WO2016010147A1 - タンパク質付着防止剤 - Google Patents

タンパク質付着防止剤 Download PDF

Info

Publication number
WO2016010147A1
WO2016010147A1 PCT/JP2015/070586 JP2015070586W WO2016010147A1 WO 2016010147 A1 WO2016010147 A1 WO 2016010147A1 JP 2015070586 W JP2015070586 W JP 2015070586W WO 2016010147 A1 WO2016010147 A1 WO 2016010147A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
fluorine
fluoropolymer
integer
unit
Prior art date
Application number
PCT/JP2015/070586
Other languages
English (en)
French (fr)
Inventor
亮平 小口
今日子 山本
達也 宮嶋
小林 大介
脩 本間
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2016534506A priority Critical patent/JP6617704B2/ja
Publication of WO2016010147A1 publication Critical patent/WO2016010147A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • C08F220/24Esters containing halogen containing perhaloalkyl radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F230/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F230/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/04Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C09D201/04Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing halogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/36Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate containing oxygen in addition to the carboxy oxygen, e.g. 2-N-morpholinoethyl (meth)acrylate or 2-isocyanatoethyl (meth)acrylate

Definitions

  • the present invention relates to a protein adhesion inhibitor, a coating solution, and an article.
  • cell culture and proliferation are performed in vitro using a cell culture container. It is important that the inner surface of the cell culture container has sufficient biocompatibility in order to perform culture and proliferation in a cell culture container such as three-dimensional culture in the same manner as cell proliferation in vivo. That is, it is important that proteins such as fibrinogen, immunoglobulin G (IgG), insulin, histone, carbonic anhydrase are difficult to adsorb on the inner surface of the cell culture container.
  • IgG immunoglobulin G
  • insulin histone
  • carbonic anhydrase are difficult to adsorb on the inner surface of the cell culture container.
  • Thermosetting resins such as silicone resins
  • thermoplastic resins such as polystyrene
  • a fluorine-containing monomer such as 1H, 1H, 5H-octafluoropentyl methacrylate
  • styrene It has been proposed to use a surface segregation-type plastic additive containing a fluorine-containing polymer obtained by copolymerization with a non-fluorine monomer such as (Patent Document 1).
  • the surface segregation type additive for plastics migrates to the surface layer and is unevenly distributed.
  • the biocompatibility of the molded article surface is improved by the phosphorylcholine group.
  • the plastic molded product using the surface segregation-type plastic additive of Patent Document 1 has insufficient surface biocompatibility.
  • An object of the present invention is to provide a protein adhesion preventive agent capable of imparting excellent biocompatibility to the surface of an article such as a medical device, a coating liquid containing the protein adhesion preventive agent, and an article excellent in biocompatibility. To do.
  • the present invention provides a protein adhesion preventing agent, a coating solution and an article having the following constitutions [1] to [11].
  • [1] has a biocompatible group, a fluorine atom content Q F is from 5 to 60 mass%, and the fluorine-containing polymer glass transition temperature of -100 ⁇ 100 ° C.
  • At least one fluorine-containing compound (C) selected from the group consisting of a fluorine-containing thermosetting resin, a fluorine-containing photocurable resin, and a fluorine-containing curable monomer having a polymer unsaturated group provided that The protein adhesion-preventing agent according to the above [1], further comprising (except for the fluoropolymer (A)).
  • the biocompatible group is at least one selected from the group consisting of a group represented by the following formula (1), a group represented by the following formula (2), and a group represented by the following formula (3).
  • n is an integer of 1 to 10
  • m is an integer of 1 to 100 when the group represented by the formula (1) is contained in the side chain in the fluoropolymer
  • R 1 to R 3 are each independently an alkyl group having 1 to 5 carbon atoms
  • a is an integer of 1 to 5
  • b is 1 to 5
  • R 4 and R 5 are each independently an alkyl group having 1 to 5 carbon atoms
  • X ⁇ is a group represented by the following formula (3-1) or the following formula (3-2):
  • c is an integer of 1 to 20, and d is an integer of 1 to 5.
  • the fluoropolymer (A) has a unit having the biocompatible group and no fluorine atom, and a unit having a fluorine atom and not having the biocompatible group.
  • the protein adhesion inhibitor according to any one of [1] to [3] above. [5] The above [4], wherein the proportion of the unit having a fluorine atom and not having the biocompatible group is more than 10 mol% with respect to the total unit of the fluoropolymer (A).
  • the protein adhesion preventive agent according to 1.
  • the unit having a fluorine atom and having no bioaffinity group is a unit derived from a monomer represented by the following formula (m1), having the bioaffinity group, and
  • the unit having no fluorine atom is at least one selected from the group consisting of a unit derived from a monomer represented by the following formula (m2) and a unit derived from a monomer represented by the following formula (m3)
  • R 6 is a hydrogen atom, a chlorine atom or a methyl group
  • e is an integer of 0 to 3
  • R 7 and R 8 are each independently a hydrogen atom, a fluorine atom or a trifluoromethyl group.
  • R f1 is a perfluoroalkyl group having 1 to 20 carbon atoms
  • R 9 is a hydrogen atom, a chlorine atom or a methyl group
  • Q 1 is —C ( ⁇ O) —O— or —C ( ⁇ O ) —NH—
  • each of R 1 to R 3 is independently an alkyl group having 1 to 5 carbon atoms
  • a is an integer of 1 to 5
  • b is an integer of 1 to 5
  • 10 is a hydrogen atom, a chlorine atom or a methyl group
  • Q 2 is —C ( ⁇ O) —O— or —C ( ⁇ O) —NH—
  • R 4 and R 5 are each independently carbon 1 to an alkyl group of 5, X - group, or the following formula represented by the following formula (3-1) is (3 A group represented by 2), c is an integer from 1 to 20, d is an integer of 1-5.)
  • the unit having a fluorine atom and having no bioaffinity group is a unit derived from a monomer represented by the following formula (m1), having the bioaffinity group, and The protein adhesion inhibitor according to [4] or [5] above, wherein the unit having no fluorine atom is a unit derived from a monomer represented by the following formula (m4).
  • R 6 is a hydrogen atom, a chlorine atom or a methyl group
  • e is an integer of 0 to 3
  • R 7 and R 8 are each independently a hydrogen atom, a fluorine atom or a trifluoromethyl group.
  • R f1 is a perfluoroalkyl group having 1 to 20 carbon atoms
  • R 11 is a hydrogen atom, a chlorine atom or a methyl group
  • Q 3 is —COO— or —COO (CH 2 ) h —NHCOO—
  • h is an integer of 1 to 4
  • R 12 is a hydrogen atom or — (CH 2 ) i —R 13 (where R 13 is an alkoxy group having 1 to 8 carbon atoms, a hydrogen atom, hydroxy And i is an integer of 1 to 25.)
  • f is an integer of 1 to 10
  • g is an integer of 1 to 100.
  • a fluoropolymer (A) having a biocompatible group, a fluorine atom content QF of 5 to 60% by mass and a glass transition temperature of ⁇ 100 to 100 ° C., and a non-fluorine-based heat At least one non-fluorinated compound (B) selected from the group consisting of a curable resin, a non-fluorinated thermoplastic resin, a non-fluorinated photocurable resin, and a non-fluorinated curable monomer having a polymerizable unsaturated group And a composition containing the fluorine-containing polymer (A) in the composition in an amount of 0.01 to 10% by mass for preventing protein adhesion.
  • the segregation ratio of fluorine atoms represented by the following formula is 0.01 to 1, and the water contact angle ⁇ 1 immediately after the surface water drop is placed and the water contact angle ⁇ 2 60 minutes after the water drop is placed An article having a difference ( ⁇ 1 ⁇ 2) from 10 to 60 degrees.
  • Segregation ratio of fluorine atoms (fluorine atomic ratio in the article surface S F / C - fluorine atoms 15nm depth from the article surface ratio S F / C) / (fluorine atom of the article surface ratio S F / C) [13]
  • a layer comprising a device substrate and a coating layer formed on the device substrate, wherein the coating layer is formed from the protein adhesion inhibitor according to any one of [1] to [8] above Is a medical device.
  • the protein adhesion preventing agent of the present invention can impart excellent biocompatibility to the surface of an article such as a medical device.
  • the coating solution containing the protein adhesion inhibitor of the present invention can form a coating layer that is difficult to adsorb proteins and has excellent biocompatibility, and has excellent biocompatibility on the surface of articles such as medical devices. Can be granted.
  • the surface of the article of the present invention is excellent in biocompatibility.
  • FIG. 2 is a cross-sectional view taken along the line II of the medical device of FIG.
  • the “fluorinated polymer” means a polymer compound having a fluorine atom in the molecule.
  • the “glass transition temperature (Tg)” of the polymer means a temperature at which the rubber state changes from the rubber state measured by the differential scanning calorimetry (DSC) method to the glass state.
  • the “unit” means a part derived from a monomer that exists in the polymer and constitutes the polymer. The unit derived from the monomer resulting from addition polymerization of a monomer having a polymerizable unsaturated bond (carbon-carbon unsaturated double bond) is divalent generated by cleavage of the polymerizable unsaturated bond. Unit.
  • a unit derived from an individual monomer is referred to as a name obtained by adding “unit” to the monomer name.
  • (Meth) acrylate is a general term for acrylate and methacrylate.
  • the “(meth) acryloyl group” is a general term for an acryloyl group and a methacryloyl group.
  • the polyfluoroalkylene group means an alkyl group having a plurality of fluorine atoms
  • the perfluoroalkyl group means an alkyl group in which hydrogen atoms are completely substituted with fluorine atoms.
  • Non-fluorine thermosetting resin means a resin that forms a cross-linked structure and is cured by heating in the presence or absence of a curing agent and does not have a fluorine atom.
  • Non-fluorine-based thermoplastic resin means a resin that does not have a cross-linked structure when heated and is softened and solidified by cooling and does not have a fluorine atom.
  • the “non-fluorine-based photocurable resin” means a resin that forms a cross-linked structure by being irradiated with light and is cured, and does not have a fluorine atom.
  • non-fluorinated curable monomer means a monomer having a polymerizable unsaturated group and having no fluorine atom.
  • fluorine-containing thermosetting resin means a resin having a fluorine atom, which is cured by forming a crosslinked structure by heating in the presence or absence of a curing agent.
  • Fluorine-containing photocurable resin means a resin that forms a crosslinked structure by being irradiated with light and is cured, and has a fluorine atom.
  • Fluorine-containing curable monomer means a monomer having a polymerizable unsaturated group and having a fluorine atom.
  • crosslinkable group means a group capable of forming a crosslinked structure by reacting with a curing agent, or a group capable of forming a crosslinked structure by reacting with each other.
  • Bioaffinity group means a group having the property of inhibiting protein from adsorbing to a polymer and preventing cells from adhering to the polymer and becoming immobile.
  • Biocompatibility means the property that proteins do not adsorb or cells do not adhere.
  • a “medical device” is a device used for medical purposes such as treatment, diagnosis, anatomy or biological examination, observation, etc., and is a medium that is inserted into or brought into contact with a living body such as a human body or taken out of a living body. Any device that comes in contact with (blood, etc.) shall be included.
  • the “cell” is the most basic unit constituting a living body, and means a cell having a cytoplasm and various organelles inside a cell membrane.
  • the nucleus containing DNA may or may not be contained inside the cell.
  • Animal-derived cells include germ cells (sperm, ova, etc.), somatic cells that make up the living body, stem cells, progenitor cells, cancer cells separated from the living body, acquired from the living body and acquired immortalizing ability, and are stable outside the body.
  • Maintained cells (cell lines), cells isolated from living organisms and artificially genetically modified, cells isolated from living organisms and artificially exchanged nuclei, and the like.
  • the somatic cells constituting the living body include fibroblasts, bone marrow cells, B lymphocytes, T lymphocytes, neutrophils, erythrocytes, platelets, macrophages, monocytes, bone cells, bone marrow cells, pericytes, dendritic cells , Keratinocytes, adipocytes, mesenchymal cells, epithelial cells, epidermal cells, endothelial cells, vascular endothelial cells, hepatocytes, chondrocytes, cumulus cells, neural cells, glial cells, neurons, oligodendrocytes, microglia, Astrocytes, heart cells, esophageal cells, muscle cells (eg, smooth muscle cells, skeletal muscle cells), pancreatic beta cells, melanocytes, hematopoietic progenitor cells, mononuclear cells and the like are included.
  • Somatic cells include skin, kidney, spleen, adrenal gland, liver, lung, ovary, pancreas, uterus, stomach, colon, small intestine, large intestine, bladder, prostate, testis, thymus, muscle, connective tissue, bone, cartilage, vascular tissue , Cells collected from any tissue such as blood, heart, eye, brain, nerve tissue and the like.
  • Stem cells are cells that have the ability to replicate themselves and to differentiate into other types of cells.
  • Embryonic stem cells ES cells
  • embryonic tumor cells embryonic germ stem cells
  • induced pluripotency Examples include stem cells (iPS cells), neural stem cells, hematopoietic stem cells, mesenchymal stem cells, hepatic stem cells, pancreatic stem cells, muscle stem cells, reproductive stem cells, intestinal stem cells, cancer stem cells, hair follicle stem cells and the like.
  • a progenitor cell is a cell that is in the process of being differentiated from the stem cell into a specific somatic cell or germ cell. Cancer cells are cells that have been derived from somatic cells and have acquired unlimited proliferative capacity.
  • a cell line is a cell that has acquired infinite proliferation ability by artificial manipulation in vitro, and is HCT116, Huh7, HEK293 (human embryonic kidney cell), HeLa (human cervical cancer cell line), HepG2 (human) Hepatoma cell line), UT7 / TPO (human leukemia cell line), CHO (Chinese hamster ovary cell line), MDCK, MDBK, BHK, C-33A, HT-29, AE-1, 3D9, Ns0 / 1, Jurkat, NIH3T3, PC12, S2, Sf9, Sf21, High Five, Vero, and the like are included.
  • a group represented by the formula (1) is referred to as a group (1).
  • Groups represented by other formulas are also described in the same manner.
  • the protein adhesion preventing agent of the present invention is an agent for imparting excellent biocompatibility to the surface of an article such as a medical device. That is, the protein adhesion preventing agent of the present invention is for preventing at least one protein selected from the group consisting of fibrinogen, immunoglobulin G (IgG), insulin, histone and carbonic anhydrase from adsorbing to the surface of the article. It is an agent. By preventing adsorption of the protein, it is possible to suppress further adhesion of cells to the protein.
  • IgG immunoglobulin G
  • the protein adhesion preventing agent of the present invention has a biocompatible group, a fluorine atom content Q F of 5 to 60% by mass, and a glass transition temperature of ⁇ 100 to 100 ° C.
  • A at least one selected from the group consisting of non-fluorinated thermosetting resins, non-fluorinated thermoplastic resins, non-fluorinated photocurable resins, and non-fluorinated curable monomers having a polymerizable unsaturated group.
  • a non-fluorine compound B.
  • Fluoropolymer (A) in the present invention has a biocompatible group, a fluorine atom content Q F is from 5 to 60 mass%, and the fluorine-containing polymer having a glass transition temperature of -100 ⁇ 100 ° C. It is.
  • the fluoropolymer (A) can be used, for example, for preventing protein adhesion in medical devices. Specifically, by making a medical device provided with a coating layer formed of the fluoropolymer (A), it is possible to prevent protein from adhering to the medical device.
  • the fluoropolymer (A) is preferably a fluoropolymer that does not form a crosslinked structure with the non-fluorine compound (B).
  • the bioaffinity group is preferably at least one selected from the group consisting of the following group (1), group (2) and group (3) from the viewpoint of easily obtaining the protein adsorption preventing effect. Only the group (1) or any one or both of the group (2) and the group (3) is more preferable, and any one of the group (1), the group (2), or the group (3) is particularly preferable.
  • the fluoropolymer (A) is excellent in biocompatibility when it contains the groups (1) to (3).
  • n is an integer of 1 to 10
  • m is an integer of 1 to 100 when the group (1) is contained in the side chain in the fluoropolymer (A).
  • R 1 to R 3 are each independently an alkyl group having 1 to 5 carbon atoms
  • a is an integer of 1 to 5
  • b is an integer of 1 to 5.
  • R 4 and R 5 independently represents an alkyl group having 1 to 5 carbon atoms
  • X ⁇ represents the following group (3-1) or the following group (3-2)
  • c represents 1 Is an integer of ⁇ 20
  • d is an integer of 1 ⁇ 5.
  • the group (1) has high mobility in blood or the like, and it is difficult to adsorb proteins to be adsorbed on the article surface.
  • the group (1) may be contained in the main chain of the fluoropolymer (A) or in the side chain.
  • n is preferably an integer of 1 to 6 and particularly preferably an integer of 1 to 4 from the viewpoint that protein is difficult to adsorb.
  • the group (1) may be linear or branched.
  • the group (1) is preferably linear because it has a higher protein adsorption inhibitory effect.
  • M in the group (1) is preferably from 1 to 40, particularly preferably from 1 to 20, from the viewpoint of excellent water resistance when the group (1) is contained in the side chain of the fluoropolymer (A).
  • M in the group (1) is preferably from 5 to 300, particularly preferably from 10 to 200, from the viewpoint of excellent water resistance when the group (1) is contained in the main chain of the fluoropolymer (A).
  • (C n H 2n O) of the group (1) may be one type or two or more types. In the case of two or more types, the arrangement may be random, block, or alternating. When n is 3 or more, it may be a straight chain structure or a branched structure.
  • the fluoropolymer (A) has a group (1), the group (1) of the fluoropolymer (A) may be one type or two or more types.
  • Group (2) has a strong affinity for phospholipids in blood, but has a weak interaction force with plasma proteins. Therefore, by using the fluoropolymer (A) having the group (2), for example, in blood, phospholipid is preferentially adsorbed on the surface of the article, and the phospholipid self-assembles to form an adsorption layer. It is thought. As a result, since the surface has a structure similar to the vascular endothelial surface, adsorption of proteins such as fibrinogen is suppressed.
  • the group (2) is preferably contained in the side chain of the fluoropolymer (A).
  • R 1 to R 3 in the group (2) are each independently an alkyl group having 1 to 5 carbon atoms. From the viewpoint of availability of raw materials, an alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group is Particularly preferred.
  • a is an integer of 1 to 5, preferably an integer of 2 to 5 and particularly preferably 2 from the viewpoint of availability of raw materials.
  • b is an integer of 1 to 5, preferably an integer of 1 to 4 and particularly preferably 2 from the viewpoint that protein is difficult to adsorb.
  • the group (2) of the fluoropolymer (A) may be one type or two or more types.
  • Group (3) By using the fluoropolymer (A) having the group (3), protein adsorption is suppressed for the same reason as in the case of using the fluoropolymer (A) having the group (2).
  • the group (3) is preferably contained in the side chain of the fluoropolymer (A).
  • R 4 and R 5 in the group (3) are each independently an alkyl group having 1 to 5 carbon atoms, preferably an alkyl group having 1 to 4 carbon atoms, and particularly preferably a methyl group from the viewpoint that protein is difficult to adsorb. preferable.
  • C in the group (3) is an integer of 1 to 20, preferably an integer of 1 to 15, more preferably an integer of 1 to 10, from the viewpoint that the fluoropolymer (A) is excellent in flexibility. Particularly preferred.
  • d is an integer of 1 to 5, preferably an integer of 1 to 4, and particularly preferably 1, from the viewpoint that protein is difficult to adsorb.
  • the group (3) of the fluoropolymer (A) may be one type or two or more types. Further, when the fluoropolymer (A) has a group (3), the fluoropolymer (A) has a group (3) in which X ⁇ is a group (3-1) from the point that protein is difficult to adsorb. having or wherein X - is preferably either with a group (3-2) a is group (3).
  • the fluoropolymer (A) has a biocompatible group and a unit that does not have a fluorine atom, a fluorine atom, and a biocompatible group because it is difficult for proteins to be adsorbed on the article surface. It is preferable to have a unit that does not.
  • the ratio of the unit having a fluorine atom and not having a biocompatible group is preferably more than 10 mol% with respect to all units of the fluoropolymer (A). When the proportion of the unit is more than 10 mol%, the surface tension of the article surface can be sufficiently lowered.
  • the proportion of the unit is more preferably more than 10 mol% and 95 mol% or less, particularly preferably more than 10 mol% and 90 mol% or less. If the ratio of the unit is not more than the upper limit of the range, it is difficult for the protein to be adsorbed on the surface of the article.
  • the proportion of units having a biocompatible group and not having a fluorine atom is preferably less than 90 mol% with respect to the total units of the fluoropolymer (A).
  • the proportion of the units is more preferably 5 mol% or more and less than 90 mol%, particularly preferably 10 mol% or more and less than 90 mol%. If the ratio of the unit is not less than the lower limit of the range, it is difficult for the protein to be adsorbed on the article surface.
  • the fluorine atom content Q F of the fluoropolymer (A) is 5 to 60% by mass.
  • the fluorine atom content Q F is preferably 5 to 55% by mass, particularly preferably 5 to 50% by mass. If the fluorine atom content Q F is more than the lower limit of the above range, excellent water resistance of the article surface. If the fluorine atom content Q F is more than the upper limit of the above range, the protein is less likely to adsorb on the surface of the article.
  • the fluorine atom content Q F (wt%) is determined by the following equation.
  • the fluorine atom content Q F of a fluoropolymer having 50 mol% of tetrafluoroethylene (TFE) units and 50 mol% of ethylene (E) units will be described below.
  • TFE tetrafluoroethylene
  • E ethylene
  • the value obtained by multiplying the number of fluorine atoms of TFE units (4) by the molar ratio of TFE units to all units (0.5) is 2, and the number of fluorine atoms of E units ( 0) and the molar ratio of E units to all units (0.5) is 0, so NF is 2.
  • the value obtained by multiplying the total atomic weight of all atoms constituting the TFE unit (100) by the molar ratio of TFE units to all units (0.5) is 50, and all atoms constituting the E unit. Since the value obtained by multiplying the sum of the atomic weights of (28) and the molar ratio of E units to all units (0.5) is 14, M A is 64. Accordingly, the fluorine atom content Q F of the fluoropolymer becomes 59.4 mass%. Incidentally, the fluorine atom content Q F can be measured by a method described in Examples. Moreover, it can also calculate from the preparation amount of the monomer and initiator used for manufacture of a fluoropolymer (A).
  • the glass transition temperature of the fluoropolymer (A) is ⁇ 100 to 100 ° C.
  • the glass transition temperature is preferably ⁇ 100 to 80 ° C., more preferably ⁇ 100 to 40 ° C., and particularly preferably ⁇ 50 to 0 ° C.
  • the glass transition temperature of the fluoropolymer (A) is at least the lower limit of the above range, the fluoropolymer (A) has an appropriate viscosity that is easy to mold at room temperature. If the glass transition temperature of a fluoropolymer (A) is below the upper limit of the said range, protein adsorption to the article surface can be suppressed. In addition, when the glass transition temperature of the fluoropolymer (A) is 40 ° C.
  • the group (1) in order to lower the glass transition temperature of the fluoropolymer (A), it is preferable to use the group (1) as a biocompatible group. Since the group (2) and the group (3) have both positive and negative charges, when the number of these groups increases, the glass transition temperature tends to increase due to the influence of ionic bonds, but the group (1) has a positive charge. Since there is no charge or negative charge, there is no increase in the glass transition temperature due to ionic bonds.
  • the number average molecular weight (Mn) of the fluoropolymer (A) is preferably from 2,000 to 1,000,000, particularly preferably from 2,000 to 800,000. If the number average molecular weight of the fluoropolymer (A) is not less than the lower limit of the above range, the durability of the article is excellent. If the number average molecular weight of the fluoropolymer (A) is not more than the upper limit of the above range, the moldability is excellent.
  • the mass average molecular weight (Mw) of the fluoropolymer (A) is preferably from 2,000 to 2,000,000, particularly preferably from 2,000 to 1,000,000.
  • weight average molecular weight of the fluoropolymer (A) is not less than the lower limit of the above range, the durability of the article is excellent. If the mass average molecular weight of the fluoropolymer (A) is not more than the upper limit of the above range, the moldability is excellent.
  • the molecular weight distribution (Mw / Mn) of the fluoropolymer (A) is preferably from 1 to 10, particularly preferably from 1.1 to 5.
  • Mw / Mn The molecular weight distribution of the fluoropolymer (A) is within the above range, the article surface is excellent in water resistance and the protein is hardly adsorbed on the article surface.
  • a commercially available product may be used as the fluoropolymer (A).
  • the following are mentioned, for example. 3M Company, Novec (registered trademark) series: FC-4430 (nonionic, containing perfluorobutanesulfonic acid group, surface tension: 21 mN / m), FC-4432 (nonionic, containing perfluorobutanesulfonic acid group, surface tension: 21 mN / m), etc.
  • the fluoropolymer (A) is excellent in water resistance on the surface of the article, the component is not easily eluted, and the protein is difficult to adsorb on the surface of the article, so that the fluoropolymer (A1) or fluoropolymer (described later) A2) is preferred.
  • the fluoropolymer (A1) is a unit derived from the following monomer (m1) (hereinafter also referred to as unit (m1)) as a unit having a fluorine atom and no biocompatible group.
  • Monomer (m1) a monomer represented by the following formula (m1)
  • Monomer (m2) a monomer represented by the following formula (m2)
  • Monomer (m3) A monomer represented by the following formula (m3).
  • R 6 is a hydrogen atom, a chlorine atom or a methyl group
  • e is an integer of 0 to 3
  • R 7 and R 8 are each independently a hydrogen atom, a fluorine atom or trifluoromethyl.
  • R f1 is a perfluoroalkyl group having 1 to 20 carbon atoms
  • R 9 is a hydrogen atom, a chlorine atom or a methyl group
  • Q 1 is —C ( ⁇ O) —O— or —C ( ⁇ O) —NH—
  • R 1 to R 3 are each independently an alkyl group having 1 to 5 carbon atoms
  • a is an integer of 1 to 5
  • b is an integer of 1 to 5
  • R 10 is a hydrogen atom, a chlorine atom or a methyl group
  • Q 2 is —C ( ⁇ O) —O— or —C ( ⁇ O) —NH—
  • R 4 and R 5 are each independently an alkyl group having 1 to 5 carbon atoms
  • X - is a group (3-1) or a group (3-2) der
  • C is an integer from 1 to 20
  • d is an integer of 1-5.
  • R 6 is preferably a hydrogen atom or a methyl group from the viewpoint of easy polymerization.
  • e is preferably an integer of 1 to 3, particularly preferably 1 or 2, from the viewpoint of excellent flexibility of the fluoropolymer (A1).
  • R 7 and R 8 are preferably fluorine atoms from the viewpoint of excellent water resistance of the article surface.
  • the perfluoroalkyl group for R f1 may be linear or branched.
  • R f1 is preferably a perfluoroalkyl group having 1 to 10 carbon atoms, and particularly preferably a perfluoroalkyl group having 1 to 5 carbon atoms from the viewpoint of easy availability of raw materials.
  • the unit (m1) may be one type or two or more types.
  • the monomer (m2) is a monomer having a group (2).
  • R 9 is preferably a hydrogen atom or a methyl group from the viewpoint of easy polymerization.
  • Q 1 is —C ( ⁇ O) —O— or —C ( ⁇ O) —NH—, and —C ( ⁇ O) —O— is preferred from the viewpoint that protein is difficult to adsorb on the surface of the article.
  • R 1 to R 3 each independently represents an alkyl group having 1 to 5 carbon atoms, and is preferably an alkyl group having 1 to 4 carbon atoms, and particularly preferably a methyl group, from the viewpoint that protein is difficult to adsorb on the surface of the article.
  • a is an integer of 1 to 5, and is preferably an integer of 1 to 4 and particularly preferably 2, from the viewpoint of excellent flexibility of the fluoropolymer (A1).
  • b is an integer of 1 to 5, and is preferably an integer of 1 to 4 and particularly preferably 2 from the viewpoint that protein is difficult to adsorb on the article surface.
  • the monomer (m2) examples include 2-methacryloyloxyethyl phosphorylcholine, 2-acryloyloxyethyl phosphorylcholine, and the like.
  • the unit (m2) may be one type or two or more types.
  • the monomer (m3) is a monomer having a group (3).
  • R 10 is preferably a hydrogen atom or a methyl group from the viewpoint of easy polymerization.
  • Q 2 is —C ( ⁇ O) —O— or —C ( ⁇ O) —NH—, and —C ( ⁇ O) —O— is preferred from the viewpoint that protein is difficult to adsorb on the surface of the article.
  • R 4 and R 5 are each independently an alkyl group having 1 to 5 carbon atoms, and an alkyl group having 1 to 4 carbon atoms is preferred, and a methyl group is particularly preferred from the viewpoint of easy availability of raw materials.
  • X - is group (3-1) or a group (3-2) is preferred.
  • c is an integer of 1 to 20, preferably an integer of 1 to 15, more preferably an integer of 1 to 10, and particularly preferably 2, from the viewpoint of easy availability of raw materials.
  • d is an integer of 1 to 5, and is preferably an integer of 1 to 4, particularly preferably 1, from the viewpoint that protein is difficult to adsorb on the article surface.
  • the monomer (m3) include the following compounds. N-methacryloyloxyethyl-N, N-dimethylammonium- ⁇ -N-methylcarboxybetaine, N-acryloyloxyethyl-N, N-dimethylammonium- ⁇ -N-methylcarboxybetaine, N-methacryloyloxyethyl-N, N-dimethylammonium- ⁇ -N-propylsulfoxybetaine, N-methacryloylaminopropyl-N, N-dimethylammonium- ⁇ -N-propylsulfoxybetaine and the like.
  • the monomer (m3) N-methacryloyloxyethyl-N, N-dimethylammonium- ⁇ -N-methylcarboxybetaine or N-acryloyloxyethyl-N, N-dimethylammonium- ⁇ -N-methylcarboxybetaine is preferred.
  • the fluoropolymer (A1) has a unit (m3)
  • the unit (m3) may be one type or two or more types.
  • the fluoropolymer (A1) has either one of the unit (m2) or the unit (m3) as a unit having a biocompatible group from the viewpoint that the protein is difficult to adsorb on the surface of the article. Is particularly preferred.
  • the fluoropolymer (A1) may have all the units (m1), units (m2), and units (m3).
  • the ratio of the unit (m1) to the total units of the fluoropolymer (A1) is preferably more than 10 mol%, more preferably more than 10 mol% and not more than 95 mol%, particularly preferably more than 10 mol% and not more than 90 mol%.
  • the proportion of the unit (m1) exceeds 10 mol%, the surface tension of the article surface can be sufficiently lowered. If the ratio of the unit (m1) is not more than the upper limit of the above range, it is difficult for the protein to be adsorbed on the article surface.
  • the ratio of the unit having a biocompatible group to the total units of the fluoropolymer (A1) is preferably less than 90 mol%, more preferably 5 mol% or more and less than 90 mol%, and more preferably 10 mol% or more and less than 90 mol%. Particularly preferred. If the ratio of the unit is not less than the lower limit of the range, it is difficult for the protein to be adsorbed on the article surface. When the proportion of the unit is less than 90 mol%, the water resistance of the article surface is excellent.
  • the total ratio of the unit (m2) and the unit (m3) to the whole unit of the fluoropolymer (A1) is preferably less than 90 mol%, more preferably 5 mol% or more and less than 90 mol%, and more preferably 10 mol% or more. Less than 90 mol% is particularly preferred. If the total ratio of the unit (m2) and the unit (m3) is equal to or greater than the lower limit of the above range, the protein is difficult to adsorb on the article surface. If the total ratio of the unit (m2) and the unit (m3) is less than 90 mol%, the water resistance of the article surface is excellent.
  • the fluorine-containing polymer (A1) can be obtained by performing a polymerization reaction of monomers in a polymerization solvent using a known method.
  • the polymerization solvent is not particularly limited.
  • ketones acetone, methyl ethyl ketone, methyl isobutyl ketone, etc.
  • alcohols methanol, 2-propyl alcohol, etc.
  • esters ethyl acetate, butyl acetate, etc.
  • ethers Diisopropyl ether, tetrahydrofuran, dioxane, etc.
  • glycol ethers ethylene glycol, propylene glycol, ethyl ether or methyl ether of dipropylene glycol, etc.
  • derivatives thereof aliphatic hydrocarbons, aromatic hydrocarbons, halogenated Hydrocarbons (perchloroethylene, trichloro-1,1,1-ethane, trichlorotrifluoroethane, dichloropent
  • the total concentration of all the monomers in the reaction solution is preferably 5 to 60% by mass, particularly preferably 10 to 40% by mass.
  • the polymerization initiator include peroxides (benzyl peroxide, lauryl peroxide, succinyl peroxide, tert-butyl perpivalate, etc.), azo compounds, and the like.
  • Polymerization initiators include 2,2'-azoisobutyronitrile, 2,2'-azobis-2-methylbutyronitrile, dimethyl-2,2'-azobisisobutyrate, 2,2'-azobis [2- (2-imidazolin-2-yl) propane], 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile), 1,1′-azobis (2 cyclohexane-1-carbonitrile), 2,2′-azobis (2,4-dimethylvaleronitrile), 1,1′-azobis (1-acetoxy-1-phenylethane), dimethylazobisisobutyrate, or 4,4′-azobis (4- Cyanovaleric acid), preferably 2,2′-azoisobutyronitrile, 2,2′-azobis [2- (2-imidazolin-2-yl) propane], or 4,4′-azobis (4-cyanovaleric acid). Herbal acid) is special Preferred.
  • the amount of the polymerization initiator used is
  • a chain transfer agent may be used in the polymerization reaction.
  • a chain transfer agent there is also an effect that the total concentration of monomers in the polymerization solvent can be increased.
  • chain transfer agents examples include alkyl mercaptans (tert-dodecyl mercaptan, n-dodecyl mercaptan, stearyl mercaptan, etc.), aminoethanethiol, mercaptoethanol, 3-mercaptopropionic acid, 2-mercaptopropionic acid, thiomalic acid, thioglycolic acid, 3,3′-dithio-dipropionic acid, 2-ethylhexyl thioglycolate, n-butyl thioglycolate, methoxybutyl thioglycolate, ethyl thioglycolate, 2,4-diphenyl-4-methyl-1-pentene, And carbon tetrachloride.
  • the amount of chain transfer agent used is preferably 0 to 2 parts by weight, more preferably 0 to 1.5 parts by weight, based on 100 parts by weight of the total amount of monomers.
  • the reaction temperature in the polymerization reaction is preferably in the range from room temperature to the boiling point of the reaction solution. From the viewpoint of efficiently using the polymerization initiator, it is preferably at least the half-life temperature of the polymerization initiator, more preferably from 30 to 90 ° C.
  • the fluoropolymer (A2) has a unit (m1) derived from the following monomer (m1) and a biocompatible group as a unit having a fluorine atom and no biocompatible group. And a fluorine-containing polymer having a unit derived from the monomer (m4) (hereinafter also referred to as unit (m4)) as a unit having no fluorine atom.
  • Monomer (m1) a monomer represented by the formula (m1)
  • Monomer (m4) A monomer represented by the following formula (m4).
  • R 11 is a hydrogen atom, a chlorine atom or a methyl group
  • Q 3 is —COO— or —COO (CH 2 ) h —NHCOO— (where h is an integer of 1 to 4)
  • R 12 is a hydrogen atom or — (CH 2 ) i —R 13 (where R 13 is an alkoxy group having 1 to 8 carbon atoms, a hydrogen atom, a hydroxy group, or a cyano group, and i is an integer of 1 to 25)
  • F is an integer from 1 to 10
  • g is an integer from 1 to 100.
  • Monomer (m1) The preferred range and examples of the monomer (m1) are the same as those described for the fluoropolymer (A1).
  • the unit (m1) may be one type or two or more types.
  • the monomer (m4) is a monomer having the group (1).
  • R 11 is preferably a hydrogen atom or a methyl group, particularly preferably a methyl group, from the viewpoint of easy polymerization.
  • Q 3 is preferably —COO—.
  • a plurality of types of (C f H 2f O) may be the same or different. If they are different, the arrangement may be random, block, or alternating.
  • f is 3 or more, it may be a straight chain structure or a branched structure.
  • f is preferably an integer of 1 to 6 and particularly preferably an integer of 1 to 4 from the viewpoint that protein is difficult to adsorb on the surface of the article.
  • g is preferably an integer of 1 to 50, more preferably an integer of 1 to 30, and particularly preferably an integer of 1 to 20 because the excluded volume effect is high and protein is difficult to adsorb on the surface of the article.
  • i is preferably an integer of 1 to 4, particularly preferably 1 or 2, from the viewpoint of excellent flexibility of the fluoropolymer (A2).
  • R 13 is preferably a hydroxy group or an alkoxy group, and particularly preferably a hydroxy group, from the viewpoint that protein is difficult to adsorb on the article surface.
  • a monomer (m41) represented by the following formula (m41) is preferable.
  • the following compounds are preferable from the viewpoint that proteins are hardly adsorbed on the surface of the article.
  • CH 2 CH—COO— (CH 2 O) — (C 2 H 4 O) g1 —CH 2 —OH, CH 2 ⁇ C (CH 3 ) —COO— (C 2 H 4 O) g2 — (C 4 H 8 O) g3 —H.
  • the fluoropolymer (A2) may have a unit derived from a monomer other than the monomer (m1) and the monomer (m4).
  • the other monomer is preferably a monomer (m5) represented by the following formula (m5) from the viewpoint of excellent water resistance on the surface of the article.
  • CH 2 CR 14 -COO-Q 4 -R 15 (m5)
  • R 14 is a hydrogen atom, a chlorine atom or a methyl group
  • R 15 is an alkoxy group having 1 to 8 carbon atoms
  • Q 4 is a single bond, having 1 to 20 carbon atoms.
  • R 14 is preferably a hydrogen atom or a methyl group, particularly preferably a hydrogen atom, from the viewpoint of easy polymerization.
  • the alkylene group and polyfluoroalkylene group of Q 4 may be linear or branched.
  • Q 4 is preferably an alkylene group having 1 to 12 carbon atoms, particularly preferably a methylene group or an isobutylene group, from the viewpoint of excellent flexibility of the fluoropolymer (A2).
  • R 15 is preferably a hydrogen atom from the viewpoint of excellent water resistance.
  • CH 2 ⁇ CH—COO— (CH 2 ) 4 —H, CH 2 ⁇ CH—COO (CH 2 ) 8 —H, or CH 2 ⁇ CH—COO— (CH 2 ) 16 —H is preferred, and CH 2 ⁇ CH—COO— (CH 2 ) 8 —H or CH 2 ⁇ CH—COO— (CH 2 ) 16 —H is particularly preferred.
  • Examples of the monomer other than the monomer (m5) include N, N-dimethylaminoethyl (meth) acrylate, N, N-diethylaminoethyl (meth) acrylate, and N- (meth) acryloylmorpholine.
  • 2-isocyanatoethyl (meth) acrylate 3,5-dimethylpyrazole adduct of 2-isocyanatoethyl (meth) acrylate, 3-isocyanatopropyl (meth) acrylate, 4-isocyanatobutyl (meth) acrylate, triallyl isocyanate Nurate, 3-methacryloyloxypropyltrimethoxysilane, 3-methacryloyloxypropyldimethoxymethylsilane, glycidyl (meth) acrylate, polyoxyalkylene glycol monoglycidyl ether (meth) acrylate, and the like may be used.
  • the unit (m5) may be one type or two or more types.
  • the fluorine-containing polymer having is particularly preferable.
  • the ratio of the unit (m1) to the total units of the fluoropolymer (A2) is preferably more than 10 mol%, more preferably more than 10 mol% and not more than 95 mol%, particularly preferably more than 10 mol% and not more than 90 mol%.
  • the proportion of the unit (m1) exceeds 10 mol%, the surface tension of the article surface can be sufficiently lowered. If the ratio of the unit (m1) is not more than the upper limit of the above range, it is difficult for the protein to be adsorbed on the article surface.
  • the ratio of the unit (m4) to the total units of the fluoropolymer (A2) is preferably less than 90 mol%, more preferably 5 mol% or more and less than 90 mol%, particularly preferably 10 mol% or more and less than 90 mol%. If the ratio of the unit (m4) is not less than the lower limit of the above range, it is difficult for the protein to be adsorbed on the article surface. When the proportion of the unit (m4) is less than 90 mol%, the water resistance of the article surface is excellent.
  • the ratio of the unit (m5) to the total of the unit (m1) and the unit (m4) is preferably 5 to 95 mol%, and 10 to 90 mol% Is particularly preferred. If the ratio of the unit (m5) is not less than the lower limit of the above range, the article surface is excellent in water resistance. When the ratio of the unit (m6) is not more than the upper limit of the above range, it is difficult for the protein to be adsorbed on the surface of the article.
  • the fluoropolymer (A2) can be produced by the same method as the fluoropolymer (A1) except that the monomers (m1), (m4) and (m5) are used.
  • the fluoropolymer (A) only one of the fluoropolymer (A1) and the fluoropolymer (A2) may be used.
  • the fluoropolymer (A1) and the fluoropolymer You may use a polymer (A2) together.
  • the fluoropolymer (A) is not limited to the above-mentioned fluoropolymer (A1) and fluoropolymer (A2).
  • Non-fluorine compound (B) includes a non-fluorine-based thermosetting resin, a non-fluorine-based thermoplastic resin, a non-fluorine-based photocurable resin, and a non-fluorine-based curable monomer having a polymerizable unsaturated group. Is at least one selected from the group consisting of Since the non-fluorine compound (B) does not have a fluorine atom, the fluorinated polymer (A) tends to be unevenly distributed in the surface layer of the article.
  • thermosetting resin a known thermosetting resin that is cured by heating in the presence or absence of a curing agent can be employed.
  • an acrylic resin, a polyester resin, an epoxy resin, a urethane resin, a silicone resin, or the like having a crosslinkable group such as a hydroxyl group, an epoxy group, or a carbonyl group at a terminal or a side chain can be given.
  • the number average molecular weight of the non-fluorinated thermosetting resin is preferably from 100 to 1,000,000, more preferably from 100 to 100,000, from the viewpoint of excellent curability.
  • a non-fluorine type thermosetting resin may be used individually by 1 type, and may use 2 or more types together.
  • a known curing agent is appropriately selected as the curing agent depending on the type of crosslinkable group possessed by the non-fluorinated thermosetting resin. do it.
  • the curing agent include block isocyanate (hexamethylene isocyanate trimer) or an emulsified dispersion thereof, melamine resin (methylated melamine, methylolated melamine, butyrolated melamine, etc.), urea resin (methylated urea, butylated) Urea) and the like.
  • thermoplastic resin a known thermoplastic resin can be adopted, for example, polyethylene resin, polypropylene resin, polyester resin, polycarbonate resin, polystyrene resin, styrene-butadiene random copolymer, styrene-butadiene block copolymer. , ABS resin, acrylic resin (polymethyl methacrylate resin, etc.), urethane resin, polycarbonate urethane resin, polystyrene-poly (ethylene / propylene) block copolymer, epoxy resin and the like.
  • the number average molecular weight of the non-fluorinated thermoplastic resin is preferably 1,000 to 1,000,000, and more preferably 100 to 100,000, from the viewpoint of excellent moldability.
  • a non-fluorine-type thermoplastic resin may be used individually by 1 type, and may use 2 or more types together.
  • non-fluorinated photocurable resin a known photocurable resin can be adopted, and a polymer having a (meth) acryloyl group or a polymer having a vinyl group is preferable.
  • a polymer obtained by copolymerization of a monomer having a hydroxyl group and a monomer having no crosslinkable group is reacted with a haloformate having a (meth) acryloyl group.
  • a polymer obtained by reacting a compound having an isocyanate group and a (meth) acryloyl group with a polymer obtained by copolymerization of a monomer having a hydroxyl group and a monomer having no crosslinkable group examples thereof include a polymer obtained by reacting a compound having an isocyanate group and a vinyl group with a polymer obtained by copolymerization of a monomer having a hydroxyl group and a monomer having no crosslinkable group.
  • the haloformate is preferably a chloroformate having a (meth) acryloyl group (such as 2-chloroformylethyl methacrylate).
  • Examples of the monomer having a hydroxyl group include 4-hydroxybutyl vinyl ether.
  • Examples of the monomer having no crosslinkable group include alkyl (meth) acrylate (methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, etc.), olefin (Ethylene, propylene, etc.), vinyl ether (t-butyl vinyl ether, 1,1-dimethylpropyl vinyl ether, methoxymethyl vinyl ether, etc.), vinyl esters (vinyl acetate, vinyl chloroacetate, vinyl butanoate, vinyl pivalate, vinyl benzoate, Vinyl crotonate, etc.) and allyl ether (allyl methyl ether, allyl methyl ether, etc.).
  • the number average molecular weight of the non-fluorinated photocurable resin is preferably 500 to 50,000, more preferably 500 to 4000, from the viewpoint of excellent curability.
  • a non-fluorine type photocurable resin may be used individually by 1 type, and may use 2 or more types together.
  • non-fluorinated curable monomer a known curable monomer having a polymerizable unsaturated group and not having a fluorine atom can be employed.
  • the polymerizable unsaturated group include a (meth) acryloyl group and a vinyl group.
  • specific examples of non-fluorine curable monomers include, for example, olefins (ethylene, propylene, butene, etc.), dienes (norbornadiene, butadiene, etc.), alkyl vinyl ethers (cyclohexyl methyl vinyl ether, isobutyl vinyl ether, cyclohexyl vinyl ether, ethyl vinyl ether, etc.
  • CH 2 CHO (CH 2) 3 COOCH 3
  • CH 2 CHO (CH 2) 3 CH 2 OH, CH 2 ⁇ CHCOO— (C 2 H 4 O) 2 —CH 3 , CH 2 ⁇ CHCOO— (C 2 H 4 O) 4 —CH 3 , CH 2 ⁇ C (CH 3 ) COO— (C 2 H 4 O) 2 —CH 3 , CH 2 ⁇ C (CH 3 ) COO— (C 2 H 4 O) 4 —CH 3
  • CH 2 CHOCH (CH 3)
  • CH 2 CHCH 2 C (OH ) (CH 3)
  • the protein adhesion preventing agent of the present invention is at least one selected from the group consisting of a fluorine-containing thermosetting resin, a fluorine-containing photocurable resin, and a fluorine-containing curable monomer having a polymerizable unsaturated group, if necessary.
  • a seed fluorine-containing compound (C) (excluding the fluorine-containing polymer (A)) may further be included.
  • the fluorine-containing compound (C) is likely to move to the surface layer similarly to the fluorine-containing polymer (A). Along with the transition of the fluorine-containing compound (C), the fluorine-containing polymer (A) also moves to the surface layer and tends to be unevenly distributed.
  • thermosetting resin examples include a fluorine-containing polymer having a crosslinkable group such as a hydroxyl group, an epoxy group, or a carbonyl group at the terminal or side chain (excluding the fluorine-containing polymer (A)). Can be mentioned.
  • fluorine-containing thermosetting resin examples include Lumiflon LF710 (manufactured by Asahi Glass Co., Ltd.).
  • Fluorine atom content Q F of the fluorine-containing thermosetting resin is preferably at least 2 wt%, more preferably 2 to 30 mass%, and particularly preferably 2 to 20 mass%. If the fluorine atom content Q F of the fluorine-containing thermosetting resin is more than the lower limit of the range, the fluorine-containing thermosetting resin, tends to unevenly distributed fluoropolymer (A) is shifted to the surface. If the fluorine atom content Q F of the fluorine-containing thermosetting resin is more than the upper limit of the above range, the protein is less likely to adsorb on the surface of the article.
  • the number average molecular weight of the fluorine-containing thermosetting resin is preferably 500 to 500,000, and more preferably 500 to 4000, from the viewpoint of excellent curability.
  • a fluorine-containing thermosetting resin may be used individually by 1 type, and may use 2 or more types together.
  • examples of the curing agent include the same ones as those given for the non-fluorine-based thermosetting resin.
  • a fluorine-containing polymer having a (meth) acryloyl group or a fluorine-containing polymer having a vinyl group is preferable. Specifically, for example, it is obtained by reacting a haloformate having a (meth) acryloyl group with a polymer obtained by copolymerization of a monomer having a hydroxyl group and a fluorine-containing monomer having no crosslinkable group.
  • a fluorine-containing polymer a polymer obtained by copolymerization of a monomer having a hydroxyl group and a fluorine-containing monomer not having a crosslinkable group is reacted with a compound having an isocyanate group and a (meth) acryloyl group.
  • Polymer obtained by reacting a compound having an isocyanate group and a vinyl group with a polymer obtained by copolymerization of a monomer having a hydroxyl group and a fluorine-containing monomer having no crosslinkable group A polymer etc. are mentioned.
  • the haloformate is preferably a chloroformate having a (meth) acryloyl group (such as 2-chloroformylethyl methacrylate).
  • Examples of the monomer having a hydroxyl group include 4-hydroxybutyl vinyl ether.
  • the fluorine-containing monomer having no crosslinkable group for example, in the non-fluorine-based photocurable resin, one or more hydrogen atoms among the compounds mentioned as monomers having no crosslinkable group are fluorine. Examples include those substituted with atoms.
  • a preferred range of the fluorine atom content Q F of the fluorinated photocurable resin are the same as the preferred ranges of the fluorine atom content Q F of the fluorine-containing thermosetting resin.
  • the number average molecular weight of the fluorine-containing thermosetting resin is preferably 500 to 50,000, more preferably 500 to 4000, from the viewpoint of excellent curability.
  • a fluorine-containing thermosetting resin may be used individually by 1 type, and may use 2 or more types together.
  • fluorine-containing curable monomer a known curable monomer having a polymerizable unsaturated group and having a fluorine atom can be employed.
  • Specific examples of the fluorine-containing curable monomer include the monomer (m1) described above.
  • CF 2 CFOCF 2 CF 2 SO 2 F
  • CF 2 CFOCF 2 CF (CF 3 ) OCF 2 CF 2 SO 2 F
  • CF 2 CFCOOH
  • CF 2 CFO (CF 2 ) 3 COOCH 3
  • CF 2 CFO (CF 2 ) 3 CH 2 OH
  • CF 2 CFOCF 2 CF (CF 3 ) OCF 2 CF 2 CH 2 I
  • CH 2 CHCOOCH 2 CF 2 CF 2 H
  • CH 2 CHCOOCH 2 (CF 2 CF 2) 2 H
  • CH 2 C (CH 3) COOCH 2 (CF 2 CF 2) H
  • CH 2 C (CH 3) COOCH 2 (CF 2 CF 2) 2 H
  • CH 2 CHCOOCH 2 CF 2 OCF 2 CF 2 OCF 3
  • CH 2 CHCOOCH 2 CF 2 OCF 2 OCF 3 CF 3
  • CH 2 C (CH 3) COOCH 2 CF 2 OCF 2 OCF 2
  • CH 2 C (CH 3) CO
  • the protein adhesion inhibitor of the present invention preferably contains a photopolymerization initiator.
  • the protein adhesion inhibitor of the present invention is a thermal polymerization initiator or It is preferable to include a photopolymerization initiator, and it is particularly preferable to include a photopolymerization initiator.
  • the photopolymerization initiator causes a radical reaction or an ionic reaction by light, and a photopolymerization initiator that causes a radical reaction is preferable.
  • a known photopolymerization initiator can be employed as the photopolymerization initiator.
  • an acetophenone photopolymerization initiator acetophenone, p-tert-butyltrichloroacetophenone, chloroacetophenone, etc.
  • a benzoin photopolymerization initiator benzyl, benzoin, benzoin methyl ether, benzoin ethyl ether, etc.
  • Benzophenone photopolymerization initiators benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, etc.
  • thioxanthone photopolymerization initiators thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, etc.
  • photopolymerization initiators containing fluorine atoms Perfluoro (tert-butyl peroxide), perfluorobenzoyl peroxide, etc.).
  • ⁇ -acyl oxime ester benzyl- (o-ethoxycarbonyl) - ⁇ -monooxime, acyl phosphine oxide, glyoxy ester, 3-ketocoumarin, 2-ethylanthraquinone, camphorquinone, tetramethylthiuram sulfide, azobisiso Butyronitrile, benzoyl peroxide, dialkyl peroxide, tert-butyl peroxypivalate, and the like may be used.
  • a photoinitiator may be used individually by 1 type and may use 2 or more types together.
  • thermal polymerization initiator can be employed as the thermal polymerization initiator.
  • Specific examples include azobisisobutyronitrile, benzoyl peroxide, tert-butyl hydroperoxide, cumene hydroperoxide, di-tert-butyl peroxide, and dicumyl peroxide.
  • a thermal polymerization initiator may be used individually by 1 type, and may use 2 or more types together.
  • the protein adhesion inhibitor of this invention contains a photoinitiator, it is preferable that it further contains a photosensitizer.
  • the photosensitizer include n-butylamine, di-n-butylamine, tri-n-butylphosphine, allylthiourea, s-benzisothiuronium-p-toluenesulfinate, triethylamine, diethylaminoethyl methacrylate, And triethylenetetramine and 4,4′-bis (dialkylamino) benzophenone.
  • a photosensitizer may be used individually by 1 type and may use 2 or more types together.
  • the protein adhesion preventing agent of the present invention may contain other components other than the fluorine-containing polymer (A), the non-fluorine compound (B), the fluorine-containing compound (C), the polymerization initiator, and the photosensitizer as necessary. May be included. Examples of other components include a leveling agent.
  • the medical device may be colored.
  • the protein adhesion preventing agent used for the medical device does not contain a compound that absorbs visible light.
  • coloring by the compound is one factor that hinders inspection and observation.
  • the protein adhesion preventing agent used for the medical device preferably does not contain a compound that emits fluorescence.
  • the visible light staining method is a staining method that enables observation with visible light (CBB staining or the like).
  • the fluorescence emission staining method is a staining method (staining with a fluorescent dye or the like) that enables observation with fluorescence.
  • the content of the fluoropolymer (A) in the protein adhesion preventive agent of the present invention is 0.01 to 10% by mass, preferably 0.01 to 5% by mass, more preferably 0.1 to 5% by mass. preferable.
  • the content of the fluoropolymer (A) is at least the lower limit of the above range, the protein is difficult to adhere to the surface of the article. If the content of the fluoropolymer (A) is not more than the upper limit of the above range, the mechanical strength of the article is excellent.
  • the content of the non-fluorine compound (B) in the protein adhesion inhibitor of the present invention is preferably 95 to 99.99% by mass, particularly preferably 95 to 99.9% by mass. If content of the said non-fluorine type compound (B) is more than the lower limit of the said range, it will be excellent in the mechanical strength of articles
  • the content of the fluorine-containing compound (C) is preferably 3 to 35% by mass with respect to the total amount of the protein adhesion preventing agent. 30% by mass is particularly preferred. If content of the said fluorine-containing compound (C) is more than the lower limit of the said range, a fluorine-containing polymer (A) will tend to be unevenly distributed in the surface layer of articles
  • the content of the photopolymerization initiator is such that the non-fluorine-based photocurable resin, the fluorine-containing photocurable resin, the non-fluorine-based curable monomer, and
  • the amount is preferably 0.05 parts by mass or more, particularly preferably 0.1 to 10 parts by mass with respect to 100 parts by mass in total of the fluorine-containing photocurable monomer. If content of the said photoinitiator is more than the lower limit of the said range, hardening will fully advance. If content of the said photoinitiator is below the upper limit of the said range, the molecular weight of photocured material will become high enough.
  • the photocured product is a non-fluorinated photocurable resin, a fluorinated photocurable resin, a nonfluorinated curable monomer, or a fluorinated curable monomer.
  • a fluorinated photocurable resin a fluorinated photocurable resin
  • a nonfluorinated curable monomer a fluorinated curable monomer
  • a fluorinated curable monomer a fluorinated curable monomer.
  • the content of the thermal polymerization initiator is based on 100 parts by mass in total of the non-fluorinated curable monomer and the fluorinated photocurable monomer. 0.05 parts by mass or more is preferable, and 0.1 to 10 parts by mass is particularly preferable. If content of the said thermal-polymerization initiator is more than the lower limit of the said range, hardening will fully advance. If the content of the thermal polymerization initiator is not more than the upper limit of the above range, the molecular weight of the thermoset will be sufficiently high.
  • thermosetting product is a protein adhesion inhibitor of the present invention selected from the group consisting of non-fluorinated thermosetting resins, fluorinated thermosetting resins, non-fluorinated curable monomers, and fluorinated curable monomers. When 1 or more types are included, it means those cured by heating.
  • the content of the photosensitizer is preferably 4 times mol or less, particularly preferably 2 times mol or less with respect to the photopolymerization initiator. If content of the said photosensitizer is below the said upper limit, the molecular weight of photocured material will become high enough. Usually, the content of the photosensitizer is 1 time mol or more.
  • the coating liquid of the present invention contains the protein adhesion inhibitor of the present invention and a solvent.
  • the protein adhesion inhibitor of the present invention is liquid at room temperature (20 to 25 ° C.), it can be applied as it is, but by applying wet coating or cast molding using the coating liquid, protein adhesion prevention A coating layer or a film formed from an agent can be easily formed.
  • the coating liquid of the present invention can be used, for example, for preventing protein adhesion in medical devices. Specifically, by making a medical device provided with a coating layer formed using the coating liquid of the present invention, protein adhesion to the medical device can be prevented.
  • the solvent examples include non-fluorinated solvents and fluorinated solvents.
  • the non-fluorinated solvent include alcohol solvents and halogen-containing solvents.
  • ethanol, methanol, acetone, chloroform, Asahi Clin AK225 (Asahi Glass Co., Ltd.), AC6000 (Asahi Glass Co., Ltd.) and the like can be mentioned.
  • the solvent is preferably ethanol, methanol, Asahi Clin AK225 (Asahi Glass Co., Ltd.), AC6000 (Asahi Glass Co., Ltd.) or the like.
  • the concentration of the protein adhesion preventing agent in the coating solution of the present invention is preferably 0.0001 to 10% by mass, particularly preferably 0.0005 to 5% by mass. If the concentration of the protein adhesion inhibitor is within the above range, it can be applied uniformly and a uniform coating layer or article (film, etc.) can be formed.
  • the fluoropolymer in Patent Document 1 has a phosphorylcholine group having a positive charge and a negative charge, the glass transition temperature is high (for example, 150 ° C. or higher). For this reason, even when a culture solution or the like adheres to the surface of a molded article, the direction of the side chain of the unit derived from the fluorine-containing monomer and the phosphorylcholine group is not easily reversed, and the surface is not sufficiently hydrophilized and sufficient living body is obtained. It is difficult to obtain compatibility.
  • the fluoropolymer (A) moves to the surface layer and is unevenly distributed at the time of molding or formation of the coating layer.
  • the surface is arranged so that the portion having a fluorine atom such as a fluoroalkyl group faces outward, and the biocompatible group is placed facing inward, so that the surface is hydrophobic. It is sex.
  • the glass transition temperature of the fluoropolymer (A) is 100 ° C.
  • the surface of the article is brought into contact with hot water to sufficiently hydrophilize the surface before culturing or the like. In this case, it is preferable not to dry the surface of the article between the hydrothermal treatment and the culture from the viewpoint of suppressing the bioaffinity group from reversing and facing inward.
  • the fluoropolymer (A) since the fluoropolymer (A) is likely to be unevenly distributed on the surface layer of the article, the amount of the fluoropolymer (A) used is small, leading to cost reduction.
  • the polarity of the solvent that easily dissolves the fluoropolymer (A) and the solvent that easily dissolves the non-fluorine compound (B) are different.
  • the fluorine-containing polymer (A) is easily dissolved in a highly polar solvent (such as ethanol), but is difficult to dissolve in a less polar solvent (such as toluene).
  • the non-fluorine compound (B) is easily dissolved in a low polarity solvent (such as toluene), but is difficult to dissolve in a high polarity solvent (such as ethanol).
  • the article of the present invention is an article formed from the protein adhesion preventing agent of the present invention and having at least a part exposed on the surface.
  • the article of the present invention may be the whole article formed from the protein adhesion preventive agent of the present invention (hereinafter also referred to as “molded product”), or a base material other than the protein adhesion preventive agent of the present invention.
  • the surface of the material may have a coating layer formed from the protein adhesion preventing agent of the present invention (hereinafter also referred to as “article having coating layer”).
  • the shape of the article is not particularly limited and is appropriately determined according to the application.
  • the surface of the article may have surface micromachining and patterning such as unevenness and line and space.
  • a medical device is particularly effective as the article of the present invention.
  • the medical device include a medical device composed of a molded product obtained by molding the protein adhesion preventive agent of the present invention, and a medical device having a coating layer formed from the protein adhesion preventive agent of the present invention on the device surface. Can be mentioned.
  • Specific examples of the medical device of the present invention include the medical device 1 illustrated in FIGS. 1 and 2.
  • the medical device 1 is a petri dish that is one of cell culture containers.
  • the medical device 1 includes a device substrate 2 and a coating layer 3 formed on the device substrate 2.
  • the device substrate 2 includes a bottom surface portion 4 having a circular shape in plan view, and a side surface portion 5 that rises from the periphery of the bottom surface portion 4 over the entire circumference, and has a container shape with an open top.
  • the coating layer 3 is formed on the inner surface of the device substrate 2, that is, on the upper surface of the bottom surface portion 4 and the inner surface of the side surface portion 5 by the protein adhesion preventing agent of the present invention.
  • the material forming the device substrate in the medical device of the present invention is not particularly limited, and examples thereof include resins such as polystyrene, polycarbonate, and polypropylene, and glass. Especially, this invention is especially effective when the material which forms a device base material is glass.
  • the medical device is not particularly limited, but is a cell culture container, cell culture sheet, vial, plastic coated vial, syringe, plastic coated syringe, ampoule, plastic coated ampoule, cartridge, bottle, plastic coated bottle, pouch, pump, sprayer , Stopper, plunger, cap, lid, needle, stent, catheter, implant, contact lens, microchannel chip, drug delivery system material, artificial blood vessel, artificial organ, hemodialysis membrane, guard wire, blood filter, blood storage pack , Endoscopes, biochips, sugar chain synthesis equipment, molding aids, packaging materials, and the like.
  • a cell culture vessel is preferable.
  • Cell culture containers often have surface micromachining and patterning such as irregularities, line and space, etc. on the surface.
  • excellent biocompatibility can be imparted even to a cell culture container having a surface microfabrication or patterning on the surface.
  • the article of the present invention may be a marine structure such as a ship, a bridge, a marine tank, a port facility, a submarine base, and a submarine oil field drilling facility.
  • a marine structure such as a ship, a bridge, a marine tank, a port facility, a submarine base, and a submarine oil field drilling facility.
  • the fluorine atomic ratio SF / C on the article surface (molded body surface, coating layer surface) of the present invention is preferably from 0.01 to 1.0, particularly preferably from 0.01 to 0.8. If the fluorine atomic ratio SF / C is equal to or greater than the lower limit of the range, it is difficult for proteins to adhere to the surface of the article. If the fluorine atomic ratio SF / C is not more than the upper limit of the above range, the article surface is excellent in hydrophilicity.
  • the segregation ratio of fluorine atoms represented by the following formula is preferably 0.01 to 1, particularly preferably 0.1 to 1.
  • the fluoropolymer (A) is unevenly distributed on the surface layer of the article, and the protein is difficult to adhere.
  • Segregation ratio of fluorine atoms (fluorine atomic ratio in the article surface S F / C - fluorine atoms 15nm depth from the article surface ratio S F / C) / (fluorine atom of the article surface ratio S F / C)
  • the “15 nm depth from the article surface” means a position where the shortest distance to the surface inside the article is 15 nm. Fluorine atomic ratio S F / C of 15nm depth from the fluorine atomic ratio S F / C and the article surface of the article surface is measured by a method described in Examples.
  • the phosphorus atom ratio Sp / C of the article surface (molded body surface, coating layer surface) of the present invention is preferably 0.01 to 1, 0.1 to 1 is particularly preferred.
  • the phosphorus atomic ratio SP / C is equal to or less than the upper limit value, the fluoropolymer (A) is unevenly distributed on the surface layer of the article, and the protein hardly adheres.
  • the said phosphorus atomic ratio SP / C is a value measured by the method as described in an Example.
  • the difference ( ⁇ 1- ⁇ 2) between the water contact angle ⁇ 1 immediately after (initial) the water drop is placed on the surface of the article of the present invention (the surface of the molded body and the surface of the coating layer) and the water contact angle ⁇ 2 60 minutes after the water drop is placed ) Is preferably 10 to 60 degrees, particularly preferably 30 to 60 degrees. If the difference ( ⁇ 1 ⁇ 2) is equal to or greater than the lower limit, the surface of the article is excellent in biocompatibility. If the difference ( ⁇ 1- ⁇ 2) is less than or equal to the upper limit, the water resistance of the article surface is excellent. In addition, a water contact angle is measured by the method as described in an Example.
  • the thickness of the coating layer in the article having the coating layer is preferably 1 nm to 1 mm, and particularly preferably 5 nm to 800 ⁇ m. If the thickness of the coating layer is not less than the lower limit of the above range, it is difficult for proteins to be adsorbed on the surface of the coating layer. If the thickness of the coating layer is less than or equal to the upper limit of the above range, the coating layer tends to adhere to the device surface.
  • a molded article formed from the protein adhesion preventive agent of the present invention for example, using a protein adhesion inhibitor or a coating solution, a molded article is obtained by a known molding method, and then heated as necessary. Or the method of performing light irradiation is mentioned.
  • the molding method is not particularly limited, and examples include mold pressing, injection molding, extrusion molding, molding with a 3D printer, and cast molding. Known methods can be adopted as the heating method and the light irradiation method.
  • the protein adhesion preventive agent of the present invention is applied to a substrate by a wet application method and then heated or irradiated with light. It is possible to employ a method or a method in which the coating liquid of the present invention is applied to a substrate by a known wet coating method and dried, followed by heating or light irradiation.
  • Examples 1 to 8 and Example 1X are examples, and examples 9 to 17 are comparative examples.
  • fluorine atom content Q F fluorine atom content
  • fluorine atom ratio S F / C fluorine atom ratio S P / C
  • the fluorine atom content Q F , the fluorine atom ratio SF / C, and the phosphorus atom ratio SP / C were calculated by performing 1 H-NMR, ion chromatography, and elemental analysis.
  • the fluorine atom ratio SF / C and the phosphorus atom ratio SP / C are values obtained by the following formula.
  • N F N F / N C
  • S P / C N P / N C
  • N F For each type of unit constituting the fluoropolymer, the sum of values obtained by multiplying the number of fluorine atoms of the unit and the molar ratio of the unit to the total unit
  • N C Sum of values obtained by multiplying the number of carbon atoms of the unit and the molar ratio of the unit with respect to all units for each type of unit constituting the fluoropolymer.
  • N P For each type of unit constituting the fluoropolymer, the sum of values obtained by multiplying the number of phosphorus atoms in the unit and the molar ratio of the unit to the total unit
  • Glass transition temperature (Tg) Glass transition temperature of the fluoropolymer was measured by DSC (manufactured by TA Instruments) by raising and lowering the temperature from ⁇ 30 ° C. to 200 ° C. at a rate of 10 ° C./min. The temperature at which the temperature changed from the rubber state in the second cycle when the temperature decreased to the glass state was defined as the glass transition temperature.
  • the number average molecular weight (Mn), mass average molecular weight (Mw) and molecular weight distribution (mass average molecular weight (Mw) / number average molecular weight (Mn)) of the fluoropolymer are tetrahydrofuran (hereinafter referred to as “THF”). It measured using the GPC apparatus (HLC8220, the Tosoh company make) used as a solvent.
  • the surface phosphorus concentration (atomic%) and the surface carbon concentration (atomic%) are determined by X-ray photoelectron spectroscopy, and the surface phosphorus concentration is divided by the surface carbon concentration to obtain the phosphorus atomic ratio SP / C on the surface of the article.
  • the fluorine atom ratio SF / C at a depth of 15 nm from the article surface was determined by XPS depth profile analysis using C60 cluster ions.
  • a monochromatic Al K ⁇ was used as the X-ray source, and an electron gun was used for neutralizing the charge.
  • the path energy at the time of measurement was set to 117.4 eV, and the step energy was set to 0.5 eV.
  • the sample stage (X-ray detection) angle was 75 °
  • the sputtering gun incident angle was 67 °
  • the measurement interval was every 0.2 minutes.
  • the sputtering rate was calculated to be 15 nm / min from the thickness of the article determined by reflectance spectroscopy (apparatus: PHI5500, manufactured by filmmetrix).
  • Water contact angle In accordance with JIS R 3257 “Test method for wettability of substrate glass surface” by the sessile drop method, water droplets are placed on the molded body surface or the coating layer surface obtained in each example, and the contact angle is measured for each water droplet. The average value was taken as the water contact angle. The amount of droplets was about 5 ⁇ L / droplet, and the measurement was performed at 25 ° C. Moreover, the water contact angle measured water contact angle (phi) 1 immediately after mounting a water drop (initial stage), and water contact angle (phi) 2 60 minutes after mounting a water drop. Also, ⁇ 1- ⁇ 2 was calculated.
  • Non-adhesive protein (Non-adhesive protein) (1) Preparation of chromogenic solution and protein solution
  • the chromogenic solution was a peroxidase chromogenic solution (3,3 ′, 5,5′-tetramethylbenzidine (TMBZ), manufactured by KPL) 50 mL (milliliter) and TMB Peroxidase Substrate (KPL). (Made in Japan) A mixture of 50 mL was used.
  • TMBZ 5,5′-tetramethylbenzidine
  • KPL TMB Peroxidase Substrate
  • a mixture of 50 mL was used.
  • As the protein solution a protein (POD-goat anti mouse IgG, manufactured by Biorad) diluted 16,000 times with a phosphate buffer solution (D-PBS, manufactured by Sigma) was used.
  • D-PBS phosphate buffer solution
  • Coloring solution dispensing 2 mL of the coloring solution was dispensed to the washed 24-well microplate (2 mL was used for each well), and a coloring reaction was performed for 7 minutes. The color reaction was stopped by adding 1 mL of 2N sulfuric acid (1 mL per well was used). For the blank, dispense 100 ⁇ L of the coloring solution to a 96-well microplate (use 100 ⁇ L per well), perform the color reaction for 7 minutes, and add 50 ⁇ L of 2N sulfuric acid (use 50 ⁇ L per well). ) The color reaction was stopped.
  • evaluation of protein non-adhesiveness of a molded body can be performed by utilizing a Western blotting method (steps after electrophoresis) or the like.
  • A-200 Trade name “A-200” (polyethylene glycol diacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd.).
  • 701A Trade name “701A” (2-hydroxy-3-acryloyloxypropyl methacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd.).
  • A-DPH Trade name “NK Ester A-DPH” (manufactured by Shin-Nakamura Chemical Co., Ltd.).
  • IB-XA Isobornyl acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd.).
  • PC Polycarbonate film (Asahi Glass Co., Ltd. grade: Carbograss).
  • PS Polystyrene film (manufactured by Mitsubishi Plastics, grade: Santo Clear).
  • PE polyethylene particles (manufactured by Sumitomo Chemical Co., Ltd., grade: LE-1080).
  • PMMA Polymethyl methacrylate particles (Mitsubishi Rayon Co., grade: VH0).
  • V-601 Trade name “V-601” (oil-soluble azo polymerization initiator, manufactured by Wako Pure Chemical Industries, Ltd.).
  • I-907 Trade name “IIRGACURE 907” (photopolymerization initiator, manufactured by BASF).
  • the fluorinated polymer As a result of measuring the copolymer composition of the fluorinated polymer (A-1), the fluorinated polymer has a PEG9A unit, a C6FA unit, and a 2-EHA unit in a molar ratio of 24:14:62 (mass ratio of 40:20:40). It was confirmed to be a polymer.
  • the number average molecular weight (Mn) of the fluoropolymer (A-1) was 17,000
  • the mass average molecular weight (Mw) was 40,000
  • the molecular weight distribution mass average molecular weight (Mw) / The number average molecular weight (Mn) was 2.3.
  • the reaction solution was ice-cooled and then added dropwise to diethyl ether to precipitate a polymer.
  • the obtained polymer was sufficiently washed with diethyl ether and then dried under reduced pressure to obtain a white powdery fluoropolymer (X-2).
  • Example 1 In a 50 mL sample bottle, 96.1 mg (0.04805 parts by mass) of A-200 as a non-fluorine compound (B), 3 mg (0.0015 parts by mass) of I-907 as a photopolymerization initiator, and fluorine-containing compounds 0.9 mg (0.00045 parts by mass) of the polymer (A-1) was added and stirred for 1 day to obtain a protein adhesion inhibitor ( ⁇ -1). 199.9 g (99.95 parts by mass) of ethanol was added to the protein adhesion inhibitor ( ⁇ -1) to prepare a coating solution. After 2.2 mL of the coating solution was dispensed onto a 24-well microplate, it was dried overnight. The dried 24-well microplate was irradiated with light under a condition of 547 mJ / cm 2 in a nitrogen atmosphere to form a coating layer.
  • Example 2 A protein adhesion inhibitor ( ⁇ -2) was obtained in the same manner as in Example 1 except that the amounts of A-200 and fluoropolymer (A-1) used were changed as shown in Table 2. In addition, a coating solution was prepared and a coating layer was formed in the same manner as in Example 1 except that the protein adhesion inhibitor ( ⁇ -2) was used.
  • Example 3 A protein adhesion inhibitor ( ⁇ -3) was obtained in the same manner as in Example 1 except that the non-fluorine compound (B) was changed from A-200 to 701A. In addition, a coating solution was prepared and a coating layer was formed in the same manner as in Example 1 except that the protein adhesion inhibitor ( ⁇ -3) was used.
  • Example 4 0.9 g (0.9 parts by mass) of the fluoropolymer (A-1) was dissolved in THF to prepare a THF solution having a fluoropolymer (A-1) concentration of 20 mass%.
  • a THF solution having a fluoropolymer (A-1) concentration of 20 mass%.
  • PC which is a non-fluorine type thermoplastic resin
  • B non-fluorine type compound
  • pelletized protein adhesion inhibitor ⁇ -4
  • EC50SC manufactured by TOSHIBA MACHINERY CO., LTD.
  • Injection molding device into the mold cavity under the molding conditions of molten resin temperature 300 ° C and mold temperature 90 ° C. Injection molding was performed to produce a molded body.
  • Example 5 A pellet-shaped protein adhesion inhibitor ( ⁇ -5) was obtained in the same manner as in Example 4 except that PS was used instead of PC as the non-fluorine compound (B) and a strand was produced at 180 ° C.
  • a molded body was produced in the same manner as in Example 4 except that a pellet-like protein adhesion inhibitor ( ⁇ -5) was used and the molding conditions were changed to a molten resin temperature of 200 ° C. and a mold temperature of 50 ° C.
  • Example 6 A pellet-like protein adhesion inhibitor ( ⁇ -6) was obtained in the same manner as in Example 4 except that PE was used instead of PC as the non-fluorine compound (B) and a strand was prepared at 110 ° C. Further, using a pellet-like protein adhesion inhibitor ( ⁇ -6), compression molding was carried out at 120 ° C. for 5 minutes at 20 MPa using a mini test press manufactured by Toyo Seiki Co., Ltd. to produce a molded body.
  • Example 7 0.9 g of the fluoropolymer (A-1) was dissolved in THF to prepare a THF solution having a fluoropolymer (A-1) concentration of 20% by mass.
  • PMMA as a non-fluorine compound (B) was added and mixed, and then the THF was evaporated to obtain a protein adhesion preventive agent ( ⁇ -7).
  • a coating solution was prepared by dissolving in MP so that the content of the protein adhesion inhibitor ( ⁇ -7) was 10% by mass.
  • the glass substrate was rotated at 500 rpm, the coating solution was cast on the surface for 30 seconds, spin-coated, dried at 80 ° C. for 1 hour to form a film, and the film was peeled off from the glass substrate.
  • Example 1X 0.9 g of the fluoropolymer (A-1) was dissolved in THF to prepare a THF solution having a fluoropolymer (A-1) concentration of 20% by mass.
  • THF solution a THF solution having a fluoropolymer (A-1) concentration of 20% by mass.
  • Exester ES-S3430 manufactured by Asahi Glass Co., Ltd.
  • a modified silicone polymer was added as a non-fluorine compound (B) (99.1 g) and mixed, and then THF was evaporated to prevent protein adhesion.
  • An agent ( ⁇ -1X) was obtained.
  • a coating solution was prepared by dissolving in THF so that the content of the protein adhesion inhibitor ( ⁇ -1X) was 10% by mass.
  • the glass substrate was rotated at 500 revolutions per minute, and the coating solution was cast on the surface for 30 seconds for spin coating. Then, it was made to dry at 80 degreeC for 1 hour, the film was formed, and this film was pe
  • Example 8 In a 50 mL sample bottle, 10 mg (0.005 parts by mass) of C6FMA as a fluorine-containing compound (C), 20 mg (0.01 parts by mass) of IB-XA as a non-fluorine compound (B), and 22 mg of A-200 (0.011 parts by mass), 42 mg (0.021 parts by mass) of A-DPH, 3 mg (0.0015 parts by mass) of I-907 as a polymerization initiator, and 3 mg of the fluoropolymer (A-1) (0.0015 parts by mass) was added, and the mixture was stirred for 15 minutes to obtain a protein adhesion inhibitor ( ⁇ -8). 199.9 g (99.95 parts by mass) of ethanol was added to the protein adhesion inhibitor ( ⁇ -8) to prepare a coating solution. Using the coating solution, a coating layer was formed in the same manner as in Example 1.
  • Example 9 A composition ( ⁇ -1) was obtained in the same manner as in Example 1 except that the fluoropolymer (A-1) was not used and the amount of A-200 used was changed as shown in Table 2. Further, a coating solution was prepared and a coating layer was formed in the same manner as in Example 1 except that the composition ( ⁇ -1) was used.
  • Example 10 The same as Example 1 except that the fluoropolymer (A-1) was not used, the non-fluorine compound (B) was changed from A-200 to 701A, and the amount used was changed as shown in Table 2. Thus, a composition ( ⁇ -2) was obtained. Further, a coating solution was prepared and a coating layer was formed in the same manner as in Example 1 except that the composition ( ⁇ -2) was used.
  • Example 11 A pellet-shaped composition ( ⁇ -3) was obtained in the same manner as in Example 4 except that the fluoropolymer (A-1) was not used and the amount of PC used was changed as shown in Table 2. A molded body was produced in the same manner as in Example 4 except that the pellet-shaped composition ( ⁇ -3) was used.
  • Example 12 A pellet-shaped composition (as in Example 4), except that the fluoropolymer (A-1) was not used, PS was used instead of PC, and the amount used was changed as shown in Table 2. ⁇ -4) was obtained.
  • a molded body was produced in the same manner as in Example 4 except that the pellet-shaped composition ( ⁇ -4) was used and the molding conditions were changed to a molten resin temperature of 200 ° C. and a mold temperature of 50 ° C.
  • Example 13 A pellet-shaped composition (as in Example 4), except that the fluoropolymer (A-1) was not used, PE was used instead of PC, and the amount used was changed as shown in Table 2. ⁇ -5) was obtained. A molded body was produced in the same manner as in Example 6 except that the pellet-shaped composition ( ⁇ -5) was used.
  • Example 14 A composition ( ⁇ -6) was obtained in the same manner as in Example 7 except that the fluoropolymer (A-1) was not used and the amount of PMMA used was changed as shown in Table 2. A coating solution was prepared in the same manner as in Example 7 except that the composition ( ⁇ -6) was used, and a film was produced.
  • Example 15 35 parts by mass of the fluoropolymer (X-1) was dissolved in EtOH so that the concentration thereof was 20% by mass, and 65 parts by mass of PE as a non-fluorine compound (B) was added to the obtained EtOH solution. After adding and mixing, EtOH was evaporated. The obtained mixture was sufficiently kneaded, a strand was produced at 110 ° C. using a lab plast mill manufactured by Toyo Seiki Co., Ltd., and the tip portion of the strand was sequentially cut to obtain a pellet-shaped composition ( ⁇ -7 ) Further, the pellet-shaped composition ( ⁇ -7) was compression-molded using a mini test press manufactured by Toyo Seiki Co., Ltd. under the conditions of 120 ° C., 5 minutes, and 20 MPa to produce a molded body.
  • Example 16 A pellet-shaped composition ( ⁇ -8) was obtained in the same manner as in Example 15 except that the amounts of the fluoropolymer (X-1) and PE used were changed as shown in Table 2. A molded body was produced in the same manner as in Example 15 except that the pellet-shaped composition ( ⁇ -8) was used.
  • Example 17 Except that the fluoropolymer (X-2) was used instead of the fluoropolymer (X-1), and the amounts of the fluoropolymer (X-2) and PE were changed as shown in Table 2.
  • a pellet-shaped composition ( ⁇ -9) was obtained in the same manner as in Example 15.
  • a molded body was produced in the same manner as in Example 15 except that the pellet-shaped composition ( ⁇ -9) was used.
  • Table 2 shows the composition of each composition, the type of solvent, and the amount used.
  • Table 3 shows the type and ratio of the fluoropolymer in the composition in each example, the results of the surface analysis of the coating layer or the molded product, and the measurement results of the protein adsorption rate.
  • the adsorption rate W was low and the biocompatibility was excellent.
  • the article of Example 8 formed from a protein adhesion inhibitor containing a fluorine-containing compound (C) had a remarkably low protein adsorption rate W and was extremely excellent in biocompatibility.
  • the higher the ratio of the fluoropolymer (A-1) in the composition the difference between the initial water contact angle ⁇ 1 on the surface and the water contact angle ⁇ 2 after 60 minutes. ( ⁇ 1- ⁇ 2) was large, and the surface was made more hydrophilic. This is presumably because the fluoropolymer (A-1) has a low glass transition temperature, and the biocompatible group is inverted and tends to face outward.
  • An article having a coating layer using the protein adhesion preventing inhibitor of the present invention and a molded product thereof are excellent in water resistance, are difficult to elute the coating components, are excellent in biocompatibility that is difficult to adsorb proteins, and have a marine structure. It is useful as a covering or a molded article of a product, a medical device, etc., and is used in, for example, a catheter, an artificial organ, a cell culture container, and the like. It should be noted that the entire content of the specification, claims, drawings and abstract of Japanese Patent Application No. 2014-147932 filed on July 18, 2014 is cited here as the disclosure of the specification of the present invention. Incorporated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dermatology (AREA)
  • Wood Science & Technology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials For Medical Uses (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

 医療用デバイス等の物品の表面に優れた生体適合性を付与できるタンパク質付着防止剤、塗布液および生体適合性に優れる物品の提供。 生体親和性基を有し、フッ素原子含有率Qが5~60質量%であり、かつガラス転移温度が-100~100℃である含フッ素重合体(A)と、非フッ素系熱硬化性樹脂、非フッ素系熱可塑性樹脂、非フッ素系光硬化性樹脂および重合性不飽和基を有する非フッ素系硬化性単量体からなる群から選ばれる少なくとも1種の非フッ素系化合物(B)と、を含むタンパク質付着防止剤であって、前記組成物中の前記含フッ素重合体の含有量が0.01~5質量%である、タンパク質付着防止剤。

Description

タンパク質付着防止剤
 本発明は、タンパク質付着防止剤、塗布液および物品に関する。
 近年、細胞を積極的に利用して、その機能の再生をはかることを目的とした再生医療の分野が発展している。再生医療の分野では、細胞の培養および増殖は、生体外において細胞培養容器を用いて行われる。三次元培養等、細胞培養容器内において生体内での細胞増殖と同様に培養および増殖を行うには、細胞培養容器の内表面が充分な生体適合性を有していることが重要である。すなわち、細胞培養容器の内表面に、フィブリノーゲン、免疫グロブリンG(IgG)、インスリン、ヒストン、炭酸脱水酵素等のタンパク質が吸着しにくいことが重要である。
 また、カテーテル、人工臓器等の細胞培養容器以外の医療用デバイスにおいても、表面が充分な生体適合性を有していることは重要である。これらの医療用デバイスの生体適合性が不充分であると、血栓形成、炎症反応等の生体への悪影響や、デバイスの劣化等の問題が引き起こされる。
 医療用デバイスの材料として用いられる熱硬化性樹脂(シリコーン樹脂等)、熱可塑性樹脂(ポリスチレン等)等は、生体適合性が不充分である。そこで、医療用デバイスの生体適合性を高める方法として、例えば、生体膜類似構造を有する2-メタクリロイルオキシエチルホスホリルコリンと、1H,1H,5H-オクタフルオロペンチルメタクリレート等の含フッ素単量体と、スチレン等の非フッ素単量体とを共重合して得られる含フッ素重合体を含む表面偏析型プラスチック用添加剤を用いることが提案されている(特許文献1)。
 該表面偏析型プラスチック用添加剤を熱硬化性樹脂や熱可塑性樹脂に添加した組成物を成形してプラスチック成形品とすることで、該表面偏析型プラスチック用添加剤が表層に移行して偏在し、ホスホリルコリン基により成形品表面の生体適合性が改善される。
特開2007-314723号公報
 しかし、本発明者によれば、特許文献1の表面偏析型プラスチック用添加剤を用いたプラスチック成形品では、表面の生体適合性が不充分である。
 本発明は、医療用デバイス等の物品の表面に優れた生体適合性を付与できるタンパク質付着防止剤、該タンパク質付着防止剤を含む塗布液、および生体適合性に優れる物品を提供することを目的とする。
 本発明は、以下の[1]~[11]の構成を有するタンパク質付着防止剤、塗布液および物品を提供する。
 [1]生体親和性基を有し、フッ素原子含有率Qが5~60質量%であり、かつガラス転移温度が-100~100℃である含フッ素重合体(A)と、非フッ素系熱硬化性樹脂、非フッ素系熱可塑性樹脂、非フッ素系光硬化性樹脂および重合性不飽和基を有する非フッ素系硬化性単量体からなる群から選ばれる少なくとも1種の非フッ素系化合物(B)と、を含む組成物であって、該組成物中の前記含フッ素重合体(A)の含有量が0.01~10質量%である組成物からなるタンパク質付着防止剤。
 [2]含フッ素熱硬化性樹脂、含フッ素光硬化性樹脂および重合体不飽和基を有する含フッ素硬化性単量体からなる群から選ばれる少なくとも1種の含フッ素化合物(C)(ただし、前記含フッ素重合体(A)を除く。)をさらに含む、上記[1]に記載のタンパク質付着防止剤。
 [3]前記生体親和性基が、下式(1)で表される基、下式(2)で表される基および下式(3)で表される基からなる群から選ばれる少なくとも1種である、上記[1]または[2]に記載のタンパク質付着防止剤。
Figure JPOXMLDOC01-appb-C000006
(前記式中、nは1~10の整数であり、mは前記式(1)で表される基が含フッ素重合体において、側鎖に含まれる場合は1~100の整数であり、主鎖に含まれる場合は5~300であり、R~Rは、それぞれ独立に、炭素数1~5のアルキル基であり、aは1~5の整数であり、bは1~5の整数であり、RおよびRは、それぞれ独立に、炭素数1~5のアルキル基であり、Xは下式(3-1)で表される基または下式(3-2)で表される基であり、cは1~20の整数であり、dは1~5の整数である。)
Figure JPOXMLDOC01-appb-C000007
 [4]前記含フッ素重合体(A)が、前記生体親和性基を有し、かつフッ素原子を有しない単位と、フッ素原子を有し、かつ前記生体親和性基を有しない単位とを有する、上記[1]~[3]に記載のいずれかのタンパク質付着防止剤。
 [5]前記のフッ素原子を有し、かつ前記生体親和性基を有しない単位の割合が、前記含フッ素重合体(A)の全単位に対して10モル%超である、上記[4]に記載のタンパク質付着防止剤。
 [6]前記フッ素原子を有し、かつ生体親和性基を有しない単位が、下式(m1)で表される単量体に由来する単位であり、前記生体親和性基を有し、かつフッ素原子を有しない単位が、下式(m2)で表される単量体に由来する単位および下式(m3)で表される単量体に由来する単位からなる群から選ばれる少なくとも1種の単位である、上記[4]または[5]に記載のタンパク質付着防止剤。
Figure JPOXMLDOC01-appb-C000008
(前記式中、Rは水素原子、塩素原子またはメチル基であり、eは0~3の整数であり、RおよびRは、それぞれ独立に、水素原子、フッ素原子またはトリフルオロメチル基であり、Rf1は炭素数1~20のペルフルオロアルキル基であり、Rは水素原子、塩素原子またはメチル基であり、Qは-C(=O)-O-または-C(=O)-NH-であり、R~Rは、それぞれ独立に、炭素数1~5のアルキル基であり、aは1~5の整数であり、bは1~5の整数であり、R10は水素原子、塩素原子またはメチル基であり、Qは-C(=O)-O-または-C(=O)-NH-であり、RおよびRは、それぞれ独立に、炭素数1~5のアルキル基であり、Xは下式(3-1)で表される基または下式(3-2)で表される基であり、cは1~20の整数であり、dは1~5の整数である。)
Figure JPOXMLDOC01-appb-C000009
 [7]前記フッ素原子を有し、かつ生体親和性基を有しない単位が、下式(m1)で表される単量体に由来する単位であり、前記生体親和性基を有し、かつフッ素原子を有しない単位が、下式(m4)で表される単量体に由来する単位である、上記[4]または[5]に記載のタンパク質付着防止剤。
Figure JPOXMLDOC01-appb-C000010
(前記式中、Rは水素原子、塩素原子またはメチル基であり、eは0~3の整数であり、RおよびRは、それぞれ独立に、水素原子、フッ素原子またはトリフルオロメチル基であり、Rf1は炭素数1~20のペルフルオロアルキル基であり、R11は水素原子、塩素原子またはメチル基であり、Qは-COO-または-COO(CH-NHCOO-(ただし、hは1~4の整数である。)であり、R12は水素原子または-(CH-R13(ただし、R13は炭素数1~8のアルコキシ基、水素原子、ヒドロキシ基またはシアノ基であり、iは1~25の整数である。)であり、fは1~10の整数であり、gは1~100の整数である。)
 [8]前記組成物中のフッ素系化合物(C)の含有量が、タンパク質付着防止剤の全量に対して3~35質量である、上記[2]~[7]のいずれかに記載のタンパク質付着防止剤。
 [9]上記[1]~[8]のいずれかに記載のタンパク質付着防止剤と、溶媒とを含むことを特徴とする塗布液。
 [10]生体親和性基を有し、フッ素原子含有率QFが5~60質量%であり、かつガラス転移温度が-100~100℃である含フッ素重合体(A)と、非フッ素系熱硬化性樹脂、非フッ素系熱可塑性樹脂、非フッ素系光硬化性樹脂および重合性不飽和基を有する非フッ素系硬化性単量体からなる群から選ばれる少なくとも1種の非フッ素系化合物(B)と、を含む組成物であって、該組成物中の前記含フッ素重合体(A)の含有量が0.01~10質量%である組成物の、タンパク質付着防止のための使用。
 [11]上記[1]~[8]のいずれかに記載のタンパク質付着防止剤から形成されてなり、かつ表面に露出している部分を少なくとも一部に有することを特徴とする物品。
 [12]下式で表されるフッ素原子の偏析割合が0.01~1であり、表面の水滴を載せた直後の水接触角φ1と、水滴を載せてから60分間後の水接触角φ2との差(φ1-φ2)が10~60度であることを特徴とする物品。
 フッ素原子の偏析割合=(物品表面のフッ素原子比率SF/C-物品表面から15nm深さのフッ素原子比率SF/C)/(物品表面のフッ素原子比率SF/C
 [13]医療用デバイスである、上記[11]または[12]に記載の物品。
 [14]デバイス基材と、デバイス基材上に形成された被覆層とを備え、前記被覆層が、上記[1]~[8]のいずれかに記載のタンパク質付着防止剤から形成された層である医療用デバイス。
 [15]細胞培養容器である上記[14]に記載の医療用デバイス。
 本発明のタンパク質付着防止剤は、医療用デバイス等の物品の表面に優れた生体適合性を付与できる。
 また、本発明のタンパク質付着防止剤を含有する塗布液は、タンパク質が吸着しにくい生体適合性に優れた被覆層の形成が可能であり、医療用デバイス等の物品の表面に優れた生体適合性を付与できる。
 本発明の物品は、表面が生体適合性に優れる。
本発明の医療用デバイスの一例を示した斜視図である。 図1の医療用デバイスのI-I断面図である。
 以下の用語の定義は、本明細書および特許請求の範囲にわたって適用される。
 「含フッ素重合体」とは、分子中にフッ素原子を有する高分子化合物を意味する。
 重合体の「ガラス転移温度(Tg)」とは、示差走査熱量測定(DSC)法で測定したゴム状態からガラス状態へ変化する温度を意味する。
 「単位」とは、重合体中に存在して重合体を構成する、単量体に由来する部分を意味する。重合性不飽和結合(炭素-炭素不飽和二重結合)を有する単量体の付加重合により生じる、該単量体に由来する単位は、該重合性不飽和結合が開裂して生じた2価の単位である。また、ある単位の構造を重合体形成後に化学的に変換したものも単位という。なお、以下、場合により、個々の単量体に由来する単位をその単量体名に「単位」を付した名称で呼ぶ。
 「(メタ)アクリレート」とは、アクリレートおよびメタクリレートの総称である。
 「(メタ)アクリロイル基」とは、アクリロイル基およびメタクリロイル基の総称である。
 ポリフルオロアルキレン基とはフッ素原子を複数有するアルキル基を意味し、ペルフルオロアルキル基とは、水素原子が完全にフッ素原子に置換されたアルキル基を意味する。
 「非フッ素熱硬化性樹脂」とは、硬化剤の存在下または非存在下にて加熱することによって架橋構造を形成して硬化する樹脂であって、フッ素原子を有しない樹脂を意味する。
 「非フッ素系熱可塑性樹脂」とは、加熱したときに架橋構造が形成されずに軟化し、冷却することで固化する樹脂であって、フッ素原子を有しない樹脂を意味する。
 「非フッ素系光硬化性樹脂」とは、光を照射することによって架橋構造を形成して硬化する樹脂であって、フッ素原子を有しない樹脂を意味する。
 「非フッ素系硬化性単量体」とは、重合性不飽和基を有し、かつフッ素原子を有しない単量体を意味する。
 「含フッ素熱硬化性樹脂」とは、硬化剤の存在下または非存在下にて加熱することによって架橋構造を形成して硬化する樹脂であって、フッ素原子を有する樹脂を意味する。
 「含フッ素光硬化性樹脂」とは、光を照射することによって架橋構造を形成して硬化する樹脂であって、フッ素原子を有する樹脂を意味する。
 「含フッ素硬化性単量体」とは、重合性不飽和基を有し、かつフッ素原子を有する単量体を意味する。
 「架橋性基」とは、硬化剤と反応することにより架橋構造を形成可能な基、または架橋性基同士が反応して架橋構造を形成可能な基を意味する。
 「生体親和性基」とは、タンパク質が重合体に吸着および細胞が重合体に接着して動かなくなることを抑制する性質を有する基を意味する。
 「生体適合性」とは、タンパク質が吸着しない、または細胞が接着しない性質を意味する。
 「医療用デバイス」とは、治療、診断、解剖学または生物学的な検査、観察等の医療用として用いられるデバイスであり、人体等の生体内に挿入あるいは接触させる、または生体から取り出した媒体(血液等)と接触する如何なるデバイスも含むものとする。
 「細胞」とは、生体を構成する最も基本的な単位であり、細胞膜の内部に、細胞質と各種の細胞小器官をもつものを意味する。DNAを内包する核は、細胞内部に含まれても含まれなくてもよい。
 動物由来の細胞には、生殖細胞(精子、卵子等)、生体を構成する体細胞、幹細胞、前駆細胞、生体から分離された癌細胞、生体から分離され不死化能を獲得して体外で安定して維持される細胞(細胞株)、生体から分離され人為的に遺伝子改変された細胞、生体から分離され人為的に核が交換された細胞等が含まれる。
 生体を構成する体細胞には、線維芽細胞、骨髄細胞、Bリンパ球、Tリンパ球、好中球、赤血球、血小板、マクロファージ、単球、骨細胞、骨髄細胞、周皮細胞、樹枝状細胞、ケラチノサイト、脂肪細胞、間葉細胞、上皮細胞、表皮細胞、内皮細胞、血管内皮細胞、肝実質細胞、軟骨細胞、卵丘細胞、神経系細胞、グリア細胞、ニューロン、オリゴデンドロサイト、マイクログリア、星状膠細胞、心臓細胞、食道細胞、筋肉細胞(例えば、平滑筋細胞、骨格筋細胞)、膵臓ベータ細胞、メラニン細胞、造血前駆細胞、単核細胞等が含まれる。
 体細胞には、皮膚、腎臓、脾臓、副腎、肝臓、肺、卵巣、膵臓、子宮、胃、結腸、小腸、大腸、膀胱、前立腺、精巣、胸腺、筋肉、結合組織、骨、軟骨、血管組織、血液、心臓、眼、脳、神経組織等の任意の組織から採取される細胞等が含まれる。
 幹細胞とは、自分自身を複製する能力と他の複数系統の細胞に分化する能力を兼ね備えた細胞であり、胚性幹細胞(ES細胞)、胚性腫瘍細胞、胚性生殖幹細胞、人工多能性幹細胞(iPS細胞)、神経幹細胞、造血幹細胞、間葉系幹細胞、肝幹細胞、膵幹細胞、筋幹細胞、生殖幹細胞、腸幹細胞、癌幹細胞、毛包幹細胞等が含まれる。
 前駆細胞とは、前記幹細胞から特定の体細胞または生殖細胞に分化する途中の段階にある細胞である。
 癌細胞とは、体細胞から派生して無限の増殖能を獲得した細胞である。
 細胞株とは、生体外での人為的な操作により無限の増殖能を獲得した細胞であり、HCT116、Huh7、HEK293(ヒト胎児腎細胞)、HeLa(ヒト子宮頸癌細胞株)、HepG2(ヒト肝癌細胞株)、UT7/TPO(ヒト白血病細胞株)、CHO(チャイニーズハムスター卵巣細胞株)、MDCK、MDBK、BHK、C-33A、HT-29、AE-1、3D9、Ns0/1、Jurkat、NIH3T3、PC12、S2、Sf9、Sf21、High Five、Vero等が含まれる。
 本明細書においては、式(1)で表される基を基(1)と記す。他の式で表される基も同様に記す。
[タンパク質付着防止剤]
 本発明のタンパク質付着防止剤は、医療用デバイス等の物品の表面に優れた生体適合性を付与するための剤である。すなわち、本発明のタンパク質付着防止剤は、物品表面にフィブリノーゲン、免疫グロブリンG(IgG)、インスリン、ヒストンおよび炭酸脱水酵素からなる群から選ばれる少なくとも1種のタンパク質が吸着することを防止するための剤である。前記タンパク質の吸着を防止することで、前記タンパク質にさらに細胞が接着することを抑制できる。
 本発明のタンパク質付着防止剤は、生体親和性基を有し、フッ素原子含有率Qが5~60質量%であり、かつガラス転移温度が-100~100℃である含フッ素重合体(A)と、非フッ素系熱硬化性樹脂、非フッ素系熱可塑性樹脂、非フッ素系光硬化性樹脂および重合性不飽和基を有する非フッ素系硬化性単量体からなる群から選ばれる少なくとも1種の非フッ素系化合物(B)と、を含む。
(含フッ素重合体(A))
 本発明における含フッ素重合体(A)は、生体親和性基を有し、フッ素原子含有率Qが5~60質量%であり、かつガラス転移温度が-100~100℃の含フッ素重合体である。含フッ素重合体(A)は、例えば、医療用デバイスのタンパク質付着防止のために使用することができる。具体的には、含フッ素重合体(A)で形成された被覆層を備える医療用デバイスとすることで、該医療用デバイスへのタンパク質の付着を防止することができる。また、含フッ素重合体(A)は、非フッ素系化合物(B)と架橋構造を形成しない含フッ素重合体であることが好ましい。
 <生体親和性基>
 生体親和性基としては、タンパク質の吸着防止効果が得られやすい点から、下記の基(1)、基(2)および基(3)からなる群から選ばれる少なくとも1種が好ましい。基(1)のみ、または、基(2)および基(3)のいずれか一方もしくは両方がより好ましく、基(1)、基(2)または基(3)のいずれか1つが特に好ましい。含フッ素重合体(A)は、基(1)~(3)を含むと生体適合性に優れる。
Figure JPOXMLDOC01-appb-C000011
 ただし、前記式中、nは1~10の整数であり、mは基(1)が含フッ素重合体(A)において、側鎖に含まれる場合は1~100の整数であり、主鎖に含まれる場合は5~300であり、R~Rは、それぞれ独立に、炭素数1~5のアルキル基であり、aは1~5の整数であり、bは1~5の整数であり、RおよびRは、それぞれ独立に、炭素数1~5のアルキル基であり、Xは下記の基(3-1)または下記の基(3-2)であり、cは1~20の整数であり、dは1~5の整数である。
Figure JPOXMLDOC01-appb-C000012
 基(1):
 基(1)は、血液中等で運動性が高く、物品表面に吸着しようとするタンパク質が吸着しにくくなる。
 基(1)は、含フッ素重合体(A)の主鎖に含まれていてもよく、側鎖に含まれていてもよい。
 基(1)におけるnは、タンパク質が吸着しにくい点から、1~6の整数が好ましく、1~4の整数が特に好ましい。
 基(1)は、直鎖状であってもよく、分岐鎖状であってもよい。タンパク質の吸着抑制効果がより高い点から、基(1)は直鎖状であることが好ましい。
 基(1)におけるmは、基(1)が含フッ素重合体(A)の側鎖に含まれる場合、耐水性に優れる点から、1~40が好ましく、1~20が特に好ましい。
 基(1)におけるmは、基(1)が含フッ素重合体(A)の主鎖に含まれる場合、耐水性に優れる点から、5~300が好ましく、10~200が特に好ましい。
 mが2以上の場合、基(1)の(C2nO)は1種であってもよく、2種以上であってもよい。また、2種以上の場合、その並び方はランダム、ブロック、交互のいずれであってもよい。nが3以上の場合、直鎖構造であってもよく、分岐構造であってもよい。
 含フッ素重合体(A)が基(1)を有する場合、含フッ素重合体(A)が有する基(1)は、1種でもよく、2種以上でもよい。
 基(2):
 基(2)は、血液中のリン脂質に対して強い親和性を持つ一方、血漿タンパク質に対する相互作用力は弱い。そのため、基(2)を有する含フッ素重合体(A)を用いることで、例えば、血液中では物品表面にリン脂質が優先して吸着し、該リン脂質が自己組織化して吸着層が形成されると考えられる。その結果、表面が血管内皮表面に類似した構造となるために、フィブリノーゲン等のタンパク質の吸着が抑制される。
 基(2)は、含フッ素重合体(A)の側鎖に含まれることが好ましい。
 基(2)におけるR~Rは、それぞれ独立に、炭素数1~5のアルキル基であり、原料の入手容易性の点から、炭素数1~4のアルキル基が好ましく、メチル基が特に好ましい。
 基(2)におけるaは、1~5の整数であり、原料の入手容易性の点から、2~5の整数が好ましく、2が特に好ましい。
 基(2)におけるbは、1~5の整数であり、タンパク質が吸着しにくい点から、1~4の整数が好ましく、2が特に好ましい。
 含フッ素重合体(A)が基(2)を有する場合、含フッ素重合体(A)が有する基(2)は、1種でもよく、2種以上でもよい。
 基(3):
 基(3)を有する含フッ素重合体(A)を用いることで、基(2)を有する含フッ素重合体(A)を用いる場合と同様の理由からタンパク質の吸着が抑制される。
 基(3)は、含フッ素重合体(A)の側鎖に含まれることが好ましい。
 基(3)におけるRおよびRは、それぞれ独立に、炭素数1~5のアルキル基であり、タンパク質が吸着しにくい点から、炭素数1~4のアルキル基が好ましく、メチル基が特に好ましい。
 基(3)におけるcは、1~20の整数であり、含フッ素重合体(A)が柔軟性に優れる点から、1~15の整数が好ましく、1~10の整数がより好ましく、2が特に好ましい。
 基(3)におけるdは、1~5の整数であり、タンパク質が吸着しにくい点から、1~4の整数が好ましく、1が特に好ましい。
 含フッ素重合体(A)が基(3)を有する場合、含フッ素重合体(A)が有する基(3)は、1種でもよく、2種以上でもよい。
 また、含フッ素重合体(A)が基(3)を有する場合、タンパク質が吸着しにくい点から、含フッ素重合体(A)は、Xが基(3-1)である基(3)を有するか、またはXが基(3-2)である基(3)を有するかのいずれかであることが好ましい。
 含フッ素重合体(A)は、物品表面にタンパク質が吸着しにくい点から、生体親和性基を有し、かつフッ素原子を有しない単位と、フッ素原子を有し、かつ生体親和性基を有しない単位とを有することが好ましい。
 フッ素原子を有し、かつ生体親和性基を有しない単位の割合は、含フッ素重合体(A)の全単位に対して、10モル%超が好ましい。前記単位の割合が10モル%超であることで、物品表面の表面張力を充分に低くできる。
 前記単位の割合は、10モル%超95モル%以下がより好ましく、10モル%超90モル%以下が特に好ましい。前記単位の割合が前記範囲の上限値以下であれば、物品表面にタンパク質が吸着しにくい。
 生体親和性基を有し、かつフッ素原子を有しない単位の割合は、含フッ素重合体(A)の全単位に対して、90モル%未満が好ましい。前記単位の割合が90モル%未満であることで、物品表面の耐水性に優れる。
 前記単位の割合は、5モル%以上90モル%未満がより好ましく、10モル%以上90モル%未満が特に好ましい。前記単位の割合が前記範囲の下限値以上であれば、物品表面にタンパク質が吸着しにくい。
 <含フッ素重合体(A)の特性>
 含フッ素重合体(A)のフッ素原子含有率Qは、5~60質量%である。該フッ素原子含有率Qは5~55質量%が好ましく、5~50質量%が特に好ましい。フッ素原子含有率Qが前記範囲の下限値以上であれば、物品表面の耐水性が優れる。フッ素原子含有率Qが前記範囲の上限値以下であれば、物品表面にタンパク質が吸着しにくい。
 なお、フッ素原子含有率Q(質量%)は、下式で求められる。
 Q=[19×N/M]×100
 N:含フッ素重合体を構成する単位の種類毎に、単位のフッ素原子数と、全単位に対する当該単位のモル比率とを乗じた値の総和。
 M:含フッ素重合体を構成する単位の種類毎に、単位を構成する全ての原子の原子量の合計と、全単位に対する当該単位のモル比率とを乗じた値の総和。
 具体例として、テトラフルオロエチレン(TFE)単位50モル%とエチレン(E)単位50モル%とを有する含フッ素重合体のフッ素原子含有率Qについて以下に説明する。
 該含フッ素重合体の場合、TFE単位のフッ素原子数(4個)と、全単位に対するTFE単位のモル比率(0.5)とを乗じた値は2であり、E単位のフッ素原子数(0個)と、全単位に対するE単位のモル比率(0.5)とを乗じた値は0であるため、Nは2となる。
 また、TFE単位を構成する全ての原子の原子量の合計(100)と、全単位に対するTFE単位のモル比率(0.5)とを乗じた値は50であり、E単位を構成する全ての原子の原子量の合計(28)と、全単位に対するE単位のモル比率(0.5)とを乗じた値は14であるため、Mは64となる。したがって、該含フッ素重合体のフッ素原子含有率Qは59.4質量%となる。
 なお、フッ素原子含有率Qは、実施例に記載の方法で測定できる。また、含フッ素重合体(A)の製造に使用する単量体および開始剤の仕込み量から算出することもできる。
 含フッ素重合体(A)のガラス転移温度は、-100~100℃である。該ガラス転移温度は、-100~80℃が好ましく、-100~40℃がより好ましく、-50~0℃が特に好ましい。含フッ素重合体(A)のガラス転移温度が前記範囲の下限値以上であれば、含フッ素重合体(A)が室温で成形しやすい適度な粘度を有する。含フッ素重合体(A)のガラス転移温度が前記範囲の上限値以下であれば、物品表面へのタンパク質の吸着を抑制できる。また、含フッ素重合体(A)のガラス転移温度が40℃以下であれば、予め熱水と接触させる前処理を行うことなく、常温での細胞培養等において優れた生体適合性が得られやすい点で有利である。
 含フッ素重合体(A)のガラス転移温度を低くするには、生体親和性基として基(1)を用いることが好ましい。基(2)および基(3)は正電荷と負電荷の両方を有するため、それらの基が多くなると、イオン結合による影響でガラス転移温度が高くなる傾向にあるが、基(1)は正電荷も負電荷も有しないため、イオン結合によるガラス転移温度の上昇がない。
 含フッ素重合体(A)の数平均分子量(Mn)は、2,000~1,000,000が好ましく、2,000~800,000が特に好ましい。含フッ素重合体(A)の数平均分子量が前記範囲の下限値以上であれば、物品の耐久性に優れる。含フッ素重合体(A)の数平均分子量が前記範囲の上限値以下であれば、成形性に優れる。
 含フッ素重合体(A)の質量平均分子量(Mw)は、2,000~2,000,000が好ましく、2,000~1,000,000が特に好ましい。含フッ素重合体(A)の質量平均分子量が前記範囲の下限値以上であれば、物品の耐久性に優れる。含フッ素重合体(A)の質量平均分子量が前記範囲の上限値以下であれば、成形性に優れる。
 含フッ素重合体(A)の分子量分布(Mw/Mn)は、1~10が好ましく、1.1~5が特に好ましい。含フッ素重合体(A)の分子量分布が前記範囲内であれば、物品表面の耐水性に優れ、かつ物品表面にタンパク質が吸着しにくい。
 含フッ素重合体(A)は市販品を使用してもよい。市販品としては、例えば、以下のものが挙げられる。
 3M社製、ノベック(登録商標)シリーズ:
 FC-4430(ノニオン性、ペルフルオロブタンスルホン酸基含有、表面張力:21mN/m)、
 FC-4432(ノニオン性、ペルフルオロブタンスルホン酸基含有、表面張力:21mN/m)等。
 AGCセイミケミカル社製、サーフロン(登録商標)シリーズ:
 S-241(ノニオン性、炭素数が1~6のペルフルオロアルキル基含有、表面張力:16.2mN/m)、
 S-242(ノニオン性、炭素数が1~6のペルフルオロアルキル基含有エチレンオキシド付加物、表面張力:22.9mN/m)、
 S-243(ノニオン性、炭素数が1~6のペルフルオロアルキル基含有エチレンオキシド付加物、表面張力:23.2mN/m)、
 S-420(ノニオン性、炭素数が1~6のペルフルオロアルキル基含有エチレンオキシド付加物、表面張力:23.1mN/m)、
 S-611(ノニオン性、炭素数が1~6のペルフルオロアルキル基含有重合物、表面張力:18.4mN/m)、
 S-651(ノニオン性、炭素数が1~6のペルフルオロアルキル基含有重合物、表面張力:23.0mN/m)、
 S-650(ノニオン性、炭素数が1~6のペルフルオロアルキル基含有重合物)等。
 DIC社製、メガファック(登録商標)シリーズ:
 F-444(ノニオン性、ペルフルオロアルキルエチレンオキシド付加物、表面張力:16.8mN/m)等。
 旭硝子社製、アサヒガード(登録商標)シリーズ:
 E100等。
 <好ましい含フッ素重合体(A)>
 含フッ素重合体(A)としては、物品表面の耐水性に優れ成分が溶出しにくく、物品表面にタンパク質が吸着しにくい点から、後述の含フッ素重合体(A1)、または含フッ素重合体(A2)が好ましい。
 ≪含フッ素重合体(A1)≫
 含フッ素重合体(A1)は、フッ素原子を有し、かつ生体親和性基を有しない単位として、下記の単量体(m1)に由来する単位(以下、単位(m1)とも記す。)と、生体親和性基を有し、かつフッ素原子を有しない単位として、単量体(m2)に由来する単位(以下、単位(m2)とも記す。)および単量体(m3)に由来する単位(以下、単位(m3)とも記す。)からなる群から選ばれる少なくとも1種の単位と、を有する含フッ素重合体である。
 単量体(m1):下式(m1)で表される単量体、
 単量体(m2):下式(m2)で表される単量体、
 単量体(m3):下式(m3)で表される単量体。
Figure JPOXMLDOC01-appb-C000013
 ただし、前記式中、Rは水素原子、塩素原子またはメチル基であり、eは0~3の整数であり、RおよびRは、それぞれ独立に、水素原子、フッ素原子またはトリフルオロメチル基であり、Rf1は炭素数1~20のペルフルオロアルキル基であり、Rは水素原子、塩素原子またはメチル基であり、Qは-C(=O)-O-または-C(=O)-NH-であり、R~Rは、それぞれ独立に、炭素数1~5のアルキル基であり、aは1~5の整数であり、bは1~5の整数であり、R10は水素原子、塩素原子またはメチル基であり、Qは-C(=O)-O-または-C(=O)-NH-であり、RおよびRは、それぞれ独立に、炭素数1~5のアルキル基であり、Xは基(3-1)または基(3-2)であり、cは1~20の整数であり、dは1~5の整数である。
 単量体(m1):
 式(m1)中、Rは、重合しやすい点から、水素原子またはメチル基が好ましい。
 eは、含フッ素重合体(A1)の柔軟性に優れる点から、1~3の整数が好ましく、1または2が特に好ましい。
 RおよびRは、物品表面の耐水性に優れる点から、フッ素原子が好ましい。
 Rf1のペルフルオロアルキル基は、直鎖状であってもよく、分岐鎖状であってもよい。Rf1としては、原料が入手容易な点から、炭素数1~10のペルフルオロアルキル基が好ましく、炭素数1~5のペルフルオロアルキル基が特に好ましい。
 単量体(m1)の具体例としては、例えば、以下の化合物が挙げられる。
 CH=C(CH)COO(CH(CFCF
 CH=CHCOO(CH(CFCF
 CH=C(CH)COOCHCF
 CH=CHCOOCHCF
 CH=CRCOO(CHCFCFCF
 CH=CRCOO(CHCFCF(CF
 CH=CRCOOCH(CF
 CH=CRCOOC(CF等。
 単量体(m1)としては、物品表面の耐水性に優れる点から、CH=C(CH)COO(CH(CFCF、CH=CHCOO(CH(CFCF、またはCH=CCHCOOCHCFが特に好ましい。
 単位(m1)は、1種でもよく、2種以上でもよい。
 単量体(m2):
 単量体(m2)は、基(2)を有する単量体である。
 式(m2)中、Rは、重合しやすい点から、水素原子またはメチル基が好ましい。
 Qは-C(=O)-O-または-C(=O)-NH-であり、物品表面にタンパク質が吸着しにくい点から、-C(=O)-O-が好ましい。
 R~Rは、それぞれ独立に、炭素数1~5のアルキル基であり、物品表面にタンパク質が吸着しにくい点から、炭素数1~4のアルキル基が好ましく、メチル基が特に好ましい。
 aは、1~5の整数であり、含フッ素重合体(A1)の柔軟性に優れる点から、1~4の整数が好ましく、2が特に好ましい。
 bは1~5の整数であり、物品表面にタンパク質が吸着しにくい点から、1~4の整数が好ましく、2が特に好ましい。
 単量体(m2)の具体例としては、例えば、2-メタクリロイルオキシエチルホスホリルコリン、2-アクリロイルオキシエチルホスホリルコリン等が挙げられる。
 含フッ素重合体(A1)が単位(m2)を有する場合、単位(m2)は、1種でもよく、2種以上でもよい。
 単量体(m3):
 単量体(m3)は、基(3)を有する単量体である。
 式(m3)中、R10は、重合しやすい点から、水素原子またはメチル基が好ましい。
 Qは、-C(=O)-O-または-C(=O)-NH-であり、物品表面にタンパク質が吸着しにくい点から、-C(=O)-O-が好ましい。
 RおよびRは、それぞれ独立に、炭素数1~5のアルキル基であり、原料が入手容易な点から、炭素数1~4のアルキル基が好ましく、メチル基が特に好ましい。
 Xは、基(3-1)または基(3-2)が好ましい。
 cは、1~20の整数であり、原料が入手容易な点から、1~15の整数が好ましく、1~10の整数がより好ましく、2が特に好ましい。
 dは、1~5の整数であり、物品表面にタンパク質が吸着しにくい点から、1~4の整数が好ましく、1が特に好ましい。
 単量体(m3)の具体例としては、例えば、以下の化合物が挙げられる。
 N-メタクリロイルオキシエチル-N,N-ジメチルアンモニウム-α-N-メチルカルボキシベタイン、
 N-アクリロイルオキシエチル-N,N-ジメチルアンモニウム-α-N-メチルカルボキシベタイン、
 N-メタクリロイルオキシエチル-N,N-ジメチルアンモニウム-α-N-プロピルスルホキシベタイン、
 N-メタクリロイルアミノプロピル-N,N-ジメチルアンモニウム-α-N-プロピルスルホキシベタイン等。
 単量体(m3)としては、物品表面にタンパク質が吸着しにくい点から、N-メタクリロイルオキシエチル-N,N-ジメチルアンモニウム-α-N-メチルカルボキシベタイン、またはN-アクリロイルオキシエチル-N,N-ジメチルアンモニウム-α-N-メチルカルボキシベタインが好ましい。
 含フッ素重合体(A1)が単位(m3)を有する場合、単位(m3)は、1種でもよく、2種以上でもよい。
 含フッ素重合体(A1)においては、物品表面にタンパク質が吸着しにくい点から、生体親和性基を有する単位として、単位(m2)または単位(m3)のいずれか1つを有していることが特に好ましい。
 なお、含フッ素重合体(A1)は、単位(m1)、単位(m2)および単位(m3)をすべて有していてもよい。
 含フッ素重合体(A1)の全単位に対する単位(m1)の割合は、10モル%超が好ましく、10モル%超95モル%以下がより好ましく、10モル%超90モル%以下が特に好ましい。単位(m1)の割合が10モル%超であれば、物品表面の表面張力を充分に低くできる。単位(m1)の割合が前記範囲の上限値以下であれば、物品表面にタンパク質が吸着しにくい。
 含フッ素重合体(A1)の全単位に対する生体親和性基を有する単位の割合は、90モル%未満が好ましく、5モル%以上90モル%未満がより好ましく、10モル%以上90モル%未満が特に好ましい。前記単位の割合が前記範囲の下限値以上であれば、物品表面にタンパク質が吸着しにくい。前記単位の割合が90モル%未満であれば、物品表面の耐水性に優れる。
 含フッ素重合体(A1)の全単位に対する単位(m2)と単位(m3)との合計の割合は、90モル%未満が好ましく、5モル%以上90モル%未満がより好ましく、10モル%以上90モル%未満が特に好ましい。単位(m2)と単位(m3)との合計の割合が前記範囲の下限値以上であれば、物品表面にタンパク質が吸着しにくい。単位(m2)と単位(m3)との合計の割合が90モル%未満であれば、物品表面の耐水性に優れる。
 含フッ素重合体(A1)は、公知の方法を用いて、重合溶媒中で単量体の重合反応を行うことにより得られる。
 重合溶媒としては、特に限定されず、例えば、ケトン類(アセトン、メチルエチルケトン、メチルイソブチルケトン等)、アルコール類(メタノール、2-プロピルアルコール等)、エステル類(酢酸エチル、酢酸ブチル等)、エーテル類(ジイソプロピルエーテル、テトラヒドロフラン、ジオキサン等)、グリコールエーテル類(エチレングリコール、プロピレングリコール、またはジプロピレングリコールのエチルエーテル若しくはメチルエーテル等)およびその誘導体、脂肪族炭化水素類、芳香族炭化水素類、ハロゲン化炭化水素類(パークロロエチレン、トリクロロ-1,1,1-エタン、トリクロロトリフルオロエタン、ジクロロペンタフルオロプロパン等)、ジメチルホルムアミド、N-メチル-2-ピロリドン、ブチロアセトン、ジメチルスルホキシド(DMSO)等が挙げられる。
 含フッ素重合体(A1)を得る重合反応における、反応液中のすべての単量体の合計濃度は、5~60質量%が好ましく、10~40質量%が特に好ましい。
 含フッ素共重合体(A1)を得る重合反応においては、重合開始剤を用いることが好ましい。重合開始剤としては、過酸化物(ベンジルパーオキシド、ラウリルパーオキシド、スクシニルパーオキシド、tert-ブチルパーピバレート等)、アゾ化合物等が挙げられる。
 重合開始剤としては、2,2’-アゾイソブチロニトリル、2,2’-アゾビス-2-メチルブチロニトリル、ジメチル-2,2’-アゾビスイソブチレート、2,2’-アゾビス[2-(2-イミダゾリン-2イル)プロパン]、2,2’-アゾビス(4-メトキシ-2、4-ジメチルバレロニトリル)、1,1’-アゾビス(2シクロヘキサン-1-カルボニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、1,1’-アゾビス(1-アセトキシ-1-フェニルエタン)、ジメチルアゾビスイソブチレート、または4,4’-アゾビス(4-シアノ吉草酸)が好ましく、2,2’-アゾイソブチロニトリル、2,2’-アゾビス[2-(2-イミダゾリン-2イル)プロパン]、または4,4’-アゾビス(4-シアノ吉草酸)が特に好ましい。
 重合開始剤の使用量は、単量体の合計量100質量部に対して0.1~1.5質量部が好ましく、0.1~1.4質量部がさらに好ましい。
 含フッ素重合体(A1)の重合度(分子量)を調節するために、重合反応においては、連鎖移動剤を用いてもよい。連鎖移動剤を用いることにより、重合溶媒中の単量体の濃度の合計を高められる効果もある。
 連鎖移動剤としては、アルキルメルカプタン(tert-ドデシルメルカプタン、n-ドデシルメルカプタン、ステアリルメルカプタン等)、アミノエタンチオール、メルカプトエタノール、3-メルカプトプロピオン酸、2-メルカプトプロピオン酸、チオリンゴ酸、チオグリコール酸、3,3’-ジチオ-ジプロピオン酸、チオグリコール酸2-エチルヘキシル、チオグリコール酸n-ブチル、チオグリコール酸メトキシブチル、チオグリコール酸エチル、2,4-ジフェニル-4-メチル-1-ペンテン、四塩化炭素等が挙げられる。
 連鎖移動剤の使用量は、単量体の合計量100質量部に対して0~2質量部が好ましく、0~1.5質量部がさらに好ましい。
 重合反応における反応温度は、室温から反応液の沸点までの範囲が好ましい。重合開始剤を効率良く使う観点からは重合開始剤の半減期温度以上が好ましく、30~90℃がより好ましい。
 ≪含フッ素重合体(A2)≫
 含フッ素重合体(A2)は、フッ素原子を有し、かつ生体親和性基を有しない単位として、下記の単量体(m1)に由来する単位(m1)と、生体親和性基を有し、かつフッ素原子を有しない単位として、単量体(m4)に由来する単位(以下、単位(m4)とも記す。)とを有する含フッ素重合体である。
 単量体(m1):前記式(m1)で表される単量体、
 単量体(m4):下式(m4)で表される単量体。
Figure JPOXMLDOC01-appb-C000014
 ただし、R11は水素原子、塩素原子またはメチル基であり、Qは-COO-または-COO(CH-NHCOO-(ただし、hは1~4の整数である。)であり、R12は水素原子または-(CH-R13(ただし、R13は炭素数1~8のアルコキシ基、水素原子、ヒドロキシ基またはシアノ基であり、iは1~25の整数である。)であり、fは1~10の整数であり、gは1~100の整数である。
 単量体(m1):
 単量体(m1)の好ましい範囲や例示は、含フッ素重合体(A1)で説明したものと同様である。
 単位(m1)は、1種でもよく、2種以上でもよい。
 単量体(m4):
 単量体(m4)は、基(1)を有する単量体である。
 式(m4)中、R11は、重合しやすい点から、水素原子またはメチル基が好ましく、メチル基が特に好ましい。
 Qは、-COO-が好ましい。
 gが2以上の場合、複数存在する(C2fO)の種類が同じであっても異なっていてもよい。異なる場合には、その並び方はランダム、ブロック、交互のいずれであってもよい。
 fが3以上の場合には、直鎖構造でも分岐構造でもよい。(C2fO)としては、(CHO)、(CHCHO)、(CHCHCHO)、(CH(CH)CHO)、(CHCHCHCHO)等が挙げられる。
 fは、物品表面にタンパク質が吸着しにくい点から、1~6の整数が好ましく、1~4の整数が特に好ましい。
 gは、排除体積効果が高く、物品表面にタンパク質が吸着しにくい点から、1~50の整数が好ましく、1~30の整数がより好ましく、1~20の整数が特に好ましい。
 iは、含フッ素重合体(A2)の柔軟性に優れる点から、1~4の整数が好ましく、1または2が特に好ましい。
 R13は、物品表面にタンパク質が吸着しにくい点から、ヒドロキシ基またはアルコキシ基が好ましく、ヒドロキシ基が特に好ましい。
 単量体(m4)としては、下式(m41)で表される単量体(m41)が好ましい。
Figure JPOXMLDOC01-appb-C000015
 単量体(m4)の具体例としては、例えば、以下の化合物が挙げられる。
 CH=CH-COO-(CO)-H、
 CH=CH-COO-(CO)-H、
 CH=CH-COO-(CO)-H、
 CH=CH-COO-(CO)-CH
 CH=C(CH)-COO-(CO)-H、
 CH=C(CH)-COO-(CO)-H、
 CH=C(CH)-COO-(CO)-H、
 CH=C(CH)-COO-(CO)-CH
 CH=CH-COO-(CHO)-(CO)g1-CH-OH、
 CH=CH-COO-(CO)g2-(CO)g3-H、
 CH=C(CH)-COO-(CO)g2-(CO)g3-H、
 CH=CH-COO-(CO)g2-(CO)g3-CH
 CH=C(CH)-COO-(CO)g2-(CO)g3-CH等。
 上式において、g1は1~20の整数であり、g2およびg3は、それぞれ独立に、1~50の整数である。
 単量体(m4)としては、物品表面にタンパク質が吸着しにくい点から、以下の化合物が好ましい。
 CH=CH-COO-(CO)-H、
 CH=CH-COO-(CO)-H、
 CH=CH-COO-(CO)-H、
 CH=C(CH)-COO-(CO)-CH
 CH=CH-COO-(CHO)-(CO)g1-CH-OH、
 CH=C(CH)-COO-(CO)g2-(CO)g3-H。
 含フッ素重合体(A2)は、単量体(m1)および単量体(m4)以外の他の単量体に由来する単位を有していてもよい。
 他の単量体としては、物品表面の耐水性に優れる点から、下式(m5)で表される単量体(m5)が好ましい。
 CH=CR14-COO-Q-R15 ・・・(m5)
 ただし、R14は水素原子、塩素原子またはメチル基であり、R15は炭素数1~8のアルコキシ基、水素原子、ヒドロキシ基またはシアノ基であり、Qは単結合、炭素数1~20のアルキレン基、炭素数1~12のポリフルオロアルキレン基または-CF-(OCFCF-OCF-(ただし、yは1~6の整数である。)である。
 式(m5)中、R14は、重合しやすい点から、水素原子またはメチル基が好ましく、水素原子が特に好ましい。
 Qのアルキレン基およびポリフルオロアルキレン基は、直鎖状であってもよく、分岐鎖状であってもよい。Qは、含フッ素重合体(A2)の柔軟性に優れる点から、炭素数1~12のアルキレン基が好ましく、メチレン基、イソブチレン基が特に好ましい。
 R15は耐水性に優れる点から、水素原子が好ましい。
 単量体(m5)の具体例としては、例えば、以下の化合物が挙げられる。
 CH=CH-COO-(CH-H、
 CH=CH-COO-(CH-H、
 CH=CH-COO-(CH-H、
 CH=CH-COO-(CH16-H、
 CH=CH-COO-CHCH(C)CHCHCHCH等。
 単量体(m5)としては、CH=CH-COO-(CH-H、CH=CH-COO(CH-H、またはCH=CH-COO-(CH16-Hが好ましく、CH=CH-COO-(CH-H、またはCH=CH-COO-(CH16-Hが特に好ましい。
 また、単量体(m5)以外の他の単量体としては、例えば、N,N-ジメチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N-(メタ)アクリロイルモルホリン、N-(メタ)アクリロイルペピリジン、N,N-ジメチルアミノオキシドエチル(メタ)アクリレート、N,N-ジエチルアミノオキシドエチル(メタ)アクリレート等が挙げられる。また、2-イソシアネートエチル(メタ)アクリレート、2-イソシアネートエチル(メタ)アクリレートの3,5-ジメチルピラゾール付加体、3-イソシアネートプロピル(メタ)アクリレート、4-イソシアネートブチル(メタ)アクリレート、トリアリルイソシアヌレート、3-メタクリロイルオキシプロピルトリメトキシシラン、3-メタクリロイルオキシプロピルジメトキシメチルシラン、グリシジル(メタ)アクリレート、ポリオキシアルキレングリコールモノグリシジルエーテル(メタ)アクリレート等を用いてもよい。
 含フッ素重合体(A2)が単位(m5)を有する場合、単位(m5)は、1種でもよく、2種以上でもよい。
 含フッ素重合体(A2)が単位(m1)および単位(m4)に加えて単位(m5)を有する場合、CH=CHCOO(CH(CFCF単位と、CH=CH-COO-(CHO)-(CO)g1-CH-OH(g1=1~20)単位と、CH=CH-COO-(CH16-H単位とを有する含フッ素重合体が特に好ましい。
 含フッ素重合体(A2)の全単位に対する単位(m1)の割合は、10モル%超が好ましく、10モル%超95モル%以下がより好ましく、10モル%超90モル%以下が特に好ましい。単位(m1)の割合が10モル%超であれば、物品表面の表面張力を充分に低くできる。単位(m1)の割合が前記範囲の上限値以下であれば、物品表面にタンパク質が吸着しにくい。
 含フッ素重合体(A2)の全単位に対する単位(m4)の割合は、90モル%未満が好ましく、5モル%以上90モル%未満がより好ましく、10モル%以上90モル%未満が特に好ましい。単位(m4)の割合が前記範囲の下限値以上であれば、物品表面にタンパク質が吸着しにくい。単位(m4)の割合が90モル%未満であれば、物品表面の耐水性に優れる。
 含フッ素重合体(A2)が単位(m5)を有する場合、単位(m1)と単位(m4)との合計に対する単位(m5)の割合は、5~95モル%が好ましく、10~90モル%が特に好ましい。単位(m5)の割合が前記範囲の下限値以上であれば、物品表面の耐水性に優れる。単位(m6)の割合が前記範囲の上限値以下であれば、物品表面にタンパク質が吸着しにくい。
 含フッ素重合体(A2)は、単量体(m1)、(m4)および(m5)を用いる以外は、含フッ素重合体(A1)と同様の方法で製造できる。
 本発明では、含フッ素重合体(A)として、含フッ素重合体(A1)と含フッ素重合体(A2)のいずれか一方のみを使用してもよく、含フッ素重合体(A1)と含フッ素重合体(A2)を併用してもよい。
 なお、含フッ素重合体(A)は、前記した含フッ素重合体(A1)および含フッ素重合体(A2)には限定されない。
(非フッ素系化合物(B))
 本発明における非フッ素系化合物(B)は、非フッ素系熱硬化性樹脂、非フッ素系熱可塑性樹脂、非フッ素系光硬化性樹脂および重合性不飽和基を有する非フッ素系硬化性単量体からなる群から選ばれる少なくとも1種である。
 非フッ素系化合物(B)はフッ素原子を有しないため、含フッ素重合体(A)が物品の表層に移行して偏在しやすい。
 非フッ素系熱硬化性樹脂としては、硬化剤の存在下または非存在下にて、加熱することで硬化する公知の熱硬化性樹脂を採用できる。具体的には、例えば、水酸基、エポキシ基、カルボニル基等の架橋性基を末端または側鎖に有するアクリル樹脂、ポリエステル樹脂、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂等が挙げられる。
 非フッ素系熱硬化性樹脂の数平均分子量は、硬化性に優れる点から、100~1,000,000が好ましく、100~100000がさらに好ましい。
 非フッ素系熱硬化性樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。
 非フッ素系熱硬化性樹脂を硬化させる際に硬化剤を使用する場合、該硬化剤としては、非フッ素系熱硬化性樹脂が有する架橋性基の種類に応じて、公知の硬化剤を適宜選択すればよい。硬化剤としては、例えば、ブロックイソシアネート(ヘキサメチレンイソシアネート三量体等)またはその乳化分散体、メラミン樹脂(メチル化メラミン、メチロール化メラミン、ブチロール化メラミン等)、尿素樹脂(メチル化尿素、ブチル化尿素等)等が挙げられる。
 非フッ素系熱可塑性樹脂としては、公知の熱可塑性樹脂を採用でき、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、スチレン-ブタジエンランダム共重合体、スチレン-ブタジエンブロック共重合体、ABS樹脂、アクリル樹脂(ポリメタクリル酸メチル樹脂等)、ウレタン樹脂、ポリカーボネートウレタン樹脂、ポリスチレン-ポリ(エチレン/プロピレン)ブロック共重合体、エポキシ樹脂等が挙げられる。
 非フッ素系熱可塑性樹脂の数平均分子量は、成形性に優れる点から、1,000~1,000,000が好ましく、100~100000がさらに好ましい。
 非フッ素系熱可塑性樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。
 非フッ素系光硬化性樹脂としては、公知の光硬化性樹脂を採用でき、(メタ)アクリロイル基を有する重合体、またはビニル基を有する重合体が好ましい。
 具体的には、例えば、水酸基を有する単量体と、架橋性基を有しない単量体との共重合により得られる重合体に、(メタ)アクリロイル基を有するハロホルメートを反応させて得られる重合体;水酸基を有する単量体と、架橋性基を有しない単量体との共重合により得られる重合体に、イソシアネート基と(メタ)アクリロイル基を有する化合物を反応させて得られる重合体;水酸基を有する単量体と、架橋性基を有しない単量体との共重合により得られる重合体に、イソシアネート基とビニル基を有する化合物を反応させて得られる重合体等が挙げられる。
 前記ハロホルメートとしては、(メタ)アクリロイル基を有するクロロホルメート(2-クロロホルミルエチルメタクリレート等)が好ましい。
 前記水酸基を有する単量体としては、例えば、4-ヒドロキシブチルビニルエーテル等が挙げられる。
 前記架橋性基を有しない単量体としては、例えば、アルキル(メタ)アクリレート(メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等)、オレフィン(エチレン、プロピレン等)、ビニルエーテル(t-ブチルビニルエーテル、1,1-ジメチルプロピルビニルエーテル、メトキシメチルビニルエーテル等)、ビニルエステル(酢酸ビニル、クロロ酢酸ビニル、ブタン酸ビニル、ピバル酸ビニル、安息香酸ビニル、クロトン酸ビニル等)、アリルエーテル(アリルメチルエーテル、アリルメチルエーテル等)等が挙げられる。
 非フッ素系光硬化性樹脂の数平均分子量は、硬化性に優れる点から、500~50,000が好ましく、500~4000がさらに好ましい。
 非フッ素系光硬化性樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。
 非フッ素系硬化性単量体としては、重合性不飽和基を有し、フッ素原子を有しない公知の硬化性単量体を採用できる。重合性不飽和基としては、(メタ)アクリロイル基、ビニル基等が挙げられる。
 非フッ素系硬化性単量体の具体例としては、例えば、オレフィン(エチレン、プロピレン、ブテン等)、ジエン(ノルボルナジエン、ブタジエン等)、アルキルビニルエーテル(シクロヘキシルメチルビニルエーテル、イソブチルビニルエーテル、シクロヘキシルビニルエーテル、エチルビニルエーテル等)、グリシジルビニルエーテル、4-ヒドロキシブチルビニルエーテル、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、N,N-ジメチルアミノエチル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、アリル(メタ)アクリレート、1,3-ブタンジオールジアクリレート、エトキシエチル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、スチレン、メチルスチレン、クロロメチルスチレン、酢酸ビニル、プロピオン酸ビニル、無水マレイン酸、ビニレンカーボネート、N-ビニルピロリドン、N,N-ジメチルアクリルアミド、トリス(トリメチルシロキシシリル)プロピルビニルカルバメート、(トリメトキシシロキシ)シリルプロピルメタクリレート、(3-メタクリロイロキシ-2-ヒドロキシプロピロイロキシ)プロピルビス(トリメトキシシロキシ)メチルシラン、メチルジ(トリメチルシロキシ)シリルプロピルグリセロールメタクリレート等が挙げられる。
 また、以下の化合物が挙げられる。
 CH=CHO(CHCOOCH
 CH=CHO(CHCHOH、
 CH=CHCOO-(CO)-CH
 CH=CHCOO-(CO)-CH
 CH=C(CH)COO-(CO)-CH
 CH=C(CH)COO-(CO)-CH
 CH=CHCHCH=CH
 CH=CHOCHCH=CH
 CH=CHOCHCHCH=CH
 CH=CHOCH(CH)CHCH=CH
 CH=CHOCHOCH=CH
 CH=CHCHC(OH)(CH)CHCH=CH
 CH=CHCHC(OH)(CH)CH=CH
 CH=CHCOO-(CO)-COCH=CH
 CH=CHCOO-(CO)-COCH=CH
 CH=CHCOO-CHCH(OH)CH-OCOC(CH)=CH等。
 非フッ素系熱硬化性単量体は、1種を単独で使用してもよく、2種以上を併用してもよい。
(含フッ素化合物(C))
 本発明のタンパク質付着防止剤は、必要に応じて、含フッ素熱硬化性樹脂、含フッ素光硬化性樹脂および重合性不飽和基を有する含フッ素硬化性単量体からなる群から選ばれる少なくとも1種の含フッ素化合物(C)(ただし、含フッ素重合体(A)を除く。)をさらに含んでもよい。含フッ素化合物(C)は、含フッ素重合体(A)と同様に表層に移行しやすい。含フッ素化合物(C)の移行に伴って、含フッ素重合体(A)もより表層に移行して偏在しやすくなる。
 含フッ素熱硬化性樹脂としては、例えば、水酸基、エポキシ基、カルボニル基等の架橋性基を末端または側鎖に有する含フッ素重合体(ただし、含フッ素重合体(A)を除く。)等が挙げられる。
 含フッ素熱硬化性樹脂の具体例としては、例えば、ルミフロンLF710(旭硝子社製)等が挙げられる。
 含フッ素熱硬化性樹脂のフッ素原子含有率Qは、2質量%以上が好ましく、2~30質量%がより好ましく、2~20質量%が特に好ましい。含フッ素熱硬化性樹脂のフッ素原子含有率Qが前記範囲の下限値以上であれば、含フッ素熱硬化性樹脂とともに、含フッ素重合体(A)が表層に移行して偏在しやすい。含フッ素熱硬化性樹脂のフッ素原子含有率Qが前記範囲の上限値以下であれば、物品表面にタンパク質が吸着しにくい。
 含フッ素熱硬化性樹脂の数平均分子量は、硬化性に優れる点から、500~500,000が好ましく、500~4000がさらに好ましい。
 含フッ素熱硬化性樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。
 含フッ素系熱硬化性樹脂を硬化させる際に硬化剤を使用する場合、該硬化剤としては、例えば、非フッ素系熱硬化性樹脂において挙げたものと同じものが挙げられる。
 含フッ素光硬化性樹脂としては、(メタ)アクリロイル基を有する含フッ素重合体、またはビニル基を有する含フッ素重合体が好ましい。
 具体的には、例えば、水酸基を有する単量体と、架橋性基を有しない含フッ素単量体との共重合により得られる重合体に、(メタ)アクリロイル基を有するハロホルメートを反応させて得られる含フッ素重合体;水酸基を有する単量体と、架橋性基を有しない含フッ素単量体との共重合により得られる重合体に、イソシアネート基と(メタ)アクリロイル基を有する化合物を反応させて得られる重合体;水酸基を有する単量体と、架橋性基を有しない含フッ素単量体との共重合により得られる重合体に、イソシアネート基とビニル基を有する化合物を反応させて得られる重合体等が挙げられる。
 前記ハロホルメートとしては、(メタ)アクリロイル基を有するクロロホルメート(2-クロロホルミルエチルメタクリレート等)が好ましい。
 前記水酸基を有する単量体としては、例えば、4-ヒドロキシブチルビニルエーテル等が挙げられる。
 前記架橋性基を有しない含フッ素単量体としては、例えば、前記非フッ素系光硬化性樹脂において、架橋性基を有しない単量体として挙げた化合物のうち1個以上の水素原子がフッ素原子に置換されたもの等が挙げられる。
 含フッ素光硬化性樹脂のフッ素原子含有率Qの好ましい範囲は、含フッ素熱硬化性樹脂のフッ素原子含有率Qの好ましい範囲と同じである。
 含フッ素熱硬化性樹脂の数平均分子量は、硬化性に優れる点から、500~50,000が好ましく、500~4000がさらに好ましい。
 含フッ素熱硬化性樹脂は、1種を単独で使用してもよく、2種以上を併用してもよい。
 含フッ素硬化性単量体としては、重合性不飽和基を有し、かつフッ素原子を有する公知の硬化性単量体を採用できる。含フッ素硬化性単量体の具体例としては、例えば、前記した単量体(m1)が挙げられる。
 また、以下の化合物が挙げられる。
 CF=CFOCFCFSOF、
 CF=CFOCFCF(CF)OCFCFSOF、
 CF=CFCOOH、
 CF=CFO(CFCOOCH
 CF=CFO(CFCHOH、
 CF=CFOCFCF(CF)OCFCFCHI、
 CH=CHCOOCHCFCFH、
 CH=CHCOOCH(CFCFH、
 CH=C(CH)COOCH(CFCF)H、
 CH=C(CH)COOCH(CFCFH、
 CH=CHCOOCHCFOCFCFOCF
 CH=CHCOOCHCFO(CFCFO)CF
 CH=C(CH)COOCHCFOCFCFOCF
 CH=C(CH)COOCHCFO(CFCFO)CF
 CH=CFCOOCHCH(OH)CH(CFCF(CF
 CH=CFCOOCHCH(CHOH)CH(CFCF(CF
 CH=CFCOOCHCH(OH)CH(CF10F、
 CH=CFCOOCHCH(CHOH)CH(CF10F、
 CF=CFCFCF=CF
 CF=CFOCFCF=CF
 CF=CFOCFCFCF=CF
 CF=CFOCF(CF)CFCF=CF
 CF=CFOCFCF(CF)CF=CF
 CF=CFOCFOCF=CF
 CF=CFOCFCF(CF)OCFCF=CF
 CF=CFCFC(OH)(CF)CHCH=CH
 CF=CFCFC(OH)(CF)CH=CH
 CF=CFCFC(CF)(OCHOCH)CHCH=CH
 CF=CFCHC(C(CFOH)(CF)CHCH=CH等。
(重合開始剤)
 本発明のタンパク質付着防止剤が非フッ素系光硬化性樹脂および含フッ素光硬化性樹脂のいずれか一方または両方を含む場合、本発明のタンパク質付着防止剤は、光重合開始剤を含むことが好ましい。また、本発明のタンパク質付着防止剤が非フッ素系硬化性単量体および含フッ素硬化性単量体のいずれか一方または両方を含む場合、本発明のタンパク質付着防止剤は、熱重合開始剤または光重合開始剤を含むことが好ましく、光重合開始剤を含むことが特に好ましい。
 光重合開始剤は、光によりラジカル反応またはイオン反応を引き起こすものであり、ラジカル反応を引き起こす光重合開始剤が好ましい。
 光重合開始剤としては、公知の光重合開始剤を採用できる。具体的には、例えば、アセトフェノン系光重合開始剤(アセトフェノン、p-tert-ブチルトリクロロアセトフェノン、クロロアセトフェノン等)、ベンゾイン系光重合開始剤(ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル等)、ベンゾフェノン系光重合開始剤(ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル等)、チオキサントン系光重合開始剤(チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン等)、フッ素原子を含有する光重合開始剤(ペルフルオロ(tert-ブチルペルオキシド)、ペルフルオロベンゾイルペルオキシド等)等が挙げられる。また、α-アシルオキシムエステル、ベンジル-(o-エトキシカルボニル)-α-モノオキシム、アシルホスフィンオキサイド、グリオキシエステル、3-ケトクマリン、2-エチルアンスラキノン、カンファーキノン、テトラメチルチウラムスルフィド、アゾビスイソブチロニトリル、ベンゾイルペルオキシド、ジアルキルペルオキシド、tert-ブチルペルオキシピバレート等を使用してもよい。
 光重合開始剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
 熱重合開始剤としては、公知の熱重合開始剤を採用できる。具体的には、例えば、アゾビスイソブチロニトリル、過酸化ベンゾイル、tert-ブチルヒドロペルオキシド、クメンヒドロペルオキシド、過酸化ジ-tert-ブチル、過酸化ジクミル等が挙げられる。
 熱重合開始剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
(光増感剤)
 また、本発明のタンパク質付着防止剤は、光重合開始剤を含む場合、光増感剤をさらに含むことが好ましい。
 光増感剤としては、例えば、n-ブチルアミン、ジ-n-ブチルアミン、トリ-n-ブチルホスフィン、アリルチオ尿素、s-ベンジスイソチウロニウム-p-トルエンスルフィネート、トリエチルアミン、ジエチルアミノエチルメタクリレート、トリエチレンテトラミン、4,4’-ビス(ジアルキルアミノ)ベンゾフェノン等が挙げられる。
 光増感剤は、1種を単独で使用してもよく、2種以上を併用してもよい。
(他の成分)
 本発明のタンパク質付着防止剤は、必要に応じて、含フッ素重合体(A)、非フッ素系化合物(B)、含フッ素化合物(C)、重合開始剤、光増感剤以外の他の成分を含んでもよい。
 他の成分としては、例えば、レベリング剤等が挙げられる。
 本発明のタンパク質付着防止剤を医療用デバイスに用いる場合、医療用デバイスには色が付いていてもよい。タンパク質あるいは細胞を可視光染色法により染色して、生物学的な検査、観察を行う場合は、医療用デバイスに用いるタンパク質付着防止剤は、可視光に吸収を持つ化合物を含まないことが好ましい。可視光に吸収を持つ化合物が含まれると、該化合物による着色が検査、観察を妨げる一因となる。また、タンパク質あるいは細胞を蛍光発光染色法により染色して、生物学的な検査、観察を行う場合は、医療用デバイスに用いるタンパク質付着防止剤は、蛍光発光する化合物を含まないことが好ましい。蛍光発光する化合物が含まれると、該化合物による蛍光がバックグラウインド発光となり、蛍光観察の際にコントラストを低減させる一因となる。
 なお、可視光染色法とは、可視光での観察を可能とする染色法(CBB染色等)である。蛍光発光染色法とは、蛍光での観察を可能とする染色法(蛍光色素による染色等)である。
(各成分の割合)
 本発明のタンパク質付着防止剤中の含フッ素重合体(A)の含有量は、0.01~10質量%であり、0.01~5質量%が好ましく、0.1~5質量%がより好ましい。含フッ素重合体(A)の含有量が前記範囲の下限値以上であれば、物品表面にタンパク質が付着しにくい。含フッ素重合体(A)の含有量が前記範囲の上限値以下であれば、物品の機械的強度に優れる。
 本発明のタンパク質付着防止剤中の非フッ素系化合物(B)の含有量は、95~99.99質量%が好ましく、95~99.9質量%が特に好ましい。前記非フッ素系化合物(B)の含有量が前記範囲の下限値以上であれば、物品の機械的強度に優れる。前記非フッ素系化合物(B)の含有量が前記範囲の上限値以下であれば、物品表面にタンパク質が付着しにくい。
 本発明のタンパク質付着防止剤が含フッ素化合物(C)を含む場合、該含フッ素化合物(C)の含有量は、タンパク質付着防止剤の全量に対して、3~35質量%が好ましく、5~30質量%が特に好ましい。前記含フッ素化合物(C)の含有量が前記範囲の下限値以上であれば、含フッ素重合体(A)が物品の表層に偏在しやすい。前記含フッ素化合物(C)の含有量が前記範囲の上限値以下であれば、物品の機械的強度に優れる。
 本発明のタンパク質付着防止剤が光重合開始剤を含む場合、該光重合開始剤の含有量は、非フッ素系光硬化性樹脂、含フッ素光硬化性樹脂、非フッ素系硬化性単量体および含フッ素光硬化性単量体の合計100質量部に対して、0.05質量部以上が好ましく、0.1~10質量部が特に好ましい。前記光重合開始剤の含有量が前記範囲の下限値以上であれば、硬化が充分に進行する。前記光重合開始剤の含有量が前記範囲の上限値以下であれば、光硬化物の分子量が充分に高くなる。
 なお、光硬化物とは、本発明のタンパク質付着防止剤が非フッ素系光硬化性樹脂、含フッ素光硬化性樹脂、非フッ素系硬化性単量体および含フッ素硬化性単量体のうちの1種以上を含む場合に、それらを光照射により硬化させたものを意味する。
 本発明のタンパク質付着防止剤が熱重合開始剤を含む場合、該熱重合開始剤の含有量は、非フッ素系硬化性単量体および含フッ素光硬化性単量体の合計100質量部に対して、0.05質量部以上が好ましく、0.1~10質量部が特に好ましい。前記熱重合開始剤の含有量が前記範囲の下限値以上であれば、硬化が充分に進行する。前記熱重合開始剤の含有量が前記範囲の上限値以下であれば、熱硬化物の分子量が充分に高くなる。
 なお、熱硬化物とは、本発明のタンパク質付着防止剤が非フッ素系熱硬化性樹脂、含フッ素熱硬化性樹脂、非フッ素系硬化性単量体および含フッ素硬化性単量体のうちの1種以上を含む場合に、それらを加熱により硬化させたものを意味する。
 本発明のタンパク質付着防止剤が光増感剤を含む場合、該光増感剤の含有量は、光重合開始剤に対して、4倍モル以下が好ましく、2倍モル以下が特に好ましい。前記光増感剤の含有量が前記上限値以下であれば、光硬化物の分子量が充分に高くなる。通常、光増感剤の含有量は1倍モル以上である。
[塗布液]
(溶媒)
 本発明の塗布液は、本発明のタンパク質付着防止剤と、溶媒とを含む。本発明のタンパク質付着防止剤が常温(20~25℃)で液体の場合には、そのまま塗布することが可能であるが、塗布液を用いて湿式塗布またはキャスト成形を行うことで、タンパク質付着防止剤から形成されてなる被覆層またはフィルム等を容易に形成できる。
 本発明の塗布液は、例えば、医療用デバイスのタンパク質付着防止のために使用できる。具体的には、本発明の塗布液を用いて形成された被覆層を備える医療用デバイスとすることで、該医療用デバイスへのタンパク質の付着を防止することができる。
 溶媒としては、非含フッ素溶媒、含フッ素溶媒等が挙げられる。非含フッ素溶媒としては、アルコール系溶媒、含ハロゲン系溶媒等が挙げられる。例えば、エタノール、メタノール、アセトン、クロロホルム、アサヒクリンAK225(旭硝子社製)、AC6000(旭硝子社製)等が挙げられる。
 デバイス等の表面に、本発明の塗布液により被覆層を形成する場合、溶媒としては、デバイス等を溶解しない種類を選択することが好ましい。例えば、デバイスにポリスチレンを使用する場合、溶媒としては、エタノール、メタノール、アサヒクリンAK225(旭硝子社製)、AC6000(旭硝子社製)等が好ましい。
 本発明の塗布液中のタンパク質付着防止剤の濃度は、0.0001~10質量%が好ましく、0.0005~5質量%が特に好ましい。タンパク質付着防止剤の濃度が前記範囲であれば、均一に塗布することができ、均一な被覆層または物品(フィルム等)が形成できる。
[作用効果]
 前記した特許文献1の表面偏析型プラスチック用添加剤の場合、熱硬化性樹脂や熱可塑性樹脂に添加した組成物においては、含フッ素単量体に由来する単位を有する含フッ素重合体が、成形時に表層に移行して偏在する。しかし、この状態では、成形品の表面において、より表面自由エネルギーの低い含フッ素単量体に由来する単位の側鎖(フルオロアルキル基)が外側を向くように配置され、ホスホリルコリン基が内側を向くように配置される。そのため、表面は疎水性になっており、生体適合性は不充分である。また、特許文献1における含フッ素重合体は、正電荷と負電荷を有するホスホリルコリン基を有するため、ガラス転移温度が高い(例えば150℃以上)。そのため、培養液等が成形品表面に付着したときにおいても、含フッ素単量体に由来する単位の側鎖とホスホリルコリン基の向きが反転しにくく、表面が充分に親水化されずに充分な生体適合性が得られにくい。
 これに対して、本発明のタンパク質付着防止剤および塗布液においては、成形時または被覆層の形成時に、含フッ素重合体(A)が表層に移行して偏在する。この状態では、特許文献1と同様に、表面において、フルオロアルキル基等のフッ素原子を有する部位が外側に向くように配置され、生体親和性基が内側を向いて配置されるため、表面は疎水性である。しかし、含フッ素重合体(A)のガラス転移温度が100℃以下と特許文献1の含フッ素重合体のガラス転移温度に比べて低いため、培養液等が物品表面に付着した際に、フッ素原子を有する部位と生体親和性基とが反転しやすい。そのため、培養液等が物品表面に付着した状態では、生体親和性基が外側を向いて表面が充分に親水化され、優れた生体適合性が得られる。
 本発明では、含フッ素重合体(A)のガラス転移温度が40℃超の場合に、培養等を常温で行うときには、優れた生体適合性が安定して得られる点から、培養等の前に物品表面に熱水を接触させることで、表面を充分に親水化した後に培養等を行うことが好ましい。この場合、生体親和性基が再度反転して内側を向くことを抑制する点から、熱水処理と培養等の間に物品表面を乾燥させないことが好ましい。
 本発明においては、含フッ素重合体(A)が物品の表層に偏在しやすいため、含フッ素重合体(A)の使用量が少なくて済み、コストダウンにつながる。
 また、含フッ素重合体(A)を溶解しやすい溶媒と非フッ素系化合物(B)を溶解しやすい溶媒とは極性が異なる。具体的には、含フッ素重合体(A)は、極性の高い溶媒(エタノール等)に溶解しやすいが、極性の低い溶媒(トルエン等)には溶解しにくい。一方、非フッ素系化合物(B)は、極性の低い溶媒(トルエン等)に溶解しやすいが、極性の高い溶媒(エタノール等)に溶解しにくい。そのため、含フッ素重合体(A)が多いと、含フッ素重合体(A)と非フッ素系化合物(B)の両方を同一の溶媒で溶解することは難しい。しかし、本発明では、含フッ素重合体(A)の使用量が少なくて済むため、含フッ素重合体(A)と非フッ素系化合物(B)の両方を同一の溶媒で溶解させやすく、溶媒選択の幅が広い。
 本発明においては、物品の表層に含フッ素重合体(A)が偏在するため、物品表面に水性液体が触れた場合に、物品を形成する成分が表面から溶出することを抑制でき、耐水性に優れる。
[物品]
 本発明の物品は、本発明のタンパク質付着防止剤から形成されてなり、かつ表面に露出している部分を少なくとも一部に有する物品である。本発明の物品は、物品全体が本発明のタンパク質付着防止剤から形成されたものであってもよく(以下、「成形体」とも記す。)、本発明のタンパク質付着防止剤以外の材質の基材の表面に、本発明のタンパク質付着防止剤から形成されてなる被覆層を有するもの(以下、「被覆層を有する物品」とも記す。)であってもよい。
 物品の形状は、特に限定されず、用途に応じて適宜決定される。物品表面には凹凸、ラインアンドスペース等の表面微細加工やパターニングがあってもよい。
(医療用デバイス)
 本発明の物品としては、医療用デバイスが特に有効である。
 医療用デバイスとしては、本発明のタンパク質付着防止剤を成形して得られる成形体からなる医療用デバイス、本発明のタンパク質付着防止剤から形成されてなる被覆層をデバイス表面に有する医療用デバイスが挙げられる。
 本発明の医療用デバイスの具体例としては、例えば、図1及び図2に例示した医療用デバイス1が挙げられる。医療用デバイス1は、細胞培養容器の一つであるシャーレである。
 医療用デバイス1は、デバイス基材2と、デバイス基材2上に形成された被覆層3、とを備える。デバイス基材2は、平面視形状が円形状の底面部4と、底面部4の周縁から全周にわたって立ち上がる側面部5とを備え、上方が開放された容器形状になっている。被覆層3は、デバイス基材2における内面上、すなわち底面部4の上面上と側面部5の内面上に、本発明のタンパク質付着防止剤によって形成されている。
 本発明の医療用デバイスにおけるデバイス基材を形成する材料は、特に限定されず、ポリスチレン、ポリカーボネート、ポリプロピレン等の樹脂、ガラス等が挙げられる。なかでも、本発明は、デバイス基材を形成する材料がガラスである場合に特に有効である。
 医療用デバイスの具体例としては、例えば、医薬品、医薬部外品、医療用器具等が挙げられる。医療用器具としては、特に限定されず、細胞培養容器、細胞培養シート、バイアル、プラスチックコートバイアル、シリンジ、プラスチックコートシリンジ、アンプル、プラスチックコートアンプル、カートリッジ、ボトル、プラスチックコートボトル、パウチ、ポンプ、噴霧器、栓、プランジャー、キャップ、蓋、針、ステント、カテーテル、インプラント、コンタクトレンズ、マイクロ流路チップ、ドラッグデリバリーシステム材、人工血管、人工臓器、血液透析膜、ガードワイヤー、血液フィルタ、血液保存パック、内視鏡、バイオチップ、糖鎖合成機器、成形補助材、包装材等が挙げられる。なかでも、細胞培養容器が好ましい。
 細胞培養容器では、表面に凹凸、ラインアンドスペース等の表面微細加工やパターニングがあることが多い。本発明では、表面に該表面微細加工やパターニングのある細胞培養容器であっても、優れた生体適合性を付与できる。
 なお、本発明の物品は、船舶、橋梁、海上タンク、港湾施設、海底基地、海底油田掘削設備等の海洋構造物であってもよい。該海洋構造物に対して、本発明のタンパク質付着防止剤および塗布液を用いることで、該海洋構造物にタンパク質が吸着することが抑制される。その結果、貝類(フジツボ等)、海藻類(アオノリ、アオサ等)等の水生生物が接着することが抑制される。
 本発明の物品表面(成形体表面、被覆層表面)のフッ素原子比率SF/Cは、0.01~1.0が好ましく、0.01~0.8が特に好ましい。前記フッ素原子比率SF/Cが前記範囲の下限値以上であれば、物品表面にタンパク質が付着しにくい。前記フッ素原子比率SF/Cが前記範囲の上限値以下であれば、物品表面が親水性に優れる。
 本発明の物品は、下式で表されるフッ素原子の偏析割合が0.01~1であることが好ましく、0.1~1が特に好ましい。前記偏析割合が前記範囲の下限値以上であれば、物品の表層に含フッ素重合体(A)が偏在し、タンパク質が付着しにくい。
 フッ素原子の偏析割合=(物品表面のフッ素原子比率SF/C-物品表面から15nm深さのフッ素原子比率SF/C)/(物品表面のフッ素原子比率SF/C
 なお、「物品表面から15nm深さ」とは、物品内部における表面までの最短距離が15nmである位置を意味する。物品表面のフッ素原子比率SF/Cおよび物品表面から15nm深さのフッ素原子比率SF/Cは、実施例に記載の方法で測定される。
 基(2)を有する含フッ素重合体(A)を用いた場合、本発明の物品表面(成形体表面、被覆層表面)のリン原子比率SP/Cは、0.01~1が好ましく、0.1~1が特に好ましい。前記リン原子比率SP/Cが前記上限値以下であれば、物品の表層に含フッ素重合体(A)が偏在し、タンパク質が付着しにくい。
 なお、前記リン原子比率SP/Cは、実施例に記載の方法で測定される値である。
 本発明の物品表面(成形体表面および被覆層表面)に水滴を載せた直後(初期)の水接触角φ1と、水滴を載せてから60分後の水接触角φ2との差(φ1-φ2)は、10~60度が好ましく、30~60度が特に好ましい。前記差(φ1-φ2)が前記下限値以上であれば、物品表面が生体適合性に優れる。前記差(φ1-φ2)が前記上限値以下であれば、物品表面の耐水性に優れる。
 なお、水接触角は、実施例に記載の方法で測定される。
 被覆層を有する物品における被覆層の厚さは、1nm~1mmが好ましく、5nm~800μmが特に好ましい。被覆層の厚さが前記範囲の下限値以上であれば、被覆層表面にタンパク質が吸着しにくい。被覆層の厚さが前記範囲の上限値以下であれば、被覆層がデバイス表面に密着しやすい。
(製造方法)
 本発明のタンパク質付着防止剤から形成されてなる成形体を得る方法としては、例えば、タンパク質付着防止剤または塗布液を用いて、公知の成形方法により成形体を得た後に、必要に応じて加熱または光照射を行う方法が挙げられる。
 成形方法としては、特に限定されず、モールドの押しつけ、射出成形、押出成形、3Dプリンタによる成形、キャスト成形等が挙げられる。
 加熱方法および光照射方法は、公知の方法を採用できる。
 本発明のタンパク質付着防止剤から形成されてなる被覆層を有する物品を得る方法としては、例えば、本発明のタンパク質付着防止剤を、湿式塗布法で基材に塗布した後に加熱または光照射を行う方法や、本発明の塗布液を公知の湿式塗布法で基材に塗布して乾燥した後に、加熱または光照射を行う方法を採用できる。
 表面に凹凸、ラインアンドスペース、パターニング形状等を有する物品を製造する場合、本発明のタンパク質付着防止剤を、公知の方法で成形して凹凸等を有しない物品を得た後に、レーザ加工により、その表面に凹凸等を形成してもよい。また、本発明のタンパク質付着防止剤を用いて射出成形、3Dプリンタ等による成形を行うことで、凹凸、ラインアンドスペース、パターニング形状等を有する表面を有する物品を製造してもよい。
 以上説明した本発明の物品は、本発明のタンパク質付着防止剤から形成されてなり、かつ表面に露出している部分を少なくとも一部に有するため、生体適合性に優れている。
 以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。例1~8、および例1Xは実施例であり、例9~17は比較例である。
[評価方法]
(共重合体組成)
 得られた含フッ素重合体の20mgをクロロホルムに溶かし、300MHzのH-NMRにより共重合体組成を求めた。
(フッ素原子含有率Q、フッ素原子比率SF/Cおよびリン原子比率SP/C
 フッ素原子含有率Q、フッ素原子比率SF/Cおよびリン原子比率SP/Cは、H-NMR、イオンクロマトグラフィー、および元素分析を実施し、算定した。
 なお、フッ素原子比率SF/Cおよびリン原子比率SP/Cは、下式で求めた値である。
 SF/C=N/N
 SP/C=N/N
 N:含フッ素重合体を構成する単位の種類毎に、単位のフッ素原子数と、全単位に対する当該単位のモル比率とを乗じた値の総和。
 N:含フッ素重合体を構成する単位の種類毎に、単位の炭素原子数と、全単位に対する当該単位のモル比率とを乗じた値の総和。
 N:含フッ素重合体を構成する単位の種類毎に、単位のリン原子数と、全単位に対する当該単位のモル比率とを乗じた値の総和。
(ガラス転移温度(Tg))
 含フッ素重合体のガラス転移温度は、DSC(TAインスツメント社製)で、10℃/分の速度で-30℃~200℃まで昇降温させて測定した。降温時の2サイクル目のゴム状態からガラス状態へ変化する温度をガラス転移温度とした。
(分子量)
 含フッ素重合体の数平均分子量(Mn)、質量平均分子量(Mw)および分子量分布(質量平均分子量(Mw)/数平均分子量(Mn))は、テトラヒドロフラン(以下、「THF」と記す。)を溶媒とするGPC装置(HLC8220、東ソー社製)を用いて測定した。
(フッ素原子比率SF/Cおよびリン原子比率SP/C
 各例で得た物品(成形体または被覆層を有する物品)について、X線光電子分光分析装置(アルバック・ファイ社製、PHI5500)を用いて、X線光電子分光分析法(XPS)により表面フッ素濃度(原子%)と表面炭素濃度(原子%)を求め、表面フッ素濃度を表面炭素濃度で除して物品表面のフッ素原子比率SF/Cを算出した。また、同様にX線光電子分光分析によって、表面リン濃度(原子%)と表面炭素濃度(原子%)を求め、表面リン濃度を表面炭素濃度で除して物品表面のリン原子比率SP/Cを算出した。また、C60クラスターイオンを用いたXPSデプスプロファイル分析により、物品表面から15nm深さのフッ素原子比率SF/Cを求めた。
 X線源には単色Al Kα、帯電中和には電子銃を用いた。また、測定時のパスエネルギーは117.4eV、ステップエネルギーは0.5eVに設定した。C60クラスターイオンを用いたXPSデプスプロファイル分析の際は、試料ステージ(X線検出)角度を75°に、スパッタ銃入射角度を67°とし、測定間隔を0.2分毎とした。また、得られたXPSデプスプロファイルにおいては、反射率分光法(装置:PHI5500、filmetrix社製)より求めた物品の厚さから、スパッタレートは15nm/分と算出された。
(フッ素原子の偏析割合)
 上述の方法で算出したフッ素原子比率SF/Cおよびリン原子比率SP/Cを用いて、下式よりフッ素原子の偏析割合を算出した。
 フッ素原子の偏析割合=(物品表面のフッ素原子比率SF/C-物品表面から15nm深さのフッ素原子比率SF/C)/(物品表面のフッ素原子比率SF/C
(水接触角)
 静滴法により、JIS R 3257「基板ガラス表面のぬれ性試験方法」に準拠して、各例で得た成形体表面または被覆層表面の3ヶ所に水滴を載せ、各水滴について接触角を測定し、その平均値を水接触角とした。液滴量は約5μL/滴とし、25℃で測定を行った。また、水接触角は、水滴を載せた直後(初期)の水接触角φ1と、水滴を載せてから60分後の水接触角φ2を測定した。また、φ1-φ2を計算した。
(タンパク質非接着性)
(1)発色液およびタンパク質溶液の準備
 発色液は、ペルオキシダーゼ発色液(3,3’,5,5’-テトラメチルベンジジン(TMBZ)、KPL社製)50mL(ミリリットル)とTMB Peroxidase Substrate(KPL社製)50mLとを混合したものを使用した。
 タンパク質溶液として、タンパク質(POD-goat anti mouse IgG、Biorad社製)をリン酸緩衝溶液(D-PBS、Sigma社製)で16,000倍に希釈したものを使用した。
(2)タンパク質吸着
 各ウェル表面に被覆層を形成した24ウェルマイクロプレートにおける3ウェルに、タンパク質溶液の2mLを分注し(1ウェル毎に2mLを使用)、室温で1時間放置した。
 ブランクとして、タンパク質溶液を96ウェルマイクロプレートにおける3ウェルに、2μL分注(1ウェル毎に2μLを使用)した。
(3)ウェル洗浄
 次いで、24ウェルマイクロプレートを、界面活性剤(Tween20、和光純薬社製)を0.05質量%含ませたリン酸緩衝溶液(D-PBS、Sigma社製)の4mLで4回洗浄した(1ウェル毎に4mLを使用)。
(4)発色液分注
 次いで、洗浄を終えた24ウェルマイクロプレートに、発色液の2mLを分注し(1ウェル毎に2mLを使用)、7分間発色反応を行った。2N硫酸の1mLを加えることで(1ウェル毎に1mLを使用)発色反応を停止させた。
 ブランクは、96ウェルマイクロプレートに、発色液の100μLを分注し(1ウェル毎に100μLを使用)、7分間発色反応を行い、2N硫酸の50μLを加えることで(1ウェル毎に50μLを使用)発色反応を停止させた。
(5)吸光度測定準備
 次いで、24ウェルマイクロプレートの各ウェルから150μLの液を取り、96ウェルマイクロプレートに移した。
(6)吸光度測定およびタンパク質吸着率W
 吸光度は、MTP-810Lab(コロナ電気社製)により450nmの吸光度を測定した。ここで、ブランクの吸光度(N=3)の平均値をAとした。24ウェルマイクロプレートから96ウェルマイクロプレートに移動させた液の吸光度をAとした。
 タンパク質吸着率Wを下式により求め、タンパク質吸着率Wはその平均値とした。
 W=A/{A×(100/ブランクのタンパク質溶液の分注量)}×100
 =A/{A×(100/2μL)}×100 [%]
 なお、成形体のタンパク質非接着性の評価は、ウェスタンブロッティング法(電気泳動以降の工程)等を利用することで行える。
[原料]
 用いた原料の略号を以下に示す。
(含フッ素重合体の製造に用いた単量体)
 C6FA:CH=CHCOO(CH(CFCF
 2-EHA:2-エチルヘキシルアクリレート(CH=CHCOOCHCH(C)CHCHCHCH)。
 PEG9A:ポリエチレングリコールモノアクリレート(EO数平均9)(CH=CHCOO(CO)H)。
 MPC:2-メタクリロイルオキシエチル-2’-(トリメチルアンモニオ)エチルホスフェート。
 8FPMA:1H,1H,5H-オクタフルオロペンチルメタクリレート。
(非フッ素系化合物(B))
 A-200:商品名「A-200」(ポリエチレングリコールジアクリレート、新中村化学工業社製)。
 701A:商品名「701A」(2-ヒドロキシ-3-アクリロイルオキシプロピルメタクリレート、新中村化学工業社製)。
 A-DPH:商品名「NKエステル A-DPH」(新中村化学工業社製)。
 IB-XA:イソボルニルアクリレート(大阪有機化学工業社製)。
 PC:ポリカーボネートフィルム(旭硝子社製、グレード:カーボグラス)。
 PS:ポリスチレンフィルム(三菱樹脂社製、グレード:サントクリア)。
 PE:ポリエチレン粒子(住友化学社製、グレード:LE-1080)。
 PMMA:ポリメタクリル酸メチル粒子(三菱レイヨン社製、グレード:VH0)。
(含フッ素化合物(C))
 C6FMA:CH=C(CH)COO(CH(CFCF
(重合開始剤)
 V-601:商品名「V-601」(油溶性アゾ重合開始剤、和光純薬社製)。
 I-907:商品名「IIRGACURE 907」(光重合開始剤、BASF社製)。
(溶媒)
 EtOH:エタノール。
 MP:1-メトキシ-2-プロパノール。
[製造例1]
 100mLの耐圧ガラス瓶に、2-EHAの40g、PEG9Aの40g、V-601の0.66g、およびm-キシレンヘキサフルオリド(セントラル硝子社製、以下、「m-XHF」とも記す。)の49.8gを仕込み、密閉させた後、70℃で16時間加熱した。この反応液に、C6FAの20g、m-XHFの40g、およびV-601の0.48gを仕込み、密閉させた後、70℃で16時間加熱し、含フッ素重合体(A-1)を得た。含フッ素重合体(A-1)の共重合組成を測定した結果、PEG9A単位とC6FA単位と2-EHA単位とをモル比24:14:62(質量比40:20:40)で有する含フッ素重合体であることを確認した。分子量の測定を行った結果、含フッ素重合体(A-1)の数平均分子量(Mn)は17,000、質量平均分子量(Mw)は40,000および分子量分布(質量平均分子量(Mw)/数平均分子量(Mn))は2.3であった。
[製造例2]
 MPCの0.886g(3.0mmol)とC6FMAの3.025g(7.0mmol)とを300mLの3つ口フラスコに秤取し、重合開始剤としてAIBNの0.391gと、重合溶媒としてエタノール(EtOH)の15.6gを加えた。C6FMAとMPCとの仕込みモル比をC6FMA/MPC=70/30、反応液中の単量体の合計濃度を20質量%、開始剤濃度を1質量%とした。
 フラスコ内を充分にアルゴン置換した後に密封し、16時間75℃に加温することにより重合反応を行った。反応液を氷冷した後、ジエチルエーテルに滴下することにより重合体を沈殿させた。得られた重合体を充分にジエチルエーテルで洗浄した後、減圧乾燥して白色粉末状の含フッ素重合体(X-1)を得た。
 得られた含フッ素重合体(X-1)の共重合組成をH-NMRにて測定したところ、C6FMA単位/MPC単位=44/56(モル比)であった。
[製造例3]
 MPCの0.590g(2.0mmol)とC6FMAの3.457g(8.0mmol)とを300mLの3つ口フラスコに秤取し、重合開始剤としてAIBNの0.391gと、重合溶媒としてエタノール(EtOH)の15.6gを加えた。C6FMAとMPCとの仕込みモル比をC6FMA/MPC=70/30、反応液中の単量体の合計濃度を20質量%、開始剤濃度を1質量%とした。
 フラスコ内を充分にアルゴン置換した後に密封し、16時間75℃に加温することにより重合反応を行った。反応液を氷冷した後、ジエチルエーテルに滴下することにより重合体を沈殿させた。得られた重合体を充分にジエチルエーテルで洗浄した後、減圧乾燥して白色粉末状の含フッ素重合体(X-2)を得た。
 得られた含フッ素重合体(X-1)の共重合組成をH-NMRにて測定したところ、C6FMA単位/MPC単位=14/86(モル比)であった。
 製造例1~3で得た含フッ素重合体における、全単位に対する含フッ素単量体(C6FAおよび8FPMA)に由来する単位の割合(モル%)、フッ素原子含有率Q、フッ素原子比率SF/C、およびガラス転移温度(Tg)を表1に示す。
Figure JPOXMLDOC01-appb-T000016
[例1]
 50mLのサンプル瓶に、非フッ素系化合物(B)としてA-200の96.1mg(0.04805質量部)、光重合開始剤としてI-907の3mg(0.0015質量部)、および含フッ素重合体(A-1)の0.9mg(0.00045質量部)を入れ、1日撹拌を行い、タンパク質付着防止剤(α-1)を得た。タンパク質付着防止剤(α-1)にエタノールの199.9g(99.95質量部)加えて塗布液とした。24ウェルマイクロプレートに該塗布液を2.2mL分注した後、一晩乾燥させた。乾燥させた24ウェルマイクロプレートに対して、窒素雰囲気下にて、547mJ/cmの条件で光照射を行い、被覆層を形成した。
[例2]
 A-200と含フッ素重合体(A-1)の使用量を表2に示すように変更した以外は、例1と同様にしてタンパク質付着防止剤(α-2)を得た。また、タンパク質付着防止剤(α-2)を用いる以外は、例1と同様にして塗布液を調製して被覆層を形成した。
[例3]
 非フッ素系化合物(B)をA-200から701Aに変更した以外は、例1と同様にしてタンパク質付着防止剤(α-3)を得た。また、タンパク質付着防止剤(α-3)を用いる以外は、例1と同様にして塗布液を調製して被覆層を形成した。
[例4]
 含フッ素重合体(A-1)の0.9g(0.9質量部)をTHFに溶解し、含フッ素重合体(A-1)濃度が20質量%のTHF溶液を調製した。該THF溶液に、非フッ素系化合物(B)として、非フッ素系熱可塑性樹脂であるPCの99.1g(99.1質量部)を添加し、混合した後、THFを蒸発させた。得られた混合物を充分に混練し、東洋精機社製のラボプラストミルを用いて、250℃でストランドを作製し、該ストランドの先端部を順次切断して、ペレット状のタンパク質付着防止剤(α-4)を得た。
 ペレット状のタンパク質付着防止剤(α-4)を用い、EC50SC(東芝機械社製)の射出成形装置により、金型のキャビティ内に、溶融樹脂温度300℃、金型温度90℃の成形条件で射出成形を行い、成形体を製造した。
[例5]
 非フッ素系化合物(B)としてPCの代わりにPSを用い、180℃でストランドを作製した以外は、例4と同様にしてペレット状のタンパク質付着防止剤(α-5)を得た。また、ペレット状のタンパク質付着防止剤(α-5)を用い、成形条件を、溶融樹脂温度200℃、金型温度50℃に変更した以外は、例4と同様にして成形体を製造した。
[例6]
 非フッ素系化合物(B)としてPCの代わりにPEを用い、110℃でストランドを作製した以外は、例4と同様にしてペレット状のタンパク質付着防止剤(α-6)を得た。また、ペレット状のタンパク質付着防止剤(α-6)を用い、東洋精機社製のミニテストプレスにて、120℃、5分間、20MPaの条件で圧縮成形し、成形体を製造した。
[例7]
 含フッ素重合体(A-1)の0.9gをTHFに溶解し、含フッ素重合体(A-1)濃度が20質量%のTHF溶液を調製した。該THF溶液に、非フッ素系化合物(B)としてPMMAを添加し、混合した後、THFを蒸発させ、タンパク質付着防止剤(α-7)を得た。次いで、タンパク質付着防止剤(α-7)の含有量が10質量%となるように、MPに溶解して塗布液を調製した。
 ガラス基板を毎分500回転で回転させ、その表面に前記塗布液を30秒間キャストしてスピンコートし、80℃で1時間乾燥させてフィルムを形成し、ガラス基板から該フィルムを引き剥がした。
[例1X]
 含フッ素重合体(A-1)の0.9gをTHFに溶解し、含フッ素重合体(A-1)濃度が20質量%のTHF溶液を調製した。該THF溶液に、非フッ素系化合物(B)として変性シリコーン重合体であるエクセスターES-S3430(旭硝子社製)を(99.1g)添加し、混合した後、THFを蒸発させ、タンパク質付着防止剤(α-1X)を得た。次いで、タンパク質付着防止剤(α-1X)の含有量が10質量%となるように、THFに溶解して塗布液を調製した。
 ガラス基板を毎分500回転で回転させ、その表面に前記塗布液を30秒間キャストしてスピンコートした。その後、80℃で1時間乾燥させてフィルムを形成し、ガラス基板から該フィルムを引き剥がした。
[例8]
 50mLのサンプル瓶に、含フッ素化合物(C)としてC6FMAの10mg(0.005質量部)、非フッ素系化合物(B)としてIB-XAの20mg(0.01質量部)、A-200の22mg(0.011質量部)、A-DPHの42mg(0.021質量部)、重合開始剤としてI-907の3mg(0.0015質量部)、および含フッ素重合体(A-1)の3mg(0.0015質量部)を入れ、15分撹拌を行い、タンパク質付着防止剤(α-8)を得た。タンパク質付着防止剤(α-8)にエタノールの199.9g(99.95質量部)を加えて塗布液とした。該塗布液を用いて、例1と同様にして被覆層を形成した。
[例9]
 含フッ素重合体(A-1)を使用せず、A-200の使用量を表2に示すように変更した以外は、例1と同様にして組成物(β-1)を得た。また、組成物(β-1)を用いる以外は、例1と同様にして塗布液を調製して被覆層を形成した。
[例10]
 含フッ素重合体(A-1)を使用せず、非フッ素系化合物(B)をA-200から701Aに変更し、その使用量を表2に示すように変更した以外は、例1と同様にして組成物(β-2)を得た。また、組成物(β-2)を用いる以外は、例1と同様にして塗布液を調製して被覆層を形成した。
[例11]
 含フッ素重合体(A-1)を使用せず、PCの使用量を表2に示すように変更した以外は、例4と同様にしてペレット状の組成物(β-3)を得た。また、ペレット状の組成物(β-3)を用いた以外は、例4と同様にして成形体を製造した。
[例12]
 含フッ素重合体(A-1)を使用せず、PCの代わりにPSを使用し、その使用量を表2に示すように変更した以外は、例4と同様にしてペレット状の組成物(β-4)を得た。また、ペレット状の組成物(β-4)を用い、成形条件を溶融樹脂温度200℃、金型温度50℃に変更した以外は、例4と同様にして成形体を製造した。
[例13]
 含フッ素重合体(A-1)を使用せず、PCの代わりにPEを使用し、その使用量を表2に示すように変更した以外は、例4と同様にしてペレット状の組成物(β-5)を得た。また、ペレット状の組成物(β-5)を用いた以外は、例6と同様にして成形体を製造した。
[例14]
 含フッ素重合体(A-1)を使用せず、PMMAの使用量を表2に示すように変更した以外は、例7と同様にして組成物(β-6)を得た。また、組成物(β-6)を使用した以外は例7と同様にして塗布液を調製し、フィルムを製造した。
[例15]
 含フッ素重合体(X-1)の35質量部を、その濃度が20質量%となるようにEtOHに溶解し、得られたEtOH溶液に、非フッ素系化合物(B)としてPEの65質量部を添加し、混合した後、EtOHを蒸発させた。得られた混合物を充分に混練し、東洋精機社製のラボプラストミルを用いて、110℃でストランドを作製し、該ストランドの先端部を順次切断して、ペレット状の組成物(β-7)を得た。また、ペレット状の組成物(β-7)を用い、東洋精機社製のミニテストプレスにて、120℃、5分間、20MPaの条件で圧縮成形し、成形体を製造した。
[例16]
 含フッ素重合体(X-1)とPEの使用量を表2に示すように変更した以外は、例15と同様にしてペレット状の組成物(β-8)を得た。また、ペレット状の組成物(β-8)を用いた以外は、例15と同様にして成形体を製造した。
[例17]
 含フッ素重合体(X-1)の代わりに含フッ素重合体(X-2)を使用し、含フッ素重合体(X-2)とPEの使用量を表2に示すように変更した以外は、例15と同様にしてペレット状の組成物(β-9)を得た。また、ペレット状の組成物(β-9)を用いた以外は、例15と同様にして成形体を製造した。
 各例における組成物の組成、溶媒の種類および使用量を表2に示す。また、各例における組成物中の含フッ素重合体の種類および割合、被覆層または成形体の表面分析の結果、ならびにタンパク質吸着率の測定結果を表3に示す。
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 表3に示すように、例1~8で得た物品は、表層にフッ素原子が偏在していることを確認した。特に、含フッ素化合物(C)を含むタンパク質付着防止剤から形成された例8の物品は、表層にフッ素原子が著しく偏在していた。
 生体親和性基を有し、フッ素原子含有率Qが5~60質量%であり、ガラス転移温度が-100~100℃の含フッ素重合体(A)と非フッ素系化合物(B)を特定の比率で含むタンパク質付着防止剤から形成された例1、3および8の物品は、含フッ素重合体(A)を用いない組成物から形成された例9、および10の物品に比べて、タンパク質吸着率Wが低く、生体適合性に優れていた。特に、含フッ素化合物(C)を含むタンパク質付着防止剤から形成された例8の物品は、タンパク質吸着率Wが著しく低く、生体適合性に著しく優れていた。
 また、例1と例2との比較では、組成物中の含フッ素重合体(A-1)の割合が高いほど、表面における初期の水接触角φ1と60分後の水接触角φ2の差(φ1-φ2)が大きく、より表面が親水化された。これは、含フッ素重合体(A-1)のガラス転移温度が低く、生体親和性基が反転して外側を向きやすいためであると考えられる。
 本発明のタンパク質付着防止用防止剤を用いた被覆層を有する物品およびその成形体は、耐水性に優れ、被覆成分が溶出しにくく、タンパク質が吸着しにくい生体適合性に優れており、海洋構造物、医療用デバイス等の被覆、成形体として有用であり、例えば、カテーテル、人工臓器、細胞培養容器などにおいて利用される。
 なお、2014年7月18日に出願された日本特許出願2014-147932号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
 1 医療デバイス 2 デバイス基材 3 被覆層 4 底面部 5 側面部

Claims (15)

  1.  生体親和性基を有し、フッ素原子含有率Qが5~60質量%であり、かつガラス転移温度が-100~100℃である含フッ素重合体(A)と、非フッ素系熱硬化性樹脂、非フッ素系熱可塑性樹脂、非フッ素系光硬化性樹脂および重合性不飽和基を有する非フッ素系硬化性単量体からなる群から選ばれる少なくとも1種の非フッ素系化合物(B)と、を含む組成物であって、該組成物中の前記含フッ素重合体(A)の含有量が0.01~10質量%である組成物からなるタンパク質付着防止剤。
  2.  含フッ素熱硬化性樹脂、含フッ素光硬化性樹脂および重合性不飽和基を有する含フッ素硬化性単量体からなる群から選ばれる少なくとも1種の含フッ素化合物(C)(ただし、前記含フッ素重合体(A)を除く。)をさらに含む、請求項1に記載のタンパク質付着防止剤。
  3.  前記生体親和性基が、下式(1)で表される基、下式(2)で表される基および下式(3)で表される基からなる群から選ばれる少なくとも1種である、請求項1または2に記載のタンパク質付着防止用剤。
    Figure JPOXMLDOC01-appb-C000001
    (前記式中、nは1~10の整数であり、mは前記式(1)で表される基が含フッ素重合体において、側鎖に含まれる場合は1~100の整数であり、主鎖に含まれる場合は5~300であり、R~Rは、それぞれ独立に、炭素数1~5のアルキル基であり、aは1~5の整数であり、bは1~5の整数であり、RおよびRは、それぞれ独立に、炭素数1~5のアルキル基であり、Xは下式(3-1)で表される基または下式(3-2)で表される基であり、cは1~20の整数であり、dは1~5の整数である。)
    Figure JPOXMLDOC01-appb-C000002
  4.  前記含フッ素重合体(A)が、前記生体親和性基を有し、かつフッ素原子を有しない単位と、フッ素原子を有し、かつ前記生体親和性基を有しない単位とを有する、請求項1~3のいずれか一項に記載のタンパク質付着防止剤。
  5.  前記のフッ素原子を有し、かつ前記生体親和性基を有しない単位の割合が、前記含フッ素重合体(A)の全単位に対して10モル%超である、請求項4に記載のタンパク質付着防止剤。
  6.  前記フッ素原子を有し、かつ生体親和性基を有しない単位が、下式(m1)で表される単量体に由来する単位であり、前記生体親和性基を有し、かつフッ素原子を有しない単位が、下式(m2)で表される単量体に由来する単位および下式(m3)で表される単量体に由来する単位からなる群から選ばれる少なくとも1種の単位である、請求項4または5に記載のタンパク質付着防止剤。
    Figure JPOXMLDOC01-appb-C000003
    (前記式中、Rは水素原子、塩素原子またはメチル基であり、eは0~3の整数であり、RおよびRは、それぞれ独立に、水素原子、フッ素原子またはトリフルオロメチル基であり、Rf1は炭素数1~20のペルフルオロアルキル基であり、Rは水素原子、塩素原子またはメチル基であり、Qは-C(=O)-O-または-C(=O)-NH-であり、R~Rは、それぞれ独立に、炭素数1~5のアルキル基であり、aは1~5の整数であり、bは1~5の整数であり、R10は水素原子、塩素原子またはメチル基であり、Qは-C(=O)-O-または-C(=O)-NH-であり、RおよびRは、それぞれ独立に、炭素数1~5のアルキル基であり、Xは下式(3-1)で表される基または下式(3-2)で表される基であり、cは1~20の整数であり、dは1~5の整数である。)
    Figure JPOXMLDOC01-appb-C000004
  7.  前記フッ素原子を有し、かつ生体親和性基を有しない単位が、下式(m1)で表される単量体に由来する単位であり、前記生体親和性基を有し、かつフッ素原子を有しない単位が、下式(m4)で表される単量体に由来する単位である、請求項4または5に記載のタンパク質付着防止剤。
    Figure JPOXMLDOC01-appb-C000005
    (前記式中、Rは水素原子、塩素原子またはメチル基であり、eは0~3の整数であり、RおよびRは、それぞれ独立に、水素原子、フッ素原子またはトリフルオロメチル基であり、Rf1は炭素数1~20のペルフルオロアルキル基であり、R11は水素原子、塩素原子またはメチル基であり、Qは-COO-または-COO(CH-NHCOO-(ただし、hは1~4の整数である。)であり、R12は水素原子または-(CH-R13(ただし、R13は炭素数1~8のアルコキシ基、水素原子、ヒドロキシ基またはシアノ基であり、iは1~25の整数である。)であり、fは1~10の整数であり、gは1~100の整数である。)
  8.  前記組成物中のフッ素系化合物(C)の含有量が、タンパク質付着防止剤の全量に対して3~35質量である、請求項2~7のいずれかに記載のタンパク質付着防止剤。
  9.  請求項1~8のいずれか一項に記載のタンパク質付着防止剤と、溶媒とを含むことを特徴とする塗布液。
  10.  生体親和性基を有し、フッ素原子含有率QFが5~60質量%であり、かつガラス転移温度が-100~100℃である含フッ素重合体(A)と、非フッ素系熱硬化性樹脂、非フッ素系熱可塑性樹脂、非フッ素系光硬化性樹脂および重合性不飽和基を有する非フッ素系硬化性単量体からなる群から選ばれる少なくとも1種の非フッ素系化合物(B)と、を含む組成物であって、該組成物中の前記含フッ素重合体(A)の含有量が0.01~10質量%である組成物の、タンパク質付着防止のための使用。
  11.  請求項1~8のいずれか一項に記載のタンパク質付着防止剤から形成されてなり、かつ表面に露出している部分を少なくとも一部に有することを特徴とする物品。
  12.  下式で表されるフッ素原子の偏析割合が0.01~1であり、表面の水滴を載せた直後の水接触角φ1と、水滴を載せてから60分間後の水接触角φ2との差(φ1-φ2)が10~60度であることを特徴とする物品。
     フッ素原子の偏析割合=(物品表面のフッ素原子比率SF/C-物品表面から15nm深さのフッ素原子比率SF/C)/(物品表面のフッ素原子比率SF/C
  13.  医療用デバイスである、請求項11または12に記載の物品。
  14.  デバイス基材と、デバイス基材上に形成された被覆層とを備え、前記被覆層が、請求項1~8のいずれか一項に記載のタンパク質付着防止剤から形成された層である医療用デバイス。
  15.  細胞培養容器である請求項14に記載の医療用デバイス。
PCT/JP2015/070586 2014-07-18 2015-07-17 タンパク質付着防止剤 WO2016010147A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016534506A JP6617704B2 (ja) 2014-07-18 2015-07-17 タンパク質付着防止剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-147932 2014-07-18
JP2014147932 2014-07-18

Publications (1)

Publication Number Publication Date
WO2016010147A1 true WO2016010147A1 (ja) 2016-01-21

Family

ID=55078632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070586 WO2016010147A1 (ja) 2014-07-18 2015-07-17 タンパク質付着防止剤

Country Status (2)

Country Link
JP (1) JP6617704B2 (ja)
WO (1) WO2016010147A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110184A1 (ja) * 2015-12-24 2017-06-29 旭硝子株式会社 細胞捕捉フィルター
WO2017204306A1 (ja) * 2016-05-27 2017-11-30 旭硝子株式会社 タンパク質付着防止剤、硬化物、硬化物の製造方法、および物品
JP2018035318A (ja) * 2016-09-02 2018-03-08 株式会社日本触媒 重合体の表面親水化処理方法、表面親水化物品の製造方法および表面親水化物品
WO2022030417A1 (ja) * 2020-08-03 2022-02-10 Agc株式会社 フィルム、フィルムの製造方法及びフィルムの使用
CN115135732A (zh) * 2020-02-19 2022-09-30 日产化学株式会社 生物材料附着抑制剂
JP7226634B1 (ja) 2022-08-29 2023-02-21 東洋インキScホールディングス株式会社 生体適合性ポリマー組成物及びその用途

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04357917A (ja) * 1990-07-27 1992-12-10 Daikin Ind Ltd 食器洗浄方法および付着防止剤とすすぎ助剤
JP2007217516A (ja) * 2006-02-15 2007-08-30 Kuraray Medical Inc フルオロアルキル基含有鎖状高分子化合物およびそれを含有する歯科用組成物
JP2007314723A (ja) * 2006-05-29 2007-12-06 Nof Corp 表面偏析型プラスチック用添加剤及びその用途
JP2009529088A (ja) * 2006-03-06 2009-08-13 ヨトゥン エイエス 汚れ剥離組成物
JP2011084595A (ja) * 2009-10-13 2011-04-28 Asahi Kasei Corp フッ素含有エチレンオキサイド共重合体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04357917A (ja) * 1990-07-27 1992-12-10 Daikin Ind Ltd 食器洗浄方法および付着防止剤とすすぎ助剤
JP2007217516A (ja) * 2006-02-15 2007-08-30 Kuraray Medical Inc フルオロアルキル基含有鎖状高分子化合物およびそれを含有する歯科用組成物
JP2009529088A (ja) * 2006-03-06 2009-08-13 ヨトゥン エイエス 汚れ剥離組成物
JP2007314723A (ja) * 2006-05-29 2007-12-06 Nof Corp 表面偏析型プラスチック用添加剤及びその用途
JP2011084595A (ja) * 2009-10-13 2011-04-28 Asahi Kasei Corp フッ素含有エチレンオキサイド共重合体

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110184A1 (ja) * 2015-12-24 2017-06-29 旭硝子株式会社 細胞捕捉フィルター
WO2017204306A1 (ja) * 2016-05-27 2017-11-30 旭硝子株式会社 タンパク質付着防止剤、硬化物、硬化物の製造方法、および物品
JP2018035318A (ja) * 2016-09-02 2018-03-08 株式会社日本触媒 重合体の表面親水化処理方法、表面親水化物品の製造方法および表面親水化物品
CN115135732A (zh) * 2020-02-19 2022-09-30 日产化学株式会社 生物材料附着抑制剂
WO2022030417A1 (ja) * 2020-08-03 2022-02-10 Agc株式会社 フィルム、フィルムの製造方法及びフィルムの使用
CN116249725A (zh) * 2020-08-03 2023-06-09 Agc株式会社 膜、膜的制造方法和膜的用途
JP7226634B1 (ja) 2022-08-29 2023-02-21 東洋インキScホールディングス株式会社 生体適合性ポリマー組成物及びその用途
WO2024048105A1 (ja) * 2022-08-29 2024-03-07 artience株式会社 生体適合性ポリマー組成物及びその用途
JP2024032081A (ja) * 2022-08-29 2024-03-12 artience株式会社 生体適合性ポリマー組成物及びその用途

Also Published As

Publication number Publication date
JP6617704B2 (ja) 2019-12-11
JPWO2016010147A1 (ja) 2017-06-08

Similar Documents

Publication Publication Date Title
US10138312B2 (en) Protein adhesion inhibitor
JP6617704B2 (ja) タンパク質付着防止剤
WO2017204306A1 (ja) タンパク質付着防止剤、硬化物、硬化物の製造方法、および物品
EP2613819B1 (en) Lubricious coatings for medical devices
JP6467226B2 (ja) 親水性コート剤
Sakata et al. Quantitative evaluation of interaction force between functional groups in protein and polymer brush surfaces
US10689615B2 (en) Temperature-responsive base material, method for producing same, and method for evaluating same
KR101612223B1 (ko) 용융 가공용 수지 혼합물
EP3489345A1 (en) Coating film having thin film step coverage and structural substrate equipped with said film
Sae-Ung et al. Antifouling stripes prepared from clickable zwitterionic copolymers
JP2016026520A (ja) タンパク質付着防止用化合物、塗布液および医療用デバイス
Dunderdale et al. Polymer brush surfaces showing superhydrophobicity and air-bubble repellency in a variety of organic liquids
KR101654400B1 (ko) 수지 혼합물
US20180296988A1 (en) Cell-trapping filter
JP6214583B2 (ja) 高分子基材、その用途及びその製造方法
Walker Jr et al. Generating surface-anchored zwitterionic networks and studying their resistance to bovine serum albumin adsorption
Abdeldaim et al. Cracking in films cast from soft core/hard shell waterborne polymer dispersions
Han et al. Access to fluorinated polymer surfaces with outstanding mechanical property, high optical transparency, and low surface energy via nonafluoro-tert-butyl group introduction
JP2023153774A (ja) タンパク質付着抑制用共重合体、共重合体の製造方法、樹脂改質剤、成形材料、共重合体含有組成物、塗膜および物品
JP2018123061A (ja) ポリマー型抗菌・防カビ剤、およびその利用
JP2017186291A (ja) N−フェニルマレイミド誘導体およびその製造方法、n−フェニルマレイミド誘導体の前駆体、重合体、タンパク質付着防止剤、ならびに医療用デバイス
JP2018009137A (ja) 重合体、コーティング組成物、および物品
Dong et al. Synthesis and characterization of high-performance polymers based on perfluoropolyalkyl ethers using an environmentally friendly solvent
KR101640630B1 (ko) 수지 혼합물
Koguchi et al. Altering the bio-inert properties of surfaces by fluorinated copolymers of mPEGMA

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15821765

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016534506

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15821765

Country of ref document: EP

Kind code of ref document: A1