WO2016024573A1 - 正浸透膜および正浸透処理システム - Google Patents

正浸透膜および正浸透処理システム Download PDF

Info

Publication number
WO2016024573A1
WO2016024573A1 PCT/JP2015/072695 JP2015072695W WO2016024573A1 WO 2016024573 A1 WO2016024573 A1 WO 2016024573A1 JP 2015072695 W JP2015072695 W JP 2015072695W WO 2016024573 A1 WO2016024573 A1 WO 2016024573A1
Authority
WO
WIPO (PCT)
Prior art keywords
forward osmosis
osmotic pressure
membrane
support layer
polyketone
Prior art date
Application number
PCT/JP2015/072695
Other languages
English (en)
French (fr)
Inventor
森田 徹
真幸 金田
政宏 安川
秀人 松山
Original Assignee
旭化成せんい株式会社
国立大学法人神戸大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成せんい株式会社, 国立大学法人神戸大学 filed Critical 旭化成せんい株式会社
Priority to CN201580041523.3A priority Critical patent/CN106659987B/zh
Priority to KR1020177002423A priority patent/KR102039807B1/ko
Priority to CA2956666A priority patent/CA2956666C/en
Priority to AU2015302650A priority patent/AU2015302650B2/en
Priority to US15/500,838 priority patent/US10589232B2/en
Priority to EP15831883.2A priority patent/EP3181215B1/en
Priority to JP2016542579A priority patent/JP6320537B2/ja
Priority to SG11201700679SA priority patent/SG11201700679SA/en
Publication of WO2016024573A1 publication Critical patent/WO2016024573A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0022Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/56Polyamides, e.g. polyester-amides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0023Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • B01D61/0024Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/06Flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/081Hollow fibre membranes characterised by the fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1214Chemically bonded layers, e.g. cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • B01D69/1251In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction by interfacial polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/38Polyalkenylalcohols; Polyalkenylesters; Polyalkenylethers; Polyalkenylaldehydes; Polyalkenylketones; Polyalkenylacetals; Polyalkenylketals
    • B01D71/381Polyvinylalcohol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/44Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of groups B01D71/26-B01D71/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/72Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, not provided for in a single one of the groups B01D71/46 - B01D71/70 and B01D71/701 - B01D71/702
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/0283Pore size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/04Characteristic thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/30Chemical resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/002Forward osmosis or direct osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • B01D71/14Esters of organic acids
    • B01D71/16Cellulose acetate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones

Definitions

  • the present invention relates to a membrane and system used for forward osmosis treatment in which water is transferred from a dilute solution to a concentrated solution using an osmotic pressure difference as a driving force.
  • the forward osmosis treatment is a dilute solution having a low solute concentration by bringing solutions having different solute concentrations into contact with each other through a semipermeable membrane, and allowing water to permeate through the semipermeable membrane using the osmotic pressure difference resulting from the solute concentration difference as a driving force. This is a process of transferring water from a concentrated solution having a high solute concentration.
  • the dilute solution can be concentrated or the concentrated solution can be diluted.
  • the forward osmosis treatment is common to the reverse osmosis treatment in that water is preferentially permeated over the solute using a semipermeable membrane.
  • the forward osmosis treatment uses osmotic pressure difference to move water from the dilute solution side to the concentrated solution side.
  • the concentrated solution side is pressurized to concentrate the water against the osmotic pressure difference.
  • reverse osmosis treatment in which the solution is moved from the solution side to the diluted solution side. Therefore, even if the semipermeable membrane used in the reverse osmosis treatment is directly applied to the forward osmosis treatment, it is not necessarily suitable for the forward osmosis treatment.
  • reverse osmosis treatment a concentrated solution is placed on one side of a semipermeable membrane, a diluted solution is placed on the other side, and a pressure equal to or greater than the osmotic pressure difference between the two solutions is applied to the concentrated solution.
  • the membrane for reverse osmosis treatment (reverse osmosis membrane) is required to have a strength that can withstand the pressure on the concentrated solution side.
  • the internal concentration polarization of the solute in the support layer greatly affects the water permeability of the membrane.
  • a concentrated solution is placed on one side of a membrane (forward osmosis membrane), a dilute solution is placed on the other side, and the osmotic pressure difference between the two solutions is used as the driving force to drive water from the dilute solution side. Move to the side.
  • the effective osmotic pressure difference of the thin film layer is increased by reducing the internal concentration polarization of the solute in the support layer that reinforces the thin film layer having the semipermeable membrane performance as much as possible. It becomes important. If the space in which the solute freely diffuses in the support layer is restricted, internal concentration polarization of the solute in the support layer occurs, and a sufficient amount of water permeability cannot be secured. Therefore, in the forward osmosis membrane, it is important that the support layer is made of a material that has a high porosity so as not to limit the diffusion of the solute in the inside as much as possible and can ensure a predetermined strength. .
  • Patent Document 1 discloses a forward osmosis membrane in which a thin film layer made of polyamide is laminated on a support layer made of polyacrylonitrile, polyacrylonitrile-vinyl acetate copolymer, polysulfone, or the like
  • Patent Document 2 discloses a forward osmosis membrane in which a thin film layer made of polyamide is laminated on a support layer made of epoxy resin
  • Patent Document 3 discloses forward osmosis membranes in which a barrier material is applied to a support layer made of polyethylene terephthalate (PET) or polypropylene.
  • PET polyethylene terephthalate
  • the forward osmosis treatment is usually performed using a module formed by filling a forward osmosis membrane formed in an appropriate shape into an appropriate container.
  • the module using the hollow fiber-shaped forward osmosis membrane can increase the membrane filling rate per module as compared with the module using the flat membrane-shaped forward osmosis membrane. It is pointed out that it is more suitable in that it can be constructed (Non-patent Document 1).
  • Patent Document 4 discloses a forward osmosis membrane flow system in which durability is improved by using a forward osmosis membrane containing zeolite, which is an inorganic material, while maintaining the water permeability of the polymer forward osmosis membrane. Has been proposed.
  • the forward osmosis membrane described in Patent Document 4 has improved durability, its water permeability is extremely low and there is a problem in practicality as a forward osmosis membrane flow system.
  • an object of the present invention is to provide a novel flat membrane-shaped or hollow fiber-shaped forward osmosis membrane having a high water permeability in the forward osmosis treatment.
  • Another object of the present invention is to provide a forward osmosis treatment system having sufficient durability against an organic compound and excellent in water permeability.
  • a polyketone porous membrane having a flat membrane shape (flat plate shape) or a hollow fiber shape is used as a support layer for the forward osmosis membrane, and in the case of the flat membrane shape, on either the front side surface or the back side surface;
  • a hollow core shape by laminating a thin film layer having a semipermeable membrane performance on either the inner surface or the outer surface, the internal concentration polarization of the solute in the support layer is effectively reduced, It has been found that a forward osmosis membrane having a high water permeability can be obtained.
  • This forward osmosis membrane has high durability against organic compounds, and can maintain a high water permeability even when used repeatedly as a forward osmosis treatment system.
  • the present invention is as follows.
  • a forward osmosis membrane wherein a thin film layer having a semipermeable membrane performance is laminated on a polyketone support layer.
  • the thin film layer having the semipermeable membrane performance is a thin film layer made of cellulose acetate, polyamide, polyvinyl alcohol / polypiperazine amide composite film, sulfonated polyethersulfone, polypiperazine amide, or polyimide.
  • Forward osmosis membrane is a forward osmosis membrane according to (1) or (2), wherein the thin film layer having the semipermeable membrane performance is a polyamide thin film layer having a thickness of 0.05 to 2 ⁇ m.
  • a yarn bundle comprising a plurality of forward osmosis membranes according to any one of (9) to (11) is housed in a cylindrical case, and both ends of the yarn bundle are attached to the cylindrical case by adhesive fixing portions.
  • a forward osmotic hollow fiber membrane module having a structure fixed to
  • a semipermeable membrane unit comprising the forward osmosis membrane according to any one of (1) to (11), A first region and a second region partitioned from each other via the semipermeable membrane unit; A low osmotic pressure solution supply part for supplying a low osmotic pressure solution to the first region; A high osmotic pressure solution supply part for supplying a high osmotic pressure solution to the second region, and A function of causing fluid movement through the semipermeable membrane unit from the first region supplied with the low osmotic pressure solution to the second region supplied with the high osmotic pressure solution; A forward osmosis treatment system.
  • Water is transferred from the low osmotic pressure solution to the high osmotic pressure solution to increase the flow rate of the high osmotic pressure solution, and the increase A power generation method, wherein a water current generator is driven by the flow rate generated to generate power.
  • the forward osmosis treatment system obtained by applying the forward osmosis membrane of the present invention can exhibit high performance stably for a long time.
  • the forward osmosis treatment system of the present invention uses, for example, two liquids having different osmotic pressures, desalination of seawater, desalination of brine, drainage treatment, concentration of various valuable materials, treatment of associated water in oil and gas drilling, and so on. It can be suitably used for power generation, dilution of sugars, fertilizers and refrigerants.
  • FIG. 1 It is sectional drawing which shows typically one structural example of the hollow fiber membrane module used in the forward osmosis processing system of this invention. It is a figure which shows typically the example of 1 structure of the forward osmosis processing system of this invention. It is a figure which shows typically the structure of the spinneret of the double pipe
  • the forward osmosis membrane of the present invention has a configuration in which a thin film layer having a semipermeable membrane performance is laminated on a polyketone support layer.
  • the polyketone support layer constituting the forward osmosis membrane of the present invention will be described.
  • the polyketone constituting the support layer is composed of a copolymer of carbon monoxide and olefin.
  • the support layer of the forward osmosis membrane is composed of a copolymer of carbon monoxide and olefin.
  • the polyketone support layer is highly self-supporting. This eliminates the need for a supporting substrate such as a non-woven fabric that may have been required in conventional reverse osmosis membranes, and thus allows the forward osmosis membrane to be thinned.
  • polyketone has high moldability. Therefore, since a support layer having an arbitrary shape such as a flat plate shape or a hollow fiber shape can be easily formed, it can be easily applied to a desired membrane module having a conventionally known shape.
  • the polyketone support layer preferably contains 10% by mass to 100% by mass of polyketone, which is a copolymer of carbon monoxide and one or more olefins.
  • the content of the polyketone in the polyketone support layer is preferably as large as possible from the viewpoint of ensuring strength and forming a support layer having a high porosity.
  • the polyketone content in the polyketone support layer is preferably 70% by mass or more, more preferably 80% by mass or more, still more preferably 90% by mass or more, and particularly preferably 100% by mass.
  • the content of the polyketone in the polyketone support layer is confirmed by a method of dissolving and removing the polyketone with a solvent that dissolves only the polyketone among the components constituting the support layer, a method of dissolving and removing other than the polyketone with a solvent that dissolves other than the polyketone can do.
  • any type of compound can be selected depending on the purpose.
  • the olefin include chain olefins such as ethylene, propylene, butene, hexene, octene, and decene; Alkenyl aromatic compounds such as styrene and ⁇ -methylstyrene; Cyclic olefins such as cyclopentene, norbornene, 5-methylnorbornene, tetracyclododecene, tricyclodecene, pentacyclopentadecene, pentacyclohexadecene; Halogenated alkenes such as vinyl chloride and vinyl fluoride; Acrylic acid esters such as ethyl acrylate and methyl methacrylate; Examples include vinyl acetate. From the viewpoint of ensuring the strength of the polyketone support layer, the number of the aromatic compounds such as styrene and ⁇ -methylstyrene; Cyclic ole
  • the polyketone preferably has a repeating unit represented by the following formula (1).
  • -RC ( O)-(1) ⁇
  • R represents a divalent hydrocarbon group having 2 to 20 carbon atoms which may have a substituent.
  • substituent in R include halogen, hydroxyl group, alkoxyl group, primary amino group, secondary amino group, tertiary amino group, quaternary ammonium group, sulfonic acid group, sulfonic acid ester group, carboxylic acid group, and carboxylic acid group.
  • the polyketone repeating unit (that is, the ketone repeating unit) may be composed of only one type or a combination of two or more types.
  • the number of carbon atoms of the hydrocarbon group R in the above formula (1) is more preferably 2 to 8, further preferably 2 to 3, and most preferably 2.
  • the repeating unit constituting the polyketone preferably contains many 1-oxotrimethylene repeating units represented by the following formula (2). —CH 2 —CH 2 —C ( ⁇ O) — (2)
  • the proportion of 1-oxotrimethylene repeating units in the repeating units constituting the polyketone is preferably 70 mol% or more, more preferably 90 mol% or more. More preferably, it is 95 mol% or more.
  • the proportion of 1-oxotrimethylene repeating units may be 100 mol%.
  • “100 mol%” means that repeating units other than 1-oxotrimethylene are not observed except for polymer end groups in known analytical methods such as elemental analysis, NMR (nuclear magnetic resonance), and gas chromatography. Means.
  • the structure of the repeating unit constituting the polyketone and the amount of each structure are confirmed by NMR.
  • the support layer composed of polyketone has a porous structure, and solute and water can pass through the support layer via an internal through space.
  • the polyketone support layer preferably has pores having a maximum pore diameter of 50 nm or more. The maximum pore diameter is measured by a bubble point method (according to ASTM F316-86 or JIS K3832).
  • the maximum pore diameter of the polyketone support layer is more preferably 80 nm or more, and further preferably 130 nm or more.
  • the maximum pore diameter of the polyketone support layer is preferably 2 ⁇ m or less, more preferably 1.5 ⁇ m or less, further preferably 1 ⁇ m or less, and most preferably 0.6 ⁇ m or less.
  • the porosity of the polyketone support layer is not particularly limited. However, the higher the porosity, the easier the solute diffusion in the support layer occurs, and the internal concentration polarization of the solute in the support layer can be suppressed to increase the water permeability of the forward osmosis membrane. On the other hand, if the porosity is excessively high, the pressure resistance is impaired. From these viewpoints, the porosity of the polyketone support layer is preferably 60% to 95%, more preferably 70% to 95%, and still more preferably 80% to 95%. The porosity of the polyketone support layer (porous membrane) is calculated by the following mathematical formula (3).
  • Porosity (%) (1 ⁇ G / ⁇ / V) ⁇ 100 (3) ⁇ In Formula (3), G is the mass (g) of the polyketone support layer, ⁇ is the mass average density (g / cm 3 ) of all the resins constituting the polyketone support layer, and V is the polyketone support layer Volume (cm 3 ). ⁇
  • the mass average density ⁇ in the above formula (3) is obtained by multiplying the density of each resin by the constituent mass ratio. Is the sum of the values.
  • the mass average density ⁇ is It is represented by the following mathematical formula (4).
  • the porous membrane constituting the polyketone support layer may be a symmetric membrane or an asymmetric membrane.
  • a thin film layer having semipermeable membrane performance is preferably provided on the dense surface of the polyketone porous membrane.
  • the shape of the polyketone support layer of the present invention is not particularly limited, but a flat membrane shape (flat plate shape) or a hollow fiber shape is preferable from the viewpoint of easy application to a conventionally known membrane module.
  • the polyketone support layer is a flat film, it is preferable that the polyketone support layer is formed as thin as possible as long as strength is ensured from the viewpoint of suppressing the internal concentration polarization of the solute in the support layer.
  • the thickness of the polyketone support layer is preferably 300 ⁇ m or less, and more preferably 200 ⁇ m or less.
  • the polyketone support layer needs to have a certain thickness.
  • the thickness of the polyketone support layer is preferably 9 ⁇ m or more, and more preferably 14 ⁇ m or more. The thickness of the polyketone support layer can be measured by observing the cross section with an SEM.
  • the pressure resistance of the polyketone support layer is preferably 0.1 MPa or more, and more preferably 0.2 MPa or more. This pressure resistance is broken when a pressure permeation treatment test is performed on a forward osmosis membrane in which a polyamide thin film layer is laminated on a polyketone support layer by applying water pressure in the range of 0 to 2 MPa using water or low-concentration salt water. The maximum pressure at which no film occurs.
  • a non-woven fabric may be combined as a reinforcing material with the polyketone support layer.
  • the porosity of the nonwoven fabric is preferably 60% or more, more preferably 70% or more, and still more preferably 80% or more so as not to impair the water permeability of the obtained support layer.
  • the polyketone support layer When the polyketone support layer has a hollow fiber shape (fibrous shape), the polyketone support layer is a membrane having voids penetrating in the fiber axis direction therein.
  • the outer diameter of the polyketone hollow fiber membrane varies depending on the application, but a range of 50 to 5,000 ⁇ m is preferably used. Considering the volume of the apparatus per unit membrane area when processed into a hollow fiber membrane module, the outer diameter of the polyketone hollow fiber membrane is preferably smaller (thin). On the other hand, considering the processing capacity per unit time of the hollow fiber membrane module, it is better to have a certain degree of outer diameter and inner diameter. Considering both of these, the more preferable range of the outer diameter of the polyketone hollow fiber membrane is 100 to 3,000 ⁇ m, and more preferably 200 to 1,500 ⁇ m.
  • the thickness (of the membrane portion) of the polyketone hollow fiber membrane be as thin as possible as long as the strength is ensured.
  • the membrane portion of the polyketone hollow fiber needs to have a certain thickness.
  • the range of the appropriate thickness of the membrane part in the polyketone hollow fiber membrane is preferably 10 to 400 ⁇ m, more preferably 15 to 200 ⁇ m.
  • the thickness of the membrane part of the polyketone hollow fiber membrane can be measured by observing the cross section with an SEM.
  • the cross-section of the polyketone hollow fiber membrane may be any appropriate shape such as a circle, an ellipse, or a polygon, but is most preferably a perfect circle from the viewpoint of symmetry.
  • the cross-sectional structure of the membrane portion of the polyketone hollow fiber membrane may be a symmetric membrane having a uniform porous structure from the outside to the inside, or an asymmetric membrane having different porous structures on the outside and the inside.
  • the thin film layer having semipermeable membrane performance is preferably provided on the dense surface of the polyketone porous membrane.
  • Such a polyketone support layer can be produced by a known method.
  • a polyketone is dissolved in a solution containing a metal halide salt (eg, zinc halide, alkali metal halide, etc.) to prepare a polyketone dope, and this dope is passed through a film die, a double tube orifice, etc. in a coagulation bath.
  • the polyketone porous film can be obtained by discharging into a film, forming into a film or hollow fiber shape, and further washing and drying. At this time, for example, by adjusting the polymer concentration in the dope and the temperature of the coagulation bath, the porosity and pore diameter of the polyketone porous film can be changed.
  • the polyketone is dissolved in a good solvent (eg, resorcinol, hexafluoroisopropanol, m-cresol, o-chlorophenol, etc.), and the resulting solution is cast on a substrate and a non-solvent (eg, methanol, isopropanol). , Acetone, water, etc.), and further washed and dried to obtain a polyketone porous membrane.
  • a good solvent eg, resorcinol, hexafluoroisopropanol, m-cresol, o-chlorophenol, etc.
  • a non-solvent eg, methanol, isopropanol
  • Acetone, water, etc. Acetone, water, etc.
  • the porosity and pore diameter of the polyketone porous membrane can be changed by appropriately selecting the mixing ratio of the polyketone and the good solvent and the type of non-solvent.
  • the polyketone can be obtained, for example, by polymerizing carbon monoxide and olefin using palladium, nickel or the like as a catalyst.
  • the production of the polyketone support layer can be carried out with reference to, for example, JP-A Nos. 2002-348401 and 2-4431.
  • a thin film layer having a semipermeable membrane performance is formed on the polyketone support layer.
  • This thin film layer may be made of a known material used in conventional forward osmosis membranes or reverse osmosis membranes.
  • the thin film layer may be a layer made of a material having the ability to permeate water using the osmotic pressure difference and efficiently move from the diluted solution side to the concentrated solution side.
  • a semipermeable membrane generally used as a reverse osmosis (RO) membrane, a nanofilter (NF), or the like can be used.
  • the semipermeable membrane for example, cellulose acetate, polyamide, polyvinyl alcohol / polypiperazine amide composite membrane, sulfonated polyethersulfone, polypiperazine amide, polyimide and the like are preferably used.
  • a semipermeable membrane may be appropriately selected in consideration of durability against a low osmotic pressure solution and a high osmotic pressure solution.
  • the polyvinyl alcohol / polypiperazine amide composite membrane is described in, for example, Desalination, Vol. 257 (No. 1-3), pp129-136.
  • a thin film layer made of polyamide is preferably used in terms of ease of forming a thin film on a polyketone film.
  • the polyamide thin film layer is preferably obtained by polymerizing a polyamine and a polycarboxylic acid derivative.
  • the amino group of the polyamine and the carbonyl group of the polycarboxylic acid derivative are condensed to form an amide group.
  • Polyamine is a compound having two or more amino groups in the molecule.
  • examples of such polyamines include aliphatic polyamines such as ethylenediamine, tris (2-aminoethyl) amine, bis (hexamethylene) triamine, and diaminocyclohexane; aromatic polyamines such as phenylenediamine, triaminobenzene, and diaminotoluene. Is mentioned.
  • aromatic polyamine is preferably used. Only one type of polyamine may be used, or two or more types may be used.
  • the polycarboxylic acid derivative may be a compound having two or more acyl groups that can be condensed with the amino group of the polyamine.
  • a compound having three or more acyl groups capable of condensing with an amino group is preferred.
  • the carboxylic acid derivative may be used in the form of a free carboxylic acid, and may be used in the form of an acid anhydride, an acid halide, or the like. From the viewpoint of reactivity with polyamine, it is preferable to use a polycarboxylic acid halide (acid halide) as the polycarboxylic acid derivative.
  • polycarboxylic acid halide examples include polycarboxylic acid fluoride, polycarboxylic acid chloride, polycarboxylic acid bromide, and polycarboxylic acid iodide. In view of availability and reactivity with amino groups, it is preferable to use polycarboxylic acid chlorides.
  • polycarboxylic acid halides include aliphatic polycarboxylic acid halides such as propanedicarboxylic acid dichloride, butanedicarboxylic acid dichloride, pentanedicarboxylic acid dichloride, propanetricarboxylic acid trichloride, cyclohexanedicarboxylic acid dichloride, and cyclohexanetricarboxylic acid trichloride.
  • aromatic polycarboxylic acid halides such as terephthalic acid dichloride, isophthalic acid dichloride, biphenyl dicarboxylic acid dichloride, naphthalene dicarboxylic acid dichloride, and trimesic acid trichloride.
  • polycarboxylic acid halide an aromatic polycarboxylic acid halide is preferably used. Only one type of polycarboxylic acid derivative (polycarboxylic acid halide) may be used, or two or more types may be used.
  • the polyamide thin film layer is preferably bonded to the polyketone support layer.
  • the bond include a chemical bond and a physically bonded state.
  • the chemical bond may be a covalent bond.
  • Examples of the covalent bond include a C—C bond, a C ⁇ N bond, and a bond via a pyrrole ring.
  • physically bonded states include hydrogen bonded, van der Waals force, electrostatic attractive force, hydrophobic interaction, adsorbed state bonded by intermolecular force without using chemical bond, and attached state. It is done.
  • the polyamine is chemically bonded to the polyketone.
  • the polyamide thin film layer is composed of a polycondensation product of a first monomer consisting of at least one selected from polyamines and a second monomer consisting of at least one selected from the group consisting of polycarboxylic acid derivatives. It is preferable.
  • the polyamide thin film layer is obtained by arranging a polyamine on a polyketone support layer, further arranging a polycarboxylic acid derivative thereon, and interfacially polymerizing the polyamine and the polycarboxylic acid derivative. Preferably there is.
  • a polyamine aqueous solution is coated on the polyketone support layer, and a polycarboxylic acid derivative is further dissolved in an organic solvent (polycarboxylic acid derivative-containing solution).
  • a polyamid thin film layer can be formed on the polyketone support layer by coating the polyamine and the polycarboxylic acid derivative.
  • the organic solvent for dissolving the polycarboxylic acid derivative those having low solubility in water are preferable.
  • hydrocarbon solvents such as hexane, octane and cyclohexane can be used.
  • the pore diameter and thickness of the polyamide thin film layer can be changed, and the separation ability of the obtained forward osmosis membrane can be adjusted.
  • the polyamide thin film layer can be formed with reference to, for example, Japanese Patent Application Laid-Open Nos. 58-24303 and 1-180208.
  • the polyamide thin film layer can be obtained by polymerizing a polyamine and a polycarboxylic acid derivative.
  • the polyamide thin film layer can be chemically bonded to the polyketone support layer by the reaction of the polyamine with the carbonyl group of the polyketone.
  • the polyamide thin film layer can be chemically bonded to the polyketone support layer, thereby strengthening the bond between the polyamide thin film layer and the polyketone support layer. it can.
  • the time from the application of the polyamine aqueous solution on the polyketone support layer to the application of the polycarboxylic acid derivative-containing solution may be adjusted to, for example, about 10 seconds to 180 seconds.
  • the excess polycarboxylic acid derivative-containing solution can be removed and further annealed.
  • Annealing may be performed by a known method. For example, the method by heat processing, the method of wash
  • the thickness of the thin film layer is not particularly limited, but is preferably about 0.05 ⁇ m to 2 ⁇ m, more preferably 0.05 ⁇ m to 1 ⁇ m.
  • the thickness of the thin film layer can be measured by observing the cross section of the forward osmosis membrane with an SEM.
  • the forward osmosis hollow fiber membrane of the present embodiment is formed by laminating a thin film layer having a semipermeable membrane performance on either the outer surface or the inner surface of the polyketone hollow fiber membrane. It is preferable to have the structure. Laminating a thin film layer having semipermeable membrane performance on the outer surface is advantageous in that the amount of water per hollow fiber can be increased because the area of the thin film layer increases.
  • this is modularized, there is a concern that the thin film layer may be damaged or broken due to the processing process, rubbing between hollow fibers generated during use, or the like.
  • the method already disclosed can be used for the lamination of the thin film layer having the performance of a semipermeable membrane on the polyketone hollow fiber membrane.
  • a coating method or an interfacial polymerization method is applied.
  • the thin film layer having semipermeable membrane performance is a polyamide thin film layer
  • the thin film layer is preferably formed by an interfacial polymerization method.
  • the first monomer solution was adhered to the outside of the hollow fiber by passing the hollow fiber through a roll or the like while passing through the first monomer solution. Then, after removing the excess liquid, a method of passing through the second monomer solution can be used.
  • a method for laminating the polyamide thin film layer inside the polyketone hollow fiber membrane a method of laminating the polyamide thin film layer after producing a polyketone hollow fiber membrane module can be preferably applied.
  • the method for producing the polyketone hollow fiber membrane module is not particularly limited.
  • the hollow fiber membrane is cut into a predetermined length, and the necessary number is bundled, and then put into a cylindrical case 2 as shown in FIG. Then, a temporary cap is put on both ends of the case, and an adhesive such as urethane or epoxy is put on both ends of the hollow fiber membrane.
  • the method of inserting the adhesive while rotating the module with a centrifuge is a preferable method because the adhesive is uniformly filled.
  • the temporary cap is removed, and the both ends of the hollow fiber membrane are cut so that both ends of the hollow fiber membrane are open, whereby a hollow fiber membrane module is obtained.
  • the first monomer solution is first fed to the inside of the polyketone hollow fiber membrane in the module by using a liquid feed pump, and the first monomer solution is adhered to the inside of the hollow fiber. Then, after removing the excess first monomer solution, the second monomer solution is similarly fed and reacted. Thereafter, it is preferable to remove the excess second monomer solution and further anneal.
  • Annealing may be performed by a known method. For example, the method by heat processing, the method of wash
  • the forward osmosis membrane of the present invention has a configuration in which a thin film layer having a semipermeable membrane performance is laminated on a polyketone support layer.
  • the forward osmosis membrane of the present invention can increase the porosity of the support layer or reduce the film thickness while securing the strength of the support layer.
  • the performance of the support layer of the forward osmosis membrane can be determined using the structural parameter S as an index.
  • the structural parameter S is theoretically obtained from film thickness ⁇ flexibility / porosity. A smaller structural parameter S is preferable for the support layer. That is, it is preferable that the film thickness and the bending rate are small and the porosity is large.
  • a support layer having a particularly small structural parameter S can be obtained by using a polyketone.
  • the structural parameter S of the support layer in the forward osmosis membrane of the present invention is preferably 400 ⁇ m or less.
  • the larger the structural parameter S the slower the diffusion of the solute (salt) inside the support layer. Therefore, in the support layer, the internal concentration polarization of the solute increases, the effective osmotic pressure difference decreases, and the water permeability decreases. Therefore, from the viewpoint of reducing the internal concentration polarization of the solute in the support layer, the structural parameter S is preferably 400 ⁇ m or less, and more preferably 300 ⁇ m or less.
  • the structural parameter S is determined by the method described in the examples.
  • a forward osmosis membrane is so preferable that water permeability is high. Specifically, it is preferable that water permeation amount J W FO is 10 lm -2 h -1 or more, 15LM -2 h -1 or more is more preferable. If such a water permeation amount can be realized, a larger flow rate can be obtained when the forward osmosis treatment is performed. Water permeability J W FO is determined by the method described in Examples. In the forward osmosis membrane of the present invention, the polyamide thin film layer is uniformly laminated on the polyketone support layer due to the high reactivity between the polyketone and the amine and the good affinity for the aqueous amine solution.
  • the forward osmosis membrane of the present invention is a forward osmosis membrane having a high salt rejection and good performance.
  • a fabric such as a woven fabric or a nonwoven fabric; a membrane or the like may be laminated on one side or both sides of the forward osmosis membrane for the purpose of suppressing performance degradation due to adsorption of contaminants. Good.
  • the forward osmosis treatment system of the present invention utilizes the forward osmosis phenomenon.
  • a low osmotic pressure solution is supplied to one surface side (first region A1) of the semipermeable membrane unit, and the low osmotic pressure solution is supplied to the other surface side (second region A2).
  • a higher osmotic pressure solution with higher osmotic pressure is supplied. Then, fluid movement from the low osmotic pressure solution side to the high osmotic pressure solution side occurs. This increases the flow rate on the hyperosmotic solution side.
  • FIG. 1 is a cross-sectional view schematically showing a configuration example of a hollow fiber membrane module used in the forward osmosis treatment system of the present invention.
  • a hollow fiber-shaped semipermeable membrane is used as the semipermeable membrane unit.
  • the configuration of the semi-coating unit is not limited to this, and for example, a flat plate (flat membrane) semipermeable membrane may be used.
  • a hollow fiber membrane bundle 5 composed of a plurality of hollow fiber membranes (semi-permeable membrane units) 5a having openings at both ends, and a cylindrical shape that accommodates the hollow fiber membrane bundle 5.
  • a case 2 and adhesive fixing layers 6 and 7 for fixing both ends of the hollow fiber membrane bundle 5 to the cylindrical case 2 are provided.
  • the adhesive fixing layers 6 and 7 define a region where the opening of the hollow fiber membrane 5a is exposed and an outer region communicating with the region across the hollow fiber membrane 5a.
  • the case where both ends of the hollow fiber membrane bundle 5 are the first region A1 and the outside of the hollow fiber membrane 5a is the second region A2 will be described as an example. However, the first area A1 and the second area A2 may be reversed.
  • the cylindrical case 2 is provided with shell side conduits 3 and 4 for fluid entry and exit so as to protrude outward from the cylindrical case 2, respectively.
  • Header portions 8 and 9 to which piping is connected are arranged at both ends of the cylindrical case 2.
  • the header portions 8 and 9 are respectively provided with core side conduits 10 and 11 serving as fluid inlets and outlets.
  • a bias regulating member (not shown) is arranged at both ends of the hollow fiber membrane bundle 5 accommodated in the cylindrical case 2 in order to reduce the density distribution of the plurality of hollow fiber membranes 5a. May be.
  • FIG. 2 is a diagram schematically showing a configuration example of the forward osmosis treatment system of the present invention.
  • the hollow fiber membrane module 1 shown in FIG. 1 is used.
  • the forward osmosis treatment system 100 of FIG. 2 is used for forward osmosis treatment, for example.
  • the high osmotic pressure solution is supplied from the shell side conduit 4 to the second region A2 outside the hollow fiber membrane 5a, and from the header portion 8 to the both ends of the hollow fiber membrane bundle 5.
  • a low osmotic pressure solution is supplied to the first region A1.
  • the forward osmosis treatment system 100 is connected to the shell side conduit 4 of the hollow fiber membrane module 1 to supply a high osmotic pressure solution from the high osmotic pressure supply unit 110 and to the shell side conduit 3 to connect to the circulating fluid. And a circulation pipe 102 for feeding out the water.
  • the circulation pipe 102 is connected to the high osmotic pressure supply unit 110.
  • a pressure gauge, various valves, and the like may be provided in the middle of the supply pipe 101 and the circulation pipe 102.
  • the forward osmosis treatment system 100 is connected to the core side conduit 10 of the hollow fiber membrane module 1 to supply a low osmotic pressure solution from the low osmotic pressure supply unit 111 and is connected to the core side conduit 11 to reduce the low osmosis.
  • a circulation pipe 104 for feeding out the pressurized solution.
  • the circulation pipe 104 is connected to the low osmotic pressure supply unit 111.
  • a pressure gauge, various valves, and the like may be disposed in the middle of the supply pipe 103 and the circulation pipe 104.
  • the shell side conduit 3 is connected to the circulation pipe 102, and the core side conduit 10 of the header portion 8 is connected to the low osmotic pressure solution supply pipe 103.
  • the shell side conduit 4 is connected to a hyperosmotic solution supply pipe 101, and the core side conduit 11 of the header section 9 is connected to a circulation pipe 104.
  • the high osmotic pressure solution passes through the supply pipe 101 and the shell side conduit 4 from the high osmotic pressure supply unit 110, and is the second outside of the hollow fiber membrane 5 a of the hollow fiber membrane module 1. In the region A2.
  • the low osmotic pressure solution is introduced from the low osmotic pressure supply unit 111 into the first region A1 on both ends of the hollow fiber membrane bundle 5 of the hollow fiber membrane module 1 through the supply pipe 103 and the core side conduit 10. .
  • the low osmotic pressure solution supplied to the first region A1 on the header portion 8 side flows inside the hollow fiber membrane 5a.
  • a part of the solvent (for example, water) of the low osmotic pressure solution passes through the hollow fiber membrane 5a that is a semipermeable membrane and moves to the second region A2 that is outside the hollow fiber membrane 5a.
  • the high osmotic pressure solution flowing through the second region A2 is diluted by the solvent that has moved to the second region A2.
  • the low osmotic pressure solution that has moved to the header portion 9 side passes through the opening at the end of the hollow fiber membrane 5a into the first region A1 in the header portion 9, and is discharged to the circulation pipe 104 through the core side conduit 11.
  • the diluted hypertonic solution is discharged from the second region A2 through the shell side conduit 3.
  • both ends of the hollow fiber membrane bundle 5 are defined as the first region A1 (low osmotic pressure side), and the outside of the hollow fiber membrane 5a is defined as the second region A2 (high osmotic pressure side). ) was described as an example.
  • both ends of the hollow fiber membrane bundle 5 are defined as the second region A2 (high osmotic pressure side), and the outside of the hollow fiber membrane 5a is defined as the first region A1 (low osmotic pressure side). Also good.
  • At least one of the low osmotic pressure solution and the high osmotic pressure solution may contain an organic compound.
  • the organic compound contained in the low osmotic pressure solution include lower alcohols such as methanol, ethanol, 1-propanol and 2-propanol; higher alcohols having 6 or more carbon atoms; glycols such as ethylene glycol and propylene glycol; Industrial and experimental studies such as aliphatic hydrocarbons such as pentane, hexane, decane, undecane, cyclooctane; aromatic hydrocarbons such as benzene, toluene, xylene; mineral oil, dimethylformamide, dimethylsulfoxide, dimethylacetamide, pyridine, etc.
  • the general organic solvent etc. which are used for use are mentioned.
  • the polyketone constituting the support layer of the forward osmosis membrane of the present invention is stable against various organic compounds. Therefore, for example, when using the forward osmosis treatment system of the present invention when treating treated water that may contain an organic compound, such as wastewater treatment, concentration, and dehydration, stable operation for a long period of time becomes possible.
  • the high osmotic pressure solution used when the organic compound is contained in the low osmotic pressure solution may be a solution having a high relative osmotic pressure relative to the low osmotic pressure solution, and the solute is not particularly limited.
  • the solute in this case include salts that are readily soluble in water such as sodium chloride, potassium chloride, sodium sulfate, ammonium chloride, ammonium sulfate, and ammonium carbonate; alcohols such as methanol, ethanol, 1-propanol, and 2-propanol; Examples include glycols such as ethylene glycol and propylene glycol; polymers such as polyethylene oxide and propylene oxide; and copolymers of these polymers.
  • the forward osmosis of the present invention using a polyketone porous membrane having a high porosity, a low bending rate, and a thin dense layer of the support layer as the support layer
  • the membrane By using the membrane, the internal concentration polarization of the solute in the support layer can be effectively suppressed, and as a result, the water permeability can be increased.
  • organic compound contained in a hyperosmotic pressure solution includes a solute component that increases the relative osmotic pressure relative to the low osmotic pressure solution.
  • organic compounds in this case include, for example, sugars such as glucose and fructose; fertilizers; refrigerants; alcohols such as methanol, ethanol, 1-propanol and 2-propanol; glycols such as ethylene glycol and propylene glycol A polymer such as polyethylene oxide and propylene oxide; and a copolymer of the above-described polymer.
  • the organic compound (solute) contained in the high osmotic pressure solution is a solid-liquid separation depending on the temperature from the viewpoint of facilitating the recovery of water from the high osmotic pressure solution.
  • a solute component that undergoes liquid-liquid separation is preferable.
  • solutes include, for example, temperature-responsive polymers such as poly (N-isopropylacrylamide); low molecular weight diols (eg 1,2-propanediol, 1,3-propanediol, 1,2-ethanediol) And the like, and random copolymers or sequential copolymers.
  • the polyketone constituting the support layer of the forward osmosis membrane of the present invention is stable with respect to the organic compound described above. For this reason, for example, when treating treated water that may contain an organic compound such as wastewater treatment or concentration, the forward osmosis treatment system of the present invention can be used for stable operation for a long period of time.
  • the forward osmosis of the present invention using a polyketone porous membrane having a high porosity, a low bending rate, and a thin dense layer of the support layer as the support layer
  • a membrane By using a membrane, the internal concentration polarization of the solute in the support layer can be effectively suppressed, and thus the water permeability can be increased.
  • FIG. 4 is a diagram schematically showing a configuration example of the forward osmosis treatment system of the present invention using a flat plate-shaped semipermeable membrane unit.
  • the forward osmosis treatment system of FIG. 4 includes a semipermeable membrane unit 120 including a flat plate-like semipermeable membrane 121 housed in a rectangular parallelepiped case, and first regions partitioned from each other via the semipermeable membrane 121.
  • a low osmotic pressure solution supply unit 111 for supplying a low osmotic pressure solution to the first region A1
  • a high osmotic pressure solution supply unit for supplying a high osmotic pressure solution to the second region A2.
  • the forward osmosis treatment system includes a supply pipe 101 that supplies a high osmotic pressure solution from the high osmotic pressure supply unit 110 and a circulation pipe 102 that sends out the circulating fluid; and further, a low osmotic pressure solution from the low osmotic pressure supply unit 111.
  • Supply pipe 103 and a circulation pipe 104 for feeding out a low osmotic pressure solution.
  • a pressure gauge, various valves, and the like may be disposed.
  • examples of the semipermeable membrane unit include a spiral type module as described in JP 2014-23985A.
  • the fresh water generation method of the present invention uses the forward osmosis treatment system of the present invention as described above as a membrane separation means.
  • a forward osmosis membrane unit (semipermeable membrane unit) is used, and a low osmotic pressure solution is brought into contact with the thin film layer side having the performance of a semipermeable membrane, which is a separation active layer, on the opposite side.
  • a high osmotic pressure solution or A high osmotic pressure solution is brought into contact with the thin film layer side, and a low osmotic pressure solution is brought into contact with the opposite side.
  • the low osmotic pressure solution may contain an inorganic solute.
  • foreign substances such as fine particles may be removed by pretreatment by a known technique such as filtration. .
  • a known technique such as filtration.
  • the method for concentrating a hydrated product of the present invention uses the forward osmosis treatment system of the present invention.
  • a forward osmosis membrane unit (semipermeable membrane unit) is used, a low osmotic pressure solution is brought into contact with the thin membrane layer side having semipermeable membrane performance, and a high osmotic pressure is placed on the opposite side.
  • Contact the solution, or A high osmotic pressure solution is brought into contact with the thin film layer side, and a low osmotic pressure solution is brought into contact with the opposite side.
  • the hydrated product to be concentrated and dehydrated is not particularly limited as long as it can be concentrated by the forward osmosis membrane unit.
  • the object to be concentrated may be either an organic compound or an inorganic compound.
  • examples of the organic compound include acetic acid, acrylic acid, propionic acid, formic acid, lactic acid, oxalic acid, tartaric acid, benzoic acid and other carboxylic acids; sulfonic acid, sulfinic acid Organic acids such as habituric acid, uric acid, phenol, enol, diketone type compound, thiophenol, imide, oxime, aromatic sulfonamide, primary nitro compound, secondary nitro compound; methanol, ethanol, 1-propanol, Lower alcohols such as 2-propanol; higher alcohols having 6 or more carbon atoms; glycols such as ethylene glycol and propylene glycol; aliphatic hydrocarbons such as pentane, hexane, decane, undecane, and cyclooctane; benzene, toluene, xylene Aromatic hydrocarbons such as Mineral oils; Ketones such as
  • the hydrous substance to be concentrated or dehydrated may be a polymer compound that forms a mixture with water.
  • a polymer compound examples include polyols such as polyethylene glycol and polyvinyl alcohol; polyamines; polysulfonic acids; polycarboxylic acids such as polyacrylic acid; polycarboxylic acid esters such as polyacrylic acid esters; graft polymerization Modified polymer compounds modified by the above; copolymerized polymer compounds obtained by copolymerization of nonpolar monomers such as olefins and polar monomers having polar groups such as carboxyl groups.
  • the hydrated product to be concentrated or dehydrated may be an azeotrope such as an aqueous ethanol solution.
  • a mixture of alcohols such as ethanol, 1-propanol, 2-propanol, 1-butanol and 2-butanol and water; esters such as ethyl acetate, ethyl acrylate and methyl methacrylate and water
  • esters such as ethyl acetate, ethyl acrylate and methyl methacrylate and water
  • carboxylic acids such as formic acid, isobutyric acid and valeric acid and water
  • aromatic organic compounds such as phenol and aniline and water
  • nitrogen-containing compounds such as acetonitrile and acrylonitrile and water.
  • the hydrated product to be concentrated or dehydrated may be a mixture of water and polymer, such as latex.
  • the polymer used in the latex include olefin-polar monomer copolymers such as polyvinyl acetate, polyvinyl alcohol, acrylic resin, polyolefin, and ethylene-vinyl alcohol copolymer; polystyrene, polyvinyl ether, polyamide, polyester, and cellulose derivatives.
  • Thermosetting resins such as urea resins, phenol resins, epoxy resins, polyurethanes; rubbers such as natural rubbers, polyisoprenes, polychloroprenes, styrene-butadiene copolymers, and the like.
  • the latex may contain a surfactant.
  • Examples of hydrated substances to be concentrated or dehydrated include liquid foods such as fruit juice, alcoholic beverages, and vinegar; liquid fertilizers; wastewaters such as domestic wastewater and industrial wastewater; and aqueous solutions obtained by collecting volatile organic compounds (VOC).
  • liquid foods such as fruit juice, alcoholic beverages, and vinegar
  • liquid fertilizers such as domestic wastewater and industrial wastewater
  • aqueous solutions obtained by collecting volatile organic compounds (VOC) When the method of the present invention is applied to the concentration of liquid food, it is particularly desirable in that it can be concentrated or reduced without impairing the flavor because it enables concentration at a low temperature, unlike a method that requires heating such as evaporation.
  • the forward osmosis membrane of the present invention has acid resistance. Therefore, the concentration method of the present invention can be effectively used for concentration of an organic acid from a water-containing organic acid such as a mixture of water and acetic acid; removal of water in a reaction system for promoting an esterification reaction.
  • a water-containing organic acid such as a mixture of water and acetic acid
  • examples of the inorganic compound include metal particles; anions such as metal ions, sulfate ions, and nitrate ions.
  • the solution dilution method of the present invention uses the forward osmosis treatment system of the present invention.
  • a forward osmosis membrane unit (semipermeable membrane unit) is used,
  • the low osmotic pressure solution is brought into contact with the thin film layer side which is the separation active layer, and the high osmotic pressure solution is brought into contact with the opposite side, or
  • a high osmotic pressure solution is brought into contact with the thin film layer side, and a low osmotic pressure solution is brought into contact with the opposite side.
  • the high osmotic pressure solution is diluted by allowing water to permeate through the forward osmosis membrane from the low osmotic pressure solution to the high osmotic pressure solution.
  • a target object diluted For example, a fertilizer, a refrigerant
  • foreign substances such as fine particles may be removed by pretreatment by a known technique such as filtration. .
  • the temperature at the time of dilution is not particularly limited.
  • the power generation method of the present invention uses the forward osmosis treatment system of the present invention.
  • the power generation method of the present invention using a forward osmosis membrane unit (semipermeable membrane unit), The low osmotic pressure solution is brought into contact with the thin film layer side which is the separation active layer, and the high osmotic pressure solution is brought into contact with the opposite side, or A high osmotic pressure solution is brought into contact with the thin film layer side, and a low osmotic pressure solution is brought into contact with the opposite side.
  • the mass average density ⁇ in the above formula is a mass average density calculated from the mass G of the flat membrane, the mass density of the polyketone, polyester, and polypropylene constituting the flat membrane, and the basis weight of the flat membrane.
  • the mass densities of polyketone, polyester, and polypropylene were 1.3 g / cm 3 , 1.4 g / cm 3 , and 0.9 g / cm 3 , respectively.
  • Porosity of Hollow Fiber Membrane The porosity of the membrane portion in the hollow fiber membrane was calculated using the following mathematical formula (3).
  • Porosity (%) (1 ⁇ G / ⁇ / V) ⁇ 100
  • G in the above formula is the mass (g) of the hollow fiber membrane, and was measured by bundling 10 hollow fiber membranes having a length of 70 cm.
  • is the density (g / cm 3 ) of the polymer constituting the hollow fiber membrane, 1.30 g / cm 3 for the polyketone hollow fiber membrane and 1.37 g / cm for the polyethersulfone hollow fiber membrane. A value of 3 was used for each.
  • V is the volume (cm 3 ) of the membrane part of the hollow fiber membrane, the outer diameter of the hollow fiber membrane measured by the method of (2) above, and the membrane part of the hollow fiber membrane measured by the method of (5) below
  • the average thickness was calculated from the length (70 cm) and the number (10) of hollow fibers.
  • Performance evaluation of forward osmosis membrane (1) Measurement of structural parameter S, water permeability coefficient A, and salt permeability coefficient B (in the case of a flat membrane, Examples 1 to 6 and Comparative Examples 1 to 7)
  • an index of the degree of internal concentration polarization of the support layer is represented by performing both a pressure-driven reverse osmosis treatment test and a forward osmosis drive forward osmosis treatment test.
  • the value of the structure parameter S and the values of the water permeability coefficient A and the salt permeability coefficient B representing the permeation performance of the thin film layer were determined.
  • J w FO (D / S ) ln [(B + A ⁇ DS) / (A ⁇ FS + B + J w FO)]
  • D Diffusion coefficient of solute
  • ⁇ DS Bulk osmotic pressure of concentrated solution
  • ⁇ FS Bulk osmotic pressure of dilute solution
  • S of the support layer theoretically represents film thickness ⁇ flexibility / porosity, It is an index of the difficulty of solute diffusion inside the support layer. Therefore, the smaller the structural parameter S, the easier the solute diffuses within the support layer and the lower the internal concentration polarization.
  • the tank on the core side and the tank on the shell side are each installed on a balance, and the movement of salt and water can be measured.
  • the core-side flow rate was 2.2 L / min and the shell-side flow rate was 8.8 L / min, and the salt movement amount and water movement amount were measured respectively.
  • the amount of water permeation was calculated from the amount of water transferred, and the back diffusion of salt was calculated from the amount of salt transferred.
  • the leakage of polyethylene glycol was evaluated by the following method. The test was repeated 10 times, with 10 minutes of operation under the same conditions as one cycle as one cycle. Then, 10 ml of the core-side (pure water) solution after 10 tests was taken out on a glass plate and heated at 100 ° C. for 20 minutes to remove moisture, and the remaining material was analyzed using an infrared spectrophotometer (JASCO Corporation). The presence or absence of leakage of polyethylene glycol was evaluated by investigating the presence or absence of polyethylene glycol by IR measurement using a company-made model FT / IR-6200).
  • Example 1 A polymer solution composed of 10% by mass of polyketone (Asahi Kasei Fibers Co., Ltd., intrinsic viscosity: 2.2 dl / g, weight average molecular weight: 200,000), 58.5% by mass of resorcinol, and 31.5% by mass of water And cast onto a glass substrate using an applicator. The glass substrate after casting was immersed in a coagulation bath composed of a water / methanol mixed solvent (75/25 (w / w)) to form a polyketone porous film (asymmetric film).
  • a coagulation bath composed of a water / methanol mixed solvent (75/25 (w / w)
  • the obtained polyketone porous membrane was washed successively with water, acetone, and hexane and air-dried to obtain a polyketone support layer having a thickness of 70 ⁇ m, a porosity of 80.6%, and a maximum pore size of 150 nm by the bubble point method. .
  • a polyketone support layer On the obtained polyketone support layer (on the dense side), 1,3-phenylenediamine 2% by mass, camphorsulfonic acid 4% by mass, triethylamine 2% by mass, and sodium dodecyl sulfate 0.25% by mass are contained.
  • An aqueous amine solution (a coating solution for forming a thin film layer) was applied and allowed to stand for 300 seconds.
  • the membrane was left vertical for 60 seconds.
  • a hexane solution of 1,3,5-trimesoyl chloride (trimesic acid trichloride) having a concentration of 0.15% by mass was applied on the coated surface and allowed to stand for 120 seconds.
  • trimesic acid chloride solution the film was kept vertical for 60 seconds to obtain a laminate.
  • the laminated body thus obtained was annealed at 90 ° C. for 600 seconds and sufficiently washed with water to obtain a forward osmosis membrane 1 having a polyamide thin film layer formed on a polyketone support layer.
  • the forward osmosis membrane 1 was evaluated by the method described above.
  • the water permeability J W FO when using a concentrated solution (0.6 M NaCl aqueous solution) is 19.5 Lm ⁇ 2 h ⁇ 1
  • the water permeability coefficient A is 1.21 Lm ⁇ 2 h ⁇ 1 bar ⁇ 1
  • the salt permeability coefficient B is 0.20 Lm ⁇ 2 h ⁇ 1
  • the structural parameter S was 200 ⁇ m and the pressure resistance was 1.2 MPa.
  • Example 2 to 5 In Example 1 above, the composition of the coagulation liquid, the thickness of the polyketone support layer, and the composition of the coating liquid for forming the thin film layer were changed as shown in Table 1 except that the polyketone support layer was formed. Forward osmosis membranes 2 to 5 were obtained in the same manner as in Example 1. These forward osmosis membranes were evaluated by the method described above. The evaluation results are shown in Table 3.
  • Example 6 Polymer solution composed of 10% by mass of polyketone, 58.5% by mass of resorcinol and 31.5% by mass of water on one side of a polypropylene spunbonded nonwoven fabric (film thickness: 247 ⁇ m, porosity 87%) subjected to hydrophilic treatment After coating, the film was immersed in a coagulation bath composed of a water / methanol mixed solvent (60/40 (w / w)) to prepare a polyketone composite film.
  • a coagulation bath composed of a water / methanol mixed solvent (60/40 (w / w)
  • the obtained polyketone composite membrane was washed successively with water, acetone, and hexane, and air-dried to obtain a polyketone support layer having a thickness of 269 ⁇ m, a porosity of 81.5%, and a maximum pore size of 150 nm by the bubble point method.
  • a forward osmosis membrane 6 was obtained by forming a polyamide thin film layer on the support layer in the same manner as in Example 4 except that this support layer was used.
  • the obtained forward osmosis membrane 6 was evaluated by the method described above. The evaluation results are shown in Table 3.
  • Example 6 the use of a non-woven fabric having a high porosity as a reinforcing material for the polyketone porous film improved the pressure resistance while maintaining high water permeability.
  • a polyethylene terephthalate spunbonded non-woven fabric (film thickness 350 ⁇ m, porosity 86%) was used.
  • a polyamide skin layer was formed on the obtained polysulfone support layer in the same manner as in Example 1 to prepare a forward osmosis membrane 11.
  • Alberto Tiraferri et al. J. Membr. Sci., 367 (2011), pp 340-352 was referred to.
  • the maximum hole diameter of the support layer was not able to be measured by the bubble point method, the maximum hole diameter was judged to be less than 35 nm.
  • the obtained forward osmosis membrane 11 was evaluated by the method described above. The evaluation results are shown in Table 3.
  • a polyamide skin layer was formed on the obtained polysulfone support layer in the same manner as in Example 1 to produce a forward osmosis membrane 12.
  • the implementation of Comparative Example 2 was referred to the description of Journal of Membrane Science, 362 (2010), pp 360-373.
  • the obtained forward osmosis membrane 12 was evaluated by the method described above. The evaluation results are shown in Table 3.
  • [Comparative Example 3] A forward osmosis membrane 13 was obtained in the same manner as in Comparative Example 1 except that the composition of the porous layer forming coating solution was changed as shown in Table 2 in Comparative Example 1. This forward osmosis membrane 13 was evaluated by the method described above. The evaluation results are shown in Table 3.
  • the forward osmosis membrane 12 obtained in Comparative Example 2 had many pinholes and could not be evaluated.
  • the obtained polyetherketone porous membrane was washed with running water for 3 hours, then immersed in ethanol for 3 hours, and then air-dried to obtain a polyetherketone support layer.
  • This porous membrane support layer had a maximum pore size of 140 nm and a porosity of 66%.
  • a forward osmosis membrane 14 was obtained by forming a polyamide thin film layer on the polyetherketone support layer in the same manner as in Example 1. This forward osmosis membrane 14 had many pinholes and could not be evaluated for performance.
  • Comparative Example 5 hydrophilic polyvinylidene fluoride (hydrophilic PVDF manufactured by Merck Milipore, product name “Durapore”) was used as the support layer.
  • a forward osmosis membrane 15 was obtained by forming a polyamide thin film layer on the PVDF support layer in the same manner as in Example 1. The obtained forward osmosis membrane 15 was evaluated by the method described above. The evaluation results are shown in Table 3.
  • Comparative Examples 6 and 7 In Comparative Example 6, a cellulose triacetate composite membrane manufactured by HTI was used as the forward osmosis membrane 16. In Comparative Example 7, a cellulose triacetate asymmetric membrane manufactured by HTI was used as the forward osmosis membrane 17, The evaluation was performed by the method described above except that each was used. The evaluation results are shown in Table 3.
  • forward osmosis membranes 1 to 6 using polyketone as a support layer include forward osmosis membrane 11 using polysulfone as a support layer, and commercially available forward osmosis membrane 16 and Compared to 17, the structural parameter S was remarkably reduced, and a high water permeability could be obtained.
  • Example X1 A polyketone having an intrinsic viscosity of 2.2 dl / g in which ethylene and carbon monoxide are completely alternately copolymerized is added to a 65% by mass resorcin solution so that the polymer concentration becomes 15% by mass, and stirred and dissolved at 80 ° C. for 2 hours. Defoaming was performed to obtain a uniform transparent dope. Using a double-tube orifice spout (D1: 0.6 mm, D2: 0.33 mm, D3: 0.22 mm) having the structure shown in FIG.
  • D1 0.6 mm
  • D2 0.33 mm
  • D3 0.22 mm
  • the above-mentioned dope (dope viscosity: 100 poise) adjusted at a temperature of 50 ° C. was passed through the outer annular orifice, 25% by mass methanol aqueous solution from the inner circular orifice At the same time, the solution was discharged into a coagulation bath composed of an aqueous methanol solution having a concentration of 40% by mass.
  • the solidified product was pulled up and wound up while washing with water to obtain a hollow fiber membrane.
  • the obtained hollow fiber membrane was cut into a length of 70 cm, bundled and washed with water.
  • the hollow fiber membrane bundle after washing with water was substituted with acetone and then with hexane, and then dried at 50 ° C.
  • the porosity of the polyketone hollow fiber membrane thus obtained was 78%, and the maximum pore size was 130 nm.
  • a polyketone hollow fiber membrane module having the structure shown in FIG. 1 is obtained by filling 1,500 polyketone hollow fiber membranes into a cylindrical plastic housing having a diameter of 5 cm and a length of 50 cm and fixing both ends with an adhesive. Produced. Next, an aqueous solution (first monomer solution) containing 2.0% by mass of m-phenylenediamine, 4.0% by mass of camphorsulfonic acid, 2.0% by mass of triethylamine, and 0.25% by mass of sodium dodecyl sulfate was prepared as described above. The core side of the module (inside the hollow fiber) was filled and allowed to stand for 300 seconds.
  • a forward osmosis hollow fiber membrane module was produced.
  • the water permeability was 18.5 kg / (m 2 ⁇ hr)
  • the back diffusion of the salt was 1.2 g / (m 2 ⁇ hr). It was.
  • the outer diameter of the polyketone hollow fiber membrane measured by disassembling this module was 1,080 ⁇ m
  • the thickness of the membrane portion was 150 ⁇ m
  • the thickness of the polyamide thin film layer was 0.3 ⁇ m.
  • Example X1 the composition of the dope, the concentration of the liquid discharged from the inner circular orifice simultaneously with the discharge of the dope from the outer annular orifice, and the composition of the first monomer solution are as shown in Table 4, respectively.
  • a forward osmosis hollow fiber membrane module was prepared and evaluated in the same manner as in Example X1 except that.
  • Comparative Example X1 the obtained hollow fiber membrane was cut into a length of 70 cm to form a bundle, washed with water, and then a module was prepared and subjected to interfacial polymerization. The evaluation results are shown in Table 5.
  • Example X4 The polyketone hollow fiber membrane obtained in Example X3 contains 2.0% by mass of m-phenylenediamine, 4.0% by mass of camphorsulfonic acid, 2.0% by mass of triethylamine, and 0.25% by mass of sodium dodecyl sulfate. After being immersed in an aqueous solution (first monomer solution), it was allowed to stand at room temperature for 300 seconds. Subsequently, it was immersed in a 0.15 mass% concentration trimesic acid chloride hexane solution (second monomer solution) for 120 seconds to perform interfacial polymerization.
  • first monomer solution aqueous solution
  • second monomer solution trimesic acid chloride hexane solution
  • stacked on the outer surface of the polyketone hollow fiber membrane was produced by drying at 90 degreeC for 600 second under nitrogen atmosphere.
  • FIG. A module having the structure shown in FIG. Further, by washing both the shell side and the core side with pure water, a forward osmosis hollow fiber membrane module in which a polyamide thin film layer was laminated on the outer surface of the polyketone hollow fiber membrane was produced.
  • Table 5 shows the results of evaluating the forward osmosis hollow fiber membrane module in the same manner as in Example X1.
  • Polyethersulfone manufactured by BASF, trade name “Ultrason”
  • the forward osmosis hollow fiber membrane in which the polyamide thin film layer is laminated on either the outer surface or the inner surface of the polyketone hollow fiber membrane has a high water permeability, and The salt back diffusion from the concentrated solution side can be kept at a low level.
  • Example Y1 In the same manner as in Example X1, a forward osmosis hollow fiber membrane module (semipermeable membrane unit) in which a polyamide thin film layer was laminated on the inner surface of a polyketone hollow fiber membrane was produced.
  • this hollow fiber membrane module As a high osmotic pressure solution, 20 L of a saline solution having a concentration of 3.5% by mass, When the test solution A (pure water 30 L) was used as a low osmotic pressure solution and the water permeation amount and the reverse diffusion of the salt were measured, the water permeation amount of this forward osmosis hollow fiber module was 18.5 kg / (m 2 ⁇ hr) And the back diffusion of the salt was 1.2 g / (m 2 ⁇ hr). Using the forward osmosis hollow fiber module after the above measurement, the same measurement was repeated 9 times (total 10 times).
  • the water permeability of the 10th time was 18.5 kg / (m 2 ⁇ hr), and the back diffusion of the salt was 1.2 g / (m 2 ⁇ hr).
  • the diameter of the polyketone hollow fiber membrane measured by disassembling the module after 10 measurements was 1,080 ⁇ m, the thickness of the membrane portion was 150 ⁇ m, and the thickness of the polyamide thin film layer was 0.3 ⁇ m. In the naked eye observation, there was no particular change in the state of the support layer.
  • Example Y1 Example Y1 above, Examples Except for using the modules prepared in the same manner as the examples or comparative examples described in Table 6 as the forward osmotic hollow fiber membrane modules, and using the test solutions described in Table 6 as the low osmotic pressure solutions, respectively. In the same manner as in Y1, the water permeability and the salt reverse diffusion were repeatedly tested. The evaluation results are shown in Table 6.
  • the forward osmosis membrane system of the present invention using a polyketone porous membrane as a support layer contains an organic compound (toluene or acetone) that is erodible to the support layer in a low osmotic pressure solution. Even in this case, it was verified that the high water permeability can be stably exhibited for a long time, and the back diffusion of the salt from the high osmotic pressure solution is also maintained at a low level.
  • Example Y4 In the same manner as in Example X1, a forward osmosis hollow fiber membrane module in which a polyamide thin film layer was laminated on the inner surface of a polyketone hollow fiber membrane was produced. About this hollow fiber membrane module Water as a hypotonic solution, An aqueous solution of polyethylene glycol 200 (manufactured by Tokyo Chemical Industry Co., Ltd.) having a concentration of 15% by mass as a high osmotic pressure solution, It was 5.6 kg / (m ⁇ 2 > * hr) when the water permeability was measured using each. Using the forward osmosis hollow fiber module after the above measurement, the same measurement was repeated 9 times (total 10 times).
  • the water permeability of the 10th time was 5.6 kg / (m 2 ⁇ hr), and polyethylene glycol was not detected from the liquid on the core side (pure water) after the 10th test.
  • the diameter of the polyketone hollow fiber membrane measured by disassembling this module was 1,080 ⁇ m, the thickness of the membrane portion was 150 ⁇ m, and the thickness of the polyamide thin film layer was 0.3 ⁇ m. In the naked eye observation, there was no particular change in the state of the support layer.
  • Example Y4 In Example Y4, the test was repeated in the same manner as in Example Y4, except that a module produced in the same manner as in Comparative Example X1 was used as the forward osmosis hollow fiber membrane module. Table 7 shows the evaluation results.
  • the forward osmosis membrane system of the present invention using a polyketone porous membrane as a support layer includes an organic compound (polyethylene glycol) that is erodible to the support layer in a high osmotic pressure solution.
  • organic compound polyethylene glycol
  • Comparative Example Y4 the polyethersulfone support layer was deteriorated by polyethylene glycol, and the performance tended to decrease when used for a long time.
  • the forward osmosis treatment system of the present invention is excellent in water permeability and has sufficient durability against organic compounds, for example, desalination of seawater, desalination of brine, wastewater treatment, various valuable materials It can be suitably used for concentration, treatment of associated water in oil / gas drilling, power generation using two liquids having different osmotic pressures, dilution of sugars, fertilizers, and refrigerants.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

 半透膜の性能を有する薄膜層がポリケトン支持層に積層されていることを特徴とする、正浸透膜。

Description

正浸透膜および正浸透処理システム
 本発明は、浸透圧差を駆動力として希薄溶液から濃厚溶液へ水を移動させる正浸透処理に用いられる膜およびシステムに関する。
 正浸透処理は、溶質濃度の異なる溶液を、半透膜を介して接触させ、溶質濃度差から生じる浸透圧差を駆動力として該半透膜を通して水を透過させることにより、溶質濃度の低い希薄溶液から溶質濃度の高い濃厚溶液へ水を移動させる処理である。正浸透処理により、希薄溶液を濃縮し、あるいは濃厚溶液を希釈することができる。
 正浸透処理は、半透膜を用いて溶質よりも水を優先的に透過させる点で、逆浸透処理と共通する。しかし、正浸透処理は、浸透圧差を利用して、水を希薄溶液側から濃厚溶液側に移動させており、この点で、濃厚溶液側を加圧することにより、浸透圧差に逆らって水を濃厚溶液側から希薄溶液側に移動させる逆浸透処理とは異なる。そのため、逆浸透処理で用いる半透膜は、これをそのまま正浸透処理に適用しても、必ずしも正浸透処理に適したものとはならない。
 逆浸透処理では、半透膜を挟んだ一方の側に濃厚溶液を、もう一方の側に希薄溶液を、それぞれ配し、該濃厚溶液に対して両溶液の浸透圧差以上の圧力を印加することにより、水を濃厚溶液側から希薄溶液側に移動させる。そのため、逆浸透処理用の膜(逆浸透膜)は、濃厚溶液側の加圧に耐えられるだけの強度を有することが求められる。この要件を満たすため、半透膜の性能を有する薄膜層(スキン層、またはバリア材料ともいう。)を補強する支持層の強度を確保することが必要となる。そのため、支持層の空隙率をあまり高くすることはできない。その結果、支持層内で溶質が自由に拡散するスペースが制限されることになる。しかしながら、逆浸透処理では、透水の進行方向と溶質(塩)の漏洩方向が同じであるため、支持層における溶質の内部濃度分極が起こらない。そのため、支持層の構造が膜の透水量(膜透過流束ともいう。)に与える影響が決定的なものとはならない。従って、逆浸透処理においては、濃厚溶液側に加える圧力の増加に伴って、半透膜を透過して移動する水の量(透水量)も同様に増加させることができる。
 他方、正浸透処理では、支持層における溶質の内部濃度分極が膜の透水量に大きな影響を与える。正浸透処理では、膜(正浸透膜)を挟んだ一方側に濃厚溶液を配し、他方側に希薄溶液を配し、両溶液の浸透圧差を駆動力として、水を希薄溶液側から濃厚溶液側に移動させる。この際、正浸透膜の透水量を高めるためには、半透膜の性能を有する薄膜層を補強する支持層における溶質の内部濃度分極をできるだけ低減して、薄膜層の実効浸透圧差を高くすることが重要となる。支持層内で溶質が自由に拡散するスペースが制限されると、支持層内における溶質の内部濃度分極が起こり、十分な透水量を確保することができないこととなる。従って、正浸透膜においては、支持層を、その内部における溶質の拡散をできるだけ制限しないような高い空隙率を有し、しかも所定の強度を確保することができる材料から構成することが重要となる。
 これまで、正浸透膜として、様々な半透膜が検討されている。例えば、特許文献1には、ポリアクリロニトリル、ポリアクリロニトリル-酢酸ビニル共重合体、ポリスルホンなどから成る支持層にポリアミドから成る薄膜層が積層された正浸透膜が;
特許文献2には、エポキシ樹脂から成る支持層にポリアミドから成る薄膜層が積層された正浸透膜が;
特許文献3には、ポリエチレンテレフタレート(PET)またはポリプロピレンから成る支持層に、バリア材料が塗布された正浸透膜が、それぞれ開示されている。
 しかしながら、高い透水性能と高い分離性能の双方を有する正浸透膜は未だ得られておらず、より高性能な正浸透膜が望まれている。
 ところで、正浸透処理は、適当な形状に成形された正浸透膜を適当な容器に充填して成るモジュールを使用して行われることが通常である。ここで、中空糸形状の正浸透膜を用いるモジュールの方が、平膜形状の正浸透膜を用いるモジュールよりも、モジュールあたりの膜の充填率を高くすることができるから、コンパクトな浄水製造システムを構築可能な点でより適していると指摘されている(非特許文献1)。
 薄膜層として高分子量体を用いる高分子正浸透膜は、透水性の点で有利であることから、正浸透膜への適用が期待されている。しかし、従来知られている高分子正浸透膜では、酸および有機溶媒に対する耐久性、ならびに耐熱性に問題があるため、その適用範囲が制限されていた。
 この点、特許文献4には、無機材料であるゼオライトを含有する正浸透膜を用いることにより、高分子正浸透膜の透水性の利点を維持しながら耐久性を向上させた正浸透膜流動システムが提案されている。しかし、該特許文献4に記載の正浸透膜は、耐久性は向上されているものの、その透水量が極めて低く、正浸透膜流動システムとしての実用性に問題がある。
特表2012-519593号公報 特開2013-013888号公報 特表2013-502323号公報 特開2014-039915号公報
J.Membr.Sci.,355(2010),pp158-167
 本発明は前記事情に鑑みてなされたものである。従って本発明の目的は、正浸透処理における透水量が高い、新規の平膜形状または中空糸形状の正浸透膜を提供することにある。本発明の別の目的は、有機化合物に対し十分な耐久性を持ち、水の透過性に優れる正浸透処理システムを提供することにある。
 本発明者らは、上記の問題点を解消するために鋭意検討を進めた。その結果、平膜形状(平板形状)または中空糸形状のポリケトン多孔膜を正浸透膜の支持層とし、平膜形状の場合はその表側の面および裏側の面のうちのどちらか一方に;
中空子形状の場合はその内表面および外表面のうちのどちらか一方に、半透膜の性能を有する薄膜層を積層することにより、支持層における溶質の内部濃度分極が効果的に低減され、透水量の高い正浸透膜を得られることを見出した。この正浸透膜は、有機化合物に対する耐久性が高く、正浸透処理システムとして繰り返し使用しても高い透水量を維持できるものである。本発明は以下のとおりである。
(1) 半透膜の性能を有する薄膜層がポリケトン支持層に積層されていることを特徴とする、正浸透膜。
(2) 前記半透膜の性能を有する薄膜層が、酢酸セルロース、ポリアミド、ポリビニルアルコール/ポリピペラジンアミド複合膜、スルホン化ポリエーテルスルホン、ポリピペラジンアミド、またはポリイミドから成る薄膜層である、(1)に記載の正浸透膜。
(3) 前記半透膜の性能を有する薄膜層が厚み0.05~2μmのポリアミド薄膜層である、(1)または(2)に記載の正浸透膜。
(4) 前記ポリアミド薄膜層が前記ポリケトン支持層に結合している、(3)に記載の正浸透膜。
(5) 前記ポリアミド薄膜層が、界面重合によって前記ポリケトン支持層に結合されている、(4)に記載の正浸透膜。
(6) 前記ポリケトン支持層が、バブルポイント法によって測定した最大孔径が50nm以上の細孔を有している、(1)~(5)のいずれか一項に記載の正浸透膜。
(7) 前記ポリケトン支持層の空隙率が70%以上である、(1)~(6)のいずれか一項に記載の正浸透膜。
(8) 前記ポリケトン支持層が平板形状である、(1)~(7)のいずれか一項に記載の正浸透膜。
(9) 前記ポリケトン支持層が中空糸形状である、(1)~(7)のいずれか一項に記載の正浸透膜。
(10) 前記半透膜の性能を有する薄膜層が、前記中空糸状のポリケトン支持層の外側表面および内側表面のうちのどちらか一方に積層されている、(9)に記載の正浸透膜。
(11) 前記中空糸状のポリケトン支持層が、100~3,000μmの外径および10~400μmの厚みを有する、(9)または(10)に記載の正浸透膜。
(12) (9)~(11)のいずれか一項に記載の正浸透膜の複数から成る糸束を筒状ケース内に収納し、該糸束の両端を接着固定部により該筒状ケースに固定した構造を有することを特徴とする、正浸透中空糸膜モジュール。
(13) (1)~(11)のいずれか一項に記載の正浸透膜から成る半透膜ユニットと、
 前記半透膜ユニットを介して互いに仕切られた第1の領域および第2の領域と、
 前記第1の領域に低浸透圧溶液を供給する低浸透圧溶液供給部と、
 前記第2の領域に高浸透圧溶液を供給する高浸透圧溶液供給部と、を備え、そして、
 前記低浸透圧溶液が供給された前記第1の領域から、前記高浸透圧溶液が供給された前記第2の領域へと、前記半透膜ユニットを介して流体移動を生じさせる機能を有することを特徴とする、正浸透処理システム。
(14) 前記低浸透圧溶液および前記高浸透圧溶液のうちの少なくとも一方が有機化合物を含む、(13)に記載の正浸透処理システム。
(15) (13)または(14)に記載の正浸透処理システムを用いて、低浸透圧溶液から高浸透圧溶液に水を移動させた後、該高浸透圧溶液から水を回収することを特徴とする、造水方法。
(16) (13)または(14)に記載の正浸透処理システムを用いて、含水物から水を除去することを特徴とする、含水物の濃縮方法。
(17) (13)または(14)に記載の正浸透処理システムを用いて、低浸透圧溶液から高浸透圧溶液へ移動する水によって該高浸透圧溶液を希釈することを特徴とする、溶液の希釈方法。
(18) (13)または(14)に記載の正浸透処理システムを用いて、低浸透圧溶液から高浸透圧溶液に水を移動させて該高浸透圧溶液の流量を増加させ、そして該増加した流量により水流発電機を駆動させて発電することを特徴とする、発電方法。
 本発明の正浸透膜は、支持層における溶質の内部濃度分極が抑えられており、
透水量が効果的に向上されており、
濃厚溶液側からの溶質の逆拡散が低レベルに維持されており、そして
有機化合物を含む低浸透圧流体に対する耐久性が高い。従って、本発明の正浸透膜を適用して得られる正浸透処理システムは、長期間安定して高い性能を発揮することができる。
 本発明の正浸透処理システムは、例えば、海水の淡水化、かん水の脱塩、排水処理、各種有価物の濃縮、オイル・ガスの掘削における随伴水の処理、浸透圧の異なる2液を利用した発電、糖類・肥料・冷媒の希釈などに、好適に用いることができる。
本発明の正浸透処理システムにおいて用いられる中空糸膜モジュールの一構成例を模式的に示す断面図である。 本発明の正浸透処理システムの一構成例を模式的に示す図である。 実施例でポリケトン中空糸を製造するために用いた二重管オリフィスの紡口の構造を模式的に示す図である。 平板状の半透膜ユニットを用いた本発明の正浸透処理システムの一構成例を模式的に示す図である。
 本発明の正浸透膜は、ポリケトン支持層に、半透膜の性能を有する薄膜層が積層された構成を有する。
<ポリケトン支持層>
 先ず、本発明の正浸透膜を構成するポリケトン支持層について説明する。
 支持層を構成するポリケトンは、一酸化炭素とオレフィンとの共重合体から成る。
 正浸透膜の支持層をポリケトンで構成することにより、次のような利点を享受することが可能となる。
 第一に、強度を確保しつつ、空隙率の高い支持層を形成することが可能となる。
 第二に、ポリケトン支持層は、自立性が高い。そのため、従来の逆浸透膜などにおいて必要とされることもあった不織布などの支持基材が不要となるから、正浸透膜を薄膜化することが可能となる。
 第三に、ポリケトンは成形性が高い。そのため、平板状、中空糸状などの任意の形状の支持層を容易に形成することができるから、従来公知の形状を有する所望の膜モジュールに適用することが容易である。
 ポリケトン支持層は、一酸化炭素と1種類以上のオレフィンとの共重合体であるポリケトンを10質量%以上100質量%以下含むことが好ましい。ポリケトン支持層におけるポリケトンの含有率は、強度を確保し、空隙率の高い支持層を形成する点から、多いほど好ましい。例えば、ポリケトン支持層中のポリケトン含有率は、70質量%以上が好ましく、80質量%以上がより好ましく、90質量%以上がさらに好ましく、100質量%であることが特に好ましい。ポリケトン支持層中のポリケトンの含有率は、支持層を構成する成分のうちポリケトンのみを溶解する溶媒によってポリケトンを溶解除去する方法、ポリケトン以外を溶解する溶媒によってポリケトン以外を溶解除去する方法などによって確認することができる。
 ポリケトンの合成において、一酸化炭素と共重合させるオレフィンとしては、目的に応じて任意の種類の化合物を選択できる。オレフィンとしては、例えば、エチレン、プロピレン、ブテン、ヘキセン、オクテン、デセンなどの鎖状オレフィン;
スチレン、α-メチルスチレンなどのアルケニル芳香族化合物;
シクロペンテン、ノルボルネン、5-メチルノルボルネン、テトラシクロドデセン、トリシクロデセン、ペンタシクロペンタデセン、ペンタシクロヘキサデセンなどの環状オレフィン;
塩化ビニル、フッ化ビニルなどのハロゲン化アルケン;
エチルアクリレート、メチルメタクリレートなどのアクリル酸エステル;
酢酸ビニルなどが挙げられる。ポリケトン支持層の強度を確保する点からは、共重合させるオレフィンの種類は、1~3種類であることが好ましく、1~2種類であることがより好ましく、1種類であることがさらに好ましい。
 ポリケトンは、下記式(1)で表される繰り返し単位を有するものが好ましい。
  -R-C(=O)-   (1)
{式(1)中、Rは置換基を有してもよい炭素数2~20の2価の炭化水素基を表す。}
 Rにおける置換基としては、例えば、ハロゲン、水酸基、アルコキシル基、1級アミノ基、2級アミノ基、3級アミノ基、4級アンモニウム基、スルホン酸基、スルホン酸エステル基、カルボン酸基、カルボン酸エステル基、リン酸基、リン酸エステル基、チオール基、スルフィド基、アルコキシシリル基、シラノール基などを挙げることができ、これらよりなる群から選ばれる1種以上であることができる。
 上記式(1)において、ポリケトンの繰り返し単位(すなわちケトン繰り返し単位)は1種類のみから構成されていてもよく、2種類以上の組み合わせであってもよい。
 上記式(1)の炭化水素基Rの炭素数は2~8がより好ましく、2~3がさらに好ましく、2が最も好ましい。ポリケトンを構成する繰り返し単位は、特に、下記式(2)で表される1-オキソトリメチレン繰り返し単位を多く含むことが好ましい。
  -CH-CH-C(=O)-   (2)
 ポリケトン支持層の強度を確保する点から、ポリケトンを構成する繰り返し単位中の1-オキソトリメチレン繰り返し単位の割合は、70モル%以上であることが好ましく、90モル%以上であることがより好ましく、95モル%以上であることがさらに好ましい。1-オキソトリメチレン繰り返し単位の割合は100モル%でもよい。ここで「100モル%」とは、元素分析、NMR(核磁気共鳴)、ガスクロマトグラフィーなどの公知の分析方法において、ポリマー末端基を除いて1-オキソトリメチレン以外の繰り返し単位が観測されないことを意味する。典型的には、ポリケトンを構成する繰り返し単位の構造および各構造の量は、NMRによって確認される。
 ポリケトンから構成される支持層は多孔性構造であり、内部の貫通空隙を経由して、溶質および水が該支持層を通り抜けることができる。支持層内における溶質の内部濃度分極を効果的に抑えるためには、支持層内に大きな孔径の細孔が形成されていることが好ましい。この点から、ポリケトン支持層は、最大孔径が50nm以上の細孔が形成されていることが好ましい。最大孔径は、バブルポイント法(ASTM F316-86またはJIS K3832に準拠)により測定される。バブルポイント法によって測定された最大孔径が50nm以上である細孔を有するポリケトン多孔膜を正浸透膜の支持層として用いた場合、支持層内における溶質の内部濃度分極を低減することが可能であるため、正浸透膜の高性能化が可能となる。最大孔径を増大させるに従って、溶質の内部濃度分極が低減されることから、ポリケトン支持層の最大孔径は、80nm以上がより好ましく、130nm以上がさらに好ましい。一方、最大孔径を大きくするにしたがって活性層を支えることが困難になり、耐圧性が悪くなるおそれがある。この観点から、ポリケトン支持層の最大孔径は、2μm以下が好ましく、1.5μm以下がより好ましく、1μm以下がさらに好ましく、最も好ましくは0.6μm以下である。
 ポリケトン支持層の空隙率は特に限定されない。しかしながら、空隙率が高くなるほど支持層内における溶質の拡散が起こり易くなり、支持層における溶質の内部濃度分極を抑えて、正浸透膜の透水量を高めることが可能になる。反面、空隙率が過度に高くなると、耐圧性が損なわれる。これらの観点から、ポリケトン支持層の空隙率は、60%~95%が好ましく、70%~95%がより好ましく、80%~95%がさらに好ましい。
 ポリケトン支持層(多孔膜)の空隙率は、下記数式(3)により算出される。
  空隙率(%)=(1-G/ρ/V)×100   (3)
{式(3)中、Gはポリケトン支持層の質量(g)であり、ρはポリケトン支持層を構成するすべての樹脂の質量平均密度(g/cm)であり、Vはポリケトン支持層の体積(cm)である。}
 ポリケトン支持層が、ポリケトンとは密度の異なる樹脂と、ポリケトン樹脂との複合化によって構成される場合、上記数式(3)における質量平均密度ρは、各々の樹脂の密度にその構成質量比率を乗じた値の和である。例えば、ρAおよびρBの密度をそれぞれ持つ繊維がGAおよびGBの質量比率で含有されて構成された不織布に、密度ρpのポリケトンがGpの質量比率で複合されているときには、質量平均密度ρは、下記数式(4)で表される。
  質量平均密度ρ=(ρA・GA+ρB・GB+ρp・Gp)/(GA+GB+Gp)   (4)
 ポリケトン支持層を構成する多孔膜は、対称膜であっても非対称膜であってもよい。ポリケトン多孔膜が非対称膜である場合は、半透膜性能を有する薄膜層がポリケトン多孔膜の緻密面上に設けられることが好ましい。
 本発明のポリケトン支持層の形状は、特に制限はないが、従来公知の膜モジュールへの適用の容易さから平膜状(平板状)または中空糸状が好ましい。
[平膜状のポリケトン支持層]
 ポリケトン支持層が平膜状である場合、該支持層における溶質の内部濃度分極を抑える点から、該ポリケトン支持層は、強度が確保される限りにおいて、できるだけ薄く形成されることが好ましい。ポリケトン支持層の厚みは、例えば、300μm以下が好ましく、200μm以下がより好ましい。一方、作製し易さの観点から、ポリケトン支持層はある程度の厚みが必要である。ポリケトン支持層の厚みは、9μm以上が好ましく、14μm以上がより好ましい。ポリケトン支持層の厚みは、断面をSEMで観察することにより測定することができる。
 正浸透膜の耐圧性を確保するという点から、ポリケトン支持層の耐圧性は0.1MPa以上が好ましく、0.2MPa以上がより好ましい。この耐圧性は、ポリアミド薄膜層がポリケトン支持層に積層された正浸透膜について、水または低濃度塩水を用いて0~2MPaの範囲で水圧を加えて加圧透水処理試験を行った場合に破膜が起こらない最大の圧力である。
 正浸透膜の耐圧性をより高めるという点から、ポリケトン支持層に補強材として不織布が複合されていてもよい。この場合、得られる支持層の透水性を損なわないように、不織布の空隙率は60%以上が好ましく、70%以上がより好ましく、80%以上がさらに好ましい。
[中空糸形状のポリケトン支持層]
 ポリケトン支持層が中空糸形状(繊維状)である場合、該ポリケトン支持層は、その内部に繊維軸方向に貫通した空隙を有する膜である。ポリケトン中空糸膜の外径は、用途によって異なるが、50~5,000μmの範囲が好適に用いられる。中空糸膜モジュールに加工した場合の、単位膜面積あたりの装置の体積などを考慮すると、ポリケトン中空糸膜の外径は小さい(細い)方が好ましい。他方、中空糸膜モジュールの単位時間あたりの処理能力を考慮すると、ある程度の外径および内径を有していた方がよい。これら両方を考慮すると、ポリケトン中空糸膜の外径のより好ましい範囲は100~3,000μmであり、さらに好ましくは200~1,500μmである。
 支持層における溶質の内部濃度分極を抑える点から、ポリケトン中空糸膜の(膜部の)厚みは、その強度が確保される限りにおいて、できるだけ薄く形成されることが好ましい。他方、作製し易さの観点から、ポリケトン中空糸の膜部としてはある程度の厚みが必要である。ポリケトン中空糸膜における膜部の適正な厚みの範囲は、10~400μmが好ましく、15~200μmがより好ましい。ポリケトン中空糸膜の膜部の厚みは、断面をSEMで観察することにより測定することができる。ポリケトン中空糸膜の断面は円、楕円、多角形などの適宜の形状を適用できるが、対称性からは真円状であることが最も望ましい。
 ポリケトン中空糸膜の膜部の断面構造は、外側から内側まで均一な多孔構造を有する対称膜であってもよいし、外側と内側との多孔構造が異なる非対称膜であってもよい。ポリケトン中空糸膜が非対称膜である場合は、半透膜の性能を有する薄膜層は、ポリケトン多孔膜の緻密面上に設けられることが好ましい。
 [ポリケトン支持層の製造方法]
 このようなポリケトン支持層は、公知の方法により製造することができる。例えば、ポリケトンをハロゲン化金属塩(例えば、ハロゲン化亜鉛、ハロゲン化アルカリ金属など)を含有する溶液に溶解してポリケトンドープを調製し、このドープをフィルムダイ、二重管オリフィスなどを通して凝固浴中に吐出してフィルム状、中空糸状などの形状に成形し、さらに洗浄および乾燥することにより、ポリケトン多孔膜が得られる。このとき、例えば、ドープ中のポリマー濃度および凝固浴の温度を調整することにより、ポリケトン多孔膜の空隙率、孔径などを変えることができる。
 別法として、ポリケトンを良溶媒(例えば、レソルシノール、ヘキサフルオロイソプロパノール、m-クレゾール、o-クロルフェノールなど)に溶解させ、得られた溶液を基板上にキャストして非溶媒(例えば、メタノール、イソプロパノール、アセトン、水など)中に浸漬し、さらに洗浄および乾燥することにより、ポリケトン多孔膜を得ることもできる。この場合、例えば、ポリケトンと良溶媒との混合比率、非溶媒の種類を適宜に選択することにより、ポリケトン多孔膜の空隙率、孔径などを変えることができる。
 ポリケトンは、例えば、パラジウム、ニッケルなどを触媒として用いて一酸化炭素とオレフィンとを重合させることにより、得ることができる。ポリケトン支持層の製造は、例えば、特開2002-348401号公報、特開平2-4431号公報などを参考にして行うことができる。
<半透膜の性能を有する薄膜層>
 ポリケトン支持層上には、半透膜の性能を有する薄膜層が形成されている。この薄膜層は、従来の正浸透膜または逆浸透膜で用いられている公知の素材から構成されていてよい。薄膜層は、浸透圧差を利用して水を透過させ、希薄溶液側から濃厚溶液側に効率的に移動させる能力を持つ素材から成る層であればよい。半透膜としては、一般に逆浸透(RO)膜、ナノフィルター(NF)などとして使用される半透膜を使用することができる。該半透膜としては、例えば、酢酸セルロース、ポリアミド、ポリビニルアルコール/ポリピペラジンアミド複合膜、スルホン化ポリエーテルスルホン、ポリピペラジンアミド、ポリイミドなどが好適に用いられる。低浸透圧溶液および高浸透圧溶液に対する耐久性などを考慮して、適宜に半透膜を選択すればよい。上記のうち、ポリビニルアルコール/ポリピペラジンアミド複合膜は、例えばDesalination,第257巻(1-3号),pp129-136などに記載されている。
 特に、ポリアミドから成る薄膜層が、ポリケトン膜上への薄膜形成の容易さの点で好適に使用される。ポリアミド薄膜層は、ポリアミンとポリカルボン酸誘導体とを重合することにより得られるものであることが好ましい。この場合、ポリアミンのアミノ基とポリカルボン酸誘導体のカルボニル基とが縮合してアミド基が形成されたものであることが好ましい。
 ポリアミンは、分子内にアミノ基を2つ以上有する化合物である。このようなポリアミンとしては、例えば、エチレンジアミン、トリス(2-アミノエチル)アミン、ビス(ヘキサメチレン)トリアミン、ジアミノシクロヘキサンなどの脂肪族ポリアミン;フェニレンジアミン、トリアミノベンゼン、ジアミノトルエンなどの芳香族ポリアミンなどが挙げられる。ポリアミンとしては、芳香族ポリアミンを用いることが好ましい。ポリアミンは1種のみを用いてもよく、2種以上を用いてもよい。
 ポリカルボン酸誘導体は、ポリアミンのアミノ基と縮合可能なアシル基を2つ以上有する化合物であればよい。好ましくはアミノ基と縮合可能なアシル基を3つ以上有する化合物である。カルボン酸誘導体は、遊離カルボン酸の形態で用いてもよく、酸無水物、酸ハロゲン化物などの形態で用いてもよい。ポリアミンとの反応性の点から、ポリカルボン酸誘導体としては、ポリカルボン酸ハロゲン化物(酸ハロゲン化物)を用いることが好ましい。ポリカルボン酸ハロゲン化物としては、例えば、ポリカルボン酸フッ化物、ポリカルボン酸塩化物、ポリカルボン酸臭化物、ポリカルボン酸ヨウ化物などが挙げられる。入手容易性、およびアミノ基との反応性を考慮すると、ポリカルボン酸塩化物を用いることが好ましい。
 ポリカルボン酸ハロゲン化物としては、例えば、プロパンジカルボン酸ジクロライド、ブタンジカルボン酸ジクロライド、ペンタンジカルボン酸ジクロライド、プロパントリカルボン酸トリクロライド、シクロヘキサンジカルボン酸ジクロライド、シクロヘキサントリカルボン酸トリクロライドなどの脂肪族ポリカルボン酸ハロゲン化物;テレフタル酸ジクロライド、イソフタル酸ジクロライド、ビフェニルジカルボン酸ジクロライド、ナフタレンジカルボン酸ジクロライド、トリメシン酸トリクロライドなどの芳香族ポリカルボン酸ハロゲン化物などが挙げられる。ポリカルボン酸ハロゲン化物としては、芳香族ポリカルボン酸ハロゲン化物を用いることが好ましい。ポリカルボン酸誘導体(ポリカルボン酸ハロゲン化物)は1種のみを用いてもよく、2種以上を用いてもよい。
 塩の漏洩をできるだけ抑制する点から、ポリアミド薄膜層は、ポリケトン支持層に結合していることが好ましい。結合とは、化学結合、物理的に結合した状態などが挙げられる。化学結合は、共有結合であってもよい。共有結合としては、C-C結合、C=N結合、ピロール環を介する結合などが挙げられる。一方、物理的に結合した状態としては、水素結合、ファンデルワールス力、静電引力、疎水相互作用のような、化学結合を介さずに分子間力によって結合した吸着状態、付着状態などが挙げられる。好ましくは、ポリアミンがポリケトンと化学結合した状態である。 ポリアミド薄膜層は、ポリアミンから選択される少なくとも1種から成る第1モノマーと、ポリカルボン酸誘導体から成る群より選択される少なくとも1種から成る第2モノマーと、の重縮合生成物から構成されることが好ましい。詳細には、ポリアミド薄膜層は、ポリケトン支持層上にポリアミンを配し、さらにその上にポリカルボン酸誘導体を配し、前記ポリアミンと前記ポリカルボン酸誘導体とを界面重合させることにより得られるものであることが好ましい。
[平膜状のポリケトン支持層上に薄膜層を形成する方法]
 ポリケトン支持層が平膜状である場合には、例えば、該ポリケトン支持層上にポリアミン水溶液を塗布し、さらにその上にポリカルボン酸誘導体を有機溶媒に溶かした溶液(ポリカルボン酸誘導体含有溶液)を塗布し、そして前記ポリアミンと前記ポリカルボン酸誘導体とを界面重合させることにより、前記ポリケトン支持層上にポリアミド薄膜層を形成することができる。ポリカルボン酸誘導体を溶解する有機溶媒としては、水に対する溶解度の低いものが好ましく、例えば、ヘキサン、オクタン、シクロヘキサンなどの炭化水素系溶媒を用いることができる。ポリアミン水溶液およびポリカルボン酸誘導体含有溶液の濃度および塗布量を調整することにより、ポリアミド薄膜層の孔径、厚みなどを変えることができ、得られる正浸透膜の分離能を調整することができる。ポリアミド薄膜層の形成は、例えば、特開昭58-24303号公報、特開平1-180208号公報などを参考にして行うことができる。
 ポリアミド薄膜層は、ポリアミンとポリカルボン酸誘導体とを重合することにより得ることができる。このとき、ポリアミンがポリケトンのカルボニル基と反応することにより、ポリアミド薄膜層をポリケトン支持層に化学的に結合させることができる。例えば、ポリアミド薄膜層を界面重合法により形成する場合は、ポリアミド薄膜層をポリケトン支持層に化学結合させることができ、それによりポリアミド薄膜層とポリケトン支持層との間の結合を強固にすることができる。
 ポリケトン支持層上にポリアミン水溶液を塗布してからポリカルボン酸誘導体含有溶液を塗布するまでの時間は、例えば、10秒~180秒程度に調整すればよい。ポリケトン支持層上にポリアミン水溶液を塗布し、その上にポリカルボン酸誘導体含有溶液を塗布してポリアミド薄膜層を形成した後には、余分なポリカルボン酸誘導体含有溶液を除去し、さらにアニーリングすることが好ましい。アニーリングは公知の方法により行えばよい。例えば、加熱処理による方法、熱水と接触させた後に次亜塩素酸ナトリウム水溶液で洗浄する方法などが挙げられる。アニーリングによって薄膜層の性能を高めることができる。アニーリングを加熱によって行う場合、例えば、70℃~160℃(好ましくは80℃~130℃)の範囲の温度で、1分~20分(好ましくは3分~15分)加熱すればよい。
 薄膜層の厚みは特に限定されないが、好ましくは0.05μm~2μm程度であり、より好ましくは0.05μm~1μmである。薄膜層の厚みは、正浸透膜の断面をSEMで観察することにより、測定することができる。
[中空糸形状のポリケトン支持層上に薄膜層を形成する方法]
 ポリケトン支持層が中空糸形状である場合、本実施形態の正浸透中空糸膜は、ポリケトン中空糸膜の外側表面および内側表面のうちのどちらか一方に半透膜の性能を有する薄膜層が積層された構成を有することが好ましい。外表面に半透膜の性能を有する薄膜層が積層された方が、該薄膜層の面積が大きくなるため、中空糸あたりの透水量を高くできるという点で有利である。しかしながら、これをモジュール化した場合、その加工の過程、使用中に発生する中空糸同士の擦れなどにより、薄膜層が傷付き、あるいは破壊される懸念がある。内表面に半透膜の性能を有する薄膜層が積層された場合は、中空糸同士の擦れにより該薄膜層が傷付き、あるいは破壊される懸念は小さくなるが、薄膜層の面積は小さくなる。
 ポリケトン中空糸膜への半透膜の性能を有する薄膜層の積層は、すでに開示された方法が利用可能である。例えば、塗布法、界面重合法などが適用される。半透膜の性能を有する薄膜層がポリアミド薄膜層である場合は、該薄膜層は界面重合法によって形成されることが好適である。
 ポリケトン中空糸膜の外側へポリアミド薄膜層を積層する場合には、該中空糸をロールなどによって送りながら、第1モノマー溶液中を通過させて該中空糸の外側へ第1モノマー溶液を付着させた後、余分な液を除去したうえで、第2モノマー溶液中を通過させる方法を用いることができる。
 ポリケトン中空糸膜の内側へポリアミド薄膜層を積層する場合の方法としては、ポリケトン中空糸膜のモジュールを作製した後に、ポリアミド薄膜層を積層する方法を好ましく適用することができる。
 ポリケトン中空糸膜のモジュールを作製する方法は、特に限定されない。一例を示すと、例えば、先ず、中空糸膜を所定の長さに切断し、必要本数を束ねた後、例えば、図1に示すような筒状ケース2に入れる。その後、該ケースの両端に仮のキャップをし、中空糸膜両端部にウレタン系、エポキシ系などの接着剤を入れる。このとき遠心機でモジュールを回転させながら接着剤を入れる方法は、接着剤が均一に充填されるために好ましい方法である。接着剤が固化した後、仮のキャップを外し、さらに中空糸膜の両端が開口するように両端部を切断することにより、中空糸膜のモジュールが得られる。
 このようにして得られるモジュールを用い、送液ポンプを用いて先ず第1モノマー溶液を該モジュール内のポリケトン中空糸膜の内側に送給して該中空糸の内側へ第1モノマー溶液を付着させた後、余分な第1モノマー溶液を除去したうえで、第2モノマー溶液を同様に送給して反応させる方法を用いることができる。その後、余分な第2モノマー溶液を除去し、さらにアニーリングすることが好ましい。アニーリングは公知の方法によって行えばよい。例えば、加熱処理による方法、熱水と接触させた後に次亜塩素酸ナトリウム水溶液で洗浄する方法などが挙げられる。アニーリングによって薄膜層の性能を高めることができる。アニーリングを加熱により行う場合、例えば、70℃~160℃の範囲の温度で、1~20分間加熱すればよい。
<正浸透膜>
 本発明の正浸透膜は、半透膜の性能を有する薄膜層がポリケトン支持層に積層された構成を有する。
 本発明の正浸透膜は、支持層としてポリケトンを用いることにより、支持層の強度を確保しつつ、該支持層の空隙率を高め、あるいは膜厚を薄くすることができる。正浸透膜の支持層の性能は構造パラメーターSを指標とすることができる。構造パラメーターSは、理論的には膜厚×屈曲率/空隙率から求められる。支持層にとって構造パラメーターSは小さい方が好ましい。つまり、膜厚および屈曲率は小さく、空隙率は大きい方が好ましい。特に屈曲率および空隙率は、製法上、支持層の化学構造と大きな関係がある場合が多い。本発明では、ポリケトンを使うことにより、構造パラメーターSが特に小さい支持層を得ることを可能としている。
 本発明の正浸透膜における支持層の構造パラメーターSは、400μm以下であることが好ましい。構造パラメーターSが大きくなるほど、支持層内部における溶質(塩)の拡散が遅くなる。そのため、該支持層において、溶質の内部濃度分極が大きくなり、実効浸透圧差が小さくなって、透水量が低下する。従って、支持層における溶質の内部濃度分極を低減する観点から、構造パラメーターSは400μm以下が好ましく、300μm以下がより好ましい。構造パラメーターSは、実施例に記載の方法により求められる。
 正浸透膜は透水量が高いほど好ましい。具体的には、透水量J FOが10Lm-2-1以上であることが好ましく、15Lm-2-1以上がより好ましい。このような透水量が実現できれば、正浸透処理を行う際により大きな流量が得られる。透水量J FOは、実施例に記載の方法により求められる。
 本発明の正浸透膜はまた、ポリケトンとアミンとの反応性の高さ、およびアミン水溶液に対する親和性の良さにより、ポリアミド薄膜層がポリケトン支持層へ均一に積層されている。そのため、本発明の正浸透膜は、塩阻止率の高い、性能の良い正浸透膜である。
 本発明の正浸透膜には、汚染物質の吸着による性能低下を抑制するなどの目的で、織布、不織布などの布帛;メンブレンなどが、該正浸透膜の片面または両面に積層されていてもよい。
<正浸透処理システム>
 本発明の正浸透処理システムは正浸透現象を利用したものである。この正浸透処理システムでは、半透膜ユニットの一方の面側(第1の領域A1)に低浸透圧溶液を供給し、他方の面側(第2の領域A2)に、前記低浸透圧溶液より浸透圧の高い高浸透圧溶液を供給する。すると、低浸透圧溶液側から高浸透圧溶液側への流体移動が生じる。このことにより、高浸透圧溶液側の流量を増加させる。
 以下に、図を参照しつつ、本発明の正浸透処理システムについて詳細に説明する。
 図1は、本発明の正浸透処理システムにおいて用いられる中空糸膜モジュールの一構成例を模式的に示す断面図である。本実施形態では、半透膜ユニットとして中空糸形状の半透膜を用いた場合を例に挙げて説明する。しかし、半塗膜ユニットの構成はこれに限定されず、例えば平板形状(平膜形状)の半透膜を用いることもできる。
 図1に示される中空糸膜モジュール1は、両端に開口を有する複数本の中空糸膜(半透膜ユニット)5aからなる中空糸膜束5と、該中空糸膜束5を収容する筒状ケース2と、中空糸膜束5の両端部を筒状ケース2に接着固定する接着固定層6および7と、を備えている。接着固定層6および7により、中空糸膜5aの開口が露出する領域と、中空糸膜5aを挟んで前記領域に連通する外の領域とが区画される。ここでは、中空糸膜束5の両端部側を第1の領域A1とし、中空糸膜5aの外側を第2の領域A2とした場合を例に挙げて説明する。しかしながら、第1の領域A1と第2の領域A2とが逆であっても構わない。
 筒状ケース2には、流体の出入り用のシェル側導管3および4が、それぞれ筒状ケース2から外側に突き出すように設けられている。
 筒状ケース2の両端部には、配管が接続されるヘッダ部8および9が配されている。ヘッダ部8および9には、流体の出入り口となるコア側導管10および11がそれぞれ設けられている。筒状ケース2内に収容された中空糸膜束5の両端部には、複数本の中空糸膜5aの密度分布の偏りを低減するために、偏り規制部材(図示せず)が配置されていてもよい。
 図2は、本発明の正浸透処理システムの一構成例を模式的に示す図である。この正浸透処理システムでは、図1に示した中空糸膜モジュール1を用いている。
 図2の正浸透処理システム100は、例えば、正浸透処理用途である。中空糸膜モジュール1においては、シェル側導管4から中空糸膜5aの外側である第2の領域A2に高浸透圧溶液を供給し、ヘッダ部8から中空糸膜束5の両端部側である第1の領域A1に低浸透圧溶液を供給する。
 正浸透処理システム100は、中空糸膜モジュール1のシェル側導管4に接続されて高浸透圧供給部110から高浸透圧溶液を供給する供給配管101と、シェル側導管3に接続されて循環液を送り出す循環配管102とを備えている。循環配管102は、高浸透圧供給部110に接続されている。さらに、供給配管101および循環配管102の途中には、圧力計、各種弁など(いずれも図示せず)が配設されていてもよい。
 正浸透処理システム100は、中空糸膜モジュール1のコア側導管10に接続されて低浸透圧供給部111から低浸透圧溶液を供給する供給配管103と、コア側導管11に接続されて低浸透圧溶液を送り出す循環配管104とを備えている。循環配管104は、低浸透圧供給部111に接続されている。さらに、供給配管103および循環配管104の途中には、圧力計、各種弁など(いずれも図示せず)が配設されていてもよい。
 中空糸膜モジュール1は、シェル側導管3が循環配管102に接続され、ヘッダ部8のコア側導管10が低浸透圧溶液の供給配管103に接続されている。シェル側導管4は高浸透圧溶液の供給配管101に接続され、ヘッダ部9のコア側導管11は循環配管104に接続されている。
 このような正浸透処理システム100において、高浸透圧溶液は、高浸透圧供給部110から供給配管101およびシェル側導管4を通じて、中空糸膜モジュール1の、中空糸膜5aの外側である第2の領域A2に導入される。低浸透圧溶液は、低浸透圧供給部111から供給配管103およびコア側導管10を通じて、中空糸膜モジュール1の、中空糸膜束5の両端部側である第1の領域A1に導入される。
 ヘッダ部8側の第1の領域A1に供給された低浸透圧溶液は、中空糸膜5aの内側を流れる。このとき、低浸透圧溶液の溶媒(例えば水)の一部は、半透膜である中空糸膜5aを透過して、中空糸膜5aの外側である第2の領域A2に移動する。この第2の領域A2に移動した溶媒により、第2の領域A2を流れる高浸透圧溶液は希釈される。ヘッダ部9側に移動した低浸透圧溶液は、中空糸膜5aの端部の開口からヘッダ部9内の第1の領域A1に抜け、コア側導管11を通じて循環配管104に排出される。希釈された高浸透圧溶液は、シェル側導管3を通じて第2の領域A2から排出される。
 ここでは、正浸透処理システム100を用いて高浸透圧溶液を希釈する場合について説明した。しかしながら、これに限定されず、他の正浸透処理を行うこともできる。
 上述した説明では、中空糸膜モジュール1において、中空糸膜束5の両端部側を第1の領域A1(低浸透圧側)とし、中空糸膜5aの外側を第2の領域A2(高浸透圧側)とした場合を例に挙げて説明した。しかしながら本発明はこれに限定されず、中空糸膜束5の両端部側を第2の領域A2(高浸透圧側)とし、中空糸膜5aの外側を第1の領域A1(低浸透圧側)としてもよい。
 本発明の正浸透処理システムは、低浸透圧溶液および高浸透圧溶液のうちの少なくとも一方が有機化合物を含んでいてもよい。
 低浸透圧溶液に含まれる有機化合物としては、例えば、メタノール、エタノール、1-プロパノール、2-プロパノールなどの低級アルコール類;炭素数6以上の高級アルコール類;エチレングリコール、プロピレングリコールなどのグリコール類;ペンタン、ヘキサン、デカン、ウンデカン、シクロオクタンなどの脂肪族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;鉱物油、ジメチルホルムアミド、ジメチルスルホキシド、ジメチルアセトアミド、ピリジンなどの、産業用および試験研究用に使用される一般的な有機溶剤などが挙げられる。
 本発明の正浸透膜の支持層を構成するポリケトンは、様々な有機化合物に対して安定である。そのため、例えば、排水処理、濃縮、脱水など、有機化合物を含有する可能性のある処理水を扱う際に本発明の正浸透処理システムを用いることにより、長期間安定した運転が可能となる。
 低浸透圧溶液に有機化合物が含まれる場合に使用される高浸透圧溶液としては、該低浸透圧溶液に対する相対的な浸透圧が高い溶液であればよく、その溶質は特に限定されない。この場合の溶質としては、例えば、塩化ナトリウム、塩化カリウム、硫酸ナトリウム、塩化アンモニウム、硫酸アンモニウム、炭酸アンモニウムなどの水に易溶な塩類;メタノール、エタノール、1-プロパノール、2-プロパノールなどのアルコール類;エチレングリコール、プロピレングリコールなどのグリコール類;ポリエチレンオキサイド、プロピレンオキサイドなどの重合体;これらの重合体の共重合体などが挙げられる。
 特に、重合体を含む溶液のような高粘度溶液が用いられる場合、空隙率が高く、屈曲率が低く、かつ支持層の緻密層が薄いポリケトン多孔膜を支持層として用いた本発明の正浸透膜を使用することにより、支持層における溶質の内部濃度分極を効果的に抑えることができ、その結果、透水量を高くすることができる。
 高浸透圧溶液に含まれる有機化合物としては、特に制限はない。この場合の有機化合物としては、低浸透圧溶液に対する相対的な浸透圧を高くする溶質成分が挙げられる。この場合の有機化合物の具体的な例としては、例えば、グルコース、フルクトースなどの糖類;肥料;冷媒;メタノール、エタノール、1-プロパノール、2-プロパノールなどのアルコール類;エチレングリコール、プロピレングリコールなどのグリコール類;ポリエチレンオキサイド、プロピレンオキサイドなどの重合体;前記した重合体の共重合体などが挙げられる。
 高浸透圧溶液に含まれる有機化合物(溶質)としては、該高浸透圧溶液から水を回収する場合に該回収を容易にするという観点から、該溶質と水とが、温度によって固-液分離または液-液分離するような溶質成分であることが好適である。このような溶質としては、例えば、ポリ(N-イソプロピルアクリルアミド)のような温度応答性高分子;低分子量ジオール(例えば1,2-プロパンジオール、1,3-プロパンジオール、1,2-エタンジオールなど)のランダム共重合体またはシーケンシャル共重合体などが挙げられる。
 本発明の正浸透膜の支持層を構成するポリケトンは、前記した有機化合物に対して安定である。そのため、例えば、排水処理、濃縮など、有機化合物を含有する可能性のある処理水を扱う際に、本発明の正浸透処理システムを用いることにより、長期間安定した運転が可能となる。
 特に、重合体を含む溶液のような高粘度溶液が用いられる場合、空隙率が高く、屈曲率が低く、かつ支持層の緻密層が薄いポリケトン多孔膜を支持層として用いた本発明の正浸透膜を使用することにより、前記支持層における溶質の内部濃度分極を効果的に抑えることができ、従って透水量を高くすることができる。
 上述した説明では、中空糸形状の半透膜ユニットを用いた場合を例に挙げて説明した。しかしながら、本発明の方法はこの構成に限定されず、平板状(平膜状)の半透膜ユニットを用いることもできる。この場合の実施形態について、図を参照しながら以下に詳説する。
 図4は、平板状の半透膜ユニットを用いた本発明の正浸透処理システムの一構成例を模式的に示す図である。
 図4の正浸透処理システムは、直方体形状のケース内に収容された平板状の半透膜121を含む半透膜ユニット120と、該半透膜121を介して互いに仕切られた第1の領域A1および第2の領域A2と、第1の領域A1に低浸透圧溶液を供給する低浸透圧溶液供給部111と、第2の領域A2に高浸透圧溶液を供給する高浸透圧溶液供給部110と、を備える。
 この正浸透処理システムは、高浸透圧供給部110から高浸透圧溶液を供給する供給配管101と、循環液を送り出す循環配管102とを備え;さらに、低浸透圧供給部111から低浸透圧溶液を供給する供給配管103と、低浸透圧溶液を送り出す循環配管104とを備えている。供給配管101および103、ならびに循環配管102および104の途中には、それぞれ、圧力計、各種弁など(いずれも図示せず)が配設されていてもよい。
 半透膜ユニットとしてより具体的には、例えば特開2014-23985号公報に記載されたようなスパイラル型モジュールなどが挙げられる。
<造水方法>
 本発明の造水方法は、上述したような本発明の正浸透処理システムを膜分離手段として用いるものである。
 本発明の造水方法においては、正浸透膜ユニット(半透膜ユニット)を用い、分離活性層である、半透膜の性能を有する薄膜層側に低浸透圧溶液を接触させ、その反対側に高浸透圧溶液を接触させるか、あるいは、
薄膜層側に高浸透圧溶液を接触させ、その反対側に低浸透圧溶液を接触させる。そして、低浸透圧溶液から高浸透圧溶液へ正浸透膜ユニットを介して水を移動させた後に、高浸透圧溶液から水を回収することにより、造水する。
 この場合の低浸透圧溶液には無機溶質が含まれていてもよい。低浸透圧溶液および高浸透圧溶液は、それぞれ、本発明の正浸透処理システムで処理される前に、ろ過などの公知技術による前処理を行うことにより、微粒子などの異物を除去してもよい。
 造水を行う際の温度は特に限定されない。
<含水物の濃縮方法>
 本発明の含水物の濃縮方法は、本発明の正浸透処理システムを用いるものである。
 本発明の含水物の濃縮方法においては、正浸透膜ユニット(半透膜ユニット)を用い、半透膜の性能を有する薄膜層側に低浸透圧溶液を接触させ、その反対側に高浸透圧溶液を接触させるか、あるいは、
薄膜層側に高浸透圧溶液を接触させ、その反対側に低浸透圧溶液を接触させる。そして、含水物から浸透圧の高浸透圧溶液へ膜を介して水を浸透させることにより、含水物の濃縮または脱水を行う。
 濃縮および脱水の対象となる含水物としては、正浸透膜ユニットによって、濃縮が可能な含水物であれば特に制限はない。濃縮の対象物は、有機化合物および無機化合物のいずれであってもよい。
 有機化合物が含まれる溶液を濃縮または脱水する場合、該有機化合物としては、例えば、酢酸、アクリル酸、プロピオン酸、蟻酸、乳酸、シュウ酸、酒石酸、安息香酸などのカルボン酸類;スルホン酸、スルフィン酸、ハビツル酸、尿酸、フェノール、エノール、ジケトン型化合物、チオフェノール、イミド、オキシム、芳香族スルフォンアミド、第1級ニトロ化合物、第2級ニトロ化合物などの有機酸類;メタノール、エタノール、1-プロパノール、2-プロパノールなどの低級アルコール類;炭素数6以上の高級アルコール類;エチレングリコール、プロピレングリコールなどのグリコール類;ペンタン、ヘキサン、デカン、ウンデカン、シクロオクタンなどの脂肪族炭化水素;ベンゼン、トルエン、キシレンなどの芳香族炭化水素;鉱物油;アセトン、メチルイソブチルケトンなどのケトン類;アセトアルデヒドなどのアルデヒド類;ジオキサン、テトラヒドロフランなどのエーテル類;ジメチルホルムアミド、N-メチルピロリドンなどのアミド;ピリジンなどの窒素を含む有機化合物;酢酸エステル、アクリル酸エステルなどのエステル類などの他;ジメチルスルホキシドなどの、産業用または試験研究用に使用される一般的な有機溶剤、糖類、肥料、酵素などが挙げられる。
 濃縮または脱水対象の含水物は、水と混合物を形成する高分子化合物であってもよい。このような高分子化合物としては、例えば、ポリエチレングリコール、ポリビニルアルコールなどのポリオール類;ポリアミン類;ポリスルホン酸類;ポリアクリル酸などのポリカルボン酸類;ポリアクリル酸エステルなどのポリカルボン酸エステル類;グラフト重合などによって変性された変性高分子化合物類;オレフィンなどの非極性モノマーとカルボキシル基などの極性基を有する極性モノマーとの共重合によって得られる共重合高分子化合物類などが挙げられる。
 濃縮または脱水対象の含水物は、エタノール水溶液のような共沸混合物であってもよい。具体的には、例えば、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノールなどのアルコール類と水の混合物;酢酸エチル、アクリル酸エチル、メタクリル酸メチルなどのエステル類と水との混合物;ギ酸、イソ酪酸、吉草酸などのカルボン酸類と水との混合物;フェノール、アニリンなどの芳香族有機化合物と水との混合物;アセトニトリル、アクリロニトリルなどの窒素含有化合物と水との混合物などが挙げられる。本発明の正浸透処理システムを用いることにより、蒸留による濃縮よりも効率よく、水を選択的に除去して共沸混合物を濃縮することができる。
 濃縮または脱水対象の含水物は、ラテックスのような、水とポリマーとの混合物であってもよい。ラテックスに用いられるポリマーとしては、例えば、ポリ酢酸ビニル、ポリビニルアルコール、アクリル樹脂、ポリオレフィン、エチレン-ビニルアルコール共重合体などのオレフィン-極性モノマー共重合体;ポリスチレン、ポリビニルエーテル、ポリアミド、ポリエステル、セルロース誘導体などの熱可塑性樹脂;尿素樹脂、フェノール樹脂、エポキシ樹脂、ポリウレタンなどの熱硬化性樹脂;天然ゴム、ポリイソプレン、ポリクロロプレン、スチレン-ブタジエン共重合体などのゴムなどが挙げられる。ラテックスには界面活性剤が含まれてもよい。
 濃縮または脱水対象の含水物としては、さらに、果汁、酒類、食酢などの液体食品;液体肥料;生活排水、工業排水などの排水;揮発性有機化合物(VOC)を回収した水溶液などが挙げられる。液体食品の濃縮において本発明の方法を適用すると、蒸発などの加熱を要する手法と異なり、低温における濃縮が可能となるため、風味を損なわずに濃縮または減容できるという点で、特に望ましい。
 本発明の正浸透膜は、耐酸性を有する。そのため本発明の濃縮方法は、例えば水と酢酸との混合物など、含水有機酸からの有機酸の濃縮;エステル化反応促進のための反応系中の水の除去などにも有効に利用できる。
 無機化合物が含まれる水溶液を濃縮または脱水する場合、該無機化合物としては、例えば、金属粒子;金属イオン、硫酸イオン、硝酸イオンなどのアニオンなどが挙げられる。
<溶液の希釈方法>
 本発明の溶液の希釈方法は、本発明の正浸透処理システムを用いるものである。
 本発明の溶液の希釈方法においては、正浸透膜ユニット(半透膜ユニット)を用い、
分離活性層である薄膜層側に低浸透圧溶液を接触させ、その反対側に高浸透圧溶液を接触させるか、あるいは、
薄膜層側に高浸透圧溶液を接触させ、その反対側に低浸透圧溶液を接触させる。そして、低浸透圧溶液から高浸透圧溶液へ正浸透膜を介して水を浸透させることにより、高浸透圧溶液を希釈する。希釈される対象物としては、特に限定されないが、例えば肥料、冷媒などが挙げられる。
 低浸透圧溶液および高浸透圧溶液は、それぞれ、本発明の正浸透処理システムで処理される前に、ろ過などの公知技術による前処理を行うことにより、微粒子などの異物を除去してもよい。
 希釈を行う際の温度は特に限定されない。
<発電方法>
 本発明の発電方法は、本発明の正浸透処理システムを用いるものである。
 本発明の発電方法においては、正浸透膜ユニット(半透膜ユニット)を用い、
分離活性層である薄膜層側に低浸透圧溶液を接触させ、その反対側に高浸透圧溶液を接触させるか、あるいは、
薄膜層側に高浸透圧溶液を接触させ、その反対側に低浸透圧溶液を接触させる。そして、低浸透圧溶液から高浸透圧溶液へ正浸透膜を介して水を移動させることにより、高浸透圧溶液の流量を増加させ、該増加した流量によって水流発電機を駆動させて発電を行う。
 以下に、実施例を示すことにより、本発明をさらに詳細に説明する。しかし、本発明の範囲は、これらの実施例に限定されるものではない。
 以下の実施例および比較例における評価は、それぞれ、以下の方法によった。
1.支持層および正浸透膜の形状特性の評価
(1)中空糸の内径および外径
 中空糸膜の長手方向の任意の5か所について、該長手方向に垂直な断面をキーエンス社製のデジタルマイクロスコープ(型式:VHX-5000)で撮影し、各断面画像における任意の2点の内径および外径をそれぞれ計測した。そして、計10点の計測値の数平均値として得られる平均内径r(μm)および平均外径R(μm)を、それぞれ該中空糸膜の内径および外径とした。
(2)膜厚
(2-1)平膜の場合
 平膜上に、5mm間隔の格子状で3点×3点(計9箇所)の測定点を設定した。これらの測定点のそれぞれにおける膜厚を、ダイヤルゲージ(尾崎製作所社製:PEACOCK No.25)を用いて測定し、数平均値として得られる平均厚みLp(μm)を、該平膜の膜厚とした。
(2-2)中空糸膜の場合
 上記(1)で求めた中空糸膜の平均内径rおよび平均外径Rを用いて、数式(R-r)/2に従って得られる中空糸膜の平均厚みLh(μm)を、該中空糸膜の膜厚とした。
(3)空隙率
(3-1)平膜の空隙率(複合膜含む)
 平膜から5cm×5cmの試験片を切り取り、その質量G(g)を測定した。上記(2)で求めた平均厚みLp(μm)および質量平均密度ρ(g/cm)を用いて、以下の数式:
   空隙率(%)={1-G/5/ρ/(Lp×10-4)}×100
に従って、該平膜の空隙率を算出した。上記数式中の質量平均密度ρは、平膜の質量Gと、平膜を構成するポリケトン、ポリエステル、およびポリプロピレンの質量密度と、平膜の目付と、から算出される質量平均密度である。ポリケトン、ポリエステル、およびポリプロピレンの質量密度は、それぞれ、1.3g/cm、1.4g/cm、および0.9g/cmとした。
(3-2)中空糸膜の空隙率
 中空糸膜における膜部の空隙率は、下記数式(3)を用いて算出した。
  空隙率(%)=(1-G/ρ/V)×100   (3)
 上記数式中のGは、中空糸膜の質量(g)であり、長さ70cmの中空糸膜を10本束ねて測定した。ρは、中空糸膜を構成するポリマーの密度(g/cm)であり、ポリケトン中空糸膜の場合は1.30g/cm、およびポリエーテルスルホン中空糸膜の場合は1.37g/cmの値を、それぞれ用いた。Vは、中空糸膜の膜部の体積(cm)であり、上記(2)の方法で測定した中空糸膜の外径、下記(5)の方法で測定した中空糸膜の膜部の平均厚み、ならびに中空糸の長さ(70cm)および本数(10本)から算出した。
(4)最大孔径
 支持層の最大孔径は、測定装置としてPMI社製のパームポロメーター(型式:CFP-1200AEX)を用い、浸液としてPMI社製のガルウィック(表面張力=15.6dynes/cm)を用いて、JIS K3832(バブルポイント法)に準拠して測定した。
(5)ポリケトン支持層の膜部の平均厚み、および薄膜層(ポリアミド層)の平均厚み
 ポリアミド薄膜層が積層されたポリケトン膜(平膜または中空糸膜)を凍結および割断して、断面サンプルを作製した。この断面サンプルについて、走査型電子顕微鏡(日立製作所製、形式S-4800)を使用し、加速電圧1.0kV、WD5mm基準±0.7mm、およびエミッション電流設定10±1μAの条件下で観察し、SEM像を得た。得られたSEM像から、ポリケトン支持層の膜部の平均厚みと、ポリアミド薄膜層の平均厚みと、をそれぞれ測定した。
2.正浸透膜の性能評価
(1)構造パラメータS、水透過係数A、および塩透過係数Bの測定(平膜の場合、実施例1~6および比較例1~7)
 各実施例および比較例で得られた浸透膜について、圧力駆動の逆浸透処理試験と正浸透駆動の正浸透処理試験との両方を行うことにより、支持層の内部濃度分極の度合いの指標を表す構造パラメーターSの値、ならびに薄膜層の透過性能を表す水透過係数Aおよび塩透過係数Bの値を求めた。
[逆浸透処理試験]
 超純水または0.1MのNaCl水溶液を0MPa~2MPaの範囲で加圧して逆浸透処理を行い、透水量J water ROまたはJ NaCl RO(単位:L・m-2・h-1)、および塩阻止率R(単位:%)(=1-(供給液のNaCl濃度/透過液のNaCl濃度))を求め、下記数式に従って薄膜層の水透過係数Aと塩透過係数Bとを算出した。両係数の算出に当たっては、Sidney Loeb et al.,J.Membr.Sci.,129(1997),pp243-249、およびK.L.Lee et al.,J.Membr.Sci.,8(1981),pp141-171を参考にした。
   A=J water RO/ΔP
   B=J NaCl RO((1-R)/R)exp(-J NaCl RO/kf
     P:印加圧力
     R:阻止率(=1-C/C
     C:透過水濃度
     C:供給液のバルクの溶液濃度
     k:物質移動係数(=J NaCl RO/ln[ΔP(1-J NaCl RO/J water RO)/(π-π)]
     π:透過水の浸透圧
     π:バルクの溶液の浸透圧
[正浸透処理試験]
 濃厚溶液(Draw solution)として0.3M~1.2MのNaCl水溶液を用い、希薄溶液(Feed Solution)として超純水を用い、薄膜層を希薄溶液側に向けて、正浸透処理を行った。そして、透水量J FO(単位:L・m-2・h-1)を測定し、上記で求めた水透過係数Aおよび塩透過係数Bを下記数式に代入することにより、支持層の構造パラメーターSを算出した。構造パラメーターSの算出に当たっては、A.Tiraferri et al., J.Membr.Sci., 367(2011),pp340-352を参考にした。
   J FO=(D/S)ln[(B+AπDS)/(AπFS+B+J FO)]
     D:溶質の拡散係数
     πDS:濃厚溶液のバルクの浸透圧
     πFS:希薄溶液のバルクの浸透圧
 支持層の構造パラメーターSは、理論的には、膜厚×屈曲率/空隙率を表し、支持層内部における溶質の拡散のし難さの指標である。従って、構造パラメーターSが小さいほど支持層内部で溶質が拡散し易くなり、内部濃度分極が小さくなる。
(2)透水量および塩の逆拡散の測定(中空糸膜モジュールの場合、実施例X1~X4および比較例X1)
 各実施例および比較例で得られた中空糸膜モジュールのコア側導管(図1中の符号10および11)に、純水30Lを入れた50Lのタンクを配管で繋ぎ、ポンプで該純水を循環させた。前記タンクには電導度計が装備されており、純水への塩の移動が測定できる。他方、シェル側導管(図1中の符号3および4)には、濃度3.5質量%の食塩水20Lを入れた50Lのタンクを配管で繋ぎ、ポンプで該食塩水を循環させた。コア側のタンクとシェル側のタンクとは、それぞれ天秤の上に設置され、塩および水の移動が測定できる。コア側の流量を2.2L/分、シェル側の流量を8.8L/分として同時に運転し、塩の移動量と水の移動量を、それぞれ測定した。この水の移動量から透水量を、塩の移動量から塩の逆拡散を、それぞれ算出した。
(3)透水量および塩の逆拡散の測定(正浸透膜流動システムの場合、高浸透圧溶液=食塩水、実施例Y1~Y3および比較例Y1~Y3)
 各実施例および比較例で得られた複合中空糸膜モジュールをそれぞれ用い、
コア側導管に繋ぐ50Lタンクの内容物を、
  試験液A(純水30L)、
  試験液B(純水28.5Lおよびトルエン1.73L(質量比95:5)から成る溶液)、または
  試験液C(純水29.85Lおよびアセトン0.19L(質量比99.5:0.5)から成る溶液)
とし;
シェル側導管に繋ぐ50Lタンクの内容物を、濃度3.5質量%の食塩水20Lとした他は、上記(2)と同様にして両タンクの内容物をそれぞれ循環させ、塩の移動量および水の移動量を、それぞれ測定した。そして、この水の移動量から透水量を、塩の移動量から塩の逆拡散を、それぞれ算出した。
(4)透水量の測定(正浸透膜流動システムの場合、高浸透圧溶液=有機化合物溶液、実施例Y4および比較例Y4)
 実施例Y4および比較例Y4で得られた複合中空糸膜モジュールをそれぞれ用い、シェル側導管に繋ぐ50Lタンクの内容物を濃度15質量%のポリエチレングリコール200(東京化成工業株式会社製)水溶液20Lとした他は、上記(2)と同様にして純水およびポリエチレングリコール水溶液を循環させ、水の移動量を測定した。この水の移動量から透水量を算出した。
 さらに、ポリエチレングリコールの漏れについて、以下の方法により評価した。
 上記と同じ条件における10分間の運転を1サイクルとして、これを10回繰り返して試験した。そして、10回試験後のコア側(純水)の液10mlをガラス板上に取り出し、100℃において20分加熱して水分を除去した後に残った物質につき、赤外分光光度計(日本分光株式会社製、形式FT/IR-6200)を使用してIR測定を行ってポリエチレングリコールの有無を調べることにより、ポリエチレングリコールの漏れの有無を評価した。
(5)耐圧性の測定(平膜の場合、実施例1~6および比較例1~7)
 上記2(1)において、超純水またはNaCl水溶液による印加圧力を変えて逆浸透処理試験を行った際に、浸透膜の破膜が起こらなかった最大の圧力を、当該浸透膜の耐圧性の値とした。
<平板状正浸透膜の作製および性能評価>
[実施例1]
 ポリケトン(旭化成せんい株式会社製、極限粘度:2.2dl/g、重量平均分子量:200,000)10質量%、レソルシノール58.5質量%、および水31.5質量%から構成されるポリマー溶液を、アプリケーターを用いてガラス基板上にキャストした。キャスト後のガラス基板を水/メタノール混合溶媒(75/25(w/w))からなる凝固浴中に浸漬させ、ポリケトン多孔膜(非対称膜)を形成した。得られたポリケトン多孔膜を、水、アセトン、およびヘキサンで順次に洗浄し、風乾して、厚み70μm、空隙率80.6%、およびバブルポイント法による最大孔径が150nmのポリケトン支持層を得た。
 得られたポリケトン支持層上(緻密な方の面側)に、1,3-フェニレンジアミン2質量%、カンファースルホン酸4質量%、トリエチルアミン2質量%、およびドデシル硫酸ナトリウム0.25質量%を含むアミン水溶液(薄膜層形成用塗工液)を塗布し、300秒間静置した。その後、余分なアミン水溶液を除去するために、膜を垂直にして60秒間静置した。次いで、塗布面上に濃度0.15質量%の1,3,5-トリメソイルクロライド(トリメシン酸トリクロライド)のヘキサン溶液を塗布し、120秒間静置した。その後、余分なトリメシン酸クロライド溶液を除去するために、膜を垂直にして60秒間静置して、積層体を得た。
 このようにして得られた積層体につき、90℃において600秒間のアニーリング処理を行い、水で十分洗浄することにより、ポリケトン支持層上にポリアミド薄膜層が形成された正浸透膜1を得た。
 正浸透膜1について上述の方法によって評価した。濃厚溶液(0.6M NaCl水溶液)を用いた場合の透水量J FOは19.5Lm-2-1であり、
水透過係数Aは1.21Lm-2-1bar-1であり、塩透過係数Bは0.20Lm-2-1であり、
構造パラメーターSは200μmであり、そして
耐圧性は1.2MPaであった。
[実施例2~5]
 上記実施例1において、ポリケトン支持層形成の際の凝固液の組成、ポリケトン支持層の厚み、および薄膜層形成用塗工液の組成を、それぞれ、表1に記載のとおりに変更した以外は実施例1と同様にして正浸透膜2~5を得た。
 これらの正浸透膜について上述の方法によって評価した。評価結果を表3に示す。
[実施例6]
 親水処理を施したポリプロピレン製スパンボンド不織布(膜厚:247μm、空隙率87%)の片面に、ポリケトン10質量%、レソルシノール58.5質量%、および水31.5質量%から構成されるポリマー溶液をコーティングした後、水/メタノール混合溶媒(60/40(w/w))からなる凝固浴中に浸漬させ、ポリケトン複合膜を作製した。得られたポリケトン複合膜を、水、アセトン、およびヘキサンで順次に洗浄し、風乾し、厚み269μm、空隙率81.5%、およびバブルポイント法による最大孔径が150nmのポリケトン支持層を得た。
 この支持層を用いた以外は実施例4と同様にして、該支持層上にポリアミド薄膜層を形成することにより、正浸透膜6を得た。
 得られた正浸透膜6について上述の方法によって評価した。評価結果を表3に示す。
 この実施例6においては、ポリケトン多孔膜の補強材として空隙率の高い不織布を使用することにより、高い透水性を維持したまま、耐圧性が向上した。
[比較例1]
 ポリスルホン(Sigma Aldrich製、重量平均分子量:22,000)15質量%および1-メチル-2-ピロリドン(NMP)85質量%から構成されるポリマー溶液(多孔層形成用途工液)を、アプリケーターを用いて、予めNMPで濡らした不織布上にキャストした。キャスト後の不飾布を水から成る凝固浴中に浸漬させ、ポリスルホン多孔膜を形成した。得られたポリスルホン多孔膜を繰り返し水で洗浄し、風乾して、ポリスルホン支持層を得た。上記不織布としては、ポリエチレンテレフタレート製スパンボンド不織布(膜厚350μm、空隙率86%)を使用した。
 得られたポリスルホン支持層上に、実施例1と同様にしてポリアミドスキン層を形成して、正浸透膜11を作製した。この比較例1の実施には、Alberto Tiraferri et al.,J. Membr. Sci., 367(2011),pp340-352の記載を参考にした。なお、この正浸透膜11については、支持層の最大孔径をバブルポイント法により測定することができなかったため、その最大孔径は35nm未満と判断された。
 得られた正浸透膜11について上述の方法によって評価した。評価結果を表3に示す。
[比較例2]
 ポリスルホン(Sigma Aldrich製、重量平均分子量:22,000)12質量%および2-ピロリジノン(BL)88質量%から構成されるポリマー溶液(多孔層形成用途工液)を、アプリケーターを用いて、温度25℃および湿度70%の環境下でガラス基板上にキャストした。キャスト30秒後のガラス基板を水から成る凝固浴中に24時間浸漬させ、ポリスルホン多孔膜を形成した。得られたポリスルホン多孔膜を繰り返し水で洗浄し、風乾した後に、ガラス基板から剥離して、ポリスルホン支持層を得た。 得られたポリスルホン支持層上に、実施例1と同様にしてポリアミドスキン層を形成して、正浸透膜12を作製した。
 この比較例2の実施には、Journal of Membrane Science,362(2010),pp360-373の記載を参考にした。
 得られた正浸透膜12について上述の方法によって評価した。評価結果を表3に示す。
[比較例3]
 上記比較例1において、多孔層形成用塗工液の組成を表2に記載のとおりに変更した以外は比較例1と同様にして、正浸透膜13を得た。
 この正浸透膜13について上述の方法によって評価した。評価結果を表3に示す。
 比較例2で得た正浸透膜12はピンホールが多く、性能評価をすることはできなかった。
[比較例4]
 ポリエーテルケトン(還元粘度0.96dl/g、ガラス転移点151℃、融点373℃)80gを濃度87.6質量%の硫酸920gに溶解したポリマー溶液に6gの純水を加えて製膜原液とした。アプリケータを用いてガラス板上に100μmの厚みで製膜原液を塗布した後、濃度75質量%の硫酸に、重量平均分子量が1,000のポリエチレングリコールを溶解させた24℃の凝固浴に浸漬させ、ポリエーテルケトン多孔膜を形成した。
 得られたポリエーテルケトン多孔膜を流水で3時間洗浄し、次いでエタノール中に3時間浸漬した後、風乾し、ポリエーテルケトン支持層を得た。この多孔膜支持層の最大孔径は140nm、空隙率は66%であった。
 このポリエーテルケトン支持層上に、実施例1と同様にしてポリアミド薄膜層を形成することにより、正浸透膜14を得た。
 この正浸透膜14はピンホールが多く、性能評価をすることができなかった。
[比較例5]
 比較例5においては、親水性ポリフッ化ビニリデン(Merck Milipore社製の親水性PVDF、品名「Durapore」)を支持層として用いた。
 該PVDF支持層上に、実施例1と同様にしてポリアミド薄膜層を形成することにより、正浸透膜15を得た。
 得られた正浸透膜15について上述の方法によって評価した。評価結果を表3に示す。
[比較例6および7]
 比較例6においてはHTI社製のセルローストリアセテート複合膜を正浸透膜16として、
比較例7においてはHTI社製のセルローストリアセテート非対称膜を正浸透膜17として、
それぞれ用いた以外は上述の方法によって評価した。評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2におけるポリマーの詳細については、それぞれ以下のとおりである。
 ポリスルホン:Sigma Aldrich製、重量平均分子量:22,000
 ポリエーテルスルホン:BASF社製、品名「Ultrason」
 表2中の溶媒の略称は、それぞれ、以下の意味である。
  NMP:N-メチル-2-ピロリドン
  BL:2-ピロリジノン
 表1~3に示した結果から理解されるように、ポリケトンを支持層として用いた正浸透膜1~6は、支持層としてポリスルホンを用いた正浸透膜11、ならびに市販の正浸透膜16および17と比較して、構造パラメーターSが顕著に小さくなり、高い透水量を得ることができた。正浸透膜1~6では、支持層の構造が適していたため、支持層における溶質の内部濃度分極が小さくなり、その結果薄膜層間の実効浸透圧差が大きくなることにより、透水量が増えたものと推察される。
<中空糸状正浸透膜の作製および性能評価>
[実施例X1]
 エチレンと一酸化炭素とが完全交互共重合した極限粘度2.2dl/gのポリケトンを、ポリマー濃度が15質量%となるように65質量%レゾルシン水溶液に添加し、80℃において2時間攪拌溶解し、脱泡を行って、均一透明なドープを得た。
 図3に示す構造の二重管オリフィスの紡口(D1:0.6mm、D2:0.33mm、D3:0.22mm)を用い、
温度を50℃に調整した上記のドープ(ドープ粘度:100poise)を外側の輪状オリフィスから、
25質量%のメタノール水溶液を内側の円状オリフィスから、
同時に濃度40質量%のメタノール水溶液から成る凝固浴に吐出した。凝固物を引上げて、水洗しながら巻き取って、中空糸膜を得た。得られた中空糸膜を長さ70cmに切断して束にして水洗した。水洗後の中空糸膜束を、アセトンで溶媒置換し、次いでヘキサンで溶媒置換した後、50℃において乾燥を行った。このようにして得られたポリケトン中空糸膜の空隙率は78%であり、最大孔径は130nmであった。
 上記ポリケトン中空糸膜1,500本を、5cm径、50cm長の円筒状プラスチックハウジング内に充填し、両端部を接着剤で固定することにより、図1に示す構造を有するポリケトン中空糸膜モジュールを作製した。
 次に、m-フェニレンジアミン2.0質量%、カンファースルホン酸4.0質量%、トリエチルアミン2.0質量%、およびドデシル硫酸ナトリウム0.25質量%を含む水溶液(第1モノマー溶液)を、上記モジュールのコア側(中空糸の内側)に充填し、300秒間静置した。その後、液を抜いて、コア側に空気を通して、中空糸膜に過剰に付着した溶液を除去した。次いで、0.15質量%濃度のトリメシン酸クロリドのヘキサン溶液(第2モノマー溶液)を、モジュールのコア側に1.5L/分の流量で120秒間送液し、界面重合を行った。この時のコア側圧力およびシェル側圧力は双方とも常圧とし、重合温度は25℃とした。次いで、上記モジュールのコア側に90℃の窒素を600秒間流した後、シェル側およびコア側の双方を純水で洗浄することにより、ポリケトン中空糸膜の内側表面にポリアミド薄膜層が積層された正浸透中空糸膜モジュールを作製した。
 この正浸透中空糸膜モジュールについて、上述の方法によって評価したところ、透水量は18.5kg/(m×hr)であり、塩の逆拡散は1.2g/(m×hr)であった。このモジュールを分解して測定したポリケトン中空糸膜の外径は1,080μmであり、その膜部の厚みは150μmであり、ポリアミド薄膜層の厚みは0.3μmであった。
[実施例X2およびX3、ならびに比較例X1]
 実施例X1において、ドープの組成、外側の輪状オリフィスからのドープの吐出と同時に内側の円状オリフィスから吐出する液の濃度、および第1モノマー溶液の組成を、それぞれ、表4に記載のとおりとした以外は実施例X1と同様にして正浸透中空糸膜モジュールを作製し、評価した。比較例X1においては、得られた中空糸膜を長さ70cmに切断して束にし、水洗した後にモジュールを作製し、界面重合に供した。
 評価結果を表5に示す。
[実施例X4]
 実施例X3で得られたポリケトン中空糸膜を、m-フェニレンジアミン2.0質量%、カンファースルホン酸4.0質量%、トリエチルアミン2.0質量%、およびドデシル硫酸ナトリウム0.25質量%を含む水溶液(第1モノマー溶液)中に浸漬させた後、室温で300秒間静置した。次いで、0.15質量%濃度のトリメシン酸クロリドヘキサン溶液(第2モノマー溶液)中に120秒間浸漬し、界面重合を行った。次いで、窒素雰囲気下、90℃において600秒間乾燥することにより、ポリケトン中空糸膜の外表面にポリアミド薄膜層が積層されたポリケトン中空糸膜を作製した。
 上記の外側表面にポリアミド薄膜層が積層されたポリケトン中空糸膜1,500本を、5cm径、50cm長の円筒状プラスチックハウジング内に充填し、両端部を接着剤で固定することにより、図1に示す構造を有するモジュールを作製した。さらに、シェル側とコア側の双方を純水で洗浄することにより、ポリケトン中空糸膜の外側表面にポリアミド薄膜層が積層された正浸透中空糸膜モジュールを作製した。
 この正浸透中空糸膜モジュールにつき、実施例X1と同様に評価した結果を表5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表4におけるポリマーの詳細は、それぞれ、以下のとおりである。
  ポリケトン:エチレンと一酸化炭素との完全交互共重合体、極限粘度=2.2dl/g
  ポリエーテルスルホン:BASF社製、商品名「Ultrason」
 表4および表5の結果から理解されるように、ポリアミド薄膜層がポリケトン中空糸膜の外側表面および内側表面のどちらか一方に積層されている正浸透中空糸膜は、透水量が高く、かつ、濃厚溶液側からの塩の逆拡散を低いレベルに留めることができる。
<中空糸状正浸透膜の繰返し試験>
 以下の実施例および比較例においては、上記実施例X1および比較例X1と同様にして作製した中空糸膜モジュールを用いて繰返し試験を行った。
[実施例Y1]
 上記実施例X1と同様にして、ポリケトン中空糸膜の内表面にポリアミド薄膜層が積層された正浸透中空糸膜モジュール(半透膜ユニット)を作製した。
 この中空糸膜モジュールについて、
高浸透圧溶液として濃度3.5質量%の食塩水20Lを、
低浸透圧溶液として試験液A(純水30L)を、それぞれ用いて透水量および塩の逆拡散を測定したところ、この正浸透中空糸モジュールの透水量は18.5kg/(m×hr)であり、塩の逆拡散は1.2g/(m2×hr)であった。
 上記測定後の正浸透中空糸モジュールを用いて、同じ測定を9回繰り返して行った(合計10回)。10回目の透水量は18.5kg/(m×hr)であり、塩の逆拡散は1.2g/(m×hr)であった。
 上記10回測定後のモジュールを分解して測定したポリケトン中空糸膜の直径は1,080μmであり、その膜部の厚みは150μmであり、ポリアミド薄膜層の厚みは0.3μmであった。肉眼観察では、支持層の様子に特に変化は見られなかった。
[実施例Y2およびY3、ならびに比較例Y1~Y3]
 上記実施例Y1において、
正浸透中空糸膜モジュールとして表6に記載した実施例または比較例と同様にして作製したモジュールをそれぞれ用い、そして
低浸透圧溶液として表6に記載の試験液をそれぞれ用いた以外は、実施例Y1と同様にして透水量および塩の逆拡散について繰返し試験を行った。
 評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6から理解されるように、ポリケトン多孔膜を支持層とする本発明の正浸透膜システムは、支持層に対して浸蝕性のある有機化合物(トルエンまたはアセトン)が低浸透圧溶液に含まれている場合であっても、安定して長時間高い透水性を発揮することができ、かつ、高浸透圧溶液からの塩の逆拡散も低レベルに維持されることが検証された。
[実施例Y4]
 上記実施例X1と同様にして、ポリケトン中空糸膜の内表面にポリアミド薄膜層が積層された正浸透中空糸膜モジュールを作製した。
 この中空糸膜モジュールについて、
低浸透圧溶液として水を、
高浸透圧溶液として濃度15質量%のポリエチレングリコール200(東京化成工業株式会社製)水溶液を、
それぞれ用いて透水量を測定したところ、5.6kg/(m×hr)であった。
 上記測定後の正浸透中空糸モジュールを用いて、同じ測定を9回繰り返して行った(合計10回)。10回目の透水量は5.6kg/(m×hr)であり、10回試験後のコア側(純水)の液からは、ポリエチレングリコールは検出されなかった。
 このモジュールを分解して測定したポリケトン中空糸膜の直径は1,080μmであり、その膜部の厚みは150μmであり、ポリアミド薄膜層の厚みは0.3μmであった。肉眼観察では、支持層の様子に特に変化は見られなかった。
[比較例Y4]
 上記実施例Y4において、正浸透中空糸膜モジュールとして上記比較例X1と同様にして作製したモジュールを用いた以外は実施例Y4と同様に繰返し試験を行った。
  評価結果を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 表7から理解されるように、ポリケトン多孔膜を支持層とする本発明の正浸透膜システムは、支持層に対して浸蝕性のある有機化合物(ポリエチレングリコール)が高浸透圧溶液に含まれる場合でも、安定して長時間高い透水性を発揮することができ、かつ、高浸透圧溶液からの溶質成分の逆拡散も低レベルに維持されることが検証された。
 一方、比較例Y4においては、ポリエチレングリコールによってポリエーテルスルホン支持層が劣化し、長時間使用すると性能が下がる傾向にあった。
 以上、本発明の実施の形態について説明してきたが、本発明はこれに限定されるものではなく、発明の趣旨を逸脱しない範囲で適宜変更可能である。
 本発明の正浸透処理システムは、水の透過性に優れるうえ、有機性化合物に対して十分な耐久性を持つから、例えば、海水の淡水化、かん水の脱塩、排水処理、各種有価物の濃縮、オイル・ガスの掘削における随伴水の処理、浸透圧の異なる2液を利用した発電、糖類・肥料・冷媒の希釈などに、好適に用いることができる。
 1  正浸透膜処理用の中空糸膜モジュール
 2  筒状ケース
 3  シェル側導管
 4  シェル側導管
 5  正浸透中空糸膜束
 5a  正浸透中空糸膜
 6  接着剤固定部
 7  接着剤固定部
 8  ヘッダー
 9  ヘッダー
 10  コア側導管
 11  コア側導管
 12  輪状オリフィス
 13  円状オリフィス
 14  二重管
 100  正浸透処理システム
 101  供給配管
 102  循環配管
 103  供給配管
 104  循環配管
 110  高浸透圧供給部
 111  低浸透圧供給部
 A1  第1の領域
 A2  第2の領域

Claims (18)

  1.  半透膜の性能を有する薄膜層がポリケトン支持層に積層されていることを特徴とする、正浸透膜。
  2.  前記半透膜の性能を有する薄膜層が、酢酸セルロース、ポリアミド、ポリビニルアルコール/ポリピペラジンアミド複合膜、スルホン化ポリエーテルスルホン、ポリピペラジンアミド、またはポリイミドから成る薄膜層である、請求項1に記載の正浸透膜。
  3.  前記半透膜の性能を有する薄膜層が厚み0.05~2μmのポリアミド薄膜層である、請求項1または2に記載の正浸透膜。
  4.  前記ポリアミド薄膜層が前記ポリケトン支持層に結合している、請求項3に記載の正浸透膜。
  5.  前記ポリアミド薄膜層が、界面重合によって前記ポリケトン支持層に結合されている、請求項4に記載の正浸透膜。
  6.  前記ポリケトン支持層が、バブルポイント法によって測定した最大孔径が50nm以上の細孔を有している、請求項1~5のいずれか一項に記載の正浸透膜。
  7.  前記ポリケトン支持層の空隙率が70%以上である、請求項1~6のいずれか一項に記載の正浸透膜。
  8.  前記ポリケトン支持層が平板形状である、請求項1~7のいずれか一項に記載の正浸透膜。
  9.  前記ポリケトン支持層が中空糸形状である、請求項1~7のいずれか一項に記載の正浸透膜。
  10.  前記半透膜の性能を有する薄膜層が、前記中空糸形状のポリケトン支持層の外側表面および内側表面のうちのどちらか一方に積層されている、請求項9に記載の正浸透膜。
  11.  前記中空糸形状のポリケトン支持層が、100~3,000μmの外径および10~400μmの厚みを有する、請求項9または10に記載の正浸透膜。
  12.  請求項9~11のいずれか一項に記載の正浸透膜の複数から成る糸束を筒状ケース内に収納し、該糸束の両端を接着固定部により該筒状ケースに固定した構造を有することを特徴とする、正浸透中空糸膜モジュール。
  13.  請求項1~11のいずれか一項に記載の正浸透膜から成る半透膜ユニットと、
     前記半透膜ユニットを介して互いに仕切られた第1の領域および第2の領域と、
     前記第1の領域に低浸透圧溶液を供給する低浸透圧溶液供給部と、
     前記第2の領域に高浸透圧溶液を供給する高浸透圧溶液供給部と、
    を備え、そして、
     前記低浸透圧溶液が供給された前記第1の領域から、前記高浸透圧溶液が供給された前記第2の領域へと、前記半透膜ユニットを介して流体移動を生じさせる機能を有することを特徴とする、正浸透処理システム。
  14.  前記低浸透圧溶液および前記高浸透圧溶液のうちの少なくとも一方が有機化合物を含む、請求項13に記載の正浸透処理システム。
  15.  請求項13または14に記載の正浸透処理システムを用いて、低浸透圧溶液から高浸透圧溶液に水を移動させた後、該高浸透圧溶液から水を回収することを特徴とする、造水方法。
  16.  請求項13または14に記載の正浸透処理システムを用いて、含水物から水を除去することを特徴とする、含水物の濃縮方法。
  17.  請求項13または14に記載の正浸透処理システムを用いて、低浸透圧溶液から高浸透圧溶液へ移動する水によって該高浸透圧溶液を希釈することを特徴とする、溶液の希釈方法。
  18.  請求項13または14に記載の正浸透処理システムを用いて、低浸透圧溶液から高浸透圧溶液に水を移動させて該高浸透圧溶液の流量を増加させ、そして該増加した流量により水流発電機を駆動させて発電することを特徴とする、発電方法。
PCT/JP2015/072695 2014-08-13 2015-08-10 正浸透膜および正浸透処理システム WO2016024573A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201580041523.3A CN106659987B (zh) 2014-08-13 2015-08-10 正渗透膜及正渗透处理系统
KR1020177002423A KR102039807B1 (ko) 2014-08-13 2015-08-10 정삼투막 및 정삼투 처리 시스템
CA2956666A CA2956666C (en) 2014-08-13 2015-08-10 Forward osmosis membrane and forward osmosis treatment system
AU2015302650A AU2015302650B2 (en) 2014-08-13 2015-08-10 Forward osmosis membrane and forward osmosis treatment system
US15/500,838 US10589232B2 (en) 2014-08-13 2015-08-10 Forward osmosis membrane and forward osmosis treatment system
EP15831883.2A EP3181215B1 (en) 2014-08-13 2015-08-10 Forward osmosis membrane and forward osmosis treatment system
JP2016542579A JP6320537B2 (ja) 2014-08-13 2015-08-10 正浸透膜および正浸透処理システム
SG11201700679SA SG11201700679SA (en) 2014-08-13 2015-08-10 Forward osmosis membrane and forward osmosis treatment system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014164742 2014-08-13
JP2014-164742 2014-08-13
JP2015-007755 2015-01-19
JP2015007755 2015-01-19

Publications (1)

Publication Number Publication Date
WO2016024573A1 true WO2016024573A1 (ja) 2016-02-18

Family

ID=55304200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072695 WO2016024573A1 (ja) 2014-08-13 2015-08-10 正浸透膜および正浸透処理システム

Country Status (10)

Country Link
US (1) US10589232B2 (ja)
EP (1) EP3181215B1 (ja)
JP (1) JP6320537B2 (ja)
KR (1) KR102039807B1 (ja)
CN (1) CN106659987B (ja)
AU (1) AU2015302650B2 (ja)
CA (1) CA2956666C (ja)
SG (1) SG11201700679SA (ja)
TW (1) TWI595920B (ja)
WO (1) WO2016024573A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017205740A (ja) * 2016-05-20 2017-11-24 国立大学法人神戸大学 複合膜
KR20180006608A (ko) * 2016-07-07 2018-01-18 고려대학교 산학협력단 폴리에틸렌 다공성 지지체를 이용한 정삼투용 박막 복합체 분리막의 제조방법
JP2019214021A (ja) * 2018-06-13 2019-12-19 旭化成株式会社 中空糸膜
US10525422B2 (en) 2016-07-07 2020-01-07 Korea University Research and Business Development Method of preparing thin film composite forward osmosis membranes using polyethylene porous supports
JP2020138160A (ja) * 2019-02-28 2020-09-03 株式会社クラレ 複合中空糸膜モジュール
WO2020175205A1 (ja) * 2019-02-28 2020-09-03 株式会社クラレ 複合中空糸膜、及び複合中空糸膜の製造方法
JPWO2022004738A1 (ja) * 2020-06-29 2022-01-06
WO2022050007A1 (ja) * 2020-09-03 2022-03-10 株式会社クラレ 複合半透膜
WO2022050008A1 (ja) * 2020-09-03 2022-03-10 株式会社クラレ 複合半透膜
JP7462460B2 (ja) 2020-04-06 2024-04-05 美浜株式会社 濃縮装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3011833C (en) 2012-12-21 2021-01-05 Porifera, Inc. Separation systems, elements, and methods for separation utilizing stacked membranes and spacers
WO2014144704A1 (en) 2013-03-15 2014-09-18 Porifera, Inc. Advancements in osmotically driven membrane systems including low pressure control
DK3313786T3 (da) 2015-06-24 2020-07-13 Porifera Inc Fremgangsmåder til afvanding af alkoholopløsninger via fremadgående osmose og beslægtede systemer
CA3048017A1 (en) 2016-12-23 2018-06-28 Porifera, Inc. Removing components of alcoholic solutions via forward osmosis and related systems
DE112019001707T5 (de) * 2018-03-30 2020-12-24 Ngk Insulators, Ltd. Keramischer Träger, Zeolith-Membrankomplex, Verfahren zur Herstellung eines Zeolith-Membrankomplexes und Trennverfahren
SG11202012218SA (en) * 2018-07-27 2021-01-28 Hoffmann La Roche Method of filling at least one degassed drug product into containers and drug product filling device
EP3845296A4 (en) * 2018-08-31 2022-06-29 Nippon Shokubai Co., Ltd. Draw solute and water treatment equipment
AU2019336819B2 (en) * 2018-09-03 2022-03-03 Asahi Kasei Kabushiki Kaisha Feedstock solution flow concentration system
KR20210099641A (ko) * 2018-12-12 2021-08-12 아쿠아포린 에이에스 중공 섬유 모듈
CN113905807A (zh) * 2019-05-31 2022-01-07 旭化成株式会社 正渗透膜和正渗透膜组件及其制造方法
CA3141605C (en) * 2019-05-31 2023-10-17 Asahi Kasei Kabushiki Kaisha Raw material liquid concentration system
CN112245691A (zh) 2019-07-22 2021-01-22 巴克斯特医疗保健股份有限公司 从原水制备透析液的方法和系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110266223A1 (en) * 2008-10-15 2011-11-03 National University Of Singapore Dual-layer hollow fibers with enhanced flux as forward osmosis membranes for water reuses and protein enrichment
WO2013035747A1 (ja) * 2011-09-09 2013-03-14 旭化成せんい株式会社 ポリケトン多孔膜
KR20130142803A (ko) * 2012-06-20 2013-12-30 한국화학연구원 정삼투용 복합 중공사막, 및 이의 제조방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804472A (en) * 1987-12-30 1989-02-14 Shell Oil Company Polyketone membranes
US5064580A (en) * 1988-03-31 1991-11-12 The Dow Chemical Company Process for making microporous membranes from poly(etheretherketone)-type polymers
US4992485A (en) 1988-10-11 1991-02-12 The Dow Chemical Company Microporous peek membranes and the preparation thereof
US5693227A (en) * 1994-11-17 1997-12-02 Ionics, Incorporated Catalyst mediated method of interfacial polymerization on a microporous support, and polymers, fibers, films and membranes made by such method
JP2005144412A (ja) * 2003-11-20 2005-06-09 Asahi Kasei Fibers Corp ポリケトン系中空糸膜およびその製造方法
EA026762B1 (ru) 2009-08-24 2017-05-31 Оасис Уотер, Инк. Прямоосмотическая мембрана
WO2011069050A1 (en) * 2009-12-03 2011-06-09 Yale University High flux thin-film composite forward osmosis and pressure-retarded osmosis membranes
WO2011136465A2 (ko) 2010-04-30 2011-11-03 웅진케미칼 주식회사 해수담수용 정삼투막 및 그 제조방법
US20140110328A1 (en) 2011-06-08 2014-04-24 Nitto Denko Corporation Forward osmosis membrane flow system and composite semipermeable membrane for forward osmosis membrane flow system
JP6191102B2 (ja) 2012-08-23 2017-09-06 三菱ケミカル株式会社 正浸透膜複合体
SG10201708956RA (en) * 2013-06-19 2017-11-29 Nat Univ Singapore Thin film composite hollow fibers for osmotic power generation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110266223A1 (en) * 2008-10-15 2011-11-03 National University Of Singapore Dual-layer hollow fibers with enhanced flux as forward osmosis membranes for water reuses and protein enrichment
WO2013035747A1 (ja) * 2011-09-09 2013-03-14 旭化成せんい株式会社 ポリケトン多孔膜
KR20130142803A (ko) * 2012-06-20 2013-12-30 한국화학연구원 정삼투용 복합 중공사막, 및 이의 제조방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HAN, GANG ET AL.: "Thin-film composite forward osmosis membranes with novel hydrophilic supports for desalination", JOURNAL OF MEMBRANE SCIENCE, vol. 423 -424, pages 543 - 555, XP055356192 *
See also references of EP3181215A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017205740A (ja) * 2016-05-20 2017-11-24 国立大学法人神戸大学 複合膜
KR20180006608A (ko) * 2016-07-07 2018-01-18 고려대학교 산학협력단 폴리에틸렌 다공성 지지체를 이용한 정삼투용 박막 복합체 분리막의 제조방법
KR101913755B1 (ko) * 2016-07-07 2018-11-05 고려대학교 산학협력단 폴리에틸렌 다공성 지지체를 이용한 정삼투용 박막 복합체 분리막의 제조방법
US10525422B2 (en) 2016-07-07 2020-01-07 Korea University Research and Business Development Method of preparing thin film composite forward osmosis membranes using polyethylene porous supports
JP2019214021A (ja) * 2018-06-13 2019-12-19 旭化成株式会社 中空糸膜
JPWO2020175205A1 (ja) * 2019-02-28 2021-12-23 株式会社クラレ 複合中空糸膜、及び複合中空糸膜の製造方法
WO2020175205A1 (ja) * 2019-02-28 2020-09-03 株式会社クラレ 複合中空糸膜、及び複合中空糸膜の製造方法
KR20210126749A (ko) 2019-02-28 2021-10-20 주식회사 쿠라레 복합 중공사막, 및 복합 중공사막의 제조 방법
JP2020138160A (ja) * 2019-02-28 2020-09-03 株式会社クラレ 複合中空糸膜モジュール
JP7351623B2 (ja) 2019-02-28 2023-09-27 株式会社クラレ 複合中空糸膜モジュール
JP7403524B2 (ja) 2019-02-28 2023-12-22 株式会社クラレ 複合中空糸膜、及び複合中空糸膜の製造方法
JP7462460B2 (ja) 2020-04-06 2024-04-05 美浜株式会社 濃縮装置
JPWO2022004738A1 (ja) * 2020-06-29 2022-01-06
WO2022004738A1 (ja) 2020-06-29 2022-01-06 旭化成株式会社 複合中空糸膜モジュールおよびその製造方法
WO2022050007A1 (ja) * 2020-09-03 2022-03-10 株式会社クラレ 複合半透膜
WO2022050008A1 (ja) * 2020-09-03 2022-03-10 株式会社クラレ 複合半透膜

Also Published As

Publication number Publication date
AU2015302650A1 (en) 2017-02-16
TWI595920B (zh) 2017-08-21
EP3181215A4 (en) 2017-06-21
US10589232B2 (en) 2020-03-17
JP6320537B2 (ja) 2018-05-09
US20170225131A1 (en) 2017-08-10
EP3181215A1 (en) 2017-06-21
SG11201700679SA (en) 2017-03-30
CA2956666C (en) 2019-08-27
JPWO2016024573A1 (ja) 2017-04-27
CA2956666A1 (en) 2016-02-18
EP3181215B1 (en) 2021-06-23
KR20170021879A (ko) 2017-02-28
CN106659987A (zh) 2017-05-10
KR102039807B1 (ko) 2019-11-01
CN106659987B (zh) 2020-02-28
AU2015302650B2 (en) 2018-11-29
TW201615263A (zh) 2016-05-01

Similar Documents

Publication Publication Date Title
JP6320537B2 (ja) 正浸透膜および正浸透処理システム
JP6526440B2 (ja) 正浸透処理システム
JP5978998B2 (ja) 複合半透膜、複合半透膜エレメントおよび複合半透膜の製造方法
JP5696361B2 (ja) 複合半透膜およびその製造方法
US10974206B2 (en) Composite semipermeable membrane
JP6295949B2 (ja) 複合半透膜およびその製造方法
CA3142200C (en) Forward osmosis membrane, forward osmosis membrane module, and manufacturing method thereof
JP6694326B2 (ja) 複合膜
JP2009226320A (ja) 複合半透膜およびその製造方法
US20210178327A1 (en) Forward Osmosis Membrane and Membrane Module Including Same
JP6273982B2 (ja) 中空糸膜、その製造方法およびそれを用いたモジュール
JP2017144390A (ja) 複合膜
WO2023276483A1 (ja) 正浸透膜、及びそれを含む正浸透膜モジュール
JP2014064989A (ja) 複合半透膜

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15831883

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016542579

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177002423

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015831883

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015831883

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2956666

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015302650

Country of ref document: AU

Date of ref document: 20150810

Kind code of ref document: A