WO2016021321A1 - 中空糸膜束、人工肺および中空糸膜束の製造方法 - Google Patents

中空糸膜束、人工肺および中空糸膜束の製造方法 Download PDF

Info

Publication number
WO2016021321A1
WO2016021321A1 PCT/JP2015/068200 JP2015068200W WO2016021321A1 WO 2016021321 A1 WO2016021321 A1 WO 2016021321A1 JP 2015068200 W JP2015068200 W JP 2015068200W WO 2016021321 A1 WO2016021321 A1 WO 2016021321A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber membrane
hollow fiber
membrane bundle
hollow
blood
Prior art date
Application number
PCT/JP2015/068200
Other languages
English (en)
French (fr)
Inventor
瑛祐 佐々木
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to EP15828915.7A priority Critical patent/EP3178503A4/en
Priority to CN201580042428.5A priority patent/CN106573096B/zh
Priority to JP2016540107A priority patent/JPWO2016021321A1/ja
Publication of WO2016021321A1 publication Critical patent/WO2016021321A1/ja
Priority to US15/413,765 priority patent/US10406258B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/16Macromolecular materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • A61M1/1698Blood oxygenators with or without heat-exchangers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3623Means for actively controlling temperature of blood
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • B01D63/0233Manufacturing thereof forming the bundle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/025Bobbin units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • B01D63/043Hollow fibre modules comprising multiple hollow fibre assemblies with separate tube sheets
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • D01F6/06Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins from polypropylene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/12Nanosized materials, e.g. nanofibres, nanoparticles, nanowires, nanotubes; Nanostructured surfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/75General characteristics of the apparatus with filters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/22Cooling or heating elements
    • B01D2313/221Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/70Control means using a programmable logic controller [PLC] or a computer
    • B01D2313/701Control means using a programmable logic controller [PLC] or a computer comprising a software program or a logic diagram
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2319/00Membrane assemblies within one housing
    • B01D2319/06Use of membranes of different materials or properties within one module
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/022Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polypropylene
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2509/00Medical; Hygiene

Definitions

  • the present invention relates to a hollow fiber membrane bundle, an artificial lung, and a method for producing a hollow fiber membrane bundle.
  • Patent Document 1 an artificial lung having a hollow fiber membrane bundle composed of a large number of hollow fiber membranes is known (for example, Patent Document 1).
  • the hollow fiber membrane bundle described in Patent Document 1 is obtained by arranging a large number of hollow fiber membranes almost in parallel to form weft yarns, which are connected by warp yarns to form a hook shape. Then, such a saddle-shaped hollow fiber sheet can be folded to form a hollow fiber membrane bundle whose outer shape is a prismatic shape or a cylindrical shape.
  • gas exchange or heat exchange may be insufficient in a portion where the weft yarn (hollow fiber membrane) and the warp yarn (warp) overlap.
  • blood tends to stay in the portion where the weft and warp overlap, and there is a risk of blood clots.
  • each hollow fiber membrane is wound around the circumference of a round bar body, for example, around the central axis thereof to form a hollow hollow fiber membrane bundle.
  • the inner diameter of the hollow fiber membrane is also reduced, so that the pressure loss of the fluid passing through the hollow fiber membrane increases.
  • gas may flow out from the hollow fiber membrane.
  • An object of the present invention is to provide a hollow fiber membrane bundle and a hollow fiber membrane that can reduce the blood filling amount while reducing the increase in pressure loss of the fluid in the hollow fiber membrane, thereby reducing the burden on the patient. It is to provide a method for manufacturing a bundle.
  • a hollow fiber membrane bundle used for an artificial lung in which hollow fiber membranes having a hollow portion through which a fluid passes are integrated to form a cylindrical shape as a whole,
  • the hollow fiber membrane is wound around the central axis of the cylindrical body inclined with respect to the central axis of the cylindrical body,
  • the hollow fiber membrane has an inner diameter ⁇ d 1 of 150 ⁇ m or less,
  • the inclination angle ⁇ of the hollow fiber membrane with respect to the central axis of the cylindrical body is 60 ° or less
  • a hollow fiber membrane bundle wherein a ratio ⁇ D 1 / L between the outer diameter ⁇ D 1 of the cylindrical body and the length L of the cylindrical body is 0.4 or more.
  • the outer diameter ⁇ D 1 is 20 mm or more and 200 mm or less
  • the said length L is a hollow fiber membrane bundle in any one of said (1) thru
  • a method for producing a hollow fiber membrane bundle used for an artificial lung in which hollow fiber membranes having a hollow portion through which a fluid passes are integrated to form a cylindrical body as a whole.
  • the hollow fiber membrane having an inner diameter ⁇ d 1 of 150 ⁇ m or less has an inclination angle ⁇ with respect to the central axis of the cylindrical body of 60 ° or less, an outer diameter ⁇ D 1 of the cylindrical body, and a length L of the cylindrical body.
  • a method for producing a hollow fiber membrane bundle, comprising winding around the central axis of the cylindrical body so that the ratio ⁇ D 1 / L is 0.4 or more.
  • the inclination angle ⁇ of the hollow fiber membrane with respect to the central axis of the cylindrical body is set to 60 ° or less, and the outer diameter ⁇ D 1 of the cylindrical body.
  • FIG. 1 is a plan view of an artificial lung to which a hollow fiber membrane bundle of the present invention is applied.
  • FIG. 2 is a view of the oxygenator shown in FIG. 1 as viewed from the direction of arrow A.
  • 3 is a cross-sectional view taken along line BB in FIG.
  • FIG. 4 is a view as seen from the direction of arrow C in FIG.
  • FIG. 5 is a sectional view taken along line DD in FIG. 6 is a cross-sectional view taken along line EE in FIG.
  • FIG. 7 is a view (a is a perspective view and (b) is a development view) showing a base material that becomes a hollow fiber membrane bundle.
  • FIG. 8 is a view showing a hollow fiber membrane bundle production apparatus used when producing the hollow fiber membrane bundle of the present invention.
  • FIG. 9 is a schematic configuration diagram viewed from the direction of arrow F in FIG.
  • FIG. 10 is a block diagram showing the hollow fiber membrane bundle manufacturing apparatus shown in FIG.
  • FIG. 11A is a graph showing the relationship between the winding speed and the elapsed time when the hollow fiber membrane is wound in a state where the rotational speed of the winding section and the rotational speed of the feeding section are respectively constant.
  • (B) is a graph which shows the relationship between the correction amount of the rotational speed of a drawing
  • FIG. 12 is a flowchart for explaining a control program of the hollow fiber membrane bundle manufacturing apparatus.
  • FIG. 12 is a flowchart for explaining a control program of the hollow fiber membrane bundle manufacturing apparatus.
  • FIG. 13 is a schematic configuration diagram showing a hollow fiber membrane bundle manufacturing apparatus (second embodiment) used when manufacturing the hollow fiber membrane bundle of the present invention.
  • FIG. 14 is a schematic configuration diagram showing a hollow fiber membrane bundle manufacturing apparatus (third embodiment) used when manufacturing the hollow fiber membrane bundle of the present invention.
  • FIG. 1 is a plan view of an artificial lung to which a hollow fiber membrane bundle of the present invention is applied.
  • FIG. 2 is a view of the oxygenator shown in FIG. 1 as viewed from the direction of arrow A.
  • 3 is a cross-sectional view taken along line BB in FIG.
  • FIG. 4 is a view as seen from the direction of arrow C in FIG.
  • FIG. 7 is a view (a is a perspective view and (b) is a development view) showing a base material that becomes a hollow fiber membrane bundle.
  • FIG. 1 is a plan view of an artificial lung to which a hollow fiber membrane bundle of the present invention is applied.
  • FIG. 2 is a view of the oxygenator shown in FIG. 1 as viewed from the direction of arrow A.
  • 3 is a cross-sectional view taken along line BB in FIG.
  • FIG. 8 is a view showing a hollow fiber membrane bundle production apparatus used when producing the hollow fiber membrane bundle of the present invention.
  • FIG. 9 is a schematic configuration diagram viewed from the direction of arrow F in FIG.
  • FIG. 10 is a block diagram showing the hollow fiber membrane bundle manufacturing apparatus shown in FIG.
  • FIG. 11A is a graph showing the relationship between the winding speed and the elapsed time when the hollow fiber membrane is wound in a state where the rotational speed of the winding section and the rotational speed of the feeding section are respectively constant.
  • (B) is a graph which shows the relationship between the correction amount of the rotational speed of a drawing
  • FIG. 12 is a flowchart for explaining a control program of the hollow fiber membrane bundle manufacturing apparatus.
  • FIGS. 1, 3, 4, and 8 the left side is referred to as “left” or “left (one)”, and the right side is referred to as “right” or “right (the other)”.
  • 1 to 6 the inside of the oxygenator will be described as “blood inflow side” or “upstream side”, and the outside will be described as “blood outflow side” or “downstream side”.
  • FIG. 9 the same applies to FIGS. 13 and 14
  • the X axis, the Y axis, and the Z axis are illustrated as three axes orthogonal to each other.
  • the artificial lung 10 shown in FIGS. 1 to 5 has a substantially cylindrical shape as a whole.
  • the oxygenator 10 is provided on the inner side, and a heat exchanger 10B that exchanges heat with blood, and an oxygenator that is provided on the outer periphery of the heat exchanger 10B and serves as a gas exchanger that exchanges gas with blood.
  • It is an artificial lung with a heat exchanger provided with 10A.
  • the artificial lung 10 is used by being installed in a blood extracorporeal circuit, for example.
  • the oxygenator 10 has a housing 2A, and an oxygenator 10A and a heat exchanger 10B are accommodated in the housing 2A.
  • the housing 2A includes a cylindrical housing body 21A, a dish-shaped first lid 22A that seals the left end opening of the cylindrical housing body 21A, and a dish-shaped first lid that seals the right end opening of the cylindrical housing body 21A. 2 lids 23A.
  • the cylindrical housing body 21A, the first lid body 22A, and the second lid body 23A are made of a resin material.
  • the first lid body 22A and the second lid body 23A are fixed to the cylindrical housing body 21A by a method such as fusion or bonding with an adhesive.
  • a tubular blood outlet port 28 is formed on the outer peripheral portion of the cylindrical housing body 21A.
  • the blood outflow port 28 protrudes in a substantially tangential direction of the outer peripheral surface of the cylindrical housing body 21A (see FIG. 5).
  • a tubular purge port 205 is formed to protrude from the outer peripheral portion of the cylindrical housing body 21A.
  • the purge port 205 is formed on the outer peripheral portion of the cylindrical housing main body 21A so that the central axis thereof intersects the central axis of the cylindrical housing main body 21A.
  • a tubular gas outflow port 27 protrudes from the first lid 22A. Moreover, the blood inflow port 201 protrudes from the end surface of the first lid 22A so that the central axis is decentered with respect to the center of the first lid 22A.
  • the gas outflow port 27 is formed on the outer periphery of the first lid 22A so that the central axis thereof intersects the center of the first lid 22A (see FIG. 2).
  • the gas inflow port 26 is formed at the edge of the end surface of the second lid 23A.
  • the heat medium inflow port 202 and the heat medium outflow port 203 are each formed at substantially the center of the end surface of the second lid 23A.
  • the center lines of the heat medium inflow port 202 and the heat medium outflow port 203 are slightly inclined with respect to the center line of the second lid body 23A.
  • the entire shape of the housing 2A does not necessarily have a complete columnar shape, and may be, for example, a partially missing shape or a shape with a deformed portion added.
  • a cylindrical lung 10 ⁇ / b> A is housed inside the housing 2 ⁇ / b> A along the inner peripheral surface thereof.
  • the artificial lung portion 10A includes a cylindrical hollow fiber membrane bundle 3A and a filter member 41A as bubble removing means 4A provided on the outer peripheral side of the hollow fiber membrane bundle 3A.
  • the hollow fiber membrane bundle 3A and the filter member 41A are arranged in the order of the hollow fiber membrane bundle 3A and the filter member 41A from the blood inflow side.
  • a heat exchanging portion 10B having a cylindrical shape along the inner peripheral surface is installed inside the artificial lung portion 10A.
  • the heat exchange unit 10B has a hollow fiber membrane bundle 3B.
  • each of the hollow fiber membrane bundles 3A and 3B is composed of a large number of hollow fiber membranes 31, and these hollow fiber membranes 31 are integrated and laminated in a layered manner.
  • the number of stacked layers is not particularly limited, but for example, 3 to 40 layers are preferable.
  • Each hollow fiber membrane 31 of the hollow fiber membrane bundle 3A has a gas exchange function.
  • each hollow fiber membrane 31 of the hollow fiber membrane bundle 3B has a function of performing heat exchange.
  • the hollow fiber membranes 31 of the hollow fiber membrane bundle 3A, and relatively thin is used, the inner diameter .phi.d 1 of the hollow fiber membrane 31 is 150 ⁇ m or less.
  • the inner diameter (maximum inner diameter) ⁇ d 1 is preferably 90 ⁇ m to 150 ⁇ m, and more preferably 100 ⁇ m to 130 ⁇ m.
  • the inner diameter ⁇ d 1 is larger than 150 ⁇ m, it is difficult to make the outer diameter ⁇ d 2 of the hollow fiber membrane 31 sufficiently small.
  • the inner diameter ⁇ d 1 is smaller than the lower limit value, there is a risk of increasing the pressure loss when the gas G is caused to flow through the flow path 32 that is the hollow portion of the hollow fiber membrane 31.
  • the outer diameter (maximum outer diameter) ⁇ d 2 of the hollow fiber membrane 31 is preferably 120 ⁇ m to 220 ⁇ m, and more preferably 150 ⁇ m to 200 ⁇ m. If the outer diameter .phi.d 2 exceeds the above upper limit, the gap between the hollow fiber membranes 31 adjacent increases, the filling amount of blood B flowing down the gap increases. On the other hand, when the outer diameter ⁇ d 2 is less than the lower limit, it is difficult to sufficiently increase the inner diameter ⁇ d 1 .
  • the ratio ⁇ d 1 / ⁇ d 2 of the inner diameter .phi.d 1 and the outer diameter .phi.d 2 is preferably 0.50 to 0.85 and more preferably from 0.60 to 0.75.
  • the hollow fiber membrane 31 of such a hollow fiber membrane bundle 3A is composed of a porous gas exchange membrane.
  • the pore diameter of the hollow fiber membrane 31 is preferably 0.01 ⁇ m to 5 ⁇ m, and more preferably 0.01 ⁇ m to 1 ⁇ m.
  • the hollow fiber membrane 31 is made of a hydrophobic polymer material such as polypropylene, polyethylene, polysulfone, polyacrylonitrile, polytetrafluoroethylene, or cellulose acetate. Polyolefin resins are preferred, and polypropylene is particularly preferred.
  • the micropores of the hollow fiber membrane 31 can be formed by, for example, a stretching method or a solid-liquid phase separation method.
  • hollow fiber membrane 31 of the hollow fiber membrane bundle 3B one having an inner diameter of 50 ⁇ m to 700 ⁇ m and an outer diameter of about 100 ⁇ m to 1000 ⁇ m can be used.
  • the hollow fiber membrane bundles 3A and 3B are fixed to the inner surface of the cylindrical housing main body 21A at one end by partition walls 8 and 9, respectively.
  • the partition walls 8 and 9 are made of, for example, a potting material such as polyurethane or silicone rubber, an adhesive, or the like.
  • the hollow fiber membrane bundle 3 ⁇ / b> B has an inner peripheral portion engaged with an uneven portion 244 formed on the outer peripheral portion of the first cylindrical member 241.
  • the hollow fiber membrane bundle 3B is securely fixed to the cylindrical housing main body 21A, and therefore the positional deviation of the hollow fiber membrane bundle 3B occurs during use of the artificial lung 10. It can be surely prevented.
  • grooved part 244 functions also as a flow path for circulating the blood B to the whole hollow fiber membrane bundle 3B.
  • a blood flow in which blood B flows from the upper side to the lower side in FIG. 6 is outside the hollow fiber membranes 31 between the partition walls 8 and 9 in the housing 2A, that is, in the gaps between the hollow fiber membranes 31.
  • a path 33 is formed.
  • a blood inflow side space 24A communicating with the blood inflow port 201 is formed as a blood inflow portion of the blood B flowing in from the blood inflow port 201 (see FIGS. 3 and 5). .
  • the blood inflow side space 24A includes a first cylindrical member 241 having a cylindrical shape, and a plate piece 242 that is disposed inside the first cylindrical member 241 and is opposed to a part of the inner peripheral portion thereof. It is a defined space.
  • the blood B that has flowed into the blood inflow side space 24 ⁇ / b> A can flow down over the entire blood flow path 33 through the plurality of side holes 243 formed in the first cylindrical member 241.
  • a second cylindrical member 245 disposed concentrically with the first cylindrical member 241 is disposed inside the first cylindrical member 241.
  • the heat medium H such as water flowing from the heat medium inflow port 202 flows through each hollow fiber membrane 31 of the hollow fiber membrane bundle 3 ⁇ / b> B on the outer peripheral side of the first cylindrical member 241. It passes through the path (hollow part) 32 and the inside of the second cylindrical member 245 in this order, and is discharged from the heat medium outlet port 203.
  • heat exchange heat exchange (heating or cooling) is performed between the blood flow path 33 and the blood B in contact with the hollow fiber membrane 31. Done.
  • a filter member 41A having a function of capturing bubbles present in the blood B flowing through the blood flow path 33 is disposed.
  • the filter member 41A is configured by a substantially rectangular sheet-like member (hereinafter also simply referred to as “sheet”), and is formed by winding the sheet along the outer periphery of the hollow fiber membrane bundle 3A. Both ends of the filter member 41A are also fixed by partition walls 8 and 9, respectively, thereby being fixed to the housing 2A (see FIG. 3).
  • the filter member 41A preferably has an inner peripheral surface provided in contact with the outer peripheral surface of the hollow fiber membrane bundle 3A and covers almost the entire outer peripheral surface.
  • the filter member 41A can capture the air bubbles (see FIG. 6). Further, the air bubbles captured by the filter member 41A are pushed into the hollow fiber membranes 31 in the vicinity of the filter member 41A by the blood flow and are removed from the blood flow path 33 as a result.
  • a cylindrical gap is formed between the outer peripheral surface of the filter member 41A and the inner peripheral surface of the cylindrical housing body 21A, and this gap forms a blood outflow side space 25A.
  • the blood outflow portion is constituted by the blood outflow side space 25A and the blood outflow port 28 communicating with the blood outflow side space 25A. Since the blood outflow part has the blood outflow side space 25A, a space where the blood B that has passed through the filter member 41A flows toward the blood outflow port 28 is secured, and the blood B can be discharged smoothly.
  • an annular rib 291 is formed to protrude inside the first lid 22 ⁇ / b> A.
  • a first chamber 221a is defined by the first lid 22A, the rib 291 and the partition wall 8.
  • the first chamber 221a is a gas outflow chamber from which the gas G flows out.
  • the left end opening of each hollow fiber membrane 31 of the hollow fiber membrane bundle 3A opens to and communicates with the first chamber 221a.
  • a gas outflow portion is configured by the gas outflow port 27 and the first chamber 221a.
  • an annular rib 292 is formed so as to protrude inside the second lid body 23A.
  • a second chamber 231 a is defined by the second lid body 23 ⁇ / b> A, the rib 292, and the partition wall 9.
  • the second chamber 231a is a gas inflow chamber into which the gas G flows.
  • the right end opening of each hollow fiber membrane 31 of the hollow fiber membrane bundle 3A opens to and communicates with the second chamber 231a.
  • a gas inflow portion is constituted by the gas inflow port 26 and the second chamber 231a.
  • the blood flow in the oxygenator 10 of this embodiment will be described.
  • the blood B that has flowed in from the blood inflow port 201 sequentially passes through the blood inflow side space 24A and the side hole 243, and flows into the heat exchange unit 10B.
  • the blood B flows through the blood flow path 33 in the downstream direction, and contacts the surface of each hollow fiber membrane 31 of the heat exchange unit 10B to exchange heat (warming or cooling). .
  • the blood B thus heat-exchanged flows into the artificial lung 10A.
  • the blood B flows further in the downstream direction through the blood channel 33.
  • the gas (gas containing oxygen) supplied from the gas inflow port 26 is distributed from the second chamber 231a to the flow channels 32 of the hollow fiber membranes 31 of the oxygenator 10A and flows through the flow channels 32. Thereafter, the gas is accumulated in the first chamber 221 a and discharged from the gas outflow port 27.
  • the blood B flowing through the blood flow path 33 contacts the surface of each hollow fiber membrane 31 of the oxygenator 10A, and is exchanged with the gas G flowing through the flow path 32, that is, oxygenated and decarboxylated.
  • the hollow fiber membrane bundle 3A is composed of a large number of hollow fiber membranes 31.
  • the hollow fiber membrane bundle 3A is obtained from a base material 3 ′ obtained by winding the hollow fiber membrane 31 many times around the central axis O along the central axis O direction of the first cylindrical member 241 (cylindrical body). (See FIG. 7A).
  • the hollow fiber membrane 31 starts to be wound from the left starting point 311 in the direction of the central axis O and moves to the right side. On the right side, the hollow fiber membrane 31 is folded at a folding point 312. Thereafter, the hollow fiber membrane 31 returns to the left side again and reaches the end point 313.
  • the hollow fiber membrane 31 is wound in the order of arrows i ⁇ ii ⁇ iii ⁇ iv ⁇ v ⁇ vi ⁇ vii in FIG.
  • the hollow fiber membrane 31 is wound at a predetermined number of turns N.
  • N 1.5
  • the hollow fiber membrane 31 makes 1.5 rounds around the central axis O during one reciprocation. This is called “0.75 wind”.
  • the hollow fiber membrane 31 is fixed at both ends of the first cylindrical member 241 by a fixing thread 11 described later. Thereby, the said winding can be performed many times and base material 3 'can be obtained. Moreover, the hollow fiber membrane bundle 3A can be obtained by cutting both ends of the base material 3 'together with the fixing yarn 11.
  • the hollow fiber membrane 31 having a relatively small inner diameter ⁇ d 1 and outer diameter ⁇ d 2 is used.
  • the outer diameter ⁇ d 2 of the hollow fiber membrane 31 is relatively small, the blood filling amount can be reduced.
  • the inner diameter ⁇ d 1 is relatively small, the pressure loss of the gas G generally tends to increase.
  • the inclination angle with respect to the central axis O (the winding angle) theta and 60 ° or less (see FIG. 7 (b)), and an outer diameter [phi] D 1 of the hollow fiber membrane bundle 3A, the hollow fiber membrane bundle 3A length
  • the ratio ⁇ D 1 / L to the thickness L was set to 0.4 or more (see FIGS. 3 and 5).
  • the inclination angle ⁇ is preferably 30 ° or more and 60 ° or less, and more preferably 40 ° or more and 50 ° or less.
  • the inclination angle ⁇ is less than the lower limit, it is necessary to more firmly fix the hollow fiber membrane 31 with the fixing yarn 11 at the end of the hollow fiber membrane bundle 3A, and it becomes difficult to manufacture the base material 3 ′. there is a possibility.
  • the inclination angle ⁇ exceeds the upper limit, the total length of the hollow fiber membrane 31 becomes excessively long regardless of the ratio ⁇ D 1 / L, and the pressure loss of the gas G may increase.
  • the ratio ⁇ D 1 / L is preferably 0.4 or more and 2.5 or less, and more preferably 0.8 or more and 1.6 or less.
  • the ratio ⁇ D 1 / L is below the lower limit, the entire length of the hollow fiber membrane 31 becomes excessively long even in the range of the inclination angle ⁇ .
  • the ratio ⁇ D 1 / L exceeds the upper limit, the number of winds described above becomes excessively small, and it is difficult to wind the hollow fiber membrane.
  • the entire length of the hollow fiber membrane 31 can be secured without excess or deficiency.
  • the outer diameter (maximum outer diameter) ⁇ D 1 of the hollow fiber membrane bundle 3A is preferably 20 mm or more and 200 mm or less, and more preferably 40 mm or more and 150 mm or less.
  • Inside diameter (maximum inner diameter) [phi] D 2 of the hollow fiber membrane bundle 3A is preferably at 10mm or more 150mm or less, more preferably 20mm or more than 100mm.
  • the length L is preferably 30 mm or more and 250 mm or less, and more preferably 50 mm or more and 200 mm or less.
  • the winding speed slightly decreases when folded at the end (FIG. 11 ( a)).
  • the tension of the hollow fiber membrane slightly changes.
  • the shape of the micropores may change.
  • the original excellent gas exchange function of the hollow fiber membrane bundle 3A may not be sufficiently exhibited.
  • the winding device 60 executes the manufacturing method of the hollow fiber membrane bundle of the present invention, and includes a cylindrical core rotating means (winding portion) 601 and a winder device (feeding-out). Part) 602, a fixing device 600, a roller group 90, and a control unit (tension adjusting mechanism) 100 that controls driving thereof.
  • the cylindrical core rotating means 601 includes a motor 603, a motor shaft 604, and a core attachment member 605 fixed to the motor shaft 604.
  • the first cylindrical member 241 that is a part of the housing 2 ⁇ / b> A of the oxygenator 10 is attached to the core attachment member 605 and rotated by the motor 603.
  • the motor 603 is electrically connected to the control unit 100, and driving is controlled by the control unit 100.
  • the winder device 602 includes a main body 606 provided with a storage portion that stores the hollow fiber membrane 31 therein, and a discharge unit that discharges the hollow fiber membrane 31 and moves in the axial direction of the main body 606 (left and right direction in FIG. 8) 705. Further, the main body 606 is fixed to a linear table 608 and a ball nut member 704 that move on the linear rail 607. The ball nut member 704 is movable in parallel with the axial direction of the main body 606 by rotating the ball screw shaft 609 by driving the motor 703. The motor 703 can rotate forward and backward, and the drive is controlled by the control unit 100.
  • the fixing device 600 includes a main body 706 including a storage unit that stores a fixing thread (linear body) 11 that fixes the hollow fiber membrane 31 wound around the first cylindrical member 241, and the first cylindrical member 241. And a discharge portion 707 that discharges the fixing yarn 11 toward both end portions.
  • a fixing thread 11 linear body
  • the fixing yarn 11 discharged from the discharge portion 707 is wound around the hollow fiber membrane 31 on the rotating first cylindrical member 241. Is fixed.
  • the fixing thread 11 provided for the fixing is cut from the fixing device 600 by a cutter (not shown).
  • the hollow fiber membrane 31 discharged and delivered from the discharge unit 705 is wound around the first cylindrical member 241 that rotates by the operation of the motor 603.
  • the winding of the hollow fiber membrane 31 is started from one end of the first cylindrical member 241 and when the hollow fiber membrane 31 is wound to the other end, it is folded.
  • the hollow fiber membrane 31 can be wound toward one end.
  • a base material of the hollow fiber membrane bundle 3A having a cylindrical shape can be obtained.
  • the base material of the hollow fiber membrane bundle 3A is used as the hollow fiber membrane bundle 3A by cutting the portion where the hollow fiber membrane 31 is fixed by the fixing yarns 11 at both ends.
  • the roller group 90 is movable in the Z-axis direction with three fixed rollers 91, 92, 93 provided between the cylindrical core rotating means 601 and the winder device 602. And a movable roller (detection unit) 94.
  • the fixed roller 91 is provided on the + Z axis side of the winder device 602.
  • the fixed roller 92 is provided on the ⁇ X axis side of the fixed roller 91.
  • the fixed roller 93 is provided on the ⁇ X axis side of the fixed roller 92.
  • the hollow fiber membrane 31 is wound around fixed rollers 91, 92, 93.
  • the movable roller 94 is positioned between the fixed rollers 92 and 93 and on the ⁇ Z axis side of the fixed rollers 92 and 93. Both ends of the movable roller 94 are free ends, and are supported by the hollow fiber membrane 31 between the fixed rollers 92 and 93. For this reason, in the winding device 60, the movable roller 94 is in a state in which a tension T is applied to the hollow fiber membrane 31 by its own weight.
  • the tension T is such a magnitude that the hollow fiber membrane bundle 3A obtained by winding the hollow fiber membrane 31 can sufficiently exhibit its original function (hereinafter also referred to as “appropriate size”). ).
  • the tension T can be adjusted, for example, by adjusting the weight of the movable roller 94 or by urging the movable roller 94 to the + Z-axis side or the ⁇ Z-axis side with an urging member or the like.
  • the movable roller 94 is movable in the Z-axis direction according to the magnitude relationship of the tension T.
  • the tension T becomes larger than the illustrated configuration, the hollow fiber membrane 31 moves to the + Z axis side (in the direction of arrow G in FIG. 9).
  • the tension T becomes smaller than the illustrated configuration, the hollow fiber membrane 31 moves to the ⁇ Z axis side (in the direction of arrow H in FIG. 9).
  • the movable roller 94 is provided with a position detector 941 that is electrically connected to the controller 100 and detects a position (height).
  • the control unit 100 can detect the position of the movable roller 94 based on the signal from the position detection unit 941 and calculate the magnitude of the tension T of the hollow fiber membrane 31 according to the position.
  • a hollow fiber membrane bundle 3 ⁇ / b> A wound with an appropriate tension is obtained by preliminarily applying an appropriate magnitude of tension T to the hollow fiber membrane 31 and winding the hollow fiber membrane 31 in that state. Can be obtained.
  • an upper limit value Tmax and a lower limit value Tmin are set as an allowable range of the tension T having an appropriate magnitude. If the lower limit value T min ⁇ the tension T ⁇ the upper limit value T max is satisfied, the tension T is determined to be an appropriate magnitude.
  • control unit 100 is electrically connected to the motor 603 of the cylindrical core rotating means 601, the motor 703 of the winder device 602, and the position detection unit 941 of the movable roller 94. It has a function to control the operation.
  • the control unit 100 includes a CPU (Central Processing Unit) 101 and a storage unit 102.
  • CPU Central Processing Unit
  • the CPU 101 executes various processing programs.
  • the storage unit 102 includes, for example, an EEPROM (Electrically Erasable Programmable Read-Only Memory) which is a kind of nonvolatile semiconductor memory, and can store various programs.
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • FIG. 11A is a graph showing the relationship between the elapsed time t from the start of winding and the winding speed v of the hollow fiber membrane 31.
  • “Winding speed v” refers to the length of the hollow fiber membrane 31 actually wound up per unit time.
  • This graph with the rotation speed V b of the rotational speed V a and the motor 703 of the motor 603 fixed respectively, is obtained by measuring in advance experimentally.
  • a hollow fiber membrane having an inner diameter ⁇ d 1 of 150 ⁇ m is set such that the inclination angle (twill angle) ⁇ with respect to the central axis O is 45 ° and the ratio ⁇ D 1 / L is 1.0. It is a graph at the time of manufacturing by winding.
  • the storage unit 102 stores a calibration curve for canceling the change in the winding speed v based on the relationship between the winding speed v and the elapsed time t shown in FIG.
  • This calibration curve is stored as an arithmetic expression or a table, for example.
  • FIG. 11B is a graph in which this calibration curve is represented by the correction amount U of the rotational speed Vb of the motor 703 on the vertical axis and the elapsed time t on the horizontal axis.
  • the correction amount U of the rotation speed V b is the elapsed time t 1 ⁇ t 2, with a decrease in the winding speed v
  • the linear graph shown in FIG. 11 (a) It is changing like a mountain that is reversed.
  • the hollow fiber membrane 31 is wound around the fixed rollers 91, 92, 93 and the movable roller 94 from the winder device 602, and the motor 603 and the motor 703 are rotated with the tip fixed to the first cylindrical member 241 (step). S101). Thereby, winding of the hollow fiber membrane 31 is started.
  • the rotation speed V a of the motor 603 is the speed V a1
  • the rotation speed V b of the motor 703 is the speed V b1 .
  • the rotational speed V a of the motor 603, regardless of the elapsed time t, is constant.
  • the hollow fiber membrane 31 is wound so that the inclination angle (twill angle) ⁇ with respect to the central axis O is 45 ° and the ratio ⁇ D 1 / L is 1.0.
  • step S102 the tension T of the hollow fiber membrane 31 between the cylindrical core rotating means 601 and the winder device 602 is detected based on the signal from the position detecting unit 941 of the movable roller 94.
  • the timer is operated to measure the elapsed time t from the start of winding (step S103).
  • step S115 When the winding of the hollow fiber membrane 31 is determined not to be completed in step S115, to change the rotational speed V b of the motor 703 to V b1 performed (step S116) winding, the flow returns to step S103.
  • step S115 The above control is repeated until it is determined in step S115 that the winding of the hollow fiber membrane 31 is completed.
  • the rotational speed Vb of the motor 703 is adjusted based on the calibration curve of the elapsed time t and the winding speed v. Thereby, it can wind, maintaining the tension
  • the tension T is detected while the lower limit value T min ⁇ tension T ⁇ the upper limit value T max is adjusted.
  • the winding can be performed while the tension T of the hollow fiber membrane 31 is effectively effectively maintained at an appropriate magnitude.
  • the obtained hollow fiber membrane bundle 3A can surely exhibit an excellent original gas exchange function.
  • the lower limit value T min and the upper limit value T max are set as appropriate magnitudes of the tension T of the hollow fiber membrane 31, but the lower limit value T min is the value of the actual tension T. It is preferable to set it slightly higher than the appropriate lower limit value, and it is preferable to set the upper limit value Tmax slightly lower than the actual upper limit value of the tension T. As a result, the hollow fiber membrane 31 can be wound while maintaining the tension T at an appropriate magnitude more reliably.
  • FIG. 13 is a schematic configuration diagram showing a hollow fiber membrane bundle manufacturing apparatus (second embodiment) used when manufacturing the hollow fiber membrane bundle of the present invention.
  • the hollow fiber membrane bundle and the second embodiment of the manufacturing method of the hollow fiber membrane bundle according to the present invention will be described with reference to the drawings. However, the difference from the above-described embodiment will be mainly described and the same matters will be described. Will not be described.
  • the present embodiment is the same as the first embodiment except that an engaging portion is provided.
  • a tension adjusting roller (engaging portion) 95 as a tension adjusting mechanism is provided between the cylindrical core rotating means 601 and the fixed roller 93.
  • the tension adjusting roller 95 is provided with a roller main body 951 that comes into contact with the hollow fiber membrane 31 and a biasing portion 952 that biases the roller main body 951 in the X-axis direction.
  • the urging portion 952 is constituted by, for example, a coil spring, and the hollow fiber membrane 31 is wound around in a tension state in which the urging portion 952 is pulled more than a natural state. For this reason, the hollow fiber membrane 31 is pulled toward the ⁇ X axis side by the roller body 951.
  • the hollow fiber membrane 31 moves the roller body 951 to the + X-axis side (position indicated by the roller body 951a in the figure) against the urging force of the urging portion 952.
  • the hollow fiber membrane 31 between the fixed roller 93 and the cylindrical core rotating means 601 approaches a linear shape as compared with the state indicated by the solid line in the figure, and can suppress or prevent the tension T from increasing. .
  • Such a tension adjusting roller 95 can prevent or suppress the tension of the hollow fiber membrane 31 from changing more reliably than in the first embodiment.
  • FIG. 14 is a schematic configuration diagram showing a hollow fiber membrane bundle manufacturing apparatus (third embodiment) used when manufacturing the hollow fiber membrane bundle of the present invention.
  • This embodiment is the same as the first embodiment except that the position of the cylindrical core rotating means is different.
  • the cylindrical core rotating means 601 is located on the ⁇ Z axis side with respect to the position in each of the above embodiments. For this reason, the length L1 of the hollow fiber membrane 31 between the fixed roller 93 and the cylindrical core rotating means 601 is the hollow fiber membrane between the fixed roller 93 and the cylindrical core rotating means 601 in the first embodiment. It is longer than 31 length.
  • the length L1 is preferably 500 mm to 5000 mm, and more preferably 1000 mm to 3000 mm.
  • the length L1 is preferably 10 to 200 times the outer diameter of the first cylindrical member 241 and more preferably 15 to 150 times.
  • the hollow fiber membrane bundle and the manufacturing method of the hollow fiber membrane bundle of the present invention have been described with respect to the illustrated embodiment.
  • the present invention is not limited to this, and the manufacturing method of the hollow fiber membrane bundle is arbitrary. These steps may be added.
  • each part which comprises a hollow fiber membrane bundle can be substituted with the thing of the arbitrary structures which can exhibit the same function.
  • arbitrary components may be added.
  • hollow fiber membrane bundle and the method for producing the hollow fiber membrane bundle of the present invention may be a combination of any two or more configurations (features) of the above embodiments.
  • the oxygenator and the heat exchanger are arranged inside and the oxygenator is arranged outside.
  • the present invention is not limited to this, and the oxygenator is arranged inside.
  • the heat exchange part may be arranged outside. In this case, blood flows down from the outside toward the inside.
  • the tension of the wound hollow fiber membrane is adjusted by keeping the rotation speed of the winding part constant and adjusting the rotation speed of the feeding part.
  • the present invention is not limited to this, and the rotation speed of the feeding section may be constant and the rotation speed of the winding section may be adjusted. Moreover, you may adjust the rotational speed of both a winding-up part and a delivery part.
  • the engaging portion (contact portion) is configured to be movable by the urging portion.
  • the present invention is not limited to this, and the urging portion is omitted and the control portion is omitted.
  • the engaging portion may be configured to be movable by the control.
  • whether or not the winding of the hollow fiber membrane has been completed may be determined at any time or may be performed at regular intervals. Further, when it is determined that the winding of the hollow fiber membrane is completed, the winding may be stopped immediately, or the winding may be stopped after winding to the end of the first cylindrical member.
  • the urging unit may be provided in the detection unit.
  • the detection unit can exhibit the same function as the engagement unit.
  • the tension adjusting mechanism is preferably configured to move in different directions when having a plurality of engaging portions. Thereby, it can prevent that the tension
  • the urging portion is configured by a coil spring.
  • the present invention is not limited to this, and any member having an urging force such as a leaf spring or a disc spring may be used.
  • the urging portion functions as a tension spring in which the hollow fiber membrane is wound in a tension state in which the urging portion is tensioned more than in a natural state, but the present invention is not limited to this.
  • the hollow fiber membrane may be wound around in a compressed state compressed more than a natural state.
  • the coil spring functions as a pressing spring.
  • Example 1 Production of oxygenator for heart-lung machine (Example 1) A heart-lung machine oxygenator as shown in FIGS. 1 to 5 was prepared.
  • the housing is made of polycarbonate.
  • the inner dimension of the housing was ⁇ 90 ⁇ 80 mm.
  • the hollow fiber membrane is made of polypropylene. Further, the inner diameter ⁇ d 1 of the hollow fiber membrane, the inclination angle ⁇ , the ratio ⁇ d 1 / L, the outer diameter ⁇ D 1 of the hollow fiber membrane bundle, the length L of the hollow fiber membrane bundle, the outer diameter ⁇ d 2 of the hollow fiber membrane, the hollow fiber
  • the inner diameter ⁇ D 2 of the membrane bundle was as shown in Table 1.
  • Example 2 Hollow fiber membrane inner diameter ⁇ d 1 , inclination angle ⁇ , ratio ⁇ d 1 / L, hollow fiber membrane bundle outer diameter ⁇ d 1 , hollow fiber membrane bundle length L, hollow fiber membrane outer diameter ⁇ d 2 , hollow fiber membrane bundle the the internal diameter [phi] D 2 except that the ones shown in Table 1, in the same manner as in example 1 to obtain a heart-lung machine for artificial lung of example 2.
  • Example 3 Hollow fiber membrane inner diameter ⁇ d 1 , inclination angle ⁇ , ratio ⁇ d 1 / L, hollow fiber membrane bundle outer diameter ⁇ D 1 , hollow fiber membrane bundle length L, hollow fiber membrane outer diameter ⁇ d 2 , hollow fiber membrane bundle the the internal diameter [phi] D 2 except that the ones shown in Table 1, in the same manner as in example 1 to obtain a heart-lung machine for oxygenating part of example 3.
  • Example 4 Hollow fiber membrane inner diameter ⁇ d 1 , inclination angle ⁇ , ratio ⁇ d 1 / L, hollow fiber membrane bundle outer diameter ⁇ D 1 , hollow fiber membrane bundle length L, hollow fiber membrane outer diameter ⁇ d 2 , hollow fiber membrane bundle the the internal diameter [phi] D 2 except that the ones shown in Table 1, in the same manner as in example 1 to obtain a heart-lung machine for oxygenating part of example 3.
  • the oxygen transfer ability here is the oxygen transfer amount (mL / min) when the amount of blood flowed for 1 minute is 7 L, and the gas amount flowed for 1 minute for the pressure loss of the gas G is 7 L.
  • the pressure loss (mmH 2 O) is shown.
  • the maximum flow rate during actual use of the artificial lung is assumed.
  • Evaluation criteria 1 A Very superior to the existing oxygenator for cardiopulmonary bypass. ⁇ : It is superior to the existing oxygenator for cardiopulmonary bypass. X: Equivalent to or inferior to the existing oxygenator for cardiopulmonary bypass.
  • the oxygenator for the heart-lung machine of Examples 2 and 3 among Examples 1 to 4 is very suitable for actual use, and then the oxygenator for the heart-lung machine of Examples 1 and 4 is used. The result was that the lung was suitable for actual use.
  • the inner diameter of the hollow fiber membrane is set to 150 ⁇ m or less
  • the inclination angle ⁇ is set to 60 ° or less
  • the hollow fiber membrane bundle of the present invention is a hollow fiber membrane bundle that is used for an artificial lung and is a hollow fiber membrane bundle in which hollow fiber membranes having hollow portions through which a fluid passes are integrated to form a cylindrical shape as a whole.
  • film is inclined with respect to the central axis of the cylindrical body is wound about the central axis of the cylindrical body, the inner diameter .phi.d 1 of the hollow fiber membrane is at 150 ⁇ m or less, wherein said hollow fiber membrane
  • the inclination angle ⁇ with respect to the central axis of the cylindrical body is 60 ° or less, and the ratio ⁇ D 1 / L between the outer diameter ⁇ D 1 of the cylindrical body and the length L of the cylindrical body is 0.4 or more. It is characterized by. Therefore, while reducing the increase in pressure loss of the fluid in the hollow fiber membrane, the blood filling amount can also be reduced, and the burden on the patient can be reduced.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Vascular Medicine (AREA)
  • Emergency Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Anesthesiology (AREA)
  • Dermatology (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Cardiology (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 中空糸膜束は、人工肺に用いられ、流体が通過する中空部を有する中空糸膜31が集積されて全体形状が円筒体の形状をなすものである。また、中空糸膜31は、前記円筒体の中心軸Oに対して傾斜して前記円筒体の中心軸O回りに巻回されており、次の条件を満足している。中空糸膜31の内径φdは、150μm以下であり、中空糸膜31の円筒体の中心軸Oに対する傾斜角度θは、60°以下であり、円筒体の外径φDと、円筒体の長さLとの比φD/Lは、0.4以上である。

Description

中空糸膜束、人工肺および中空糸膜束の製造方法
 本発明は、中空糸膜束、人工肺および中空糸膜束の製造方法に関する。
 従来から、多数本の中空糸膜で構成された中空糸膜束を有する人工肺が知られている(例えば、特許文献1)。特許文献1に記載の中空糸膜束は、多数本の中空糸膜をほぼ平行に配置して横糸とし、これらを縦糸でつなぎ合わせて簾状にしたものである。そして、このような簾状の中空糸シートを折りたたんで、外形形状が角柱状の中空糸膜束としたり、円柱状にしたりすることができる。
 このような構成の中空糸膜束では、横糸(中空糸膜)と縦糸(経糸)とが重なっている部分において、ガス交換または熱交換が不十分となるおそれがある。また、横糸と縦糸とが重なっている部分には、血液が滞留しやすく、血栓が生じるおそれもある。
 上記を解決するためには、各中空糸膜を例えば丸棒体の外周に、その中心軸回りに多重に巻回して、円筒体形状の中空糸膜束にするのが好ましい。
 しかしながら、中空糸膜の巻回回数が多ければ多いほど、中空糸膜同士の間隙の総容積が増大し、その結果、当該間隙を通過する血液の量、すなわち、血液充填量も増大してしまい、患者にとって負担が大きい。
 そこで、中空糸膜として外径が小さいものを用いることが考えられる。これにより、血液と触れる中空糸膜の表面積を維持しつつ中空糸膜同士の間隙の総容積が増大するのを防止し、血液充填量を低減することができる。
 しかしながら、中空糸膜の外径を小さくすれば内径も小さくなるため、中空糸膜内を通過する流体の圧力損失が増大してしまう。流体の圧力損失が増大すると、例えば人工肺部あればガスが中空糸膜から外側に流出するおそれがある。
米国特許第4911846号明細書
 本発明の目的は、中空糸膜内の流体の圧力損失の増大を低減しながらも、血液充填量も低減することができ、患者の負担を軽減することができる中空糸膜束および中空糸膜束の製造方法を提供することにある。
 このような目的は、下記(1)~(9)の本発明により達成される。
 (1) 人工肺に用いられ、流体が通過する中空部を有する中空糸膜が集積されて全体形状が円筒体の形状をなす中空糸膜束であって、
 前記中空糸膜は、前記円筒体の中心軸に対して傾斜して前記円筒体の中心軸回りに巻回されており、
 前記中空糸膜の内径φdは、150μm以下であり、
 前記中空糸膜の前記円筒体の中心軸に対する傾斜角度θは、60°以下であり、
 前記円筒体の外径φDと、前記円筒体の長さLとの比φD/Lは、0.4以上であることを特徴とする中空糸膜束。
 (2) 前記内径φdは、90μm以上150μm以下である上記(1)に記載の中空糸膜束。
 (3) 前記傾斜角度θは、30°以上60°以下である上記(1)または(2)に記載の中空糸膜束。
 (4) 前記比φD/Lは、0.4以上2.5以下である上記(1)ないし(3)のいずれかに記載の中空糸膜束。
 (5) 前記外径φDは、20mm以上200mm以下であり、
 前記長さLは、30mm以上250mm以下である上記(1)ないし(4)のいずれかに記載の中空糸膜束。
 (6) 前記中空糸膜の外径φdは、120μm以上220μm以下である上記(1)ないし(4)のいずれかに記載の中空糸膜束。
 (7) 前記円筒体の内径φDは、10mm以上150mm以下である上記(1)ないし(6)のいずれかに記載の中空糸膜束。
 (8) 上記(1)ないし(7)のいずれかに記載の中空糸膜束を有することを特徴とする人工肺。
 (9) 人工肺に用いられ、流体が通過する中空部を有する中空糸膜が集積されて全体形状が円筒体の形状をなす中空糸膜束を製造する方法であって、
 内径φdが150μm以下の前記中空糸膜を、前記円筒体の中心軸に対する傾斜角度θが60°以下で、かつ、前記円筒体の外径φDと、前記円筒体の長さLとの比φD/Lが0.4以上になるように、前記円筒体の中心軸回りに巻回することを特徴とする中空糸膜束の製造方法。
 本発明によれば、内径が比較的小さい(150μm以下)中空糸膜を用いたとしても、中空糸膜の円筒体の中心軸に対する傾斜角度θを60°以下とし、円筒体の外径φDと円筒体の長さLとの比φD/Lを、0.4以上とすることで、中空糸膜の全長が過剰に長くなることを防止することができる。このため、中空糸膜束は、流体の圧力損失を低減することができるとともに、血液充填量を低減し、患者の負担を軽減することができる。
図1は、本発明の中空糸膜束を適用した人工肺の平面図である。 図2は、図1に示す人工肺を矢印A方向から見た図である。 図3は、図2中のB-B線断面図である。 図4は、図2中の矢印C方向から見た図である。 図5は、図1中のD-D線断面図である。 図6は、図5中のE-E線断面図である。 図7は、中空糸膜束となる母材を示す図((a)が斜視図、(b)が展開図)である。 図8は、本発明の中空糸膜束を製造する際に用いる中空糸膜束製造装置を示す図である。 図9は、図8中の矢印F方向から見た概略構成図である。 図10は、図8に示す中空糸膜束製造装置を示すブロック図である。 図11は、(a)が、巻き取り部の回転速度と繰り出し部の回転速度とをそれぞれ一定の状態で中空糸膜を巻回した場合の、巻き取り速度と経過時間との関係を示すグラフ、(b)が、繰り出し部の回転速度の補正量と経過時間との関係を示すグラフである。 図12は、中空糸膜束製造装置の制御プログラムを説明するためのフローチャートである。 図13は、本発明の中空糸膜束を製造する際に用いる中空糸膜束製造装置(第2実施形態)を示す概略構成図である。 図14は、本発明の中空糸膜束を製造する際に用いる中空糸膜束製造装置(第3実施形態)を示す概略構成図である。
 以下、本発明の中空糸膜束、人工肺および中空糸膜束の製造方法を添付図面に示す好適な実施形態に基づいて詳細に説明する。
 <第1実施形態>
 図1は、本発明の中空糸膜束を適用した人工肺の平面図である。図2は、図1に示す人工肺を矢印A方向から見た図である。図3は、図2中のB-B線断面図である。図4は、図2中の矢印C方向から見た図である。図5は、図1中のD-D線断面図である。図6は、図5中のE-E線断面図である。図7は、中空糸膜束となる母材を示す図((a)が斜視図、(b)が展開図)である。図8は、本発明の中空糸膜束を製造する際に用いる中空糸膜束製造装置を示す図である。図9は、図8中の矢印F方向から見た概略構成図である。図10は、図8に示す中空糸膜束製造装置を示すブロック図である。図11は、(a)が、巻き取り部の回転速度と繰り出し部の回転速度とをそれぞれ一定の状態で中空糸膜を巻回した場合の、巻き取り速度と経過時間との関係を示すグラフ、(b)が、繰り出し部の回転速度の補正量と経過時間との関係を示すグラフである。図12は、中空糸膜束製造装置の制御プログラムを説明するためのフローチャートである。
 なお、図1、図3、図4および図8中の左側を「左」または「左方(一方)」、右側を「右」または「右方(他方)」という。また、図1~図6中、人工肺の内側を「血液流入側」または「上流側」、外側を「血液流出側」または「下流側」として説明する。また、説明の便宜上、図9(図13、図14についても同様)中には、互いに直交する3軸として、X軸、Y軸およびZ軸を図示している。
 まず、本発明の中空糸膜束を適用した人工肺について説明する。
 図1~図5に示す人工肺10は、全体形状がほぼ円柱状をなしている。この人工肺10は、内側に設けられ、血液に対し熱交換を行う熱交換部10Bと、熱交換部10Bの外周側に設けられ、血液に対しガス交換を行うガス交換部としての人工肺部10Aと備える熱交換器付き人工肺である。人工肺10は、例えば血液体外循環回路中に設置して用いられる。
 人工肺10は、ハウジング2Aを有しており、このハウジング2A内に人工肺部10Aと熱交換部10Bとが収納されている。
 ハウジング2Aは、円筒状ハウジング本体21Aと、円筒状ハウジング本体21Aの左端開口を封止する皿状の第1の蓋体22Aと、円筒状ハウジング本体21Aの右端開口を封止する皿状の第2の蓋体23Aとで構成されている。
 円筒状ハウジング本体21A、第1の蓋体22Aおよび第2の蓋体23Aは、樹脂材料で構成されている。円筒状ハウジング本体21Aに対し、第1の蓋体22Aおよび第2の蓋体23Aは、融着や接着剤による接着等の方法により固着されている。
 円筒状ハウジング本体21Aの外周部には、管状の血液流出ポート28が形成されている。この血液流出ポート28は、円筒状ハウジング本体21Aの外周面のほぼ接線方向に向かって突出している(図5参照)。
 また、図1~3に示すように、円筒状ハウジング本体21Aの外周部には、管状のパージポート205が突出形成されている。パージポート205は、その中心軸が円筒状ハウジング本体21Aの中心軸と交差するように、円筒状ハウジング本体21Aの外周部に形成されている。
 第1の蓋体22Aには、管状のガス流出ポート27が突出形成されている。
 また、血液流入ポート201は、その中心軸が第1の蓋体22Aの中心に対し偏心するように、第1の蓋体22Aの端面から突出している。
 ガス流出ポート27は、その中心軸が第1の蓋体22Aの中心と交差するように、第1の蓋体22Aの外周部に形成されている(図2参照)。
 第2の蓋体23Aには、管状のガス流入ポート26、熱媒体流入ポート202および熱媒体流出ポート203が突出形成されている。ガス流入ポート26は、第2の蓋体23Aの端面の縁部に形成されている。熱媒体流入ポート202および熱媒体流出ポート203は、それぞれ、第2の蓋体23Aの端面のほぼ中央部に形成されている。また、熱媒体流入ポート202および熱媒体流出ポート203の中心線は、それぞれ、第2の蓋体23Aの中心線に対してやや傾斜している。
 なお、本発明において、ハウジング2Aの全体形状は、必ずしも完全な円柱状をなしている必要はなく、例えば一部が欠損している形状、異形部分が付加された形状などでもよい。
 図3、図5に示すように、ハウジング2Aの内部には、その内周面に沿った円筒状をなす人工肺部10Aが収納されている。人工肺部10Aは、円筒状の中空糸膜束3Aと、中空糸膜束3Aの外周側に設けられた気泡除去手段4Aとしてのフィルタ部材41Aとで構成されている。中空糸膜束3Aとフィルタ部材41Aとは、血液流入側から、中空糸膜束3A、フィルタ部材41Aの順に配置されている。
 また、人工肺部10Aの内側には、その内周面に沿った円筒状をなす熱交換部10Bが設置されている。熱交換部10Bは、中空糸膜束3Bを有している。
 図6に示すように、中空糸膜束3Aおよび3Bは、それぞれ、多数本の中空糸膜31で構成され、これらの中空糸膜31を層状に集積して積層させてなるものである。積層数は、特に限定されないが、例えば、3~40層が好ましい。なお、中空糸膜束3Aの各中空糸膜31は、それぞれ、ガス交換機能を有するものである。一方、中空糸膜束3Bの各中空糸膜31は、それぞれ、熱交換を行なう機能を有するものである。
 本発明では、中空糸膜束3Aの中空糸膜31としては、比較的細いものが用いられており、中空糸膜31の内径φdは、150μm以下である。また、内径(最大内径)φdは、90μm~150μmであるのが好ましく、100μm~130μmであるのがより好ましい。内径φdが150μmよりも大きかった場合、中空糸膜31の外径φdを十分に小さくするのが困難となる。また、内径φdが上記下限値よりも小さかった場合、当該中空糸膜31の中空部である流路32にガスGを流すときの圧力損失の増大を招くおそれがある。
 また、中空糸膜31の外径(最大外径)φdは、120μm~220μmであるのが好ましく、150μm~200μmであるのがより好ましい。外径φdが上記上限値を上回った場合、隣接する中空糸膜31同士の間隙が大きくなり、該間隙を流下する血液Bの充填量が増大する。一方、外径φdが上記下限値を下回った場合、内径φdを十分に大きくすることが困難となる。
 なお、内径φdと外径φdとの比φd/φdは、0.50~0.85であるのが好ましく、0.60~0.75であるのがより好ましい。
 このような中空糸膜束3Aの中空糸膜31は、多孔質ガス交換膜で構成されている。中空糸膜31の細孔径は、0.01μm~5μmであるのが好ましく、0.01μm~1μmであるのがより好ましい。また、中空糸膜31としては、ポリプロピレン、ポリエチレン、ポリスルホン、ポリアクリロニトリル、ポリテトラフルオロエチレン、セルロースアセテート等の疎水性高分子材料が用いられる。好ましくは、ポリオレフィン系樹脂であり、特に好ましくは、ポリプロピレンである。また、中空糸膜31の微細孔は、例えば、延伸法または固液相分離法により形成することができる。
 なお、中空糸膜束3Bの中空糸膜31としては、内径が50μm~700μmで、外径が100μm~1000μm程度のものを用いることができる。
 図3に示すように、中空糸膜束3Aおよび3Bは、それぞれ、その両端部が隔壁8および9により円筒状ハウジング本体21Aの内面に対し一括して固定されている。隔壁8、9は、例えば、ポリウレタン、シリコーンゴム等のポッティング材や接着剤等により構成されている。さらに、中空糸膜束3Bは、その内周部が、第1の円筒部材241の外周部に形成された凹凸部244に係合している。この係合と隔壁8および9による固定により、中空糸膜束3Bが円筒状ハウジング本体21Aに確実に固定され、よって、人工肺10の使用中に中空糸膜束3Bの位置ズレが生じるのを確実に防止することができる。また、凹凸部244は、中空糸膜束3B全体に血液Bを巡らせるための流路としても機能する。
 ハウジング2A内の隔壁8と隔壁9との間における各中空糸膜31の外側、すなわち、中空糸膜31同士の隙間には、血液Bが図6中の上側から下側に向かって流れる血液流路33が形成されている。
 血液流路33の上流側には、血液流入ポート201から流入した血液Bの血液流入部として、血液流入ポート201に連通する血液流入側空間24Aが形成されている(図3、図5参照)。
 血液流入側空間24Aは、円筒状をなす第1の円筒部材241と、第1の円筒部材241の内側に配置され、その内周部の一部に対向して配置された板片242とで画成された空間である。そして、血液流入側空間24Aに流入した血液Bは、第1の円筒部材241に形成された複数の側孔243を介して、血液流路33全体にわたって流下することができる。
 また、第1の円筒部材241の内側には、当該第1の円筒部材241と同心的に配置された第2の円筒部材245が配置されている。そして、図3に示すように、熱媒体流入ポート202から流入した例えば水等の熱媒体Hは、第1の円筒部材241の外周側にある中空糸膜束3Bの各中空糸膜31の流路(中空部)32、第2の円筒部材245の内側を順に通過して、熱媒体流出ポート203から排出される。また、熱媒体Hが各中空糸膜31の流路32を通過する際に、血液流路33内で、当該中空糸膜31に接する血液Bとの間で熱交換(加温または冷却)が行われる。
 血液流路33の下流側においては、血液流路33を流れる血液B中に存在する気泡を捕捉する機能を有するフィルタ部材41Aが配置されている。
 フィルタ部材41Aは、ほぼ長方形をなすシート状の部材(以下単に「シート」とも言う)で構成され、そのシートを中空糸膜束3Aの外周に沿って巻回して形成したものである。フィルタ部材41Aも、両端部がそれぞれ隔壁8、9で固着されており、これにより、ハウジング2Aに対し固定されている(図3参照)。なお、このフィルタ部材41Aは、その内周面が中空糸膜束3Aの外周面に接して設けられ、該外周面のほぼ全面を覆っているのが好ましい。
 また、フィルタ部材41Aは、血液流路33を流れる血液中に気泡が存在していたとしても、その気泡を捕捉することができる(図6参照)。また、フィルタ部材41Aにより捕捉された気泡は、血流によって、フィルタ部材41A近傍の各中空糸膜31内に押し込まれて入り込み、その結果、血液流路33から除去される。
 また、フィルタ部材41Aの外周面と円筒状ハウジング本体21Aの内周面との間には、円筒状の隙間が形成され、この隙間は、血液流出側空間25Aを形成している。この血液流出側空間25Aと、血液流出側空間25Aに連通する血液流出ポート28とで、血液流出部が構成される。血液流出部は、血液流出側空間25Aを有することにより、フィルタ部材41Aを透過した血液Bが血液流出ポート28に向かって流れる空間が確保され、血液Bを円滑に排出することができる。
 図3に示すように、第1の蓋体22Aの内側には、円環状をなすリブ291が突出形成されている。そして、第1の蓋体22Aとリブ291と隔壁8により、第1の部屋221aが画成されている。この第1の部屋221aは、ガスGが流出するガス流出室である。中空糸膜束3Aの各中空糸膜31の左端開口は、第1の部屋221aに開放し、連通している。人工肺10では、ガス流出ポート27および第1の部屋221aによりガス流出部が構成される。一方、第2の蓋体23Aの内側にも、円環状をなすリブ292が突出形成されている。そして、第2の蓋体23Aとリブ292と隔壁9とにより、第2の部屋231aが画成されている。この第2の部屋231aは、ガスGが流入してくるガス流入室である。中空糸膜束3Aの各中空糸膜31の右端開口は、第2の部屋231aに開放し、連通している。人工肺10では、ガス流入ポート26および第2の部屋231aによりガス流入部が構成される。
 次に、本実施形態の人工肺10における血液の流れについて説明する。
 この人工肺10では、血液流入ポート201から流入した血液Bは、血液流入側空間24A、側孔243を順に通過して、熱交換部10Bに流れ込む。熱交換部10Bでは、血液Bは、血液流路33を下流方向に向かって流れつつ、熱交換部10Bの各中空糸膜31の表面と接触して熱交換(加温または冷却)がなされる。このようにして熱交換がなされた血液Bは、人工肺部10Aに流入する。
 そして、人工肺部10Aでは、血液Bは、血液流路33をさらに下流方向に向かって流れる。一方、ガス流入ポート26から供給されたガス(酸素を含む気体)は、第2の部屋231aから人工肺部10Aの各中空糸膜31の流路32に分配され、該流路32を流れた後、第1の部屋221aに集積され、ガス流出ポート27より排出される。血液流路33を流れる血液Bは、人工肺部10Aの各中空糸膜31の表面に接触し、流路32を流れるガスGとの間でガス交換、すなわち、酸素加、脱炭酸ガスがなされる。
 ガス交換がなされた血液B中に気泡が混入している場合、この気泡は、フィルタ部材41Aにより捕捉され、フィルタ部材41Aの下流側に流出するのが防止される。
 以上のようにして熱交換、ガス交換が順になされ、さらに気泡が除去された血液Bは、血液流出ポート28より流出する。
 次に、中空糸膜束3Aの構成について詳細に説明する。
 前述したように、中空糸膜束3Aは、多数本の中空糸膜31で構成されたものである。また、中空糸膜束3Aは、中空糸膜31を第1の円筒部材241(円筒体)の中心軸O方向に沿って中心軸O回りに多数回巻回してなる母材3’から得られるものである(図7(a)参照)。
 以下では、中空糸膜31の一本を代表的に説明する。中空糸膜31は、中心軸O方向の左側の始点311から巻回が開始され、右側に向かう。右側では、中空糸膜31は、折り返し点312で折り返される。その後、中空糸膜31は、再度左側に戻って終点313に至る。このように、中空糸膜31は、図7(b)中の矢印i→ii→iii→iv→v→vi→viiの順に巻回されている。
 そして、この一往復の間に、中空糸膜31は、所定の周回数Nで巻回される。図示の構成では、N=1.5であり、中空糸膜31は、一往復する間に、中心軸O回りに1.5周している。これを「0.75ワインド」という。
 なお、中空糸膜31は、第1の円筒部材241の両端部において後述の固定用糸11によって固定される。これにより、上記巻回を多数回行うことができ、母材3’を得ることができる。また、この母材3’の両端部を固定用糸11ごと切断することにより、中空糸膜束3Aを得ることができる。
 さて、前述したように、本発明では、中空糸膜31は、内径φdおよび外径φdが比較的小さいものが用いられている。特に、中空糸膜31の外径φdが比較的小さいため、血液充填量を低減することができる。一方、内径φdが比較的小さいことで、一般的には、ガスGの圧力損失が増大する傾向にある。
 そこで、本発明では、中心軸Oに対する傾斜角度(綾角)θを60°以下とし(図7(b)参照)、中空糸膜束3Aの外径φDと、中空糸膜束3Aの長さLとの比φD/Lを0.4以上とした(図3および図5参照)。これらの条件を満足することで、中空糸膜31の全長を比較的短くすることができる。よって、比較的内径φdが小さい中空糸膜31を用いたとしても、圧力損失が増大するのを防止または抑制することができる。すなわち、血液充填量の低減と、ガスGの圧力損失の増大の抑制を両立することができる。
 傾斜角度θは、30°以上60°以下であるのが好ましく、40°以上50°以下であるのがより好ましい。傾斜角度θが上記下限値を下回ると、中空糸膜束3Aの端部において、中空糸膜31を固定用糸11でより強固に固定する必要があり、母材3’の製造が困難となる可能性がある。一方、傾斜角度θが上記上限値を上回ると、比φD/Lの大小に関わらず、中空糸膜31の全長が過剰に長くなり、ガスGの圧力損失が増大するおそれがある。
 また、比φD/Lは、0.4以上2.5以下であるのが好ましく、0.8以上1.6以下であるのがより好ましい。比φD/Lが上記下限値を下回ると、上記傾斜角度θの範囲であっても中空糸膜31の全長が過剰に長くなる。一方、比φD/Lが上記上限値を上回ると、前述したワインド数が過剰に少なくなり、中空糸膜の巻回が困難となる。
 このように、上記数値範囲とすることで、中空糸膜31の全長を過不足なく確保することができる。
 また、図5に示すように、中空糸膜束3Aの外径(最大外径)φDは、20mm以上200mm以下であるのが好ましく、40mm以上150mm以下であるのがより好ましい。中空糸膜束3Aの内径(最大内径)φDは、10mm以上150mm以下であるのが好ましく、20mm以上100mm以下であるのがより好ましい。また、図3に示すように、長さLは、30mm以上250mm以下であるのが好ましく、50mm以上200mm以下であるのがより好ましい。このような条件を有することにより、上記効果を確実に奏することができる。
 ここで、本発明では、中空糸膜31の傾斜角度θは、比較的小さいため、中空糸膜束3Aの製造工程において、端部で折り返すときに、若干巻取り速度が低下する(図11(a)参照)。巻取り速度が若干低下することにより、中空糸膜の張力は、若干変化する。この変化の程度によっては、例えば、人工肺部であれば微細孔の形状が変化するおそれがある。その結果、中空糸膜束3Aが持つ本来の優れたガス交換機能を十分に発揮できないおそれがある。
 以下、上記不具合を防止しつつ中空糸膜束3Aを製造する製造方法について説明する。
 まず、中空糸膜束3Aの製造方法に用いる中空糸膜束製造装置について説明する。
 図8~図10に示すように、巻回装置60は、本発明の中空糸膜束の製造方法を実行するものであり、筒状コア回転手段(巻き取り部)601と、ワインダ装置(繰り出し部)602と、固定装置600と、ローラ群90と、これらの駆動を制御する制御部(張力調節機構)100とを備える。
 図8に示すように、筒状コア回転手段601は、モータ603と、モータシャフト604と、モータシャフト604に固定されたコア取付部材605を備える。人工肺10のハウジング2Aの一部である第1の円筒部材241は、コア取付部材605に取り付けられ、モータ603により回転される。このモータ603は、制御部100と電気的に接続されており、制御部100によって、駆動が制御される。
 ワインダ装置602は、内部に中空糸膜31を収納する収納部を備える本体部606と、中空糸膜31を吐出するとともに本体部606の軸方向(図8中の左右方向)に移動する吐出部705を備えている。さらに、本体部606は、リニアレール607上を移動するリニアテーブル608およびボールナット部材704に固定されている。ボールナット部材704は、モータ703の駆動により、ボールネジシャフト609が回転することにより、本体部606の軸方向と平行に移動可能となっている。モータ703は、正逆回転可能であり制御部100によって、駆動が制御される。
 固定装置600は、第1の円筒部材241に巻回された中空糸膜31を固定する固定用糸(線状体)11を収納する収納部を備える本体部706と、第1の円筒部材241の両端部に向かって固定用糸11を吐出する吐出部707とを備えている。そして、中空糸膜31に対して固定用糸11による固定を行なうときには、吐出部707から吐出された固定用糸11が、回転中の第1の円筒部材241上にある中空糸膜31に巻き付けられ、その固定がなされる。固定後は、その固定に供された固定用糸11が、カッター(図示せず)によって固定装置600から切断される。
 吐出部705から吐出して繰り出された中空糸膜31は、モータ603の作動により回転する第1の円筒部材241に巻回される。吐出部705が移動しつつ中空糸膜31を繰り出すことにより、例えば、第1の円筒部材241の一端部から中空糸膜31の巻回を開始し、他端部まで巻回されたら、折り返して一端部に向って中空糸膜31を巻回することができる。このような巻回を多数回繰り返すことにより、円筒形状をなす中空糸膜束3Aの母材を得ることができる。この中空糸膜束3Aの母材は、両端部の固定用糸11によって中空糸膜31が固定されている部分が切断されて中空糸膜束3Aとして用いられる。
 図8および図9に示すように、ローラ群90は、筒状コア回転手段601とワインダ装置602との間に設けられた3つの固定ローラ91、92、93と、Z軸方向に移動可能な可動ローラ(検出部)94とを有している。
 図9に示すように、固定ローラ91は、ワインダ装置602の+Z軸側に設けられている。固定ローラ92は、固定ローラ91の-X軸側に設けられている。固定ローラ93は、固定ローラ92の-X軸側に設けられている。巻回装置60では、中空糸膜31が固定ローラ91、92、93に掛け回されている。
 可動ローラ94は、固定ローラ92、93との間で、かつ、固定ローラ92、93よりも-Z軸側に位置している。この可動ローラ94は、両端が自由端となっており、固定ローラ92、93の間の中空糸膜31によって支持されている。このため、巻回装置60では、可動ローラ94が、自身の重さによって中空糸膜31に張力Tを付与している状態となっている。
 なお、この張力Tは、中空糸膜31を巻回して得られた中空糸膜束3Aが本来の機能を十分に発揮することができる程度の大きさ(以下、「適切な大きさ」とも言う)とされる。また、張力Tは、例えば、可動ローラ94の重さを調節したり、可動ローラ94を付勢部材等で+Z軸側または-Z軸側に付勢したりすることで調節することができる。
 また、可動ローラ94は、張力Tの大小関係に応じてZ軸方向に移動可能になっている。張力Tが図示の構成よりも大きくなると、中空糸膜31によって+Z軸側(図9中矢印G方向)に移動する。一方、張力Tが図示の構成よりも小さくなると、中空糸膜31によって-Z軸側(図9中矢印H方向)に移動する。
 また、図10に示すように、可動ローラ94には、制御部100と電気的に接続され、位置(高さ)を検出する位置検出部941が設けられている。制御部100は、位置検出部941からの信号に基づいて、可動ローラ94の位置を検出し、その位置に応じて中空糸膜31の張力Tの大きさを算出することができる。
 巻回装置60では、中空糸膜31に予め適切な大きさの張力Tを付与し、その状態で、中空糸膜31を巻き取ることにより、適切な張力で巻回された中空糸膜束3Aを得ることができる。本実施形態では、適切な大きさの張力Tの許容範囲として、上限値Tmaxおよび下限値Tminが設定されている。下限値Tmin≦張力T≦上限値Tmaxを満足していれば、張力Tは、適切な大きさであるとされる。
 図10に示すように、制御部100は、筒状コア回転手段601のモータ603と、ワインダ装置602のモータ703と、可動ローラ94の位置検出部941と電気的に接続されており、これらの作動を制御する機能を有している。この制御部100は、CPU(Central Processing Unit)101と、記憶部102とを有している。
 CPU101は、各種処理用のプログラムを実行する。
 記憶部102は、例えば不揮発性半導体メモリーの一種であるEEPROM(Electrically Erasable Programmable Read-Only Memory)等を有し、各種プログラム等を記憶することができる。
 また、記憶部102には、前述した中空糸膜31の張力Tの適切な大きさの上限値Tmaxおよび下限値Tmin等の情報が記憶されている。
 ここで、図11(a)は、巻き取りを開始してからの経過時間tと、中空糸膜31の巻き取り速度vとの関係を示すグラフである。「巻き取り速度v」は、単位時間あたりに中空糸膜31が実際に巻き取られた長さのことを言う。このグラフは、モータ603の回転速度Vおよびモータ703の回転速度Vをそれぞれ一定にして、予め実験的に測定して得られたものである。なお、図11(a)のグラフは、内径φdが150μmの中空糸膜を、中心軸Oに対する傾斜角度(綾角)θが45°、比φD/Lが1.0となるように巻回して製造した場合のグラフである。
 図11(a)に示すように、経過時間t~tまでの間、巻き取り速度vが変化(低下)しているのが分かる。そして、経過時間tから、さらに一定時間が経過すると、再度、同様の挙動を示す。これらの挙動は、中空糸膜31を巻き取る際、中空糸膜31が第1の円筒部材241の端部に位置しているとき、すなわち、端部に巻回されているときに現れる。
 そこで、記憶部102には、図11(a)に示す巻き取り速度vと経過時間tとの関係に基づいて、巻き取り速度vの変化をキャンセルするための検量線が記憶されている。この検量線は、例えば、演算式またはテーブルとして記憶されている。
 図11(b)は、この検量線を、縦軸がモータ703の回転速度Vの補正量U、横軸が経過時間tで表したグラフである。図11(b)に示すように、回転速度Vの補正量Uは、経過時間t~tにおいて、巻き取り速度vの低下に伴って、図11(a)に示すグラフの線形を反転したような山なりに変化している。
 次に、制御部100の制御プログラムを、図12のフローチャートに基づいて説明する。
 まず、ワインダ装置602から中空糸膜31を固定ローラ91、92、93および可動ローラ94に掛け回し、先端を第1の円筒部材241に固定した状態で、モータ603およびモータ703を回転させる(ステップS101)。これにより、中空糸膜31の巻き取りが開始される。
 このとき、モータ603の回転速度Vは速度Va1であり、モータ703の回転速度Vは速度Vb1である。なお、本実施形態では、モータ603の回転速度Vは、経過時間tによらず、一定とする。
 また、中空糸膜31の中心軸Oに対する傾斜角度(綾角)θが45°で、比φD/Lが1.0となるように巻回を行う。
 また、モータ603、703の駆動と同時に、可動ローラ94の位置検出部941からの信号に基づいて、筒状コア回転手段601とワインダ装置602との間の中空糸膜31の張力Tの検出を開始する(ステップS102)。
 さらに、モータ603、703の駆動と同時に、タイマーを作動させ、巻き取り開始時からの経過時間tを測定する(ステップS103)。
 そして、ステップS104において、経過時間t=tとなったか否かを判断する。
 ステップS104において、未だ経過時間t=tとなっていないと判断した場合には、張力T≧Tminであるか否かを判断する(ステップS105)。ステップS105において、張力T≧Tminであると判断した場合には、次に、張力T≦Tmaxであるか否かを判断する(ステップS106)。ステップS106において、張力T≦Tmaxであると判断した場合、張力Tが適切な大きさであるため、再度、ステップS104に戻る。
 ここで、ステップS105において、張力T<下限値Tminであると判断した場合には、モータ703の回転速度VをVb1よりも低下させて、張力T≧Tminとする(ステップS107)。また、ステップS106において、張力T>Tmaxであると判断した場合には、モータ703の回転速度VをVb1よりも上昇させて、張力T≦Tmaxとする(ステップS108)。
 上記ステップS105~S108は、経過時間t=tになるまで繰り返される。
 そして、ステップS104において、経過時間t=tになったと判断した場合、モータ703の回転速度Vを変化させる(ステップS109)。このとき、図11(b)に示す検量線に基づいて、回転速度Vを変化させる。これにより、巻き取り速度vが低下することに起因する張力Tの変化を効果的に防止または抑制することができる。よって、中空糸膜31の張力Tをできるだけ適切な大きさに保ちつつ巻回することができる。
 そして、ステップS110において、経過時間t=tとなったか否かを判断する。ステップS110において、未だ経過時間t=tではないと判断した場合には、ステップS111~S114を行う。これらのステップS111~S114は、前述したステップS105~S108と同様であるため、説明を省略する。
 ステップS110において、経過時間t=tであると判断した場合には、中空糸膜31の巻回が完了したか否かを判断する(ステップS115)。なお、この判断は、例えば、モータ603、703の総回転数や、経過時間tや、中空糸膜31の残量等に基づいて行われる。
 ステップS115において中空糸膜31の巻回が完了していないと判断した場合には、モータ703の回転速度VをVb1に変更し(ステップS116)巻回を行い、ステップS103に戻る。
 上記の制御は、ステップS115で中空糸膜31の巻回が完了したと判断されるまで繰り返される。
 このように、本実施形態では、経過時間tおよび巻き取り速度vの検量線に基づいて、モータ703の回転速度Vを調節する。これにより、中空糸膜31の張力Tを適切な大きさに保ちつつ、巻回を行うことができる。
 さらに、本実施形態では、張力Tを検出しつつ、下限値Tmin≦張力T≦上限値Tmaxから外れたときに調節する。これにより、より確実に中空糸膜31の張力Tを効果的に適切な大きさに保ちつつ、巻回を行うことができる。
 以上、本製造方法では、中空糸膜31の張力Tを調節しつつ巻回することで、得られた中空糸膜束3Aは、確実に、優れた本来のガス交換機能を発揮することができる。
 なお、本実施形態では、中空糸膜31の張力Tの適切な大きさとして、下限値Tminおよび上限値Tmaxを設定しているが、下限値Tminの値は、実際の張力Tの適切な大きさの下限値よりも若干高く設定しておくのが好ましく、上限値Tmaxの値は、実際の張力Tの上限値よりも若干低く設定しておくのが好ましい。これにより、より確実に張力Tを適切な大きさに保ちつつ中空糸膜31を巻回することができる。
 <第2実施形態>
  図13は、本発明の中空糸膜束を製造する際に用いる中空糸膜束製造装置(第2実施形態)を示す概略構成図である。
 以下、この図を参照して本発明の中空糸膜束および中空糸膜束の製造方法の第2実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
 本実施形態は、係合部が設けられていること以外は前記第1実施形態と同様である。
 図13に示すように、筒状コア回転手段601と固定ローラ93との間には、張力調節機構としての張力調節ローラ(係合部)95が設けられている。また、この張力調節ローラ95は、中空糸膜31と当接するローラ本体951と、ローラ本体951をX軸方向に付勢する付勢部952が設けられている。
 また、付勢部952は、例えばコイルバネで構成されており、自然状態よりも引っ張られている引張状態で中空糸膜31が掛け回されている。このため、中空糸膜31は、ローラ本体951によって-X軸側に引っ張られている。
 張力Tが上昇した場合、中空糸膜31は、付勢部952の付勢力に抗してローラ本体951を+X軸側(図中、ローラ本体951aで示す位置)に移動させる。このとき、固定ローラ93と筒状コア回転手段601との間の中空糸膜31は、図中実線で示す状態よりも直線形状に近づき、張力Tが上昇するのを抑制または防止することができる。
 一方、張力Tが低下した場合、中空糸膜31は、付勢部952によってローラ本体951ごと-X軸側(図中、ローラ本体951bで示す位置)に引っ張られて移動する。これにより、固定ローラ93と筒状コア回転手段601との間の中空糸膜31は、図中実線で示す状態よりも付勢部952によって引っ張られる。よって、張力Tが低下するのを抑制または防止することができる。
 このような張力調節ローラ95により、前記第1実施形態よりも、さらに確実に中空糸膜31の張力が変化するのを防止または抑制することができる。
 <第3実施形態>
  図14は、本発明の中空糸膜束を製造する際に用いる中空糸膜束製造装置(第3実施形態)を示す概略構成図である。
 以下、この図を参照して本発明の中空糸膜束および中空糸膜束の製造方法の第3実施形態について説明するが、前述した実施形態との相違点を中心に説明し、同様の事項はその説明を省略する。
 本実施形態は、筒状コア回転手段の位置が異なること以外は前記第1実施形態と同様である。
 図14に示すように、筒状コア回転手段601は、前記各実施形態での位置よりも-Z軸側に位置している。このため、固定ローラ93と筒状コア回転手段601との間の中空糸膜31の長さL1は、第1実施形態での固定ローラ93と筒状コア回転手段601との間の中空糸膜31の長さよりも長くなっている。
 この長さL1は、500mm~5000mmであるのが好ましく、1000mm~3000mmであるのがより好ましい。また、長さL1は、第1の円筒部材241の外径の10~200倍であるのが好ましく、15~150倍であるのがより好ましい。
 このような本実施形態によれば、張力Tが変化して、中空糸膜31の長さが若干変化したとしても、その変化量を十分に無視することができる程度の長さを確保することができる。よって、前記各実施形態と同様の効果を得ることができる。
 以上、本発明の中空糸膜束および中空糸膜束の製造方法を図示の実施形態について説明したが、本発明は、これに限定されるものではなく、中空糸膜束の製造方法は、任意の工程を付加させていてもよい。また、中空糸膜束を構成する各部は、同様の機能を発揮し得る任意の構成のものと置換することができる。また、任意の構成物が付加されていてもよい。
 また、本発明の中空糸膜束および中空糸膜束の製造方法は、前記各実施形態のうちの、任意の2以上の構成(特徴)を組み合わせたものであってもよい。
 また、人工肺部と熱交換部とは、前記実施形態では熱交換部が内側に配置され、人工肺部が外側に配置されていたが、これに限定されず、人工肺部が内側に配置され、熱交換部が外側に配置されていてもよい。この場合、血液は、外側から内側に向かって流下する。
 また、前記各実施形態では、巻回している中空糸膜の張力の調節は、巻き取り部の回転速度を一定とし、繰り出し部の回転速度を調節することにより行われているが、本発明ではこれに限定されず、繰り出し部の回転速度を一定とし、巻き取り部の回転速度を調節することにより行われてもよい。また、巻き取り部および繰り出し部の双方の回転速度を調節してもよい。
 また、前記第2実施形態では、係合部(当接部)は、付勢部によって移動可能に構成されているが、本発明ではこれに限定されず、付勢部を省略して制御部の制御によって係合部を移動可能に構成してもよい。
 また、前記各実施形態において、中空糸膜の巻回が完了したか否かの判断は、随時行ってもよく、一定時間毎に行ってもよい。また、中空糸膜の巻回が完了したと判断した場合、即座に巻回を停止してもよく、第1の円筒部材の端部まで巻回してから巻回を停止してもよい。
 また、前記各実施形態では、検出部に付勢部を設けてもよい。この場合、検出部は、係合部と同様の機能を発揮することができる。
 また、上記のように、張力調節機構は、係合部を複数有していた場合、互いに異なる方向に移動するよう構成されているのが好ましい。これにより、より効果的に中空糸膜の張力が変化するのを防止することができる。
 また、前記第2実施形態では、付勢部は、コイルバネで構成されているが、本発明ではこれに限定されず、例えば、板バネや皿バネ等、付勢力を有するものであればよい。
 また、前記第2実施形態では、付勢部は、自然状態よりも引っ張られている引張状態で中空糸膜が掛け回され、引張りバネとして機能しているが、本発明ではこれに限定されず、例えば、自然状態よりも圧縮された圧縮状態で中空糸膜が掛け回されていてもよい。この場合、コイルバネは、押圧バネとして機能する。
 また、前記各実施形態では、一本の中空糸膜のみを図示しているが、本発明では、多数本の中空糸膜を同時に、同じ円筒部材に巻回してもよいのは言うまでもない。
 以下、本発明の具体的な実施例について説明する。なお、本発明はこれに限定されるものではない。
 1.人工心肺用人工肺部の作製
 (実施例1)
 図1~図5に示すような人工心肺用人工肺部を作製した。この人工心肺用人工肺部では、ハウジングは、ポリカーボネートで構成されている。ハウジングの内寸は、φ90×80mmであった。
 中空糸膜は、ポリプロピレンで構成されている。また、中空糸膜の内径φd、傾斜角度θ、比φd/L、中空糸膜束の外径φD、中空糸膜束の長さL、中空糸膜の外径φd、中空糸膜束の内径φDは、表1に示すとおりであった。
 (実施例2)
 中空糸膜の内径φd、傾斜角度θ、比φd/L、中空糸膜束の外径φd、中空糸膜束の長さL、中空糸膜の外径φd、中空糸膜束の内径φDを表1に示すとおりのものとした以外は、前記実施例1と同様にして、実施例2の人工心肺用人工肺部を得た。
 (実施例3)
 中空糸膜の内径φd、傾斜角度θ、比φd/L、中空糸膜束の外径φD、中空糸膜束の長さL、中空糸膜の外径φd、中空糸膜束の内径φDを表1に示すとおりのものとした以外は、前記実施例1と同様にして、実施例3の人工心肺用人工肺部を得た。
 (実施例4)
 中空糸膜の内径φd、傾斜角度θ、比φd/L、中空糸膜束の外径φD、中空糸膜束の長さL、中空糸膜の外径φd、中空糸膜束の内径φDを表1に示すとおりのものとした以外は、前記実施例1と同様にして、実施例3の人工心肺用人工肺部を得た。
 (比較例1)
 中空糸膜の内径φd、傾斜角度θ、比φd/L、中空糸膜束の外径φD、中空糸膜束の長さL、中空糸膜の外径φd、中空糸膜束の内径φDを表1に示すとおりにすること以外は、前記実施例1と同様にして、比較例1の人工心肺用人工肺部を得た。
 (比較例2)
 中空糸膜の内径φd、傾斜角度θ、比φd/L、中空糸膜束の外径φD、中空糸膜束の長さL、中空糸膜の外径φd、中空糸膜束の内径φDを表1に示すとおりにすること以外は、前記実施例1と同様にして、比較例2の人工心肺用人工肺部を得た。
 3.評価
 模擬的使用状態で、実施例1~3および比較例1、2の人工心肺用人工肺部について、ISO7199(2009)の規定に基づいた酸素移動能と、人工心肺用人工肺部中に充填された血液の充填量(最大)と、中空糸膜束中でのガスGの圧力損失(最大)とを測定した。
 ここでいう酸素移動能とは1分間に流した血液量が7Lである時の酸素移動量(mL/min)であり、ガスGの圧力損失についても1分間に流したガス量が7Lである時の圧力損失(mmHO)を示す。また、上記1分間に流した血液量および1分間に流したガス量については、それぞれ人工肺の実使用時における最大流量を想定している。
 さらに、実施例1~4および比較例1、2の人工心肺用人工肺部について、以下に示す評価基準1に従って、各人工心肺用人工肺部が実際の使用に適しているか否かを総合的に評価した。
 ・評価基準1
       ◎ :現存する人工心肺用人工肺部よりも非常に優れている。
       ○ :現存する人工心肺用人工肺部よりも優れている。
       × :現存する人工心肺用人工肺部と同等か、または、それよりも劣る。
 これらの評価結果1を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例1~4の中で実施例2、3の人工心肺用人工肺部が実際の使用に非常に適しており、次いで実施例1、4の人工心肺用人工肺部が実際の使用に適しているという結果となった。
 なお、本発明では、中空糸膜の内径を150μm以下とし、傾斜角度θを60°以下とし、中空糸膜束の外径Dと、中空糸膜束3Aの長さLとの比φD/Lを0.4以上としさえすれば、現存する人工心肺用中空糸膜よりも優れたのもが得られるということは確認されている。
 また、上記において、本発明について好適な実施形態を挙げて説明したが、本発明は前記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の改変が可能なことは言うまでもない。
 本発明の中空糸膜束は、人工肺に用いられ、流体が通過する中空部を有する中空糸膜が集積されて全体形状が円筒体の形状をなす中空糸膜束であって、前記中空糸膜は、前記円筒体の中心軸に対して傾斜して前記円筒体の中心軸回りに巻回されており、前記中空糸膜の内径φdは、150μm以下であり、前記中空糸膜の前記円筒体の中心軸に対する傾斜角度θは、60°以下であり、前記円筒体の外径φDと、前記円筒体の長さLとの比φD/Lは、0.4以上であることを特徴とする。そのため、中空糸膜内の流体の圧力損失の増大を低減しながらも、血液充填量も低減することができ、患者の負担を軽減することができる。
10       人工肺
10A      人工肺部
10B      熱交換部
2A       ハウジング
21A      円筒状ハウジング本体
22A      第1の蓋体
221a     第1の部屋
23A      第2の蓋体
231a     第2の部屋
24A      血液流入側空間
241      第1の円筒部材
242      板片
243      側孔
244      凹凸部
245      第2の円筒部材
25A      血液流出側空間
26       ガス流入ポート
27       ガス流出ポート
28       血液流出ポート
291      リブ
292      リブ
3A、3B    中空糸膜束
3’       母材
4A       気泡除去手段
8        隔壁
9        隔壁
11       固定用糸
31       中空糸膜
311      始点
312      折り返し点
313      終点
32       流路
33       血液流路
41A      フィルタ部材
60       巻回装置
90       ローラ群
91       固定ローラ
92       固定ローラ
93       固定ローラ
94       可動ローラ
941      位置検出部
95       張力調節ローラ
951      ローラ本体
951a     ローラ本体
951b     ローラ本体
952      付勢部
100      制御部
101      CPU
102      記憶部
201      血液流入ポート
202      熱媒体流入ポート
203      熱媒体流出ポート
205      パージポート
600      固定装置
601      筒状コア回転手段
602      ワインダ装置
603      モータ
604      モータシャフト
605      コア取付部材
606      本体部
607      リニアレール
608      リニアテーブル
609      ボールネジシャフト
703      モータ
704      ボールナット部材
705      吐出部
706      本体部
707      吐出部
B        血液
G        ガス
H        熱媒体
O        中心軸
S101、S102、S103、S104、S105、S106、S107、S108、S109、S110、S111、S112、S113、S114、S115、S116  ステップ
T        張力
max      上限値
min      下限値
U        補正量
       回転速度
       回転速度
b1       速度
t、t、t   経過時間
v        巻き取り速度
φD    外径
φD    内径
φd      内径
φd      外径
L        長さ
L1       長さ

Claims (9)

  1.  人工肺に用いられ、流体が通過する中空部を有する中空糸膜が集積されて全体形状が円筒体の形状をなす中空糸膜束であって、
     前記中空糸膜は、前記円筒体の中心軸に対して傾斜して前記円筒体の中心軸回りに巻回されており、
     前記中空糸膜の内径φdは、150μm以下であり、
     前記中空糸膜の前記円筒体の中心軸に対する傾斜角度θは、60°以下であり、
     前記円筒体の外径φDと、前記円筒体の長さLとの比φD/Lは、0.4以上であることを特徴とする中空糸膜束。
  2.  前記内径φdは、90μm以上150μm以下である請求項1に記載の中空糸膜束。
  3.  前記傾斜角度θは、30°以上60°以下である請求項1または2に記載の中空糸膜束。
  4.  前記比φD/Lは、0.4以上2.5以下である請求項1ないし3のいずれか1項に記載の中空糸膜束。
  5.  前記外径φDは、20mm以上200mm以下であり、
     前記長さLは、30mm以上250mm以下である請求項1ないし4のいずれか1項に記載の中空糸膜束。
  6.  前記中空糸膜の外径φdは、120μm以上220μm以下である請求項1ないし4のいずれか1項に記載の中空糸膜束。
  7.  前記円筒体の内径φDは、10mm以上150mm以下である請求項1ないし6のいずれか1項に記載の中空糸膜束。
  8.  請求項1ないし7のいずれか1項に記載の中空糸膜束を有することを特徴とする人工肺。
  9.  人工肺に用いられ、流体が通過する中空部を有する中空糸膜が集積されて全体形状が円筒体の形状をなす中空糸膜束を製造する方法であって、
     内径φdが150μm以下の前記中空糸膜を、前記円筒体の中心軸に対する傾斜角度θが60°以下で、かつ、前記円筒体の外径φDと、前記円筒体の長さLとの比φD/Lが0.4以上になるように、前記円筒体の中心軸回りに巻回することを特徴とする中空糸膜束の製造方法。
PCT/JP2015/068200 2014-08-06 2015-06-24 中空糸膜束、人工肺および中空糸膜束の製造方法 WO2016021321A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15828915.7A EP3178503A4 (en) 2014-08-06 2015-06-24 Hollow-fiber membrane bundle, artificial lung, and method for producing hollow-fiber membrane bundle
CN201580042428.5A CN106573096B (zh) 2014-08-06 2015-06-24 中空纤维膜束、人工肺及中空纤维膜束的制造方法
JP2016540107A JPWO2016021321A1 (ja) 2014-08-06 2015-06-24 中空糸膜束、人工肺および中空糸膜束の製造方法
US15/413,765 US10406258B2 (en) 2014-08-06 2017-01-24 Hollow fiber membrane bundle, artificial lung, and method of manufacturing hollow fiber membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-160828 2014-08-06
JP2014160828 2014-08-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/413,765 Continuation US10406258B2 (en) 2014-08-06 2017-01-24 Hollow fiber membrane bundle, artificial lung, and method of manufacturing hollow fiber membrane

Publications (1)

Publication Number Publication Date
WO2016021321A1 true WO2016021321A1 (ja) 2016-02-11

Family

ID=55263599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068200 WO2016021321A1 (ja) 2014-08-06 2015-06-24 中空糸膜束、人工肺および中空糸膜束の製造方法

Country Status (5)

Country Link
US (1) US10406258B2 (ja)
EP (1) EP3178503A4 (ja)
JP (1) JPWO2016021321A1 (ja)
CN (1) CN106573096B (ja)
WO (1) WO2016021321A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043287A1 (ja) * 2016-08-31 2018-03-08 テルモ株式会社 熱交換器、人工肺および熱交換器の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113398354B9 (zh) * 2021-07-14 2022-05-03 江苏赛腾医疗科技有限公司 集成式膜式氧合器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001178818A (ja) * 1999-12-27 2001-07-03 Terumo Corp 中空糸膜型人工肺
WO2012133372A1 (ja) * 2011-03-31 2012-10-04 テルモ株式会社 人工肺
WO2013146321A1 (ja) * 2012-03-26 2013-10-03 テルモ株式会社 医療器具の製造方法および医療器具

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696098B2 (ja) 1988-05-27 1994-11-30 株式会社クラレ 中空糸型流体処理装置
US4881955A (en) * 1988-09-12 1989-11-21 Union Carbide Corporation Method for gas separation using helically wound hollow fibers permeable membrane cartridge
US5230862A (en) * 1991-08-16 1993-07-27 Cardiopulmonics, Inc. Apparatus for extracorporeal blood oxygenation
US6004511A (en) * 1995-09-01 1999-12-21 Baxter International Inc. Hollow fiber oxygenator
JP4041254B2 (ja) * 1999-12-15 2008-01-30 テルモ株式会社 中空糸膜型人工肺
JP4855119B2 (ja) * 2006-03-28 2012-01-18 テルモ株式会社 フィルタ部材および人工肺
US8865067B2 (en) * 2011-04-29 2014-10-21 Medtronic, Inc. Combination oxygenator and arterial filter device for treating blood in an extracorporeal blood circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001178818A (ja) * 1999-12-27 2001-07-03 Terumo Corp 中空糸膜型人工肺
WO2012133372A1 (ja) * 2011-03-31 2012-10-04 テルモ株式会社 人工肺
WO2013146321A1 (ja) * 2012-03-26 2013-10-03 テルモ株式会社 医療器具の製造方法および医療器具

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043287A1 (ja) * 2016-08-31 2018-03-08 テルモ株式会社 熱交換器、人工肺および熱交換器の製造方法
CN109195645A (zh) * 2016-08-31 2019-01-11 泰尔茂株式会社 换热器、人工肺及换热器的制造方法
JPWO2018043287A1 (ja) * 2016-08-31 2019-06-24 テルモ株式会社 熱交換器、人工肺および熱交換器の製造方法
EP3508233A4 (en) * 2016-08-31 2020-03-25 Terumo Kabushiki Kaisha HEAT EXCHANGER, ARTIFICIAL LUNG AND METHOD FOR PRODUCING A HEAT EXCHANGER
CN109195645B (zh) * 2016-08-31 2021-12-21 泰尔茂株式会社 换热器、人工肺及换热器的制造方法

Also Published As

Publication number Publication date
EP3178503A1 (en) 2017-06-14
US20170128621A1 (en) 2017-05-11
EP3178503A4 (en) 2018-05-09
US10406258B2 (en) 2019-09-10
CN106573096A (zh) 2017-04-19
JPWO2016021321A1 (ja) 2017-05-18
CN106573096B (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
WO2015115138A1 (ja) 熱交換器の製造方法および熱交換器
USRE36125E (en) Mass transfer device having a hollow fiber bundle
WO2012133372A1 (ja) 人工肺
JP2009533212A (ja) 改良された逆洗能力を有する強化管状ポリマー膜及びその製造方法
JP6396795B2 (ja) 医療器具の製造方法
JP7061581B2 (ja) 熱交換器および人工肺
WO2016021321A1 (ja) 中空糸膜束、人工肺および中空糸膜束の製造方法
JP4936435B2 (ja) スパイラル型膜エレメント及びその製造方法
WO2016009780A1 (ja) 中空糸膜束の製造方法および人工肺の製造方法
WO2013146277A1 (ja) 医療器具
JP6599897B2 (ja) 統合された透過物流動制御器を有するスパイラル巻きモジュール
JP7134866B2 (ja) 中空糸膜層積層体
US11534536B2 (en) Heat exchanger and oxygenator
JP6602302B2 (ja) 中空糸膜束の製造方法
JPH04219126A (ja) 中空糸ステープル及び中空糸パッケージの製法、及び流体からのガスの分離法並びに濾過法
JP6944458B2 (ja) 熱交換器、人工肺および熱交換器の製造方法
JP2002543887A (ja) 巻かれたチューブ束を製造する方法及び装置
JP2016026865A (ja) 分離膜エレメント
JP2017104851A (ja) 分離膜および分離膜エレメント
JP2008237463A (ja) 環状チューブ及びスペーサーヤーン巻回し装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15828915

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016540107

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015828915

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015828915

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE