WO2016010150A1 - バスバーモジュール及びバスバーモジュールの製造方法 - Google Patents

バスバーモジュール及びバスバーモジュールの製造方法 Download PDF

Info

Publication number
WO2016010150A1
WO2016010150A1 PCT/JP2015/070610 JP2015070610W WO2016010150A1 WO 2016010150 A1 WO2016010150 A1 WO 2016010150A1 JP 2015070610 W JP2015070610 W JP 2015070610W WO 2016010150 A1 WO2016010150 A1 WO 2016010150A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
conductor
flat conductor
bar module
linear
Prior art date
Application number
PCT/JP2015/070610
Other languages
English (en)
French (fr)
Inventor
雄紀 土佐谷
宏樹 近藤
Original Assignee
矢崎総業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 矢崎総業株式会社 filed Critical 矢崎総業株式会社
Priority to DE112015003320.3T priority Critical patent/DE112015003320T5/de
Publication of WO2016010150A1 publication Critical patent/WO2016010150A1/ja
Priority to US15/392,471 priority patent/US10431801B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a bus bar module and a method for manufacturing the bus bar module.
  • a battery module is known as a battery mounted on an electric vehicle such as a hybrid vehicle or an electric vehicle.
  • the battery module is configured by stacking a plurality of battery cells in the thickness direction and housing the battery cells in a case.
  • the battery cell for example, a lithium ion secondary battery is used.
  • This battery module is provided with a bus bar that electrically connects electrode terminals of individual battery cells and a voltage detection line for detecting the voltage state of each battery cell.
  • Patent Document 1 discloses a voltage detection module device.
  • an insulating frame is incorporated in the battery pack body, and a plurality of bus bars for connecting the electrode terminals of the battery cells are disposed in the insulating frame, and a voltage detection line is provided in an area other than the bus bar.
  • a flat cable is provided. In the flat cable, necessary cuts are made between the conductor wires, and the ends of the individual conductor wires are separated from each other. And the connection of each bus bar and each conductor wire of a flat cable is performed by welding the edge part of the cut-off conductor wire to a predetermined bus bar.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a bus bar module and a method of manufacturing the bus bar module that can firmly connect the voltage detection line and the bus bar.
  • the above object of the present invention is achieved by the following configurations (1) to (10).
  • (1) A plurality of linear conductors arranged in parallel at a predetermined interval, a strip-shaped flat conductor arranged adjacent to the linear conductor and extending in the axial direction of the linear conductor, and the plurality of lines A tensile strength between the flat plate conductor and the insulating resin portion; and an outer peripheral portion of the flat conductor and an insulating resin portion that integrally covers one side edge portion of the flat plate conductor adjacent to the linear conductor.
  • the flat conductor includes a plurality of through holes formed at predetermined intervals along the extending direction of the flat conductor on the one side edge. And the one side edge portion is covered with the insulating resin portion over a range including the through hole.
  • the tensile strength between the flat conductor and the insulating resin portion having the through hole as a first reference point is closer to the side edge than the through hole. Is equal to or higher than the tensile strength between the flat conductor and the insulating resin portion, and the tensile strength between the flat conductor and the insulating resin portion at the second reference point is the flat conductor. And a bus bar module larger than the tensile strength of the insulating resin portion between the wire conductor and the linear conductor.
  • a second step of manufacturing the bus bar module is
  • the voltage detection line covered with the insulating resin portion and the flat conductor can be firmly coupled. As a result, it is possible to suppress a situation where the voltage detection line is dropped and the voltage detection line is disconnected.
  • FIG. 1 is a perspective view schematically showing a configuration of a battery pack to which a bus bar module according to a first embodiment of the present invention is applied.
  • FIG. 2 is an exploded perspective view showing a main part of the battery pack shown in FIG.
  • FIG. 3 is a partial perspective view of the bus bar module shown in FIG.
  • FIGS. 4A to 4D are explanatory views for explaining the manufacturing process of the bus bar module shown in FIG. (A), (b) of FIG. 5 is explanatory drawing which shows the bus-bar module which concerns on a 1st modification.
  • FIGS. 6A and 6B are explanatory views showing a bus bar module according to a second modification.
  • FIGS. 7A to 7C are explanatory views showing a bus bar module and a method for manufacturing the same according to the second embodiment of the present invention.
  • FIGS. 8A to 8C are cross-sectional views of the bus bar module shown in FIGS. 7A to 7C.
  • FIGS. 9A to 9C are explanatory views showing a bus bar module and a method for manufacturing the same according to the third embodiment of the present invention.
  • FIG. 10 is an explanatory diagram showing the relationship of tensile strength.
  • FIG. 11 is an explanatory view showing the amount of sag from the through hole of the insulating resin portion.
  • FIG. 1 is a perspective view schematically showing a configuration of a battery pack 10 to which the bus bar modules 30A and 30B according to the first embodiment of the present invention are applied.
  • FIG. 2 is an exploded perspective view showing a main part of the battery pack 10 shown in FIG.
  • FIG. 3 is a partial perspective view of the bus bar module 30B shown in FIG.
  • FIGS. 4A to 4D are explanatory views for explaining the manufacturing process of the bus bar module 30B shown in FIG.
  • the battery pack 10 is used as a battery of an electric vehicle or a hybrid vehicle, for example, and includes a battery module 20 and bus bar modules 30A and 30B.
  • the battery module 20 includes a plurality of battery cells 12 arranged in the thickness direction, and a plurality of separators 22 arranged so as to sandwich both sides of each battery cell 12 from the thickness direction.
  • the battery module 20 is disposed and fixed in a box-shaped housing (not shown).
  • Each battery cell 12 is a secondary battery, and a positive electrode terminal 13 ⁇ / b> A and a negative electrode terminal 13 ⁇ / b> B are protruded from the upper surface of the battery cell 12.
  • the plurality of battery cells 12 arranged in the housing are arranged in an alternately inverted state so that the positions of the positive electrode terminal 13A and the negative electrode terminal 13B are alternate between adjacent battery cells 12.
  • Bus bars 32A and 32B which will be described later, are inserted through the positive terminal 13A and the negative terminal 13B, and a fastening nut 15 is attached.
  • the separator 22 is a plate-like member formed in a required shape using an insulating resin.
  • a partition portion 24 protruding from the upper surface of the battery cell 12 is formed at the upper end of the separator 22. This partition part 24 protrudes upwards from the slit 45 formed between adjacent bus-bar 32A, 32B, and suppresses the short circuit between the electrode terminals by a tool.
  • the bus bar modules 30A and 30B have an elongated shape that is horizontally long along the stacking direction of the battery cells 12, and two rows are provided at positions corresponding to the positive terminal 13A and the negative terminal 13B on the plurality of battery cells 12. They are arranged in parallel.
  • the individual bus bar modules 30A and 30B are located on the inner side of the plurality of bus bars 32A and 32B and the plurality of bus bars 32A and 32B arranged in a straight line along the stacking direction of the battery cells 12, and the arrangement direction thereof. And a voltage detection line 40 extending in the direction and an insulating resin portion 23.
  • bus bars 32B corresponding to one hole are arranged at both ends, and there are five bus bars 32A corresponding to two holes between these bus bars 32B. They are arranged side by side.
  • bus bars 32A corresponding to two holes are arranged side by side.
  • the individual bus bars 32A and 32B are linearly arranged so that the terminal insertion holes 34 are arranged in a line.
  • the bus bar 32A is electrically connected to the positive terminal 13A and the negative terminal 13B.
  • the bus bar 32A has a square shape and includes two terminal insertion holes 34 for inserting and connecting the positive terminal 13A and the negative terminal 13B, respectively.
  • the bus bar 32B is electrically connected to the positive terminal 13A or the negative terminal 13B.
  • the bus bar 32B has a rectangular shape and includes one terminal insertion hole 34 for inserting and connecting the positive terminal 13A or the negative terminal 13B.
  • bus bars 32A and 32B constituting the bus bar modules 30A and 30B are tightened by the nut 15 with respect to the positive terminal 13A and the negative terminal 13B inserted into the terminal insertion hole 34. Thereby, the bus bars 32A and 32B are electrically connected to the positive terminal 13A and the negative terminal 13B.
  • electrical connection method between bus-bar terminals it is also possible to use methods, such as welding.
  • the bus bars 32A and 32B are formed by stamping a long strip-shaped flat conductor 33 made of a metal plate material such as copper, copper alloy, aluminum, aluminum alloy, gold, stainless steel (SUS) in a pressing process described later.
  • the bus bars 32A and 32B may be plated with Sn, Ni, Ag, Au, etc. in order to improve weldability.
  • the voltage detection line 40 is for measuring the voltage of the battery cell 12 and is composed of a plurality of linear conductors 21.
  • the voltage detection line 40 is a flat cable formed by covering a plurality of linear conductors 21 integrally with an insulating resin portion 23.
  • a connector 50 is connected and fixed to one end of the voltage detection line 40.
  • the plurality of linear conductors 21 are arranged in parallel at a predetermined interval.
  • various conductors such as a single wire, such as a flat conductor and a round conductor, and a strand wire, can be used.
  • the insulating resin portion 23 integrally covers the outer peripheral portion of the plurality of linear conductors 21 and one side edge portion 32a of the bus bars 32A and 32B, and covers the other side edge portion 32b of the bus bars 32A and 32B.
  • One side edge portion (hereinafter referred to as “first side edge portion”) 32a is formed on the side edge portion on the side adjacent to the linear conductor 21 among the side edge portions on both sides along the arrangement direction of the bus bars 32A and 32B.
  • the other side edge part (hereinafter referred to as “second side edge part”) 32b corresponds to a side edge part located on the opposite side of the first side edge part 32a among the side edge parts on both sides.
  • the bus bars 32A and 32B and the voltage detection line 40 are integrated in a state where they are arranged in parallel at a predetermined interval.
  • the insulating resin portion 23 covering the second side edge portion 32b forms a connecting portion 42 that is continuous in the direction in which the bus bars 32A and 32B are arranged.
  • the connecting portion 42 connects the second side edge portions 32b of the bus bars 32A and 32B, thereby preventing the individual bus bars 32A and 32B from varying, and suppressing a decrease in the coupling force with the voltage detection line 40. ing.
  • the connecting portion 42 can be omitted.
  • the bus bar modules 30A and 30B include a connecting member 35 that electrically connects the bus bar 32A and the corresponding linear conductor 21 of the voltage detection line 40.
  • the connecting member 35 has a press-contacting blade portion 37 at one end of the main body and a welding portion 39 at the other end.
  • the press-contact sword portion 37 of the connection member 35 is press-connected to the predetermined linear conductor 21 and the welded portion 39 is connected to the predetermined bus bar 32A by welding.
  • the connection member 35 is formed by punching from a metal plate material.
  • the electrical connection between the bus bar 32 ⁇ / b> B and the corresponding linear conductor 21 of the voltage detection line 40 is connected by a cut-and-raised piece 36 formed on the bus bar 32.
  • the cut and raised piece 36 is bent along the side edge of the bus bar 32 ⁇ / b> B, and the tip portion is welded to the predetermined linear conductor 21.
  • bus bar modules 30A and 30B a method for manufacturing the bus bar modules 30A and 30B will be described with reference to FIG. Since the bus bar modules 30A and 30B are manufactured in the same process, a manufacturing method related to the bus bar module 30B will be described below.
  • a plurality of linear conductors 21 are arranged in parallel at a predetermined interval. Further, on the side of the linear conductors 21, long strip-shaped flat conductors 33 extending in the axial direction of the linear conductors 21 are arranged in parallel (arrangement step (see FIG. 4A)). .
  • a second step press molding using a predetermined resin material is performed, and an outer peripheral portion of the plurality of linear conductors 21 and one side edge portion adjacent to the linear conductor 21 in the flat conductor 33. 33a is integrally covered with the insulating resin portion 23.
  • the other side edge portion 33 b positioned on the opposite side of the one side edge portion 33 a in the flat conductor 33 is also covered with the insulating resin portion 23.
  • the tensile strength between the flat conductor 33 and the insulating resin portion 23 is set to 50 N / mm 2 or more.
  • a resin material having a melt viscosity (melt flow rate) of 20 g / 10 min or more and 2000 g / 10 min or less is used in the molding step.
  • melt viscosity melting flow rate
  • the melt viscosity is less than 20 g / 10 min, the viscosity is too low to perform press molding, and when the melt viscosity is greater than 2000 g / 10 min, the viscosity is too high to obtain the desired performance. Because you can't.
  • the molten resin adheres to the one side edge portion 33a of the flat conductor 33 with good moldability, and further, the one side edge portion 33a and the insulating resin through the adhesiveness of the resin material.
  • the portion 23 can be firmly bonded.
  • the load conditions and temperature conditions in each resin material are as follows.
  • the load conditions are all 21.6 kg.
  • the temperature conditions are 180 to 210 ° C for polyvinyl chloride (PVC), 230 to 250 ° C for polypropylene (PP), 140 to 200 ° C for polyethylene (PE), 280 to 330 ° C for polyphenylene sulfide (PPS), polyphenylene. 200-230 ° C. in ether (PPE).
  • the long circuit body 60 is cut into a predetermined length along the longitudinal direction.
  • a plurality of slits 45 are punched at predetermined intervals along the longitudinal direction (extending direction) of the flat conductor 33, and the terminal insertion holes 34 are punched.
  • the flat conductor 33 having a required shape after punching is formed as a plurality of bus bars 32A (punching step (see FIG. 4C)).
  • the length of the slit 45 in the longitudinal direction is set so that the adjacent bus bars 32A are reliably separated from each other.
  • connection member 35 a press-contact sword portion 37 formed at one end of the main body is press-connected to a predetermined linear conductor 21, and a welded portion 39 formed at the other end of the main body is weld-connected to a predetermined bus bar 32A ( Connection step (see FIG. 4D)).
  • the tensile strength between the flat conductor 33 corresponding to the bus bars 32A and 32B and the insulating resin portion 23 is set to 50 N / mm 2 or more. Yes.
  • the voltage detection line 40 covered with the insulating resin portion 23 and the flat conductor 33 can be firmly coupled. As a result, it is possible to suppress a situation in which the voltage detection line 40 is dropped and the voltage detection line 40 is disconnected.
  • bus bar modules 30A and 30B of the first embodiment since the plurality of bus bars 32A and 32B and the voltage detection line 40 are integrated, the wiring work of the voltage detection line 40 can be eliminated. Thereby, the assembly to the battery module 20 can be performed easily.
  • the linear conductor 21 constituting the voltage detection line 40 is covered with the insulating resin portion 23, there is no need to provide a cover or a case, and space saving and weight reduction are realized. can do.
  • press molding is performed using a resin material having a melt viscosity of 20 g / 10 min to 2000 g / 10 min.
  • the molten resin adheres to the one side edge 33a of the flat conductor 33 with good moldability, and further, the one side edge 33a and the insulating resin part 23 are firmly bonded through the adhesiveness of the resin material.
  • the tensile strength between the flat conductor 33 and the insulating resin portion 23 applied to the bus bars 32A and 32B can be 50 N / mm 2 or more.
  • connection between the bus bar 32A and the voltage detection line 40 is performed by the connection member 35, but the present embodiment is not limited to this.
  • the voltage detection line 40 itself may connect the bus bar 32 ⁇ / b> A and the voltage detection line 40.
  • the description will focus on differences from the bus bar module 30B.
  • FIG. 5 is explanatory drawing which shows the bus-bar module 80 which concerns on a 1st modification.
  • the long circuit body 60 is formed, it is cut into a predetermined length.
  • the punching step the remaining flat conductors 33 excluding the four bus bars 32A on the connector 50 side and a part of the voltage detection line 40 connected thereto are punched in a required shape.
  • the remaining portion 85 of the voltage detection line 40 remains in the place where the flat conductor 33 is removed, and the end portions 21a to 21d of the plurality of linear conductors 21 are left in the remaining portion 85. These end portions 21a to 21d are formed so as to gradually become longer as the distance from the bus bar 32A increases (see FIG. 5A).
  • the remaining portion 85 of the voltage detection line 40 is bent by approximately 180 degrees and overlapped with the voltage detection line 40. Then, the individual end portions 21a to 21d are bent at substantially right angles toward the corresponding bus bar 32A and are welded to the bus bar 32A (see FIG. 5B). Thereby, the voltage detection line 40 and the bus bar 32A are directly connected.
  • 6 (a) and 6 (b) are explanatory views showing a bus bar module 90 according to a second modification.
  • the long circuit body 60 is formed, it is cut into a predetermined length.
  • the punching process the remaining flat conductors 33 excluding the four bus bars 32A on the connector 50 side and the voltage detection lines 40 connected thereto are punched in a required shape.
  • the end portions 21a to 21d of the plurality of linear conductors 21 are left on the voltage detection line 40 in parallel with the four bus bars 32A, and the end portions 21a to 21d gradually increase as the distance from the bus bar 32A increases. It is formed to be shorter (see FIG. 6A).
  • the individual end portions 21a to 21d are bent at a substantially right angle toward the corresponding bus bar 32A, and welded to the bus bar 32A (see FIG. 6B). Thereby, the voltage detection line 40 and the bus bar 32A are directly connected.
  • the bus bar module 100 and the manufacturing method thereof according to the second embodiment of the present invention will be described.
  • the bus bar module 100 according to the second embodiment is different from the bus bar module 30B of the first embodiment in that a flat conductor 33A including a plurality of through holes 38 is used.
  • a flat conductor 33A including a plurality of through holes 38 is used.
  • 7 (a) to 8 (c) are explanatory views showing a bus bar module 100 and a method for manufacturing the same according to the second embodiment of the present invention.
  • 7A to 7C are plan views showing the bus bar module 100 and its manufacturing method
  • FIGS. 8A to 8C are cross-sectional views of FIG. The bus bar module 100 shown to a)-(c) and its manufacturing method are shown.
  • a plurality of linear conductors 21 are arranged in parallel at a predetermined interval. Further, on the side of the linear conductors 21, long strip-shaped flat conductors 33 ⁇ / b> A extending in the axial direction of the linear conductors 21 are arranged in parallel (arrangement step (FIG. 7A and FIG. 8). (See (a))).
  • a plurality of through holes 38 are formed at predetermined intervals along the longitudinal direction in one side edge portion 33a adjacent to the linear conductor 21. Is formed. These through-holes 38 are formed in advance in the flat conductor 33A prior to the molding process described later.
  • the second step press molding using a predetermined resin material is performed, and the outer peripheral portion of the plurality of linear conductors 21 and one side edge portion 33a of the flat conductor 33A are formed by the insulating resin portion 23. Covered together. In this one side edge portion 33a, the range including the through hole 38 is covered with the insulating resin portion 23, and the insulating resin portion 23 also enters the through hole 38 (see FIG. 8B). .
  • the other side edge portion 33b positioned on the opposite side of the one side edge portion 33a in the flat conductor 33A is covered with the insulating resin portion 23.
  • a long circuit body 60A in which a plurality of linear conductors 21 constituting a flat cable-shaped voltage detection line 40 and a flat conductor 33A are connected by an insulating resin portion 23 and integrally arranged in parallel is formed. Formed (see the molding step (see FIGS. 7B and 8B)).
  • the tensile strength between the flat conductor 33A and the insulating resin portion 23 is set to 50 N / mm 2 or more, as in the first embodiment.
  • a resin material having a melt viscosity of 20 g / 10 min or more and 2000 g / 10 min or less is used in the molding step.
  • the melt viscosity is less than 20 g / 10 min, the viscosity is too low to perform press molding, while when the melt viscosity is greater than 2000 g / 10 min, the viscosity is too high and the through hole is formed. This is because the resin material does not enter 38.
  • the molten resin adheres to the one side edge portion 33a of the flat conductor 33A with good moldability, and further, the one side edge portion 33a and the insulating resin through the adhesiveness of the resin material.
  • the portion 23 can be firmly bonded. Further, since the melted resin enters the through hole 38 during press molding, the one side edge portion 33 a and the insulating resin portion 23 can be firmly bonded through the mechanical coupling by the through hole 38.
  • polybutylene terephthalate can be used as the resin material in the main molding step.
  • each bus-bar 32C is formed by the punching process (refer FIG.7 (c), FIG.8 (c)), and the connection process with respect to the bus-bar 32C is performed finally.
  • the tensile strength between the flat conductor 33 corresponding to the bus bar 32C and the insulating resin portion 23 is set to 50 N / mm 2 or more.
  • the voltage detection line 40 covered with the insulating resin portion 23 and the flat conductor 33 can be firmly coupled. As a result, it is possible to suppress a situation in which the voltage detection line 40 is dropped and the voltage detection line 40 is disconnected.
  • press molding is performed using a resin material having a melt viscosity of 20 g / 10 min to 2000 g / 10 min.
  • the molten resin adheres to the one side edge portion 33a of the flat conductor 33A with good moldability, and the one side edge portion 33a and the insulating resin portion 23 are strengthened through the adhesiveness of the resin material. Can be combined.
  • a plurality of through holes 38 are formed in the flat conductor 33A, since the molten resin enters the through holes 38, the plate conductor 33A is insulated from the one side edge 33a through mechanical coupling by the through holes 38.
  • the resin part 23 can be firmly bonded.
  • the tensile strength between the flat conductor 33 and the insulating resin portion 23 applied to the bus bar 32C can be 50 N / mm 2 or more.
  • bus bar module 100A and a method for manufacturing the same according to a third embodiment of the present invention will be described.
  • the bus bar module 100A according to the third embodiment is different from the bus bar module 30B according to the first embodiment in that a plurality of through holes 38 are provided in the flat conductor 33A.
  • a plurality of through holes 38 are provided in the flat conductor 33A.
  • FIGS. 9A to 9C show the bus bar module 100A and the manufacturing method thereof in a plan view.
  • a plurality of linear conductors 21 are arranged in parallel at a predetermined interval. Further, on the side of the linear conductors 21, a long strip-shaped flat conductor 33A extending in the axial direction of the linear conductor 21 is arranged in parallel (arrangement step (see FIG. 9A)). .
  • a plurality of through holes 38 are formed at predetermined intervals along the longitudinal direction in one side edge 33a adjacent to the linear conductor 21. These through-holes 38 are formed in advance in the flat conductor 33A prior to the molding process described later.
  • the second step extrusion using a predetermined resin material is performed, and the outer peripheral portion of the plurality of linear conductors 21 and one side edge portion 33a of the flat conductor 33A are formed by the insulating resin portion 23. Covered together. In this one side edge portion 33a, the range including the through hole 38 is covered with the insulating resin portion 23, and the insulating resin portion 23 also enters the through hole 38 (see FIG. 9B). .
  • the other side edge portion 33b positioned on the opposite side of the one side edge portion 33a in the flat conductor 33A is covered with the insulating resin portion 23.
  • traces are formed linearly with respect to the flat conductor 33 by the molding die (not shown). That is, the positioning reference line 47 extending along the longitudinal direction of the flat conductor 33A is formed by a mechanical action during extrusion molding.
  • the positioning reference line 47 can be used as a reference line for determining the punching position of the slit 45 in the punching process.
  • the tensile strength between the flat conductor 33A and the insulating resin portion 23 is set to 50 N / mm 2 or more as in the first embodiment.
  • a resin material having a melt viscosity of 20 g / 10 min or more and 2000 g / 10 min or less is used in the molding step.
  • the melt viscosity is less than 20 g / 10 min, the viscosity is too low to perform extrusion molding.
  • the melt viscosity is greater than 2000 g / 10 min, the viscosity is too high and a through hole is formed. This is because the resin material does not enter 38.
  • the melted resin adheres to the one side edge portion 33a of the flat conductor 33A with good moldability, and further, the one side edge portion 33a and the insulating resin through the adhesiveness of the resin material.
  • the portion 23 can be firmly bonded. Further, since the melted resin enters the through hole 38 at the time of extrusion molding, the one side edge portion 33a and the insulating resin portion 23 can be firmly bonded through the mechanical coupling by the through hole 38.
  • polybutylene terephthalate can be used as the resin material in the main molding step.
  • the tensile strengths Fa to Fc at the points indicated by reference signs A to C in FIG. 10 are in a relationship (Fa ⁇ Fb) in which the tensile strength Fa is equal to or greater than the tensile strength Fb.
  • the relationship where the tensile strength Fb is larger than the tensile strength Fc (Fb> Fc) is set.
  • the tensile strength Fa at point A is the tensile strength between the flat conductor 33A and the insulating resin portion 23 with the through hole 38 as the first reference point
  • the tensile strength Fb at point B is the through hole.
  • the tensile strength Fc at point C is the tensile strength between the insulating resin portion 23 between the flat conductor 33A and the linear conductor 21.
  • the melt viscosity of the resin material affects the relationship, and the melt viscosity of the resin material is preferably 20 g / 10 min or more and 2000 g / 10 min or less as described above.
  • the melt viscosity of the resin material affects the relationship, and in particular, the melt viscosity of the resin material is preferably 20 g / 10 min or more and 500 g / 10 min or less.
  • a long circuit body in which a plurality of linear conductors 21 constituting a flat cable-shaped voltage detection line 40 and a flat conductor 33A are connected by an insulating resin portion 23 and integrally arranged in parallel. 60A is formed (molding step (see FIG. 9B)).
  • each bus-bar 32C is formed by the punching process (refer FIG.9 (c)), and the connection process with respect to the bus-bar 32C is performed finally.
  • the tensile strength between the flat conductor 33A corresponding to the bus bar 32C and the insulating resin portion 23 is set to 50 N / mm 2 or more.
  • the voltage detection wire 40 covered with the insulating resin portion 23 and the flat conductor 33 can be firmly coupled. As a result, it is possible to suppress a situation in which the voltage detection line 40 is dropped and the voltage detection line 40 is disconnected.
  • extrusion molding is performed using a resin material having a melt viscosity of 20 g / 10 min to 2000 g / 10 min.
  • the molten resin adheres to the one side edge portion 33a of the flat conductor 33A with good moldability, and the one side edge portion 33a and the insulating resin portion 23 are strengthened through the adhesiveness of the resin material. Can be combined.
  • a plurality of through holes 38 are formed in the flat conductor 33A, since the molten resin enters the through holes 38, the plate conductor 33A is insulated from the one side edge 33a through mechanical coupling by the through holes 38.
  • the resin part 23 can be firmly bonded.
  • the tensile strength between the flat conductor 33 and the insulating resin portion 23 applied to the bus bar 23C can be 50 N / mm 2 or more.
  • bus bar module and the manufacturing method thereof according to the embodiment of the present invention have been described above.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the present invention. Not too long.
  • the one side edge portion (33a) is a bus bar module (100, 100A) covered with the insulating resin portion (23) over a range including the through hole (38).
  • the bus bar module (100A) described in [2] above The tensile strength (Fa) between the flat conductor (33A) and the insulating resin portion (23) with the through hole (38) as a first reference point (A) is on the side of the through hole (38). It is equal to or higher than the tensile strength (Fb) between the flat conductor (33A) and the insulating resin portion (23) with the edge side as the second reference point (B), The tensile strength (Fb) between the flat conductor (33A) and the insulating resin portion (23) at the second reference point (B) is determined between the flat conductor (33A) and the linear conductor (21).
  • the bus bar module (100A) described in [2] or [3] above, The said insulation resin part (23) is a bus-bar module (100A) by which the drooping amount (h) from the said through hole (38) is set to the range of 0.2 mm or more and 4 mm or less.
  • the bus bar module (100A) according to any one of [1] to [4],
  • the said flat conductor (33A) is a bus-bar module (100A) provided with the positioning reference line (47) formed along the extension direction of the said flat conductor (33A).
  • a resin material having a melt viscosity of 20 g / 10 min or more and 2000 g / 10 min or less Extruded using a resin material having a melt viscosity of 20 g / 10 min or more and 2000 g / 10 min or less, and the outer periphery of the plurality of linear conductors (21) and the linear conductor (21) in the flat conductor (33A).
  • a method for manufacturing the bus bar module (100A) according to [6] above Prior to the second step, a plurality of through holes (38) are formed at predetermined intervals along the extending direction of the flat conductor (33A) in the side edge (33a) of the flat conductor (33A). Manufacturing method of bus bar module (100A).
  • a method for manufacturing the bus bar module (100A) according to [6] or [7] above, The resin material used for the extrusion molding is a method for producing a bus bar module (100A) having a melt viscosity of 20 g / 10 min to 500 g / 10 min.
  • the voltage detection line formed by being covered with the insulating resin portion and the flat conductor can be firmly coupled. Therefore, it is possible to provide a good bus bar module that does not cause a situation such as disconnection.

Abstract

バスバーモジュール(30A,30B)は、バスバー(32A,32B)に適用される平板導体33と、絶縁樹脂部(23)との引張強さが、50N/mm以上に設定されている。これにより、絶縁樹脂部(23)で被覆されてなる電圧検知線(40)と、平板導体33とを強固に結合することができる。

Description

バスバーモジュール及びバスバーモジュールの製造方法
 本発明は、バスバーモジュール及びバスバーモジュールの製造方法に関する。
 従来より、ハイブリッド自動車又は電気自動車といった電動車に搭載されるバッテリとして、電池モジュールが知られている。電池モジュールは、複数の電池セルをその厚さ方向に積層し、これをケースに収容することにより構成されている。電池セルとしては、例えばリチウムイオン二次電池が用いられる。この電池モジュールには、個々の電池セルの電極端子同士を電気的に接続するバスバーや、個々の電池セルの電圧状態を検知するための電圧検知線が設けられている。
 特許文献1には、電圧検出モジュール装置が開示されている。この装置では、電池パック本体に絶縁枠体が組み込まれており、この絶縁枠体には、電池セルの電極端子を接続する複数のバスバーが配設されるとともに、バスバー以外の領域に電圧検知線たるフラットケーブルが配設される。フラットケーブルは、各導体線間に所要の切り込みが入れられており、個々の導体線の端部が互いに切り離されている。そして、切り離した導体線の端部を所定のバスバーに溶接することで、各バスバーとフラットケーブルの各導体線との接続が行われる。
日本国特開2010-114025号公報
 ところで、特許文献1に開示された手法によれば、電圧検知線が絶縁枠体にセットされているものの、これが保持されていない。そのため、車両搭載時には、車両の振動等に起因して、電圧検知線が脱落し、電圧検知線が断線してしまうという問題がある。
 本発明はかかる事情に鑑みてなされたものであり、その目的は、電圧検知線とバスバーとを強固に結合することができるバスバーモジュール及びバスバーモジュールの製造方法を提供する。
 本発明の上記目的は、下記(1)~(10)の構成により達成される。
 (1) 所定の間隔で並列配置された複数の線状導体と、前記線状導体と隣り合って配置され、前記線状導体の軸方向に延在する帯状の平板導体と、前記複数の線状導体における外周部と、前記平板導体において前記線状導体に隣接する一方の側縁部とを一体に被覆する絶縁樹脂部とを有し、前記平板導体と前記絶縁樹脂部との引張強さが、50N/mm以上であるバスバーモジュール。
 (2) 上記(1)に記載されたバスバーモジュールであって、前記平板導体は、前記一方の側縁部に前記平板導体の延在方向に沿って所定間隔で形成される複数の貫通孔を備え、前記一方の側縁部は、前記貫通孔を含む範囲にかけて前記絶縁樹脂部により被覆されるバスバーモジュール。
 (3) 上記(2)に記載されたバスバーモジュールであって、前記貫通孔を第1の基準点とする前記平板導体と前記絶縁樹脂部との引張強さは、前記貫通孔よりも側縁側を第2の基準点とする前記平板導体と前記絶縁樹脂部との引張強さ以上であり、前記第2の基準点における前記平板導体と前記絶縁樹脂部との引張強さは、前記平板導体と前記線状導体との間の前記絶縁樹脂部の引張強さよりも大きいバスバーモジュール。
 (4) 上記(2)又は(3)に記載されたバスバーモジュールであって、前記絶縁樹脂部は、前記貫通孔からの垂れ量が0.2mm以上4mm以下の範囲に設定されているバスバーモジュール。
 (5) 上記(1)~(4)のいずれか1つに記載されたバスバーモジュールであって、前記平板導体は、前記平板導体の延在方向に沿って形成された位置決め基準線を備えるバスバーモジュール。
 (6) 複数の線状導体が所定間隔で並列に配置されるとともに、前記線状導体と隣り合うように帯状の平板導体が並列配置される第1のステップと、溶融粘度が20g/10min以上2000g/10min以下の樹脂材料を用いて押出成形され、前記複数の線状導体における外周部と、前記平板導体において前記線状導体に隣接する一方の側縁部とが前記樹脂材料によって一体に被覆される第2のステップと、を有するバスバーモジュールの製造方法。
 (7) 上記(6)に記載されたバスバーモジュールの製造方法であって、前記第2のステップに先立ち、前記平板導体の側縁部に、前記平板導体の延在方向に沿って複数の貫通孔が所定間隔で形成されるバスバーモジュールの製造方法。
 (8) 上記(6)又は(7)に記載されたバスバーモジュールの製造方法であって、前記押出成形に用いる樹脂材料は、溶融粘度が20g/10min以上500g/10min以下であるバスバーモジュールの製造方法。
 (9) 上記(6)~(8)のいずれか1つに記載されたバスバーモジュールの製造方法であって、前記第2のステップは、成形金型により前記平板導体に跡が形成され、前記平板導体の延在方向に沿って位置決め基準線が形成されるステップを含むバスバーモジュールの製造方法。
 (10) 複数の線状導体が所定間隔で並列に配置されるとともに、前記線状導体と隣り合うように帯状の平板導体が並列配置される第1のステップと、溶融粘度が20g/10min以上2000g/10min以下の樹脂材料を用いてプレス成形され、前記複数の線状導体における外周部と、前記平板導体において前記線状導体に隣接する一方の側縁部とが一体に被覆される第2のステップと、を有するバスバーモジュールの製造方法。
 本発明によれば、絶縁樹脂部で被覆されて構成される電圧検知線と、平板導体とを強固に結合するができる。その結果、電圧検知線が脱落して、電圧検知線が断線するといった事態を抑制することができる。
図1は本発明の第1の実施形態に係るバスバーモジュールが適用された電池パックの構成を模式的に示す斜視図である。 図2は図1に示す電池パックの要部を示す分解斜視図である。 図3は図1に示すバスバーモジュールの部分斜視図である。 図4の(a)~(d)は図1に示すバスバーモジュールの製造工程を説明する説明図である。 図5の(a),(b)は第1の変形例に係るバスバーモジュールを示す説明図である。 図6の(a),(b)は第2の変形例に係るバスバーモジュールを示す説明図である。 図7の(a)~(c)は本発明の第2の実施形態に係るバスバーモジュール及びその製造方法を示す説明図である。 図8の(a)~(c)は図7の(a)~(c)に示したバスバーモジュールの横断面図である。 図9の(a)~(c)は本発明の第3の実施形態に係るバスバーモジュール及びその製造方法を示す説明図である。 図10は引張強さの関係を示す説明図である。 図11は絶縁樹脂部の貫通孔からの垂れ量を示す説明図である。
(第1の実施形態)
 図1は、本発明の第1の実施形態に係るバスバーモジュール30A,30Bが適用された電池パック10の構成を模式的に示す斜視図である。図2は、図1に示す電池パック10の要部を示す分解斜視図である。図3は、図1に示すバスバーモジュール30Bの部分斜視図である。図4の(a)~(d)は、図1に示すバスバーモジュール30Bの製造工程を説明する説明図である。
 電池パック10は、例えば電気自動車又はハイブリッド自動車等のバッテリとして使用されるものであり、電池モジュール20と、バスバーモジュール30A,30Bとを有している。
 電池モジュール20は、厚さ方向に並べられた複数の電池セル12と、各電池セル12の両側を厚さ方向から挟み込むように配置される複数のセパレータ22とで構成されている。電池モジュール20は、図示しない箱型の筐体内に配置され、固定されている。
 個々の電池セル12は二次電池であり、電池セル12の上面には、正極端子13Aと負極端子13Bとが突出形成されている。筐体内に配置された複数の電池セル12は、隣り合う電池セル12同士で正極端子13A及び負極端子13Bの位置が互い違いとなるように、交互に反転した状態で配置されている。正極端子13A及び負極端子13Bには、後述するバスバー32A,32Bが挿通され、締結用のナット15が取り付けられている。
 セパレータ22は、絶縁樹脂を用いて所要の形状に形成された板状部材である。セパレータ22の上端には、電池セル12の上面より突出する仕切り部24が形成されている。この仕切り部24は、隣り合うバスバー32A,32B間に形成されたスリット45より上方に突出して、工具による電極端子間の短絡を抑制する。
 バスバーモジュール30A,30Bは、電池セル12の積層方向に沿って横長となる長尺形状を有しており、複数の電池セル12上の正極端子13A及び負極端子13Bと対応する位置に、2列平行で配置されている。個々のバスバーモジュール30A,30Bは、電池セル12の積層方向に沿って直線状に配列された複数のバスバー32A,32Bと、複数のバスバー32A,32Bの内側側方に位置してこれらの並び方向に延在する電圧検知線40と、絶縁樹脂部23とで構成されている。
 2列に並んだバスバーモジュール30A,30Bのうち一方のバスバーモジュール30Aにおいては、両端部に1穴に対応するバスバー32Bが配置され、これらのバスバー32Bの間に2穴に対応するバスバー32Aが5個横並びに配置されている。これに対して、他方のバスバーモジュール30Bにおいては、2穴に対応するバスバー32Aが6個横並びに配置されている。いずれのバスバーモジュール30A,30Bにおいても、個々のバスバー32A,32Bは、端子挿通孔34が1列に並ぶように直線状に配置されている。
 バスバー32Aは、正極端子13A及び負極端子13Bと電気的に接続されるものである。このバスバー32Aは、方形状を有しており、正極端子13A及び負極端子13Bをそれぞれ挿通して接続するための端子挿通孔34を2つ備えている。一方、バスバー32Bは、正極端子13A又は負極端子13Bと電気的に接続されるものである。バスバー32Bは、方形状を有しており、正極端子13A又は負極端子13Bをそれぞれ挿通して接続するための端子挿通孔34を1つ備えている。
 バスバーモジュール30A,30Bを構成する各バスバー32A,32Bは、端子挿通孔34に挿通された正極端子13A及び負極端子13Bに対して、ナット15により締付けられる。これにより、バスバー32A,32Bと、正極端子13A及び負極端子13Bと、が電気的に接続される。なお、バスバー端子間の電気的な接続方法については、溶接などの手法を用いることも可能である。
 バスバー32A,32Bは、後述するプレス工程において、銅、銅合金、アルミ、アルミ合金、金、ステンレス(SUS)等の金属板材からなる長尺帯状の平板導体33に打ち抜き加工を施すことにより形成される。バスバー32A,32Bに対しては、溶接性を向上させるために、Sn、Ni、Ag、Au等のめっき処理が行われてもよい。
 電圧検知線40は、電池セル12の電圧を測定するためのものであり、複数の線状導体21で構成されている。この電圧検知線40は、複数の線状導体21が絶縁樹脂部23により一体に被覆されてフラットケーブル状とされたものである。電圧検知線40の一端には、コネクタ50が接続固定される。
 複数の線状導体21は、所定の間隔で並列配置されている。個々の線状導体21としては、平導体及び丸導体等の単線や、撚り線など種々の導体を用いることができる。
 絶縁樹脂部23は、複数の線状導体21における外周部とバスバー32A,32Bの一方の側縁部32aとを一体に被覆するとともに、バスバー32A,32Bの他方の側縁部32bを被覆する。一方の側縁部(以下「第1の側縁部」という)32aは、バスバー32A,32Bの並び方向に沿った両側の側縁部のうち線状導体21と隣接する側の側縁部に相当し、他方の側縁部(以下「第2の側縁部」という)32bは、両側の側縁部のうち第1の側縁部32aの反対側に位置する側縁部に相当する。
 この絶縁樹脂部23により、バスバー32A,32Bと電圧検知線40とが所定の間隔で並列した状態で一体化されている。また、第2の側縁部32bを被覆する絶縁樹脂部23は、バスバー32A,32Bの並び方向に連続した連結部42を形成している。この連結部42は、各バスバー32A,32Bの第2の側縁部32bをそれぞれ繋ぐことで、個々のバスバー32A,32Bがばらつくのを抑え、電圧検知線40との結合力の低下を抑制している。もっとも、この連結部42を省略することも可能である。
 また、バスバーモジュール30A,30Bは、バスバー32Aと電圧検知線40の対応する線状導体21とを電気的に接続する接続部材35を備えている。接続部材35は、図4の(d)に示すように、本体の一端に圧接刀部37を有し、その他端に溶接部39を有している。そして、接続部材35の圧接刀部37が、所定の線状導体21に圧接接続され、その溶接部39が所定のバスバー32Aに溶接接続されている。この接続部材35は、金属板材から打ち抜き形成されている。
 一方、バスバー32Bと電圧検知線40の対応する線状導体21との間の電気的な接続は、バスバー32に形成された切起し片36により接続されている。切起し片36は、バスバー32Bの側縁に沿って折り曲げ形成され、先端部が所定の線状導体21に溶接接続されている。
 つぎに、図4を参照し、バスバーモジュール30A,30Bの製造方法を説明する。なお、バスバーモジュール30A,30Bは、それぞれ同様の工程で製造されるので、以下ではバスバーモジュール30Bに関する製造方法を説明する。
 まず、第1のステップにおいて、複数の線状導体21が所定の間隔で並列配置される。また、これらの線状導体21の側方に、当該線状導体21の軸方向に延在する長尺帯状の平板導体33が並列配置される(配置工程(図4の(a)参照))。
 つぎに、第2のステップおいて、所定の樹脂材料を用いたプレス成形が行われ、複数の線状導体21における外周部と、平板導体33において線状導体21に隣接する一方の側縁部33aとが絶縁樹脂部23により一体に被覆される。
 また、このプレス成形では、同時に、平板導体33において一方の側縁部33aの反対側に位置付けられる他方の側縁部33bも絶縁樹脂部23により被覆される。
 このプレス成形により、フラットケーブル状の電圧検知線40を構成する複数の線状導体21と、平板導体33とが絶縁樹脂部23により接続されて一体に並列配置された長尺の回路体60が形成される(成形工程(図4の(b)参照))。
 バスバーモジュール30Bとして適用される長尺の回路体60は、平板導体33と絶縁樹脂部23との引張強さが、50N/mm以上に設定されている。このような引張強さを確保するために、成形工程では、溶融粘度(メルトフローレート)が20g/10min以上2000g/10min以下の樹脂材料を用いることとしている。溶融粘度が20g/10minよりも小さい場合には、粘度が低すぎてプレス成形を行うことができず、溶融粘度が2000g/10minよりも大きい場合にも、粘度が高すぎて所望の性能を得ることができないからである。
 この条件により、プレス成形時には、平板導体33の一方の側縁部33aに対して溶融した樹脂が成形性よく密着し、さらには樹脂材料の接着性を通じて、当該一方の側縁部33aと絶縁樹脂部23とを強固に結合することができる。
 ここで、上述の溶融粘度に関する条件について、各樹脂材料における荷重条件及び温度条件はつぎの通りである。荷重条件は、いずれも21.6kgである。また、温度条件は、ポリ塩化ビニル(PVC)において180~210℃、ポリプロピレン(PP)において230~250℃、ポリエチレン(PE)において140~200℃、ポリフェニレンスルフィド(PPS)において280~330℃、ポリフェニレンエーテル(PPE)において200~230℃である。
 つぎに、長尺の回路体60がその長手方向に沿って所定の長さに切断される。そして、切断された回路体60は、平板導体33の長手方向(延在方向)に沿って所定の間隔で複数のスリット45が打ち抜かれるとともに、端子挿通孔34が打ち抜かれる。これにより、打ち抜き後の所要形状の平板導体33が複数のバスバー32Aとして形成される(打ち抜き工程(図4の(c)参照))。長手方向におけるスリット45の長さは、隣接するバスバー32A同士が確実に切り離されるように設定されている。
 そして、個々の線状導体21と、所定のバスバー32Aとが接続部材35によって電気的に接続される。接続部材35は、本体の一端に形成された圧接刀部37が所定の線状導体21に圧接接続され、本体の他端に形成された溶接部39が所定のバスバー32Aに溶接接続される(接続工程(図4の(d)参照))。
 このように本第1実施形態のバスバーモジュール30A,30Bによれば、バスバー32A,32Bに相当する平板導体33と、絶縁樹脂部23との引張強さが、50N/mm以上に設定されている。これにより、絶縁樹脂部23で被覆されてなる電圧検知線40と、平板導体33とを強固に結合するができる。その結果、電圧検知線40が脱落して、電圧検知線40が断線するといった事態を抑制することができる。
 また、本第1実施形態のバスバーモジュール30A,30Bによれば、複数のバスバー32A,32B及び電圧検知線40が一体化されているので、電圧検知線40の配索作業を無くすことができる。これにより、電池モジュール20への組み付けを容易に行うことができる。
 また、本第1実施形態によれば、電圧検知線40を構成する線状導体21が絶縁樹脂部23により被覆されているため、カバーやケースを設ける必要がなく、省スペース・軽量化を実現することができる。
 また、本第1実施形態に係るバスバーモジュール30A,30Bの製造方法によれば、溶融粘度が20g/10min以上2000g/10min以下の樹脂材料を用いてプレス成形が行われている。これにより、平板導体33の一方の側縁部33aに対して溶融した樹脂が成形性よく密着し、さらには樹脂材料の接着性を通じて、当該一方の側縁部33aと絶縁樹脂部23とを強固に結合することができる。その結果、バスバー32A,32Bに適用される平板導体33と絶縁樹脂部23との引張強さを50N/mm以上とすることができる。
 なお、上述の実施形態では、バスバー32Aと電圧検知線40との接続を接続部材35によって行っているが、本実施形態はこれに限定されない。バスバー32Aと電圧検知線40との接続を電圧検知線40自体が行ってもよい。以下、バスバーモジュール30Bとの相違点を中心に説明を行う。
 図5の(a),(b)は、第1の変形例に係るバスバーモジュール80を示す説明図である。上述の製造方法に示すように、長尺な回路体60が形成されると、これが所定の長さに切断される。つぎに、打ち抜き工程において、コネクタ50側の4枚のバスバー32Aを除く残余の平板導体33とこれに連なる電圧検知線40の一部とが所要の形状にて打ち抜かれる。
 平板導体33が除去された箇所には、電圧検知線40の残り部分85が残留し、この残り部分85には、複数の線状導体21の端部21a~21dが残される。これらの端部21a~21dは、バスバー32Aから遠ざかる程、段々と長くなるように形成されている(図5の(a)参照)。
 接続工程では、電圧検知線40の残り部分85が略180度折り曲げられて電圧検知線40に重ねられる。そして、個々の端部21a~21dが、対応するバスバー32Aに向けて略直角に折り曲げられ、それぞれバスバー32Aに溶接接続される(図5の(b)参照)。これにより、電圧検知線40とバスバー32Aとが直接接続される。
 図6の(a),(b)は、第2の変形例に係るバスバーモジュール90を示す説明図である。上述の製造方法に示すように、長尺な回路体60が形成されると、これが所定の長さに切断される。つぎに、打ち抜き工程において、コネクタ50側の4枚のバスバー32Aを除く残余の平板導体33と、これに連なる電圧検知線40とが所要の形状にて打ち抜かれる。
 4枚のバスバー32Aと並列する電圧検知線40には、複数の線状導体21の端部21a~21dが残されており、これらの端部21a~21dは、バスバー32Aから遠ざかる程、段々と短くなるように形成されている(図6の(a)参照)。
 接続工程では、個々の端部21a~21dが、対応するバスバー32Aに向けて略直角に折り曲げられ、それぞれバスバー32Aに溶接接続される(図6の(b)参照)。これにより、電圧検知線40とバスバー32Aとが直接接続される。
 なお、これらの変形例については、第2の実施形態についても適用することができる。
(第2の実施形態)
 以下、本発明の第2の実施形態に係るバスバーモジュール100及びその製造方法を説明する。この第2の実施形態に係るバスバーモジュール100が、上記第1の実施形態のバスバーモジュール30Bと相違する点は、複数の貫通孔38を備える平板導体33Aが用いられたことにある。以下、第1の実施形態と重複する説明は省略し、相違点を中心に説明を行う。
 図7の(a)~図8の(c)は、本発明の第2の実施形態に係るバスバーモジュール100及びその製造方法を示す説明図である。ここで、図7の(a)~(c)は、平面図にてバスバーモジュール100及びその製造方法を示し、図8の(a)~(c)は、横断面図にて図7の(a)~(c)に示したバスバーモジュール100及びその製造方法を示している。
 まず、第1のステップにおいて、複数の線状導体21が所定の間隔で並列配置される。また、これらの線状導体21の側方に、当該線状導体21の軸方向に延在する長尺帯状の平板導体33Aが並列配置される(配置工程(図7の(a),図8の(a)参照))。
 本第2の実施形態の特徴の一つとして、この平板導体33Aには、線状導体21に隣接する一方の側縁部33aに、複数の貫通孔38が長手方向に沿って所定の間隔で形成されている。これらの貫通孔38は、後述の成形工程に先立ち、平板導体33Aに予め形成されている。
 つぎに、第2のステップにおいて、所定の樹脂材料を用いたプレス成形が行われ、複数の線状導体21における外周部と、平板導体33Aの一方の側縁部33aとが絶縁樹脂部23により一体に被覆される。この一方の側縁部33aでは、貫通孔38を含む範囲が絶縁樹脂部23により被覆されており、絶縁樹脂部23は、貫通孔38内にも入り込んでいる(図8の(b)参照)。
 また、このプレス成形では、同時に、平板導体33Aにおいて一方の側縁部33aの反対側に位置付けられる他方の側縁部33bが絶縁樹脂部23により被覆される。
 この成形工程により、フラットケーブル状の電圧検知線40を構成する複数の線状導体21と、平板導体33Aとが絶縁樹脂部23により接続されて一体に並列配置された長尺の回路体60Aが形成される(成形工程(図7の(b),図8の(b)参照))。
 バスバーモジュール100として適用される長尺の回路体60Aでは、第1の実施形態と同様、平板導体33Aと絶縁樹脂部23との引張強さが、50N/mm以上に設定されている。このような引張強さを確保するために、成形工程では、溶融粘度が20g/10min以上2000g/10min以下の樹脂材料を用いることとしている。溶融粘度が20g/10minよりも小さい場合には、粘度が低すぎてプレス成形を行うことができず、一方で、溶融粘度が2000g/10minよりも大きい場合には、粘度が高すぎて貫通孔38に樹脂材料が入り込まないからである。
 この条件により、プレス成形時には、平板導体33Aの一方の側縁部33aに対して溶融した樹脂が成形性よく密着し、さらには樹脂材料の接着性を通じて、当該一方の側縁部33aと絶縁樹脂部23とを強固に結合することができる。また、プレス成形時には、溶融した樹脂が貫通孔38内に入り込むので、貫通孔38による機械的な結合を通じて、当該一方の側縁部33aと絶縁樹脂部23とを強固に結合することができる。本成形工程に係る樹脂材料としては、例えば、ポリブチレンテレフタレートなどを用いることができる。
 つぎに、長尺の回路体60Aがその長手方向に沿って所定の長さに切断される。そして、第1の実施形態と同様、打ち抜き工程により個々のバスバー32Cが形成され(図7の(c),図8の(c)参照)、最後に、バスバー32Cに対する接続工程が行われる。
 このように本第2実施形態のバスバーモジュール100によれば、バスバー32Cに相当する平板導体33と、絶縁樹脂部23との引張強さが、50N/mm以上に設定されている。これにより、絶縁樹脂部23で被覆されてなる電圧検知線40と、平板導体33とを強固に結合するができる。その結果、電圧検知線40が脱落して、電圧検知線40が断線するといった事態を抑制することができる。
 また、本第2実施形態に係るバスバーモジュール100の製造方法によれば、溶融粘度が20g/10min以上2000g/10min以下の樹脂材料を用いてプレス成形が行われている。これにより、平板導体33Aの一方の側縁部33aに対して溶融した樹脂が成形性よく密着し、さらには樹脂材料の接着性を通じて、当該一方の側縁部33aと絶縁樹脂部23とを強固に結合することができる。また、平板導体33Aには複数の貫通孔38が形成されているところ、溶融した樹脂が貫通孔38内に入り込むので、貫通孔38による機械的な結合を通じて、当該一方の側縁部33aと絶縁樹脂部23とを強固に結合することができる。その結果、バスバー32Cに適用される平板導体33と絶縁樹脂部23との引張強さを50N/mm以上とすることができる。
(第3の実施形態)
 以下、本発明の第3の実施形態に係るバスバーモジュール100A及びその製造方法を説明する。この第3の実施形態に係るバスバーモジュール100Aが、上記第1の実施形態のバスバーモジュール30Bと相違する点は、複数の貫通孔38が平板導体33Aに設けられたことである。以下、第1の実施形態と重複する説明は省略し、相違点を中心に説明を行う。
 図9の(a)~(c)は、本発明の第3の実施形態に係るバスバーモジュール100A及びその製造方法を示す説明図である。ここで、図9の(a)~(c)は、平面図にてバスバーモジュール100A及びその製造方法を示している。
 まず、第1のステップにおいて、複数の線状導体21が所定の間隔で並列配置される。また、これらの線状導体21の側方に、当該線状導体21の軸方向に延在する長尺帯状の平板導体33Aが並列配置される(配置工程(図9の(a)参照))。この平板導体33Aには、第2の実施形態と同様、線状導体21に隣接する一方の側縁部33aに、複数の貫通孔38が長手方向に沿って所定の間隔で形成されている。これらの貫通孔38は、後述の成形工程に先立ち、平板導体33Aに予め形成されている。
 つぎに、第2のステップにおいて、所定の樹脂材料を用いた押出成形が行われ、複数の線状導体21における外周部と、平板導体33Aの一方の側縁部33aとが絶縁樹脂部23により一体に被覆される。この一方の側縁部33aでは、貫通孔38を含む範囲が絶縁樹脂部23により被覆されており、絶縁樹脂部23は、貫通孔38内にも入り込んでいる(図9の(b)参照)。
 また、この押出成形では、同時に、平板導体33Aにおいて一方の側縁部33aの反対側に位置付けられる他方の側縁部33bが絶縁樹脂部23により被覆される。
 さらに、押出成形時、その成形金型(図示せず)により平板導体33に対して跡が直線状に形成される。すなわち、押出成形時の機械的な作用により、平板導体33Aの長手方向に沿って延在する位置決め基準線47が形成される。この位置決め基準線47は、打抜工程においてスリット45の打ち抜き位置を定めるための基準線として用いることができる。
 バスバーモジュール100Aとして適用される長尺の回路体60Aにおいては、第1の実施形態と同様、平板導体33Aと絶縁樹脂部23との引張強さが、50N/mm以上に設定されている。このような引張強さを確保するために、成形工程では、溶融粘度が20g/10min以上2000g/10min以下の樹脂材料を用いることとしている。溶融粘度が20g/10minよりも小さい場合には、粘度が低すぎて押出成形を行うことができず、一方で、溶融粘度が2000g/10minよりも大きい場合には、粘度が高すぎて貫通孔38に樹脂材料が入り込まないからである。
 この条件により、押出成形時には、平板導体33Aの一方の側縁部33aに対して溶融した樹脂が成形性よく密着し、さらには樹脂材料の接着性を通じて、当該一方の側縁部33aと絶縁樹脂部23とを強固に結合することができる。また、押出成型時には、溶融した樹脂が貫通孔38内にも入り込むので、貫通孔38による機械的な結合を通じて、当該一方の側縁部33aと絶縁樹脂部23とを強固に結合することができる。本成形工程に係る樹脂材料としては、例えば、ポリブチレンテレフタレートなどを用いることができる。
 特に本第3実施形態では、図10中に符号A~Cで示す各点における引張強さFa~Fcは、引張強さFaが引張強さFb以上となる関係(Fa≧Fb)に、また、引張強さFbが引張強さFcよりも大きくなる関係(Fb>Fc)に設定されている。ここで、A点における引張強さFaは、貫通孔38を第1の基準点とする平板導体33Aと絶縁樹脂部23との引張強さであり、B点における引張強さFbは、貫通孔38よりも側縁側を第2の基準点とする平板導体33Aと絶縁樹脂部23との引張強さである。また、C点における引張強さFcは、平板導体33Aと線状導体21との間の絶縁樹脂部23との引張強さである。
 このような条件については、樹脂材料の溶融粘度がその関係に影響するものであり、樹脂材料の溶融粘度は、上述の如く、20g/10min以上2000g/10min以下であることが好ましい。
 また、図11に示すように、押出成形においては、貫通孔38から平板導体33Aの短手方向内側(図11中、左側)へと樹脂が垂れる現象が生じるが、この垂れ量hは、0.2mm以上4mm以下の範囲に設定されている。垂れ量hが0.2mmよりも小さい場合には、平板導体33Aの側縁部33aに対する保持力のばらつきが大きくなることが懸念される。一方、垂れ量hが0.4mmよりも大きい場合には、端子挿通孔34に挿通された正極端子13A又は負極端子13Bに取り付けられるナット15との干渉が懸念される。
 このような条件については、樹脂材料の溶融粘度がその関係に影響するものであり、特に、樹脂材料の溶融粘度は、20g/10min以上500g/10min以下であることが好ましい。
 このような成形工程により、フラットケーブル状の電圧検知線40を構成する複数の線状導体21と、平板導体33Aとが絶縁樹脂部23により接続されて一体に並列配置された長尺の回路体60Aが形成される(成形工程(図9(b)参照))。
 つぎに、長尺の回路体60Aがその長手方向に沿って所定の長さに切断される。そして、第1の実施形態と同様、打ち抜き工程により個々のバスバー32Cが形成され(図9の(c)参照)、最後に、バスバー32Cに対する接続工程が行われる。
 このように本第3実施形態のバスバーモジュール100Aによれば、バスバー32Cに相当する平板導体33Aと、絶縁樹脂部23との引張強さが、50N/mm以上に設定されている。これにより、絶縁樹脂部23で被覆されてなる電圧検知線40と、平板導体33とを強固に結合することができる。その結果、電圧検知線40が脱落して、電圧検知線40が断線するといった事態を抑制することができる。
 また、本第3実施形態に係るバスバーモジュール100Aの製造方法によれば、溶融粘度が20g/10min以上2000g/10min以下の樹脂材料を用いて押出成形が行われている。これにより、平板導体33Aの一方の側縁部33aに対して溶融した樹脂が成形性よく密着し、さらには樹脂材料の接着性を通じて、当該一方の側縁部33aと絶縁樹脂部23とを強固に結合することができる。また、平板導体33Aには複数の貫通孔38が形成されているところ、溶融した樹脂が貫通孔38内に入り込むので、貫通孔38による機械的な結合を通じて、当該一方の側縁部33aと絶縁樹脂部23とを強固に結合することができる。その結果、バスバー23Cに適用される平板導体33と絶縁樹脂部23との引張強さを50N/mm以上とすることができる。
 以上、本発明の実施形態にかかるバスバーモジュール及びその製造方法について説明したが、本発明は上述した実施形態に限定されることなく、その発明の範囲内において種々の変形が可能であることはいうまでもない。
 ここで、上述した本発明に係るバスバーモジュール及びその製造方法の実施形態の特徴をそれぞれ以下[1]~[10]に簡潔に纏めて列記する。
 [1] 所定の間隔で並列配置された複数の線状導体(21)と、
 前記線状導体(21)と隣り合って配置され、前記線状導体(21)の軸方向に延在する帯状の平板導体(33,33A)と、
 前記複数の線状導体(21)における外周部と、前記平板導体(33,33A)において前記線状導体(21)に隣接する一方の側縁部(33a)とを一体に被覆する絶縁樹脂部(23)とを有し、
 前記平板導体(33,33A)と前記絶縁樹脂部(23)との引張強さが、50N/mm以上であるバスバーモジュール(30A,30B,100,100A)。
 [2] 上記[1]に記載されたバスバーモジュール(100,100A)であって、
 前記平板導体(33A)は、前記一方の側縁部(33a)に前記線状導体(21)の軸方向に沿って所定間隔で形成される複数の貫通孔(38)を備え、
 前記一方の側縁部(33a)は、前記貫通孔(38)を含む範囲にかけて前記絶縁樹脂部(23)により被覆されるバスバーモジュール(100,100A)。
 [3] 上記[2]に記載されたバスバーモジュール(100A)であって、
 前記貫通孔(38)を第1の基準点(A)とする前記平板導体(33A)と前記絶縁樹脂部(23)との引張強さ(Fa)は、前記貫通孔(38)よりも側縁側を第2の基準点(B)とする前記平板導体(33A)と前記絶縁樹脂部(23)との引張強さ(Fb)以上であり、
 前記第2の基準点(B)における前記平板導体(33A)と前記絶縁樹脂部(23)との引張強さ(Fb)は、前記平板導体(33A)と前記線状導体(21)との間の前記絶縁樹脂部(23)の引張強さ(Fc)よりも大きいバスバーモジュール(100A)。
 [4] 上記[2]又は[3]に記載されたバスバーモジュール(100A)であって、
 前記絶縁樹脂部(23)は、前記貫通孔(38)からの垂れ量(h)が0.2mm以上4mm以下の範囲に設定されているバスバーモジュール(100A)。
 [5] 上記[1]~[4]のいずれか1つに記載されたバスバーモジュール(100A)であって、
 前記平板導体(33A)は、前記平板導体(33A)の延在方向に沿って形成された位置決め基準線(47)を備えるバスバーモジュール(100A)。
 [6] 複数の線状導体(21)が所定間隔で並列に配置されるとともに、前記線状導体(21)と隣り合うように帯状の平板導体(33A)が並列配置される第1のステップと、
 溶融粘度が20g/10min以上2000g/10min以下の樹脂材料を用いて押出成形され、前記複数の線状導体(21)における外周部と、前記平板導体(33A)において前記線状導体(21)に隣接する一方の側縁部(33a)とが前記樹脂材料によって一体に被覆される第2のステップと、
を有するバスバーモジュール(100A)の製造方法。
 [7] 上記[6]に記載されたバスバーモジュール(100A)の製造方法であって、
 前記第2のステップに先立ち、前記平板導体(33A)の側縁部(33a)に、前記平板導体(33A)の延在方向に沿って複数の貫通孔(38)が所定間隔で形成されるバスバーモジュール(100A)の製造方法。
 [8] 上記[6]又は[7]に記載されたバスバーモジュール(100A)の製造方法であって、
 前記押出成形に用いる樹脂材料は、溶融粘度が20g/10min以上500g/10min以下であるバスバーモジュール(100A)の製造方法。
 [9] 上記[6]~[8]のいずれか1つに記載されたバスバーモジュール(100A)の製造方法であって、
 前記第2のステップは、成形金型により前記平板導体(33A)に跡が形成され、前記平板導体(33A)の延在方向に沿って位置決め基準線(47)が形成されるステップを含むバスバーモジュール(100A)の製造方法。
 [10] 複数の線状導体(21)が所定間隔で並列に配置されるとともに、前記線状導体(21)と隣り合うように帯状の平板導体(33)が並列配置される第1のステップと、
 溶融粘度が20g/10min以上2000g/10min以下の樹脂材料を用いてプレス成形され、前記複数の線状導体(21)における外周部と、前記平板導体(33)において前記線状導体(21)に隣接する一方の側縁部(33a)とが前記樹脂材料によって一体に被覆される第2のステップと、
を有するバスバーモジュール(30B)の製造方法。
 なお、本出願は、2014年7月18日出願の日本特許出願(特願2014-147653)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のバスバーモジュール及びその製造方法によれば、絶縁樹脂部で被覆されて構成される電圧検知線と平板導体とを強固に結合するができので、電圧検知線が脱落して、電圧検知線が断線するといった事態が生じない良好なバスバーモジュールを提供することができる。
  10  電池パック
  13A 正極端子
  13B 負極端子
  20  電池モジュール
  21  線状導体
  23  絶縁樹脂部
  30A,30B,100,100A バスバーモジュール
  32A~32C バスバー
  32a,32b 側縁部
  33  平板導体
  33A 平板導体
  33a,33b 側縁部
  34  端子挿通孔
  38  貫通孔
  40  電圧検知線
  47  位置決め基準線
  60  回路体
  60A 回路体

Claims (10)

  1.  所定の間隔で並列配置された複数の線状導体と、
     前記線状導体と隣り合って配置され、前記線状導体の軸方向に延在する帯状の平板導体と、
     前記複数の線状導体における外周部と、前記平板導体において前記線状導体に隣接する一方の側縁部とを一体に被覆する絶縁樹脂部とを有し、
     前記平板導体と前記絶縁樹脂部との引張強さが、50N/mm以上であるバスバーモジュール。
  2.  前記平板導体は、前記一方の側縁部に前記平板導体の延在方向に沿って所定間隔で形成される複数の貫通孔を備え、
     前記一方の側縁部は、前記貫通孔を含む範囲にかけて前記絶縁樹脂部により被覆される請求項1に記載されたバスバーモジュール。
  3.  前記貫通孔を第1の基準点とする前記平板導体と前記絶縁樹脂部との引張強さは、前記貫通孔よりも側縁側を第2の基準点とする前記平板導体と前記絶縁樹脂部との引張強さ以上であり、
     前記第2の基準点における前記平板導体と前記絶縁樹脂部との引張強さは、前記平板導体と前記線状導体との間の前記絶縁樹脂部の引張強さよりも大きい請求項2に記載されたバスバーモジュール。
  4.  前記絶縁樹脂部は、前記貫通孔からの垂れ量が0.2mm以上4mm以下の範囲に設定されている請求項2又は3に記載されたバスバーモジュール。
  5.  前記平板導体は、前記平板導体の延在方向に沿って形成された位置決め基準線を備える請求項1~4のいずれか1項に記載されたバスバーモジュール。
  6.  複数の線状導体が所定間隔で並列に配置されるとともに、前記線状導体と隣り合うように帯状の平板導体が前記線状導体の軸方向に延在して並列配置される第1のステップと、
     溶融粘度が20g/10min以上2000g/10min以下の樹脂材料を用いて押出成形され、前記複数の線状導体における外周部と、前記平板導体において前記線状導体に隣接する一方の側縁部とが前記樹脂材料によって一体に被覆される第2のステップと、
    を有するバスバーモジュールの製造方法。
  7.  前記第2のステップに先立ち、前記平板導体の側縁部に、前記平板導体の延在方向に沿って複数の貫通孔が所定間隔で形成される請求項6に記載されたバスバーモジュールの製造方法。
  8.  前記押出成形に用いる樹脂材料は、溶融粘度が20g/10min以上500g/10min以下である請求項6又は7に記載されたバスバーモジュールの製造方法。
  9.  前記第2のステップは、成形金型により前記平板導体に跡が形成され、前記平板導体の延在方向に沿って位置決め基準線が形成されるステップを含む請求項6~8のいずれか1項に記載されたバスバーモジュールの製造方法。
  10.  複数の線状導体が所定間隔で並列に配置されるとともに、前記線状導体と隣り合うように帯状の平板導体が並列配置される第1のステップと、
     溶融粘度が20g/10min以上2000g/10min以下の樹脂材料を用いてプレス成形され、前記複数の線状導体における外周部と、前記平板導体において前記線状導体に隣接する一方の側縁部とが前記樹脂材料によって一体に被覆される第2のステップと、
    を有するバスバーモジュールの製造方法。
PCT/JP2015/070610 2014-07-18 2015-07-17 バスバーモジュール及びバスバーモジュールの製造方法 WO2016010150A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112015003320.3T DE112015003320T5 (de) 2014-07-18 2015-07-17 Sammelschienenmodul und verfahren zum herstellen des sammelschienenmoduls
US15/392,471 US10431801B2 (en) 2014-07-18 2016-12-28 Bus bar module and method for producing bus bar module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-147653 2014-07-18
JP2014147653A JP6346017B2 (ja) 2014-07-18 2014-07-18 バスバーモジュール及びバスバーモジュールの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/392,471 Continuation US10431801B2 (en) 2014-07-18 2016-12-28 Bus bar module and method for producing bus bar module

Publications (1)

Publication Number Publication Date
WO2016010150A1 true WO2016010150A1 (ja) 2016-01-21

Family

ID=55078635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070610 WO2016010150A1 (ja) 2014-07-18 2015-07-17 バスバーモジュール及びバスバーモジュールの製造方法

Country Status (4)

Country Link
US (1) US10431801B2 (ja)
JP (1) JP6346017B2 (ja)
DE (1) DE112015003320T5 (ja)
WO (1) WO2016010150A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6427136B2 (ja) * 2016-04-27 2018-11-21 矢崎総業株式会社 印刷回路体
US10454080B2 (en) * 2016-07-13 2019-10-22 Te Connectivity Corporation Connector assembly for a battery system
JP6469062B2 (ja) 2016-09-30 2019-02-13 株式会社オートネットワーク技術研究所 接続モジュール
JP6434468B2 (ja) * 2016-09-30 2018-12-05 株式会社オートネットワーク技術研究所 接続モジュール
JP2019053938A (ja) 2017-09-19 2019-04-04 矢崎総業株式会社 フラットケーブル及びワイヤーハーネス
JP2019091668A (ja) 2017-11-17 2019-06-13 矢崎総業株式会社 バスバーモジュール、及びワイヤーハーネス
DE102017223225A1 (de) * 2017-12-19 2019-06-19 Volkswagen Aktiengesellschaft Verfahren zur Herstellung einer Verbindung zwischen einem Leiter und einem elektrischen Kontakt eines Batteriemoduls sowie Batteriemodul
CN110911594A (zh) * 2018-09-14 2020-03-24 宁德时代新能源科技股份有限公司 电池模组及其汇流构件和汇流组件
CN109546019A (zh) * 2018-12-20 2019-03-29 江苏时代新能源科技有限公司 一种顶盖组件、电池单体及电池模组
JP7077932B2 (ja) * 2018-12-25 2022-05-31 株式会社オートネットワーク技術研究所 接続モジュール
KR20220137877A (ko) * 2020-02-07 2022-10-12 다이니폰 인사츠 가부시키가이샤 축전 디바이스, 및 축전 디바이스의 제조 방법
WO2022030122A1 (ja) * 2020-08-04 2022-02-10 株式会社Gsユアサ 蓄電装置及びその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086793A1 (ja) * 2010-12-24 2012-06-28 株式会社 村田製作所 蓄電デバイス
JP2014086246A (ja) * 2012-10-23 2014-05-12 Nippon Mektron Ltd バスバー付きフレキシブルプリント配線板およびその製造方法、並びにバッテリシステム
WO2015099070A1 (ja) * 2013-12-25 2015-07-02 矢崎総業株式会社 電池配線モジュールの製造方法
WO2015099066A1 (ja) * 2013-12-25 2015-07-02 矢崎総業株式会社 電池配線モジュール

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100868255B1 (ko) * 2005-04-19 2008-11-11 주식회사 엘지화학 단자 연결장치
JP5223607B2 (ja) 2008-11-10 2013-06-26 株式会社デンソー 電池パックの高電圧検出モジュール装置
JP2011210710A (ja) * 2010-03-12 2011-10-20 Autonetworks Technologies Ltd 電池モジュール
JP2012190678A (ja) * 2011-03-11 2012-10-04 Kojima Press Industry Co Ltd 蓄電ユニット用のバスバーモジュール

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086793A1 (ja) * 2010-12-24 2012-06-28 株式会社 村田製作所 蓄電デバイス
JP2014086246A (ja) * 2012-10-23 2014-05-12 Nippon Mektron Ltd バスバー付きフレキシブルプリント配線板およびその製造方法、並びにバッテリシステム
WO2015099070A1 (ja) * 2013-12-25 2015-07-02 矢崎総業株式会社 電池配線モジュールの製造方法
WO2015099066A1 (ja) * 2013-12-25 2015-07-02 矢崎総業株式会社 電池配線モジュール

Also Published As

Publication number Publication date
JP6346017B2 (ja) 2018-06-20
US10431801B2 (en) 2019-10-01
US20170110705A1 (en) 2017-04-20
JP2016024933A (ja) 2016-02-08
DE112015003320T5 (de) 2017-04-13

Similar Documents

Publication Publication Date Title
WO2016010150A1 (ja) バスバーモジュール及びバスバーモジュールの製造方法
JP6118306B2 (ja) 電池配線モジュールの製造方法
JP6177352B2 (ja) 電池配線モジュール
JP6085589B2 (ja) 電池配線モジュール
JP6150905B2 (ja) 電池配線モジュールの製造方法
US11043721B2 (en) Connection structure of conductor and conductive module
CN106953060B (zh) 汇流条模块和汇流条模块制造方法
US8721367B2 (en) Fuse unit
JP6118305B2 (ja) 電池配線モジュールの製造方法
US10122007B2 (en) Cover assembly for a battery module
JP6290165B2 (ja) バスバーモジュールの製造方法及び電池パックの製造方法
JP6150904B2 (ja) 電池配線モジュールの製造方法
JP2016018741A (ja) 電池配線モジュール
US20160268575A1 (en) Busbar and busbar module
US9912082B2 (en) Electric wire connection structure
CN109285633B (zh) 利用金属芯线制造汇流排的方法以及汇流排
JP2019091668A (ja) バスバーモジュール、及びワイヤーハーネス
JP6518508B2 (ja) 被覆導電部材
JP2017010687A (ja) 電池配線モジュール
JP3177782U (ja) ジャンクションボックス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821368

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112015003320

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15821368

Country of ref document: EP

Kind code of ref document: A1