WO2016009823A1 - Dérivé de monoamine, matériau d'élément luminescent le contenant, et élément luminescent - Google Patents
Dérivé de monoamine, matériau d'élément luminescent le contenant, et élément luminescent Download PDFInfo
- Publication number
- WO2016009823A1 WO2016009823A1 PCT/JP2015/068780 JP2015068780W WO2016009823A1 WO 2016009823 A1 WO2016009823 A1 WO 2016009823A1 JP 2015068780 W JP2015068780 W JP 2015068780W WO 2016009823 A1 WO2016009823 A1 WO 2016009823A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- substituted
- unsubstituted
- general formula
- layer
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims description 126
- 239000010410 layer Substances 0.000 claims description 210
- 150000001875 compounds Chemical class 0.000 claims description 87
- 230000005525 hole transport Effects 0.000 claims description 55
- 229910052757 nitrogen Inorganic materials 0.000 claims description 37
- 238000002347 injection Methods 0.000 claims description 36
- 239000007924 injection Substances 0.000 claims description 36
- -1 dimethylfluorenyl group Chemical group 0.000 claims description 34
- 239000002019 doping agent Substances 0.000 claims description 34
- 125000001424 substituent group Chemical group 0.000 claims description 34
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 32
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 32
- 125000004432 carbon atom Chemical group C* 0.000 claims description 28
- 125000003118 aryl group Chemical group 0.000 claims description 25
- 239000012044 organic layer Substances 0.000 claims description 23
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 claims description 20
- 229910052799 carbon Inorganic materials 0.000 claims description 20
- 125000001624 naphthyl group Chemical group 0.000 claims description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 18
- 125000001072 heteroaryl group Chemical group 0.000 claims description 18
- 125000001792 phenanthrenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C=CC12)* 0.000 claims description 18
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 claims description 17
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 16
- 125000000217 alkyl group Chemical group 0.000 claims description 15
- 125000003914 fluoranthenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC=C4C1=C23)* 0.000 claims description 13
- 229910052736 halogen Inorganic materials 0.000 claims description 13
- 229910052739 hydrogen Inorganic materials 0.000 claims description 13
- 239000001257 hydrogen Substances 0.000 claims description 13
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 claims description 12
- 125000000732 arylene group Chemical group 0.000 claims description 12
- 229910052805 deuterium Inorganic materials 0.000 claims description 12
- 150000002367 halogens Chemical class 0.000 claims description 12
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 claims description 11
- 125000003545 alkoxy group Chemical group 0.000 claims description 8
- 125000004414 alkyl thio group Chemical group 0.000 claims description 8
- 125000003342 alkenyl group Chemical group 0.000 claims description 7
- 125000000304 alkynyl group Chemical group 0.000 claims description 7
- 125000000392 cycloalkenyl group Chemical group 0.000 claims description 7
- 150000002431 hydrogen Chemical class 0.000 claims description 7
- 125000004076 pyridyl group Chemical group 0.000 claims description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 6
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 6
- 125000005740 oxycarbonyl group Chemical group [*:1]OC([*:2])=O 0.000 claims description 6
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 5
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 claims description 5
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 125000005581 pyrene group Chemical group 0.000 claims description 4
- 125000000714 pyrimidinyl group Chemical group 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 claims description 3
- 125000004427 diamine group Chemical group 0.000 claims description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 3
- 125000005551 pyridylene group Chemical group 0.000 claims description 3
- 239000010703 silicon Substances 0.000 claims description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 150000001721 carbon Chemical group 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 239000011574 phosphorus Substances 0.000 claims description 2
- 239000010409 thin film Substances 0.000 abstract description 7
- 230000032258 transport Effects 0.000 description 51
- 239000010408 film Substances 0.000 description 32
- 0 CC1(C)c(cc(cc2)-c3ccccc3)c2-c2ccc(*(c(c(O)c(c(-c(c(O)c(c(O)c3O)O)c3O)c3*)O)c3O)c(c(O)c(c(-c(c(O)c(c(O)c3O)O)c3O)c3O)O)c3O)cc12 Chemical compound CC1(C)c(cc(cc2)-c3ccccc3)c2-c2ccc(*(c(c(O)c(c(-c(c(O)c(c(O)c3O)O)c3O)c3*)O)c3O)c(c(O)c(c(-c(c(O)c(c(O)c3O)O)c3O)c3O)O)c3O)cc12 0.000 description 26
- 239000000758 substrate Substances 0.000 description 25
- 229910052751 metal Inorganic materials 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 15
- 239000011521 glass Substances 0.000 description 15
- 229910052709 silver Inorganic materials 0.000 description 15
- 239000004332 silver Substances 0.000 description 15
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 14
- 239000011777 magnesium Substances 0.000 description 14
- 229910052749 magnesium Inorganic materials 0.000 description 14
- 238000000034 method Methods 0.000 description 13
- 230000000694 effects Effects 0.000 description 12
- 239000007983 Tris buffer Substances 0.000 description 11
- 238000000151 deposition Methods 0.000 description 11
- 229910052741 iridium Inorganic materials 0.000 description 9
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 238000000859 sublimation Methods 0.000 description 8
- 230000008022 sublimation Effects 0.000 description 8
- JZXXUZWBECTQIC-UHFFFAOYSA-N [Li].C1=CC=CC2=NC(O)=CC=C21 Chemical compound [Li].C1=CC=CC2=NC(O)=CC=C21 JZXXUZWBECTQIC-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 230000021615 conjugation Effects 0.000 description 7
- 230000005281 excited state Effects 0.000 description 7
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 7
- 150000002739 metals Chemical class 0.000 description 7
- 150000004866 oxadiazoles Chemical class 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 125000001931 aliphatic group Chemical group 0.000 description 6
- 229910052783 alkali metal Inorganic materials 0.000 description 6
- 150000001340 alkali metals Chemical class 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 125000004093 cyano group Chemical group *C#N 0.000 description 6
- 230000008021 deposition Effects 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 6
- 239000002356 single layer Substances 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 5
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 5
- 125000005595 acetylacetonate group Chemical group 0.000 description 5
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 5
- 150000001342 alkaline earth metals Chemical class 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000010355 oscillation Effects 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 229920000123 polythiophene Polymers 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 229910021642 ultra pure water Inorganic materials 0.000 description 5
- 239000012498 ultrapure water Substances 0.000 description 5
- 238000001771 vacuum deposition Methods 0.000 description 5
- 238000007740 vapor deposition Methods 0.000 description 5
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical compound C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 150000001716 carbazoles Chemical class 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 239000011259 mixed solution Substances 0.000 description 4
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 4
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- NGQSLSMAEVWNPU-YTEMWHBBSA-N 1,2-bis[(e)-2-phenylethenyl]benzene Chemical class C=1C=CC=CC=1/C=C/C1=CC=CC=C1\C=C\C1=CC=CC=C1 NGQSLSMAEVWNPU-YTEMWHBBSA-N 0.000 description 3
- KLCLIOISYBHYDZ-UHFFFAOYSA-N 1,4,4-triphenylbuta-1,3-dienylbenzene Chemical class C=1C=CC=CC=1C(C=1C=CC=CC=1)=CC=C(C=1C=CC=CC=1)C1=CC=CC=C1 KLCLIOISYBHYDZ-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 229910052693 Europium Inorganic materials 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical class C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 3
- WZJYKHNJTSNBHV-UHFFFAOYSA-N benzo[h]quinoline Chemical group C1=CN=C2C3=CC=CC=C3C=CC2=C1 WZJYKHNJTSNBHV-UHFFFAOYSA-N 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 150000004775 coumarins Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 150000004826 dibenzofurans Chemical class 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 125000005549 heteroarylene group Chemical group 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 3
- VVVPGLRKXQSQSZ-UHFFFAOYSA-N indolo[3,2-c]carbazole Chemical class C1=CC=CC2=NC3=C4C5=CC=CC=C5N=C4C=CC3=C21 VVVPGLRKXQSQSZ-UHFFFAOYSA-N 0.000 description 3
- 229910017053 inorganic salt Inorganic materials 0.000 description 3
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 3
- 235000019341 magnesium sulphate Nutrition 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 150000005041 phenanthrolines Chemical class 0.000 description 3
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 3
- 229920000767 polyaniline Polymers 0.000 description 3
- 229920002098 polyfluorene Polymers 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 238000010898 silica gel chromatography Methods 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 230000007480 spreading Effects 0.000 description 3
- 238000003892 spreading Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical class C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 3
- 150000003918 triazines Chemical class 0.000 description 3
- 125000005580 triphenylene group Chemical group 0.000 description 3
- 125000003960 triphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C3=CC=CC=C3C12)* 0.000 description 3
- UKSZBOKPHAQOMP-SVLSSHOZSA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 UKSZBOKPHAQOMP-SVLSSHOZSA-N 0.000 description 2
- AZQWKYJCGOJGHM-UHFFFAOYSA-N 1,4-benzoquinone Chemical compound O=C1C=CC(=O)C=C1 AZQWKYJCGOJGHM-UHFFFAOYSA-N 0.000 description 2
- FRASJONUBLZVQX-UHFFFAOYSA-N 1,4-naphthoquinone Chemical compound C1=CC=C2C(=O)C=CC(=O)C2=C1 FRASJONUBLZVQX-UHFFFAOYSA-N 0.000 description 2
- FLBAYUMRQUHISI-UHFFFAOYSA-N 1,8-naphthyridine Chemical compound N1=CC=CC2=CC=CN=C21 FLBAYUMRQUHISI-UHFFFAOYSA-N 0.000 description 2
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical group C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- UIWLITBBFICQKW-UHFFFAOYSA-N 1h-benzo[h]quinolin-2-one Chemical class C1=CC=C2C3=NC(O)=CC=C3C=CC2=C1 UIWLITBBFICQKW-UHFFFAOYSA-N 0.000 description 2
- JFJNVIPVOCESGZ-UHFFFAOYSA-N 2,3-dipyridin-2-ylpyridine Chemical compound N1=CC=CC=C1C1=CC=CN=C1C1=CC=CC=N1 JFJNVIPVOCESGZ-UHFFFAOYSA-N 0.000 description 2
- IXHWGNYCZPISET-UHFFFAOYSA-N 2-[4-(dicyanomethylidene)-2,3,5,6-tetrafluorocyclohexa-2,5-dien-1-ylidene]propanedinitrile Chemical compound FC1=C(F)C(=C(C#N)C#N)C(F)=C(F)C1=C(C#N)C#N IXHWGNYCZPISET-UHFFFAOYSA-N 0.000 description 2
- MTUBTKOZCCGPSU-UHFFFAOYSA-N 2-n-naphthalen-1-yl-1-n,1-n,2-n-triphenylbenzene-1,2-diamine Chemical compound C1=CC=CC=C1N(C=1C(=CC=CC=1)N(C=1C=CC=CC=1)C=1C2=CC=CC=C2C=CC=1)C1=CC=CC=C1 MTUBTKOZCCGPSU-UHFFFAOYSA-N 0.000 description 2
- XBHOUXSGHYZCNH-UHFFFAOYSA-N 2-phenyl-1,3-benzothiazole Chemical compound C1=CC=CC=C1C1=NC2=CC=CC=C2S1 XBHOUXSGHYZCNH-UHFFFAOYSA-N 0.000 description 2
- OGGKVJMNFFSDEV-UHFFFAOYSA-N 3-methyl-n-[4-[4-(n-(3-methylphenyl)anilino)phenyl]phenyl]-n-phenylaniline Chemical group CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 OGGKVJMNFFSDEV-UHFFFAOYSA-N 0.000 description 2
- QSNSCYSYFYORTR-UHFFFAOYSA-N 4-chloroaniline Chemical compound NC1=CC=C(Cl)C=C1 QSNSCYSYFYORTR-UHFFFAOYSA-N 0.000 description 2
- DIVZFUBWFAOMCW-UHFFFAOYSA-N 4-n-(3-methylphenyl)-1-n,1-n-bis[4-(n-(3-methylphenyl)anilino)phenyl]-4-n-phenylbenzene-1,4-diamine Chemical compound CC1=CC=CC(N(C=2C=CC=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=C(C)C=CC=2)=C1 DIVZFUBWFAOMCW-UHFFFAOYSA-N 0.000 description 2
- CRHRWHRNQKPUPO-UHFFFAOYSA-N 4-n-naphthalen-1-yl-1-n,1-n-bis[4-(n-naphthalen-1-ylanilino)phenyl]-4-n-phenylbenzene-1,4-diamine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(N(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 CRHRWHRNQKPUPO-UHFFFAOYSA-N 0.000 description 2
- WXAIEIRYBSKHDP-UHFFFAOYSA-N 4-phenyl-n-(4-phenylphenyl)-n-[4-[4-(4-phenyl-n-(4-phenylphenyl)anilino)phenyl]phenyl]aniline Chemical group C1=CC=CC=C1C1=CC=C(N(C=2C=CC(=CC=2)C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC(=CC=2)N(C=2C=CC(=CC=2)C=2C=CC=CC=2)C=2C=CC(=CC=2)C=2C=CC=CC=2)C=C1 WXAIEIRYBSKHDP-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- ROFVEXUMMXZLPA-UHFFFAOYSA-N Bipyridyl Chemical compound N1=CC=CC=C1C1=CC=CC=N1 ROFVEXUMMXZLPA-UHFFFAOYSA-N 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 241000284156 Clerodendrum quadriloculare Species 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical group CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 229920000265 Polyparaphenylene Polymers 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- SMWDFEZZVXVKRB-UHFFFAOYSA-N Quinoline Chemical compound N1=CC=CC2=CC=CC=C21 SMWDFEZZVXVKRB-UHFFFAOYSA-N 0.000 description 2
- CDVPABAGURXNBJ-UHFFFAOYSA-N S1C(=CC=C1)C1=NC=CC=C1[Ir] Chemical compound S1C(=CC=C1)C1=NC=CC=C1[Ir] CDVPABAGURXNBJ-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- SLGBZMMZGDRARJ-UHFFFAOYSA-N Triphenylene Natural products C1=CC=C2C3=CC=CC=C3C3=CC=CC=C3C2=C1 SLGBZMMZGDRARJ-UHFFFAOYSA-N 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 125000005577 anthracene group Chemical group 0.000 description 2
- PYKYMHQGRFAEBM-UHFFFAOYSA-N anthraquinone Natural products CCC(=O)c1c(O)c2C(=O)C3C(C=CC=C3O)C(=O)c2cc1CC(=O)OC PYKYMHQGRFAEBM-UHFFFAOYSA-N 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical group 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- UHOVQNZJYSORNB-MZWXYZOWSA-N benzene-d6 Chemical group [2H]C1=C([2H])C([2H])=C([2H])C([2H])=C1[2H] UHOVQNZJYSORNB-MZWXYZOWSA-N 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical group C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- 125000006267 biphenyl group Chemical group 0.000 description 2
- 229910052792 caesium Inorganic materials 0.000 description 2
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical compound C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 150000001907 coumarones Chemical class 0.000 description 2
- ZSWFCLXCOIISFI-UHFFFAOYSA-N cyclopentadiene Chemical class C1C=CC=C1 ZSWFCLXCOIISFI-UHFFFAOYSA-N 0.000 description 2
- TXCDCPKCNAJMEE-UHFFFAOYSA-N dibenzofuran Chemical compound C1=CC=C2C3=CC=CC=C3OC2=C1 TXCDCPKCNAJMEE-UHFFFAOYSA-N 0.000 description 2
- IYYZUPMFVPLQIF-UHFFFAOYSA-N dibenzothiophene Chemical compound C1=CC=C2C3=CC=CC=C3SC2=C1 IYYZUPMFVPLQIF-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000001194 electroluminescence spectrum Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 150000007946 flavonol Chemical class 0.000 description 2
- HVQAJTFOCKOKIN-UHFFFAOYSA-N flavonol Natural products O1C2=CC=CC=C2C(=O)C(O)=C1C1=CC=CC=C1 HVQAJTFOCKOKIN-UHFFFAOYSA-N 0.000 description 2
- 235000011957 flavonols Nutrition 0.000 description 2
- 150000002219 fluoranthenes Chemical class 0.000 description 2
- RMBPEFMHABBEKP-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2C3=C[CH]C=CC3=CC2=C1 RMBPEFMHABBEKP-UHFFFAOYSA-N 0.000 description 2
- 125000005567 fluorenylene group Chemical group 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 150000002391 heterocyclic compounds Chemical class 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 150000002469 indenes Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical group C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 2
- 125000004957 naphthylene group Chemical group 0.000 description 2
- 150000005054 naphthyridines Chemical class 0.000 description 2
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- DGBWPZSGHAXYGK-UHFFFAOYSA-N perinone Chemical class C12=NC3=CC=CC=C3N2C(=O)C2=CC=C3C4=C2C1=CC=C4C(=O)N1C2=CC=CC=C2N=C13 DGBWPZSGHAXYGK-UHFFFAOYSA-N 0.000 description 2
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 2
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 2
- 125000005561 phenanthryl group Chemical group 0.000 description 2
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 2
- 229920000548 poly(silane) polymer Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 150000004033 porphyrin derivatives Chemical class 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 125000003373 pyrazinyl group Chemical group 0.000 description 2
- 150000003219 pyrazolines Chemical class 0.000 description 2
- 150000005255 pyrrolopyridines Chemical class 0.000 description 2
- XSCHRSMBECNVNS-UHFFFAOYSA-N quinoxaline Chemical compound N1=CC=NC2=CC=CC=C21 XSCHRSMBECNVNS-UHFFFAOYSA-N 0.000 description 2
- 150000003252 quinoxalines Chemical class 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- MFRIHAYPQRLWNB-UHFFFAOYSA-N sodium tert-butoxide Chemical compound [Na+].CC(C)(C)[O-] MFRIHAYPQRLWNB-UHFFFAOYSA-N 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 150000003440 styrenes Chemical class 0.000 description 2
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 2
- 125000006836 terphenylene group Chemical group 0.000 description 2
- PCCVSPMFGIFTHU-UHFFFAOYSA-N tetracyanoquinodimethane Chemical compound N#CC(C#N)=C1C=CC(=C(C#N)C#N)C=C1 PCCVSPMFGIFTHU-UHFFFAOYSA-N 0.000 description 2
- 150000003577 thiophenes Chemical class 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 239000011135 tin Substances 0.000 description 2
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 2
- 150000003852 triazoles Chemical class 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- MDYOLVRUBBJPFM-UHFFFAOYSA-N tropolone Chemical compound OC1=CC=CC=CC1=O MDYOLVRUBBJPFM-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- HXITXNWTGFUOAU-RALIUCGRSA-N (2,3,4,5,6-pentadeuteriophenyl)boronic acid Chemical compound [2H]C1=C([2H])C([2H])=C(B(O)O)C([2H])=C1[2H] HXITXNWTGFUOAU-RALIUCGRSA-N 0.000 description 1
- MRBZYVMZUBUDAX-UHFFFAOYSA-N (3,5-diphenylphenyl)boronic acid Chemical compound C=1C(B(O)O)=CC(C=2C=CC=CC=2)=CC=1C1=CC=CC=C1 MRBZYVMZUBUDAX-UHFFFAOYSA-N 0.000 description 1
- UGUHFDPGDQDVGX-UHFFFAOYSA-N 1,2,3-thiadiazole Chemical group C1=CSN=N1 UGUHFDPGDQDVGX-UHFFFAOYSA-N 0.000 description 1
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical group C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- QEASJVYPHMYPJM-UHFFFAOYSA-N 1,2-dihydrotriazol-5-one Chemical compound OC1=CNN=N1 QEASJVYPHMYPJM-UHFFFAOYSA-N 0.000 description 1
- IZUKQUVSCNEFMJ-UHFFFAOYSA-N 1,2-dinitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC=C1[N+]([O-])=O IZUKQUVSCNEFMJ-UHFFFAOYSA-N 0.000 description 1
- JUSWGNJYSBSOFM-UHFFFAOYSA-N 1,3,6,8-tetranitro-9h-carbazole Chemical compound C1=C([N+]([O-])=O)C=C2C3=CC([N+](=O)[O-])=CC([N+]([O-])=O)=C3NC2=C1[N+]([O-])=O JUSWGNJYSBSOFM-UHFFFAOYSA-N 0.000 description 1
- BCMCBBGGLRIHSE-UHFFFAOYSA-N 1,3-benzoxazole Chemical class C1=CC=C2OC=NC2=C1 BCMCBBGGLRIHSE-UHFFFAOYSA-N 0.000 description 1
- 125000000355 1,3-benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- PGDIPOWQYRAOSK-UHFFFAOYSA-N 1,3-dihydroimidazo[4,5-b]pyridin-2-one Chemical compound C1=CN=C2NC(=O)NC2=C1 PGDIPOWQYRAOSK-UHFFFAOYSA-N 0.000 description 1
- WDCYWAQPCXBPJA-UHFFFAOYSA-N 1,3-dinitrobenzene Chemical compound [O-][N+](=O)C1=CC=CC([N+]([O-])=O)=C1 WDCYWAQPCXBPJA-UHFFFAOYSA-N 0.000 description 1
- ULALSFRIGPMWRS-UHFFFAOYSA-N 1,3-dinitronaphthalene Chemical compound C1=CC=CC2=CC([N+](=O)[O-])=CC([N+]([O-])=O)=C21 ULALSFRIGPMWRS-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- FYFDQJRXFWGIBS-UHFFFAOYSA-N 1,4-dinitrobenzene Chemical compound [O-][N+](=O)C1=CC=C([N+]([O-])=O)C=C1 FYFDQJRXFWGIBS-UHFFFAOYSA-N 0.000 description 1
- ZUTCJXFCHHDFJS-UHFFFAOYSA-N 1,5-dinitronaphthalene Chemical compound C1=CC=C2C([N+](=O)[O-])=CC=CC2=C1[N+]([O-])=O ZUTCJXFCHHDFJS-UHFFFAOYSA-N 0.000 description 1
- UHXOHPVVEHBKKT-UHFFFAOYSA-N 1-(2,2-diphenylethenyl)-4-[4-(2,2-diphenylethenyl)phenyl]benzene Chemical group C=1C=C(C=2C=CC(C=C(C=3C=CC=CC=3)C=3C=CC=CC=3)=CC=2)C=CC=1C=C(C=1C=CC=CC=1)C1=CC=CC=C1 UHXOHPVVEHBKKT-UHFFFAOYSA-N 0.000 description 1
- QARVLSVVCXYDNA-RALIUCGRSA-N 1-bromo-2,3,4,5,6-pentadeuteriobenzene Chemical compound [2H]C1=C([2H])C([2H])=C(Br)C([2H])=C1[2H] QARVLSVVCXYDNA-RALIUCGRSA-N 0.000 description 1
- KTADSLDAUJLZGL-UHFFFAOYSA-N 1-bromo-2-phenylbenzene Chemical group BrC1=CC=CC=C1C1=CC=CC=C1 KTADSLDAUJLZGL-UHFFFAOYSA-N 0.000 description 1
- RJKGJBPXVHTNJL-UHFFFAOYSA-N 1-nitronaphthalene Chemical compound C1=CC=C2C([N+](=O)[O-])=CC=CC2=C1 RJKGJBPXVHTNJL-UHFFFAOYSA-N 0.000 description 1
- JHFAEUICJHBVHB-UHFFFAOYSA-N 1h-indol-2-ol Chemical compound C1=CC=C2NC(O)=CC2=C1 JHFAEUICJHBVHB-UHFFFAOYSA-N 0.000 description 1
- WLODWTPNUWYZKN-UHFFFAOYSA-N 1h-pyrrol-2-ol Chemical class OC1=CC=CN1 WLODWTPNUWYZKN-UHFFFAOYSA-N 0.000 description 1
- XWIYUCRMWCHYJR-UHFFFAOYSA-N 1h-pyrrolo[3,2-b]pyridine Chemical compound C1=CC=C2NC=CC2=N1 XWIYUCRMWCHYJR-UHFFFAOYSA-N 0.000 description 1
- PCRSJGWFEMHHEW-UHFFFAOYSA-N 2,3,5,6-tetrafluorobenzene-1,4-dicarbonitrile Chemical compound FC1=C(F)C(C#N)=C(F)C(F)=C1C#N PCRSJGWFEMHHEW-UHFFFAOYSA-N 0.000 description 1
- JKLYZOGJWVAIQS-UHFFFAOYSA-N 2,3,5,6-tetrafluorocyclohexa-2,5-diene-1,4-dione Chemical compound FC1=C(F)C(=O)C(F)=C(F)C1=O JKLYZOGJWVAIQS-UHFFFAOYSA-N 0.000 description 1
- HZNVUJQVZSTENZ-UHFFFAOYSA-N 2,3-dichloro-5,6-dicyano-1,4-benzoquinone Chemical compound ClC1=C(Cl)C(=O)C(C#N)=C(C#N)C1=O HZNVUJQVZSTENZ-UHFFFAOYSA-N 0.000 description 1
- SVPKNMBRVBMTLB-UHFFFAOYSA-N 2,3-dichloronaphthalene-1,4-dione Chemical compound C1=CC=C2C(=O)C(Cl)=C(Cl)C(=O)C2=C1 SVPKNMBRVBMTLB-UHFFFAOYSA-N 0.000 description 1
- VHQGURIJMFPBKS-UHFFFAOYSA-N 2,4,7-trinitrofluoren-9-one Chemical compound [O-][N+](=O)C1=CC([N+]([O-])=O)=C2C3=CC=C([N+](=O)[O-])C=C3C(=O)C2=C1 VHQGURIJMFPBKS-UHFFFAOYSA-N 0.000 description 1
- 125000004215 2,4-difluorophenyl group Chemical group [H]C1=C([H])C(*)=C(F)C([H])=C1F 0.000 description 1
- LNXVNZRYYHFMEY-UHFFFAOYSA-N 2,5-dichlorocyclohexa-2,5-diene-1,4-dione Chemical compound ClC1=CC(=O)C(Cl)=CC1=O LNXVNZRYYHFMEY-UHFFFAOYSA-N 0.000 description 1
- JCARTGJGWCGSSU-UHFFFAOYSA-N 2,6-dichlorobenzoquinone Chemical compound ClC1=CC(=O)C=C(Cl)C1=O JCARTGJGWCGSSU-UHFFFAOYSA-N 0.000 description 1
- STTGYIUESPWXOW-UHFFFAOYSA-N 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline Chemical compound C=12C=CC3=C(C=4C=CC=CC=4)C=C(C)N=C3C2=NC(C)=CC=1C1=CC=CC=C1 STTGYIUESPWXOW-UHFFFAOYSA-N 0.000 description 1
- MKFFVKXHQDCENQ-UHFFFAOYSA-N 2-(1-benzo[h]quinolin-2-yl-9,9'-spirobi[fluorene]-2-yl)benzo[h]quinoline Chemical compound N1=C(C=CC2=CC=C3C(=C12)C=CC=C3)C1=C(C=2C3(C4=CC=CC=C4C=2C=C1)C1=CC=CC=C1C=1C=CC=CC=13)C1=NC2=C3C(=CC=C2C=C1)C=CC=C3 MKFFVKXHQDCENQ-UHFFFAOYSA-N 0.000 description 1
- MTQADTZTLQGIRT-UHFFFAOYSA-N 2-(4-dinaphthalen-1-ylphosphorylphenyl)-1,8-naphthyridine Chemical compound C1=CC=C2C(P(C=3C=CC(=CC=3)C=3N=C4N=CC=CC4=CC=3)(C=3C4=CC=CC=C4C=CC=3)=O)=CC=CC2=C1 MTQADTZTLQGIRT-UHFFFAOYSA-N 0.000 description 1
- FQJQNLKWTRGIEB-UHFFFAOYSA-N 2-(4-tert-butylphenyl)-5-[3-[5-(4-tert-butylphenyl)-1,3,4-oxadiazol-2-yl]phenyl]-1,3,4-oxadiazole Chemical group C1=CC(C(C)(C)C)=CC=C1C1=NN=C(C=2C=C(C=CC=2)C=2OC(=NN=2)C=2C=CC(=CC=2)C(C)(C)C)O1 FQJQNLKWTRGIEB-UHFFFAOYSA-N 0.000 description 1
- LCJYXABWHRITEH-UHFFFAOYSA-N 2-(9,10-diphenylanthracen-2-yl)-1,3-benzothiazole Chemical compound C1=CC=CC=C1C(C1=CC=C(C=C11)C=2SC3=CC=CC=C3N=2)=C(C=CC=C2)C2=C1C1=CC=CC=C1 LCJYXABWHRITEH-UHFFFAOYSA-N 0.000 description 1
- QWKWMRMSNXMFOE-UHFFFAOYSA-N 2-[2,3-bis(1-phenylbenzimidazol-2-yl)phenyl]-1-phenylbenzimidazole Chemical compound C1=CC=CC=C1N1C2=CC=CC=C2N=C1C1=CC=CC(C=2N(C3=CC=CC=C3N=2)C=2C=CC=CC=2)=C1C1=NC2=CC=CC=C2N1C1=CC=CC=C1 QWKWMRMSNXMFOE-UHFFFAOYSA-N 0.000 description 1
- KXMKGOPUYUWQHC-UHFFFAOYSA-N 2-[3-(1,10-phenanthrolin-2-yl)phenyl]-1,10-phenanthroline Chemical compound C1=CN=C2C3=NC(C=4C=CC=C(C=4)C=4N=C5C6=NC=CC=C6C=CC5=CC=4)=CC=C3C=CC2=C1 KXMKGOPUYUWQHC-UHFFFAOYSA-N 0.000 description 1
- ZJYJZEAJZXVAMF-UHFFFAOYSA-N 2-nitronaphthalene Chemical compound C1=CC=CC2=CC([N+](=O)[O-])=CC=C21 ZJYJZEAJZXVAMF-UHFFFAOYSA-N 0.000 description 1
- VQGHOUODWALEFC-UHFFFAOYSA-N 2-phenylpyridine Chemical group C1=CC=CC=C1C1=CC=CC=N1 VQGHOUODWALEFC-UHFFFAOYSA-N 0.000 description 1
- FSEXLNMNADBYJU-UHFFFAOYSA-N 2-phenylquinoline Chemical group C1=CC=CC=C1C1=CC=C(C=CC=C2)C2=N1 FSEXLNMNADBYJU-UHFFFAOYSA-N 0.000 description 1
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 1
- NKHUXLDXYURVLX-UHFFFAOYSA-N 2h-pyrrolo[3,4-c]pyrrole-4,6-dione Chemical class N1C=C2C(=O)NC(=O)C2=C1 NKHUXLDXYURVLX-UHFFFAOYSA-N 0.000 description 1
- QZELMXYYONEIDT-UHFFFAOYSA-N 3,3-diacetylpentane-2,4-dione Chemical compound CC(=O)C(C(C)=O)(C(C)=O)C(C)=O QZELMXYYONEIDT-UHFFFAOYSA-N 0.000 description 1
- RUSAWEHOGCWOPG-UHFFFAOYSA-N 3-nitrobenzonitrile Chemical compound [O-][N+](=O)C1=CC=CC(C#N)=C1 RUSAWEHOGCWOPG-UHFFFAOYSA-N 0.000 description 1
- DHDHJYNTEFLIHY-UHFFFAOYSA-N 4,7-diphenyl-1,10-phenanthroline Chemical compound C1=CC=CC=C1C1=CC=NC2=C1C=CC1=C(C=3C=CC=CC=3)C=CN=C21 DHDHJYNTEFLIHY-UHFFFAOYSA-N 0.000 description 1
- FDRNXKXKFNHNCA-UHFFFAOYSA-N 4-(4-anilinophenyl)-n-phenylaniline Chemical class C=1C=C(C=2C=CC(NC=3C=CC=CC=3)=CC=2)C=CC=1NC1=CC=CC=C1 FDRNXKXKFNHNCA-UHFFFAOYSA-N 0.000 description 1
- GAMYYCRTACQSBR-UHFFFAOYSA-N 4-azabenzimidazole Chemical compound C1=CC=C2NC=NC2=N1 GAMYYCRTACQSBR-UHFFFAOYSA-N 0.000 description 1
- AOQKGYRILLEVJV-UHFFFAOYSA-N 4-naphthalen-1-yl-3,5-diphenyl-1,2,4-triazole Chemical compound C1=CC=CC=C1C(N1C=2C3=CC=CC=C3C=CC=2)=NN=C1C1=CC=CC=C1 AOQKGYRILLEVJV-UHFFFAOYSA-N 0.000 description 1
- NKJIFDNZPGLLSH-UHFFFAOYSA-N 4-nitrobenzonitrile Chemical compound [O-][N+](=O)C1=CC=C(C#N)C=C1 NKJIFDNZPGLLSH-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 description 1
- 229940076442 9,10-anthraquinone Drugs 0.000 description 1
- LSIKFJXEYJIZNB-UHFFFAOYSA-N 9-Nitroanthracene Chemical compound C1=CC=C2C([N+](=O)[O-])=C(C=CC=C3)C3=CC2=C1 LSIKFJXEYJIZNB-UHFFFAOYSA-N 0.000 description 1
- PQJUJGAVDBINPI-UHFFFAOYSA-N 9H-thioxanthene Chemical compound C1=CC=C2CC3=CC=CC=C3SC2=C1 PQJUJGAVDBINPI-UHFFFAOYSA-N 0.000 description 1
- 229920003026 Acene Polymers 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- XSQYASWWVFBCOP-UHFFFAOYSA-N C1(=CC=CC=C1)NC1(CC=C(C=C1)C1=CC=C(NC2=CC=CC=C2)C=C1)N Chemical class C1(=CC=CC=C1)NC1(CC=C(C=C1)C1=CC=C(NC2=CC=CC=C2)C=C1)N XSQYASWWVFBCOP-UHFFFAOYSA-N 0.000 description 1
- NZGXEUWGGSDALJ-UHFFFAOYSA-N C1=CC=CC=C1C1=NC=CC=C1[Ir](C=1C(=NC=CC=1)C=1C=CC=CC=1)C1=CC=CN=C1C1=CC=CC=C1 Chemical compound C1=CC=CC=C1C1=NC=CC=C1[Ir](C=1C(=NC=CC=1)C=1C=CC=CC=1)C1=CC=CN=C1C1=CC=CC=C1 NZGXEUWGGSDALJ-UHFFFAOYSA-N 0.000 description 1
- XMWRBQBLMFGWIX-UHFFFAOYSA-N C60 fullerene Chemical class C12=C3C(C4=C56)=C7C8=C5C5=C9C%10=C6C6=C4C1=C1C4=C6C6=C%10C%10=C9C9=C%11C5=C8C5=C8C7=C3C3=C7C2=C1C1=C2C4=C6C4=C%10C6=C9C9=C%11C5=C5C8=C3C3=C7C1=C1C2=C4C6=C2C9=C5C3=C12 XMWRBQBLMFGWIX-UHFFFAOYSA-N 0.000 description 1
- NMQVGUZLEOYYIG-UHFFFAOYSA-N CC(C1)C(c2cccc(-c(ccc3ccc4cc5)nc3c4nc5-c3ccccc3)c2)=Nc2c1ccc(cc1)c2nc1-c1ccccc1 Chemical compound CC(C1)C(c2cccc(-c(ccc3ccc4cc5)nc3c4nc5-c3ccccc3)c2)=Nc2c1ccc(cc1)c2nc1-c1ccccc1 NMQVGUZLEOYYIG-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- PTIVXJBDSSULOP-UHFFFAOYSA-N Cc(cc1)ccc1N(c1cc(C)cc(C)c1)c1c(cccc2)c2c(cc(c2ccccc22)N(c3ccc(C)cc3)c3cc(C)cc(C)c3)c2c1 Chemical compound Cc(cc1)ccc1N(c1cc(C)cc(C)c1)c1c(cccc2)c2c(cc(c2ccccc22)N(c3ccc(C)cc3)c3cc(C)cc(C)c3)c2c1 PTIVXJBDSSULOP-UHFFFAOYSA-N 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- ZCQWOFVYLHDMMC-UHFFFAOYSA-N Oxazole Chemical compound C1=COC=N1 ZCQWOFVYLHDMMC-UHFFFAOYSA-N 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical group C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- LSMNEJCTMKWDIH-UHFFFAOYSA-N S1C(=CC2=C1C=CC=C2)C2=NC=CC=C2[Ir] Chemical compound S1C(=CC2=C1C=CC=C2)C2=NC=CC=C2[Ir] LSMNEJCTMKWDIH-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- PJANXHGTPQOBST-VAWYXSNFSA-N Stilbene Natural products C=1C=CC=CC=1/C=C/C1=CC=CC=C1 PJANXHGTPQOBST-VAWYXSNFSA-N 0.000 description 1
- 229910052771 Terbium Inorganic materials 0.000 description 1
- WNMSSOWUFXADRQ-LHNTUAQVSA-N [2H]C(C([2H])=C1[2H])=C([2H])C([2H])=C1N(C(C=C1)=CC=C1Cl)C1=C([2H])C([2H])=C([2H])C([2H])=C1[2H] Chemical compound [2H]C(C([2H])=C1[2H])=C([2H])C([2H])=C1N(C(C=C1)=CC=C1Cl)C1=C([2H])C([2H])=C([2H])C([2H])=C1[2H] WNMSSOWUFXADRQ-LHNTUAQVSA-N 0.000 description 1
- ZCVMUOFZUOMJOS-UHFFFAOYSA-K [Ir+3].C(C)(=O)CC(=O)[O-].C1(=CC=CC=C1)C=1OC2=C(N1)C=CC=C2.C2(=CC=CC=C2)C=2OC1=C(N2)C=CC=C1.C(C)(=O)CC(=O)[O-].C(C)(=O)CC(=O)[O-] Chemical compound [Ir+3].C(C)(=O)CC(=O)[O-].C1(=CC=CC=C1)C=1OC2=C(N1)C=CC=C2.C2(=CC=CC=C2)C=2OC1=C(N2)C=CC=C1.C(C)(=O)CC(=O)[O-].C(C)(=O)CC(=O)[O-] ZCVMUOFZUOMJOS-UHFFFAOYSA-K 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- DWFQLHGORQRJLK-UHFFFAOYSA-N [Pt].CCc1c2ccc(n2)c(CC)c2ccc([nH]2)c(CC)c2ccc(n2)c(CC)c2ccc1[nH]2 Chemical compound [Pt].CCc1c2ccc(n2)c(CC)c2ccc([nH]2)c(CC)c2ccc(n2)c(CC)c2ccc1[nH]2 DWFQLHGORQRJLK-UHFFFAOYSA-N 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical compound [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- KEQZHLAEKAVZLY-UHFFFAOYSA-N anthracene-9-carbonitrile Chemical compound C1=CC=C2C(C#N)=C(C=CC=C3)C3=CC2=C1 KEQZHLAEKAVZLY-UHFFFAOYSA-N 0.000 description 1
- 150000001454 anthracenes Chemical class 0.000 description 1
- 125000004653 anthracenylene group Chemical group 0.000 description 1
- 150000004056 anthraquinones Chemical class 0.000 description 1
- 125000005428 anthryl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C3C(*)=C([H])C([H])=C([H])C3=C([H])C2=C1[H] 0.000 description 1
- FAPDDOBMIUGHIN-UHFFFAOYSA-K antimony trichloride Chemical compound Cl[Sb](Cl)Cl FAPDDOBMIUGHIN-UHFFFAOYSA-K 0.000 description 1
- 229940058303 antinematodal benzimidazole derivative Drugs 0.000 description 1
- 229940027991 antiseptic and disinfectant quinoline derivative Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000006615 aromatic heterocyclic group Chemical group 0.000 description 1
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 1
- 125000005264 aryl amine group Chemical group 0.000 description 1
- 125000005013 aryl ether group Chemical group 0.000 description 1
- 150000004832 aryl thioethers Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- RFRXIWQYSOIBDI-UHFFFAOYSA-N benzarone Chemical group CCC=1OC2=CC=CC=C2C=1C(=O)C1=CC=C(O)C=C1 RFRXIWQYSOIBDI-UHFFFAOYSA-N 0.000 description 1
- YLDBWNXELVQOFK-UHFFFAOYSA-N benzene-1,2,3,4,5,6-hexacarbonitrile Chemical compound N#CC1=C(C#N)C(C#N)=C(C#N)C(C#N)=C1C#N YLDBWNXELVQOFK-UHFFFAOYSA-N 0.000 description 1
- FAAXSAZENACQBT-UHFFFAOYSA-N benzene-1,2,4,5-tetracarbonitrile Chemical compound N#CC1=CC(C#N)=C(C#N)C=C1C#N FAAXSAZENACQBT-UHFFFAOYSA-N 0.000 description 1
- BHXFKXOIODIUJO-UHFFFAOYSA-N benzene-1,4-dicarbonitrile Chemical compound N#CC1=CC=C(C#N)C=C1 BHXFKXOIODIUJO-UHFFFAOYSA-N 0.000 description 1
- 150000001556 benzimidazoles Chemical class 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- ZJHMRPBTRSQNPI-UHFFFAOYSA-N benzo[b][1]benzosilole Chemical compound C1=CC=C2[Si]C3=CC=CC=C3C2=C1 ZJHMRPBTRSQNPI-UHFFFAOYSA-N 0.000 description 1
- 125000000499 benzofuranyl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 125000002529 biphenylenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3C12)* 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- XKHYPFFZHSGMBE-UHFFFAOYSA-N buta-1,3-diene-1,1,2,3,4,4-hexacarbonitrile Chemical compound N#CC(C#N)=C(C#N)C(C#N)=C(C#N)C#N XKHYPFFZHSGMBE-UHFFFAOYSA-N 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- WZAKMOUIQWRNOI-UHFFFAOYSA-N c(cc1)ccc1-c(cc1)ccc1-c1nc(-[n]2c(ccc(-c(cc3c4ccccc44)ccc3[n]4-c3ccccc3)c3)c3c3ccccc23)nc2c1cccc2 Chemical compound c(cc1)ccc1-c(cc1)ccc1-c1nc(-[n]2c(ccc(-c(cc3c4ccccc44)ccc3[n]4-c3ccccc3)c3)c3c3ccccc23)nc2c1cccc2 WZAKMOUIQWRNOI-UHFFFAOYSA-N 0.000 description 1
- 125000005566 carbazolylene group Chemical group 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000010549 co-Evaporation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- OMZSGWSJDCOLKM-UHFFFAOYSA-N copper(II) sulfide Chemical compound [S-2].[Cu+2] OMZSGWSJDCOLKM-UHFFFAOYSA-N 0.000 description 1
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- UKJLNMAFNRKWGR-UHFFFAOYSA-N cyclohexatrienamine Chemical group NC1=CC=C=C[CH]1 UKJLNMAFNRKWGR-UHFFFAOYSA-N 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 description 1
- 125000002433 cyclopentenyl group Chemical group C1(=CCCC1)* 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- IYYZUPMFVPLQIF-ALWQSETLSA-N dibenzothiophene Chemical class C1=CC=CC=2[34S]C3=C(C=21)C=CC=C3 IYYZUPMFVPLQIF-ALWQSETLSA-N 0.000 description 1
- NZZIMKJIVMHWJC-UHFFFAOYSA-N dibenzoylmethane Chemical compound C=1C=CC=CC=1C(=O)CC(=O)C1=CC=CC=C1 NZZIMKJIVMHWJC-UHFFFAOYSA-N 0.000 description 1
- WAMKWBHYPYBEJY-UHFFFAOYSA-N duroquinone Chemical compound CC1=C(C)C(=O)C(C)=C(C)C1=O WAMKWBHYPYBEJY-UHFFFAOYSA-N 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000010893 electron trap Methods 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 125000002534 ethynyl group Chemical group [H]C#C* 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 150000002222 fluorine compounds Chemical class 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- UPWPDUACHOATKO-UHFFFAOYSA-K gallium trichloride Chemical compound Cl[Ga](Cl)Cl UPWPDUACHOATKO-UHFFFAOYSA-K 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000004770 highest occupied molecular orbital Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PSCMQHVBLHHWTO-UHFFFAOYSA-K indium(iii) chloride Chemical compound Cl[In](Cl)Cl PSCMQHVBLHHWTO-UHFFFAOYSA-K 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 229940079865 intestinal antiinfectives imidazole derivative Drugs 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- WEODYYMMVGCMIB-UHFFFAOYSA-N iridium 2-phenyl-1,3-benzoxazole Chemical compound [Ir].C1=CC=CC=C1C1=NC2=CC=CC=C2O1.C1=CC=CC=C1C1=NC2=CC=CC=C2O1.C1=CC=CC=C1C1=NC2=CC=CC=C2O1 WEODYYMMVGCMIB-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 125000000040 m-tolyl group Chemical group [H]C1=C([H])C(*)=C([H])C(=C1[H])C([H])([H])[H] 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 229910001510 metal chloride Inorganic materials 0.000 description 1
- HZVOZRGWRWCICA-UHFFFAOYSA-N methanediyl Chemical group [CH2] HZVOZRGWRWCICA-UHFFFAOYSA-N 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- YPJRZWDWVBNDIW-UHFFFAOYSA-N n,n-diphenyl-4-[2-[4-[4-[2-[4-(n-phenylanilino)phenyl]ethenyl]phenyl]phenyl]ethenyl]aniline Chemical group C=1C=C(N(C=2C=CC=CC=2)C=2C=CC=CC=2)C=CC=1C=CC(C=C1)=CC=C1C(C=C1)=CC=C1C=CC(C=C1)=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 YPJRZWDWVBNDIW-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- MHJUNMARMFAUBI-UHFFFAOYSA-N n-phenyliminobenzamide Chemical compound C=1C=CC=CC=1C(=O)N=NC1=CC=CC=C1 MHJUNMARMFAUBI-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 125000002971 oxazolyl group Chemical group 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- UQPUONNXJVWHRM-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 UQPUONNXJVWHRM-UHFFFAOYSA-N 0.000 description 1
- 125000005560 phenanthrenylene group Chemical group 0.000 description 1
- 125000005562 phenanthrylene group Chemical group 0.000 description 1
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N phenylbenzene Natural products C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 1
- LFGREXWGYUGZLY-UHFFFAOYSA-N phosphoryl Chemical class [P]=O LFGREXWGYUGZLY-UHFFFAOYSA-N 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical class N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- XQZYPMVTSDWCCE-UHFFFAOYSA-N phthalonitrile Chemical compound N#CC1=CC=CC=C1C#N XQZYPMVTSDWCCE-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 125000002924 primary amino group Chemical class [H]N([H])* 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 150000003216 pyrazines Chemical class 0.000 description 1
- 125000001725 pyrenyl group Chemical group 0.000 description 1
- 125000005548 pyrenylene group Chemical group 0.000 description 1
- RRZLWIPIQKXHAS-UHFFFAOYSA-N pyridine-2,3,5,6-tetracarbonitrile Chemical compound N#CC1=CC(C#N)=C(C#N)N=C1C#N RRZLWIPIQKXHAS-UHFFFAOYSA-N 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- JOZPEVMCAKXSEY-UHFFFAOYSA-N pyrimido[5,4-d]pyrimidine Chemical group N1=CN=CC2=NC=NC=C21 JOZPEVMCAKXSEY-UHFFFAOYSA-N 0.000 description 1
- RQGPLDBZHMVWCH-UHFFFAOYSA-N pyrrolo[3,2-b]pyrrole Chemical class C1=NC2=CC=NC2=C1 RQGPLDBZHMVWCH-UHFFFAOYSA-N 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- LISFMEBWQUVKPJ-UHFFFAOYSA-N quinolin-2-ol Chemical compound C1=CC=C2NC(=O)C=CC2=C1 LISFMEBWQUVKPJ-UHFFFAOYSA-N 0.000 description 1
- 150000004322 quinolinols Chemical class 0.000 description 1
- 125000002943 quinolinyl group Chemical group N1=C(C=CC2=CC=CC=C12)* 0.000 description 1
- 150000004053 quinones Chemical class 0.000 description 1
- 125000001567 quinoxalinyl group Chemical group N1=C(C=NC2=CC=CC=C12)* 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052702 rhenium Inorganic materials 0.000 description 1
- WUAPFZMCVAUBPE-UHFFFAOYSA-N rhenium atom Chemical compound [Re] WUAPFZMCVAUBPE-UHFFFAOYSA-N 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 229910001925 ruthenium oxide Inorganic materials 0.000 description 1
- WOCIAKWEIIZHES-UHFFFAOYSA-N ruthenium(iv) oxide Chemical compound O=[Ru]=O WOCIAKWEIIZHES-UHFFFAOYSA-N 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000005361 soda-lime glass Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 235000021286 stilbenes Nutrition 0.000 description 1
- 125000005649 substituted arylene group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- GZCRRIHWUXGPOV-UHFFFAOYSA-N terbium atom Chemical compound [Tb] GZCRRIHWUXGPOV-UHFFFAOYSA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- IFLREYGFSNHWGE-UHFFFAOYSA-N tetracene Chemical compound C1=CC=CC2=CC3=CC4=CC=CC=C4C=C3C=C21 IFLREYGFSNHWGE-UHFFFAOYSA-N 0.000 description 1
- UGNWTBMOAKPKBL-UHFFFAOYSA-N tetrachloro-1,4-benzoquinone Chemical compound ClC1=C(Cl)C(=O)C(Cl)=C(Cl)C1=O UGNWTBMOAKPKBL-UHFFFAOYSA-N 0.000 description 1
- NLDYACGHTUPAQU-UHFFFAOYSA-N tetracyanoethylene Chemical group N#CC(C#N)=C(C#N)C#N NLDYACGHTUPAQU-UHFFFAOYSA-N 0.000 description 1
- VLLMWSRANPNYQX-UHFFFAOYSA-N thiadiazole Chemical compound C1=CSN=N1.C1=CSN=N1 VLLMWSRANPNYQX-UHFFFAOYSA-N 0.000 description 1
- 150000004867 thiadiazoles Chemical class 0.000 description 1
- QKTRRACPJVYJNU-UHFFFAOYSA-N thiadiazolo[5,4-b]pyridine Chemical class C1=CN=C2SN=NC2=C1 QKTRRACPJVYJNU-UHFFFAOYSA-N 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- NZFNXWQNBYZDAQ-UHFFFAOYSA-N thioridazine hydrochloride Chemical class Cl.C12=CC(SC)=CC=C2SC2=CC=CC=C2N1CCC1CCCCN1C NZFNXWQNBYZDAQ-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-M triflate Chemical compound [O-]S(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-M 0.000 description 1
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 1
- PWYVVBKROXXHEB-UHFFFAOYSA-M trimethyl-[3-(1-methyl-2,3,4,5-tetraphenylsilol-1-yl)propyl]azanium;iodide Chemical compound [I-].C[N+](C)(C)CCC[Si]1(C)C(C=2C=CC=CC=2)=C(C=2C=CC=CC=2)C(C=2C=CC=CC=2)=C1C1=CC=CC=C1 PWYVVBKROXXHEB-UHFFFAOYSA-M 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- ODHXBMXNKOYIBV-UHFFFAOYSA-N triphenylamine Chemical compound C1=CC=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 ODHXBMXNKOYIBV-UHFFFAOYSA-N 0.000 description 1
- ZRXVCYGHAUGABY-UHFFFAOYSA-O tris(4-bromophenyl)azanium Chemical compound C1=CC(Br)=CC=C1[NH+](C=1C=CC(Br)=CC=1)C1=CC=C(Br)C=C1 ZRXVCYGHAUGABY-UHFFFAOYSA-O 0.000 description 1
- BWHDROKFUHTORW-UHFFFAOYSA-N tritert-butylphosphane Chemical compound CC(C)(C)P(C(C)(C)C)C(C)(C)C BWHDROKFUHTORW-UHFFFAOYSA-N 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 229910001935 vanadium oxide Inorganic materials 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/14—Carrier transporting layers
- H10K50/15—Hole transporting layers
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/43—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
- C07C211/54—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B59/00—Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
Definitions
- the present invention relates to a light-emitting element capable of converting electric energy into light and a monoamine derivative useful as a light-emitting element material used therefor. More specifically, the present invention relates to a light-emitting element that can be used in the fields of display elements, flat panel displays, backlights, lighting, interiors, signs, signboards, electrophotographic machines, optical signal generators, and light-emitting element materials used therefor. .
- This light emitting element is characterized by thin light emission with high luminance under a low driving voltage and multicolor light emission by selecting a fluorescent material.
- the luminous efficiency of the device is greatly influenced by the carrier transport material that transports carriers such as holes and electrons to the light emitting layer.
- the carrier transport material that transports carriers such as holes and electrons to the light emitting layer.
- materials having a monoamine skeleton are known as materials that transport holes (hole transport materials) (see, for example, Patent Documents 1 to 6).
- An object of the present invention is to provide an organic thin film light emitting device that solves the problems of the prior art and has improved luminous efficiency and durability.
- the present invention is a monoamine derivative represented by the following general formula (1).
- L 1 and L 2 are a single bond or a substituted or unsubstituted arylene group having 6 to 12 nuclear carbon atoms.
- At least one of R 1 to R 5 is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted phenanthrenyl group, or a substituted or unsubstituted group Selected from the terphenyl group, all others are deuterium.
- a 1 and A 2 may be the same or different and each represents a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted phenanthrenyl group, or substituted or unsubstituted It is selected from unsubstituted terphenyl groups.
- an organic electroluminescent device having high luminous efficiency and further having a sufficient durability life.
- L 1 and L 2 are a single bond or a substituted or unsubstituted arylene group having 6 to 12 nuclear carbon atoms.
- At least one of R 1 to R 5 is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted phenanthrenyl group, or a substituted or unsubstituted group Selected from the terphenyl group, all others are deuterium.
- a 1 and A 2 may be the same or different and each represents a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted phenanthrenyl group, or substituted or unsubstituted It is selected from unsubstituted terphenyl groups.
- the arylene group is a divalent group derived from an aryl group, and examples thereof include a phenylene group, a naphthylene group, a biphenylene group, a fluorenylene group, a phenanthrylene group, a terphenylene group, an anthracenylene group, and a pyrenylene group. These may or may not have a substituent.
- the carbon number of the arylene group is not particularly limited, but is usually in the range of 6 or more and 40 or less. Moreover, when an arylene group has a substituent, it is preferable that carbon number is 6 or more and 60 or less including a substituent.
- An arylene group having 6 to 12 nuclear carbon atoms means an arylene group having 6 to 12 carbon layers contained in a skeleton other than a substituent.
- the aryl group refers to, for example, an aromatic hydrocarbon group such as a phenyl group, a biphenyl group, a fluorenyl group, a phenanthryl group, a triphenylenyl group, or a terphenyl group.
- the aryl group may or may not have a substituent. Although carbon number of an aryl group is not specifically limited, Usually, it is the range of 6-40.
- the fluorenyl group is preferred because both of the hydrogen atoms of the methylene group present in the molecule are replaced with alkyl groups, particularly methyl groups, because electron donating properties are increased.
- Patent Documents 1 to 6 show compounds A to F having a monoamine skeleton represented by the following formula.
- the present inventors paid attention to the effect of the substituent directly linked to the nitrogen atom.
- the fluorescence quantum efficiency is increased, and the stability of the singlet excited state is increased accordingly, so that the molecule is hardly decomposed in the excited state.
- an aryl group having a large number of nuclear carbons is directly linked to the nitrogen atom or coexists in the molecule, the fluorescence quantum efficiency tends to be high, but the conjugation is too wide and the energy in the singlet state is increased. The gap becomes smaller.
- the electron blocking property which is important as one of the required characteristics of the hole transport material, is impaired, which is not preferable from the viewpoint of increasing the light emission efficiency.
- the triplet level which is an important value in triplet emission type light-emitting elements and thermally activated delayed fluorescent elements, is also significantly reduced, so even in an element using a dopant via a triplet excited state, light emission Since it becomes a factor which reduces efficiency, it is not preferable.
- compound F contains a pyrene skeleton in the molecule and is not preferred for the above reasons.
- the substituent directly linked to the nitrogen atom can achieve high emission efficiency by limiting the number of carbon atoms such as a phenyl group.
- substituents in the molecule such as phenyl, naphthyl, phenanthrenyl, terphenyl, and fluorenyl groups, which have few nuclear carbon atoms and are not too wide. It is.
- a substituent having a high triplet energy such as a triphenylenyl group is a preferable substituent because it does not cause a decrease in light emission efficiency.
- the present inventors have found that many of the conventional compounds having a monoamine skeleton are not deuterated on a substituent on the nitrogen atom, so that the fluorescence quantum efficiency is lowered, and the luminance is deteriorated during continuous driving of the device, that is, I thought it might have led to a decrease in durability. Therefore, by deuterating the phenyl group on the nitrogen atom like the compound of the present invention, the fluorescence quantum efficiency can be improved, the stability of the excited state can be improved, and the durability at the time of driving the device can be improved. Thought.
- the inventors have found that the monoamine derivative represented by the general formula (1) improves the light emission efficiency and durability, and have reached the present invention.
- the monoamine derivative represented by the general formula (1) it is preferable for the monoamine derivative represented by the general formula (1) to have at least one deuterated phenyl group in the molecule because of high fluorescence quantum efficiency.
- At least one of R 1 to R 5 in the general formula (1) is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted fluorenyl group.
- L 1 and L 2 in the general formula (1) are substituted arylene groups having 6 to 12 nuclear carbon atoms, the substituent has little influence on conjugation and can maintain a high triplet level. From the viewpoint of being able to do so, an alkyl group or halogen is preferable.
- the alkyl group represents, for example, a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a tert-butyl group, which is a substituent. It may or may not have.
- the number of carbon atoms of the alkyl group is not particularly limited, but is usually in the range of 1 to 20 and more preferably 1 to 8 in terms of availability and cost.
- Halogen means fluorine, chlorine, bromine and iodine.
- A that is, when A 1 and A 2 are substituted, the substituent has little influence on conjugation and can maintain a high triplet level.
- Alkyl groups or halogens are preferred.
- L 1 and L 2 are preferably a phenylene group, a naphthylene group, a phenanthrenylene group, a terphenylene group, and a fluorenylene group from the viewpoint of not spreading the conjugation too much.
- Preferable examples of A 1 and A 2 are preferably a phenyl group, a naphthyl group, a phenanthrenyl group, a terphenyl group, and a fluorenyl group from the viewpoint of not spreading the conjugation too much.
- the substitution of two deuterated benzene rings on the nitrogen atom further improves the fluorescence quantum efficiency. preferable.
- L 1 and A 1 are the same as those in the general formula (1).
- At least one of R 1 to R 10 is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted phenanthrenyl group, or a substituted or unsubstituted group Selected from the terphenyl group, all others are deuterium.
- the general formula (2) has a substituted or unsubstituted aryl group having 6 to 12 nuclear carbon atoms at the para position on the deuterated benzene ring. Therefore, it is preferable that the conjugation is widened to improve the stability of the excited state and further improve the hole transport property, which leads to a lower driving voltage of the element.
- L 1 and A 1 are the same as those in the general formula (1).
- Ar 1 and Ar 2 may be the same or different and each represents a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted phenanthrenyl group, or substituted or unsubstituted It is selected from unsubstituted terphenyl groups.
- the general formula (3) is, as represented by the general formula (4), by Ar 1 and Ar 2 are substituted or unsubstituted phenyl group, a hole transport without reducing an energy gap larger This is preferable because the property is improved.
- the molecular weight does not increase too much, the sublimation stability is also improved, which is preferable.
- L 1 and A 1 are the same as those in the general formula (1).
- R 101 to R 110 may be the same or different and are each hydrogen, deuterium, alkyl group, cycloalkyl group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, substituted or unsubstituted phenyl group.
- R 111 is selected from the group consisting of R 112 .
- R 111 and R 112 are an aryl group or a heteroaryl group.
- R 111 and R 112 may be condensed to form a ring.
- hydrogen may be deuterium
- the cycloalkyl group represents, for example, a saturated alicyclic hydrocarbon group such as cyclopropyl, cyclohexyl, norbornyl, adamantyl, etc., which may or may not have a substituent.
- carbon number of an alkyl group part is not specifically limited, Usually, it is the range of 3-20.
- alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group, which may or may not have a substituent.
- carbon number of an alkenyl group is not specifically limited, Usually, it is the range of 2-20.
- the cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexenyl group, which may have a substituent. You don't have to. Although carbon number of a cycloalkenyl group is not specifically limited, Usually, it is the range of 2-20.
- the alkynyl group indicates, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent.
- carbon number of an alkynyl group is not specifically limited, Usually, it is the range of 2-20.
- the alkoxy group refers to a functional group to which an aliphatic hydrocarbon group is bonded through an ether bond such as a methoxy group, an ethoxy group, or a propoxy group, and the aliphatic hydrocarbon group may have a substituent. It does not have to be. Although carbon number of an alkoxy group is not specifically limited, Usually, it is the range of 1-20.
- the alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom.
- the hydrocarbon group of the alkylthio group may or may not have a substituent. Although carbon number of an alkylthio group is not specifically limited, Usually, it is the range of 1-20.
- the carbonyl group, carboxyl group, oxycarbonyl group and carbamoyl group may or may not have a substituent.
- the silyl group refers to, for example, a functional group having a bond to a silicon atom such as a trimethylsilyl group, which may or may not have a substituent.
- carbon number of a silyl group is not specifically limited, Usually, it is the range of 3-20.
- the number of silicon is usually in the range of 1 to 6.
- —P ( ⁇ O) R 11 R 12 may or may not have a substituent.
- a heteroaryl group is a ring having one or more atoms other than carbon such as furanyl group, thiophenyl group, pyridyl group, pyrazinyl group, pyrimidinyl group, triazinyl group, benzofuranyl group, benzothiophenyl group, indolyl group in the ring.
- carbon number of heteroaryl group is not specifically limited, Usually, it is the range of 2-30.
- R 101 , R 102 , R 104 to R 107 , R 109, and R 110 in Ar 1 and Ar 2 are hydrogen or heavy as represented by general formula (5). Since it is hydrogen, the fluorescence quantum efficiency is further improved, leading to higher efficiency of the device, which is preferable.
- L 1 and A 1 are the same as those in the general formula (1).
- R 103 and R 108 are the same as those in the general formula (4), and may be the same or different.
- a and b are each 0 to 4, and when a and b are 0 to 3, the portion other than deuterium is hydrogen.
- R 101 , R 102 , R 104 to R 107 , R 109 and R 110 in Ar 1 and Ar 2 are deuterium. Therefore, it is preferable because the fluorescence quantum efficiency is further improved and the stability of the excited state is improved.
- L 1 and A 1 are the same as those in the general formula (1).
- R 103 and R 108 are the same as those in the general formula (4), and may be the same or different.
- R 103 and R 108 are preferably a substituted or unsubstituted phenyl group from the viewpoint of molecular weight, and those in which all hydrogen is deuterated are preferable in order to improve the fluorescence quantum efficiency.
- the monoamine derivative represented by the general formula (1) is not particularly limited, but specific examples include the following. In addition, the following is an illustration, and even if it is other than the compound specified here, if it is represented by General formula (1), it is preferably used similarly.
- a known method can be used for the synthesis of a compound having a monoamine skeleton as described above.
- Examples of the synthesis method include, but are not limited to, a method using a coupling reaction between a primary or secondary amine derivative using a palladium or copper catalyst and a halide or triflate.
- a method using a coupling reaction between a primary or secondary amine derivative using a palladium or copper catalyst and a halide or triflate As an example, an example using p-chloroaniline and bromobiphenyl is shown below.
- the monoamine derivative represented by the general formula (1) is preferably used as a light emitting device material.
- the light emitting device material in the present invention represents a material used for any layer of the light emitting device, and as described later, in the hole injection layer, the hole transport layer, the light emitting layer and / or the electron transport layer.
- the materials used for the cathode protective film are also included.
- the light emitting device of the present invention has an anode and a cathode and an organic layer interposed between the anode and the cathode, and the organic layer emits light by electric energy.
- the layer structure between the anode and the cathode is composed of only the light emitting layer, 1) light emitting layer / electron transport layer, 2) hole transport layer / light emitting layer, and 3) hole transport.
- Layer / light emitting layer / electron transport layer 4) hole injection layer / hole transport layer / light emitting layer / electron transport layer, 5) hole transport layer / light emitting layer / electron transport layer / electron injection layer, 6) hole A laminated structure such as injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer may be mentioned.
- the intermediate layer is generally called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer, and a known material structure can be used.
- tandem type are, for example, 7) hole transport layer / light emitting layer / electron transport layer / charge generation layer / hole transport layer / light emitting layer / electron transport layer, 8) hole injection layer / hole transport layer / A charge generation layer as an intermediate layer between an anode and a cathode, such as a light emitting layer / electron transport layer / electron injection layer / charge generation layer / hole injection layer / hole transport layer / light emission layer / electron transport layer / electron injection layer
- the laminated structure including is mentioned. Specifically, pyridine derivatives and phenanthroline derivatives are preferably used as the material constituting the intermediate layer.
- each of the above layers may be either a single layer or a plurality of layers, and may be doped. Further, each of the above layers includes an anode, one or more organic layers including a light emitting layer, a cathode, and an element configuration including a layer using a capping material for improving light emission efficiency due to an optical interference effect.
- the monoamine derivative represented by the general formula (1) may be used in any of the above layers in the light emitting device, but is particularly preferably used in the hole transport layer.
- the anode and the cathode have a role of supplying a sufficient current for light emission of the device, and it is desirable that at least one of them is transparent or translucent in order to extract light.
- the anode formed on the substrate is a transparent electrode.
- anode If the material used for the anode is a material that can efficiently inject holes into the organic layer and is transparent or translucent to extract light, zinc oxide, tin oxide, indium oxide, indium tin oxide (ITO), zinc oxide
- conductive metal oxides such as indium (IZO), metals such as gold, silver and chromium, inorganic conductive materials such as copper iodide and copper sulfide, and conductive polymers such as polythiophene, polypyrrole and polyaniline are particularly limited.
- ITO glass or Nesa glass it is particularly desirable to use ITO glass or Nesa glass. These electrode materials may be used alone, or a plurality of materials may be laminated or mixed.
- the resistance of the transparent electrode is not limited as long as a current sufficient for light emission of the element can be supplied, but it is desirable that the resistance be low from the viewpoint of power consumption of the element.
- an ITO substrate with a resistance of 300 ⁇ / ⁇ or less will function as a device electrode, but since it is now possible to supply a substrate with a resistance of approximately 10 ⁇ / ⁇ , use a substrate with a low resistance of 20 ⁇ / ⁇ or less. Is particularly desirable.
- the thickness of ITO can be arbitrarily selected according to the resistance value, but is usually used in a range of 45 to 300 nm.
- the light emitting element is preferably formed over a substrate.
- a glass substrate such as soda glass or non-alkali glass is preferably used.
- the thickness of the glass substrate it is sufficient that the thickness is sufficient to maintain the mechanical strength.
- alkali-free glass is preferred because it is better that there are fewer ions eluted from the glass.
- soda lime glass provided with a barrier coat such as SiO 2 is also commercially available and can be used.
- the substrate need not be glass, and for example, an anode may be formed on a plastic substrate.
- the ITO film forming method is not particularly limited, such as an electron beam method, a sputtering method, and a chemical reaction method.
- the material used for the cathode is not particularly limited as long as it can efficiently inject electrons into the light emitting layer.
- metals such as platinum, gold, silver, copper, iron, tin, aluminum, and indium, or alloys and multilayer stacks of these metals with low work function metals such as lithium, sodium, potassium, calcium, and magnesium Is preferred.
- aluminum, silver, and magnesium are preferable as the main component from the viewpoints of electrical resistance, ease of film formation, film stability, luminous efficiency, and the like.
- magnesium and silver are preferable because electron injection into the electron transport layer and the electron injection layer in the present invention is facilitated and low voltage driving is possible.
- metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium, or alloys using these metals, inorganic materials such as silica, titania and silicon nitride, polyvinyl alcohol, polyvinyl chloride
- an organic polymer compound such as a hydrocarbon polymer compound is laminated on the cathode as a protective film layer.
- the protective film layer is selected from materials that are light transmissive in the visible light region.
- the production method of these electrodes is not particularly limited, such as resistance heating, electron beam, sputtering, ion plating and coating.
- the hole injection layer is a layer inserted between the anode and the hole transport layer.
- the hole injection layer may be either a single layer or a plurality of layers stacked.
- the presence of a hole injection layer between the hole transport layer and the anode is preferable because it not only drives at a lower voltage and improves the durability life, but also improves the carrier balance of the device and the light emission efficiency.
- the material used for the hole injection layer is not particularly limited.
- the monoamine derivative represented by General formula (1) can also be used.
- a benzidine derivative and a starburst arylamine group of materials have a shallower HOMO level than the monoamine derivative represented by the general formula (1), and from the viewpoint of smoothly injecting and transporting holes from the anode to the hole transport layer. More preferably used.
- the materials may be used alone or as a mixture of two or more materials.
- a plurality of materials may be stacked to form a hole injection layer.
- the hole injection layer is composed of an acceptor compound alone or that the hole injection material is doped with an acceptor compound so that the above-described effects can be obtained more remarkably.
- An acceptor compound is a material that forms a charge transfer complex with a material that forms a hole-injecting layer in contact with a hole-transporting layer when used as a single-layer film and a material that forms a hole-injecting layer when used as a doped layer. When such a material is used, the conductivity of the hole injection layer is improved, which contributes to lowering of the driving voltage of the device, and the effects of improving the light emission efficiency and improving the durability life can be obtained.
- acceptor compounds include metal chlorides such as iron (III) chloride, aluminum chloride, gallium chloride, indium chloride, antimony chloride, metal oxides such as molybdenum oxide, vanadium oxide, tungsten oxide, ruthenium oxide, A charge transfer complex such as tris (4-bromophenyl) aminium hexachloroantimonate (TBPAH).
- metal chlorides such as iron (III) chloride, aluminum chloride, gallium chloride, indium chloride, antimony chloride, metal oxides such as molybdenum oxide, vanadium oxide, tungsten oxide, ruthenium oxide,
- a charge transfer complex such as tris (4-bromophenyl) aminium hexachloroantimonate (TBPAH).
- organic compounds having a nitro group, cyano group, halogen or trifluoromethyl group in the molecule quinone compounds, acid anhydride compounds, fullerenes, and the like are also preferably used.
- these compounds include hexacyanobutadiene, hexacyanobenzene, tetracyanoethylene, tetracyanoquinodimethane (TCNQ), tetrafluorotetracyanoquinodimethane (F4-TCNQ), a radiane derivative, p-fluoranil, p-chloranil, p-bromanyl, p-benzoquinone, 2,6-dichlorobenzoquinone, 2,5-dichlorobenzoquinone, tetramethylbenzoquinone, 1,2,4,5-tetracyanobenzene, o-dicyanobenzene, p-dicyano Benzene, 1,4-dicyanotetrafluorobenzene, 2,3-dichloro-5,6-dicyanobenzoquinone, p-dinitrobenzene, m-dinitrobenzene, o-dinitrobenzene,
- the hole injection layer is composed of an acceptor compound alone or when the hole injection layer is doped with an acceptor compound, the hole injection layer may be a single layer, A plurality of layers may be laminated.
- the hole transport layer is a layer that transports holes injected from the anode to the light emitting layer.
- the hole transport layer may be a single layer or may be configured by laminating a plurality of layers.
- the monoamine derivative represented by the general formula (1) has an ionization potential of 5.1 to 6.0 eV (measured value of deposited film AC-2 (RIKEN Keiki)), a high triplet energy level, and a high hole transport property. In addition, since it has thin film stability, it is preferably used for a hole injection layer and a hole transport layer of a light-emitting element. In addition, the monoamine derivative represented by the general formula (1) has a large LUMO level and an excellent electron blocking property because it has a large energy gap with respect to a conventional hole transport material having a benzidine skeleton. Furthermore, the monoamine derivative represented by the general formula (1) is preferably used as a hole transport material of an element using a triplet light emitting material.
- a conventional hole transport material having a benzidine skeleton has a low triplet level, and if it is in direct contact with a light-emitting layer containing a triplet light-emitting material, leakage of triplet energy occurs and the light emission efficiency decreases. This is because the monoamine derivative represented by the formula (1) has a high triplet energy and does not cause such a problem.
- the hole transport layer containing the monoamine derivative represented by the general formula (1) is preferably in direct contact with the light emitting layer. This is because the monoamine derivative represented by the general formula (1) has high electron blocking properties and can prevent intrusion of electrons flowing out from the light emitting layer. Furthermore, since the monoamine derivative represented by the general formula (1) has a high triplet level, it also has an effect of confining the excitation energy of the triplet light-emitting material. Therefore, even when a triplet light emitting material is included in the light emitting layer, the hole transport layer containing the monoamine derivative represented by the general formula (1) is preferably in direct contact with the light emitting layer.
- the hole transport layer may be composed only of the monoamine derivative represented by the general formula (1), or may be mixed with other materials as long as the effects of the present invention are not impaired.
- other materials used for example, 4,4′-bis (N- (3-methylphenyl) -N-phenylamino) biphenyl (TPD), 4,4′-bis (N- (1 -Naphthyl) -N-phenylamino) biphenyl (NPD), 4,4'-bis (N, N-bis (4-biphenylyl) amino) biphenyl (TBDB), bis (N, N'-diphenyl-4-amino) Benzidine derivatives such as phenyl) -N, N-diphenyl-4,4′-diamino-1,1′-biphenyl (TPD232), 4,4 ′, 4 ′′ -tris (3-methylphenyl (phenyl) amino) triphenyl Starburst aryl such as
- the organic layer includes at least a light emitting layer and a plurality of organic layers between the light emitting layer and the anode, and a layer in contact with the light emitting layer among the plurality of organic layers is represented by the general formula (1).
- a structure containing a monoamine derivative and having a compound represented by the following general formula (7) or (8) in a layer other than the layer in contact with the light emitting layer among the plurality of organic layers is also preferable.
- L 101 and L 201 are substituted or unsubstituted arylene groups having 10 to 40 nuclear carbon atoms.
- Ar 101 to Ar 104 may be the same as or different from each other, and are a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, or a substituted or unsubstituted heteroaryl group having 6 to 60 nuclear carbon atoms.
- R 401 to R 408 may be the same or different and each represents hydrogen, an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, a substituted or unsubstituted phenyl group, a substituted or Unsubstituted naphthyl group, substituted or unsubstituted phenanthrenyl group, substituted or unsubstituted terphenyl group, halogen, carbonyl group, carboxyl group, oxycarbonyl group and carbamoyl group, silyl group and —P ( ⁇ O) R 16 R Selected from the group consisting of 17 .
- R 16 and R 17 are an aryl group or a heteroaryl group. R 16 and R 17 may be condensed to form a ring.
- Ar 201 to Ar 204 are each a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, or a substituted or unsubstituted heteroaryl group having 6 to 60 nuclear carbon atoms.
- the light emitting layer may be either a single layer or a plurality of layers, each formed by a light emitting material (host material, dopant material), which may be a mixture of a host material and a dopant material or a host material alone, It may be a mixture of two types of host materials and one type of dopant material. That is, in the light emitting element of the present invention, only the host material or the dopant material may emit light in each light emitting layer, or both the host material and the dopant material may emit light. From the viewpoint of efficiently using electric energy and obtaining light emission with high color purity, the light emitting layer is preferably composed of a mixture of a host material and a dopant material.
- the host material and the dopant material may be either one kind or a plurality of combinations, respectively.
- the dopant material may be included in the entire host material or may be partially included.
- the dopant material may be laminated or dispersed.
- the dopant material can control the emission color.
- the doping method can be formed by a co-evaporation method with a host material, but may be simultaneously deposited after being previously mixed with the host material.
- Luminescent materials include monoamine derivatives represented by the general formula (1), metal ring chelates including fused ring derivatives such as anthracene and pyrene, tris (8-quinolinolato) aluminum, which have been known as light emitters.
- Oxynoid compounds bisstyryl derivatives such as bisstyryl anthracene derivatives and distyrylbenzene derivatives, tetraphenylbutadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, oxadiazole derivatives,
- thiadiazolopyridine derivatives dibenzofuran derivatives, carbazole derivatives, indolocarbazole derivatives, polymer systems, polyphenylene vinylene derivatives, polyparaphenylene derivatives, and polythiophene derivatives Derivatives and the like can be used but are not particularly limited.
- the host material contained in the light-emitting material is not limited to a single compound, and a plurality of compounds of the present invention may be mixed and used, or one or more other host materials may be mixed and used. . Further, they may be used in a stacked manner.
- the host material is not particularly limited, but is a compound having a condensed aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, indene, or a derivative thereof, N, N′-dinaphthyl- Aromatic amine derivatives such as N, N′-diphenyl-4,4′-diphenyl-1,1′-diamine, metal chelated oxinoid compounds such as tris (8-quinolinato) aluminum (III), distyrylbenzene Bisstyryl derivatives such as derivatives, tetraphenylbutadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, pyrrolopyrrole derivatives,
- Absent can be used but are not particularly limited. Absent. Among them, as a host used when the light emitting layer performs triplet light emission (phosphorescence light emission), metal chelated oxinoid compounds, dibenzofuran derivatives, dibenzothiophene derivatives, carbazole derivatives, indolocarbazole derivatives, triazine derivatives, triphenylene derivatives, etc. Are preferably used. Among them, a host material having an anthracene skeleton or a pyrene skeleton is preferable because high luminous efficiency can be easily obtained.
- the dopant material contained in the light-emitting material is not particularly limited, but a compound having an aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, fluoranthene, triphenylene, perylene, fluorene, indene, or a derivative thereof (for example, 2- (benzothiazole- 2-yl) -9,10-diphenylanthracene and 5,6,11,12-tetraphenylnaphthacene), furan, pyrrole, thiophene, silole, 9-silafluorene, 9,9'-spirobisilafluorene, Compounds having heteroaryl rings such as benzothiophene, benzofuran, indole, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyrazine, naphthyridine, quinoxaline, pyrrol
- a dopant including a diamine skeleton or a dopant including a fluoranthene skeleton because high-efficiency light emission is easily obtained.
- a dopant containing a diamine skeleton has a high hole trapping property
- a dopant containing a fluoranthene skeleton has a high electron trapping property.
- the dopant used when the light emitting layer emits triplet light (phosphorescence) includes iridium (Ir), ruthenium (Ru), palladium (Pd), platinum (Pt), osmium (Os), and rhenium.
- a metal complex compound containing at least one metal selected from the group consisting of (Re) is preferable.
- the ligand preferably has a nitrogen-containing aromatic heterocycle such as a phenylpyridine skeleton, a phenylquinoline skeleton, or a carbene skeleton. However, it is not limited to these, and an appropriate complex is selected from the relationship with the required emission color, device performance, and host compound.
- tris (2-phenylpyridyl) iridium complex tris ⁇ 2- (2-thiophenyl) pyridyl ⁇ iridium complex, tris ⁇ 2- (2-benzothiophenyl) pyridyl ⁇ iridium complex, tris (2-phenyl) Benzothiazole) iridium complex, tris (2-phenylbenzoxazole) iridium complex, trisbenzoquinoline iridium complex, bis (2-phenylpyridyl) (acetylacetonato) iridium complex, bis ⁇ 2- (2-thiophenyl) pyridyl ⁇ iridium Complex, bis ⁇ 2- (2-benzothiophenyl) pyridyl ⁇ (acetylacetonato) iridium complex, bis (2-phenylbenzothiazole) (acetylacetonato) iridium complex, bis (2-phenylbenzox
- the triplet light-emitting material used as the dopant material may contain only one type in the light-emitting layer, or a mixture of two or more types.
- the total weight of the dopant material is preferably 30% by weight or less, more preferably 20% by weight or less, based on the host material.
- the light emitting layer may further include a third component for adjusting the carrier balance in the light emitting layer or stabilizing the layer structure of the light emitting layer.
- a third component for adjusting the carrier balance in the light emitting layer or stabilizing the layer structure of the light emitting layer.
- the third component a material that does not cause an interaction between the host material composed of the monoamine derivative represented by the general formula (1) and the dopant material composed of the triplet light emitting material is selected.
- the preferred host and dopant in the triplet emission system are not particularly limited, but specific examples include the following.
- the electron transport layer is a layer in which electrons are injected from the cathode and further transports electrons.
- the electron transport layer has high electron injection efficiency, and it is desired to efficiently transport injected electrons.
- the electron transport layer is required to be a substance having a high electron affinity, a high electron mobility, excellent stability, and a trapping impurity that is unlikely to be generated during manufacture and use.
- a compound having a molecular weight of 400 or more that maintains a stable film quality is preferable because a low molecular weight compound is likely to be crystallized to deteriorate the film quality.
- the electron transport layer in the present invention includes a hole blocking layer that can efficiently block the movement of holes as the same meaning.
- Examples of the electron transport material used for the electron transport layer include condensed polycyclic aromatic derivatives such as naphthalene and anthracene, styryl aromatic ring derivatives represented by 4,4′-bis (diphenylethenyl) biphenyl, anthraquinone and diphenoquinone Quinoline derivatives, phosphorus oxide derivatives, quinolinol complexes such as tris (8-quinolinolato) aluminum (III), benzoquinolinol complexes, hydroxyazole complexes, azomethine complexes, tropolone metal complexes, and flavonol metal complexes.
- the electron-accepting nitrogen mentioned here represents a nitrogen atom forming a multiple bond with an adjacent atom. Since the nitrogen atom has a high electronegativity, the multiple bond has an electron accepting property. Therefore, an aromatic heterocycle containing electron-accepting nitrogen has a high electron affinity. An electron transport material having electron-accepting nitrogen makes it easier to receive electrons from a cathode having a high electron affinity, and can be driven at a lower voltage. In addition, since the number of electrons supplied to the light emitting layer is increased and the recombination probability is increased, the light emission efficiency is improved.
- heteroaryl ring containing an electron-accepting nitrogen examples include, for example, triazine ring, pyridine ring, pyrazine ring, pyrimidine ring, quinoline ring, quinoxaline ring, naphthyridine ring, pyrimidopyrimidine ring, benzoquinoline ring, phenanthroline ring, imidazole ring, Examples thereof include an oxazole ring, an oxadiazole ring, a triazole ring, a thiazole ring, a thiadiazole ring, a benzoxazole ring, a benzothiazole ring, a benzimidazole ring, and a phenanthrimidazole ring.
- Examples of these compounds having a heteroaryl ring structure include triazine derivatives, benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, pyrazine derivatives, phenanthroline derivatives, quinoxaline derivatives, quinoline.
- Preferred examples include derivatives, benzoquinoline derivatives, oligopyridine derivatives such as bipyridine and terpyridine, quinoxaline derivatives, and naphthyridine derivatives.
- imidazole derivatives such as tris (N-phenylbenzimidazol-2-yl) benzene, oxadiazole derivatives such as 1,3-bis [(4-tert-butylphenyl) 1,3,4-oxadiazolyl] phenylene, Triazole derivatives such as N-naphthyl-2,5-diphenyl-1,3,4-triazole, phenanthroline derivatives such as bathocuproine and 1,3-bis (1,10-phenanthroline-9-yl) benzene, 2,2 ′
- a benzoquinoline derivative such as bis (benzo [h] quinolin-2-yl) -9,9′-spirobifluorene, 2,5-bis (6 ′-(2 ′, 2 ′′ -bipyridyl))-1, Bipyridine derivatives such as 1-dimethyl-3,4-diphenylsilole, 1,3-bis (4 ′-(2,2 )
- the condensed polycyclic aromatic skeleton is more preferably a fluoranthene skeleton, anthracene skeleton, pyrene skeleton or phenanthroline skeleton.
- a fluoranthene skeleton is particularly preferable. That is, it is particularly preferable that the electron transport layer contains a compound containing a fluoranthene skeleton.
- the compound containing a fluoranthene skeleton is preferably a compound represented by the following general formula (9).
- Ar 301 represents a group containing a fluoranthene skeleton.
- L 101 and L 102 are a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group.
- a 101 and A 102 are each a substituted or unsubstituted benzene ring having 6 to 40 carbon atoms, a substituted or unsubstituted condensed aromatic hydrocarbon ring having 6 to 40 carbon atoms, and a substituted or unsubstituted one having 1 to 40 carbon atoms.
- a substituted monocyclic aromatic heterocyclic ring or a substituted or unsubstituted condensed aromatic heterocyclic ring having 1 to 40 carbon atoms is represented. However, at least one atom constituting A 101 and A 102 is electron-accepting nitrogen.
- L 102 is a substituted or unsubstituted arylene group, and A 102 is a substituted or unsubstituted benzene ring having 6 to 40 carbon atoms, or a substituted or unsubstituted condensed aromatic hydrocarbon having 6 to 40 carbon atoms. In the case of a ring, L 102 and A 102 may form a ring.
- the substituents are alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, respectively.
- R 201 and R 202 are an aryl group or a heteroaryl group.
- R 201 and R 202 may be condensed to form a ring.
- a 101 and A 102 are not both heteroaryl groups having two or more electron-accepting nitrogens.
- the other L 101 or L 102 does not become a heteroarylene group having two or more electron-accepting nitrogens.
- n is 1 or 2.
- two L 2 —N (A 1 ) (A 2 ) may be the same or different.
- a carbazolylene group is not included as a heteroarylene group.
- L 101 does not become an acene having 3 or more rings.
- the group containing a fluoranthene skeleton is a group having a fluoranthene skeleton in the molecular structure, and may or may not have a substituent.
- a ring may be formed by adjacent substituents, and the size of the ring formed by adjacent substituents is not particularly limited, but a 5-membered ring or a 6-membered ring is preferable from the viewpoint of the stability of the molecular structure.
- the formed ring may be an aliphatic ring or an aromatic ring.
- a ring formed by adjacent substituents may further have a substituent, or may be further condensed.
- the formed ring may contain heteroatoms other than carbon.
- the ring is composed of only carbon and hydrogen because the electrochemical stability is increased and the durability of the device is improved.
- the number of carbon atoms of the group containing the fluoranthene skeleton is not particularly limited, but is preferably in the range of 16 or more and 40 or less. Specific examples include a fluoranthenyl group, a benzofluoranthenyl group, a benzoaceanthrylenyl group, a benzoacephenanthrenyl group, an indenofluoranthenyl group, and an acenaphthofluoranthenyl group.
- At least one atom constituting A 101 and A 102 is electron-accepting nitrogen.
- an electron-accepting nitrogen-containing group may be directly bonded to N, or the electron-accepting nitrogen-containing group is substituted via a linking group. May be.
- a 101 may be a benzene ring and A 102 may be a benzene ring substituted with a pyridyl group.
- the electron-accepting nitrogen represents a nitrogen atom that forms a multiple bond with an adjacent atom.
- the multiple bond has an electron accepting property. Therefore, L 102 -N (A 101 ) (A 102 ) having electron-accepting nitrogen has a high electron affinity. Therefore, when the fluoranthene derivative represented by the general formula (9) is used for the electron transport layer and the monoamine derivative represented by the general formula (1) is used for the hole transport layer, the carrier of the light emitting device The balance can be improved and the luminous efficiency can be greatly improved. In addition, it contributes to extending the life of the light emitting element.
- Ar 401 to Ar 402 each represents a substituted or unsubstituted phenyl group, pyridyl group, or pyrimidyl group.
- Ar 403 to Ar 404 each represents a substituted or unsubstituted aryl group having 10 to 20 nuclear carbon atoms or a substituted or unsubstituted carbazolyl group.
- X 1 to X 3 each represents a carbon atom or a nitrogen atom. However, at least two of X 1 to X 3 are nitrogen atoms.
- L p 1 and L q 2 represent a phenylene group or a pyridylene group. p to q each represents an integer of 0 to 2.
- Ar 1 and Ar 2 are preferably substituted or unsubstituted phenyl groups in consideration of thermal stability during sublimation purification.
- an alkyl group, a cyano group, or a halogen is preferable as the substituent when substituting for these.
- Ar 403 to Ar 404 are naphthyl group, anthryl group, phenanthryl group, fluorenyl group, benzofluorenyl group, pyrenyl group, triphenylenyl from the viewpoint of easy formation of an amorphous thin film and improved electron mobility.
- Group, carbazolyl group is preferable.
- an alkyl group, a cyano group, or a halogen is preferable as the substituent when substituting for these.
- X 1 to X 3 are all nitrogen atoms, so that the electron injectability from the cathode is improved, and high luminous efficiency can be achieved.
- the use of the monoamine derivative of the general formula (1) in the hole transport layer in the light emitting element is preferable because the carrier balance is greatly improved, and the driving voltage can be reduced, the luminous efficiency can be improved, and the lifetime can be increased. .
- L p 1 to L q 2 represent a phenylene group or a pyridylene group from the viewpoint of not increasing the molecular weight too much.
- an alkyl group, a cyano group, or a halogen is preferable in consideration of thermal stability during sublimation purification.
- p to q are each preferably 0 or 1 from the viewpoint of not increasing the molecular weight too much.
- the electron transport material may be used alone, but two or more of the electron transport materials may be mixed and used, or one or more of the other electron transport materials may be mixed and used in the electron transport material. Absent.
- the preferred electron transport material is not particularly limited, but specific examples include the following.
- the electron transport material may be used alone, but two or more of the electron transport materials may be mixed and used, or one or more of the other electron transport materials may be mixed and used in the electron transport material. Absent. Moreover, you may contain a donor compound.
- the donor compound is a compound that facilitates electron injection from the cathode or the electron injection layer to the electron transport layer by improving the electron injection barrier and further improves the electrical conductivity of the electron transport layer.
- Preferred examples of the donor compound include an alkali metal, an inorganic salt containing an alkali metal, a complex of an alkali metal and an organic substance, an alkaline earth metal, an inorganic salt containing an alkaline earth metal, or an alkaline earth metal and an organic substance. And the like.
- Preferred types of alkali metals and alkaline earth metals include alkaline metals such as lithium, sodium, potassium, rubidium, and cesium that have a large effect of improving the electron transport ability with a low work function, and alkaline earths such as magnesium, calcium, cerium, and barium. A metal is mentioned.
- inorganic salts include oxides such as LiO and Li 2 O, nitrides, fluorides such as LiF, NaF, and KF, Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Rb 2 CO 3 , Examples thereof include carbonates such as Cs 2 CO 3 .
- alkali metal or alkaline earth metal include lithium and cesium from the viewpoint that a large low-voltage driving effect can be obtained.
- organic substance in the complex with the organic substance include quinolinol, benzoquinolinol, pyridylphenol, flavonol, hydroxyimidazopyridine, hydroxybenzazole, and hydroxytriazole.
- a complex of an alkali metal and an organic substance is preferable from the viewpoint that the effect of lowering the voltage of the light emitting device is larger, and a complex of lithium and an organic substance is more preferable from the viewpoint of ease of synthesis and thermal stability, Particularly preferred is lithium quinolinol (Liq), which is available at a low cost.
- the ionization potential of the electron transport layer is not particularly limited, but is preferably 5.6 eV or more and 8.0 eV or less, and more preferably 5.6 eV or more and 7.0 eV or less.
- each layer constituting the light emitting element is not particularly limited, such as resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, coating method, etc., but resistance heating vapor deposition or electron beam vapor deposition is usually used in terms of element characteristics. preferable.
- the thickness of the organic layer is not limited because it depends on the resistance value of the luminescent material, but is preferably 1 to 1000 nm.
- the film thicknesses of the light emitting layer, the electron transport layer, and the hole transport layer are each preferably 1 nm to 200 nm, and more preferably 5 nm to 100 nm.
- the light emitting element of the present invention has a function of converting electrical energy into light.
- a direct current is mainly used as the electric energy, but a pulse current or an alternating current can also be used.
- the current value and voltage value are not particularly limited, but should be selected so that the maximum luminance can be obtained with as low energy as possible in consideration of the power consumption and lifetime of the device.
- the light-emitting element of the present invention is suitably used as a display for displaying in a matrix and / or segment system, for example.
- pixels for display are arranged two-dimensionally such as a lattice shape or a mosaic shape, and characters and images are displayed by a set of pixels.
- the shape and size of the pixel are determined by the application. For example, a square pixel with a side of 300 ⁇ m or less is usually used for displaying images and characters on a personal computer, monitor, TV, and a pixel with a side of mm order for a large display such as a display panel. become.
- monochrome display pixels of the same color may be arranged. However, in color display, red, green, and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type.
- the matrix driving method may be either a line sequential driving method or an active matrix. Although the structure of the line sequential drive is simple, the active matrix may be superior in consideration of the operation characteristics, and it is necessary to use it depending on the application.
- the segment system in the present invention is a system in which a pattern is formed so as to display predetermined information and a region determined by the arrangement of the pattern is caused to emit light.
- a pattern is formed so as to display predetermined information and a region determined by the arrangement of the pattern is caused to emit light.
- the time and temperature display in a digital clock or a thermometer the operation state display of an audio device or an electromagnetic cooker, the panel display of an automobile, and the like can be mentioned.
- the matrix display and the segment display may coexist in the same panel.
- the light-emitting element of the present invention is also preferably used as a backlight for various devices.
- the backlight is used mainly for the purpose of improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display panel, a sign, and the like.
- the light-emitting element of the present invention is preferably used for a backlight for a liquid crystal display device, particularly a personal computer for which a reduction in thickness is being considered, and a backlight that is thinner and lighter than conventional ones can be provided.
- Synthesis example 1 Synthesis of Compound [59] 4.13 g of 4-chloroaniline, bromobenzene-d5 ⁇ 11.54 g, 372 mg of bis (dibenzylideneacetone) palladium, 376 mg of trit-butylphosphine tetrafluoroborate, 8.71 g of sodium tert-butoxide The mixed solution of 162 ml of orthoxylene was heated and stirred for 5 hours under reflux in a nitrogen stream. After cooling to room temperature, water was added to separate and recover the organic layer. The organic layer was dried over magnesium sulfate and evaporated.
- the obtained concentrate was purified by silica gel column chromatography, and the solid obtained by evaporation was vacuum-dried, and then 4-chloro-N, N-di ( 2 H 5 ) phenylaniline (intermediate A) 7. 44 g was obtained.
- This compound [59] was used as a light emitting device material after sublimation purification at about 320 ° C. under a pressure of 1 ⁇ 10 ⁇ 3 Pa using an oil diffusion pump.
- the HPLC purity (area% at a measurement wavelength of 254 nm) was 99.9% before sublimation purification and 99.9% after sublimation purification.
- Example 1 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less. Compound HI-1 was deposited as a hole injection layer by 10 nm by resistance heating.
- “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
- Compound [59] was deposited by 50 nm.
- the compound H-1 was used as the host material
- the compound D-1 was used as the dopant material
- the dopant material was evaporated to a thickness of 20 nm so that the doping concentration was 3 wt%.
- Compound E-1 was laminated to a thickness of 30 nm as an electron transport layer.
- the film thickness referred to here is a crystal oscillation type film thickness monitor display value. When this light emitting device was DC-driven at 10 mA / cm 2 , blue light emission with an external quantum efficiency of 4.8% was obtained.
- the external quantum efficiency (%), the front luminance (cd / m 2 ) obtained from a spectral radiance meter (CS-1000, manufactured by Konica Minolta), and a value calculated from an EL spectrum were used. However, for the obtained EL spectrum, the external quantum efficiency was calculated on the assumption of Lambasian (complete diffusion surface). When this light emitting device was continuously driven with a direct current of 10 mA / cm 2 , the luminance was reduced by half in 1550 hours.
- Compounds HI-1, H-1, D-1, and ET-1 are the compounds shown below.
- Examples 2-8, Comparative Examples 1-8 A light emitting device was produced in the same manner as in Example 1 except that the materials described in Table 1 were used as the hole transport layer. The results of each example and comparative example are shown in Table 1.
- HT-1 to HT-8 are the compounds shown below.
- Examples 9 to 16 A light emitting device was produced in the same manner as in Example 1 except that the materials described in Table 1 were used for the hole transport layer, the light emitting layer, and the electron transport layer. The results of each example are shown in Table 1. H-2, D-2 and ET-2 are the compounds shown below.
- Example 17 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less. Compound HI-1 was deposited as a hole injection layer by 10 nm by resistance heating.
- HT-1 HT-1
- the compound [59] was deposited by 10 nm as a second hole transport layer.
- the compound H-1 was used as the host material
- the compound D-1 was used as the dopant material
- the dopant material was evaporated to a thickness of 20 nm so that the doping concentration was 3 wt%.
- Compound ET-1 was laminated to a thickness of 30 nm as an electron transport layer.
- the film thickness referred to here is a crystal oscillation type film thickness monitor display value.
- Examples 18 to 40, Comparative Examples 9 to 16 A light emitting device was produced in the same manner as in Example 17 except that the materials described in Table 2 were used as the first hole transport layer and the second hole transport layer. The results of each example are shown in Table 2.
- Example 41 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which an ITO transparent conductive film was deposited by 90 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less. Compound HI-1 was deposited as a hole injection layer by 10 nm by resistance heating.
- HT-1 was deposited to 110 nm as the first hole transport layer.
- 20 nm of compound [59] was vapor-deposited as a 2nd positive hole transport layer.
- the compound H-2 was used as the host material
- the compound D-2 was used as the dopant material
- vapor deposition was performed to a thickness of 40 nm so that the dopant concentration was 10 wt%.
- Compound E-1 was laminated to a thickness of 20 nm as an electron transport layer.
- the film thickness referred to here is a crystal oscillation type film thickness monitor display value. When this light emitting device was DC-driven at 10 mA / cm 2 , green light emission with a luminous efficiency of 46.5 lm / W was obtained.
- the effective efficiency (lm / W) is the front luminance (cd / cm 2 ) obtained by measurement with a spectral radiance meter (CS-1000, manufactured by Konica Minolta), and the power density (W / cm 2 ) input to the device. 2 ) and the radiation angle (sr, steradian).
- CS-1000 spectral radiance meter
- W / cm 2 power density
- sr, steradian the radiation angle
- Examples 42 to 48, Comparative Examples 17 to 24 A light emitting device was prepared and evaluated in the same manner as in Example 41 except that the materials described in Table 3 were used as the hole transport layer. The results are shown in Table 3.
- Example 49 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which an ITO transparent conductive film was deposited by 90 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less. Compound HI-1 was deposited as a hole injection layer by 10 nm by resistance heating.
- HT-1 was deposited to 110 nm as the first hole transport layer.
- 20 nm of compound [59] was vapor-deposited as a 2nd positive hole transport layer.
- Compound H-3 was used as the host material
- Compound D-3 was used as the dopant material
- the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 10 wt%.
- Compound ET-1 was laminated to a thickness of 20 nm as an electron transport layer.
- the film thickness referred to here is a crystal oscillation type film thickness monitor display value.
- Examples 50 to 56, Comparative Examples 25 to 32 A light emitting device was prepared and evaluated in the same manner as in Example 49 except that the materials described in Table 4 were used as the second hole transport layer. The results are shown in Table 4.
- Example 57 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which an ITO transparent conductive film was deposited to 50 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
- “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
- Compound HT-8 and Compound HI-2 were used as the hole injection layer, and 10 nm was deposited so that the doping concentration of Compound HI-2 was 5 wt% with respect to Compound HT-9.
- 80 nm of HT-8 was deposited as a first hole transport layer.
- the compound [59] was deposited by 10 nm as a second hole transport layer.
- the compound H-1 was used as the host material
- the compound D-1 was used as the dopant material
- the dopant material was evaporated to a thickness of 20 nm so that the doping concentration was 3 wt%.
- an electron transport layer a layer in which ET-2 and lithium quinolinol were mixed at a deposition rate ratio of 1: 1 was deposited by 30 nm.
- the film thickness referred to here is a crystal oscillation type film thickness monitor display value.
- Examples 58 to 72, Comparative Examples 33 to 40 A light emitting device was produced and evaluated in the same manner as in Example 57 except that the materials described in Table 5 were used as the second hole transport layer. The results are shown in Table 5.
- ET-4 and ET-5 are the compounds shown below.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
L'invention concerne un élément luminescent à film mince organique qui comprend un dérivé de monoamine représenté par une structure spécifique et, ainsi, combine durabilité et efficacité luminescente élevée.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015533367A JPWO2016009823A1 (ja) | 2014-07-16 | 2015-06-30 | モノアミン誘導体、それを用いた発光素子材料および発光素子 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-145642 | 2014-07-16 | ||
JP2014145642 | 2014-07-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016009823A1 true WO2016009823A1 (fr) | 2016-01-21 |
Family
ID=55078321
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/068780 WO2016009823A1 (fr) | 2014-07-16 | 2015-06-30 | Dérivé de monoamine, matériau d'élément luminescent le contenant, et élément luminescent |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2016009823A1 (fr) |
WO (1) | WO2016009823A1 (fr) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10435350B2 (en) | 2014-09-19 | 2019-10-08 | Idemitsu Kosan Co., Ltd. | Organic electroluminecence device |
USRE47654E1 (en) | 2010-01-15 | 2019-10-22 | Idemitsu Koasn Co., Ltd. | Organic electroluminescence device |
WO2020004235A1 (fr) | 2018-06-25 | 2020-01-02 | 保土谷化学工業株式会社 | Composé ayant une structure triarylamine et dispositif électroluminescent |
KR20200040762A (ko) | 2017-08-28 | 2020-04-20 | 도레이 카부시키가이샤 | 화합물, 그것을 사용한 발광 소자, 표시 장치 및 조명 장치 |
US11145819B2 (en) | 2016-03-30 | 2021-10-12 | Samsung Display Co., Ltd. | Organic light emitting device |
WO2021206477A1 (fr) * | 2020-04-10 | 2021-10-14 | 덕산네오룩스 주식회사 | Composé pour élément électrique organique, élément électrique organique l'utilisant et dispositif électronique associé |
WO2021206478A1 (fr) * | 2020-04-10 | 2021-10-14 | 덕산네오룩스 주식회사 | Composé pour élément électrique organique, élément électrique organique l'utilisant et dispositif électronique le comprenant |
US11258031B2 (en) | 2017-12-11 | 2022-02-22 | Lg Chem, Ltd. | Organic light-emitting device and manufacturing method therefor |
WO2022230963A1 (fr) * | 2021-04-28 | 2022-11-03 | 出光興産株式会社 | Composé, matériau pour élément électroluminescent organique, élément électroluminescent organique, et appareil électronique |
US11678569B2 (en) | 2020-03-31 | 2023-06-13 | Idemitsu Kosan Co., Ltd. | Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device |
KR20230118092A (ko) | 2020-12-09 | 2023-08-10 | 이데미쓰 고산 가부시키가이샤 | 유기 전기발광 소자, 및 전자 기기 |
US11730054B2 (en) | 2018-01-29 | 2023-08-15 | Idemitsu Kosan Co., Ltd. | Compound having dibenzofuran and naphthalene structures, and organic electroluminescent element using same |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002043058A (ja) * | 2000-07-25 | 2002-02-08 | Nec Corp | 有機エレクトロルミネッセンス素子 |
JP2008540517A (ja) * | 2005-05-07 | 2008-11-20 | ドゥサン コーポレーション | 重水素化された新規アリールアミン化合物、その調製方法及びこれを用いた有機発光ダイオード |
WO2010068000A2 (fr) * | 2008-12-08 | 2010-06-17 | 주식회사 두산 | Dérivés d'aryle amine et dispositif électroluminescent organique les contenant |
JP2011501463A (ja) * | 2007-10-26 | 2011-01-06 | グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー | フルオランテン電子輸送材料を有するoledデバイス |
JP2011160003A (ja) * | 2004-11-12 | 2011-08-18 | Samsung Mobile Display Co Ltd | 有機電界発光素子 |
WO2012001969A1 (fr) * | 2010-06-30 | 2012-01-05 | 出光興産株式会社 | Dérivé d'amine aromatique et élément électroluminescent organique à base de ce dérivé |
JP2012513688A (ja) * | 2008-12-22 | 2012-06-14 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | 長寿命の電子デバイス |
KR101165698B1 (ko) * | 2011-06-14 | 2012-07-18 | 덕산하이메탈(주) | 신규 화합물을 포함하는 유기전기소자, 및 유기전기소자용 신규 화합물 및 조성물 |
JP2012522781A (ja) * | 2009-04-03 | 2012-09-27 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | 電気活性材料 |
WO2012177006A2 (fr) * | 2011-06-22 | 2012-12-27 | 덕산하이메탈(주) | Composé destiné à des éléments électroniques organiques, éléments électroniques organiques utilisant ce composé, et dispositif électronique pour ce composé |
WO2013002514A2 (fr) * | 2011-06-29 | 2013-01-03 | 덕산하이메탈(주) | Dispositif électroluminescent organique utilisant des dérivés de diarylamine, et nouveau composé et nouvelle composition pour le dispositif électroluminescent organique |
KR20130096334A (ko) * | 2011-06-24 | 2013-08-30 | 덕산하이메탈(주) | 유기전기소자, 및 유기전기소자용 화합물 |
KR20130101726A (ko) * | 2012-03-06 | 2013-09-16 | 덕산하이메탈(주) | 아크리딘 유도체를 포함하는 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 |
JP2013216667A (ja) * | 2010-01-26 | 2013-10-24 | Hodogaya Chem Co Ltd | トリフェニルアミン構造を有する化合物および有機エレクトロルミネッセンス素子 |
KR20140080451A (ko) * | 2012-12-20 | 2014-06-30 | 주식회사 동진쎄미켐 | 중수소로 치환된 신규한 유기발광 화합물 및 이를 포함하는 유기발광소자 |
KR20140081735A (ko) * | 2012-12-21 | 2014-07-01 | 주식회사 동진쎄미켐 | 중수소로 치환된 신규한 유기발광 화합물 및 이를 포함하는 유기발광소자 |
KR20140091496A (ko) * | 2013-01-11 | 2014-07-21 | 주식회사 동진쎄미켐 | 중수소로 치환된 신규한 유기발광 화합물 및 이를 포함하는 유기발광소자 |
-
2015
- 2015-06-30 JP JP2015533367A patent/JPWO2016009823A1/ja active Pending
- 2015-06-30 WO PCT/JP2015/068780 patent/WO2016009823A1/fr active Application Filing
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002043058A (ja) * | 2000-07-25 | 2002-02-08 | Nec Corp | 有機エレクトロルミネッセンス素子 |
JP2011160003A (ja) * | 2004-11-12 | 2011-08-18 | Samsung Mobile Display Co Ltd | 有機電界発光素子 |
JP2008540517A (ja) * | 2005-05-07 | 2008-11-20 | ドゥサン コーポレーション | 重水素化された新規アリールアミン化合物、その調製方法及びこれを用いた有機発光ダイオード |
JP2011501463A (ja) * | 2007-10-26 | 2011-01-06 | グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー | フルオランテン電子輸送材料を有するoledデバイス |
WO2010068000A2 (fr) * | 2008-12-08 | 2010-06-17 | 주식회사 두산 | Dérivés d'aryle amine et dispositif électroluminescent organique les contenant |
JP2012513688A (ja) * | 2008-12-22 | 2012-06-14 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | 長寿命の電子デバイス |
JP2012522781A (ja) * | 2009-04-03 | 2012-09-27 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | 電気活性材料 |
JP2013216667A (ja) * | 2010-01-26 | 2013-10-24 | Hodogaya Chem Co Ltd | トリフェニルアミン構造を有する化合物および有機エレクトロルミネッセンス素子 |
WO2012001969A1 (fr) * | 2010-06-30 | 2012-01-05 | 出光興産株式会社 | Dérivé d'amine aromatique et élément électroluminescent organique à base de ce dérivé |
KR101165698B1 (ko) * | 2011-06-14 | 2012-07-18 | 덕산하이메탈(주) | 신규 화합물을 포함하는 유기전기소자, 및 유기전기소자용 신규 화합물 및 조성물 |
WO2012177006A2 (fr) * | 2011-06-22 | 2012-12-27 | 덕산하이메탈(주) | Composé destiné à des éléments électroniques organiques, éléments électroniques organiques utilisant ce composé, et dispositif électronique pour ce composé |
KR20130096334A (ko) * | 2011-06-24 | 2013-08-30 | 덕산하이메탈(주) | 유기전기소자, 및 유기전기소자용 화합물 |
WO2013002514A2 (fr) * | 2011-06-29 | 2013-01-03 | 덕산하이메탈(주) | Dispositif électroluminescent organique utilisant des dérivés de diarylamine, et nouveau composé et nouvelle composition pour le dispositif électroluminescent organique |
KR20130101726A (ko) * | 2012-03-06 | 2013-09-16 | 덕산하이메탈(주) | 아크리딘 유도체를 포함하는 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 |
KR20140080451A (ko) * | 2012-12-20 | 2014-06-30 | 주식회사 동진쎄미켐 | 중수소로 치환된 신규한 유기발광 화합물 및 이를 포함하는 유기발광소자 |
KR20140081735A (ko) * | 2012-12-21 | 2014-07-01 | 주식회사 동진쎄미켐 | 중수소로 치환된 신규한 유기발광 화합물 및 이를 포함하는 유기발광소자 |
KR20140091496A (ko) * | 2013-01-11 | 2014-07-21 | 주식회사 동진쎄미켐 | 중수소로 치환된 신규한 유기발광 화합물 및 이를 포함하는 유기발광소자 |
Non-Patent Citations (1)
Title |
---|
HIRATA,S. ET AL., ADVANCED FUNCTIONAL MATERIALS, vol. 23, 2013, pages 3386 - 3397 * |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE47654E1 (en) | 2010-01-15 | 2019-10-22 | Idemitsu Koasn Co., Ltd. | Organic electroluminescence device |
US10435350B2 (en) | 2014-09-19 | 2019-10-08 | Idemitsu Kosan Co., Ltd. | Organic electroluminecence device |
US11145819B2 (en) | 2016-03-30 | 2021-10-12 | Samsung Display Co., Ltd. | Organic light emitting device |
US11925111B2 (en) | 2016-03-30 | 2024-03-05 | Samsung Display Co., Ltd. | Organic light emitting device |
US11605780B2 (en) | 2017-08-28 | 2023-03-14 | Toray Industries, Inc. | Compound, light-emitting element containing the same, display device, and lighting device |
KR20200040762A (ko) | 2017-08-28 | 2020-04-20 | 도레이 카부시키가이샤 | 화합물, 그것을 사용한 발광 소자, 표시 장치 및 조명 장치 |
US11258031B2 (en) | 2017-12-11 | 2022-02-22 | Lg Chem, Ltd. | Organic light-emitting device and manufacturing method therefor |
US11730054B2 (en) | 2018-01-29 | 2023-08-15 | Idemitsu Kosan Co., Ltd. | Compound having dibenzofuran and naphthalene structures, and organic electroluminescent element using same |
WO2020004235A1 (fr) | 2018-06-25 | 2020-01-02 | 保土谷化学工業株式会社 | Composé ayant une structure triarylamine et dispositif électroluminescent |
TWI841572B (zh) * | 2018-06-25 | 2024-05-11 | 日商保土谷化學工業股份有限公司 | 具有三芳基胺構造之化合物及有機電致發光元件 |
US11925108B2 (en) | 2018-06-25 | 2024-03-05 | Hodogaya Chemical Co., Ltd. | Compound having triarylamine structure and organic electroluminescence device |
US11678569B2 (en) | 2020-03-31 | 2023-06-13 | Idemitsu Kosan Co., Ltd. | Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device |
CN115380025A (zh) * | 2020-04-10 | 2022-11-22 | 德山新勒克斯有限公司 | 用于有机电气元件的化合物、使用所述化合物的有机电气元件及包括所述有机电气元件的电子装置 |
CN115362148A (zh) * | 2020-04-10 | 2022-11-18 | 德山新勒克斯有限公司 | 用于有机电气元件的化合物、使用所述化合物的有机电气元件及其电子装置 |
WO2021206478A1 (fr) * | 2020-04-10 | 2021-10-14 | 덕산네오룩스 주식회사 | Composé pour élément électrique organique, élément électrique organique l'utilisant et dispositif électronique le comprenant |
WO2021206477A1 (fr) * | 2020-04-10 | 2021-10-14 | 덕산네오룩스 주식회사 | Composé pour élément électrique organique, élément électrique organique l'utilisant et dispositif électronique associé |
KR20230118092A (ko) | 2020-12-09 | 2023-08-10 | 이데미쓰 고산 가부시키가이샤 | 유기 전기발광 소자, 및 전자 기기 |
WO2022230963A1 (fr) * | 2021-04-28 | 2022-11-03 | 出光興産株式会社 | Composé, matériau pour élément électroluminescent organique, élément électroluminescent organique, et appareil électronique |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016009823A1 (ja) | 2017-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6361138B2 (ja) | 発光素子 | |
JP5376063B2 (ja) | 発光素子材料および発光素子 | |
JP6123679B2 (ja) | ベンゾインドロカルバゾール誘導体、それを用いた発光素子材料および発光素子 | |
JP5397568B1 (ja) | 発光素子材料および発光素子 | |
JP6183214B2 (ja) | フルオランテン誘導体、それを含有する発光素子材料および発光素子 | |
JP6627507B2 (ja) | フルオランテン誘導体、それを含有する電子デバイス、発光素子および光電変換素子 | |
JP6051864B2 (ja) | 発光素子材料および発光素子 | |
WO2016009823A1 (fr) | Dérivé de monoamine, matériau d'élément luminescent le contenant, et élément luminescent | |
JP6183211B2 (ja) | 発光素子材料および発光素子 | |
JP7144743B2 (ja) | 化合物、それを用いた発光素子、表示装置および照明装置 | |
WO2012090806A1 (fr) | Matériau d'élément électroluminescent et élément électroluminescent | |
JP2013183113A (ja) | 発光素子材料および発光素子 | |
JP6269060B2 (ja) | 発光素子材料および発光素子 | |
WO2016152855A1 (fr) | Composé, et dispositif électronique, élément luminescent, élément de conversion photoélectrique, et capteur d'image contenant ceux-ci | |
JP6318617B2 (ja) | 発光素子材料および発光素子 | |
WO2014024750A1 (fr) | Matériau d'élément électroluminescent et élément électroluminescent | |
JP2014175590A (ja) | 有機電界発光素子 | |
JP2017084859A (ja) | 発光素子、それを含む表示装置および照明装置 | |
WO2018180709A1 (fr) | Composé, dispositif électronique le contenant, élément électroluminescent à film mince organique, dispositif d'affichage et dispositif d'éclairage | |
JP2014093501A (ja) | 発光素子材料および発光素子 | |
WO2014007022A1 (fr) | Matériau d'élément électroluminescent et élément électroluminescent |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015533367 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15822255 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15822255 Country of ref document: EP Kind code of ref document: A1 |