車検出部を更に備え、
     前記待機位置設定部は、前記待機位置で前記自車が右左折を待機する間、前記後続車検出部により前記後続車が検出される場合に前記待機位置を前記交差点の中央側に変更することを特徴とする請求項2から4のいずれか1項に記載の運転支援装置。
  8.  前記交差点の信号機により表示される信号を検出する信号検出部を更に備え、
     前記待機位置設定部は、前記待機位置で前記自車が右左折を待機する間、前記信号検出部により検出された前記信号が切り替わるまでに前記待機位置を前記交差点の中央側に変更することを特徴とする請求項2から4のいずれか1項に記載の運転支援装置。
  9.  前記右左折情報検出部により前記右左折情報が検出された場合において、前記対向車線からの車両が右左折を行うときの仮想的な軌道を推定する仮想軌道推定部を更に備え、
     前記死角推定部は、前記仮想的な軌道に基づいて、前記物体検出部の前記対向車線における仮想的な死角を推定することを特徴とする請求項1に記載の運転支援装置。
  10.  前記仮想軌道推定部は、前記交差点の大きさに基づいて前記仮想的な軌道を推定することを特徴とする請求項9に記載の運転支援装置。
  11.  前記自車が右左折を開始してから完了するまでの各所要時間を算出する右左折所要時間算出部と、
     前記道路情報、前記現在位置及び前記物体検出部の検出結果に基づいて、前記自車が前記交差点に進入するまでの間に、前記対向車線の直進車に対する車頭時間を算出する車頭時間算出部と、
     前記所要時間と前記車頭時間とに基づいて、前記仮想的な死角に基づいて設定される第1待機位置と、前記第1待機位置より前記交差点の中央側に設定される第2待機位置との間において前記自車が右左折を待機する待機位置を設定する待機位置設定部と
     を更に備えることを特徴とする請求項9又は10に記載の運転支援装置。
  12.  前記右左折所要時間算出部は、前記交差点の大きさに基づいて、前記自車が前記待機位置から前記交差点内を移動する物体の移動を妨げない位置に到達するまでの時間を前記所要時間として算出することを特徴とする請求項11に記載の運転支援装置。
  13.  前記死角推定部は、前記待機位置設定部により設定された前記待機位置で前記自車が右左折を待機する間、前記死角が前記仮想的な死角より悪化した場合にユーザに通知することを特徴とする請求項11又は12に記載の運転支援装置。
  14.  前記待機位置設定部は、前記待機位置で前記自車が右左折を待機する間、前記待機位置に到達してから所定時間経過後に前記待機位置を前記第2待機位置側に変更することを特徴とする請求項11から13のいずれか1項に記載の運転支援装置。
  15.  前記待機位置設定部は、前記待機位置で前記自車が右左折を待機する間、前記待機位置に到達してから所定時間内に、前記対向車線から右左折を行う車両が前記物体検出部により検出されない場合に前記待機位置を前記第2待機位置側に変更することを特徴とする請求項11から14のいずれか1項に記載の運転支援装置。
  16.  前記自車に後続する後続車を検出する後続車検出部を更に備え、
     前記待機位置設定部は、前記待機位置で前記自車が右左折を待機する間、前記後続車検出部により前記後続車が検出される場合に前記待機位置を前記第2待機位置側に変更することを特徴とする請求項11から15のいずれか1項に記載の運転支援装置。
  17.  前記交差点の信号機により表示される信号を検出する信号検出部を更に備え、
     前記待機位置設定部は、前記待機位置で前記自車が右左折を待機する間、前記信号検出部により検出された前記信号が切り替わるまでに前記待機位置を前記第2待機位置側に変更することを特徴とする請求項11から16のいずれか1項に記載の運転支援装置。
  18.  自車の走行可能な道路情報を取得することと、
     前記道路情報における前記自車の現在位置を取得することと、
     物体検出部が前記自車の前方の物体を検出することと、
     所定時間後に前記自車が交差点で対向車線を横切って右左折を行うことを示す右左折情報を検出することと、
     前記右左折情報が検出された場合において、前記道路情報、前記現在位置及び前記物体検出部の検出結果に基づいて、前記対向車線からの右左折を前記交差点内で待機する待機車両が存在するか否かを判断することと、
     前記待機車両により形成される前記物体検出部の前記対向車線における死角を推定することと、
     前記死角に基づいて、前記自車が右左折を待機する間前記物体検出部が前記対向車線を検出することができる待機領域を設定することと
     を含むことを特徴とする運転支援方法。
PCT/JP2014/071902 2014-08-21 2014-08-21 運転支援装置及び運転支援方法 WO2016027351A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP14900080.4A EP3185233A4 (en) 2014-08-21 2014-08-21 Driving support device and driving support method
US15/504,516 US9911330B2 (en) 2014-08-21 2014-08-21 Driving assistance device and driving assistance method
RU2017108762A RU2638328C1 (ru) 2014-08-21 2014-08-21 Устройство помощи при вождении и способ помощи при вождении
JP2016543547A JP6269840B2 (ja) 2014-08-21 2014-08-21 運転支援装置及び運転支援方法
PCT/JP2014/071902 WO2016027351A1 (ja) 2014-08-21 2014-08-21 運転支援装置及び運転支援方法
MX2017002012A MX358892B (es) 2014-08-21 2014-08-21 Dispositivo de asistencia a la conduccion y metodo de asistencia a la conduccion.
BR112017002830-1A BR112017002830B1 (pt) 2014-08-21 2014-08-21 Dispositivo de assistência à direção e método de assistência à direção
CN201480081375.3A CN106575477B (zh) 2014-08-21 2014-08-21 驾驶辅助装置及驾驶辅助方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/071902 WO2016027351A1 (ja) 2014-08-21 2014-08-21 運転支援装置及び運転支援方法

Publications (1)

Publication Number Publication Date
WO2016027351A1 true WO2016027351A1 (ja) 2016-02-25

Family

ID=55350328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071902 WO2016027351A1 (ja) 2014-08-21 2014-08-21 運転支援装置及び運転支援方法

Country Status (8)

Country Link
US (1) US9911330B2 (ja)
EP (1) EP3185233A4 (ja)
JP (1) JP6269840B2 (ja)
CN (1) CN106575477B (ja)
BR (1) BR112017002830B1 (ja)
MX (1) MX358892B (ja)
RU (1) RU2638328C1 (ja)
WO (1) WO2016027351A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197279A (ja) * 2015-04-02 2016-11-24 株式会社デンソー 衝突回避装置及び衝突回避システム
CN108447302A (zh) * 2017-02-16 2018-08-24 松下电器(美国)知识产权公司 信息处理装置以及程序
CN108693869A (zh) * 2017-03-31 2018-10-23 本田技研工业株式会社 车辆控制装置
WO2019146052A1 (ja) * 2018-01-25 2019-08-01 日産自動車株式会社 自動運転車両の制御方法および制御装置
JP2019202722A (ja) * 2018-05-25 2019-11-28 株式会社デンソー 車両制御装置
US10902728B2 (en) * 2017-04-26 2021-01-26 Ford Global Technologies, Llc Blind spot object detection
WO2022059352A1 (ja) * 2020-09-16 2022-03-24 日立Astemo株式会社 運転支援装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9649979B2 (en) * 2015-01-29 2017-05-16 Toyota Motor Engineering & Manufacturing North America, Inc. Autonomous vehicle operation in view-obstructed environments
US10232848B2 (en) * 2016-01-29 2019-03-19 Toyota Motor Engineering & Manufacturing North America, Inc. Detection of left turn across path/opposite direction oncoming objects
JP6650635B2 (ja) * 2016-02-29 2020-02-19 パナソニックIpマネジメント株式会社 判定装置、判定方法、および判定プログラム
DE102017101250A1 (de) * 2016-03-09 2017-09-14 Subaru Corporation Fahrtsteuerungsvorrichtung für Fahrzeug
KR20180058405A (ko) * 2016-11-24 2018-06-01 현대자동차주식회사 차량 및 그 제어방법
US11009875B2 (en) * 2017-03-09 2021-05-18 Waymo Llc Preparing autonomous vehicles for turns
US10429846B2 (en) * 2017-08-28 2019-10-01 Uber Technologies, Inc. Systems and methods for communicating intent of an autonomous vehicle
JP6627152B2 (ja) * 2017-09-08 2020-01-08 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
JP6782370B2 (ja) * 2017-10-10 2020-11-11 本田技研工業株式会社 車両制御装置、車両制御方法、及びプログラム
US10583839B2 (en) * 2017-12-28 2020-03-10 Automotive Research & Testing Center Method of lane change decision-making and path planning
JP6995671B2 (ja) * 2018-03-14 2022-01-14 本田技研工業株式会社 車両制御装置、車両制御方法、およびプログラム
JP7150245B2 (ja) * 2018-06-01 2022-10-11 マツダ株式会社 車両用警報システム
US10926759B2 (en) * 2018-06-07 2021-02-23 GM Global Technology Operations LLC Controlling a vehicle based on trailer position
RU2758730C1 (ru) * 2018-07-04 2021-11-01 Ниссан Мотор Ко., Лтд. Способ поддержки вождения и устройство поддержки вождения
US11181920B2 (en) * 2018-08-28 2021-11-23 Denso Corporation Travel assistance method and travel assistance apparatus
US10940870B1 (en) * 2018-11-28 2021-03-09 BlueOwl, LLC Systems and methods for visualizing predicted driving risk
US11137766B2 (en) 2019-03-07 2021-10-05 Zoox, Inc. State machine for traversing junctions
US11161504B2 (en) * 2019-03-19 2021-11-02 Honda Motor Co., Ltd. Vehicle control apparatus and method
CN113646221A (zh) * 2019-03-27 2021-11-12 日产自动车株式会社 移动体的行为预测方法、行为预测装置以及车辆
US11480962B1 (en) 2019-06-28 2022-10-25 Zoox, Inc. Dynamic lane expansion
US11427191B2 (en) 2019-10-31 2022-08-30 Zoox, Inc. Obstacle avoidance action
US11532167B2 (en) 2019-10-31 2022-12-20 Zoox, Inc. State machine for obstacle avoidance
RU2757037C1 (ru) * 2020-04-23 2021-10-11 Общество с ограниченной ответственностью «Яндекс Беспилотные Технологии» Способ и система для выявления наличия колеи на текущей местности
CN112092822B (zh) * 2020-09-07 2021-11-12 中国第一汽车股份有限公司 一种提示方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09270097A (ja) * 1996-04-02 1997-10-14 Nippon Signal Co Ltd:The 路車間通信を用いた右折運転支援装置
JPH1153690A (ja) * 1997-07-31 1999-02-26 Toyota Motor Corp 交差点警報装置
JP2006227811A (ja) * 2005-02-16 2006-08-31 Denso Corp 運転支援装置
JP2008041058A (ja) * 2006-08-10 2008-02-21 Sumitomo Electric Ind Ltd 死角移動体を報知するための報知システム、画像処理装置、車載装置及び報知方法
JP2010079565A (ja) * 2008-09-25 2010-04-08 Toyota Motor Corp 運転支援装置
JP2011090582A (ja) * 2009-10-23 2011-05-06 Fuji Heavy Ind Ltd 右折時運転支援装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4228894B2 (ja) * 2003-12-01 2009-02-25 日産自動車株式会社 危険個所表示システム
AU2006332242A1 (en) * 2006-01-03 2007-07-12 See-Mi.Com Aps Method for the prevention of accidents caused by turning vehicles
US9302678B2 (en) * 2006-12-29 2016-04-05 Robotic Research, Llc Robotic driving system
US8482431B2 (en) 2009-10-23 2013-07-09 Fuji Jukogyo Kabushiki Kaisha Driving support apparatus
JP5408237B2 (ja) * 2010-12-28 2014-02-05 株式会社デンソー 車載障害物情報通知装置
US8712624B1 (en) * 2012-04-06 2014-04-29 Google Inc. Positioning vehicles to improve quality of observations at intersections
US20130289824A1 (en) * 2012-04-30 2013-10-31 GM Global Technology Operations LLC Vehicle turn assist system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09270097A (ja) * 1996-04-02 1997-10-14 Nippon Signal Co Ltd:The 路車間通信を用いた右折運転支援装置
JPH1153690A (ja) * 1997-07-31 1999-02-26 Toyota Motor Corp 交差点警報装置
JP2006227811A (ja) * 2005-02-16 2006-08-31 Denso Corp 運転支援装置
JP2008041058A (ja) * 2006-08-10 2008-02-21 Sumitomo Electric Ind Ltd 死角移動体を報知するための報知システム、画像処理装置、車載装置及び報知方法
JP2010079565A (ja) * 2008-09-25 2010-04-08 Toyota Motor Corp 運転支援装置
JP2011090582A (ja) * 2009-10-23 2011-05-06 Fuji Heavy Ind Ltd 右折時運転支援装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3185233A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197279A (ja) * 2015-04-02 2016-11-24 株式会社デンソー 衝突回避装置及び衝突回避システム
CN108447302A (zh) * 2017-02-16 2018-08-24 松下电器(美国)知识产权公司 信息处理装置以及程序
CN108693869A (zh) * 2017-03-31 2018-10-23 本田技研工业株式会社 车辆控制装置
JP2018173787A (ja) * 2017-03-31 2018-11-08 本田技研工業株式会社 車両制御装置
US10902728B2 (en) * 2017-04-26 2021-01-26 Ford Global Technologies, Llc Blind spot object detection
WO2019146052A1 (ja) * 2018-01-25 2019-08-01 日産自動車株式会社 自動運転車両の制御方法および制御装置
JP2019202722A (ja) * 2018-05-25 2019-11-28 株式会社デンソー 車両制御装置
WO2022059352A1 (ja) * 2020-09-16 2022-03-24 日立Astemo株式会社 運転支援装置

Also Published As

Publication number Publication date
EP3185233A4 (en) 2018-02-21
BR112017002830B1 (pt) 2022-11-29
EP3185233A1 (en) 2017-06-28
JP6269840B2 (ja) 2018-01-31
US9911330B2 (en) 2018-03-06
RU2638328C1 (ru) 2017-12-13
CN106575477A (zh) 2017-04-19
MX2017002012A (es) 2017-05-04
MX358892B (es) 2018-09-07
BR112017002830A2 (pt) 2017-12-26
JPWO2016027351A1 (ja) 2017-06-08
CN106575477B (zh) 2018-07-10
US20170236413A1 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
JP6269840B2 (ja) 運転支援装置及び運転支援方法
JP6361567B2 (ja) 自動運転車両システム
EP2025577B1 (en) Travel assistance device
JP4596063B2 (ja) 車両操舵制御装置
JP2011524298A (ja) 自動車の駐車プロセスを支援する方法および装置
WO2019043832A1 (ja) 運転支援車両の走行制御方法及び走行制御装置
JP6658235B2 (ja) 車線維持装置
JP6330563B2 (ja) 走行支援装置及び走行支援方法
JP6133204B2 (ja) 運転支援装置
JP2013052754A (ja) 駐車支援装置
JP5929597B2 (ja) 車両用走行制御装置及び方法
JP5082905B2 (ja) 駐車支援装置、駐車支援方法及びコンピュータプログラム
JPWO2019008760A1 (ja) 駐車支援方法及び駐車支援装置
JP5786775B2 (ja) 駐車支援装置
JP2008059366A (ja) 操舵角決定装置、自動車及び操舵角決定方法
JP2009234543A (ja) 車両の車線逸脱警報装置
JP5929093B2 (ja) 車両用走行支援装置
JP5880858B2 (ja) 駐車支援装置
JP2015157612A (ja) 車両用挙動制御装置
JP5113539B2 (ja) 車両の接触回避支援装置
JP2017073060A (ja) 車線変更支援装置
WO2022059352A1 (ja) 運転支援装置
JP7453785B2 (ja) 駐車支援装置、及び駐車支援システム
US20230112601A1 (en) Traveling Path Setting Method and Traveling Path Setting Device
JP2009255666A (ja) 車両の車線逸脱警報装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900080

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016543547

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/002012

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 15504516

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017002830

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017108762

Country of ref document: RU

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014900080

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014900080

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112017002830

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170213