WO2016020249A1 - Superhydrophobe, nanostrukturierte schutzschicht für wiederaufladbare lithium-batteriezellen mit metallischer lithium-anode - Google Patents

Superhydrophobe, nanostrukturierte schutzschicht für wiederaufladbare lithium-batteriezellen mit metallischer lithium-anode Download PDF

Info

Publication number
WO2016020249A1
WO2016020249A1 PCT/EP2015/067456 EP2015067456W WO2016020249A1 WO 2016020249 A1 WO2016020249 A1 WO 2016020249A1 EP 2015067456 W EP2015067456 W EP 2015067456W WO 2016020249 A1 WO2016020249 A1 WO 2016020249A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
superhydrophobic
nanostructured
composite
lithium
Prior art date
Application number
PCT/EP2015/067456
Other languages
English (en)
French (fr)
Inventor
Thomas Wöhrle
Martin Tenzer
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201580041700.8A priority Critical patent/CN106537645A/zh
Priority to US15/501,342 priority patent/US20170229712A1/en
Publication of WO2016020249A1 publication Critical patent/WO2016020249A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • H01M12/065Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode with plate-like electrodes or stacks of plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0409Methods of deposition of the material by a doctor blade method, slip-casting or roller coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • H01M4/0426Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0428Chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0094Composites in the form of layered products, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0407Methods of deposition of the material by coating on an electrolyte layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to a composite layer for an electrode of a rechargeable galvanic element, manufacturing method thereof and its use.
  • Object made up of particles The individual particles are coated to provide them with a hydrophobic surface.
  • Polymers or polymer mixtures are proposed as the hydrophobic coating, for example EPDM and PVDF.
  • Lithium salts may be added to the polymer to improve lithium ion conductivity.
  • the polymer coating can be carried out by the polymer in a
  • Dissolved solvent is sprayed onto the particles.
  • WO 2012/111116 AI refers to the surface of a positive
  • WO 2010/027337 A1 discloses electrode materials for use in metal-air batteries.
  • the electrode comprises a layer of a nanostructured, hydrophobic material, for example TiO 2 , or of a ceramic material.
  • the layer may be made porous and
  • the proposed electrode comprises an additional layer of a hydrophilic material.
  • WO 2004/088769 A2 discloses a lithium battery whose electrodes are provided with a coating in order to adapt their surface tension.
  • the coating can be produced, for example, with a chemical reaction on the electrode surface or applied dissolved in a solvent to the electrode.
  • the electrode may further include nanostructures such as
  • Electrode is used. It can also be a lithium alloy as
  • Negative electrode can be used.
  • Amorphous metallic lithium or amorphous lithium is coated on its surface with a layer of material having hydrophobic properties.
  • the hydrophobic material layer comprises at least one material selected from the group of
  • Hydrocarbon compounds or esters may be partially substituted with a silicone atom, or hydrogen atoms in the hydrophobic material may be partially or completely replaced by fluorine atoms.
  • the negative electrode may be coated with the hydrophobic material by immersing the negative electrode in a solution containing the hydrophobic material or by sputtering or by steaming.
  • US 2002/0086213 AI has a lithium battery cell and a manufacturing method for this object.
  • Metallic lithium or one of its alloys is used as the active anode material.
  • the anode further comprises a layer of hydrophobic material comprising at least one of a hydrocarbon or ester wherein carbon may be partially replaced by silicone or hydrogen partially or completely replaced with fluorine or metallic fluoride materials.
  • lithium batteries in particular the so-called post-lithium-ion batteries, such as Li-sulfur (Li-S) or Li-air (Li-Air) is used as the anode, a metallic lithium anode.
  • metallic lithium anodes is in principle also together with all other cathode materials, such as transition metal oxides such as lithium cobalt oxide, LiCo0 2 , or the like, possible what this
  • the metallic lithium anode (without protection) has the disadvantage that parasitic reactions with the liquid electrolyte or substances contained therein take place, such as with polysulfides in the case of a Li-S battery cell. As a result, both the electrolyte and the lithium itself are irreversibly consumed. To prevent this, a mechanically, chemically and electrochemically effective protective layer on the metallic lithium anode is required, which prevents the direct contact between metallic lithium and liquid electrolyte and at the same time has a sufficiently high lithium ion conductivity. Such a protective layer only works properly as long as it does not have any defects in the form of cracks, holes, etc. during operation and
  • lithium preferably deposits there and reacts with it
  • Such protective layers are always located in a cell between the anode and the cathode. In principle, they can either be applied directly to the anode, directly on the cathode or in between with further layers between the protective layer and the electrodes. Disclosure of the invention
  • the composite layer comprises at least one superhydrophobic, nanostructured protective layer, the rejects polar substances.
  • the at least one superhydrophobic nanostructured protective layer repels polar substances and thus keeps them in the second electrode or, depending on the arrangement, in the pores of a separator.
  • the superhydrophobic, nanostructured protective layer is produced from nanostructured polypropylene (PP) or further polyolefins.
  • PP polypropylene
  • Further suitable materials are nanostructured polyethylene (PE) or nanostructured PE-PP copolymers.
  • Layer composite also be made of nanostructured silicon or a polymer.
  • the layer composite proposed according to the invention is in one
  • the super-hydrophobic, nanostructured protective layer is mounted within the composite layer directly on a lithium layer or on a second electrode.
  • Layer composite of at least one second polymer layer and / or at least a second ceramic layer is covered.
  • the layer composite proposed according to the invention can also be designed in such a way that the superhydrophobic,
  • Polymer layer or a second ceramic layer is applied to a lithium layer.
  • the layer composite in such a way
  • the separator layers are around
  • the present invention relates to a method for producing such a layer composite, wherein in a method step, a superhydrophobic, nanostructured protective layer is applied to a carrier substrate.
  • the superhydrophobic, nanostructured protective layer can be applied to the carrier substrate by coating by means of a spray over a spray head with subsequent drying, during which crosslinking or polymerization occurs.
  • the superhydrophobic nanostructured protective layer can be applied by evaporation or vacuum evaporation followed by crosslinking or polymerization.
  • the superhydrophobic nanostructured protective layer of nanostructured silicon is applied to a carrier substrate, it is possible to sputter the superhydrophobic nanostructured layer by aerosol deposition method (ADM) or by plasma-enhanced or plasma-assisted chemical Deposition of material (plasma enhanced chemical vapor deposition, PECVD) on the carrier substrate.
  • ADM aerosol deposition method
  • PECVD plasma-enhanced or plasma-assisted chemical Deposition of material
  • the composite layer according to the present invention may advantageously be used in lithium batteries, in particular lithium-sulfur battery systems (Li-S) or lithium-oxygen battery systems (Li-O) used as traction battery in hybrid vehicles (HEV), plug-in Hybrid Vehicles (PHEV) and
  • Li-S lithium-sulfur battery systems
  • Li-O lithium-oxygen battery systems
  • HEV hybrid vehicles
  • PHEV plug-in Hybrid Vehicles
  • the layer composite proposed according to the invention can be designed according to the one outlined above
  • Embodiment variants in electric vehicles, gardening tools, computers, notebooks, PDAs (Personal Digital Assistant), smart phones or mobile phones are used. Advantages of the invention
  • the layer composite proposed according to the invention makes it possible, in an advantageous manner, to markedly increase the cycle stability, the service life and also the safety of a lithium battery. This is due to the fact that when using the proposed solution according to the invention, a contact between lithium and liquid electrolytes, or in this contained species such. Polysulfides, ideally completely prevented or significantly reduced. The repulsion of polar substances due to their hydrophobic character keeps polar components of the electrolyte and dissolved polar species away from the surface of the lithium anode. A salient feature of the superhydrophobic, nanostructured
  • Protective layer is the fact that, due to its superhydrophobic character, it still very well fulfills its repellent properties for polar components even if it has minor defects. This property distinguishes the super-hydrophobic, nanostructured protective layer from other protective layers, as they usually fail as soon as smaller defects have formed. Lithium is preferentially deposited there.
  • the superhydrophobic, nanostructured layers are also very thin and do not significantly reduce the energy density of a lithium battery cell as a passive material.
  • the superhydrophobic, nanostructured protective layers need not necessarily be ionic conductive for their function of repelling polar components contained in electrolytes or in these other contained substances.
  • the superhydrophobic, nanostructured protective layers are incorporated within the layered composite in interaction with other ceramic or polymeric layers.
  • the ceramic and / or polymeric layers of the layer composite take on the task of lithium-ion conduction. Ion conduction through the superhydrophobic, nanostructured
  • Protective layer is in the event that it is not ionic conductive itself, by drilling in the layer in which then the other layers at
  • a superhydrophobic, nanostructured protective layer is understood to mean one in which the degree of hydrophobicity, ie the repellency of the polar substances, is given by a contact angle.
  • Superhydrophobic, nanostructured protective layers in the present context have a contact angle of> 160 °.
  • a metallic lithium anode has a number of advantages: For example, the use of a metallic lithium anode significantly increases the specific energy and energy density of a battery cell. Furthermore, their production process is considerably simplified, since a lithium foil can already be prepared and ready-made ready bought and their production otherwise required costly equipment such as mixers, coaters, calenders, vacuum dryers or roller scissors for assembling the electrode can be saved.
  • the superhydrophobic, nanostructured protective layer can be easily produced by methods known to the person skilled in the art, for example by spray coating or another coating method.
  • rechargeable lithium battery cells similar to primary lithium batteries can be used in a generally available at the battery cell manufacturer drying room.
  • Figure 1 shows a schematic way different contact angle of
  • Water droplets comprising these in relation to a hydrophilic, a hydrophobic and a superhydrophobic carrier substrate,
  • FIG. 2 shows a first embodiment of a superhydrophobic
  • FIG. 3 shows a further, second variant of the layer composite
  • FIG. 4 shows a further, third variant of the layer composite
  • Figure 5 shows a fourth embodiment of the composite layer
  • Figure 6 shows schematically a manufacturing method for the
  • FIG. 7 shows a further, fifth layer composite comprising a second
  • FIG. 8 shows a further embodiment variant of a layer composite with a superhydrophobic, nanostructured protective layer, embedded between two separator layers between a second electrode and a first electrode.
  • hydrophilic In contrast, a hydrophobic layer 14 is characterized by a contact angle> 90 °.
  • the illustration according to FIG. 1 shows that the water droplet 10 experiences only minimal deformation.
  • FIG. 2 shows a first layer composite 30, which can also be referred to as the first composite.
  • first composite a first layer composite
  • Layer composite 30 according to the illustration in FIG. 2 are in descending order initially a first polymer layer 32, one attached thereto
  • a superhydrophobic, nanostructured protective layer 40 This can be made for example of nanostructured polypropylene (PP), other polyolefins or polymer.
  • PP polypropylene
  • the lithium layer 42 covered by the superhydrophobic nanostructured protective layer 40 represents the first electrode 62, which is located in the first layer composite 30 as shown in FIG. 2 above a current collector 44, which is preferably made of copper.
  • the other layers shown in the layer composite according to FIG. 2 are designated in Figure 2, a first electrode.
  • the lithium layer 42 covered by the superhydrophobic nanostructured protective layer 40 represents the first electrode 62, which is located in the first layer composite 30 as shown in FIG. 2 above a current collector 44, which is preferably made of copper.
  • Figure 3 shows a modification of the first layer composite, as shown in Figure 2.
  • a second layer composite 46 shown in FIG. 3 has, in contrast to the first layer composite 30, as shown in FIG. 2, only the first one
  • the second ceramic layer 38 is absent. Also in the second layer composite 46 according to FIG. 3, the first electrode 62 is formed by the lithium layer 42 and by the superhydrophobic nanostructured protective layer 40 covering it.
  • the second layer composite 46 as shown in FIG. 3 also includes the current conductor 44, which is preferably made of copper.
  • FIG. 4 shows a further, third embodiment of the invention
  • Layers of the first layer composite 30, as shown in Figure 2 corresponds, but has a different sequence in terms of the layer sequence.
  • the third layer composite 48 as shown in FIG. 4, there is between the superhydrophobic, nanostructured protective layer 40 and the
  • Lithium layer 42, the second ceramic layer 38 Lithium layer 42, the second ceramic layer 38.
  • Ceramic layer 38 formed. The sequence of the first polymer layer 32, the first ceramic layer 34 and the second polymer layer 36 is identical to
  • FIG. 5 shows a further, fourth possible embodiment of a layer composite 50 comprising a superhydrophobic nanostructured protective layer 40.
  • a layer composite 50 comprising a superhydrophobic nanostructured protective layer 40. 4 between the superhydrophobic, nanostructured protective layer 40 and the lithium layer 42 there is another layer, in this case the second polymer layer 36.
  • the fourth layer composite 50 as shown in FIG. 5, comparable to the third layer composite 48 according to FIG. the first electrode 62 within the fourth layer composite 50 according to FIG. 5 is formed by the lithium layer 42, the second polymer layer 36 and the superhydrophobic nanostructured protective layer 40.
  • the first ceramic layer 34, the first is located in the reverse order compared to the third layer composite 48 according to FIG
  • FIG. 6 schematically shows an application method for producing the superhydrophobic nanostructured protective layer 40.
  • a spray 52 can be formed from a nanostructured polypropylene or also from nanostructured silicon.
  • the spray 52 is applied by means of a movable spray head 54 onto a carrier substrate 56, which has a sufficient surface 58.
  • the spray head 54 can be moved relative to the carrier substrate 56 in spray direction 60, so that with a uniform movement and application of the spray 52 onto the carrier substrate 56, a thin film of the superhydrophobic nanostructured protective layer 40 is produced.
  • drying takes place in which crosslinking or polymerization of the superhydrophobic nanostructured protective layer 40 occurs.
  • the superhydrophobic nanostructured protective layer 40 can also be made by doctoring a thin layer and then drying.
  • Protective layer 40 is made, selected nanostructured silicon, so can be made of sputtering as an application method use.
  • nanostructured silicon it is possible to apply nanostructured silicon to the carrier substrate 56 by means of aerosol deposition.
  • nanostructured silicon it is possible to use nanostructured silicon by plasma-assisted chemical
  • FIG. 7 shows the fifth layer composite 70, ie a fifth composite which has the current conductor 44, the lithium layer 42 and a first composite layer
  • Separator layer 72 preferably a polymeric protective layer. Between this first separator layer 72 and a second electrode 74 is in this embodiment, the superhydrophobic, nanostructured
  • Protective layer 40 applied directly to the second electrode 74. Between the first electrode 62 representing lithium layer 42 is the first
  • Separator layer 72 a plurality of layers of ceramic layers or in alternating sequence a plurality of polymer layers and ceramic layers may be arranged alternately within the fifth layer composite 70 as shown in FIG.
  • FIG. 8 shows a further embodiment of a layer composite 76 based on the fifth layer composite 70 shown in FIG.
  • FIG. 8 shows the sixth layer composite 76, d. H. a sixth composite in which the superhydrophobic nanostructured protective layer 40 is embedded between the first separator layer 72, preferably a polymer, and a second separator layer 78, also preferably a polymer.
  • the super-hydrophobic nanostructured protective layer 40 is not disposed directly on the second electrode 74.
  • the two separator layers 72, 78 are located between the lithium layer constituting the first electrode 62
  • the lithium layer 42 constituting the first electrode 62 and the superhydrophobic nanostructured protective layer 40 there may be other layers such as polymer layers and ceramic layers in an alternating sequence.
  • the layer composites 30, 46, 48, 50, 70 and 76 according to the preceding embodiments according to FIGS. 2 to 5, 7 and 8, including at least one superhydrophobic nanostructured protective layer 40, significantly contribute to increasing the life, cycle stability and safety of lithium - batteries, in particular lithium-sulfur Battery systems and lithium-oxygen battery systems.
  • the use is also independent of the cathode chemistry or
  • the proposed solution according to the invention also contributes to increasing the safety of lithium anodes in lithium batteries, since under thermal stress, the reaction of liquid electrolyte with metallic lithium is prevented or at least significantly reduced.
  • Hybrid vehicles plug-in hybrid vehicles and in electric vehicles are used. Due to the particularly high demands on the service life in the automotive sector, the solution proposed according to the invention is particularly interesting there.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

Die Erfindung bezieht sich auf einen Schichtverbund (30) für eine Elektrode (62), ein Herstellungsverfahren dafür sowie dessen Verwendung bei wiederaufladbaren galvanischen Elementen. Bei den wiederaufladbaren galvanischen Elementen handelt es sich um Lithium-Batterien, wie beispielsweise eine Lithium-Schwefel-Batterie oder um eine Lithium-Sauerstoff- Batterie. Der Schichtverbund (30) umfasst mindestens eine superhydrophobe, nanostrukturierte Schutzschicht (40), die polare Substanzen abweist.

Description

Beschreibung Titel
Superhydrophobe, nanostrukturierte Schutzschicht für wiederaufladbare Lithium- Batteriezellen mit metallischer Lithium-Anode
Stand der Technik
Die Erfindung bezieht sich auf einen Schichtverbund für eine Elektrode eines wiederaufladbaren galvanischen Elements, Herstellungsverfahren dafür sowie dessen Verwendung.
US 2005/0053834 AI hat eine Elektrode für eine Lithium-Batterie zum
Gegenstand, die aus Partikeln aufgebaut ist. Die einzelnen Partikel werden beschichtet, um diese mit einer hydrophoben Oberfläche auszurüsten. Als hydrophobe Beschichtung werden Polymere bzw. Polymermischungen vorgeschlagen, beispielsweise EPDM und PVDF. Dem Polymer können zur Verbesserung der Lithium-Ionenleitfähigkeit Lithiumsalze zugegeben werden. Die Polymerbeschichtung kann dadurch erfolgen, dass das Polymer in einem
Lösungsmittel gelöst auf die Partikel aufgesprüht wird.
WO 2012/111116 AI bezieht sich darauf, die Oberfläche einer positiven
Elektrode mit einem hydrophoben Film zu versehen.
WO 2010/027337 AI offenbart Elektrodenmaterialien zur Verwendung in Metall- Luft- Batterien. Die Elektrode umfasst eine Schicht aus einem nanostrukturierten, hydrophoben Material, beispielweise Ti02, oder aus einem keramischen Material. Je nach Ausführungsform kann die Schicht porös ausgeführt sein und
zusätzliche metallische Nanostrukturen umfassen. In einer weiteren
Ausführungsform umfasst die vorgeschlagene Elektrode eine zusätzliche Schicht aus einem hydrophilen Material. WO 2004/088769 A2 offenbart eine Lithium- Batterie, deren Elektroden mit einer Beschichtung versehen sind, um deren Oberflächenspannung anzupassen. Die Beschichtung kann beispielsweise mit einer chemischen Reaktion auf der Elektroden-Oberfläche erzeugt werden oder in einem Lösungsmittel gelöst auf die Elektrode aufgetragen werden. Auch der Einsatz von Polymeren, wie z.B. Polyethylen, ist möglich. Die Elektrode kann ferner Nanostrukturen wie
Kohlenstoffnanoröhrchen umfassen. US 2003/0180608 AI offenbart eine Batterie, bei der Lithium- Metall als negative
Elektrode eingesetzt wird. Es kann auch eine Lithiumlegierung als
Negativelektrode eingesetzt werden. Amorphes metallisches Lithium oder amorphes Lithium wird an seiner Oberfläche mit einer Materialschicht mit hydrophoben Eigenschaften beschichtet. Die hydrophobe Materialschicht umfasst mindestens ein Material ausgewählt aus der Gruppe von
Kohlenwasserstoffen und Ester. Kohlenstoff in den
Kohlenwasserstoffverbindungen oder Ester können teilweise substituiert sein mit einem Silikonatom, oder Wasserstoffatomen im hydrophobischen Material können teilweise oder vollständig durch Fluoratome ersetzt sein. Die negative Elektrode kann mit dem hydrophobischen Material beschichtet werden, indem die negative Elektrode in eine Lösung eingetaucht wird, welche das hydrophobische Material enthält, oder durch Aufsputtern oder durch Dampfungsverfahren.
US 2002/0086213 AI hat eine Lithium-Batteriezelle und ein Herstellverfahren für diese zum Gegenstand. Metallisches Lithium oder eine von dessen Legierungen wird als aktives Anodenmaterial eingesetzt. Die Anode umfasst darüber hinaus eine Schicht aus hydrophobischem Material, welche zumindest eine Ausprägung eines Kohlenwasserstoffs oder Esters umfasst, wobei Kohlenstoff teilweise durch Silikon ersetzt sein oder Wasserstoff teilweise oder vollständig durch ein Fluor oder metallische Fluoridmaterialien ersetzt sein kann.
Bei verschiedenen Arten von Lithium- Batterien, insbesondere den sogenannten Post- Lithium- Ionen- Batterien, wie beispielsweise Li-Schwefel (Li-S) oder Li- Luft (Li-Air) wird als Anode eine metallische Lithium-Anode verwendet. Darüber hinaus ist die Verwendung metallischer Lithium-Anoden im Prinzip auch zusammen mit allen anderen Kathodenmaterialien, z.B. Übergangsmetalloxide wie Lithiumkobaltoxid, LiCo02, oder ähnliches, möglich, was dieser
Entwicklungsrichtung ein äußerst großes Potential verleiht, um hohe spezifische Energien darzustellen. Die metallische Lithium-Anode (ohne Schutz) hat jedoch den Nachteil, dass an ihr parasitäre Rektionen mit dem Flüssig- Elektrolyten oder darin enthaltender Stoffe stattfinden, wie beispielsweise mit Polysulfiden im Falle einer Li-S- Batteriezelle. Hierdurch werden sowohl der Elektrolyt als auch das Lithium selbst irreversibel aufgezehrt. Um dieses zu verhindern, ist eine mechanisch, chemisch und elektrochemisch wirksame Schutzschicht auf der metallischen Lithium-Anode erforderlich, die den direkten Kontakt zwischen metallischem Lithium und Flüssig- Elektrolyt verhindert und gleichzeitig eine ausreichend hohe Lithiumionenleitfähigkeit aufweist. Eine derartige Schutzschicht funktioniert nur solange einwandfrei, wie sie keine Defekte in Gestalt von Rissen, Löchern usw. während des Betriebs und der
Lagerzeit während der Lagerung aufweist. Sobald eine derartige Schadstelle entstanden ist, scheidet sich Lithium bevorzugt dort ab und reagiert mit
Flüssigelektrolyt, da dort der erhöhte Widerstand, den die Schutzschicht mit sich bringt, nicht vorhanden ist. Auf diese Art und Weise vergrößern sich Defekte selbst, sobald sie einmal entstanden sind, in fortschreitendem Maße. Damit können derartige Schutzschichten nur dann funktionieren, wenn auf Dauer gewährleistet ist, dass mechanische und strukturelle Defekte zuverlässig vermieden werden können. Derartige Schutzschichten befinden sich in einer Zelle stets zwischen der Anode und der Kathode. Prinzipiell können sie entweder direkt auf der Anode aufgebracht sein, direkt auf der Kathode oder dazwischen mit weiteren Schichten zwischen der Schutzschicht und den Elektroden. Offenbarung der Erfindung
Erfindungsgemäß wird ein Schichtverbund für eine Elektrode eines
wiederaufladbaren galvanischen Elementes vorgeschlagen, bei der es sich insbesondere um eine Lithium- Batterie handelt, wobei der Schichtverbund mindestens eine superhydrophobe, nanostrukturierte Schutzschicht umfasst, die polare Substanzen abweist. Durch die mindestens eine superhydrophobe, nanostrukturierte Schutzschicht werden polare Substanzen abgestoßen und diese somit in der zweiten Elektrode oder, je nach Anordnung, in den Poren eines Separators gehalten. Diese Komponenten werden von der Oberfläche einer Lithium-Anode nahezu vollständig ferngehalten.
In einer vorteilhaften Weiterbildung des erfindungsgemäß vorgeschlagenen Schichtverbundes ist die superhydrophobe, nanostrukturierte Schutzschicht aus nanostrukturiertem Polypropylen (PP) oder weiteren Polyolefinen hergestellt. Als Materialien kommen des Weiteren nanostrukturiertes Polyethylen (PE) oder nanostrukturierte PE-PP-Copolymere in Frage. Alternativ kann die
superhydrophobe, nanostrukturierte Schutzschicht innerhalb des
Schichtverbundes auch aus nanostrukturiertem Silizium oder aus einem Polymer hergestellt sein.
Der erfindungsgemäß vorgeschlagene Schichtverbund ist in einer
Ausführungsmöglichkeit derart beschaffen, dass die superhydrophobe, nanostrukturierte Schutzschicht innerhalb des Schichtverbundes unmittelbar auf einer Lithiumschicht oder auf einer zweiten Elektrode angebracht ist. Alternativ oder zusätzlich hierzu ist auch ein Schichtverbund denkbar, bei dem die superhydrophobe, nanostrukturierte Schutzschicht innerhalb des
Schichtverbundes von mindestens einer zweiten Polymerschicht und/oder mindestens einer zweiten Keramikschicht überdeckt ist.
Der erfindungsgemäß vorgeschlagene Schichtverbund kann auch derart ausgestaltet sein, dass die in diesem enthaltene superhydrophobe,
nanostrukturierte Schutzschicht unter Zwischenschaltung einer zweiten
Polymerschicht oder einer zweiten Keramikschicht auf eine Lithiumschicht aufgebracht ist.
Daneben besteht auch die Möglichkeit, den Schichtverbund derart
auszugestalten, dass dieser zwischen einer Lithiumschicht und einer zweiten Elektrode, insbesondere Schwefelelektrode, die superhydrophobe,
nanostrukturierte Schutzschicht und mindestens eine Separatorschicht aufweist. In vorteilhafter Weise handelt es sich bei den Separatorschichten um
Polymerschichten.
Darüber hinaus betrifft die vorliegende Erfindung ein Verfahren zur Herstellung eines derartigen Schichtverbundes , wobei in einem Verfahrensschritt eine superhydrophobe, nanostrukturierte Schutzschicht auf ein Trägersubstrat aufgebracht wird. Die superhydrophobe, nanostrukturierte Schutzschicht kann durch Beschichtung mittels eines Sprühnebels über einen Sprühkopf mit anschließender Trocknung, bei der es zur Vernetzung oder Polymerisation kommt, auf das Trägersubstrat aufgebracht werden. Alternativ besteht die Möglichkeit, die superhydrophobe, nanostrukturierte Schutzschicht durch Beschichtung mittels Aufrakeln einer dünnen Schicht aufzubringen, woran sich ein Trocknen anschließt.
Des Weiteren kann das Aufbringen der superhydrophoben, nanostrukturierten Schutzschicht im Wege des Verdampfens oder des Vakuumverdampfens mit anschließender Vernetzung oder Polymerisation erfolgen.
Für den Fall, dass die superhydrophobe, nanostrukturierte Schutzschicht aus nanostrukturiertem Silizium auf ein Trägersubstrat aufgebracht wird, besteht die Möglichkeit, die superhydrophobe, nanostrukturierte Schicht durch Aufsputtern, im Wege einer Aerosol-Abscheidung (aerosol deposition method, ADM) oder durch plasmainduzierte oder plasmaunterstützte chemische Materialabscheidung (plasma enhanced chemical vapor deposition, PECVD) auf das Trägersubstrat aufzubringen.
Der Schichtverbund gemäß der vorliegenden Erfindung kann in vorteilhafter Weise bei Lithium- Batterien, insbesondere Lithium-Schwefel-Batteriesystemen (Li-S) oder Lithium-Sauerstoff-Batteriesystemen (Li-O), die als Traktionsbatterie an Hybridfahrzeugen (HEV), Plug-In-Hybridfahrzeugen (PHEV) und
Elektrofahrzeugen (EV) eingesetzt werden. Daneben kann der erfindungsgemäß vorgeschlagene Schichtverbund gemäß der vorstehend skizzierten
Ausführungsvarianten in Elektrofahrzeugen, Gartengeräten, Computern, Notebooks, PDAs (Personal Digital Assistant), Smartphones oder Mobiltelefonen eingesetzt werden. Vorteile der Erfindung
Der erfindungsgemäß vorgeschlagene Schichtverbund erlaubt es, in vorteilhafter Weise, die Zyklenbeständigkeit, die Lebensdauer und auch die Sicherheit einer Lithium- Batterie deutlich zu erhöhen. Dies hat seine Ursache darin, dass bei Anwendung der erfindungsgemäß vorgeschlagenen Lösung ein Kontakt zwischen Lithium und Flüssig- Elektrolyten, bzw. in diesem enthaltener Spezies wie z.B. Polysulfide, idealerweise vollständig verhindert bzw. signifikant verringert wird. Durch die Abstoßung polarer Substanzen aufgrund ihres hydrophoben Charakters werden polare Komponenten des Elektrolyten und darin gelöste polare Spezies von der Oberfläche der Lithium-Anode fern gehalten. Ein hervorstechendes Merkmal der superhydrophoben, nanostrukturierten
Schutzschicht ist die Tatsache, dass sie aufgrund ihres superhydrophoben Charakters ihre abweisenden Eigenschaften für polare Komponenten auch dann noch sehr gut erfüllt, wenn sie kleinere Defektstellen aufweist. Diese Eigenschaft unterscheidet die superhydrophobe, nanostrukturierte Schutzschicht von anderen Schutzschichten, da diese in der Regel dann versagen, sobald sich kleinere Defektstellen gebildet haben. An diesen lagert sich dort vorzugsweise Lithium ab. Die superhydrophoben, nanostrukturierten Schichten sind zudem sehr dünn und verringern die Energiedichte einer Lithium- Batteriezelle als passives Material nicht signifikant.
Die superhydrophoben, nanostrukturierten Schutzschichten müssen für ihre Funktion des Abweisens polarer Komponenten, die in Elektrolyten enthalten sind bzw. in diesen weiterer enthaltener Stoffe, nicht zwingend ionisch leitend sein. Dazu sind die superhydrophoben, nanostrukturierten Schutzschichten innerhalb des Schichtverbundes im Zusammenspiel mit anderen keramischen oder polymeren Schichten aufgenommen. Die keramischen und/oder polymeren Schichten des Schichtverbundes übernehmen die Aufgabe der Lithium-Ionen- Leitung. Ionen-Leitung durch die superhydrophobe, nanostrukturierte
Schutzschicht erfolgt für den Fall, dass sie selbst nicht ionisch leitend ist, durch Bohren in der Schicht, in die dann die jeweils anderen Schichten beim
Herstellungsprozess des Schichtverbundes eindringen können. Im vorliegenden Zusammenhang wird unter einer superhydrophoben, nanostrukturierten Schutzschicht eine solche verstanden, bei der das Maß einer Hydrophobie, d.h. die Abweisung der polaren Stoffe, durch einen Kontaktwinkel angegeben wird. Superhydrophobe, nanostrukturierte Schutzschichten im vorliegenden Zusammenhang weisen einen Kontaktwinkel von > 160° auf.
Der Einsatz einer metallischen Lithium-Anode geht mit einer Reihe von Vorteilen einher: So lässt sich durch den Einsatz einer metallischen Lithium-Anode die spezifische Energie und die Energiedichte einer Batteriezelle erheblich steigern. Des Weiteren wird deren Herstellungsprozess erheblich vereinfacht, da eine Lithiumfolie bereits vorbereitet und vorkonfektioniert fertig gekauft werden kann und zu deren Herstellung ansonsten erforderliche kostenintensive Apparaturen wie Mischer, Coater, Kalander, Vakuumtrockner oder eine Rollenschere zum Konfektionieren der Elektrode eingespart werden können. Die superhydrophobe, nanostrukturierte Schutzschicht kann mit dem Fachmann bekannten Methoden einfach erzeugt werden, so beispielsweise im Wege des Spraycoatens oder eines anderen Beschichtungsverfahrens. Des Weiteren können wiederaufladbare Lithium- Batteriezellen ähnlich wie primäre Lithium-Batterien in einem in der Regel beim Batteriezellenhersteller vorhandenen Trockenraum eingesetzt werden.
Kurze Beschreibung der Zeichnungen
Anhand der Zeichnungen wird die Erfindung nachstehend eingehender beschrieben:
Es zeigt:
Figur 1 in schematischer Weise verschiedene Kontaktwinkel von
Wassertropfen, die diese in Bezug auf ein hydrophiles, ein hydrophobes und superhydrophobes Trägersubtrat aufweisen,
Figur 2 eine erste Ausführungsvariante eines eine superhydrophobe,
nanostrukturierte Schutzschicht enthaltenden Schichtverbundes, Figur 3 eine weitere, zweite Ausführungsvariante des Schichtverbundes,
Figur 4 eine weitere, dritte Ausführungsvariante des Schichtverbundes,
Figur 5 eine vierte Ausführungsvariante des Schichtverbundes, die
superhydrophobe, nanostrukturierte Schutzschicht enthaltend,
Figur 6 in schematischer Weise ein Herstellungsverfahren für die
superhydrophobe, nanostrukturierte Schutzschicht,
Figur 7 einen weiteren, fünften Schichtverbund umfassend eine zweite
Elektrode und eine erste Elektrode und
Figur 8 eine weitere Ausführungsvariante eines Schichtverbundes mit einer superhydrophoben, nanostrukturierten Schutzschicht, eingebettet zwischen zwei Separatorschichten zwischen einer zweiten Elektrode und einer ersten Elektrode.
In den Figuren sind gleiche oder ähnliche Komponenten mit gleichen
Bezugszeichen versehen. Auf eine wiederholte Beschreibung dieser
Komponenten wird in Einzelfällen verzichtet.
Anhand der Figur 1 sei schematisch darauf eingegangen, was im vorliegenden Zusammenhang unter der Bezeichnung superhydrophob zu verstehen ist. Der Darstellung gemäß Figur 1 ist zu entnehmen, dass das Maß einer Hydrophobie, d.h. einer Abweisung polarer Stoffe, mittels eines Kontaktwinkels bestimmt wird. Je hydrophober eine Oberfläche bzw. ein Oberflächensubstrat ist, desto höher ist der Kontaktwinkel. Bei einer hydrophilen Schicht 12 gemäß der Darstellung in Figur 1 verläuft ein Wassertropfen 10 zu einem Fleck, zu einer Lache oder einer Pfütze, gekennzeichnet durch einen Kontaktwinkel < 90°. Eine derartige
Oberfläche wird als hydrophil bezeichnet. Dem gegenüber ist eine hydrophobe Schicht 14 durch einen Kontaktwinkel > 90° gekennzeichnet. Der Darstellung gemäß Figur 1 ist entnehmbar, dass der Wassertropfen 10 lediglich eine minimale Deformation erfährt. Dem gegenüber sind superhydrophobe Materialien durch einen Kontaktwinkel > 160° gekennzeichnet, d.h. der Wassertropfen 10 bleibt bei Kontakt mit einer superhydrophoben Schicht 16 nahezu undeformiert.
Ausführungsformen der Erfindung
Der Darstellung gemäß Figur 2 ist ein erster Schichtverbund 30, der auch als erstes Komposit bezeichnet werden kann, zu entnehmen. Im ersten
Schichtverbund 30 gemäß der Darstellung in Figur 2 sind in absteigender Reihenfolge zunächst eine erste Polymerschicht 32, eine sich daran
anschließende erste Keramikschicht 34, schließlich eine weitere, zweite
Polymerschicht 36 sowie eine weitere, zweite Keramikschicht 38 dargestellt. Zwischen einer Lithiumschicht 42 und der zweiten Keramikschicht 38 befindet sich im ersten Schichtverbund 30 gemäß der Darstellung in Figur 2 eine superhydrophobe, nanostrukturierte Schutzschicht 40. Diese kann beispielsweise aus nanostrukturiertem Polypropylen (PP), anderen Polyolefinen oder Polymer hergestellt sein. Des Weiteren besteht die Möglichkeit, die superhydrophobe, nanostrukturierte Schutzschicht 40 aus nanostrukturiertem Silizium zu fertigen, wobei nanostrukturiertes Silizium gute Lithium- Ionen- Leiteigenschaften aufweist. Gemäß der Darstellung in Figur 2 ist die superhydrophobe, nanostrukturierte Schutzschicht 40 unmittelbar auf die Lithiumschicht 42 aufgebracht. Mit Position
62 ist in Figur 2 eine erste Elektrode bezeichnet. Die Lithiumschicht 42 bedeckt von der superhydrophoben, nanostrukturiere Schutzschicht 40 stellt die erste Elektrode 62 dar, die sich im ersten Schichtverbund 30 gemäß der Darstellung in Figur 2 oberhalb eines Stromableiters 44, der bevorzugt aus Kupfer gefertigt ist, befindet. Die weiteren im Schichtverbund gemäß Figur 2 dargestellten Schichten
32, 34, 36 und 38 dienen der Lithium-Ionen-Leitung.
Figur 3 zeigt eine Abwandlung des ersten Schichtverbundes, wie er in Figur 2 dargestellt ist.
Ein in Figur 3 dargestellter zweiter Schichtverbund 46 weist im Gegensatz zum ersten Schichtverbund 30, wie in Figur 2 dargestellt, lediglich die erste
Keramikschicht 34 auf. Im Unterschied zum ersten Schichtverbund 30 gemäß der Darstellung in Figur 2 fehlt es im zweiten Schichtverbund 46 gemäß Figur 3 an der zweiten Keramikschicht 38. Auch im zweiten Schichtverbund 46 gemäß der Darstellung in Figur 3 wird die erste Elektrode 62 durch die Lithiumschicht 42 sowie durch die diese überdeckende superhydrophobe, nanostrukturierte Schutzschicht 40 gebildet. Auch der zweite Schichtverbund 46 gemäß der Darstellung in Figur 3 umfasst den Stromableiter 44, der bevorzugt aus Kupfer gefertigt ist.
Figur 4 schließlich zeigt eine weitere, dritte Ausführungsvariante des
Schichtverbundes. In Figur 4 ist ein dritter Schichtverbund 48 dargestellt, der in der Anzahl der
Schichten dem ersten Schichtverbund 30, wie in Figur 2 dargestellt, entspricht, jedoch eine andere Reihenfolge hinsichtlich der Schichtabfolge aufweist. Im Unterschied zum ersten Schichtverbund 30 gemäß der Darstellung in Figur 2 befindet sich im dritten Schichtverbund 48 gemäß der Darstellung in Figur 4 zwischen der superhydrophoben, nanostrukturierten Schutzschicht 40 und der
Lithiumschicht 42 die zweite Keramikschicht 38. In diesem Falle ist die erste Elektrode 62 durch die Lithiumschicht 42, die superhydrophobe, nanostrukturierte Schutzschicht 40 sowie die zwischen diesen aufgenommene zweite
Keramikschicht 38 gebildet. Die Abfolge der ersten Polymerschicht 32, der ersten Keramikschicht 34 sowie der zweiten Polymerschicht 36 ist identisch zur
Schichtabfolge innerhalb des ersten Schichtverbundes 30, wie in Figur 2 dargestellt.
Figur 5 zeigt eine weitere, vierte Ausführungsmöglichkeit eines Schichtverbundes 50, der eine superhydrophobe, nanostrukturierte Schutzschicht 40 umfasst. Auch im vierten Schichtverbund 50, wie in Figur 5 dargestellt, befindet sich, vergleichbar zum dritten Schichtverbund 48 gemäß Figur 4, zwischen der superhydrophoben, nanostrukturierten Schutzschicht 40 und der Lithiumschicht 42 eine weitere Schicht, in diesem Falle die zweite Polymerschicht 36. Dies bedeutet, dass die erste Elektrode 62 innerhalb des vierten Schichtverbundes 50 gemäß Figur 5 durch die Lithiumschicht 42, die zweite Polymerschicht 36 sowie die superhydrophobe, nanostrukturierte Schutzschicht 40 gebildet ist. Oberhalb dieser befinden sich in umgekehrter Reihenfolge im Vergleich zum dritten Schichtverbund 48 gemäß Figur 4 die erste Keramikschicht 34, die erste
Polymerschicht 32 sowie die zweite Keramikschicht 38. Figur 6 ist in schematischer Weise ein Auftragsverfahren zur Herstellung der superhydrophoben, nanostrukturierten Schutzschicht 40 zu entnehmen. Figur 6 zeigt, dass ein Sprühnebel 52 aus einem nanostrukturierten Polypropylen oder auch aus nanostrukturiertem Silizium gebildet werden kann. Der Sprühnebel 52 wird mittels eines bewegbaren Sprühkopfes 54 auf ein Trägersubstrat 56, welches eine hinreichende Fläche 58 aufweist, aufgebracht. Der Sprühkopf 54 kann relativ zum Trägersubstrat 56 in Sprührichtung 60 verfahren werden, so dass bei einer gleichmäßigen Bewegung und Aufbringen des Sprühnebels 52 auf das Trägersubstrat 56 ein dünner Film der superhydrophoben, nanostrukturierten Schutzschicht 40 erzeugt wird. Nach dem Aufbringen der Beschichtung über den Sprühkopf 54 auf das Trägersubstrat 56 erfolgt eine Trocknung, bei der es zu einer Vernetzung oder Polymerisation der superhydrophoben, nanostrukturierten Schutzschicht 40 kommt.
Wenngleich zeichnerisch nicht dargestellt, kann die superhydrophobe, nanostrukturierte Schutzschicht 40 auch durch Aufrakeln einer dünnen Schicht und einen anschließenden Trocknungsvorgang hergestellt werden. Daneben besteht auch die Möglichkeit, im Wege des Verdampfens bzw. im Wege des
Vakuumverdampfens die superhydrophobe, nanostrukturierte Schutzschicht 40 herzustellen. Während des Trocknungsvorgangs kann optional anschließend eine Vernetzung bzw. eine Polymerisation erfolgen. Wird als Material, aus welchem die superhydrophobe, nanostrukturierte
Schutzschicht 40 gefertigt wird, nanostrukturiertes Silizium gewählt, so kann vom Aufsputtern als Auftragsverfahren Gebrauch gemacht werden. Daneben besteht die Möglichkeit, nanostrukturiertes Silizium im Wege der Aerosol-Abscheidung auf das Trägersubtrat 56 aufzubringen. Alternativ zu diesem Verfahren besteht die Möglichkeit, nanostrukturiertes Silizium durch plasmaunterstützte chemische
Gasphasenabscheidung auf das Trägersubtrat 56 aufzubringen.
Der Darstellung in Figur 7 ist eine weitere Ausführungsmöglichkeit eines
Schichtverbundes 70 mit mindestens einer superhydrophoben,
nanostrukturierten Schutzschicht 40 zu entnehmen. Figur 7 zeigt den fünften Schichtverbund 70, d. h. ein fünftes Komposit, welches den Stromableiter 44 aufweist, die Lithiumschicht 42 sowie eine erste
Separatorschicht 72, vorzugsweise eine polymere Schutzschicht. Zwischen dieser ersten Separatorschicht 72 und einer zweiten Elektrode 74 befindet in diesem Ausführungsbeispiel die superhydrophobe, nanostrukturierte
Schutzschicht 40. Im Ausführungsbeispiel gemäß Figur 7 ist innerhalb des fünften Schichtverbundes 70 die superhydrophobe, nanostrukturierte
Schutzschicht 40 direkt auf die zweite Elektrode 74 aufgebracht. Zwischen der die erste Elektrode 62 darstellenden Lithiumschicht 42 befindet sich die erste
Separatorschicht 72. Anstelle der ersten Separatorschicht 72 können auch mehrere Lagen keramischer Schichten oder in alternierender Reihenfolge mehrere Polymerschichten und Keramikschichten abwechselnd innerhalb des fünften Schichtverbundes 70 gemäß der Darstellung in Figur 7 angeordnet sein.
Figur 8 zeigt eine weitere Ausführungsmöglichkeit eines Schichtverbundes 76 in Anlehnung an den in Figur 7 dargestellten fünften Schichtverbund 70.
Figur 8 zeigt den sechsten Schichtverbund 76, d. h. ein sechstes Komposit, bei welchem die superhydrophobe, nanostrukturierte Schutzschicht 40 zwischen der ersten Separatorschicht 72, vorzugsweise ein Polymer, und einer zweiten Separatorschicht 78, ebenfalls vorzugsweise ein Polymer, eingebettet ist. In diesem Falle ist die superhydrophobe, nanostrukturierte Schutzschicht 40 nicht direkt auf der zweiten Elektrode 74, angeordnet. Die beiden Separatorschichten 72, 78 liegen zwischen der die erste Elektrode 62 darstellenden Lithiumschicht
42 und der zweiten Elektrode 74. Des Weiteren können sich zwischen der die erste Elektrode 62 darstellenden Lithiumschicht 42 und der superhydrophoben, nanostrukturierten Schutzschicht 40 weitere Schichten befinden, beispielsweise Polymerschichten und Keramikschichten in alternierender Abfolge.
Die Schichtverbünde 30, 46, 48, 50, 70 und 76 gemäß den vorstehenden Ausführungsbeispielen nach den Figuren 2 bis 5, 7 und 8 unter Einschluss mindestens einer superhydrophoben, nanostrukturierten Schutzschicht 40 tragen deutlich zur Erhöhung der Lebensdauer, der Zyklenbeständigkeit und der Sicherheit bei Lithium- Batterien, insbesondere Lithium-Schwefel- Batteriesystemen und Lithium-Sauerstoff- Batteriesystemen bei. Darüber hinaus besteht die Möglichkeit, derartige Schichtverbünde 30, 46, 48, 50, 70 und 76 auch bei ersten Elektroden 62 aus einer Lithiumlegierung anzuwenden. Die Verwendung ist ferner unabhängig von der Kathodenchemie bzw.
Kathodenstruktur möglich.
Die erfindungsgemäß vorgeschlagene Lösung trägt darüber hinaus zur Erhöhung der Sicherheit von Lithium-Anoden in Lithium-Batterien bei, da bei thermischer Beanspruchung die Reaktion von Flüssig- Elektrolyt mit metallischem Lithium unterbunden oder zumindest signifikant reduziert wird.
Die Verwendung der erfindungsgemäß vorgeschlagenen Lösung erfolgt bei Lithium- Batterien für Elektrowerkzeuge, Gartengeräte, Computer, Notebooks, PDAs, Smartphones und Mobiltelefonen. Insbesondere kann die
erfindungsgemäß vorgeschlagene Lösung in Traktionsbatterien für
Hybridfahrzeuge, Plug-In-Hybridfahrzeuge sowie in Elektrofahrzeugen eingesetzt werden. Aufgrund der besonders hohen Anforderungen an die Lebensdauer im Automobilbereich ist die erfindungsgemäß vorgeschlagene Lösung insbesondere dort interessant.
Die Erfindung ist nicht auf die hier beschriebenen Ausführungsbeispiele und die darin hervorgehobenen Aspekte beschränkt. Vielmehr ist innerhalb des durch die Ansprüche gegebenen Bereiches eine Vielzahl von Abwandlungen möglich, die im Rahmen fachmännischen Handelns liegen.

Claims

Ansprüche
1. Schichtverbund (30, 46, 48, 50, 70, 76) für eine Elektrode (62, 74) eines wiederaufladbaren galvanischen Elementes, insbesondere einer Lithium- Batterie, dadurch gekennzeichnet, dass der Schichtverbund (30, 46, 48, 50, 70, 76) mindestens eine superhydrophobe, nanostrukturierte Schutzschicht (40) umfasst, die polare Substanzen abweist.
2. Schichtverbund (30, 46, 48, 50, 70, 76) gemäß Anspruch 1, dadurch gekennzeichnet, dass die superhydrophobe, nanostrukturierte
Schutzschicht (40) aus nanostrukturiertem Polypropylen,
nanostrukturiertem Polyethylen, nanostrukturierten PE-PP-Copolymeren oder weiteren Polyolefinen hergestellt ist.
3. Schichtverbund (30, 46, 48, 50, 70, 76) gemäß einem der
vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die superhydrophobe, nanostrukturierte Schutzschicht (40) aus
nanostrukturiertem Silizium oder aus einem Polymer hergestellt ist.
4. Schichtverbund (30, 46, 70) gemäß einem der vorhergehenden
Ansprüchen, dadurch gekennzeichnet, dass die superhydrophobe, nanostrukturierte Schutzschicht (40) innerhalb des Schichtverbundes (30, 46, 70) unmittelbar auf eine Lithiumschicht (42) oder auf eine zweite Elektrode (74) aufgebracht ist.
5. Schichtverbund (30, 46, 48, 50) gemäß einem der vorhergehenden
Ansprüche, dadurch gekennzeichnet, dass die superhydrophobe, nanostrukturierte Schutzschicht (40) innerhalb des Schichtverbundes (30, 46, 48, 50) von mindestens einer zweiten Polymerschicht (36) und/oder mindestens einer zweiten Keramikschicht (38) überdeckt ist. Schichtverbund (48, 50) gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die superhydrophobe, nanostrukturierte
Schutzschicht (40) unter Zwischenschaltung einer zweiten
Polymerschicht (36) und/oder einer zweiten Keramikschicht (38) auf eine Lithiumschicht (42) aufgebracht ist.
Schichtverbund (70, 76) gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Schichtverbund (70, 76) zwischen einer Lithiumschicht (42) und einer zweiten Elektrode (74) die
superhydrophobe, nanostrukturierte Schutzschicht (40) und mindestens eine Separatorschicht (72, 78) aufweist.
Verfahren zur Herstellung eines Schichtverbundes (30, 46, 48, 50, 70, 76), wobei eine superhydrophobe, nanostrukturierte Schutzschicht (40) auf ein Trägersubstrat (56) aufgebracht wird, dadurch gekennzeichnet, dass die superhydrophobe Schutzschicht (40) durch Beschichtung mittels eines Sprühnebels (52) und mit anschließender Trocknung mit Vernetzung oder Polymerisation, oder durch Beschichtung mittels Aufrakeln einer dünnen Schicht und anschließendem Trocknen oder durch Verdampfen oder Vakuumverdampfen und anschließender Vernetzung oder Polymerisation hergestellt wird.
Verfahren zur Herstellung eines Schichtverbundes (30, 46, 48, 50, 70, 76), wobei eine superhydrophobe, nanostrukturierte Schutzschicht (40) aus nanostrukturiertem Silizium auf ein Trägersubstrat (56) aufgebracht wird, dadurch gekennzeichnet, dass die superhydrophobe, nanostrukturierte Schutzschicht (40) durch Aufsputtern, eine Aerosol- Abscheidung oder durch eine plasma unterstützte chemische
Gasphasenabscheidung aufgebracht wird.
Verwendung des Schichtverbundes (30, 46, 48, 50, 70, 76) nach einem der Ansprüche 1 bis 7 an Lithium- Batterien, insbesondere Lithium- Schwefel- Batterien, Lithium-Sauerstoff- Batterien, in Traktionsbatterien von Hybridfahrzeugen, Plug-In-Hybridfahrzeugen, Elektrofahrzeugen oder in Elektrowerkzeugen, Gartengeräten, Computern, Notebooks, PDAs, Smartphones oder Mobiltelefonen.
PCT/EP2015/067456 2014-08-04 2015-07-30 Superhydrophobe, nanostrukturierte schutzschicht für wiederaufladbare lithium-batteriezellen mit metallischer lithium-anode WO2016020249A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580041700.8A CN106537645A (zh) 2014-08-04 2015-07-30 用于具有金属锂阳极的可再充电的锂电池组电池的超疏水的、纳米结构的保护层
US15/501,342 US20170229712A1 (en) 2014-08-04 2015-07-30 Superhydrophobic, Nanostructured Protective Layer for Rechargeable Lithium Battery Cells Having a Metal Lithium Anode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014215268.2A DE102014215268A1 (de) 2014-08-04 2014-08-04 Superhydrophobe, nanostrukturierte Schutzschicht für wiederaufladbare Lithium-Batteriezellen mit metallischer Lithium-Anode
DE102014215268.2 2014-08-04

Publications (1)

Publication Number Publication Date
WO2016020249A1 true WO2016020249A1 (de) 2016-02-11

Family

ID=53761392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/067456 WO2016020249A1 (de) 2014-08-04 2015-07-30 Superhydrophobe, nanostrukturierte schutzschicht für wiederaufladbare lithium-batteriezellen mit metallischer lithium-anode

Country Status (4)

Country Link
US (1) US20170229712A1 (de)
CN (1) CN106537645A (de)
DE (1) DE102014215268A1 (de)
WO (1) WO2016020249A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10950912B2 (en) 2017-06-14 2021-03-16 Milwaukee Electric Tool Corporation Arrangements for inhibiting intrusion into battery pack electrical components
CN109950665B (zh) * 2017-12-21 2021-11-23 中南大学 一种锂空气电池扩展夹层熔融纺丝制备过程
CN109244475A (zh) 2018-11-05 2019-01-18 宁德新能源科技有限公司 电化学装置及包含其的电子装置
CN113764652A (zh) * 2021-10-08 2021-12-07 南开大学 一种疏水有机层保护水系电池金属负极的方法
DE102022204573A1 (de) 2022-05-10 2023-11-16 Volkswagen Aktiengesellschaft Verfahren zur Herstellung einer Kathodenbeschichtung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010027337A1 (en) * 2008-09-08 2010-03-11 Nanyang Technological University Electrode materials for metal-air batteries, fuel cells and supercapacitors
DE102010043111A1 (de) * 2010-10-29 2012-05-03 Robert Bosch Gmbh Ex-situ-Herstellung einer Lithiumanodenschutzschicht
CN102479940A (zh) * 2010-11-29 2012-05-30 中国电子科技集团公司第十八研究所 一种带有防腐蚀保护膜的金属锂电极的制备方法
US20130017441A1 (en) * 2011-06-17 2013-01-17 Sion Power Corporation Plating technique for electrode
WO2013087349A1 (de) * 2011-12-15 2013-06-20 Robert Bosch Gmbh Hartschalenzellgehäuse mit dampfsperrschicht

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002015728A (ja) 2000-06-30 2002-01-18 Nec Corp リチウム二次電池およびその製造方法
JP3812324B2 (ja) 2000-11-06 2006-08-23 日本電気株式会社 リチウム二次電池とその製造方法
KR100863603B1 (ko) * 2000-12-21 2008-10-15 시온 파워 코퍼레이션 전기화학 셀용 리튬 애노드
EP1597783A2 (de) 2003-02-19 2005-11-23 Phoenix Innovations, Inc. Verbesserte lithiumbatterieelektrode
US20050053834A1 (en) 2003-09-04 2005-03-10 Advanced Battery Technology, Ltd. Positive electrode material and method
KR100914840B1 (ko) * 2006-08-21 2009-09-02 주식회사 엘지화학 소수성의 불활성 입자를 포함하고 있는 비수계 리튬이차전지
WO2012111116A1 (ja) 2011-02-16 2012-08-23 トヨタ自動車株式会社 リチウムイオン二次電池及びその製造方法
DE102011088636A1 (de) * 2011-12-15 2013-06-20 Robert Bosch Gmbh Hartschalengehäuse mit superhydrophoben Material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010027337A1 (en) * 2008-09-08 2010-03-11 Nanyang Technological University Electrode materials for metal-air batteries, fuel cells and supercapacitors
DE102010043111A1 (de) * 2010-10-29 2012-05-03 Robert Bosch Gmbh Ex-situ-Herstellung einer Lithiumanodenschutzschicht
CN102479940A (zh) * 2010-11-29 2012-05-30 中国电子科技集团公司第十八研究所 一种带有防腐蚀保护膜的金属锂电极的制备方法
US20130017441A1 (en) * 2011-06-17 2013-01-17 Sion Power Corporation Plating technique for electrode
WO2013087349A1 (de) * 2011-12-15 2013-06-20 Robert Bosch Gmbh Hartschalenzellgehäuse mit dampfsperrschicht

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 201282, 30 May 2012 Derwent World Patents Index; AN 2012-G97109, XP002745377 *

Also Published As

Publication number Publication date
US20170229712A1 (en) 2017-08-10
CN106537645A (zh) 2017-03-22
DE102014215268A1 (de) 2016-02-04

Similar Documents

Publication Publication Date Title
WO2016020249A1 (de) Superhydrophobe, nanostrukturierte schutzschicht für wiederaufladbare lithium-batteriezellen mit metallischer lithium-anode
WO2014102131A2 (de) Verfahren zum herstellen eines galvanischen elements und galvanisches element
DE112013001587T5 (de) Poröser Metallkörper mit dreidimensionalem Netzwerk für Kollektoren, Elektrode und nicht-wässrige Elektrolyt- Sekundärbatterie
DE102012005348A1 (de) Graphen-haltiger Separator für Lithiumionen- Batterien
DE102015222048A1 (de) Verfahren zur Herstellung einer Anode für eine Lithium-Sekundärbatterie, hergestellte Anode, Lithium-Sekundärbatterie enthaltend die Anode und Verwendungen hiervon
DE102014226394B4 (de) Verfahren zur Herstellung einer Lithium-Ionen-Zelle
WO2019072811A1 (de) Verfahren zur herstellung eines stromableiters, elektrode und batteriezelle
DE102018218262A1 (de) Feststoffelektrolytmaterial mit verbesserter chemischer Stabilität
DE102012224324B4 (de) Batteriezelle, Elektrodenmaterialschichtstapel und Verwendung eines Elektrodenmaterialschichtstapel in einer Batteriezelle
DE102013200848A1 (de) Sicherheitsverbessertes galvanisches Element
WO2013135351A1 (de) Graphen in lithiumionen-batterien
DE102011100724A1 (de) Elektrode für Lithiumionen-Batterien
DE102016217397A1 (de) Elektrodenstapel mit Randbeschichtung
DE102013204226A1 (de) Ableiter für einen elektrochemischen Energiespeicher
EP3641022B1 (de) Verfahren zur herstellung einer lithiumionenzelle
DE102014211743A1 (de) Galvanisches Element und Verfahren zu dessen Herstellung
DE202007018823U1 (de) Separatoren für Lithium-Batterien
DE102020127847A1 (de) Elektrodenkomponenten mit laserinduzierten oberflächenmodifizierten Stromabnehmern und Verfahren zu deren Herstellung
EP3471173B1 (de) Verfahren zur herstellung eines elektrodenfilms
EP3133671A1 (de) Galvanisches element
DE102009034674A1 (de) Lithium-Ionen-Batterie
DE10320860B4 (de) Verfahren zur Herstellung einer Elektrode für Lithium-Polymer-Batterien und deren Verwendung
DE102018218561A1 (de) Kompositelektrode mit reduziertem Grenzflächenwiderstand, Verfahren zu dessen Herstellung und Verwendung derselben
DE102017216565A1 (de) Verfahren zur Herstellung einer elektrischen Energiespeichereinheit mit einem Festkörperelektrolyten sowie elektrische Energiespeichereinheit mit einem Festkörperelektrolyten
DE102018217756A1 (de) Verfahren zur Herstellung einer Elektrodeneinheit für eine Batteriezelle und Batteriezelle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15744220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15744220

Country of ref document: EP

Kind code of ref document: A1