WO2016017061A1 - 有機el素子及びその製造方法 - Google Patents

有機el素子及びその製造方法 Download PDF

Info

Publication number
WO2016017061A1
WO2016017061A1 PCT/JP2015/003027 JP2015003027W WO2016017061A1 WO 2016017061 A1 WO2016017061 A1 WO 2016017061A1 JP 2015003027 W JP2015003027 W JP 2015003027W WO 2016017061 A1 WO2016017061 A1 WO 2016017061A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
organic
insulating
substrate
electrode lead
Prior art date
Application number
PCT/JP2015/003027
Other languages
English (en)
French (fr)
Inventor
長谷川 和也
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2016537721A priority Critical patent/JP6226312B2/ja
Priority to US15/318,485 priority patent/US9853234B2/en
Publication of WO2016017061A1 publication Critical patent/WO2016017061A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/173Passive-matrix OLED displays comprising banks or shadow masks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/17Passive-matrix OLED displays
    • H10K59/179Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present invention relates to an organic EL (Electro-Luminescence) element and a manufacturing method thereof.
  • Organic EL elements are light-emitting elements that can be driven with a low voltage and a low current, and have the advantages of high emission luminance and good emission efficiency with respect to the supplied power. For this reason, various devices using organic EL elements, such as lighting devices and display devices using organic EL elements, have been developed.
  • Patent Document 1 discloses an organic EL element in which an EL laminated structure is provided on a transparent substrate.
  • an organic material layer including a light emitting layer is sandwiched between an anode and a cathode, and an anode insulating layer for insulating the anode from the cathode is provided along the end of the EL laminated structure. It has been.
  • the EL laminated structure is covered with a resin layer in order to protect it from moisture and the like.
  • the moisture permeability of the anode insulating layer is higher than that of the resin layer, and thus the infiltrated moisture is drawn into the anode insulating layer. That is, the anode insulating layer accelerates the intruded moisture to reach the light emitting layer. For this reason, in the said conventional organic EL element, there exists a problem that deterioration of a light emitting layer becomes quick and the lifetime of an organic EL element becomes short.
  • an object of the present invention is to provide an organic EL element having a longer lifetime and a method for producing the same.
  • an organic EL device includes an organic light emitting device provided between a first substrate and a second substrate which are disposed to face each other and between the first substrate and the second substrate.
  • a first electrode stacked in sequence on the first substrate, an organic layer including a light emitting layer, and an organic light emitting unit including a second electrode, and connecting the first substrate and the second substrate.
  • a sealing material provided so as to surround the organic light emitting portion, a first electrode lead portion that is partially exposed to the outside of the sealing material and electrically connected to the first electrode, A second electrode lead portion that is partly exposed to the outside of the sealing material and electrically connected to the second electrode; and the first electrode provided along an end of the organic layer; An insulating layer that electrically insulates the second electrode, and the second electrode lead portion and the second electrode are electrically connected. And the insulating layer is provided between the first insulating portion provided between the first electrode lead portion and the organic layer, and between the second electrode lead portion and the organic layer. And a second insulating part covered by the connection part, and a distance between the sealing material and the first insulating part is longer than a distance between the sealing material and the second insulating part.
  • the manufacturing method of the organic EL element which concerns on 1 aspect of this invention is a manufacturing method of an organic EL element provided with the 1st electrode laminated
  • a fourth step of forming the second electrode so as to surround the organic light emitting part, and to expose a part of the first electrode lead part and a part of the second electrode lead part to the outside.
  • a fifth step of forming a sealing material on at least one of the first substrate and the second substrate; and the first substrate and the front substrate A sixth step of sealing the organic light emitting unit by bonding the second substrate, and the insulating layer is a first insulating layer provided between the first electrode lead portion and the organic layer.
  • a second insulating part provided between the second electrode lead part and the organic layer, and in the fourth step, the second electrode and the second insulating part are further formed on the second insulating part.
  • the distance between the sealing material and the first insulating portion is set such that the sealing material and the second insulating portion
  • the insulating layer is formed to be longer than the distance between the two.
  • FIG. 1 is a schematic plan view showing an organic EL element according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a cross section (AA cross section) passing through the first electrode lead portion according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing a cross section (BB cross section) passing through the second electrode lead portion according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic plan view showing a region (C region) in the vicinity of the boundary between the first electrode lead portion and the second electrode lead portion according to Embodiment 1 of the present invention.
  • FIG. 1 is a schematic plan view showing an organic EL element according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing a cross section (AA cross section) passing through the first electrode lead portion according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic cross-sectional view showing a cross section (
  • FIG. 5A is a schematic cross-sectional view showing a step of forming a first electrode in the method for manufacturing an organic EL element according to Embodiment 1 of the present invention.
  • FIG. 5B is a schematic cross-sectional view showing the step of forming the auxiliary electrode in the method for manufacturing the organic EL element according to Embodiment 1 of the present invention.
  • FIG. 5C is a schematic cross-sectional view showing the step of forming the insulating layer in the method for manufacturing the organic EL element according to Embodiment 1 of the present invention.
  • FIG. 5D is a schematic cross-sectional view showing an organic layer forming step in the method of manufacturing an organic EL element according to Embodiment 1 of the present invention.
  • FIG. 5A is a schematic cross-sectional view showing a step of forming a first electrode in the method for manufacturing an organic EL element according to Embodiment 1 of the present invention.
  • FIG. 5B is a schematic cross-sectional view showing the step of forming
  • FIG. 5E is a schematic cross-sectional view showing a step of forming a second electrode in the method for manufacturing an organic EL element according to Embodiment 1 of the present invention.
  • FIG. 5F is a schematic cross-sectional view showing a coating process of a sealing material and a filler material in the method for manufacturing an organic EL element according to Embodiment 1 of the present invention.
  • FIG. 5G is a schematic cross-sectional view showing a bonding step in the method for manufacturing an organic EL element according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic cross-sectional view showing a cross section passing through the first electrode lead portion according to a modification of the first embodiment of the present invention.
  • FIG. 7 is a schematic perspective view showing an illumination apparatus according to Embodiment 2 of the present invention.
  • FIG. 1 is a schematic plan view showing an organic EL element 10 according to the present embodiment.
  • FIG. 2 is a schematic cross-sectional view showing a cross section (cross section AA in FIG. 1) passing through the first electrode lead-out portion 160 according to the present embodiment.
  • FIG. 3 is a schematic cross-sectional view showing a cross-section (cross-section BB in FIG. 1) passing through the second electrode lead-out portion 170 according to the present embodiment.
  • FIG. 4 is a schematic plan view showing a region (region C in FIG. 1) in the vicinity of the boundary between the first electrode lead portion 160 and the second electrode lead portion 170 according to the present embodiment.
  • the organic EL element 10 is, for example, a substantially rectangular planar light emitter.
  • the organic EL element 10 emits light in a substantially rectangular plane shape in the depth direction of the paper. That is, the organic EL element 10 has a substantially rectangular light emitting region (corresponding to the organic light emitting unit 120 shown in FIG. 1) and a non-light emitting region (so-called frame) surrounding the light emitting region in plan view.
  • the organic EL element 10 includes a first substrate 100, a second substrate 110, an organic light emitting unit 120, a sealing material 130, a filler 140, an insulating layer 150, a first substrate, A one-electrode lead portion 160, a protective film 161, a second electrode lead portion 170, a connection portion 171, and an auxiliary electrode 180 are provided.
  • the organic light emitting unit 120 includes a first electrode 121, an organic layer 122, and a second electrode 123.
  • the second substrate 110, the filler 140, the protective film 161, the shape of the organic light emitting unit 120, the sealing material 130, and the insulating layer 150 in a plan view and the positional relationship are easily understood.
  • the connection part 171 and the auxiliary electrode 180 are not shown.
  • end portions of the protective film 161, the connection portion 171, and the second electrode 123 are indicated by thick long broken lines.
  • the second substrate 110, the organic layer 122, the filler 140, and the auxiliary electrode 180 are not shown.
  • the first substrate 100 and the second substrate 110 are disposed to face each other. Specifically, the first substrate 100 and the second substrate 110 are arranged to face each other with a predetermined distance apart. For example, the distance between the first substrate 100 and the second substrate 110 is 6 ⁇ m to 100 ⁇ m, and is 20 ⁇ m as an example. Further, the first substrate 100 and the second substrate 110 are bonded by a sealing material 130.
  • the organic light emitting unit 120 is disposed between the first substrate 100 and the second substrate 110.
  • a filler 140 that covers and protects the organic light emitting unit 120 is filled between the first substrate 100 and the second substrate 110.
  • the first substrate 100 has translucency and transmits at least part of visible light.
  • the first substrate 100 is, for example, a glass substrate such as soda glass or non-alkali glass, or a resin substrate made of a translucent resin material such as polycarbonate resin or acrylic resin.
  • a plate-shaped transparent substrate having a thickness of 0.03 mm to 1.2 mm can be used from the viewpoint of convenience of handling and mechanical characteristics.
  • the second substrate 110 has, for example, translucency and transmits at least part of visible light.
  • the second substrate 110 is made of the same material as the first substrate 100.
  • the second substrate 110 may have light reflectivity.
  • the second substrate 110 may be made of a metal material such as stainless steel or aluminum.
  • the plan view shape of the first substrate 100 is substantially rectangular as shown in FIG.
  • the plan view shape of the second substrate 110 is also substantially rectangular.
  • the first substrate 100 has a substantially rectangular shape larger than the second substrate 110.
  • the second substrate 110 may have the same size as the first substrate 100, specifically, the same shape, or may be larger than the first substrate 100.
  • the organic light emitting unit 120 emits light in a planar shape when a voltage is applied.
  • the first electrode 121, the organic layer 122, and the second electrode 123 included in the organic light emitting unit 120 are stacked on the first substrate 100 in this order.
  • the planar view shape of the organic light emitting unit 120 is substantially rectangular like the first substrate 100. Note that the planar shape of the organic light emitting unit 120 is smaller than that of the first substrate 100 and the second substrate 110.
  • an insulating layer 150, a sealing material 130, a first electrode lead portion 160, and a second electrode lead portion 170 are formed.
  • the first electrode 121 is an electrode provided on the light emitting surface side, and is provided on the first substrate 100, for example.
  • the first electrode 121 is, for example, an anode, and has a higher potential than the second electrode 123 when the organic EL element 10 emits light.
  • the first electrode 121 is made of a light-transmitting conductive material.
  • the first electrode 121 is made of a transparent conductive material that transmits at least part of visible light.
  • the first electrode 121 is made of, for example, indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide doped with aluminum (AZO), or the like.
  • the first electrode 121 may be a thin metal film such as silver or aluminum that can transmit light. Alternatively, Ag nanowires or Ag particles may be dispersed. Alternatively, as the first electrode 121, a conductive polymer such as PEDOT or polyaniline, a conductive polymer doped with any acceptor, or a conductive light-transmitting material such as a carbon nanotube can be used. .
  • the first electrode 121 is formed by forming a transparent conductive film on the first substrate 100 by vapor deposition, coating, sputtering, ion beam assist, or the like, and patterning the formed transparent conductive film.
  • the film thickness of the first electrode 121 is 60 nm to 200 nm, for example, 100 nm.
  • the organic layer 122 is provided between the first electrode 121 and the second electrode 123.
  • the organic layer 122 includes a light emitting layer, and emits light in a planar shape when a voltage is applied between the first electrode 121 and the second electrode 123.
  • the organic layer 122 includes a hole injection layer, a hole transport layer, a light emitting layer (organic EL layer), an electron transport layer, and an electron injection layer.
  • the organic layer 122 such as a light emitting layer is made of an organic material such as diamine, anthracene, or metal complex.
  • Each layer constituting the organic layer 122 is formed by an evaporation method, a spin coating method, a casting method, an ion beam assist method, or the like.
  • the film thickness of the organic layer 122 is 150 nm to 350 nm, for example, 210 nm.
  • the organic layer 122 is formed by doping the emission layer with dopant pigments of three colors of red, green, and blue.
  • the organic layer 122 may have a stacked structure of a blue hole transporting light emitting layer, a green electron transporting light emitting layer, and a red electron transporting light emitting layer.
  • the organic layer 122 may have a multi-unit structure in which red, green, and blue light-emitting units are stacked via an intermediate layer having light transmission and conductivity, and are electrically connected directly.
  • the second electrode 123 is an electrode provided on the side opposite to the light emitting surface, and is provided on the organic layer 122, for example.
  • the second electrode 123 is, for example, a cathode, and has a lower potential than the first electrode 121 when the organic EL element 10 emits light.
  • the second electrode 123 is made of a conductive material having light reflectivity.
  • the second electrode 123 reflects the light emitted from the organic layer 122 and emits it to the light emitting surface side.
  • the second electrode 123 is made of, for example, a metal material such as aluminum, silver, or magnesium, or an alloy containing at least one of these.
  • the second electrode 123 is formed by forming a conductive film on the organic layer 122 by vapor deposition, coating, sputtering, ion beam assist, GCIB (Gas Cluster Ion Beam) vapor deposition, or the like.
  • the film thickness of the second electrode 123 is 20 nm to 200 nm, for example, 100 nm.
  • the second electrode 123 can protect the organic layer 122 from moisture.
  • the second electrode 123 may be made of, for example, a conductive resin material. However, in this case, the second electrode 123 is made of a material having a moisture permeability lower than that of the insulating layer 150.
  • the second electrode 123 may be made of a light-transmitting conductive material.
  • the same material as the first electrode 121 can be used for the second electrode 123.
  • the organic EL element 10 can be utilized for a window of a building or a vehicle as a double-sided light emitting type lighting device, for example.
  • the sealing material 130 is a connection member that connects the first substrate 100 and the second substrate 110.
  • the sealing material 130 is an adhesive that bonds the first substrate 100 and the second substrate 110.
  • the sealing material 130 is disposed so as to surround the organic light emitting unit 120 along the outer periphery of the first substrate 100 in a plan view. Accordingly, the organic light emitting unit 120 can be sealed in a space (hereinafter referred to as “sealing space”) surrounded by the first substrate 100, the second substrate 110, and the sealing material 130.
  • the sealing material 130 is formed in an annular shape in plan view.
  • the sealing material 130 is a substantially rectangular frame-like body in plan view.
  • the sealing material 130 is provided in a substantially rectangular frame shape along the outer periphery of the substantially rectangular first substrate 100.
  • the line width (that is, the sealing width) of the sealing material 130 is substantially constant.
  • sealing material 130 for example, a photocurable, thermosetting, or two-component curable adhesive resin such as an epoxy resin, an acrylic resin, or a silicone resin can be used.
  • a thermoplastic adhesive resin made of an acid-modified product such as polyethylene or polypropylene may be used.
  • an inorganic filler or the like may be mixed in the sealing material 130. Thereby, the transmittance
  • the inorganic filler include silica, calcium hydroxide, calcium carbonate, and other resin materials.
  • the sealing material 130 for example, a material having a higher viscosity than the filler 140 is used. Thereby, the sealing material 130 functions as a dam material when the filler 140 is applied. That is, by applying the filler 140 after applying the sealing material 130, it is possible to prevent the filler 140 from leaking outward from the region surrounded by the sealing material 130.
  • the sealing material 130 is formed by applying and curing a sealing material made of a resin material.
  • a sealing material made of a resin material.
  • the sealing material is applied by a printing method such as roll coating, spin coating, screen printing, spray coating, slit coating, squeegee coating, or drawing coating with a dispenser. .
  • the filler 140 is a member for sealing the organic light emitting unit 120.
  • the filler 140 is provided between the first substrate 100 and the second substrate 110 so as to cover and cover the organic light emitting unit 120.
  • the filler 140 is a resin material that is filled and cured in the sealed space.
  • a photocurable, thermosetting, or two-component curable adhesive resin such as an epoxy resin, an acrylic resin, or a silicone resin can be used.
  • a thermoplastic adhesive resin made of an acid-modified product such as polyethylene or polypropylene may be used.
  • the filler 140 may contain a desiccant.
  • the desiccant is, for example, a hygroscopic material having fine pores that adsorb moisture, and specifically, calcium oxide (CaO), zeolite, and the like.
  • CaO calcium oxide
  • zeolite zeolite
  • the filler 140 is formed by applying and curing a filler material made of a resin material.
  • a filler material made of a resin material.
  • the filler material is applied by a printing method such as roll coating, spin coating, screen printing, spray coating, slit coating, squeegee coating, or drawing coating with a dispenser. .
  • the insulating layer 150 is provided along the end of the organic layer 122 and electrically insulates the first electrode 121 and the second electrode 123.
  • the insulating layer 150 is in contact with the end portion of the organic layer 122.
  • the insulating layer 150 covers the end portion of the organic layer 122 together with the second electrode 123 so that the end portion of the organic layer 122 is not exposed.
  • the end portion of the organic layer 122 corresponds to a boundary portion between the light emitting region and the non-light emitting region of the organic EL element 10.
  • the insulating layer 150 is made of, for example, an insulating resin material such as polyimide.
  • the insulating layer 150 is formed by applying and curing an insulating resin material.
  • the insulating layer 150 may be made of an inorganic material such as a nitride film.
  • the insulating layer 150 includes a first insulating portion 151 and a second insulating portion 152 as shown in FIG. Each detailed structure will be described in detail later.
  • the first electrode lead-out portion 160 and the second electrode lead-out portion 170 are provided so as to be partially exposed to the outside of the sealing material 130.
  • the first electrode lead portion 160 and the second electrode lead portion 170 are provided along a part of the circumference of the first substrate 100 as shown in FIG.
  • the first electrode lead-out portion 160 and the second electrode lead-out portion 170 are provided on each of two opposite sides of the substantially rectangular first substrate 100 in plan view.
  • the first electrode lead portion 160 and the second electrode lead portion 170 are arranged point-symmetrically with the center of the first substrate 100 as the center of symmetry. Thereby, the voltage drop in each surface of the 1st electrode 121 and the 2nd electrode 123 can be suppressed, and the surface uniformity of light emission can be improved.
  • the first electrode lead portion 160 and the second electrode lead portion 170 are made of the same material as the first electrode 121.
  • a conductive film is formed on the first substrate 100 and patterned, so that the first electrode lead portion 160 and the second electrode lead portion 170 are formed simultaneously with the first electrode 121.
  • the first electrode extraction unit 160 is, for example, an anode extraction electrode and is electrically connected to the first electrode 121. Specifically, as shown in FIG. 2, the first electrode lead-out portion 160 is formed so that a part of the first electrode 121 extends. That is, the first electrode lead portion 160 is a conductive film formed integrally with the first electrode 121.
  • the portion located in the light emitting region is the first electrode 121, and the portion located in the non-light emitting region is the first electrode extraction portion 160. Therefore, for example, the first insulating portion 151 of the insulating layer 150 is provided on the first electrode extraction portion 160 along the end portion of the first electrode 121.
  • a protective film 161 covering the first insulating portion 151 is formed on the first insulating portion 151.
  • the protective film 161 is, for example, a conductive film whose moisture permeability is lower than that of the first insulating part 151.
  • the protective film 161 protects the first insulating part 151 from moisture. Since the first insulating portion 151 is covered with the protective film 161, it is possible to suppress the moisture that has entered the sealing space from being drawn into the first insulating portion 151, thereby extending the life of the organic EL element 10. can do.
  • the protective film 161 is made of, for example, a material having higher conductivity than the first electrode lead-out portion 160.
  • the protective film 161 since the protective film 161 is provided in contact with the first electrode lead-out portion 160, it functions as an auxiliary electrode of the first electrode lead-out portion 160. Thereby, the voltage drop in the 1st electrode extraction part 160 can be suppressed, and the surface uniformity of light emission can be improved.
  • the protective film 161 is made of the same material as the second electrode 123, for example. Specifically, the protective film 161 is formed simultaneously with the second electrode 123. For example, a conductive film is formed over the organic layer 122 and the insulating layer 150 and patterned to form the connection portion 171 and the protective film 161 together with the second electrode 123.
  • the protective film 161 is separated from the second electrode 123 and the connection portion 171. Specifically, insulating grooves are formed between the protective film 161 and the second electrode 123 and between the protective film 161 and the connection portion 171. In other words, the protective film 161 is formed in an island shape. Thereby, the protective film 161 is electrically insulated from the second electrode 123 and the second electrode lead portion 170.
  • the protective film 161 is separated from the second electrode 123, a part of the first insulating portion 151 is exposed in the sealing space. That is, a part of the first insulating portion 151 is in contact with the filler 140.
  • the second electrode extraction unit 170 is, for example, a cathode extraction electrode and is electrically connected to the second electrode 123. Specifically, as shown in FIG. 3, the second electrode lead-out portion 170 is electrically connected to the second electrode 123 through the connection portion 171.
  • the second electrode lead portion 170 is separated from the first electrode 121 and the first electrode lead portion 160. Specifically, insulating grooves are formed between the second electrode lead portion 170 and the first electrode 121 and between the second electrode lead portion 170 and the first electrode lead portion 160. In other words, the second electrode lead-out portion 170 is formed in an island shape. As a result, the second electrode lead portion 170 is electrically insulated from the first electrode 121 and the first electrode lead portion 160.
  • connection part 171 is a part where a part of the second electrode 123 extends. That is, the connection portion 171 is a conductive film formed integrally with the second electrode 123. Therefore, the connection part 171 is made of the same material as the second electrode 123.
  • the connecting portion 171 is formed on the second insulating portion 152.
  • the connection part 171 protects the second insulating part 152 from moisture, like the protective film 161. Since the second insulating portion 152 is covered with the connecting portion 171, it is possible to suppress the moisture that has entered the sealing space from being drawn into the second insulating portion 152, thereby extending the life of the organic EL element 10. can do.
  • the auxiliary electrode 180 is made of a material having higher conductivity than the first electrode 121.
  • the auxiliary electrode 180 is made of a metal material.
  • the auxiliary electrode 180 has a laminated structure of, for example, molybdenum / aluminum / molybdenum.
  • the auxiliary electrode 180 is formed by laminating and patterning a metal thin film by a vapor deposition method, a coating method, a sputtering method, an ion beam assist method, or the like.
  • the auxiliary electrode 180 is provided along the circumference of the first electrode 121. Specifically, it is formed in an annular shape along the circumference of the first electrode 121.
  • the auxiliary electrode 180 is electrically connected to the first electrode 121. Specifically, as shown in FIGS. 2 and 3, the auxiliary electrode 180 is provided on the first electrode 121 and the first electrode lead-out portion 160.
  • the power supplied from both sides of the organic EL element 10 can be efficiently transmitted along the circumference of the first electrode 121 by the auxiliary electrode 180 provided in an annular shape. That is, the voltage drop in the first electrode 121 can be suppressed and the surface uniformity of light emission can be improved.
  • the insulating layer 150 is formed in an annular shape in plan view.
  • the insulating layer 150 is a substantially rectangular frame-like body in plan view.
  • the insulating layer 150 is provided along the sealing material 130 inside the annular sealing material 130.
  • the first insulating portion 151 of the insulating layer 150 is a portion provided between the first electrode lead-out portion 160 and the organic layer 122. Specifically, as shown in FIG. 2, the first insulating portion 151 is provided on the first electrode lead-out portion 160 along the end portion of the first electrode 121.
  • the second insulating portion 152 of the insulating layer 150 is a portion provided between the second electrode extraction portion 170 and the organic layer 122. Specifically, as shown in FIG. 3, the second insulating portion 152 covers the end portion of the second electrode lead portion 170 and the end portion of the first electrode 121 along the end portion of the first electrode 121. It is provided as follows.
  • the distance d1 between the sealing material 130 and the first insulating portion 151 is longer than the distance d2 between the sealing material 130 and the second insulating portion 152. That is, the first insulating portion 151 is provided at a position farther from the sealing material 130 than the second insulating portion 152.
  • the distance d1 is 2.3 mm to 2.5 mm
  • the distance d2 is 1.7 mm to 1.9 mm.
  • the line width w ⁇ b> 1 of the first insulating portion 151 is shorter than the line width w ⁇ b> 2 of the second insulating portion 152.
  • the line width w1 is 0.4 mm to 0.6 mm
  • the line width w2 is 0.9 mm to 1.1 mm.
  • the first insulating portion 151 and the second insulating portion 152 are formed, for example, by drawing and applying an insulating resin material such as polyimide in a ring shape using a dispenser or the like.
  • the first insulating portion 151 is formed by drawing for one line
  • the second insulating portion 152 is formed by drawing for two lines. That is, for example, the line width w2 of the second insulating portion 152 is approximately twice the line width w1 of the first insulating portion 151.
  • an annular frame along the edge of the organic layer 122 is drawn with an insulating resin material such as polyimide.
  • a line is drawn along a part of the frame so as to contact the outside of the drawn frame.
  • the dropping amount is set to be the same in drawing the frame and drawing a line along a part of the frame.
  • the insulating resin material including the first insulating portion 151 and the second insulating portion 152 is formed by curing the insulating resin material by light irradiation.
  • the amount of dripping or the drawing speed may be changed when drawing.
  • an insulating resin material is drawn and applied in a predetermined dropping amount
  • a dropping amount for example, a larger amount
  • the insulating resin material may be drawn and applied.
  • an insulating resin material is drawn and applied at a predetermined drawing speed
  • a drawing speed lower than the drawing speed
  • the insulating resin material may be drawn and applied at a double rate.
  • the drawing speed is, for example, the moving speed of the nozzle that injects the insulating resin material.
  • 5A to 5G respectively show the steps of forming the first electrode 121, the auxiliary electrode 180, the insulating layer 150, the organic layer 122, and the second electrode 123 in the method for manufacturing the organic EL element 10 according to the present embodiment, and the seal. It is a schematic sectional drawing which shows the application
  • the first electrode 121, the first electrode lead portion 160, and the second electrode lead portion 170 are formed on the first substrate 100.
  • the first electrode 121, the first electrode lead portion 160, and the second electrode lead portion 170 are simultaneously formed using the same material.
  • a transparent conductive film such as ITO is formed on the entire surface of the first substrate 100 and patterned, so that the first electrode 121, the first electrode lead portion 160, and the second electrode lead portion 170 are formed. And form.
  • the auxiliary electrode 180 is formed on the first electrode 121 along the end of the first electrode 121.
  • the auxiliary electrode 180 is formed by sequentially laminating and patterning a molybdenum film, an aluminum film, and a molybdenum film.
  • the insulating layer 150 is formed along the end portion of the first electrode 121. Specifically, the insulating layer 150 is formed so as to cover the auxiliary electrode 180. At this time, the first insulating portion 151 is formed in the vicinity of the first electrode lead portion 160, and the second insulating portion 152 is formed in the vicinity of the second electrode lead portion 170.
  • the first insulating portion 151 and the second insulating portion 152 are formed by applying and curing an insulating resin material using a dispenser or the like. At this time, the insulating layer 150 is formed so that the distance between the sealing material 130 and the first insulating portion 151 is longer than the distance between the sealing material 130 and the second insulating portion 152. In other words, the insulating layer 150 is formed so that the first insulating portion 151 is formed at a position farther from the sealing material 130 than the second insulating portion 152.
  • the insulating layer 150 is formed so that the line width of the second insulating portion 152 is larger than the line width of the first insulating portion 151.
  • the line width of the first insulating portion 151 and the line width of the second insulating portion 152 are changed by changing the number of lines to be applied, the amount of application, or the drawing speed. Make it.
  • the organic layer 122 is formed on the first electrode 121.
  • the end portion of the organic layer 122 may be formed on the insulating layer 150.
  • the organic layer 122 is formed by laminating functional layers including a light emitting layer by an evaporation method or the like.
  • the second electrode 123 is formed on the organic layer 122.
  • a connecting portion 171 is further formed on the second insulating portion 152, and a protective film 161 is formed on the first insulating portion 151.
  • the second electrode 123, the protective film 161, and the connection portion 171 are formed simultaneously using the same material.
  • the second electrode 123, the connection portion 171 and the protective film 161 are formed by forming a metal thin film such as aluminum on the entire surface and patterning it.
  • the sealant 130 and the filler 140 are formed.
  • the sealing material is provided on the first substrate 100 so as to surround the organic light emitting unit 120 and to expose a part of the first electrode lead part 160 and a part of the second electrode lead part 170 to the outside. Apply material. Further, a filler material is applied to a space (specifically, a sealing space) surrounded by the sealing material 130.
  • the sealant 130 and the filler 140 are formed by curing the sealant material and the filler material after the first substrate 100 and the second substrate 110 are bonded to each other. In this step, a sealing material may be applied to the second substrate 110.
  • the organic light emitting unit 120 is sealed by bonding the first substrate 100 and the second substrate 110 together.
  • the first substrate 100 and the second substrate 110 are bonded to each other under a predetermined vacuum, and the first substrate 100 and the second substrate 110 are bonded to each other by gradually releasing to the atmosphere.
  • the organic EL element 10 includes the first substrate 100 and the second substrate 110 that are disposed to face each other, and the organic light emission provided between the first substrate 100 and the second substrate 110.
  • the insulating layer 150 that electrically insulates the second electrode lead portion 170 and the second electrode 123 from each other, and the insulating layer 150 includes the first electrode lead portion 160 and the organic layer 122. Including a first insulating part 151 provided between the second electrode lead part 170 and the organic layer 122, and a second insulating part 152 covered with the connecting part 171. The distance between the first insulating portion 151 and the first insulating portion 151 is longer than the distance between the sealing material 130 and the second insulating portion 152.
  • the first insulating part 151 can be provided with a protective film 161 as shown in FIG. 4, but in order to ensure insulation between the first electrode 123 and the first insulating part 151, the first insulating part 151 is provided in the sealed space. The part is exposed. Accordingly, the first insulating portion 151 draws moisture from the exposed portion.
  • the first insulating portion 151 is provided at a position farther from the sealing material 130 than the second insulating portion 152. Therefore, the time until the moisture that has entered from the sealing material 130 reaches the first insulating portion 151 can be made longer than the time until it reaches the second insulating portion 152 (specifically, the connecting portion 171). it can.
  • the lifetime of the organic EL element 10 can be extended.
  • the insulating layer 150 is provided in a frame shape along the end of the organic layer 122, and the line width of the first insulating portion 151 is shorter than the line width of the second insulating portion 152.
  • the first insulating portion 151 can be further away from the sealing material 130 than the second insulating portion 152 due to the width of the insulating layer 150. Therefore, it is not necessary to make the light emitting region smaller than necessary, and the lifetime can be extended while realizing a narrow frame.
  • the organic EL element 10 further includes a protective film 161 that covers the first insulating portion 151.
  • the protective film 161 covering the first insulating portion 151 is provided, it is possible to further suppress the first insulating portion 151 from drawing moisture. Therefore, the lifetime can be extended.
  • the first insulating portion 151 cannot be completely covered with the protective film 161, and a part of the first insulating portion 151 is exposed and is in contact with the filler 140.
  • the first insulating portion 151 may draw moisture that has penetrated into the filler 140 from the exposed portion of the first insulating portion 151. For this reason, the exposed portion of the first insulating portion 151 is provided in a portion closer to the organic layer 122. Thereby, it is possible to lengthen the time required for the moisture to reach the exposed portion by moving the exposed portion away from the sealing material 130.
  • the protective film 161 is made of the same material as that of the second electrode 123 and is electrically insulated from the second electrode 123.
  • the manufacturing process can be reduced and the manufacturing cost can be reduced.
  • the protective film 161 is further provided so as to contact the first electrode lead-out portion 160.
  • the protective film 161 since the protective film 161 has conductivity, the protective film 161 can be used as an auxiliary electrode. Therefore, a voltage drop in the first electrode lead-out portion 160 and the first electrode 121 can be suppressed, and the surface uniformity of light emission can be improved.
  • the second electrode 123 is made of a metal material.
  • the metal material generally has a lower moisture permeability than the resin material, the organic layer 122 can be effectively protected from moisture that has entered the sealed space.
  • FIG. 6 is a schematic cross-sectional view showing a cross section passing through the first electrode lead-out portion 160 of the organic EL element 20 according to a modification of the present embodiment.
  • FIG. 6 shows a cross section corresponding to the CC cross section of FIG.
  • the organic EL element 20 according to this modification is different from the organic EL element 10 shown in FIG. 4 in that the protective film 161 is not provided.
  • the protective film 161 since the distance between the first insulating portion 151 and the sealing material 130 is long, the moisture that has permeated the sealing material 130 and entered the sealing space is the first insulating portion 151.
  • the time required to reach is longer than the time required to reach the second insulating portion 152 (specifically, the connecting portion 171). Thereby, the lifetime of the organic EL element 20 can be lengthened.
  • FIG. 7 is an overview perspective view showing the illumination device 30 according to the present embodiment.
  • the lighting device 30 includes a light emitting unit 31 composed of a plurality of organic EL elements 10, a hanging tool 32 for installing the light emitting unit 31 on the ceiling, and a power cord 33 that connects the light emitting unit 31 and the hanging tool 32.
  • the light emitting unit 31 is configured by arranging a plurality of organic EL elements 10 so as to be adjacent to each other, for example. Further, the end of the light emitting unit 31 is covered and protected by the lamp case 34.
  • the hanger 32 has a remote control light receiving unit 35 for receiving a remote control signal transmitted from a remote control (not shown) on its surface.
  • the illumination device 30 according to the present embodiment includes, for example, the organic EL element 10 according to the first embodiment.
  • the illuminating device 30 which concerns on this Embodiment has an effect similar to Embodiment 1.
  • the lighting device 30 is not limited to a configuration that is suspended from the ceiling, and the same effect can be obtained even when the configuration is installed on a wall.
  • the hermetic sealing structure in which the filler 140 covering the organic light emitting unit 120 is provided has been described, but the present invention is not limited thereto.
  • the organic EL element may have a hollow sealing structure in which the filler 140 is not provided. That is, the sealing space may be hollow. The hollow sealed space is maintained in a reduced pressure state when the first substrate 100 and the second substrate 110 are bonded to each other, for example.
  • the distance between the insulating layer 150 and the sealing material 130 is changed by changing the line width of the insulating layer 150, but the present invention is not limited to this.
  • the distance between the insulating layer 150 and the sealing material 130 may be varied by changing the position where the insulating layer 150 having a constant line width is arranged.
  • the distance between the insulating layer 150 and the sealing material 130 may be varied by changing the position where the sealing material 130 is disposed.
  • the first electrode extraction portion 160 and the first electrode 121 are integrally formed.
  • the 1st electrode extraction part 160 and the 1st electrode 121 may be comprised from another member.
  • the 2nd electrode extraction part 170 and the 2nd electrode 123 may be formed integrally.
  • the first electrode 121 is an anode and the second electrode 123 is a cathode is shown, but the reverse may be possible. That is, the first electrode 121 may be a cathode and the second electrode 123 may be an anode.
  • the auxiliary electrode 180 is provided on the first electrode 121 and the first electrode extraction portion 160, but the auxiliary electrode 180 is connected to the first electrode 121 and the first electrode extraction portion 160 and the first electrode extraction portion 160. It may be provided between one substrate 100.
  • planar view shape of the organic EL element 10 is rectangular has been described, but the present invention is not limited thereto.
  • the planar view shape of the organic EL element 10 may be a closed shape drawn by a straight line or a curve, such as a polygon, a circle, or an ellipse.
  • the bottom emission type organic EL element 10 that emits light toward the first substrate 100 is shown, but a top emission type that emits light toward the second substrate 110 may be used.
  • the first electrode 121 is made of a light reflective material
  • the second electrode 123 and the second substrate 110 are made of a light transmissive material.
  • the embodiment can be realized by arbitrarily combining the components and functions in each embodiment without departing from the scope of the present invention, or a form obtained by subjecting each embodiment to various modifications conceived by those skilled in the art. Forms are also included in the present invention.

Abstract

 有機EL素子(10)は、第1基板(100)及び第2基板(110)と、第1電極(121)、有機層(122)及び第2電極(123)を含む有機発光部(120)と、有機発光部(120)を囲むように設けられたシール材(130)と、第1電極引出部(160)と、第2電極引出部(170)と、第1電極(121)と第2電極(123)とを電気的に絶縁する絶縁層(150)と、第2電極引出部(170)と第2電極(123)とを電気的に接続する接続部(171)を備え、絶縁層(150)は、第1電極引出部(160)と有機層(122)との間に設けられた第1絶縁部(151)と、第2電極引出部(170)と有機層(122)との間に設けられ、接続部(171)に覆われた第2絶縁部(152)とを含み、シール材(130)と第1絶縁部(151)との間の距離は、シール材(130)と第2絶縁部(152)との間の距離より長い。

Description

有機EL素子及びその製造方法
 本発明は、有機EL(Electro-Luminescence)素子及びその製造方法に関する。
 有機EL素子は、低電圧、低電流で駆動可能な発光素子であり、供給電力に対して発光輝度が大きく、発光効率が良いという利点がある。このため、従来、有機EL素子を用いた様々なデバイス、例えば、有機EL素子を用いた照明装置及び表示装置などが開発されている。
 例えば、特許文献1には、EL積層構造体が透明基板上に設けられた有機EL素子が開示されている。EL積層構造体は、発光層を含む有機物層が陽極と陰極との間に挟持されてなり、陽極を陰極から絶縁するための陽極絶縁層が、当該EL積層構造体の端部に沿って設けられている。また、EL積層構造体は、水分などから保護するために樹脂層によって覆われている。
特開2000-348859号公報
 しかしながら、上記従来の有機EL素子では、陽極絶縁層の透湿性が樹脂層よりも高いために、浸入した水分を陽極絶縁層が引き込んでしまう。つまり、陽極絶縁層は、浸入した水分が発光層に到達するのを早めてしまう。このため、上記従来の有機EL素子では、発光層の劣化が早くなり、有機EL素子の寿命が短くなるという問題がある。
 そこで、本発明は、より長寿命な有機EL素子及びその製造方法を提供することを目的とする。
 上記目的を達成するため、本発明の一態様に係る有機EL素子は、対向配置された第1基板及び第2基板と、前記第1基板と前記第2基板との間に設けられた有機発光部であって、前記第1基板に順に積層された第1電極、発光層を含む有機層、及び、第2電極を含む有機発光部と、前記第1基板と前記第2基板とを接続し、かつ、前記有機発光部を囲むように設けられたシール材と、一部が前記シール材の外側に露出し、かつ、前記第1電極に電気的に接続された第1電極引出部と、一部が前記シール材の外側に露出し、かつ、前記第2電極に電気的に接続された第2電極引出部と、前記有機層の端部に沿って設けられた、前記第1電極と前記第2電極とを電気的に絶縁する絶縁層と、前記第2電極引出部と前記第2電極とを電気的に接続する接続部を備え、前記絶縁層は、前記第1電極引出部と前記有機層との間に設けられた第1絶縁部と、前記第2電極引出部と前記有機層との間に設けられ、前記接続部に覆われた第2絶縁部とを含み、前記シール材と前記第1絶縁部との間の距離は、前記シール材と前記第2絶縁部との間の距離より長い。
 また、本発明の一態様に係る有機EL素子の製造方法は、順に積層された第1電極、発光層を含む有機層、及び、第2電極を含む有機発光部を備える有機EL素子の製造方法であって、第1基板上に、前記第1電極と、当該第1電極に電気的に接続される第1電極引出部と、前記第2電極に電気的に接続される第2電極引出部とを形成する第1工程と、前記第1電極の端部に沿って絶縁層を形成する第2工程と、前記第1電極上に前記有機層を形成する第3工程と、前記有機層上に前記第2電極を形成する第4工程と、前記有機発光部を囲むように、かつ、前記第1電極引出部の一部及び前記第2電極引出部の一部が外側に露出するように、前記第1基板及び第2基板の少なくとも一方にシール材を形成する第5工程と、前記第1基板と前記第2基板とを貼り合わせることで、前記有機発光部を封止する第6工程とを含み、前記絶縁層は、前記第1電極引出部と前記有機層との間に設けられた第1絶縁部と、前記第2電極引出部と前記有機層との間に設けられた第2絶縁部とを含み、前記第4工程では、さらに、前記第2絶縁部上に、前記第2電極と前記第2電極引出部とを電気的に接続する接続部を形成し、前記第2工程では、前記シール材と前記第1絶縁部との間の距離が、前記シール材と前記第2絶縁部との間の距離より長くなるように、前記絶縁層を形成する。
 本発明によれば、より長寿命な有機EL素子及びその製造方法を提供することができる。
図1は、本発明の実施の形態1に係る有機EL素子を示す概略平面図である。 図2は、本発明の実施の形態1に係る第1電極引出部を通る断面(A-A断面)を示す概略断面図である。 図3は、本発明の実施の形態1に係る第2電極引出部を通る断面(B-B断面)を示す概略断面図である。 図4は、本発明の実施の形態1に係る第1電極引出部と第2電極引出部との境界近傍の領域(C領域)を示す概略平面図である。 図5Aは、本発明の実施の形態1に係る有機EL素子の製造方法における第1電極の形成工程を示す概略断面図である。 図5Bは、本発明の実施の形態1に係る有機EL素子の製造方法における補助電極の形成工程を示す概略断面図である。 図5Cは、本発明の実施の形態1に係る有機EL素子の製造方法における絶縁層の形成工程を示す概略断面図である。 図5Dは、本発明の実施の形態1に係る有機EL素子の製造方法における有機層の形成工程を示す概略断面図である。 図5Eは、本発明の実施の形態1に係る有機EL素子の製造方法における第2電極の形成工程を示す概略断面図である。 図5Fは、本発明の実施の形態1に係る有機EL素子の製造方法におけるシール材材料及び充填材材料の塗布工程を示す概略断面図である。 図5Gは、本発明の実施の形態1に係る有機EL素子の製造方法における貼合工程を示す概略断面図である。 図6は、本発明の実施の形態1の変形例に係る第1電極引出部を通る断面を示す概略断面図である。 図7は、本発明の実施の形態2に係る照明装置を示す概観斜視図である。
 以下では、本発明の実施の形態に係る有機EL素子及びその製造方法について、図面を用いて詳細に説明する。なお、以下に説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。したがって、以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置及び接続形態などは、一例であり、本発明を限定する趣旨ではない。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、同じ構成部材については同じ符号を付している。
 (実施の形態1)
 [有機EL素子]
 まず、実施の形態1に係る有機EL素子の構成について、図1~図4を用いて説明する。
 図1は、本実施の形態に係る有機EL素子10を示す概略平面図である。図2は、本実施の形態に係る第1電極引出部160を通る断面(図1のA-A断面)を示す概略断面図である。図3は、本実施の形態に係る第2電極引出部170を通る断面(図1のB-B断面)を示す概略断面図である。図4は、本実施の形態に係る第1電極引出部160と第2電極引出部170との境界近傍の領域(図1のC領域)を示す概略平面図である。
 図1に示すように、有機EL素子10は、例えば、略矩形の平面発光体である。有機EL素子10は、例えば、紙面奥行方向に略矩形の面状に発光する。つまり、有機EL素子10は、平面視において、略矩形の発光領域(図1に示す有機発光部120に相当)と、当該発光領域を囲む非発光領域(いわゆる額縁)とを有する。
 図1~図3に示すように、有機EL素子10は、第1基板100と、第2基板110と、有機発光部120と、シール材130と、充填材140と、絶縁層150と、第1電極引出部160と、保護膜161と、第2電極引出部170と、接続部171と、補助電極180とを備える。また、図2及び図3に示すように、有機発光部120は、第1電極121と、有機層122と、第2電極123とを備える。
 なお、図1には、有機発光部120と、シール材130と、絶縁層150との平面視における形状及び位置関係を分かりやすくするために、第2基板110、充填材140、保護膜161、接続部171及び補助電極180は示していない。また、図4では、保護膜161、接続部171及び第2電極123の端部を太い長破線で示している。また、図4では、第2基板110、有機層122、充填材140及び補助電極180を示していない。
 [基板]
 第1基板100及び第2基板110は、対向配置されている。具体的には、第1基板100と第2基板110とは、所定の距離を離間して互いに対向するように配置されている。例えば、第1基板100と第2基板110との間の距離は、6μm~100μmであり、一例として20μmである。また、第1基板100と第2基板110とは、シール材130によって接着されている。
 第1基板100と第2基板110との間には、有機発光部120が配置されている。また、第1基板100と第2基板110との間には、有機発光部120を覆って保護する充填材140が充填されている。
 第1基板100は、透光性を有し、可視光の少なくとも一部を透過する。第1基板100は、例えば、ソーダガラス、無アルカリガラスなどのガラス基板、又は、ポリカーボネート樹脂、アクリル樹脂などの透光性樹脂材料からなる樹脂基板である。例えば、第1基板100としては、取り扱いの利便性と機械特性とから、厚さが0.03mm~1.2mmの板状の透明基板を用いることができる。
 第2基板110は、例えば、透光性を有し、可視光の少なくとも一部を透過する。例えば、第2基板110は、第1基板100と同じ材料から構成される。あるいは、第2基板110は、光反射性を有してもよい。具体的には、第2基板110は、ステンレス、アルミニウムなどの金属材料から構成されてもよい。
 第1基板100の平面視形状は、図1に示すように、略矩形である。同様に、第2基板110の平面視形状も略矩形である。本実施の形態に係る有機EL素子10では、例えば、図2及び図3に示すように、第1基板100が第2基板110より大きい略矩形である。なお、第2基板110は、第1基板100と同一の大きさ、具体的には、同一の形状でもよく、あるいは、第1基板100より大きくてもよい。
 [有機発光部]
 有機発光部120は、電圧が印加された場合に平面状に発光する。有機発光部120が備える第1電極121と、有機層122と、第2電極123とは、この順で第1基板100に積層されている。
 図1に示すように、有機発光部120の平面視形状は、第1基板100と同様に略矩形である。なお、有機発光部120の平面視形状は、第1基板100及び第2基板110より小さい。有機発光部120の周囲に、絶縁層150、シール材130、第1電極引出部160及び第2電極引出部170が形成される。
 第1電極121は、発光面側に設けられた電極であり、例えば、第1基板100上に設けられる。第1電極121は、例えば、陽極であり、有機EL素子10の発光時には、第2電極123よりも高い電位になる。
 第1電極121は、透光性を有する導電性材料から構成される。例えば、第1電極121は、可視光の少なくとも一部を透過する透明の導電性材料から構成される。第1電極121は、例えば、酸化インジウムスズ(ITO)、酸化インジウム亜鉛(IZO)、アルミニウムをドープした酸化亜鉛(AZO)などから構成される。
 なお、第1電極121は、光を透過できる程度に薄膜の銀、アルミニウムなどの金属薄膜でもよい。あるいは、Agナノワイヤ又はAg粒子を分散させてもよい。あるいは、第1電極121としては、PEDOT、ポリアニリンなどの導電性高分子、若しくは、任意のアクセプタなどでドープした導電性高分子、又は、カーボンナノチューブなどの導電性光透過性材料を用いることもできる。
 例えば、第1電極121は、蒸着法、塗布法、スパッタリング法又はイオンビームアシスト法などによって透明導電膜を第1基板100上に成膜し、成膜した透明導電膜をパターニングすることで形成される。例えば、第1電極121の膜厚は、60nm~200nmであり、一例として、100nmである。
 有機層122は、第1電極121及び第2電極123の間に設けられる。有機層122は、発光層を含み、第1電極121及び第2電極123の間に電圧が印加されることで、面状に発光する。
 具体的には、有機層122は、正孔注入層、正孔輸送層、発光層(有機EL層)、電子輸送層及び電子注入層を含んでいる。発光層などの有機層122は、例えば、ジアミン、アントラセン、金属錯体などの有機材料から構成される。有機層122を構成する各層は、蒸着法、スピンコート法、キャスト法、又は、イオンビームアシスト法などにより形成される。例えば、有機層122の膜厚は、150nm~350nmであり、一例として、210nmである。
 例えば、発光色が白色の場合には、有機層122は、発光層中に赤色、緑色、青色の3色のドーパント色素をドーピングして形成される。あるいは、有機層122は、青色正孔輸送性発光層と緑色電子輸送性発光層と赤色電子輸送性発光層との積層構造を有してもよい。また、有機層122は、赤色、緑色、青色の発光ユニットが光透過性及び導電性を有する中間層を介して積層され、電気的に直接的に接続したマルチユニット構造にしてもよい。
 第2電極123は、発光面とは反対側に設けられた電極であり、例えば、有機層122上に設けられる。第2電極123は、例えば、陰極であり、有機EL素子10の発光時には、第1電極121よりも低い電位になる。
 第2電極123は、光反射性を有する導電性材料から構成される。第2電極123は、有機層122から発せられた光を反射し、発光面側に出射させる。第2電極123は、例えば、アルミニウム、銀若しくはマグネシウム、又は、これらの少なくとも1種類を含む合金などの金属材料から構成される。例えば、第2電極123は、蒸着法、塗布法、スパッタリング法、イオンビームアシスト法又はGCIB(Gas Cluster Ion Beam)蒸着などによって導電膜を有機層122上に成膜することで形成される。例えば、第2電極123の膜厚は、20nm~200nmであり、一例として、100nmである。
 なお、金属材料は水分透過率が低いので、第2電極123は、有機層122を水分から保護することができる。第2電極123は、例えば、導電性の樹脂材料から構成されてもよい。ただし、この場合、第2電極123は、絶縁層150よりも水分透過率が低い材料から構成される。
 また、第2電極123は、透光性を有する導電性材料から構成されてもよい。例えば、第2電極123としては、第1電極121と同じ材料を利用することができる。この場合、第2基板110も光透過性材料で構成されていれば、有機EL素子10は、両面発光型の照明装置として、例えば、建物又は車両の窓などに利用することができる。
 [シール材]
 シール材130は、第1基板100と第2基板110とを接続する接続部材である。例えば、シール材130は、第1基板100と第2基板110とを接着する接着剤である。シール材130は、図1に示すように、平面視において第1基板100の外周に沿って有機発光部120を囲むように配置される。これにより、第1基板100と、第2基板110と、シール材130とに囲まれた空間(以下、「封止空間」と記載する)に有機発光部120を封止することができる。
 シール材130は、図1に示すように、平面視において環状に形成されている。例えば、シール材130は、平面視において略矩形の枠状体である。具体的には、シール材130は、略矩形の第1基板100の外周に沿って略矩形の枠状に設けられている。例えば、シール材130の線幅(すなわち、封止幅)は、略一定である。
 シール材130としては、例えば、エポキシ系樹脂、アクリル系樹脂、又は、シリコーン樹脂などの光硬化性、熱硬化性又は二液硬化性の接着性樹脂を用いることができる。あるいは、シール材130としては、ポリエチレン、ポリプロピレンなどの酸変性物からなる熱可塑性の接着性樹脂などを用いてもよい。
 なお、シール材130には、無機フィラーなどを混入してもよい。これにより、外部から浸入する水分の透過率をさらに下げることができる。無機フィラーは、例えば、シリカ、水酸化カルシウム、炭酸カルシウム、その他樹脂材料などである。
 シール材130としては、例えば、充填材140よりも粘度が高い材料を用いる。これにより、シール材130は、充填材140を塗布する際のダム材として機能する。つまり、シール材130を塗布した後に充填材140を塗布することで、充填材140がシール材130で囲まれた領域から外方へ漏れ出ないようにすることができる。
 シール材130は、樹脂材料からなるシール材材料を塗布し、硬化することで形成される。例えば、樹脂材料の粘度及び膜厚に応じて、ロールコート、スピンコート、スクリーン印刷、スプレーコート、スリットコート、スキージ塗布などの印刷法、又は、ディスペンサによる描画塗布などによってシール材材料が塗布される。
 [充填材]
 充填材140は、有機発光部120を封止するための部材である。例えば、充填材140は、有機発光部120を接触して覆うように第1基板100と第2基板110との間に設けられる。具体的には、充填材140は、封止空間に充填されて硬化した樹脂材料である。
 充填材140としては、例えば、エポキシ系樹脂、アクリル系樹脂、又は、シリコーン樹脂などの光硬化性、熱硬化性又は二液硬化性の接着性樹脂を用いることができる。あるいは、充填材140としては、ポリエチレン、ポリプロピレンなどの酸変性物からなる熱可塑性の接着性樹脂などを用いてもよい。
 また、充填材140は、乾燥剤を含んでいてもよい。乾燥剤は、例えば、水分を吸着する微細孔を有する吸湿材料であり、具体的には、酸化カルシウム(CaO)、ゼオライトなどである。乾燥剤としては、より吸湿容量の大きな材料を用いることが好ましい。
 充填材140は、樹脂材料からなる充填材材料を塗布し、硬化することで形成される。例えば、樹脂材料の粘度及び膜厚に応じて、ロールコート、スピンコート、スクリーン印刷、スプレーコート、スリットコート、スキージ塗布などの印刷法、又は、ディスペンサによる描画塗布などによって充填材材料が塗布される。
 [絶縁層]
 絶縁層150は、有機層122の端部に沿って設けられ、第1電極121と第2電極123とを電気的に絶縁する。絶縁層150は、有機層122の端部に接触している。絶縁層150は、第2電極123とともに、有機層122の端部が露出しないように有機層122の端部を覆っている。なお、有機層122の端部は、有機EL素子10の発光領域と非発光領域との境界部分に相当する。
 絶縁層150は、例えば、ポリイミドなどの絶縁性樹脂材料から構成される。例えば、絶縁層150は、絶縁性樹脂材料を塗布し、硬化することで形成される。なお、絶縁層150は、窒化膜などの無機材料から構成されてもよい。
 絶縁層150は、図1に示すように、第1絶縁部151と第2絶縁部152とを含む。それぞれの詳細な構造については、後で詳しく説明する。
 [電極引出部]
 第1電極引出部160及び第2電極引出部170は、一部がシール材130の外側に露出するように設けられている。例えば、第1電極引出部160及び第2電極引出部170は、図1に示すように、第1基板100の周の一部に沿って設けられる。具体的には、平面視において、略矩形の第1基板100の互いに対向する2つの辺のそれぞれに、第1電極引出部160及び第2電極引出部170が設けられている。例えば、第1電極引出部160及び第2電極引出部170は、第1基板100の中心を対称の中心とする点対称に配置されている。これにより、第1電極121及び第2電極123のそれぞれの面内での電圧降下を抑制し、発光の面均一性を向上させることができる。
 第1電極引出部160及び第2電極引出部170は、第1電極121と同じ材料から構成される。例えば、第1基板100上に導電膜を成膜し、パターニングすることで、第1電極121とともに、第1電極引出部160及び第2電極引出部170を同時に形成する。
 第1電極引出部160は、例えば、陽極引出電極であり、第1電極121に電気的に接続されている。具体的には、図2に示すように、第1電極引出部160は、第1電極121の一部が延伸するように形成されている。つまり、第1電極引出部160は、第1電極121と一体に形成された導電膜である。
 なお、本実施の形態では、一体形成された導電膜のうち、発光領域に位置する部分が第1電極121であり、非発光領域に位置する部分が第1電極引出部160である。したがって、例えば、絶縁層150の第1絶縁部151は、第1電極121の端部に沿って、第1電極引出部160上に設けられている。
 また、第1絶縁部151上には、図2に示すように、第1絶縁部151を覆う保護膜161が形成されている。保護膜161は、例えば、水分透過率が第1絶縁部151より低い導電膜である。保護膜161は、第1絶縁部151を水分から保護する。第1絶縁部151が保護膜161に覆われていることで、封止空間内に浸入した水分が第1絶縁部151に引き込まれることを抑制することができ、有機EL素子10の寿命を長くすることができる。
 また、保護膜161は、例えば、第1電極引出部160よりも導電率が高い材料から構成される。ここで、図2に示すように、保護膜161は、第1電極引出部160に接触するように設けられているので、第1電極引出部160の補助電極として機能する。これにより、第1電極引出部160内の電圧降下を抑制し、発光の面均一性を向上させることができる。
 保護膜161は、例えば、第2電極123と同じ材料から構成される。具体的には、保護膜161は、第2電極123と同時に形成される。例えば、有機層122及び絶縁層150上に導電膜を成膜し、パターニングすることで、第2電極123とともに、接続部171及び保護膜161を同時に形成する。
 図4に示すように、保護膜161は、第2電極123及び接続部171と離間している。具体的には、保護膜161と第2電極123との間、及び、保護膜161と接続部171との間には、絶縁溝が形成されている。言い換えると、保護膜161は、島状に形成されている。これにより、保護膜161は、第2電極123及び第2電極引出部170と電気的に絶縁されている。
 なお、保護膜161は、第2電極123と離間しているので、第1絶縁部151の一部は、封止空間内に露出している。つまり、第1絶縁部151の一部は、充填材140に接触している。
 第2電極引出部170は、例えば、陰極引出電極であり、第2電極123に電気的に接続されている。具体的には、図3に示すように、第2電極引出部170は、接続部171によって第2電極123と電気的に接続されている。
 図4に示すように、第2電極引出部170は、第1電極121及び第1電極引出部160と離間している。具体的には、第2電極引出部170と第1電極121との間、及び、第2電極引出部170と第1電極引出部160との間には、絶縁溝が形成されている。言い換えると、第2電極引出部170は、島状に形成されている。これにより、第2電極引出部170は、第1電極121及び第1電極引出部160と電気的に絶縁されている。
 接続部171は、第2電極123の一部が延伸した部分である。つまり、接続部171は、第2電極123と一体に形成された導電膜である。したがって、接続部171は、第2電極123と同じ材料から構成される。
 接続部171は、第2絶縁部152上に形成されている。接続部171は、保護膜161と同様に、第2絶縁部152を水分から保護する。第2絶縁部152が接続部171に覆われていることで、封止空間内に浸入した水分が第2絶縁部152に引き込まれることを抑制することができ、有機EL素子10の寿命を長くすることができる。
 [補助電極]
 補助電極180は、第1電極121より導電性が高い材料から構成される。例えば、補助電極180は、金属材料から構成される。補助電極180は、例えば、モリブデン/アルミニウム/モリブデンの積層構造から構成される。例えば、補助電極180は、蒸着法、塗布法、スパッタリング法又はイオンビームアシスト法などによって金属薄膜を積層し、パターニングすることで形成される。
 補助電極180は、第1電極121の周に沿って設けられている。具体的には、第1電極121の周に沿って環状に形成されている。補助電極180は、第1電極121に電気的に接続されている。具体的には、図2及び図3に示すように、補助電極180は、第1電極121上及び第1電極引出部160上に設けられている。
 環状に設けられた補助電極180により、例えば、図1に示すように、有機EL素子10の両側から給電された電力を第1電極121の周に沿って効率良く伝えることができる。つまり、第1電極121内の電圧降下を抑制し、発光の面均一性を高めることができる。
 [第1絶縁部と第2絶縁部]
 絶縁層150は、図1に示すように、平面視において環状に形成されている。例えば、絶縁層150は、平面視において略矩形の枠状体である。具体的には、絶縁層150は、環状のシール材130の内側に、シール材130に沿って設けられている。
 絶縁層150の第1絶縁部151は、第1電極引出部160と有機層122との間に設けられた部分である。具体的には、第1絶縁部151は、図2に示すように、第1電極121の端部に沿って、第1電極引出部160上に設けられている。
 絶縁層150の第2絶縁部152は、第2電極引出部170と有機層122との間に設けられた部分である。具体的には、第2絶縁部152は、図3に示すように、第1電極121の端部に沿って、第2電極引出部170の端部と第1電極121の端部とを覆うように設けられている。
 図4に示すように、シール材130と第1絶縁部151との間の距離d1は、シール材130と第2絶縁部152との間の距離d2より長い。つまり、第1絶縁部151は、第2絶縁部152よりもシール材130から離れた位置に設けられている。例えば、距離d1は、2.3mm~2.5mmであり、距離d2は、1.7mm~1.9mmである。
 また、図4に示すように、第1絶縁部151の線幅w1は、第2絶縁部152の線幅w2より短い。例えば、線幅w1は、0.4mm~0.6mmであり、線幅w2は、0.9mm~1.1mmである。
 第1絶縁部151及び第2絶縁部152は、例えば、ディスペンサなどによって環状にポリイミドなどの絶縁性樹脂材料を描画塗布することで形成される。例えば、第1絶縁部151は、1ライン分の描画によって形成され、第2絶縁部152は、2ライン分の描画によって形成される。つまり、例えば、第2絶縁部152の線幅w2は、第1絶縁部151の線幅w1の略2倍である。
 具体的には、まず、ポリイミドなどの絶縁性樹脂材料を有機層122の端部に沿った環状の枠を描画する。次に、描画した枠の外側に接するように、枠の一部に沿って線を描画する。このとき、枠の描画と、枠の一部に沿った線の描画とにおいて、滴下量を同じにしておく。描画終了後に、光照射により絶縁性樹脂材料を硬化することで、第1絶縁部151及び第2絶縁部152を含む絶縁層150が形成される。
 なお、描画する際に、滴下量又は描画の速度を変えてもよい。例えば、第1絶縁部151を形成すべき領域では、所定の滴下量で絶縁性樹脂材料を描画塗布し、第2絶縁部152を形成すべき領域では、当該滴下量より多い滴下量(例えば、倍)で絶縁性樹脂材料を描画塗布すればよい。
 あるいは、例えば、第1絶縁部151を形成すべき領域では、所定の描画速度で絶縁性樹脂材料を描画塗布し、第2絶縁部152を形成すべき領域では、当該描画速度より遅い描画速度(例えば、倍)で絶縁性樹脂材料を描画塗布してもよい。なお、描画速度は、例えば、絶縁性樹脂材料を射出するノズルの移動速度である。
 [有機EL素子の製造方法]
 続いて、本実施の形態に係る有機EL素子10の製造方法について、図5A~図5Gを用いて説明する。
 図5A~図5Gはそれぞれ、本実施の形態に係る有機EL素子10の製造方法における第1電極121、補助電極180、絶縁層150、有機層122及び第2電極123の形成工程、並びに、シール材材料及び充填材材料の塗布工程、並びに、貼合工程を示す概略断面図である。なお、図5A~図5Gは、例えば、図1に示すD-D断面における製造工程を示している。
 まず、図5Aに示す工程(第1工程)では、第1基板100上に、第1電極121と、第1電極引出部160と、第2電極引出部170とを形成する。例えば、第1電極121と、第1電極引出部160と、第2電極引出部170とを、同じ材料を用いて同時に形成する。具体的には、第1基板100上に、ITOなどの透明導電膜を全面に成膜し、パターニングすることで、第1電極121と、第1電極引出部160と、第2電極引出部170とを形成する。
 次に、図5Bに示す工程では、第1電極121の端部に沿って第1電極121上に補助電極180を形成する。例えば、モリブデン膜、アルミニウム膜、モリブデン膜を順に積層してパターニングすることで、補助電極180を形成する。
 次に、図5Cに示す工程(第2工程)では、第1電極121の端部に沿って絶縁層150を形成する。具体的には、補助電極180を覆うように絶縁層150を形成する。このとき、第1電極引出部160の近傍に第1絶縁部151を形成し、第2電極引出部170の近傍に第2絶縁部152を形成する。
 例えば、絶縁性樹脂材料をディスペンサなどによって塗布し、硬化させることで、第1絶縁部151及び第2絶縁部152を形成する。このとき、シール材130と第1絶縁部151との間の距離が、シール材130と第2絶縁部152との間の距離より長くなるように、絶縁層150を形成する。言い換えると、第1絶縁部151が第2絶縁部152よりシール材130から離れた位置に形成されるように、絶縁層150を形成する。
 具体的には、第2絶縁部152の線幅が第1絶縁部151の線幅より太くなるように絶縁層150を形成する。線幅は、上述したように、例えば、塗布するライン数、塗布量、又は、描画の速度を変更することで、第1絶縁部151の線幅と第2絶縁部152の線幅とを異ならせる。
 次に、図5Dに示す工程(第3工程)では、第1電極121上に有機層122を形成する。このとき、有機層122の端部は絶縁層150上に形成されてもよい。例えば、蒸着法などにより、発光層を含む各機能層を積層することで、有機層122を形成する。
 次に、図5Eに示す工程(第4工程)では、有機層122上に第2電極123を形成する。本工程では、さらに、第2絶縁部152上に接続部171を形成し、第1絶縁部151上に保護膜161を形成する。例えば、第2電極123と、保護膜161と、接続部171とを、同じ材料を用いて同時に形成する。具体的には、アルミニウムなどの金属薄膜を全面に成膜し、パターニングすることで、第2電極123、接続部171及び保護膜161を形成する。
 次に、図5Fに示す工程(第5工程)では、シール材130及び充填材140と形成する。具体的には、有機発光部120を囲むように、かつ、第1電極引出部160の一部及び第2電極引出部170の一部が外側に露出するように、第1基板100にシール材材料を塗布する。さらに、シール材130で囲まれた空間(具体的には、封止空間)に充填材材料を塗布する。なお、シール材130及び充填材140はそれぞれ、第1基板100及び第2基板110の貼り合わせた後に、シール材材料及び充填材材料を硬化することで形成される。なお、本工程では、シール材材料を第2基板110に塗布してもよい。
 次に、図5Gに示す工程(第6工程)では、第1基板100と第2基板110とを貼り合わせることで、有機発光部120を封止する。例えば、所定の真空下で第1基板100と第2基板110とを貼り合わせ、段階的に大気開放することで、第1基板100と第2基板110とを貼り合わせる。
 [まとめ]
 以上のように、本実施の形態に係る有機EL素子10は、対向配置された第1基板100及び第2基板110と、第1基板100と第2基板110との間に設けられた有機発光部120であって、第1基板100に順に積層された第1電極121、発光層を含む有機層122、及び、第2電極123を含む有機発光部120と、第1基板100と第2基板110とを接続し、かつ、有機発光部120を囲むように設けられたシール材130と、一部がシール材130の外側に露出し、かつ、第1電極121に電気的に接続された第1電極引出部160と、一部がシール材130の外側に露出し、かつ、第2電極123に電気的に接続された第2電極引出部170と、有機層122の端部に沿って設けられた、第1電極121と第2電極123とを電気的に絶縁する絶縁層150と、第2電極引出部170と第2電極123とを電気的に接続する接続部171を備え、絶縁層150は、第1電極引出部160と有機層122との間に設けられた第1絶縁部151と、第2電極引出部170と有機層122との間に設けられ、接続部171に覆われた第2絶縁部152とを含み、シール材130と第1絶縁部151との間の距離は、シール材130と第2絶縁部152との間の距離より長い。
 第2絶縁部152は、接続部171によって保護されているため、封止空間内に浸入した水分は、ほとんど第2絶縁部152に引き込まれない。これに対して、第1絶縁部151は、図4に示すように保護膜161を設けることはできるものの、第2電極123との間の絶縁性を確保するために、封止空間内に一部露出している。したがって、第1絶縁部151は、露出した部分から水分を引き込んでしまう。
 そこで、本実施の形態では、第1絶縁部151は、第2絶縁部152よりもシール材130から離れた位置に設けられている。これにより、シール材130から浸入した水分が第1絶縁部151に到達するまでの時間を、第2絶縁部152(具体的には、接続部171)に到達するまでの時間より長くすることができる。
 よって、本実施の形態によれば、有機EL素子10の寿命を長くすることができる。
 また、例えば、絶縁層150は、有機層122の端部に沿った枠状に設けられ、第1絶縁部151の線幅は、第2絶縁部152の線幅より短い。
 ここで、第1絶縁部151とシール材130との距離を大きくすればする程、第1絶縁部151による水分の引き込みを抑制することができる。しかしながら、第1絶縁部151とシール材130との距離を大きくすればする程、発光領域が小さくなり、すなわち、非発光領域(いわゆる額縁)が大きくなる。
 これに対して、本実施の形態では、絶縁層150の幅の広狭によって、第1絶縁部151を第2絶縁部152よりもシール材130から遠ざけることができる。したがって、必要以上に発光領域を小さくしなくてよく、狭額縁を実現しつつ、寿命を長くすることができる。
 また、例えば、有機EL素子10は、さらに、第1絶縁部151を覆う保護膜161を備える。
 これにより、第1絶縁部151を覆う保護膜161が設けられているので、第1絶縁部151が水分を引き込むのをより抑制することができる。したがって、寿命をより長くすることができる。
 ここで、保護膜161が導電性を有する場合は、第2電極123と絶縁する必要がある。このため、図2に示すように、第1絶縁部151を保護膜161が完全に覆うことはできずに、第1絶縁部151の一部が露出し、充填材140と接触している。
 このとき、第1絶縁部151は、第1絶縁部151の露出部分から充填材140内を浸透した水分を引き込むおそれがある。このため、第1絶縁部151の露出部分は、有機層122により近い部分に設けられる。これにより、露出部分をシール材130から遠ざけて、水分が露出部分にまで到達するのに要する時間を長くすることができる。
 また、例えば、保護膜161は、第2電極123と同じ材料から構成され、第2電極123とは電気的に絶縁されている。
 これにより、第2電極123と保護膜161とを同時に形成することができるので、製造工程を減らすことができ、製造コストを削減することができる。
 また、例えば、保護膜161は、さらに、第1電極引出部160に接触するように設けられている。
 これにより、保護膜161が導電性を有するので、保護膜161を補助電極として利用することができる。したがって、第1電極引出部160及び第1電極121内での電圧降下を抑制し、発光の面均一性を高めることができる。
 また、例えば、第2電極123は、金属材料から構成される。
 これにより、一般的に金属材料は樹脂材料よりも水分透過率が低いので、封止空間に浸入した水分から有機層122を効果的に保護することができる。
 (変形例)
 以下では、実施の形態に係る有機EL素子10の変形例について、図6を用いて説明する。
 図6は、本実施の形態の変形例に係る有機EL素子20の第1電極引出部160を通る断面を示す概略断面図である。図6は、図1のC-C断面に相当する断面を示している。
 本変形例に係る有機EL素子20は、図4に示す有機EL素子10と比較して、保護膜161が設けられていない点が異なっている。
 保護膜161がない場合であっても、第1絶縁部151とシール材130との間の距離が長いので、シール材130を透過して封止空間内に浸入した水分が第1絶縁部151に到達するまでの時間は、第2絶縁部152(具体的には、接続部171)に到達するまでの時間より長くなる。これにより、有機EL素子20の寿命を長くすることができる。
 (実施の形態2)
 続いて、実施の形態2に係る照明装置について、図7を用いて説明する。
 図7は、本実施の形態に係る照明装置30を示す概観斜視図である。
 図7に示す照明装置30は、例えば、有機EL素子10を備える。例えば、照明装置30は、複数の有機EL素子10からなる発光部31と、発光部31を天井に設置するための吊具32と、発光部31と吊具32とを繋ぐ電源コード33とを備える。
 発光部31は、例えば、複数の有機EL素子10が互いに隣接するように複数並べて構成される。また、発光部31は、その端部が灯具ケース34で覆われて保護される。吊具32は、その表面にリモコン(図示せず)から送信されたリモコン信号を受信するためのリモコン受光部35を有する。
 以上のように、本実施の形態に係る照明装置30は、例えば、実施の形態1に係る有機EL素子10を備える。このため、本実施の形態に係る照明装置30は、実施の形態1と同様の効果を奏する。すなわち、有機EL素子10の寿命を長くすることができ、長寿命の照明装置30を実現することができる。
 なお、照明装置30は、天井に吊り下げられる構成に限らず、壁に設置される構成であっても同等の効果を得ることができる。
 (その他)
 以上、本発明に係る有機EL素子及びその製造方法について、上記実施の形態及びその変形例に基づいて説明したが、本発明は、上記の実施の形態に限定されるものではない。
 例えば、上記の実施の形態では、有機発光部120を覆う充填材140を設ける密封封止構造について示したが、これに限らない。例えば、有機EL素子は、充填材140を設けない中空封止構造でもよい。つまり、封止空間は、中空でもよい。当該中空の封止空間は、例えば、第1基板100と第2基板110との貼り合わせ時の減圧状態に保たれている。
 また、例えば、上記の実施の形態では、絶縁層150の線幅を異ならせることで、絶縁層150とシール材130との距離を異ならせたが、これに限らない。線幅が一定の絶縁層150を配置する位置を異ならせることで、絶縁層150とシール材130との距離を異ならせてもよい。あるいは、シール材130を配置する位置を異ならせることで、絶縁層150とシール材130との距離を異ならせてもよい。
 また、上記の実施の形態では、第1電極引出部160と第1電極121とを一体形成したが、これに限らない。第1電極引出部160と第1電極121とは、別部材から構成されてもよい。また、第2電極引出部170と第2電極123とが一体に形成されてもよい。
 また、例えば、上記の実施の形態では、第1電極121が陽極で、第2電極123が陰極である例について示したが、逆でもよい。すなわち、第1電極121が陰極で、第2電極123が陽極でもよい。
 また、例えば、上記の実施の形態では、補助電極180を第1電極121上及び第1電極引出部160上に設けたが、補助電極180を第1電極121及び第1電極引出部160と第1基板100との間に設けてもよい。
 また、例えば、上記の実施の形態では、有機EL素子10の平面視形状が矩形である例について示したが、これに限らない。例えば、有機EL素子10の平面視形状は、多角形、円形又は楕円形などの、直線若しくは曲線で描かれた閉じた形状でもよい。
 また、例えば、上記の実施の形態では、第1基板100側に発光するボトムエミッション型の有機EL素子10について示したが、第2基板110側に発光するトップエミッション型でもよい。この場合は、例えば、第1電極121が光反射性を有する材料から構成され、第2電極123及び第2基板110が透光性を有する材料から構成される。
 その他、各実施の形態に対して当業者が思いつく各種変形を施して得られる形態や、本発明の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態も本発明に含まれる。
10、20 有機EL素子
100 第1基板
110 第2基板
120 有機発光部
121 第1電極
122 有機層
123 第2電極
130 シール材
150 絶縁層
151 第1絶縁部
152 第2絶縁部
160 第1電極引出部
161 保護膜
170 第2電極引出部
171 接続部

Claims (9)

  1.  対向配置された第1基板及び第2基板と、
     前記第1基板と前記第2基板との間に設けられた有機発光部であって、前記第1基板に順に積層された第1電極、発光層を含む有機層、及び、第2電極を含む有機発光部と、
     前記第1基板と前記第2基板とを接続し、かつ、前記有機発光部を囲むように設けられたシール材と、
     一部が前記シール材の外側に露出し、かつ、前記第1電極に電気的に接続された第1電極引出部と、
     一部が前記シール材の外側に露出し、かつ、前記第2電極に電気的に接続された第2電極引出部と、
     前記有機層の端部に沿って設けられた、前記第1電極と前記第2電極とを電気的に絶縁する絶縁層と、
     前記第2電極引出部と前記第2電極とを電気的に接続する接続部を備え、
     前記絶縁層は、
     前記第1電極引出部と前記有機層との間に設けられた第1絶縁部と、
     前記第2電極引出部と前記有機層との間に設けられ、前記接続部に覆われた第2絶縁部とを含み、
     前記シール材と前記第1絶縁部との間の距離は、前記シール材と前記第2絶縁部との間の距離より長い
     有機EL素子。
  2.  前記絶縁層は、前記有機層の端部に沿った枠状に設けられ、
     前記第1絶縁部の線幅は、前記第2絶縁部の線幅より短い
     請求項1に記載の有機EL素子。
  3.  前記有機EL素子は、さらに、前記第1絶縁部を覆う保護膜を備える
     請求項1又は2に記載の有機EL素子。
  4.  前記保護膜は、前記第2電極と同じ材料から構成され、前記第2電極とは電気的に絶縁されている
     請求項3に記載の有機EL素子。
  5.  前記保護膜は、さらに、前記第1電極引出部に接触するように設けられている
     請求項4に記載の有機EL素子。
  6.  前記第2電極は、金属材料から構成される
     請求項1~5のいずれか1項に記載の有機EL素子。
  7.  順に積層された第1電極、発光層を含む有機層、及び、第2電極を含む有機発光部を備える有機EL素子の製造方法であって、
     第1基板上に、前記第1電極と、当該第1電極に電気的に接続される第1電極引出部と、前記第2電極に電気的に接続される第2電極引出部とを形成する第1工程と、
     前記第1電極の端部に沿って絶縁層を形成する第2工程と、
     前記第1電極上に前記有機層を形成する第3工程と、
     前記有機層上に前記第2電極を形成する第4工程と、
     前記有機発光部を囲むように、かつ、前記第1電極引出部の一部及び前記第2電極引出部の一部が外側に露出するように、前記第1基板及び第2基板の少なくとも一方にシール材を形成する第5工程と、
     前記第1基板と前記第2基板とを貼り合わせることで、前記有機発光部を封止する第6工程とを含み、
     前記絶縁層は、
     前記第1電極引出部と前記有機層との間に設けられた第1絶縁部と、
     前記第2電極引出部と前記有機層との間に設けられた第2絶縁部とを含み、
     前記第4工程では、さらに、
     前記第2絶縁部上に、前記第2電極と前記第2電極引出部とを電気的に接続する接続部を形成し、
     前記第2工程では、
     前記シール材と前記第1絶縁部との間の距離が、前記シール材と前記第2絶縁部との間の距離より長くなるように、前記絶縁層を形成する
     有機EL素子の製造方法。
  8.  前記第4工程では、さらに、前記第1絶縁部上に、前記第1絶縁部を覆う保護膜を形成する
     請求項7に記載の有機EL素子の製造方法。
  9.  前記第1工程では、前記第1電極、前記第1電極引出部及び前記第2電極引出部を、同じ材料を用いて同時に形成し、
     前記第2工程では、前記第2電極、前記接続部及び前記保護膜を、同じ材料を用いて同時に形成する
     請求項8に記載の有機EL素子の製造方法。
PCT/JP2015/003027 2014-07-30 2015-06-17 有機el素子及びその製造方法 WO2016017061A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016537721A JP6226312B2 (ja) 2014-07-30 2015-06-17 有機el素子及びその製造方法
US15/318,485 US9853234B2 (en) 2014-07-30 2015-06-17 Organic EL device and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-155295 2014-07-30
JP2014155295 2014-07-30

Publications (1)

Publication Number Publication Date
WO2016017061A1 true WO2016017061A1 (ja) 2016-02-04

Family

ID=55216992

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003027 WO2016017061A1 (ja) 2014-07-30 2015-06-17 有機el素子及びその製造方法

Country Status (3)

Country Link
US (1) US9853234B2 (ja)
JP (1) JP6226312B2 (ja)
WO (1) WO2016017061A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10319941B2 (en) * 2015-02-16 2019-06-11 Sharp Kabushiki Kaisha Electroluminescence device
CN110311056B (zh) * 2019-07-26 2021-11-16 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004178932A (ja) * 2002-11-26 2004-06-24 Nippon Seiki Co Ltd 有機elパネル
JP2007227397A (ja) * 2007-04-23 2007-09-06 Tohoku Pioneer Corp 発光ディスプレイパネル及びその製造方法
JP2007323953A (ja) * 2006-05-31 2007-12-13 Optrex Corp 有機led素子
JP2008091237A (ja) * 2006-10-03 2008-04-17 Seiko Epson Corp 発光装置および電子機器
JP2013030306A (ja) * 2011-07-27 2013-02-07 Panasonic Corp 有機エレクトロルミネッセンス素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06349578A (ja) 1993-06-03 1994-12-22 Nichia Chem Ind Ltd Elランプ
JP2000348859A (ja) 1999-06-03 2000-12-15 Chisso Corp 有機el素子
JP4172105B2 (ja) 1999-07-30 2008-10-29 セイコーエプソン株式会社 表示パネル
JP4491942B2 (ja) 2000-09-19 2010-06-30 凸版印刷株式会社 エレクトロルミネッセンス素子およびその製造方法
JP4715596B2 (ja) 2006-03-31 2011-07-06 Tdk株式会社 画像表示装置
JP5440844B2 (ja) 2009-09-28 2014-03-12 日本精機株式会社 有機elパネル及びその製造方法
JP5842088B2 (ja) 2011-02-21 2016-01-13 パナソニックIpマネジメント株式会社 有機elデバイス及び有機elデバイスの製造方法
JP2012174558A (ja) 2011-02-22 2012-09-10 Panasonic Corp 有機elデバイス
KR101989940B1 (ko) * 2012-05-11 2019-06-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치 및 발광 장치의 제작 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004178932A (ja) * 2002-11-26 2004-06-24 Nippon Seiki Co Ltd 有機elパネル
JP2007323953A (ja) * 2006-05-31 2007-12-13 Optrex Corp 有機led素子
JP2008091237A (ja) * 2006-10-03 2008-04-17 Seiko Epson Corp 発光装置および電子機器
JP2007227397A (ja) * 2007-04-23 2007-09-06 Tohoku Pioneer Corp 発光ディスプレイパネル及びその製造方法
JP2013030306A (ja) * 2011-07-27 2013-02-07 Panasonic Corp 有機エレクトロルミネッセンス素子

Also Published As

Publication number Publication date
US20170133619A1 (en) 2017-05-11
US9853234B2 (en) 2017-12-26
JPWO2016017061A1 (ja) 2017-04-27
JP6226312B2 (ja) 2017-11-08

Similar Documents

Publication Publication Date Title
WO2019128133A1 (zh) 柔性显示屏
KR102287424B1 (ko) 발광 장치
RU2493612C2 (ru) Сборка светоизлучающих диодов
JP2015109190A (ja) 有機エレクトロルミネッセンス表示装置
JP6226312B2 (ja) 有機el素子及びその製造方法
KR102552840B1 (ko) 조명장치 및 표시장치
WO2016017064A1 (ja) 有機el素子及びその製造方法
US9231229B2 (en) Light emitting panel and manufacturing method of light emitting panel
US20190198804A1 (en) Organic el display device
WO2015118798A1 (ja) 有機エレクトロルミネッセンス素子及び照明装置
CN108461528B (zh) Oled拼接显示器及其拼接方法
JP2012009254A (ja) 照明装置およびその製造方法
US20130299812A1 (en) Organic electroluminescent element and illumination device
WO2015174013A1 (ja) 有機el素子及び照明装置
WO2016006171A1 (ja) 有機el素子及び照明装置
JP2016021347A (ja) 有機エレクトロルミネッセンス素子、光学パネル、建材
JP2015115191A (ja) 有機エレクトロルミネッセンス素子、その製造方法及び照明装置
JP2015204132A (ja) 有機el素子、照明装置及び有機el素子の製造方法
CN113193137B (zh) 显示面板及显示面板的封装结构制备方法
JP2014017204A (ja) 有機エレクトロルミネッセンス素子及び面状発光装置
JP6073156B2 (ja) 有機el装置
JP6450124B2 (ja) 発光装置
JP2016012546A (ja) 有機el素子及びその製造方法
JP2019036758A (ja) 発光装置
KR20110004098A (ko) 디스플레이 장치 및 이의 제작 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15826662

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016537721

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15318485

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15826662

Country of ref document: EP

Kind code of ref document: A1