WO2016010335A1 - 정전 잠상 현상용 토너 - Google Patents

정전 잠상 현상용 토너 Download PDF

Info

Publication number
WO2016010335A1
WO2016010335A1 PCT/KR2015/007286 KR2015007286W WO2016010335A1 WO 2016010335 A1 WO2016010335 A1 WO 2016010335A1 KR 2015007286 W KR2015007286 W KR 2015007286W WO 2016010335 A1 WO2016010335 A1 WO 2016010335A1
Authority
WO
WIPO (PCT)
Prior art keywords
toner
particles
electrostatic latent
latent image
magnetic carrier
Prior art date
Application number
PCT/KR2015/007286
Other languages
English (en)
French (fr)
Inventor
윤세영
주혜리
조성준
Original Assignee
삼성전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자 주식회사 filed Critical 삼성전자 주식회사
Priority to CN201580038480.3A priority Critical patent/CN107003627B/zh
Priority to US15/317,014 priority patent/US9964875B2/en
Priority to EP15821783.6A priority patent/EP3168686B1/en
Publication of WO2016010335A1 publication Critical patent/WO2016010335A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0825Developers with toner particles characterised by their structure; characterised by non-homogenuous distribution of components
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0819Developers with toner particles characterised by the dimensions of the particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0821Developers with toner particles characterised by physical parameters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08742Binders for toner particles comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08755Polyesters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08775Natural macromolecular compounds or derivatives thereof
    • G03G9/08782Waxes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/09Colouring agents for toner particles
    • G03G9/0902Inorganic compounds
    • G03G9/0904Carbon black
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/097Plasticisers; Charge controlling agents
    • G03G9/09708Inorganic compounds
    • G03G9/09725Silicon-oxides; Silicates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/10Developers with toner particles characterised by carrier particles
    • G03G9/107Developers with toner particles characterised by carrier particles having magnetic components
    • G03G9/1075Structural characteristics of the carrier particles, e.g. shape or crystallographic structure

Definitions

  • the present disclosure relates to an electrophotographic developer. More specifically, the present disclosure relates to developer for developing electrostatic latent images.
  • Developers used in electrophotographic image forming apparatuses used in printers and copiers can be classified into one-component developers containing only toner components and two-component developers containing toner and magnetic carriers.
  • a two-component developer system the toner is charged with a constant amount of charge and then supplied to the photosensitive member in which the electrostatic latent image is formed.
  • the toner image thus formed is transferred onto the paper by the transfer member.
  • the transferred toner image is fixed by heat and pressure to be converted into the final image on the paper.
  • the two-component developing system includes a toner and a magnetic carrier mixed in a predetermined ratio in a developing machine.
  • the toner is charged by friction with the magnetic carrier. Since the two-component developing system has a long life, it is important to maintain the characteristics of the initial toner and the magnetic carrier during the long time triboelectric charging until the end of the life. This is because keeping the toner charging amount constant in the electrophotographic process is important for maintaining image density and image quality. In general, the toner charging amount decreases as the toner usage time elapses. This is because the states of the toner and the magnetic carrier change. The cause of this change is estimated to be as follows.
  • the main cause of toner charge change is the behavior of external additives.
  • the external additives on the surface of the toner are likely to be buried inside the toner particles due to friction caused by stirring of the toner particles and the magnetic carrier for a long time.
  • the external additive may be separated from the toner particles by friction or shear force.
  • the toner charging amount may change due to the state change and the content change of the external additive.
  • the magnetic carrier can be peeled off from the film thickness of the resin coated on the surface of the magnetic carrier due to friction with toner particles for a long time. If the external additive detached from the toner particles adheres to the magnetic carrier surface, it is difficult to effectively charge the toner. In addition, organic substances such as a release agent on the surface of the toner particles may contaminate the magnetic carrier surface.
  • Japanese Laid-Open Patent Publication No. 2008-170489 discloses two types of waxes (wax A and wax B) in waxes which are constituents of toner particles in order to provide an electrostatic charge image developing toner having excellent fixability, fluidity, and durability.
  • Each of the onset temperatures O (A) and O (B) and the endothermic peak temperatures P (A) and P (B) in the DSC curve measured by a differential scanning calorimeter are O (A) ⁇ O (B), And toner for developing electrostatic charges having a relationship of P (B) < P (A).
  • one object of the present disclosure is to provide a two-component developer capable of suppressing image defects caused by a decrease in the amount of toner charging due to magnetic carrier contamination even when long-term printing is performed in a two-component developing system.
  • a toner for electrostatic latent image development comprising a plurality of toner particles
  • the toner particles include core particles containing a binder resin, a colorant, and a release agent; And an external additive attached to a surface of the core particle.
  • the toner has two endothermic peaks and a stepped endothermic curve in a heat curve obtained at the second temperature rise when the differential scanning calorific value (DSC) of the toner is measured, and the first and the first to be determined as the positions of the peaks of the two endothermic peaks.
  • 2 melting temperatures Tm1 and Tm2 the glass transition temperature Tg determined as the center point of the straight portion in the stepped endothermic curve, and the first and second heat of melting determined by respective areas of the two endothermic peaks ⁇
  • H1 and ⁇ H2 satisfy the following conditions:
  • the first and second heat of fusion ⁇ H1 and ⁇ H2 may satisfy the following conditions:
  • the toner further includes magnetic carrier particles, and the average particle diameter D50t of the toner particles and the average particle diameter D50c of the magnetic carrier particles may satisfy the following conditions:
  • the average particle diameter D50t represents a particle size whose cumulative weight percentage corresponds to 50% in the particle size cumulative distribution curve of the toner particles
  • the average particle diameter D50c represents a particle size whose cumulative weight percentage corresponds to 50% in the particle size cumulative distribution curve of the magnetic carrier particles. Indicates.
  • the external additive may include a combination of silica particles, titanium oxide particles, and iron oxide particles.
  • silicon strength [Si], titanium strength [Ti], and iron strength [Fe] by fluorescent X-ray measurement of the toner may satisfy all of the following conditions:
  • the release agent may be a combination of carnauba wax and fatty acid ester wax.
  • the binder resin may be a polyester resin.
  • the toner may be used in a nonmagnetic two-component developing method.
  • the electrostatic latent image developing toner according to one aspect of the present disclosure can effectively suppress contamination of the surface of the magnetic carrier. Therefore, even when long-time print job is performed in a two-component developing system using the said toner, the fall of a toner charge amount can be suppressed effectively. Therefore, when the toner is used in a two-component developing system, even when a long-time printing operation is performed, the transfer characteristics are excellent, and the toner particles do not adhere to the magnetic rollers and scatter, contaminating the image forming apparatus, and photoreceptor background contamination. As described above, it is possible to effectively suppress image defects caused by lowering the amount of toner charging.
  • 1 is a DSC endothermic curve of a toner using a conventional general polyethylene wax.
  • Fig. 3 shows the results of the inventors observing the charge amount change after increasing the external additive content or decreasing the wax content with respect to the toner of the reference conditions.
  • FIG. 4 is a DSC endothermic curve of the externally attached toner particles obtained in Example 1.
  • the electrostatic latent image developing toner includes a plurality of toner particles.
  • the toner particles include core particles and external additives adhered to the surface of the core particles.
  • the core particles include a binder resin, a colorant, and a release agent.
  • binder resin is not limited thereto, for example, styrene resin, acrylic resin, vinyl resin or polyolefin resin, polyether polyol resin, phenol resin, silicone resin, polyester resin, epoxy resin, polyamide resin, polyurethane Resins, polybutadiene resins, or mixtures thereof.
  • the styrene resin is, for example, polystyrene; Homopolymers of styrene substituents, such as, for example, poly-p-chlorostyrene or polyvinyltoluene; For example, styrene-p-chlorostyrene copolymer, styrene-vinyltoluene copolymer, styrene-vinyl naphthalene copolymer, styrene-acrylic acid ester copolymer, styrene-methacrylic acid ester copolymer, styrene- ⁇ -chloromethacryl Acid methyl copolymer, styrene-acrylonitrile copolymer, styrene-vinyl methyl ether copolymer, styrene-vinylethyl ether copolymer, styrene-vinyl methyl
  • the acrylic resin can be, for example, an acrylic acid polymer, methacrylic acid polymer, methacrylic acid methyl ester polymer, ⁇ -chloromethacrylic acid methyl ester polymer or mixtures thereof.
  • the vinyl resin or polyolefin resin can include, for example, polyvinyl chloride, polyethylene, polypropylene, polyacrylonitrile, polyvinylacetate or mixtures thereof.
  • the polyester resin can be produced by reacting an aliphatic, alicyclic, or aromatic polyhydric carboxylic acid or an alkyl ester thereof with a polyhydric alcohol via a direct esterification reaction or transesterification reaction.
  • Polycarboxylic acid is phthalic acid, isophthalic acid, terephthalic acid, tetrachlorophthalic acid, chlorophthalic acid, nitrophthalic acid, p-carboxyphenylacetic acid, p-phenylene diacetic acid, m-phenylenediglycolic acid, p-phenylenediglycolic acid, o-phenyl Rendiglycol acid, diphenylacetic acid, diphenyl-p, p'-dicarboxylic acid, naphthalene-1,4-dicarboxylic acid, naphthalene-1,5-dicarboxylic acid, naphthalene-2,6-dica Lenic acid, anthracenedicarboxylic acid, and
  • polyhydric carboxylic acids other than dicarboxylic acid such as trimellitic acid, pyromellitic acid, naphthalene tricarboxylic acid, naphthalene tetracarboxylic acid, pyrene tricarboxylic acid, pyrene tetracarboxylic acid and the like can be used.
  • Lower esters mean esters of aliphatic alcohols having 1 to 8 carbon atoms.
  • the polyhydric alcohol include aliphatic diols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, butanediol, hexanediol, neopentylglycol, and glycerin; Alicyclic diols such as cyclohexane diol, cyclohexane dimethanol and hydrogenated bisphenol A; Aromatic diols, such as the ethylene oxide adduct of bisphenol A and the propylene oxide adduct of bisphenol A, can be included. One kind or two or more kinds of these polyhydric alcohols can be used.
  • aromatic diols and alicyclic diols are preferable, and of these, aromatic diols are more preferable.
  • trihydric or higher polyhydric alcohols glycoline, trimethylolpropane, pentaerythritol
  • the diol in order to take a crosslinked structure or a branched structure.
  • the number average molecular weight of the binder resin may be, for example, in the range of about 700 to about 1,000,000 g / mol, or in the range of about 10,000 to about 500,000 g / mol.
  • the binder resin used in the present invention may be a combination of an appropriate ratio of a high molecular weight binder resin and a low molecular weight binder resin.
  • the number average molecular weight of the high molecular weight binder resin may be in the range of, for example, about 100,000 to about 500,000 g / mol, and the number average molecular weight of the low molecular weight binder resin is, for example, about 1,000 to about 100,000 g / mol It may be in the range below.
  • binder resins having different molecular weights can function independently.
  • Low molecular weight binder resins do not have much molecular chain entanglement and may contribute in terms of fixability and gloss.
  • the high molecular weight binder resin has a lot of molecular chain entanglement and thus may maintain a certain level of elasticity even at high temperature, thereby contributing to anti-hot offset resistance.
  • the glass transition temperature (Tg) of these binder resins can be controlled so as to satisfy the conditions of 55 ° C ⁇ Tg ⁇ 65 ° C in terms of fixability and high temperature storage properties.
  • Tg is the glass transition temperature determined as the center point of the straight portion in the stepped endothermic curve in the heat curve obtained at the second temperature increase in the differential scanning calorific value (DSC) measurement of the toner.
  • DSC differential scanning calorific value
  • the colorant may be, for example, a black colorant, a yellow colorant, a magenta colorant, a cyan colorant, or a combination thereof.
  • the black colorant can be, for example, carbon black, aniline black, or mixtures thereof.
  • the yellow colorant may be, for example, a condensed nitrogen compound, an isoindolinone compound, an anthrakin compound, an azo metal complex, an allyl imide compound, or a mixture thereof. More specific non-limiting example, yellow colorant is "CI Pigment Yellow” 12, 13, 14, 17, 62, 74, 83, 93, 94, 95, 109, 110, 111, 128, 129, 147 , 168 or 180.
  • Magenta colorants can be, for example, condensed nitrogen compounds, anthrakin compounds, quinacridone compounds, base dye rate compounds, naphthol compounds, benzo imidazole compounds, thioindigo compounds, perylene compounds, or mixtures thereof. More specific non-limiting examples include, for example, magenta colorants, "CI Pigment Red” 2, 3, 5, 6, 7, 23, 48: 2, 48: 3, 48: 4, 57: 1, 81: 1. , 122, 144, 146, 166, 169, 177, 184, 185, 202, 206, 220, 221, or 254.
  • the cyan colorant may be, for example, a copper phthalocyanine compound and its derivatives, anthrakin compounds, base dye rate compounds, or mixtures thereof. More specifically, for example, the cyan colorant may be “C.I. Pigment Blue” 1, 7, 15, 15: 1, 15: 2, 15: 3, 15: 4, 60, 62, or 66.
  • the content of the colorant in the core particles may be, for example, in the range of about 0.1 parts by weight to about 20 parts by weight, or in the range of about 2 parts by weight to about 10 parts by weight based on 100 parts by weight of the binder resin.
  • the release agent may be, for example, polyethylene wax, polypropylene wax, silicone wax, paraffin wax, ester wax, carnauba wax, metallocene wax, or a mixture thereof.
  • the release agent may be effective to achieve the object of the present disclosure is a combination of carnauba wax and fatty acid ester wax.
  • the release agent may, for example, have a melting point in the range of about 50 ° C to about 150 ° C.
  • the content of the release agent in the core particles may be, for example, in the range of about 1 part by weight to about 20 parts by weight, or in the range of about 1 part by weight to about 10 parts by weight, based on 100 parts by weight of the binder resin.
  • the release agent serves to prevent toner particles from adhering to the heating roller of the fixing unit. In general, as the amount of the release agent is increased, the anti-offset range is broadened or the fixing property is improved. However, when the amount of the release agent exposed to the surface of the toner particles increases, the surface of the magnetic carrier may be contaminated. The problem of lowering the chargeability of the magnetic carrier and toner particles starts to be exhibited. If a toner containing such excess release agent is used, excessive release agent may cause filming on the surface of the photoconductor.
  • the present inventors have selected a specific type of release agent having excellent release properties in order to reduce the contamination on the surface of the magnetic carrier so that the charge amount can be maintained even after using the two-component developer for a long time. It has been found that small amounts of use are effective. This point is explained in more detail.
  • FIG. 1 and 2 are DSC endothermic curves of a toner using a conventional general polyethylene wax (FIG. 1) or a polypropylene wax (FIG. 2).
  • a conventional general polyethylene wax FOG. 1
  • a polypropylene wax FOG. 2
  • Increasing the amount of wax used to improve hot anti-offset properties increases the area of the endothermic peak.
  • the amount of wax used is reduced, the area of the endothermic peak decreases.
  • the melting point (Tm) of the wax is about 70 DEG C
  • the heat of fusion ⁇ H determined by the area of the endothermic peak is about 2.6 J / g.
  • the wax has a Tm of about 95 DEG C and a heat of fusion H of about 6.7 J / g.
  • the wax component of the toner is likely to contaminate the magnetic carrier as the external additive is released toward the end of the toner life.
  • the inventors of the present invention have found that when the heat of melting? H determined by the area of the endothermic peak due to melting of the release agent in the secondary temperature rise curve in the DSC measurement of the toner uses two different waxes satisfying the following conditions, the toner It has been found to be effective in reducing the contamination of the magnetic carrier surface while maintaining good high and low offset properties.
  • Tm1 and Tm2 are determined as positions of respective peaks of two endothermic peaks obtained from the heat curves obtained at the second temperature increase in the differential scanning calorimetry (DSC) measurement test of the toner as respective melting temperatures of the two waxes.
  • [Delta] H1 and [Delta] H2 are respectively determined as the heat of fusion of the two kinds of waxes, and are determined by respective areas of the two endothermic peaks.
  • ⁇ H1 is the heat of fusion of the wax corresponding to Tm1
  • ⁇ H2 is the heat of fusion of the wax corresponding to Tm2. At this time, it is effective that the difference between Tm1 and Tm2 is 15 ° C or less.
  • the inventors of the present invention provide a toner capable of maintaining a low content of wax and good releasability and excellent high temperature offset and low temperature offset characteristics. We found that it was more effective to control to satisfy:
  • Table 1 below shows the results of measuring the carbon content of each magnetic carrier surface at the time after printing 100,000 sheets by using two-component toners having only different wax contents.
  • the carbon content is measured using a carbon content measuring device available under product number Horiba EMA-8100.
  • the carbon content of the initial magnetic carrier surface was about 0.28%.
  • the carbon content of the surface of the magnetic carrier after printing 100,000 sheets was largely different depending on the wax content of the toner.
  • the heat of fusion ⁇ H was about 0.9
  • the carbon content on the surface of the magnetic carrier was increased by about 0.73%.
  • the heat of fusion ⁇ H was about 2.0
  • the carbon content on the surface of the magnetic carrier was increased by about 3.39%.
  • the core particles can be produced by, for example, grinding, agglomeration or spraying.
  • the grinding method may be performed by, for example, melting and mixing the binder resin, the colorant, and the release agent and then grinding.
  • the agglomeration method can be performed, for example, by mixing the binder resin dispersion, the colorant dispersion and the release agent dispersion, then agglomerating these particles and then fusing the aggregate thus obtained.
  • the core particle may further include a charge control agent.
  • the volume average particle size of the core particles can be, for example and without limitation, in the range of about 4 ⁇ m to about 20 ⁇ m, or in the range of about 5 ⁇ m to about 10 ⁇ m.
  • the shape of the core particles is also not particularly limited. The closer the shape of the core particles to the spherical shape, the more the charge stability of the toner and the dot reproducibility of the printed image can be further improved.
  • the core particles may have a sphericity in the range of about 0.90 to about 0.99.
  • An external additive is attached to the outer surface of the core particle.
  • One of the main functions of the external additive is to keep the toner powder fluid by preventing the toner particles from sticking to each other.
  • the inventors also paid attention to the behavior of the external additives as one of the main causes of the charge amount change of the toner.
  • the toner particles tend to be buried in the toner particles by the external additives on the surface of the toner particles due to friction with stirring with the magnetic carrier for a long time.
  • the external additive is easily separated from the toner particles by the action of friction and shear force.
  • the detached external additive may adhere to the magnetic carrier surface to prevent the initial charge amount from being maintained.
  • FIG. 3 shows the results of the inventors observing the charge amount change after increasing the external additive content or decreasing the wax content with respect to the toner of the reference conditions.
  • the content of the external additives specifically titanium oxide having an average particle diameter of about 40 nm and silica of an average particle diameter of about 12 nm
  • the number of prints is increased. It can be seen that as the increase, the decrease in charge amount becomes relatively severe as compared to the initial charge amount.
  • the content of the canava wax at the melting temperature of about 70 ° C. was reduced by 10% or 20%, respectively, compared to the toner manufactured under the reference conditions, it was confirmed that it was relatively advantageous to maintain the initial charge even when the number of prints increased. Can be.
  • the inventors of the present invention based on the above basic research, charge the toner when the silicon strength [Si], titanium strength [Ti], and iron strength [Fe] are controlled to satisfy all of the following conditions by fluorescence X-ray measurement of the toner. It has been found to be advantageous to improve both uniformity, charge stability and transfer efficiency:
  • the inventors of the present invention found that when the external additives were controlled such that silicon intensity [Si], titanium intensity [Ti], and iron intensity [Fe] satisfy all of the following conditions by fluorescence X-ray measurement of the toner, It was found to be more advantageous to improve both stability and transfer efficiency:
  • An external additive including silica particles, titanium oxide particles and iron oxide particles is attached to the surface of the core particle according to the embodiment of the present disclosure.
  • the silica particles may be, for example, fumed silica, sol gel silica or mixtures thereof.
  • the most widely used fumed silica particles have very strong negative polarity.
  • excessive charge up phenomenon may frequently occur.
  • the primary particle size of the silica particles is too large, it may be relatively difficult for the external toner particles to pass through the developing blade.
  • a selection phenomenon of the toner may occur. That is, as the usage time of the toner cartridge elapses, the particle size of the toner particles remaining in the toner cartridge gradually increases. As a result, the charge amount of the toner is lowered, thereby increasing the thickness of the toner layer for developing the electrostatic latent image.
  • the primary particle size of the silica particles is too large, there is a relative possibility that the silica particles are released from the core particles by, for example, stress applied to the toner particles from a member such as a feed roller. Can be increased. The separated silica particles may contaminate the charging member or the latent image carrier.
  • the primary particle size of the silica particles is too small, there is a high possibility that the silica particles are buried into the core particles due to the shearing stress of the developing blade applied to the toner particles. When the silica particles are buried inside the core particles, the silica particles lose their function as external additives.
  • the volume average primary particle size of the silica particles can range from about 5 nm to about 80 nm, specifically from about 30 nm to about 80 nm, or from about 60 nm to about 80 nm. .
  • Iron oxide particles can improve the charge distribution and the charge uniformity of the toner and can prevent excessive charge accumulation of the silica particles. Since iron oxide has a relatively low electrical resistance compared to silica, the toner development and toner transfer efficiency can be increased because the particle size is relatively large while preventing excessive charge accumulation of the toner.
  • the volume average primary particle size of the iron oxide particles can range from about 50 nm to about 300 nm, from about 80 nm to about 300 nm, from about 80 nm to about 200 nm, or from about 80 nm to about 150 may be in the range of nm.
  • titanium oxide particles have a relatively low resistance compared to the silica particles, excessive frictional charging due to excessive charge accumulation by the silica particles can be prevented.
  • Titanium oxide has a relatively low electrical resistance compared to silica, thereby preventing excessive accumulation of charge in the toner and increasing the toner development and toner transfer efficiency because the particle size is relatively large.
  • the volume average primary particle size of the titanium oxide particles can range from about 10 nm to about 100 nm, for example from about 20 nm to about 60 nm.
  • the external additive is iron oxide particles having a volume average primary particle size in the range of about 80 nm to about 300 nm, volume average primary particles in the range of about 5 nm to about 50 nm.
  • the small particle silica particles adhere to the core particles in a state disposed between the iron oxide particles and the titanium oxide, so that even if a shear force from the outside is applied to the toner particles, the shear force is not transmitted to the small particle silica particles. That is, the shear force from the outside applied to the toner particles is concentrated on the large-size iron oxide and titanium oxide particles. Accordingly, the small particle size silica particles are not buried inside the core particles, and the charging stability improving effect can be maintained.
  • the silica particles can be porous.
  • the silica particles may have a hydrophilic surface.
  • toners having high porosity and external surface hydrophilic silica particles are used in a high temperature, high humidity environment, such toners are poorly charged due to excessive absorption of moisture serving as an electrical conductor.
  • toner added with silica particles is generally overcharged in a low temperature and low humidity environment. That is, the charging stability according to the environment of the toner added with the silica particles may be very poor.
  • silica particles are, for example, hydrophobic silicone oils, hydrophobic silane coupling agents, siloxanes or silazanes.
  • each of the silica particles can be hydrophobized by (silazanes). Likewise, titanium oxide and iron oxide particles can be hydrophobized as above. However, when the external additive particles treated with such a surface treating agent are used, the cohesiveness of the toner particles becomes strong and the fluidity of the toner powder may be drastically lowered. In view of this, the degree of hydrophobicity of each of the silica particles can be adjusted in the range of about 10 to about 90, for example about 40 to about 90.
  • the amount of the external additive used so that the external additives are separated from the toner particles by stress and shear force or the like in the developer and contaminate the magnetic carrier is added to 100 parts by weight of the binder resin of the core particles.
  • the amount of silica added may be adjusted to about 0.1 parts by weight to about 3 parts by weight, the amount of added iron oxide to about 0.1 parts by weight to about 0.5 parts by weight, and the amount of added titanium oxide to about 0.1 parts to about 1.5 parts by weight.
  • Silicon strength [Si], titanium strength [Ti], and iron strength [Fe] of the toner which are indices of the silicon content, the titanium content, and the iron content of the toner, are respectively used as an external additive in the case of a two-component nonmagnetic toner, It is mainly derived from titanium oxide and iron oxide. Therefore, the three strengths can be appropriately selected by adjusting the addition amounts of silica, titanium oxide and iron oxide used as external additives.
  • the inventors have determined that the silicon strength [Si], titanium strength [Ti], and iron strength [Fe] satisfy all of the following conditions by fluorescence X-ray measurement of the toner based on the basic research described above. It was found to be advantageous to improve all of the charge uniformity, charge stability and transfer efficiency of the toner:
  • the inventors of the present invention found that when the external additives were controlled such that silicon intensity [Si], titanium intensity [Ti], and iron intensity [Fe] satisfy all of the following conditions by fluorescence X-ray measurement of the toner, It has been found that both stability and transfer efficiency can be improved:
  • the content of the silica particles and the iron oxide particles is adjusted so that the external additives are not separated from the toner particles by the action of stress and shear force and contaminate the magnetic carrier. That is, the iron oxide particles having a relatively large particle diameter can suppress the silica particles from being buried inside the toner particles or leaving them from the toner particles. This can reduce the amount of external additive that is transferred to the magnetic carrier surface.
  • combinations of iron oxide particles and titanium oxide particles are additionally added to improve charging uniformity and to suppress excessive charge up of the silica particles. Since iron oxide and titanium oxide have a lower resistance than silica, it is advantageous to suppress excessive charge accumulation of the toner and at the same time to improve development and transfer efficiency because of their relatively large size.
  • the toner according to one embodiment of the present disclosure can be produced by attaching external additive particles to the surface of the core particles. Attachment of the external additive particles to the surface of the core particles may be performed by, for example, a powder mixing apparatus.
  • powder mixing apparatuses include Henshell mixers, V-shape mixers, ball mills and nauta mixers.
  • the toner When the toner according to the present disclosure is used as a two-component developer, the toner includes a magnetic carrier. That is, the two-component developer according to the present disclosure is a mixture of the toner particles and magnetic carrier described above.
  • the content of toner particles in the two-component developer may be 1 to 20% by weight, for example 5 to 20% by weight, based on the total weight of the two-component developer. If the content of toner particles is less than 1% by weight, the charging amount may be too large. If the content of the toner particles exceeds 20% by weight, toner scattering may easily occur.
  • the magnetic carrier may be a magnetic particle dispersed resin carrier in which magnetic particles are coated with a resin.
  • the magnetic particle dispersed resin carrier can be produced by any known method. For example, a binder resin and magnetic particles and, if necessary, additives such as carbon black, charge control agent and inorganic fine particles are mixed to obtain a mixture, and the mixture is melt kneaded and then coarsely pulverized and pulverized to have a desired average particle diameter. It can classify and the magnetic particle dispersion type resin carrier can be obtained.
  • the magnetic particle dispersed resin carrier obtained as described above may have a weight average average particle diameter of about 15 to 60 microns, for example, about 20 to about 50 microns. If the weight average average particle diameter is 15 microns or less, the magnetic carriers tend to adhere to the photoconductor. If the weight average average particle diameter exceeds 60 microns, it may be difficult to obtain a high quality image.
  • magnese particles forming the core portion of the magnetic particle dispersed resin carrier may include iron oxide, magnetite and / or ferrite. Among them, it is common to use ferrite particles, and in particular, ferrite particles containing manganese have a good balance of charging and electrical resistance.
  • the resin coating the magnetic particles include polyethylene, polypropylene, polystyrene, polyacrylonitrile, polyvinyl acetate, polyvinyl alcohol, polyvinyl butyral, polyviryl chloride, polyvinyl carbazole, polyvinyl ether, poly Vinyl ketones, vinyl chloride / vinyl acetate copolymers, styrene / acrylic copolymers, fluorine resins, silicone resins, acrylic resins, polycarbonates, phenol resins, amino resins, melamine resins, urea resins, amide resins, epoxy resins, and the like. can do.
  • silicone resins, fluorine resins, and acrylic resins may be excellent in charge stability, coating properties, and the like.
  • the magnetic particle dispersed resin carrier used in the present disclosure may be a magnetic particle dispersed resin carrier which uses ferrite as a core agent and is coated with one or more resins selected from silicone resins, fluorine resins, and acrylic resins.
  • silicone resins may be particularly preferred because they make it difficult for the toner particles to adhere to the magnetic carrier surface.
  • the strength and charge amount of the coating film can be adjusted by carrying out a crosslinking reaction after resin coating as needed.
  • the coating resin may uniformly cover the entire surface of the magnetic particles, or may be coated so that a part of the magnetic particles are exposed in a spot shape.
  • conductivity coating agents, carbon black, quaternary ammonium salts, catalysts, and the like may be added to the coating resin.
  • the average particle diameter D50t of the toner particles and the average particle diameter D50c of the magnetic carrier particles may be adjusted to satisfy the following conditions:
  • the average particle diameter D50t represents a particle size whose cumulative weight percentage corresponds to 50% in the particle size cumulative distribution curve of the toner particles
  • the average particle diameter D50c represents a particle size whose cumulative weight percentage corresponds to 50% in the particle size cumulative distribution curve of the magnetic carrier particles. Indicates.
  • the average particle diameter D50t of the toner particles and the average particle diameter D50c of the magnetic carrier particles may be adjusted to satisfy the following conditions:
  • the ratio of D50t / D50c is less than 0.08, the particle diameter of the magnetic carrier is relatively too large, the admixing property of the developer is lowered, the toner charging performance is lowered, and thus the development / transfer efficiency is likely to be lowered.
  • the ratio is greater than 0.25, the problem that the magnetic carrier is developed on the photoreceptor may become conspicuous because the size of the magnetic carrier is too small. Therefore, in order to properly mix the toner particles and the magnetic carrier and to prevent the magnetic carrier development, it may be advantageous to satisfy the above characteristics.
  • Wax B 2 parts by weight of fatty acid ester wax having a melting point of about 83 ° C
  • a charging control agent 2 parts by weight of agent) Hodogaya, T77
  • carbon black carbon black
  • This premix was placed in a hopper of a twin screw extruder (Ikegai, Model: PCM 30) and melted and kneaded. The kneaded product was continuously cooled through the nozzle and coarsely crushed into a hammer mill.
  • the crude mill was then ground into a jet mill (Hosokawa, Model: TSG).
  • This pulverized material was classified by a classifier (Hosokawa, Model: TTSP) to obtain core particles having a volume average particle diameter of about 8 mu m.
  • nano-size hydrophobic silica particles, titanium oxide particles, and iron oxide particles which are summarized in Table 2 below, in 100 parts by weight of the core particles in an external group (Daehwa Tech Co., KMLS2K) Toner particles were obtained by mixing and stirring to attach an external additive to the surface of the core particles. Agitation was performed for 30 seconds at about 2000 rpm and 3 minutes at about 6000 rpm.
  • Fig. 4 is a DSC endothermic curve of the added toner particles obtained in this example.
  • the coated ferrite particles were sufficiently dried and then treated at about 250 ° C. for 3 hours. Thereafter, 100 parts by weight of the resin-coated ferrite and 250 parts by weight of zirconia beads having a diameter of about 2 mm were placed in a polyethylene bottle and ball milled at a speed of 100 rpm for about 3 hours to obtain a magnetic carrier.
  • a two-component developer was prepared in the same manner as described in Example 1 except that the amounts of the wax A and the wax B and the external additives were changed as summarized in Table 3 below.
  • a two-component developer was prepared in the same manner as described in Example 1 except that at least one of wax A and wax B was changed to at least one of wax C and wax D.
  • wax C was polypropylene wax (Viscol 550P, Sanyo Chemical Industries Co., Ltd) and wax D was paraffin wax (155 Nippon Seiro Co., Ltd.).
  • a two-component developer was prepared in the same manner as described in Example 1 except that the amounts of the wax A and the wax B and the external additives were changed as summarized in Table 3 below.
  • composition of the binder resin, the mold release agent, and the external additive of the two-component developer prepared in Examples 1 to 7 and Comparative Examples 1 to 16 are summarized in Table 3.
  • Tm1, Tm2, and Tg are ° C
  • a DSC curve (Differential Scanning Calorimetry Thermogram) was obtained using a DSC Q2000 device manufactured by TA Instrument under the condition of the following heat profile for a powder toner sample of 6-7 mg in a nitrogen gas atmosphere.
  • the melting temperature (unit: ° C) of the wax was determined from the position of the peak of the endothermic peak showing crystal melting in the obtained DSC curve.
  • the heat of fusion ⁇ H1 and ⁇ H2 (unit J / g) were calculated from the area of the endothermic peak.
  • the glass transition temperature Tg (unit: degreeC) was determined from the center point of the linear part in glass transition in the stepped endothermic curve (so-called baseline shift) which means a glass transition phenomenon in this DSC curve.
  • the particle size distribution of the toner particles is accumulated from the small diameter side with respect to the volume of the individual toner particles with respect to the divided particle size range (channel) using a multisizer III (manufactured by Beckman Coulter) measuring machine. was drawn and the particle size D50t to be 50% cumulative was measured. In a similar manner, D50c was measured in the same way for magnetic carrier particles. The ratio of D50t / D50c was calculated
  • the ratio of silicon strength [Si], titanium strength [Ti], and iron strength [Fe] of the toner was measured by X-ray fluorescence spectrometry (XRF) as follows.
  • toner sample 3 g ⁇ 0.01 g was press-molded under the conditions of a load of 2 tons and a press time of 10 seconds with a press molding machine.
  • Silicon intensity [Si], titanium intensity [Ti], and iron intensity [Fe] (from the fluorescent X-rays generated from the sample using an Energy Dispersive X-Ray Spectrometer (model: EDX-720) from Shimadzu Corporation). Unit: cps / dL) was measured. These are indices of the degree of content of silicon, titanium and iron components of the toner, respectively.
  • the measurement conditions were a pipe voltage of 50 kV and a pipe current of 23 ⁇ A.
  • the toner obtained in the Examples and Comparative Examples in an environment room at room temperature (20 ⁇ 2 ° C.) and a relative humidity of 55 ⁇ 5% was placed in a toner cartridge of a two-component developing printer (manufactured by Samsung Electronics, Model: SCX-6555). After setting 50 sheets of fixed images (2.5 cm x 4 cm) on a paper (product name: 80 g paper) by adjusting the amount of developing toner of the beta image to 0.70 mg / cm < 2 > Evaluated.
  • X fixability value 70% or less.
  • Cohesiveness was measured as follows to evaluate the fluidity of the toner.
  • Vibration time 120 ⁇ 0.1 seconds
  • the toner was stored for 2 hours at room temperature (20 ⁇ 2 ° C.) and relative humidity of 55 ⁇ 5%, it was sieved with each sieve under the above conditions, and then the change in the amount of toner before and after sieving was measured. Similarly, the cohesion of the toner was calculated.
  • the fluidity of the toner was evaluated according to the following criteria.
  • Double-circle The state with very favorable fluidity with a cohesion degree of 10 or less.
  • the toner obtained in the Examples and Comparative Examples in an environment room at room temperature (20 ⁇ 2 ° C.) and a relative humidity of 55 ⁇ 5% was placed in a toner cartridge of a two-component developing printer (manufactured by Samsung Electronics, Model: SCX-6555). 100,000 sheets (paper: 80 g) were printed by adjusting so that the amount of developing toner of the beta image was 0.70 mg / cm 2. During printing, the charge amount was measured by sampling the toner in the toner cartridge for every 10,000 prints completed. From this result, the degree of change in chargeability was evaluated as the number of prints increased.
  • the measured results were evaluated according to the following criteria.
  • X The measured charging amount decreased by 40% or more relative to the initial charging amount.
  • the toner obtained in the Examples and Comparative Examples in an environment room at room temperature (20 ⁇ 2 ° C.) and a relative humidity of 55 ⁇ 5% was placed in a toner cartridge of a two-component developing printer (manufactured by Samsung Electronics, Model: SCX-6555). After setting, the ratio (T / D) of the toner in the developer was fixed at 8%, and then printed by fixing the applied voltage of the magnetic roller (Magroller) to 450V and the voltage applied to the photosensitive member to 570V. In addition, the exposure potential was fixed at 100V and printed.
  • a certain area (10mm x 25mm) is developed on the photoconductor before the toner moves from the electrophotographic photoconductor to the intermediate transfer member, and then the weight of the filter before and after suctioning using a suction device with a filter is measured. The weight of toner per photoreceptor area is measured by measuring.
  • 0.42 mg / cm 3 is the toner weight on the photoreceptor at concentration 1.30 in the Spectroeye instrument.
  • X Developing performance 70% or more and less than 80%.
  • the toner obtained in the Examples and Comparative Examples in an environment room at room temperature (20 ⁇ 2 ° C.) and a relative humidity of 55 ⁇ 5% was placed in a toner cartridge of a two-component developing printer (manufactured by Samsung Electronics, Model: SCX-6555). Set and printed with 1% coverage. After printing 10 sheets, three non-imaging areas on the photoconductor drum were taped. The optical density (OD) at the 3 positions was measured and the average thereof was calculated. Optical density was measured using an "Electroeye" reflectometer. The measured results were evaluated according to the following criteria.
  • optical density is 0.03 or more and less than 0.05
  • Optical density is 0.07 or more.
  • the glass transition temperature Tg, the first and second melting temperatures Tm1 and Tm2, the first and second heat of melting ⁇ H1 and ⁇ H2 are the conditions (1), (2),
  • the toners of Examples 1 to 7 satisfying both (3) and (4) were excellent in fixability, fluidity, charge stability, developability and photoreceptor background contamination characteristics.
  • Comparative Example 9 having a D50t / D50c> 0.2, the size of the magnetic carrier was so small that the magnetic carrier was developed on the photoconductor, so that the photoconductor background contamination problem was conspicuous.
  • the developer of Comparative Example 10 having a D50t / D50c ⁇ 0.08, the mixing property of the toner particles and the magnetic carrier was lowered, the charging stability was lowered, and the developability and the photoconductor background contamination characteristics were very poor. From this, it can be confirmed that it is important to control the above condition (5) to an appropriate range in order to obtain a toner having excellent developability and no photoconductive background contamination problem.
  • the content of the silica particle external additive was small, so that the fluidity of the toner particles was reduced, and the problem of the deterioration of the developability and the photoconductor background contamination was outstanding.
  • the content of the silica particle external additive was large, so that the fluidity of the toner particles was good, but charge up occurred. As a result, fixability, charging stability and developability were very poor. Thereby, the image density of the obtained image fell much as the number of prints increased.
  • the addition amount of the iron oxide external additive was reduced so that the fluidity of the toner particles decreased, so that both the charging stability and the developability decreased, and the photoconductor background contamination also occurred.
  • the addition amount of iron oxide was insignificant, the developability was lowered, and the problem of photoreceptor background contamination was outstanding.
  • the electrostatic latent image developing toner according to the present disclosure satisfies the above conditions (1), (2), (3) and (4), and advantageously further adds the above conditions (5) to (10).
  • contamination of the surface of the magnetic carrier can be effectively suppressed.
  • the transfer characteristics are excellent, and the toner particles do not adhere to the magnetic rollers and scatter, contaminating the image forming apparatus, and photoreceptor background contamination.
  • an electrostatic latent image developing toner which is excellent in fixability, fluidity, charging stability, and developability, and which can effectively suppress the photoconductive background contamination problem.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

복수의 토너 입자를 포함하는 정전 잠상 현상용 토너로서, 상기 토너 입자는 결착수지, 착색제, 및 이형제를 함유하는 코어 입자; 및 상기 코어 입자의 표면에 부착된 외첨제;를 포함하며, 상기 토너는 상기 토너의 시차 주사 열량(DSC) 측정시 2차 승온시 얻어진 열곡선에서 2개의 흡열 피크 및 계단상의 흡열 곡선을 가지며, 상기 2개의 흡열 피크의 정점의 위치로 결정되는 제1 및 제2 용융 온도 Tm1 및 Tm2, 상기 계단상의 흡열 곡선에서 직선 부분의 중심점으로 결정된 유리 전이 온도 Tg, 및 상기 2개의 흡열 피크의 각각의 면적으로 결정되는 제1 및 제2 용융열(heat of melting) △H1 및 △H2가 청구항 1에 기재된 조건을 만족하는 정전 잠상 현상용 토너가 개시된다. 상기 토너는 정착성, 유동성, 대전 안정성, 및 현상성이 모두 우수하고 감광체 배경오염 문제를 효과적으로 억제할 수 있다.

Description

정전 잠상 현상용 토너
본 개시는 전자사진용 현상제(electrophotographic developer)에 관한 것이다. 더욱 상세하게는, 본 개시는 정전 잠상 현상제(deveoperfor developing electrostatic latent images)에 관한 것이다.
프린터 및 복사기 등에 이용되는 전자 사진 화상 형성 장치에 사용되는 현상제는 토너 성분만을 포함하는 1 성분 현상제와 토너 및 자성 캐리어를 포함하는 2 성분 현상제로 분류될 수 있다. 1 성분 현상제를 이용하는 시스템과 2 성분 현상제를 이용하는 시스템(이하, 2 성분 현상 시스템) 모두에서 토너는 일정한 전하량으로 대전된 후 정전 잠상이 형성된 감광체에 공급된다. 이에 의하여 형성된 토너 화상은 전사 부재에 의하여 용지상으로 전사된다. 전사된 토너 화상은 열과 압력에 의해 정착됨으로써 용지상에 최종 화상으로 전환된다.
2 성분 현상 시스템은 현상기 내에 소정의 비율로 혼합된 토너 및 자성 캐리어를 포함한다. 2 성분 현상 시스템에서 토너는 자성 캐리어와의 마찰에 의해 대전된다. 2 성분 현상 시스템은 수명이 길기 때문에 장시간 마찰 대전 동안 초기의 토너 및 자성 캐리어의 특성이 수명 말기까지 유지되는 것이 중요하다. 왜냐하면 전자사진 프로세스에서 토너 대전량을 일정하게 유지하는 것이 화상 농도 및 화상 품질을 유지하는데 중요하기 때문이다. 일반적으로, 토너 사용 시간이 경과할 수록 토너 대전량은 감소한다. 이는 토너 및 자성 캐리어의 상태가 변화하기 때문이다. 이러한 변화의 원인은 다음과 같은 것으로 추정된다.
A) 토너의 변화
토너의 대전량 변화를 일으키는 주원인은 외첨제의 거동이다. 장기간 동안 토너 입자와 자성 캐리어의 교반에 의한 마찰로 인해 토너 표면의 외첨제가 토너 입자의 내부로 매몰되기 쉽다. 또한, 마찰 또는 전단력에 의해 외첨제가 토너 입자로부터 이탈할 수 있다. 이와 같은 외첨제의 상태 변화 및 함량 변화에 의해 토너 대전량이 변화할 수 있다.
B) 자성 캐리어의 변화
자성 캐리어는 장기간 토너 입자와의 마찰에 의해 자성 캐리어의 표면에 코팅된 수지의 막 두께가 감소하며 또는 상기 표면으로부터 박리될 수 있다. 토너 입자로부터 이탈된 외첨제가 자성 캐리어 표면에 부착되면, 토너를 효과적으로 대전하기 어렵다. 또한 토너 입자 표면의 이형제 등 유기물이 자성 캐리어 표면을 오염시킬 수 있다.
따라서 토너 대전량을 유지하기 위해서는 외첨제의 설계 및 자성 캐리어 표면의 오염을 줄이는 것이 중요하다.
한편, 일본 공개특허공보 특개2008-170489는 정착성, 유동성, 및 내구성이 우수한 정전하 상현상용 토너를 제공하기 위하여 토너 입자의 구성 성분인 왁스 중의 2종류의 왁스(왁스 A 및 왁스 B)의, 시차주사 열량계로 측정되는 DSC 곡선에서의 각각의 온세트 온도 O(A) 및 O(B)와 각각의 흡열 피크 온도 P(A) 및 P(B)가 O(A)<O(B), 및 P(B)≤P(A)의 관계에 있는 정전하 상현상용 토너를 개시한다.
그러나 상기한 파라미터의 제어만으로는 장기간 인쇄 작업을 실시하는 경우에도 자성 캐리어 오염이 효과적으로 억제됨으로써 토너 대전량 저하에 의해 유발되는 화상 결함을 효과적으로 억제할 수 있는 2 성분 현상제를 제공하기 어렵다.
따라서 본 개시의 하나의 목적은 2 성분 현상 시스템에서 장기간 인쇄 작업을 실시하는 경우에도 자성 캐리어 오염에 의한 토너 대전량 저하에 의해 유발되는 화상 결함을 억제할 수 있는 2 성분 현상제를 제공하는 것이다.
상기 목적을 달성하기 위하여 본 개시의 일 측면에 따르면,
복수의 토너 입자를 포함하는 정전 잠상 현상용 토너로서,
상기 토너 입자는 결착수지, 착색제, 및 이형제를 함유하는 코어 입자; 및 상기 코어 입자의 표면에 부착된 외첨제;를 포함하며,
상기 토너는 상기 토너의 시차 주사 열량(DSC) 측정시 2차 승온시 얻어진 열곡선에서 2개의 흡열 피크 및 계단상의 흡열 곡선을 가지며, 상기 2개의 흡열 피크의 정점의 위치로 결정되는 제1 및 제2 용융 온도 Tm1 및 Tm2, 상기 계단상의 흡열 곡선에서 직선 부분의 중심점으로 결정된 유리 전이 온도 Tg, 및 상기 2개의 흡열 피크의 각각의 면적으로 결정되는 제1 및 제2 용융열(heat of melting) △H1 및 △H2가 하기 조건을 만족하는 정전 잠상 현상용 토너가 제공된다:
55 ℃ ≤ Tg ≤ 65 ℃ (1)
Tg ≤ Tm1 ≤ 75 ℃ (2)
Tm1 ≤ Tm2 ≤90 ℃ (3)
0.5 < △H1/△H2 < 1.5 (4).
본 개시의 일 측면에 있어서, 상기 제1 및 제2 용융열 △H1 및 △H2는 하기 조건을 만족할 수 있다:
0.1 ≤ △H1 ≤ 0.9 J/g (5); 및
0.1 ≤ △H2 ≤ 0.9 J/g (6).
본 개시의 일 측면에 있어서, 상기 토너는 자성 캐리어 입자를 더 포함하며, 상기 토너 입자의 평균입경 D50t 및 상기 자성 캐리어 입자의 평균입경 D50c는 하기 조건을 만족할 수 있다:
0.08 ≤ D50t/D50c ≤ 0.25 (7).
여기서 평균입경 D50t는 토너 입자들의 입경누적분포 곡선에서 누적 중량 백분율이 50%에 해당하는 입경을 나타내고, 평균입경 D50c는 자성 캐리어 입자들의 입경누적분포 곡선에서 누적 중량 백분율이 50%에 해당하는 입경을 나타낸다.
본 개시의 일 측면에 있어서, 상기 외첨제는 실리카 입자, 산화티탄 입자 및 산화철 입자의 조합을 포함할 수 있다.
본 개시의 일 측면에 있어서, 상기 토너의 형광 X선 측정에 의한 규소강도 [Si], 티탄 강도[Ti], 및 철 강도 [Fe]가 하기 조건을 모두 만족할 수 있다:
0.005 ≤ [Si] ≤ 0.2 (8)
1 ≤ [Ti] ≤ 30 (9)
2 ≤ [Fe] ≤ 200 (10).
본 개시의 일 측면에 있어서, 상기 이형제는 카나우바계 왁스 및 지방산 에스테르계 왁스의 조합일 수 있다.
본 개시의 일 측면에 있어서, 상기 결착수지는 폴리에스테르 수지일 수 있다.
본 개시의 일 측면에 있어서, 상기 토너는 비자성 2 성분 현상 방법에 사용될 수 있다.
본 개시의 일 측면에 따른 정전 잠상 현상용 토너는 자성 캐리어 표면의 오염을 효과적으로 억제할 수 있다. 이에 의하여, 상기 토너를 이용하여 2 성분 현상 시스템에서 장기간 인쇄 작업을 실시하는 경우에도 토너 대전량 저하를 효과적으로 억제할 수 있다. 따라서, 상기 토너를 이용하여 2 성분 현상 시스템에서 사용하면, 장기간 인쇄 작업을 실시하는 경우에도 전사 특성이 우수하여 토너 입자가 자성 롤러에 부착하지 못하고 비산하여 화상 형성 장치를 오염시키는 문제 및 감광체 배경 오염과 같이 토너 대전량 저하에 의해 유발되는 화상 결함을 효과적으로 억제할 수 있다.
도 1은 종래의 일반적인 폴리에틸렌계 왁스를 사용한 토너의 DSC 흡열 곡선이다.
도 2는 종래의 일반적인 폴리프로필렌계 왁스를 사용한 토너의 DSC 흡열 곡선이다.
도 3은 본 발명자들이 기준 조건의 토너에 대하여 외첨제 함량을 증가시킨 후 또는 왁스 함량을 감소시킨 후의 대전량 변화를 관찰한 결과를 나타낸다.
도 4는 실시예 1에서 얻은 상기 외첨된 토너 입자의 DSC 흡열 곡선이다.
이하, 본 개시의 일 실시형태에 따른 정전 잠상 현상용 토너에 대하여 상세하게 설명한다.
본 개시의 일 실시형태에 따른 정전 잠상 현상용 토너는 복수의 토너 입자를 포함한다. 상기 토너 입자는 코어 입자,및 상기 코어 입자의 표면에 부착된 외첨제를 포함한다.
상기 코어입자는 결착수지, 착색제 및 이형제를 포함한다.
결착수지는, 이에 한정되지 않지만, 예를 들면, 스티렌 수지, 아크릴 수지, 비닐 수지 또는 폴리올레핀 수지, 폴리에테르계 폴리올 수지, 페놀 수지, 실리콘 수지, 폴리에스테르 수지, 에폭시 수지, 폴리아미드 수지, 폴리우레탄 수지, 폴리부타디엔 수지, 또는 이들의 혼합물을 포함할 수 있다.
스티렌 수지는, 예를 들면 폴리스티렌; 예를 들면, 폴리-p-클로로스티렌 또는 폴리비닐톨루엔과 같은, 스티렌 치환체의 단독 중합체; 예를 들면, 스티렌-p-클로로스티렌 공중합체, 스티렌-비닐톨루엔 공중합체, 스티렌-비닐나프탈렌 공중합체, 스티렌-아크릴산 에스테르 공중합체, 스티렌-메타크릴산 에스테르 공중합체, 스티렌-α-클로로메타크릴산 메틸 공중합체, 스티렌-아크릴로니트릴 공중합체, 스티렌-비닐메틸에테르 공중합체, 스티렌-비닐에틸에테르 공중합체, 스티렌-비닐메틸케톤 공중합체, 스티렌-부타디엔 공중합체, 스티렌-이소프렌 공중합체 또는 스티렌-아크릴로니트릴-인덴 공중합체와 같은, 스티렌계 공중합체; 또는, 이들의 혼합물을 포함할 수 있다.
아크릴 수지는, 예를 들면, 아크릴산 중합체, 메타크릴산 중합체, 메타크릴산 메틸 에스테르 중합체, α-클로로메타크릴산 메틸 에스테르 중합체 또는 이들의 혼합물일 수 있다.
비닐 수지 또는 폴리올레핀 수지는, 예를 들면, 폴리염화비닐, 폴리에틸렌, 폴리프로필렌, 폴리아크릴로니트릴, 폴리비닐아세테이트 또는 이들의 혼합물을 포함할 수 있다.
폴리에스테르 수지는, 지방족, 지환족, 또는 방향족의 다가 카르복시산 또는 이들의 알킬 에스테르를 직접 에스테르화 반응 또는 에스테르 교환 반응을 통하여 다가 알콜과 반응시킴으로써 제조할 수 있다. 다가 카르복시산은 프탈산, 이소프탈산, 테레프탈산, 테트라클로로프탈산, 클로로프탈산, 니트로프탈산、 p-카르복시페닐아세트산、p-페닐렌2아세트산, m-페닐렌디글리콜산、 p-페닐렌디글리콜산、 o-페닐렌디글리콜산, 디페닐아세트산, 디페닐-p,p'-디카르복실산, 나프탈렌-1,4-디카르복실산, 나프탈렌-1,5-디카르복실산, 나프탈렌-2,6-디카르복실산, 안트라센디카르복실산, 및/또는 시클로헥산디카르복실산을 포함할 수 있다. 또한, 디카르복시산 이외의 다가 카르복시산, 예를 들면 트리멜리트산, 피로멜리트산, 나프탈렌 트리카르복실산, 나프탈렌 테트라카르복실산, 피렌 트리카르복실산, 피렌 테트라카르복실산 등이 사용될 수 있다. 또한, 이들 카르복시산의 카르복시기를 산무수물, 산염화물, 또는, 에스테르 등으로 유도한 것을 사용해도 좋다. 이들 중에서도, 테레프탈산이나 그의 저급 에스테르, 디페닐아세트산, 시클로헥산 디카르복실산 등을 사용하는 것이 바람직하다. 저급 에스테르는 탄소수 1 내지 8의 지방족 알콜의 에스테르를 의미한다. 다가 알코올의 구체적인 예는, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 프로필렌글리콜, 부탄디올, 헥산디올, 네오펜틸글리콜, 글리세린 등의 지방족 디올류; 시클로헥산 디올, 시클로헥산 디메탄올, 수소 첨가 비스페놀 A 등의 지환식 디올류; 비스페놀 A의 에틸렌옥시드 부가물, 비스페놀 A의 프로필렌옥시드 부가물 등의 방향족 디올류를 포함할 수 있다. 이들 다가 알코올의 1종 또는 2종 이상 사용할 수 있다. 이들 다가 알코올 중, 방향족 디올류, 지환식 디올류가 바람직하고, 이 중 방향족 디올이 보다 바람직하다. 또 양호한 정착성을 확보하기 위하여, 가교 구조 또는 분기 구조를 취하기 위하여 디올과 함께 3가 이상의 다가 알코올(글리세린, 트리메틸올프로판, 펜타에리스리톨)을 병용할 수 있다.
결착 수지의 수평균 분자량은, 예를 들면, 약 700 내지 약 1,000,000 g/mol의 범위, 또는 약 10,000 내지 약 500,000 g/mol의 범위일 수 있다. 본 발명에서 사용되는 결착 수지는 고분자량 결착 수지와 저분자량 결착 수지의 적절한 비율의 조합일 수 있다. 고분자량 결착 수지의 수평균 분자량은, 예를 들면, 약 100,000 내지 약 500,000 g/mol의 범위일 수 있으며, 저분자량 결착 수지의 수평균 분자량은, 예를 들면, 약 1,000 내지 약 100,000 g/mol 미만의 범위일 수 있다. 이들 서로 다른 분자량의 2종의 결착 수지는 독립적으로 기능을 발휘할 수 있다. 저분자량 결착 수지는 분자쇄 얽힘이 많지 않아서 정착성 및 광택(gloss) 측면에서 기여할 수 있다. 반대로, 고분자량 결착 수지는 분자쇄 얽힘(molecular chain entanglement)이 많아서 고온에서도 일정 수준의 탄성을 유지할 수 있기 때문에 내핫오프셋(anti-hot offset)성에 기여할 수 있다. 이들 결착 수지의 유리 전이 온도(Tg)는 정착성 및 고온 보존성의 측면에서 55 ℃ ≤ Tg ≤ 65 ℃의 조건을 만족하도록 제어할 수 있다. Tg는 토너의 시차 주사 열량(DSC) 측정시 2차 승온시 얻어진 열곡선 중의 계단상의 흡열 곡선에서 직선 부분의 중심점으로 결정된 유리 전이 온도이다. 이 Tg는 이하에서 설명하는 조건에서 측정된 값이다.
착색제는, 예를 들면, 블랙 착색제, 옐로우 착색제, 마젠타 착색제, 시안 착색제, 또는 이들의 조합일 수 있다.
블랙 착색제는, 예를 들면, 카본 블랙, 아닐린 블랙, 또는 이들의 혼합물일 수 있다.
옐로우 착색제는, 예를 들면, 축합 질소 화합물, 이소인돌리논 화합물, 안트라킨화합물, 아조 금속 착제, 알릴 이미드 화합물, 또는 이들의 혼합물일 수 있다. 더욱 구체적인 비제한적인 예를 들면, 옐로우 착색제는, "C.I. 피그먼트 옐로우" 12, 13, 14, 17, 62, 74, 83, 93, 94, 95, 109, 110, 111, 128, 129, 147, 168 또는 180일 수 있다.
마젠타 착색제는, 예를 들면, 축합 질소 화합물, 안트라킨 화합물, 퀴나크리돈 화합물, 염기 염료 레이트 화합물, 나프톨 화합물, 벤조 이미다졸 화합물, 티오인디고 화합물, 페릴렌 화합물, 또는 이들의 혼합물일 수 있다. 더욱 구체적인 비제한적인 예를 들면, 마젠타 착색제는, "C.I. 피그먼트 레드" 2, 3, 5, 6, 7, 23, 48:2, 48:3, 48:4, 57:1, 81:1, 122, 144, 146, 166, 169, 177, 184, 185, 202, 206, 220, 221, 또는 254일 수 있다.
시안 착색제는, 예를 들면, 구리 프탈로시아닌 화합물 및 그 유도체, 안트라킨 화합물, 염기 염료 레이트 화합물, 또는 이들의 혼합물일 수 있다. 더욱 구체적으로, 예를 들면, 시안 착색제는, "C.I. 피그먼트 블루" 1, 7, 15, 15:1, 15:2, 15:3, 15:4, 60, 62, 또는 66일 수 있다.
코어입자 중의 착색제의 함량은, 예를 들면, 결착수지 100 중량부를 기준으로 하여, 약 0.1 중량부 내지 약 20 중량부의 범위, 또는 약 2 중량부 내지 약 10 중량부의 범위일 수 있다.
이형제는, 예를 들면, 폴리에틸렌계 왁스, 폴리프로필렌계 왁스, 실리콘계 왁스, 파라핀계 왁스, 에스테르계 왁스, 카나우바계 왁스, 메탈로센계 왁스, 또는 이들의 혼합물일 수 있다. 구체적으로, 이형제는 카나우바계 왁스 및 지방산 에스테르계 왁스의 조합인 것이 본 개시의 목적을 달성하는 데 효과적일 수 있다.
이형제는, 예를 들면, 약 50 ℃ 내지 약 150 ℃의 범위의 융점을 가질 수 있다. 코어입자 중의 이형제의 함량은, 예를 들면, 결착수지 100 중량부를 기준으로 하여, 약 1 중량부 내지 약 20 중량부의 범위, 또는 약 1 중량부 내지 약 10 중량부의 범위일 수 있다. 이형제는 토너 입자가 정착기의 가열 롤러(heating roller)에 부착하지 않도록 하는 역할을 한다. 이형제 사용량이 증가할수록 일반적으로 내오프셋 범위(anti-offset range)가 넓어지거나 정착성이 향상되는 장점이 있으나, 토너 입자 표면에 노출되는 이형제의 양이 많아지는 경우, 자성 캐리어 표면의 오염을 유발하여 자성 캐리어와 토너 입자의 대전성을 저하시키는 문제점을 나타내기 시작한다. 만일 이러한 과량의 이형제를 포함하는 토너를 사용하는 경우, 과량의 이형제로 인해 감광체 표면에 필르밍(filming)을 야기시킬 수 있다.
이러한 문제점을 해결하기 위하여 연구를 거듭한 결과, 본 발명자들은 2 성분 현상제를 장기간 사용하여도 대전량을 유지할 수 있도록 자성 캐리어 표면의 오염을 감소시키기 위해서는 이형성이 우수한 특정 종류의 이형제를 선정하여 이를 소량 사용하는 것이 효과적인 것을 발견하였다. 이 점에 대하여 더 구체적으로 설명한다.
도 1 및 도 2는 종래의 일반적인 폴리에틸렌계 왁스(도 1) 또는 폴리프로필렌계 왁스(도 2)를 사용한 토너의 DSC 흡열 곡선이다. 고온 내오프셋(hot anti-offset) 특성을 향상시키기 위해 왁스 사용량을 증가시킬 경우 흡열 피크의 면적이 증가한다. 반대로 왁스의 사용량을 감소시킬 경우 흡열 피크의 면적은 감소한다. 도 1의 경우, 왁스의 융점(Tm)은 약 70℃이며, 흡열 피크의 면적으로 결정되는 용융열 △H는 약 2.6J/g이다. 도 2의 경우, 왁스의 Tm은 약 95℃이며 용융열 △H는 약 6.7J/g이다. 이러한 높은 용융열을 갖는 토너의 경우 왁스의 함량이 상대적으로 높기 때문에 토너 수명 후반으로 갈수록 외첨제가 이탈되면서 토너의 왁스 성분이 자성 캐리어를 오염시킬 가능성이 높다.
본 발명자들은 상기 토너의 DSC 측정시 2차 승온 곡선에서 이형제의 용융에 의한 흡열 피크의 면적으로 결정되는 용융열 △H가 다음의 조건을 만족하는 서로 다른 2종의 왁스를 이형제로서 사용하면, 토너의 고온 내오프셋 특성과 저온 내오프셋 특성을 우수하게 유지하면서도 자성 캐리어 표면의 오염을 감소시키는 데 효과적임을 발견하였다:
Tg ≤ Tm1 ≤ 75 ℃ (2)
Tm1 ≤ Tm2 ≤ 90 ℃ (3)
0.5 < △H1/△H2 < 1.5 (4).
여기서, Tm1 및 Tm2은 상기 2종의 왁스의 각각의 용융 온도로서 토너의 시차 주사 열량(DSC) 측정시험에서 2차 승온시 얻어진 열곡선 중에서 얻어진 2개의 흡열 피크의 각각의 정점의 위치로 결정된다. △H1 및 △H2는 각각 상기 2종의 왁스의 각각의 용융열로서 상기 2개의 흡열 피크의 각각의 면적으로 결정된다. △H1는 Tm1에 대응하는 왁스의 용융열이고 △H2는 Tm2에 대응하는 왁스의 용융열이다. 이때, Tm1 및 Tm2의 차이는 15℃ 이하인 것이 효과적이다.
이때, 제1 및 제2 용융열 △H1 및 △H2가 다음 조건을 만족하도록 토너 중에 포함되는 왁스의 함량을 제어하면, 자성 캐리어 표면의 오염을 감소시키는 데 효과적이고 토너의 고온 내오프셋 특성과 저온 내오프셋 특성을 우수하게 유지하는데 더 효과적인 것을 발견하였다:
0.1≤ △H1 ≤ 0.9 J/g; 및
0.1≤ △H2 ≤ 0.9 J/g.
특히 본 발명자들은 왁스의 함량이 소량이면서도 이형성이 양호하고 고온 내오프셋 특성과 저온 내오프셋 특성을 우수하게 유지할 수 있는 토너를 제공하는 측면에서 제1 및 제2 용융열 △H1 및 △H2가 다음 조건을 만족하도록 제어하는 것이 더 효과적인 것을 발견하였다:
0.1≤ △H1 ≤ 0.7 J/g; 및
0.1≤ △H2 ≤ 0.7 J/g.
하기 표 1은 왁스의 함량만이 서로 다른 2 성분 토너를 이용하여 100,000매 인쇄후의 시점에서의 각각의 자성 캐리어 표면의 탄소 함량을 측정한 결과이다. 탄소 함량은 제품번호 Horiba EMA-8100로 입수할 수 있는 탄소 함량 측정장치를 이용하여 측정한 결과이다.
표 1
왁스함량(J/g) 탄소 (중량%) 대전량Q/M (-μC/g)
초기 자성 캐리어 0.2275 0.2827 35
△H = 약 0.9인 왁스를 이용한 2 성분 토너 A를 이용하여 100,000매 인쇄후의 자성 캐리어 0.2094 0.7295 32
△H = 약 2.0인 왁스를 이용한 2 성분 토너 B를 이용하여 100,000매 인쇄후의 자성 캐리어 0.2347 3.3899 20
표 1을 참조하면, 초기 자성 캐리어 표면의 탄소 함량은 약 0.28%였다. 그러나 토너의 왁스 함량에 따라서 100,000매 인쇄후의 자성 캐리어의 표면의 탄소 함량은 차이가 컸다. 용융열 △H가 약 0.9인 경우 자성 캐리어 표면의 탄소 함량은 약 0.73% 증가하였고 용융열 △H가 약 2.0인 경우 자성 캐리어 표면의 탄소 함량은 약 3.39%로 증가하였다.
이는 자성 캐리어 표면과 토너 입자와의 마찰에 의해 토너 표면의 왁스 성분이 자성 캐리어 표면으로 이동하였기 때문으로 판단된다. 또한 자성 캐리어 표면의탄소 함량의 증가에 의해 대전량은 초기 -35μC/g에서 용융열 △H = 약 0.9인 토너A의 경우 -32μC/g로 저하된데 비하여 용융열 △H = 약 2.0인 토너 B는 -20μC/g로 저하되었다. 따라서 토너의 대전량의 저하의 주원인 중 하나는 자성 캐리어 표면이 왁스 성분에서 유래하는 탄소 성분에 의하여 오염된 것임을 확인할 수 있다.
코어 입자는, 예를 들면, 분쇄법, 응집법 또는 스프레이법에 의하여 제조될 수 있다. 분쇄법은, 예를 들면, 결착수지, 착색제 및 이형제를 용융혼합한 후 분쇄하는 단계에 의하여 수행될 수 있다. 응집법은, 예를 들면, 결착수지 분산액, 착색제 분산액 및 이형제 분산액을 혼합한 후, 이들 입자들을 응집시킨 다음, 이렇게 얻은 응집체를 융합시키는 단계에 의하여 수행될 수 있다. 상기 코어 입자는 대전제어제를 더 포함할 수 있다.
코어 입자의 부피평균 입자크기는, 비제한적인 예를 들면, 약 4 ㎛ 내지 약 20 ㎛의 범위, 또는 약 5 ㎛ 내지 약 10 ㎛의 범위일 수 있다.
코어입자의 형상 역시 특별히 제한되지 않는다. 코어입자의 형상이 구형에 가까울수록 토너의 대전안정성 및 인쇄 화상의 도트(dot) 재현성이 더욱 향상될 수 있다. 예를 들면, 코어입자는 약 0.90 내지 약 0.99 범위의 구형도를 가질 수 있다.
코어 입자의 외부 표면에는 외첨제가 부착되어 있다. 외첨제의 주기능 중의 하나는 토너 입자들이 서로 달라붙는 것을 방지함으로써 토너 분말이 유동성(fluidity)을 유지하는 것이다. 본 발명자들은 또한 토너의 대전량 변화를 일으키는 주원인 중 하나로서 외첨제의 거동에도 주목하였다. 토너 입자는 장기간 자성 캐리어와의 교반에 의한 마찰로 인해 토너 입자 표면의 외첨제가 토너 입자의 내부로 매몰되기 쉽다. 또한, 외첨제는 마찰 및 전단력의 작용에 의해 토너 입자로부터 이탈하기 용이하다. 이탈된 외첨제는 자성 캐리어 표면에 부착됨으로써 초기 대전량이 유지되지 못하게 할 수 있다.
이와 관련하여, 도 3은 본 발명자들이 기준 조건의 토너에 대하여 외첨제 함량을 증가시킨 후 또는 왁스 함량을 감소시킨 후의 대전량 변화를 관찰한 결과를 나타낸다. 도 3을 참조하면, 기준 조건에서 제조된 토너에 비하여 외첨제, 구체적으로 평균 입경 약 40 nm의 산화티탄 및 평균 입경 약 12 nm의 실리카의 함량을 각각 10% 또는 20% 증가한 경우, 인쇄 매수가 증가할 수록 초기 대전량에 비하여 대전량 저하가 상대적으로 심해지는 것을 확인할 수 있다. 한편, 기준 조건에서 제조된 토너에 비하여 용융온도 약 70℃의 카나바 왁스의 함량을 각각 10% 또는 20% 감소시킨 경우, 인쇄 매수가 증가하여도 초기 대전량을 유지하는 것이 상대적으로 유리한 것을 확인할 수 있다.
특히, 본 발명자들은 상기한 기초 연구에 기초하여 토너의 형광 X선 측정에 의한 규소 강도 [Si], 티탄 강도[Ti], 및 철 강도 [Fe]가 하기 조건을 모두 만족하도록 제어하면 토너의 대전균일성, 대전안정성 및 전사효율을 모두 향상시키는 데 유리한 것을 발견하였다:
0.005 ≤ [Si] ≤ 0.2 (8),
1 ≤ [Ti] ≤ 30 (9), 및
2 ≤ [Fe] ≤ 200 (10).
특히, 본 발명자들은 토너의 형광 X선 측정에 의한 규소 강도 [Si], 티탄 강도[Ti], 및 철 강도 [Fe]가 하기 조건을 모두 만족하도록 외첨제를 제어하면 토너의 대전균일성, 대전안정성 및 전사효율을 모두 향상시키는데 더 유리한 것을 발견하였다:
0.005 ≤ [Si] ≤ 0.15,
1 ≤ [Ti] ≤ 30, 및
2 ≤ [Fe] ≤ 150.
본 개시의 일 실시형태에 따른 코어 입자의 표면에는 실리카 입자, 산화티탄 입자 및 산화철 입자를 포함하는 외첨제가 부착되어 있다.
실리카 입자는, 예를 들면, 발연 실리카, 졸겔 실리카 또는 이들의 혼합물일 수 있다. 가장 널리 사용되고 있는 발연 실리카(fumed silica) 입자는 매우 강한 음극성(negative polarity)을 갖는다. 그에 따라, 발연 실리카로 외첨된 토너에서는, 과도한 전하 축적(charge up) 현상이 빈번하게 발생될 수 있다. 실리카 입자의 1차 입자 크기가 너무 크면, 외첨된 토너 입자가 현상 블레이드(developing blade)를 통과하는 것이 상대적으로 어려워질 수 있다. 그에 따라, 토너의 선택 현상(selection phenomenon)이 발생할 수 있다. 즉, 토너 카트리지의 사용시간이 경과함에 따라, 토너 카트리지에 잔류하는 토너 입자의 입자크기가 점점 증가하게 된다. 그 결과, 토너의 대전량이 낮아져서, 정전 잠상을 현상하는 토너 층의 두께가 증가하게 된다. 또한, 실리카 입자의 1차 입자 크기가 너무 크면, 예를 들어, 공급롤러(feed roller)와 같은 부재로부터 토너 입자에 가해지는 스트레스(stress)에 의해, 코어 입자로부터 실리카 입자가 이탈될 가능성이 상대적으로 증가할 수 있다. 이렇게 이탈된 실리카 입자는 대전부재(charging member) 또는 잠상 담지체(latent image carrier)를 오염시킬 수 있다. 반면에, 실리카 입자의 1차 입자 크기가 너무 작으면, 토너 입자에 가해지는 현상 블레이드의 전단력(shearing stress)으로 인하여, 실리카 입자가 코어 입자의 내부로 매몰될 가능성이 높아질 수 있다. 실리카 입자가 코어 입자의 내부로 매몰되면, 실리카 입자는 외첨제로서의 기능을 상실하게 된다. 그에 따라, 토너 입자와 감광체 표면과의 부착력이 원하지 않게 증가하게 된다. 이는, 토너의 클리닝성 저하 및 토너의 전사효율 저하로 이어질 수 있다. 예를 들면, 실리카 입자의 부피 평균 1차 입자 크기는 약 5 nm 내지 약 80 nm의 범위, 구체적으로 약 30 nm 내지 약 80 nm의 범위, 또는, 약 60 nm 내지 약 80 nm의 범위일 수 있다.
산화철 입자는 토너의 대전 분포 및 대전 균일성을 향상시킬 수 있으며 실리카 입자의 과도한 전하 축적을 방지할 수 있다. 산화철은 실리카에 비해 상대적으로 전기적 저항이 작기 때문에 토너의 과도한 전하 축적을 방지하는 동시에 입자 사이즈가 상대적으로 크기 때문에 토너 현상 및 토너 전사 효율을 증가시킬 수 있다. 예를 들면, 산화철 입자의 부피 평균 1차 입자 크기는 약 50 nm 내지 약 300 nm의 범위, 약 80 nm 내지 약 300 nm의 범위, 약 80 nm 내지 약 200 nm, 또는, 약 80 nm 내지 약 150 nm의 범위일 수 있다.
산화티탄 입자는 실리카 입자에 비하여 상대적으로 저항이 작기 때문에 실리카 입자에 의한 과도한 전하축적 현상에 의한 과도한 마찰대전(frictional charging)을 방지할 수 있다. 산화티탄은 실리카에 비해 상대적으로 전기적 저항이 작기 때문에 토너의 과도한 전하 축적을 방지하는 동시에 입자 사이즈가 상대적으로 크기 때문에 토너 현상 및 토너 전사 효율을 증가시킬 수 있다. 예를 들면, 산화티탄 입자의 부피 평균 1차 입자 크기는 약 10 nm 내지 약 100 nm의 범위, 예를 들면 약 20 nm 내지 약 60 nm의 범위일 수 있다.
본 개시의 일 실시형태에 따른 토너에 있어서, 상기 외첨제는 약 80 nm 내지 약 300 nm 범위의 부피 평균 1차 입자 크기를 갖는 산화철 입자, 약 5 nm 내지 약 50 nm 범위의 부피 평균 1차 입자 크기를 갖는 소입경 실리카 입자, 및 약 20 nm 내지 약 60 nm의 범위의 부피 평균 1차 입자 크기를 갖는 산화티탄 입자를 포함할 수 있다. 소입경 실리카 입자는 넓은 표면적을 제공함으로써 토너 입자의 대전안정성을 더욱 향상시키는 역할을 할 수 있다. 또한, 소입경 실리카 입자는 산화철 입자 및 산화티탄의 사이사이에 배치된 상태로 코어 입자에 부착됨으로써, 토너 입자에 외부로부터의 전단력이 가해지더라도, 소입경 실리카 입자에는 그 전단력이 전달되지 않는다. 즉, 토너 입자에 가해지는 외부로부터의 전단력은 대입경 산화철 및 산화티탄 입자에 집중된다. 그에 따라, 소입경 실리카 입자는 코어 입자 내부로 매몰되지 않으며, 대전 안정성 향상 효과를 유지할 수 있다.
실리카 입자는 다공성일 수 있다. 또한, 실리카 입자는 친수성 표면을 가질 수 있다. 다공성이 높고 표면의 친수성이 높은 실리카 입자로 외첨된 토너가 고온 고습 환경에서 사용되는 경우, 그러한 토너는 전기전도체 역할을 하는 수분의 과도한 흡수로 인하여 잘 대전되지 않는다. 반면, 실리카 입자로 외첨된 토너는 일반적으로 저온 저습 환경에서는 과도하게 대전된다. 즉, 실리카 입자로 외첨된 토너의 환경에 따른 대전안정성은 매우 불량해질 수 있다. 이러한 수분으로 인한 환경 대전 안정성(environmental charge stability) 저하 문제를 해결하기 위해, 실리카 입자는 예를 들면 소수성 실리콘 오일(silicone oil), 소수성 실란 커플링제(silane coupling agent), 실록산(siloxanes) 또는 실라잔(silazanes)에 의하여 소수화처리될 수 있다. 마찬가지로, 산화티탄 및 산화철 입자도 상기와 같이 소수화처리될 수 있다. 그러나, 그러한 표면처리제로 처리된 외첨제 입자를 사용할 경우, 토너 입자들의 응집성(cohesiveness)이 강해져서 토너 분말의 유동성이 급격히 저하될 수 있다. 이를 감안하여, 실리카 입자 각각의 소수화도는 약 10 내지 약 90, 예를 들면 약 40 내지 약 90의 범위로 조절될 수 있다.
본 개시의 일 실시형태에 따른 토너에 있어서, 외첨제들이 현상기 내에서 스트레스 및 전단력 등에 의하여 토너 입자로부터 이탈되어 자성 캐리어를 오염시키지 않도록 사용된 외첨제의 첨가량은 코어 입자의 결착수지 100 중량부에 대해 실리카의 첨가량은 약 0.1 중량부 내지 약 3 중량부, 산화철의 첨가량이 약 0.1 중량부 내지 약 0.5 중량부, 및 산화티탄의 첨가량은 약 0.1 중량부 내지 약 1.5 중량부로 조절될 수 있다.
상기 토너의 규소 함유량, 티탄 함유량, 및 철 함유량의 지표인 토너의 규소 강도 [Si], 티탄 강도[Ti], 및 철 강도 [Fe]는 각각 2 성분 비자성 토너의 경우 외첨제로 사용된 실리카, 산화티탄, 및 산화철으로부터 주로 유래한다. 따라서, 상기 3개의 강도는 외첨제로 사용된 실리카, 산화티탄 및 산화철의 첨가량을 조절함으로써 적절히 선택될 수 있다. 이러한 관점에서, 특히 본 발명자들은 상기한 기초 연구에 기초하여 토너의 형광 X선 측정에 의한 규소 강도 [Si], 티탄 강도[Ti], 및 철 강도 [Fe]가 하기 조건을 모두 만족하도록 제어하면 토너의 대전균일성, 대전안정성 및 전사효율을 모두 향상시키는 데 유리한 것을 발견하였다:
0.005 ≤ [Si] ≤ 0.2 (8),
1 ≤ [Ti] ≤ 30 (9), 및
2 ≤ [Fe] ≤ 200 (10).
특히, 본 발명자들은 토너의 형광 X선 측정에 의한 규소 강도 [Si], 티탄 강도[Ti], 및 철 강도 [Fe]가 하기 조건을 모두 만족하도록 외첨제를 제어하면 토너의 대전균일성, 대전안정성 및 전사효율을 모두 향상시킬 수 있음을 발견하였다:
0.005 ≤ [Si] ≤ 0.15,
1 ≤ [Ti] ≤ 30, 및
2 ≤ [Fe] ≤ 150.
상기한 바와 같이, 본 개시에서는 외첨제들이 현상기 내에서 스트레스 및 전단력 등의 작용에 의해 토너 입자로부터 이탈되어 자성 캐리어를 오염시키지 않도록 실리카 입자 및 와 산화철 입자의 함량을 조절한다. 즉 상대적으로 입경이 큰 산화철 입자는 실리카 입자가 토너 입자 내부로 매몰되거나 토너 입자로부터 이탈되는 것을 억제할 수 있다. 이로 인하여 자성 캐리어 표면으로 전이되는 외첨제의 양을 줄일 수 있다. 또한 대전 균일성을 향상시키고 실리카 입자의 과도한 전하 축적(charge up)을 억제하기 위해서 산화철 입자 및 산화 티탄 입자의 조합이 추가적으로 첨가된다. 산화철과 산화티탄은 실리카에 비해 상대적으로 저항이 낮기 때문에 토너의 과도한 전하 축적을 억제하고 동시에 사이즈가 상대적으로 크기 때문에 현상 및 전사 효율을 개선하는데 유리하다.
본 개시의 일 실시형태에 따른 토너는 코어 입자의 표면에 외첨제 입자를 부착함으로써 제조될 수 있다. 코어 입자의 표면에 대한 외첨제 입자의 부착은, 예를 들면, 분말 혼합 장치(powder mixing apparatus)에 의하여 수행될 수 있다. 분말 혼합 장치의 비제한적인 예는 헨쉘 믹서(Henshell mixer), V형 믹서(V-shape mixer), 볼밀(ball mill) 및 나우타 믹서(nauta mixer)를 포함한다.
본 개시에 따른 토너를 2 성분 현상제로 사용하는 경우, 상기 토너는 자성 캐리어를 포함한다. 즉 본 개시에 따른 2 성분 현상제는 상기한 토너 입자와 자성 캐리어의 혼합물이다. 상기 2 성분 현상제에서 토너 입자의 함량은 전체 2 성분 현상제의 중량을 기준으로 1 내지 20 중량%, 예를 들면 5 내지 20 중량%일 수 있다. 토너 입자의 함량이 1 중량% 미만이면, 대전량이 너무 커질 수 있다. 토너 입자의 함량이 20 중량%를 초과하면, 토너 비산이 쉽게 일어날 수 있다.
본 개시의 일 실시형태에 따른 토너에서 자성 캐리어는 자성 입자가 수지로 코팅된 자성 입자 분산형 수지 캐리어일 수 있다. 자성입자 분산형 수지 캐리어는 공지의 임의의 방법에 의해 제조될 수 있다. 예를 들면, 결착 수지 및 자성 입자 및 필요에 따라 카본 블랙, 대전제어제, 무기 미립자 등의 첨가제를 혼합하여 혼합물을 얻고, 이 혼합물을 용융 혼련한 후 조분쇄 및 미분쇄를 행하여 원하는 평균 입경을 갖도록 분급하여 자성 입자 분산형 수지 캐리어를 얻을 수 있다.
이상과 같이 하여 얻어진 자성 입자 분산형 수지 캐리어는 중량 평균 평균 입경이 약 15 내지 60 미크론, 예를 들면 약 20 내지 약 50 미크론일 수 있다. 중량 평균 평균 입경이 15 미크론 이하이면, 자성 캐리어가 감광체에 부착되기 쉽다. 중량 평균 평균 입경이 60미크론을 초과하면, 고품질 화상을 얻는 것이 어려워질 수 있다.
상기 자성 입자 분산형 수지 캐리어의 코어 부분을 형성하는 자성 입자의 구체적인 예는 산화철, 마그네타이트 및/또는 페라이트 등을 포함할 수 있다. 그 중에서도 페라이트 입자를 사용하는 것이 일반적이고, 특히 망간을 함유하는 페라이트 입자는 대전성과 전기 저항의 밸런스가 양호하다.
상기 자성입자를 코팅하는 수지의 구체적인 예는 폴리에틸렌, 폴리프로필렌, 폴리스티렌, 폴리아크릴로니트릴, 폴리비닐 아세테이트, 폴리비닐알콜, 폴리비닐 부티랄, 폴리염화비릴, 폴리비닐 카바졸, 폴리비닐에테르, 폴리비닐케톤, 염화비닐/아세트산 비닐 공중합체, 스티렌/아크릴 공중합체, 불소 수지, 실리콘 수지, 아크릴 수지, 폴리카보네이트, 페놀 수지, 아미노 수지, 멜라민 수지, 우레아 수진, 아미드 수지, 및 에폭시 수지 등을 포함할 수 있다. 이중에서도, 특히 실리콘 수지, 불소 수지, 및 아크릴 수지가 대전안정성 및 코팅성 등이 우수할 수 있다. 즉 본 개시에서 사용되는 자성 입자 분산형 수지 캐리어는 코어제로서 페라이트를 사용하고 실리콘 수지, 불소 수지, 및 아크릴 수지로부터 선택되는 1종 이상의 수지로 코팅된 자성 입자 분산형 수지 캐리어일 수 있다. 그 중에서도 특히 실리콘 수지가 자성 캐리어 표면에 토너 입자가 고착하기 어렵게 하기 때문에 선호될 수 있다. 또한, 필요에 따라 수지 피복 후에 가교 반응을 진행함으로써 코팅막의 강도나 대전량을 조절할 수 있다. 그리고 코팅 수지는 자성 입자 전면을 균일하게 피복하여도 되며, 반점형으로 자성 입자의 일부가 노출되도록 코팅하여도 된다. 또한, 코팅 수지 중에는 도전성 조절제, 카본 블랙, 4급 암모늄염, 및 촉매 등이 첨가될 수 있다.
본 개시의 일 실시형태에 따른 2 성분 현상제에서 토너 입자의 평균입경 D50t 및 자성 캐리어 입자의 평균입경 D50c는 하기 조건을 만족하도록 조절될 수 있다:
0.08 ≤ D50t/D50c ≤ 0.25 (7).
여기서 평균입경 D50t는 토너 입자들의 입경 누적 분포 곡선에서 누적 중량 백분율이 50%에 해당하는 입경을 나타내고, 평균입경 D50c는 자성 캐리어 입자들의 입경 누적 분포 곡선에서 누적 중량 백분율이 50%에 해당하는 입경을 나타낸다.
본 개시의 다른 실시형태에 따른 2 성분 현상제에서 토너 입자의 평균입경 D50t 및 자성 캐리어 입자의 평균입경 D50c는 하기 조건을 만족하도록 조절될 수 있다:
0.08≤D50t/D50c≤0.20.
D50t/D50c의 비율이 0.08 미만인 경우, 자성 캐리어의 입경이 상대적으로 너무 커서 현상제의 혼합성(admixing property)이 저하되어 토너 대전 성능이 저하되고 따라서 현상/전사 효율이 저하되기 쉽다. 반대로, 상기 비율이 0.25를 초과하는 경우, 자성 캐리어의 크기가 너무 작아져서 감광체에 자성 캐리어 현상되는 문제점이 두드러질 수 있다. 따라서 토너 입자와 자성 캐리어의 적절한 혼합성과 자성 캐리어 현상 방지를 위해서는 상기와 같은 특성을 만족하는 것이 유리할 수 있다.
이하, 본 개시를 구체적인 실시예에 의해 더욱 구체적으로 설명하지만, 본 개시가 이들에 한정되지는 않는다.
실시예 1
(1) 토너 입자의 제조
고분자량 폴리에스테르 수지 H(Samyang Chemical Industries Co., Ltd, 8035TR, 이하, 수지 H) 60 중량부, 저분자량 폴리에스테르 수지 L(Samyang Chemical Industries Co., Ltd, 8025TR, 이하, 수지 L) 40 중량부, 용융점 약 72℃의 카나우바 왁스(Katoyoko, 모델: 특정1호, 이하 왁스 A) 1.5 중량부, 용융점 약 83℃의 지방산 에스테르계 왁스(이하 왁스 B) 2 중량부, 대전제어제(Charging control agent)(Hodogaya, T77) 2 중량부, 및 카본 블랙(Cabot Corporation, Mogul-L) 5 중량부를 Henschel Mixer(제조회사: Misui Mining, 모델: FM20C/1)에서 예비혼합하였다. 이 예비혼합물을 이축 압출기(Ikegai, 모델: PCM 30)의 호퍼에 투입하고 용융 및 혼련(kneading)을 하였다. 혼련물은 연속적으로 노즐을 통해 나오면서 냉각되고 해머 밀(hammer mill)로 조분쇄하였다. 그 이후 조분쇄물을 제트 밀(Hosokawa사, 모델: TSG)로 미분쇄하였다. 이 미분쇄물을 분급기(Hosokawa사, 모델:TTSP)로 분급하여 부피 평균 입경이 약 8㎛의 코어 입자를 얻었다.
코어 입자의 표면에 외첨제를 부가하기 위해, 외첨기(대화테크사, KMLS2K)에서 상기 코어 입자 100 중량부에 하기 표 2에 요약한 나노 사이즈의 소수성 실리카 입자, 산화티탄 입자, 및 산화철 입자를 혼합하고 교반하여 상기 코어 입자의 표면에 외첨제를 부착하여 토너 입자를 얻었다. 교반은 약 2000 rpm에서 30초 동안 그리고 약 6000 rpm에서 3분 동안 진행하였다.
표 2
제품명 평균입경(nm) 제조자 함량(중량부)
소수성 실리카 입자 RX200 약 15 Nippon Aerosil Co., LTD. 1
산화티탄입자 STT30S 약 40 Titan Kokyo Co. LTD 0.5
산화철 입자 SMT-02H 약 100 Cosmo AM&T 0.1
도 4는 본 실시예에서 얻은 상기 외첨된 토너 입자의 DSC 흡열 곡선이다. 토너 입자의 Tg = 약 59 ℃, Tm1 = 약 71℃, Tm2 = 약 83 ℃, △H1 = 약 0.339 J/g, 및 △H2 = 약 0.498 J/g이었다.
(2) 자성 캐리어 제조
톨루엔 100중량부에 카본 블랙(Cabot Corporation, Mogul-L) 1중량부 및 실리콘 수지 10중량부를 용해하여 코팅 수지 조성물을 조제하였다. 페라이트 입자 300 중량부에 상기 코팅 수지 조성물을 코팅 수지 중량/페라이트 입자 중량 = 2/10의 비율로 혼합하면서 페라이트 입자의 표면을 코팅하였다.
코팅된 페라이트 입자를 충분히 건조한 후 약 250℃에서 3시간 동안 처리하였다. 그 후 얻어진 수지 코팅된 페라이트 100 중량부 및 직경 약 2mm의 지르코니아 비드 250 중량부를 폴리에틸렌 병에 넣고 100 rpm의 속도로 약 3시간 볼밀링하여 자성 캐리어를 얻었다.
(3) 현상제 제조
상기 토너 입자 10 중량부에 상기 자성 캐리어 90 중량부를 혼합하여 2 성분 현상제를 제조하였다.
실시예 2~7
왁스 A 및 왁스 B, 및 외첨제의 첨가량을 하기 표 3에 종합한 바와 같이 변화시킨 것을 제외하고는, 실시예 1에서 설명한 방법과 동일한 방법으로 2 성분 현상제를 제조하였다.
비교예 1~4
표 3에 종합한 바와 같이, 왁스 A 및 왁스 B의 적어도 하나를 왁스 C 및 왁스 D의 적어도 하나로 변화시킨 것을 제외하고는, 실시예 1에서 설명한 방법과 동일한 방법으로 2 성분 현상제를 제조하였다. 여기서 왁스 C는 폴리프로필렌 왁스(Viscol 550P, Sanyo Chemical Industries Co., Ltd)이었고, 왁스 D는 파라핀 왁스(155 Nippon Seiro Co., Ltd.)이었다.
비교예 5~14
왁스 A 및 왁스 B, 및 외첨제의 첨가량을 하기 표 3에 종합한 바와 같이 변화시킨 것을 제외하고는, 실시예 1에서 설명한 방법과 동일한 방법으로 2 성분 현상제를 제조하였다.
실시예 1 내지 7 및 비교예 1 내지 16에서 제조한 2 성분 현상제의 결착 수지, 이형제 및 외첨제의 조성을 표 3에 요약하였다.
표 3
  H L 왁스 A 왁스 B 왁스 C 왁스 D 실리카 산화티탄 산화철
실시예1 6 4 1.5 2     1 0.5 0.1
실시예2 6 4 0.5 1     1.5 0.5 0.1
실시예3 6 4 2 2     1 1 0.1
실시예4 6 4 2.5 2     1 0.5 0.15
실시예5 6 4 1.5 2     1 0.5 0.15
실시예6 6 4 2 1.8     1 0.5 0.1
실시예7 6 4 1.5 2     5 0.5 0.1
비교1 6 4 1.5   2   1 0.5 0.1
비교2 6 4 1.5     2 1 0.5 0.1
비교3 6 4   1.5   2 1 0.5 0.1
비교4 6 4     1.5 2 1 0.5 0.1
비교5 6 4 1.5 2.5     1 0.5 0.1
비교6 6 4 3 2     1 0.5 0.1
비교7 6 4 2 3     1 0.5 0.1
비교8 6 4 2 1.5     1 0.5 0.1
비교9 6 4 1.5 2     1 0.5 0.1
비교10 6 4 2 2     1 0.5 0.1
비교11 6 4 1.5 2     0.1 0.5 0.1
비교12 6 4 1.5 2     6 0.5 0.1
비교13 6 4 1.5 2     1 1.5 0.1
비교14 6 4 1.5 2     1 1 0.1
비교15 6 4 1.5 2     1 1 0.2
비교16 6 4 1.5 2     1 1 0.01
* E: 실시예 CE: 비교예
** 본 표의 모든 수치의 단위는 중량부이다.
실시예 1 내지 7 및 비교예 1 내지 16에서 제조한 2 성분 현상제의 물리적 특성을 표 4에 요약하였다.
표 4
  Tg* Tm1 Tm2 △H1** △H2 △H1/△H2 D50t/D50c [Si]*** [Ti] [Fe] 정착성 유동성 대전안정성 현상성 감광체배경오염
E1 59 71 83 0.339 0.498 0.681 0.200 0.030 15 70
E2 59 72 84 0.125 0.225 0.556 0.160 0.070 18 80
E3 62 71 85 0.456 0.498 0.916 0.180 0.025 28 88
E4 56 68 82 0.652 0.559 1.166 0.160 0.033 15 120
E5 61 71 87 0.350 0.560 0.625 0.170 0.034 16 100
E6 59 74 83 0.526 0.456 1.154 0.180 0.028 14 50
E7 60 73 85 0.388 0.521 0.745 0.170 0.150 15 90
CE1 58 72 95 0.340 0.450 0.756 0.190 0.030 15 72 x
CE2 59 72 104 0.550 0.510 1.078 0.150 0.028 14 71 x
CE3 61 86 104 0.350 0.498 0.703 0.160 0.023 14 72 x
CE4 60 95 105 0.430 0.521 0.825 0.180 0.031 16 71 x
CE5 61 72 84 0.321 0.691 0.465 0.190 0.029 15 70 x
CE6 62 73 84 0.950 0.561 1.693 0.200 0.024 16 71 x
CE7 61 74 83 0.559 0.950 0.589 0.200 0.028 15 72 x
CE8 57 73 84 0.498 0.331 1.505 0.180 0.024 16 70 x
CE9 62 71 85 0.339 0.498 0.681 0.220 0.030 14 70 x
CE10 58 70 83 0.456 0.498 0.916 0.075 0.028 14 72 x
CE11 57 73 82 0.456 0.498 0.916 0.170 0.003 15 60 x x x
CE12 61 74 83 0.652 0.559 1.166 0.190 0.160 15 72 x x x
CE13 62 72 85 0.350 0.560 0.625 0.180 0.032 35 70 x x x
CE14 58 74 85 0.526 0.456 1.154 0.160 0.032 0 95 x
CE15 61 69 83 0.388 0.521 0.745 0.2 0.016 15 152 x x x
CE16 59 70 83 0.652 0.559 1.166 0.198 0.028 21 15 x
* Tm1, Tm2, 및 Tg의 단위는 ℃이고,
** △H1 및 △H2의 단위는 J/g이고,
*** 규소 강도 [Si], 티탄 강도[Ti], 및 철 강도 [Fe]의 단위는 cps/㎂이다.
표 4에 종합된 실시예 1 내지 7 및 비교예 1 내지 16의 토너의 특성은 아래의 시험 방법에 의하여 평가된 결과이다.
<평가방법>
실시예 및 비교예의 토너의 특성을 평가하기 위하여 다음과 같은 실험을 수행하였다.
<용융 온도 Tm, 용융열 △H, 및 유리 전이 온도 Tg의 측정>
TA Instrument사제 DSC Q2000 장치를 이용하여 질소 기체 분위기하에서 6~7mg의 분말 형상의 토너 시료에 대하여 다음과 같은 열 이력(heat profile)의 조건하에서 DSC 곡선(Differential Scanning Calorimetry Thermogram)을 얻었다.
- 1차 가열: 0℃에서 140℃까지 20℃/min의 승온 속도로 가열후 140℃에서 1분간 유지,
- 냉각: 140℃에서 0℃로 -10℃/min의 강온 속도로 강온 후 1분간 유지,
- 2차 가열: 0℃에서 140℃로 10℃/min의 승온 속도로 승온.
얻어진 DSC 곡선중에서 결정 용융을 나타내는 흡열 피크의 정점의 위치로부터 왁스의 용융 온도(단위: ℃)를 결정하였다. 용융열 △H1 및 △H2(단위 J/g)는 상기 흡열 피크의 면적으로부터 산출되었다. 또한, 이 DSC 곡선중에서 유리 전이 현상을 의미하는 계단형 흡열 곡선(소위, 베이스라인 시프트)에서 유리 전이 중의 직선 부분의 중심점으로부터 유리 전이 온도 Tg(단위: ℃)를 결정하였다.
<D50t/D50c 측정>
쿨터카운터인 멀티사이저III(베크만-쿨터사제) 측정기를 사용해서 토너 입자의 입도 분포를 분할된 입도 범위(채널)에 대하여, 개개의 토너 입자의 체적에 대해서 소경(小徑)측으로부터 누적 분포를 그려, 누적 50%가 되는 입경 D50t를 측정하였다. 마찬가지 방식으로, 자성 캐리어 입자에 대하여 동일한 방법으로 D50c를 측정하였다. 이들 측정값으로부터 D50t/D50c의 비율을 구하였다.
<[Si]/[Fe] 강도비 측정>
토너의 규소 강도 [Si], 티탄 강도[Ti], 및 철 강도 [Fe]의 비율은 다음과 같이 형광 X선법(XRF: X-ray fluorescence spectrometry)에 의하여 측정하였다.
우선, 토너 시료 3g±0.01g을 가압 성형기로 하중 2t 및 가압 시간 10초의 조건으로 가압 성형하였다. 시마즈 제작소(SHIMADZU Corporation)의 Energy Dispersive X-Ray Spectrometer(모델: EDX-720)를 사용하여 상기 시료에서 발생한 형광 X선으로부터 규소 강도 [Si], 티탄 강도[Ti], 및 철 강도 [Fe](단위: cps/㎂)를 측정하였다. 이들은 각각 토너의 규소, 티탄 및 철 성분의 함유량의 정도를 나타내는 지표이다. 측정 조건은 관(管)전압 50kV 및 관(管)전류 23μA이었다.
<정착성 평가>
상온(20±2℃) 및 상대 습도 55±5%의 환경실에서 실시예 및 비교예에서 얻은 토너를 2 성분 현상 방식의 프린터((주)삼성전자제, 모델: SCX-6555)의 토너 카트리지에 세트하고, 베타 화상의 현상 토너량이 0.70mg/cm2이 되도록 조정하여 용지(제품명: 80g 용지)상에 정착 화상(2.5cm×4cm)을 50매 화상 출력 후 정착된 화상의 정착성을 다음과 같이 평가하였다.
정착 화상의 광학밀도(OD)를 측정한 후, 화상 부위에 3M 810 테이프를 붙이고 500g 추를 이용하여 5회 왕복 이동한 후 상기 테이프를 박리(peeling)하였다. 테이프 박리 후의 광학밀도(OD)를 측정하였다. 정착성 값(단위: %)을 아래 식에 따라 계산하였다.
정착성(%) = (OD_Tape Peeling 후/OD_Tape Peeling 전) x 100.
3매 정착 화상에 대한 평균값으로부터 토너의 정착성을 이하의 기준에 의해 평가하였다:
◎ : 정착성 값 90% 이상
○ : 정착성 값 80% 이상
× : 정착성 값 70% 이하.
<토너 유동성 평가>
토너의 유동성을 평가하기 위하여 응집도(cohesiveness)를 다음과 같이 측정하였다.
장비: Hosokawa micron powder tester PT-S
시료량: 2g
진폭(Amplitude): 1mm 다이얼 3~3.5
시브(Sieve): 53㎛, 45㎛, 38㎛
진동 시간: 120±0.1초
토너를 상온(20±2℃) 및 상대습도 55±5%의 조건에서 2 시간 보관한 후, 상기 조건하에서 각 시브로 체거름한 후, 체거름 전후의 토너량의 변화를 측정하여, 다음과 같이 토너의 응집도를 계산하였다.
1) [53 ㎛ 시브 상에 잔존하는 분말의 질량 / 2g ] ×100
2) [45 ㎛ 시브 상에 잔존하는 분말의 질량 / 2g ] ×100 ×(3/5)
3) [38 ㎛ 시브 상에 잔존하는 분말의 질량 / 2g ] ×100 ×(1/5)
응집도 (Carr's cohesion) = (1) + (2) + (3).
위와 같이 하여 측정된 응집도로부터 토너의 유동성을 다음과 같은 기준에 따라 평가하였다.
◎ : 응집도 10 이하로 유동성이 매우 양호한 상태
○ : 응집도 10 초과 15 이하로 유동성이 양호한 상태
△ : 응집도 15 초과 20 이하로 유동성이 조금 나쁜 상태
× : 응집도 20 초과로 유동성이 매우 나쁜 상태.
<대전안정성 평가(대전성의 경시 변화)>
상온(20±2℃) 및 상대 습도 55±5%의 환경실에서 실시예 및 비교예에서 얻은 토너를 2 성분 현상 방식의 프린터((주)삼성전자제, 모델: SCX-6555)의 토너 카트리지에 세트하고, 베타 화상의 현상 토너량이 0.70mg/cm2이 되도록 조정하여 100,000매(용지: 80g)를 인쇄하였다. 인쇄 도중에 10,000 매 인쇄 완료시마다 토너 카트리지 내의 토너를 샘플링하여 대전량을 측정하였다. 이 결과로부터 인쇄매수가 증가함에 따라 초기에 비하여 대전성의 변동 정도를 평가하였다.
측정한 결과를 하기의 기준에 따라 평가하였다.
◎: 측정된 대전량이 초기 대전량 대비 20% 미만으로 증가
○: 측정된 대전량이 초기 대전량 대비 20% 이상 30% 미만 저하
△: 측정된 대전량이 초기 대전량 대비 30% 이상 40% 미만 저하
×: 측정된 대전량이 초기 대전량 대비 40% 이상 저하.
<현상성 평가>
상온(20±2℃) 및 상대 습도 55±5%의 환경실에서 실시예 및 비교예에서 얻은 토너를 2 성분 현상 방식의 프린터((주)삼성전자제, 모델: SCX-6555)의 토너 카트리지에 세트하고, 현상제내 토너의 비율(T/D)은 8%로 고정한 후, 자성롤러(Magroller)의 인가전압을 450V, 감광체에 인가되는 전압을 570V가 되도록 고정하여 인쇄하였다. 또한, 노광전위는 100V로 고정하여 인쇄하였다.
1,000 매 인쇄후, 전자사진 감광체에서 중간 전사체로 토너가 이동하기 전에 상기 감광체 상에 일정면적(10mm x 25mm)이 현상되도록 한 다음 필터가 부착된 흡입 장치를 이용하여 흡입전, 후의 필터의 무게를 측정하여 상기 감광체 면적당 토너의 무게를 측정한다.
현상성능(%) = 감광체 면적당 토너의 측정된 무게 / 0.42(mg/cm3) x 100(%)
0.42mg/cm3은 Spectroeye계기에서 농도 1.30을 만족하는 감광체 상의 토너무게이다.
◎ : 현상성능 100% 이상
○ : 현상성능 90% 이상 100% 미만
△ : 현상성능 80% 이상 90% 미만
× : 현상성능 70% 이상 80% 미만.
<감광체 배경 오염 평가>
상온(20±2℃) 및 상대 습도 55±5%의 환경실에서 실시예 및 비교예에서 얻은 토너를 2 성분 현상 방식의 프린터((주)삼성전자제, 모델: SCX-6555)의 토너 카트리지에 세트하고, 1% 커버리지로 인쇄하였다. 10매 인쇄후 감광체 드럼 상의 비화상 영역을 3 군데를 테이핑(taping)하였다. 상기 3 위치에서의 광학 밀도(OD)를 측정하여 그 평균을 계산하였다. 광학 밀도는 "Electroeye" 반사 농도계를 이용하여 측정하였다. 측정한 결과를 하기의 기준에 따라 평가하였다.
◎: 광학 밀도가 0.03 미만
○: 광학 밀도가 0.03 이상 0.05 미만
△: 광학 밀도가 0.05 이상 0.07 미만
×: 광학 밀도가 0.07 이상.
표 4를 참조하면, 유리 전이 온도 Tg, 제1 및 제2 용융 온도 Tm1 및 Tm2, 제1 및 제2 용융열(heat of melting) △H1 및 △H2가 상기 조건 (1), (2), (3) 및 (4)를 모두 만족하는 실시예 1 내지 7의 토너는 정착성, 유동성, 대전안정성, 현상성 및 감광체 배경 오염 특성이 모두 우수하였다.
그러나 실시예 1~7에 비하여 왁스 A 및 B의 함량 비율이 변화하였거나 왁스 A 및 B 이외에 왁스 C 및/또는 왁스 D가 더 추가된 비교예 1~8의 현상제의 경우 정착성, 유동성, 및 대전안정성의 특성이 상당히 저하하였다. 특히 △H1/△H2이 의 비율에 관한 상기 조건 (4)를 0.5 이하인 비교예 5의 현상제의 경우, 정착성이 매우 저하하였다. 상기 비율이 1.5를 초과하는 비교예 6 및 8의 현상제의 경우, 대전안정성이 매우 저하하였다. 이로부터 정착성 및 대전안정성이 우수한 토너를 얻기 위해서는 상기 조건 (4)를 적절한 범위로 제어하는 것이 중요한 것을 확인할 수 있다.
D50t/D50c>0.2인 비교예 9의 경우 자성 캐리어의 크기가 너무 작아져서 감광체에 자성 캐리어가 현상되어 감광체 배경 오염 문제가 두드러졌다. D50t/D50c<0.08인 비교예 10의 현상제의 경우 토너 입자와 자성 캐리어의 혼합성이 저하되어 대전안정성이 저하되고, 현상성 및 감광체 배경 오염 특성이 매우 나빠졌다. 이로부터 현상성이 우수하고 감광체 배경오염 문제가 없는 토너를 얻기 위해서는 상기 조건 (5)를 적절한 범위로 제어하는 것이 중요한 것을 확인할 수 있다.
비교예 11의 현상제의 경우, 실리카 입자 외첨제의 함량이 작아서 토너 입자의 유동성이 저하하고 현상성 저하 및 감광체 배경 오염 문제가 두드러졌다. 비교예 12의 현상제의 경우, 실리카 입자 외첨제의 함량이 커서 토너 입자의 유동성은 좋지만 전하 축적(charge up)이 발생하였다. 이에 의하여 정착성, 대전안정성 및 현상성이 매우 나빠졌다. 이에 의하여 인쇄 매수가 증가함에 따라 얻어진 화상의 화상 농도가 많이 저하하였다.
비교예 13의 현상제의 경우, 산화티탄 외첨제의 첨가량이 너무 많아서 토너 대전량 저하 및 자성 캐리어 오염 문제가 일어났다. 이에 의하여 토너의 정착성 및 대전안정성이 모두 저하하고 및 감광체 배경 오염 문제가 두드러졌다. 비교예 14의 현상제의 경우, 산화티탄 외첨제가 첨가되지 않아서 대전량 상승으로 인해 현상성이 저하하여 얻어진 화상의 화상 농도가 저하하였다.
비교예 15의 현상제의 경우, 산화철 외첨제의 첨가량이 과다하여 토너 입자의 유동성이 감소하여 대전안정성, 및 현상성이 모두 많이 저하되었으며, 감광체 배경 오염 문제도 발생하였다. 비교예 16의 현상제의 경우, 산화철 첨가량이 미미하여 현상성이 저하되었으며, 또한 감광체 배경 오염 문제가 두드러졌다.
상기한 결과로부터, 본 개시에 따른 정전 잠상 현상용 토너는 상기 조건 (1), (2), (3) 및 (4)를 만족하고, 유리하게는 상기 조건 (5) 내지 (10)을 더 구비함으로써 자성 캐리어 표면의 오염을 효과적으로 억제할 수 있는 것을 확인할 수 있다. 이에 의하여, 본 개시의 토너를 이용하여 2 성분 현상 시스템에서 장기간 인쇄 작업을 실시하는 경우에도 토너 대전량 저하를 효과적으로 억제할 수 있다. 따라서, 상기 토너를 이용하여 2 성분 현상 시스템에서 사용하면, 장기간 인쇄 작업을 실시하는 경우에도 전사 특성이 우수하여 토너 입자가 자성 롤러에 부착하지 못하고 비산하여 화상 형성 장치를 오염시키는 문제 및 감광체 배경 오염과 같이 토너 대전량 저하에 의해 유발되는 화상 결함을 효과적으로 억제할 수 있다.
본 개시에 따르면, 정착성, 유동성, 대전 안정성, 및 현상성이 모두 우수하고 감광체 배경오염 문제를 효과적으로 억제할 수 있는 정전 잠상 현상용 토너를 얻을 수 있다.
<부호의 설명>
W/g: 와트/그램
Q/M: 전하(charge)/질량(mass)

Claims (8)

  1. 복수의 토너 입자를 포함하는 정전 잠상 현상용 토너로서,
    상기 토너 입자는 결착수지, 착색제, 및 이형제를 함유하는 코어 입자; 및 상기 코어 입자의 표면에 부착된 외첨제;를 포함하며,
    상기 토너는 상기 토너의 시차 주사 열량(DSC) 측정시 2차 승온시 얻어진 열곡선에서 2개의 흡열 피크 및 계단상의 흡열 곡선을 가지며, 상기 2개의 흡열 피크의 정점의 위치로 결정되는 제1 및 제2 용융 온도 Tm1 및 Tm2, 상기 계단상의 흡열 곡선에서 직선 부분의 중심점으로 결정된 유리 전이 온도 Tg, 및 상기 2개의 흡열 피크의 각각의 면적으로 결정되는 제1 및 제2 용융열(heat of melting) △H1 및 △H2가 하기 조건을 만족하는 정전 잠상 현상용 토너:
    55 ℃ ≤ Tg ≤ 65 ℃ (1),
    Tg ≤ Tm1 ≤ 75 ℃ (2),
    Tm1 ≤ Tm2 ≤90 ℃, (3) 및
    0.5 < △H1/△H2 < 1.5 (4).
  2. 제1항에 있어서, 상기 제1 및 제2 용융열 △H1 및 △H2는 하기 조건을 만족하는 정전 잠상 현상용 토너:
    0.1≤ △H1 ≤ 0.9 J/g (5); 및
    0.1≤ △H2 ≤ 0.9 J/g (6).
  3. 제1항에 있어서, 상기 토너는 자성 캐리어 입자를 더 포함하며, 상기 토너 입자의 평균입경 D50t 및 상기 자성 캐리어 입자의 평균입경 D50c는 하기 조건을 만족하는 것을 특징으로 하는 정전 잠상 현상용 현상제:
    0.08 ≤ D50t/D50c ≤ 0.25 (7).
    여기서 평균입경 D50t는 토너 입자들의 입경누적분포 곡선에서 누적 중량 백분율이 50%에 해당하는 입경을 나타내고, 평균입경 D50c는 자성 캐리어 입자들의 입경누적분포 곡선에서 누적 중량 백분율이 50%에 해당하는 입경을 나타낸다.
  4. 제1항에 있어서, 상기 외첨제는 실리카 입자, 산화티탄 입자 및 산화철 입자의 조합을 포함하는 정전 잠상 현상용 토너.
  5. 제1항에 있어서, 상기 토너의 형광 X선 측정에 의한 규소강도 [Si], 티탄 강도[Ti], 및 철 강도 [Fe]가 하기 조건을 모두 만족하는 정전 잠상 현상용 토너:
    0.005 ≤ [Si] ≤ 0.2 (8)
    1 ≤ [Ti] ≤ 30 (9)
    2 ≤ [Fe] ≤ 200 (10).
  6. 제1항에 있어서, 상기 이형제는 카나우바계 왁스 및 지방산 에스테르계 왁스의 조합인 정전 잠상 현상용 토너.
  7. 제1항에 있어서, 상기 결착수지는 폴리에스테르 수지인 정전 잠상 현상용 토너.
  8. 제1항에 있어서, 상기 토너는 비자성 2 성분 현상 방법에 사용되는 정전잠상 현상용 토너.
PCT/KR2015/007286 2014-07-15 2015-07-14 정전 잠상 현상용 토너 WO2016010335A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580038480.3A CN107003627B (zh) 2014-07-15 2015-07-14 用于使静电潜像显影的调色剂
US15/317,014 US9964875B2 (en) 2014-07-15 2015-07-14 Toner for developing electrostatic latent image
EP15821783.6A EP3168686B1 (en) 2014-07-15 2015-07-14 Toner for developing electrostatic latent image

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140088840A KR20160008755A (ko) 2014-07-15 2014-07-15 정전 잠상 현상용 토너
KR10-2014-0088840 2014-07-15

Publications (1)

Publication Number Publication Date
WO2016010335A1 true WO2016010335A1 (ko) 2016-01-21

Family

ID=55078756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/007286 WO2016010335A1 (ko) 2014-07-15 2015-07-14 정전 잠상 현상용 토너

Country Status (5)

Country Link
US (1) US9964875B2 (ko)
EP (1) EP3168686B1 (ko)
KR (1) KR20160008755A (ko)
CN (1) CN107003627B (ko)
WO (1) WO2016010335A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180073219A (ko) * 2016-12-22 2018-07-02 에이치피프린팅코리아 주식회사 정전잠상 현상용 토너
KR102330424B1 (ko) 2018-02-02 2021-11-24 휴렛-팩커드 디벨롭먼트 컴퍼니, 엘.피. 정전잠상 현상용 토너, 이를 이용한 토너 공급 수단과 화상 형성 장치, 및 화상 형성 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080160443A1 (en) * 2004-05-27 2008-07-03 Matsushita Electric Industrical Co.,Ltd. Toner, Process for Producing Toner, Two-Component Developer and Image Forming Apparatus
JP2012083661A (ja) * 2010-10-14 2012-04-26 Kao Corp 電子写真用トナーの製造方法
KR20120095152A (ko) * 2011-02-18 2012-08-28 삼성전자주식회사 정전하상 현상용 토너, 그 제조방법, 이 토너를 채용한 토너 공급 수단 및 화상 형성 장치
JP2014085443A (ja) * 2012-10-22 2014-05-12 Fuji Xerox Co Ltd 静電荷像現像用トナー及びその製造方法、静電荷像現像用現像剤、トナーカートリッジ、プロセスカートリッジ、並びに、画像形成方法
KR20140059849A (ko) * 2011-09-16 2014-05-16 가부시키가이샤 리코 정전 잠상 현상용 토너

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0546028A (ja) * 1991-08-20 1993-02-26 Canon Inc 画像形成装置
JP2005221802A (ja) * 2004-02-06 2005-08-18 Fuji Xerox Co Ltd 静電潜像現像用トナー及びその製造方法、並びに静電潜像現像剤
JP2006293317A (ja) * 2005-03-18 2006-10-26 Ricoh Co Ltd トナー、並びに現像剤、トナー入り容器、プロセスカートリッジ、画像形成方法及び画像形成装置
JP4973129B2 (ja) * 2006-11-02 2012-07-11 富士ゼロックス株式会社 静電荷像現像用トナーの製造方法
JP4957253B2 (ja) 2007-01-07 2012-06-20 三菱化学株式会社 静電荷像現像用トナー
US20090142094A1 (en) 2007-11-29 2009-06-04 Toyoshi Sawada Toner, developer, process cartridge, and image forming apparatus
KR20110086359A (ko) * 2010-01-22 2011-07-28 삼성전자주식회사 정전하상 현상용 토너 및 그 제조방법
JP2012189960A (ja) * 2011-03-14 2012-10-04 Fuji Xerox Co Ltd 静電荷像現像用トナー、静電荷像現像剤、トナーカートリッジ、プロセスカートリッジ、画像形成装置、及び、画像形成方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080160443A1 (en) * 2004-05-27 2008-07-03 Matsushita Electric Industrical Co.,Ltd. Toner, Process for Producing Toner, Two-Component Developer and Image Forming Apparatus
JP2012083661A (ja) * 2010-10-14 2012-04-26 Kao Corp 電子写真用トナーの製造方法
KR20120095152A (ko) * 2011-02-18 2012-08-28 삼성전자주식회사 정전하상 현상용 토너, 그 제조방법, 이 토너를 채용한 토너 공급 수단 및 화상 형성 장치
KR20140059849A (ko) * 2011-09-16 2014-05-16 가부시키가이샤 리코 정전 잠상 현상용 토너
JP2014085443A (ja) * 2012-10-22 2014-05-12 Fuji Xerox Co Ltd 静電荷像現像用トナー及びその製造方法、静電荷像現像用現像剤、トナーカートリッジ、プロセスカートリッジ、並びに、画像形成方法

Also Published As

Publication number Publication date
CN107003627B (zh) 2020-05-05
EP3168686A1 (en) 2017-05-17
EP3168686A4 (en) 2018-03-14
KR20160008755A (ko) 2016-01-25
US9964875B2 (en) 2018-05-08
CN107003627A (zh) 2017-08-01
EP3168686B1 (en) 2019-03-20
US20170131648A1 (en) 2017-05-11

Similar Documents

Publication Publication Date Title
JP2012083715A (ja) 二成分現像剤用キャリア、それを用いた静電潜像現像剤、カラートナー現像剤、補給用現像剤、画像形成方法、静電潜像現像剤を備えるプロセスカートリッジ、及び画像形成装置
KR100716979B1 (ko) 전자사진용 현상제
JP2014153652A (ja) 静電潜像現像剤用キャリア
KR20080057485A (ko) 전자사진용 토너
US20090004582A1 (en) Electrophotographic toner
WO2016010335A1 (ko) 정전 잠상 현상용 토너
WO2009142432A2 (en) Toner containing binder resin having wax properties and method of preparing the toner
JP4337221B2 (ja) 静電荷現像用トナー
JP7238505B2 (ja) キャリア、現像剤、画像形成装置及びキャリアの製造方法
JP5601104B2 (ja) 静電潜像現像剤用キャリア及び静電潜像現像剤
KR20150050652A (ko) 정전 잠상 현상용 토너
JP2002341587A (ja) 非磁性一成分現像用トナー
WO2012087029A2 (ko) 내환경성, 유동성 및 대전성이 우수한 토너
WO2019151592A1 (en) Toner for developing electrostatic latent image
WO2013077592A1 (ko) 토너 및 그의 제조방법
WO2018117357A1 (ko) 정전잠상 현상용 토너
KR20080065500A (ko) 전자사진 현상제
JPH1195484A (ja) 静電荷像現像用トナー
JP5505724B2 (ja) 現像剤用キャリアと二成分現像剤、それらの製法、画像形成方法、及びプロセスカートリッジ
JP2020190613A (ja) 現像剤、補給用現像剤、画像形成装置、プロセスカートリッジおよび画像形成方法
KR100636134B1 (ko) 균일한 대전분포 및 향상된 내오프셋 특성을 갖는전자사진 화상형성장치용 토너
JPH04358167A (ja) 電子写真現像剤用キャリア
JP2010102054A (ja) 電子写真用キャリアの芯材を被覆するための被覆コート液の製造方法
JPH05173354A (ja) 電子写真用現像剤
JP2009053650A (ja) 電子写真用キャリア及び現像剤、現像剤入り容器、プロセスカートリッジ、画像形成方法及び画像形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821783

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15317014

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015821783

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015821783

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE