WO2016009823A1 - Monoamine derivative, luminescent element material comprising same, and luminescent element - Google Patents

Monoamine derivative, luminescent element material comprising same, and luminescent element Download PDF

Info

Publication number
WO2016009823A1
WO2016009823A1 PCT/JP2015/068780 JP2015068780W WO2016009823A1 WO 2016009823 A1 WO2016009823 A1 WO 2016009823A1 JP 2015068780 W JP2015068780 W JP 2015068780W WO 2016009823 A1 WO2016009823 A1 WO 2016009823A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
general formula
layer
Prior art date
Application number
PCT/JP2015/068780
Other languages
French (fr)
Japanese (ja)
Inventor
松木真一
田中大作
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2015533367A priority Critical patent/JPWO2016009823A1/en
Publication of WO2016009823A1 publication Critical patent/WO2016009823A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se

Definitions

  • the present invention relates to a light-emitting element capable of converting electric energy into light and a monoamine derivative useful as a light-emitting element material used therefor. More specifically, the present invention relates to a light-emitting element that can be used in the fields of display elements, flat panel displays, backlights, lighting, interiors, signs, signboards, electrophotographic machines, optical signal generators, and light-emitting element materials used therefor. .
  • This light emitting element is characterized by thin light emission with high luminance under a low driving voltage and multicolor light emission by selecting a fluorescent material.
  • the luminous efficiency of the device is greatly influenced by the carrier transport material that transports carriers such as holes and electrons to the light emitting layer.
  • the carrier transport material that transports carriers such as holes and electrons to the light emitting layer.
  • materials having a monoamine skeleton are known as materials that transport holes (hole transport materials) (see, for example, Patent Documents 1 to 6).
  • An object of the present invention is to provide an organic thin film light emitting device that solves the problems of the prior art and has improved luminous efficiency and durability.
  • the present invention is a monoamine derivative represented by the following general formula (1).
  • L 1 and L 2 are a single bond or a substituted or unsubstituted arylene group having 6 to 12 nuclear carbon atoms.
  • At least one of R 1 to R 5 is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted phenanthrenyl group, or a substituted or unsubstituted group Selected from the terphenyl group, all others are deuterium.
  • a 1 and A 2 may be the same or different and each represents a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted phenanthrenyl group, or substituted or unsubstituted It is selected from unsubstituted terphenyl groups.
  • an organic electroluminescent device having high luminous efficiency and further having a sufficient durability life.
  • L 1 and L 2 are a single bond or a substituted or unsubstituted arylene group having 6 to 12 nuclear carbon atoms.
  • At least one of R 1 to R 5 is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted phenanthrenyl group, or a substituted or unsubstituted group Selected from the terphenyl group, all others are deuterium.
  • a 1 and A 2 may be the same or different and each represents a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted phenanthrenyl group, or substituted or unsubstituted It is selected from unsubstituted terphenyl groups.
  • the arylene group is a divalent group derived from an aryl group, and examples thereof include a phenylene group, a naphthylene group, a biphenylene group, a fluorenylene group, a phenanthrylene group, a terphenylene group, an anthracenylene group, and a pyrenylene group. These may or may not have a substituent.
  • the carbon number of the arylene group is not particularly limited, but is usually in the range of 6 or more and 40 or less. Moreover, when an arylene group has a substituent, it is preferable that carbon number is 6 or more and 60 or less including a substituent.
  • An arylene group having 6 to 12 nuclear carbon atoms means an arylene group having 6 to 12 carbon layers contained in a skeleton other than a substituent.
  • the aryl group refers to, for example, an aromatic hydrocarbon group such as a phenyl group, a biphenyl group, a fluorenyl group, a phenanthryl group, a triphenylenyl group, or a terphenyl group.
  • the aryl group may or may not have a substituent. Although carbon number of an aryl group is not specifically limited, Usually, it is the range of 6-40.
  • the fluorenyl group is preferred because both of the hydrogen atoms of the methylene group present in the molecule are replaced with alkyl groups, particularly methyl groups, because electron donating properties are increased.
  • Patent Documents 1 to 6 show compounds A to F having a monoamine skeleton represented by the following formula.
  • the present inventors paid attention to the effect of the substituent directly linked to the nitrogen atom.
  • the fluorescence quantum efficiency is increased, and the stability of the singlet excited state is increased accordingly, so that the molecule is hardly decomposed in the excited state.
  • an aryl group having a large number of nuclear carbons is directly linked to the nitrogen atom or coexists in the molecule, the fluorescence quantum efficiency tends to be high, but the conjugation is too wide and the energy in the singlet state is increased. The gap becomes smaller.
  • the electron blocking property which is important as one of the required characteristics of the hole transport material, is impaired, which is not preferable from the viewpoint of increasing the light emission efficiency.
  • the triplet level which is an important value in triplet emission type light-emitting elements and thermally activated delayed fluorescent elements, is also significantly reduced, so even in an element using a dopant via a triplet excited state, light emission Since it becomes a factor which reduces efficiency, it is not preferable.
  • compound F contains a pyrene skeleton in the molecule and is not preferred for the above reasons.
  • the substituent directly linked to the nitrogen atom can achieve high emission efficiency by limiting the number of carbon atoms such as a phenyl group.
  • substituents in the molecule such as phenyl, naphthyl, phenanthrenyl, terphenyl, and fluorenyl groups, which have few nuclear carbon atoms and are not too wide. It is.
  • a substituent having a high triplet energy such as a triphenylenyl group is a preferable substituent because it does not cause a decrease in light emission efficiency.
  • the present inventors have found that many of the conventional compounds having a monoamine skeleton are not deuterated on a substituent on the nitrogen atom, so that the fluorescence quantum efficiency is lowered, and the luminance is deteriorated during continuous driving of the device, that is, I thought it might have led to a decrease in durability. Therefore, by deuterating the phenyl group on the nitrogen atom like the compound of the present invention, the fluorescence quantum efficiency can be improved, the stability of the excited state can be improved, and the durability at the time of driving the device can be improved. Thought.
  • the inventors have found that the monoamine derivative represented by the general formula (1) improves the light emission efficiency and durability, and have reached the present invention.
  • the monoamine derivative represented by the general formula (1) it is preferable for the monoamine derivative represented by the general formula (1) to have at least one deuterated phenyl group in the molecule because of high fluorescence quantum efficiency.
  • At least one of R 1 to R 5 in the general formula (1) is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted fluorenyl group.
  • L 1 and L 2 in the general formula (1) are substituted arylene groups having 6 to 12 nuclear carbon atoms, the substituent has little influence on conjugation and can maintain a high triplet level. From the viewpoint of being able to do so, an alkyl group or halogen is preferable.
  • the alkyl group represents, for example, a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a tert-butyl group, which is a substituent. It may or may not have.
  • the number of carbon atoms of the alkyl group is not particularly limited, but is usually in the range of 1 to 20 and more preferably 1 to 8 in terms of availability and cost.
  • Halogen means fluorine, chlorine, bromine and iodine.
  • A that is, when A 1 and A 2 are substituted, the substituent has little influence on conjugation and can maintain a high triplet level.
  • Alkyl groups or halogens are preferred.
  • L 1 and L 2 are preferably a phenylene group, a naphthylene group, a phenanthrenylene group, a terphenylene group, and a fluorenylene group from the viewpoint of not spreading the conjugation too much.
  • Preferable examples of A 1 and A 2 are preferably a phenyl group, a naphthyl group, a phenanthrenyl group, a terphenyl group, and a fluorenyl group from the viewpoint of not spreading the conjugation too much.
  • the substitution of two deuterated benzene rings on the nitrogen atom further improves the fluorescence quantum efficiency. preferable.
  • L 1 and A 1 are the same as those in the general formula (1).
  • At least one of R 1 to R 10 is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted phenanthrenyl group, or a substituted or unsubstituted group Selected from the terphenyl group, all others are deuterium.
  • the general formula (2) has a substituted or unsubstituted aryl group having 6 to 12 nuclear carbon atoms at the para position on the deuterated benzene ring. Therefore, it is preferable that the conjugation is widened to improve the stability of the excited state and further improve the hole transport property, which leads to a lower driving voltage of the element.
  • L 1 and A 1 are the same as those in the general formula (1).
  • Ar 1 and Ar 2 may be the same or different and each represents a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted phenanthrenyl group, or substituted or unsubstituted It is selected from unsubstituted terphenyl groups.
  • the general formula (3) is, as represented by the general formula (4), by Ar 1 and Ar 2 are substituted or unsubstituted phenyl group, a hole transport without reducing an energy gap larger This is preferable because the property is improved.
  • the molecular weight does not increase too much, the sublimation stability is also improved, which is preferable.
  • L 1 and A 1 are the same as those in the general formula (1).
  • R 101 to R 110 may be the same or different and are each hydrogen, deuterium, alkyl group, cycloalkyl group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, substituted or unsubstituted phenyl group.
  • R 111 is selected from the group consisting of R 112 .
  • R 111 and R 112 are an aryl group or a heteroaryl group.
  • R 111 and R 112 may be condensed to form a ring.
  • hydrogen may be deuterium
  • the cycloalkyl group represents, for example, a saturated alicyclic hydrocarbon group such as cyclopropyl, cyclohexyl, norbornyl, adamantyl, etc., which may or may not have a substituent.
  • carbon number of an alkyl group part is not specifically limited, Usually, it is the range of 3-20.
  • alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group, which may or may not have a substituent.
  • carbon number of an alkenyl group is not specifically limited, Usually, it is the range of 2-20.
  • the cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexenyl group, which may have a substituent. You don't have to. Although carbon number of a cycloalkenyl group is not specifically limited, Usually, it is the range of 2-20.
  • the alkynyl group indicates, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent.
  • carbon number of an alkynyl group is not specifically limited, Usually, it is the range of 2-20.
  • the alkoxy group refers to a functional group to which an aliphatic hydrocarbon group is bonded through an ether bond such as a methoxy group, an ethoxy group, or a propoxy group, and the aliphatic hydrocarbon group may have a substituent. It does not have to be. Although carbon number of an alkoxy group is not specifically limited, Usually, it is the range of 1-20.
  • the alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom.
  • the hydrocarbon group of the alkylthio group may or may not have a substituent. Although carbon number of an alkylthio group is not specifically limited, Usually, it is the range of 1-20.
  • the carbonyl group, carboxyl group, oxycarbonyl group and carbamoyl group may or may not have a substituent.
  • the silyl group refers to, for example, a functional group having a bond to a silicon atom such as a trimethylsilyl group, which may or may not have a substituent.
  • carbon number of a silyl group is not specifically limited, Usually, it is the range of 3-20.
  • the number of silicon is usually in the range of 1 to 6.
  • —P ( ⁇ O) R 11 R 12 may or may not have a substituent.
  • a heteroaryl group is a ring having one or more atoms other than carbon such as furanyl group, thiophenyl group, pyridyl group, pyrazinyl group, pyrimidinyl group, triazinyl group, benzofuranyl group, benzothiophenyl group, indolyl group in the ring.
  • carbon number of heteroaryl group is not specifically limited, Usually, it is the range of 2-30.
  • R 101 , R 102 , R 104 to R 107 , R 109, and R 110 in Ar 1 and Ar 2 are hydrogen or heavy as represented by general formula (5). Since it is hydrogen, the fluorescence quantum efficiency is further improved, leading to higher efficiency of the device, which is preferable.
  • L 1 and A 1 are the same as those in the general formula (1).
  • R 103 and R 108 are the same as those in the general formula (4), and may be the same or different.
  • a and b are each 0 to 4, and when a and b are 0 to 3, the portion other than deuterium is hydrogen.
  • R 101 , R 102 , R 104 to R 107 , R 109 and R 110 in Ar 1 and Ar 2 are deuterium. Therefore, it is preferable because the fluorescence quantum efficiency is further improved and the stability of the excited state is improved.
  • L 1 and A 1 are the same as those in the general formula (1).
  • R 103 and R 108 are the same as those in the general formula (4), and may be the same or different.
  • R 103 and R 108 are preferably a substituted or unsubstituted phenyl group from the viewpoint of molecular weight, and those in which all hydrogen is deuterated are preferable in order to improve the fluorescence quantum efficiency.
  • the monoamine derivative represented by the general formula (1) is not particularly limited, but specific examples include the following. In addition, the following is an illustration, and even if it is other than the compound specified here, if it is represented by General formula (1), it is preferably used similarly.
  • a known method can be used for the synthesis of a compound having a monoamine skeleton as described above.
  • Examples of the synthesis method include, but are not limited to, a method using a coupling reaction between a primary or secondary amine derivative using a palladium or copper catalyst and a halide or triflate.
  • a method using a coupling reaction between a primary or secondary amine derivative using a palladium or copper catalyst and a halide or triflate As an example, an example using p-chloroaniline and bromobiphenyl is shown below.
  • the monoamine derivative represented by the general formula (1) is preferably used as a light emitting device material.
  • the light emitting device material in the present invention represents a material used for any layer of the light emitting device, and as described later, in the hole injection layer, the hole transport layer, the light emitting layer and / or the electron transport layer.
  • the materials used for the cathode protective film are also included.
  • the light emitting device of the present invention has an anode and a cathode and an organic layer interposed between the anode and the cathode, and the organic layer emits light by electric energy.
  • the layer structure between the anode and the cathode is composed of only the light emitting layer, 1) light emitting layer / electron transport layer, 2) hole transport layer / light emitting layer, and 3) hole transport.
  • Layer / light emitting layer / electron transport layer 4) hole injection layer / hole transport layer / light emitting layer / electron transport layer, 5) hole transport layer / light emitting layer / electron transport layer / electron injection layer, 6) hole A laminated structure such as injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer may be mentioned.
  • the intermediate layer is generally called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer, and a known material structure can be used.
  • tandem type are, for example, 7) hole transport layer / light emitting layer / electron transport layer / charge generation layer / hole transport layer / light emitting layer / electron transport layer, 8) hole injection layer / hole transport layer / A charge generation layer as an intermediate layer between an anode and a cathode, such as a light emitting layer / electron transport layer / electron injection layer / charge generation layer / hole injection layer / hole transport layer / light emission layer / electron transport layer / electron injection layer
  • the laminated structure including is mentioned. Specifically, pyridine derivatives and phenanthroline derivatives are preferably used as the material constituting the intermediate layer.
  • each of the above layers may be either a single layer or a plurality of layers, and may be doped. Further, each of the above layers includes an anode, one or more organic layers including a light emitting layer, a cathode, and an element configuration including a layer using a capping material for improving light emission efficiency due to an optical interference effect.
  • the monoamine derivative represented by the general formula (1) may be used in any of the above layers in the light emitting device, but is particularly preferably used in the hole transport layer.
  • the anode and the cathode have a role of supplying a sufficient current for light emission of the device, and it is desirable that at least one of them is transparent or translucent in order to extract light.
  • the anode formed on the substrate is a transparent electrode.
  • anode If the material used for the anode is a material that can efficiently inject holes into the organic layer and is transparent or translucent to extract light, zinc oxide, tin oxide, indium oxide, indium tin oxide (ITO), zinc oxide
  • conductive metal oxides such as indium (IZO), metals such as gold, silver and chromium, inorganic conductive materials such as copper iodide and copper sulfide, and conductive polymers such as polythiophene, polypyrrole and polyaniline are particularly limited.
  • ITO glass or Nesa glass it is particularly desirable to use ITO glass or Nesa glass. These electrode materials may be used alone, or a plurality of materials may be laminated or mixed.
  • the resistance of the transparent electrode is not limited as long as a current sufficient for light emission of the element can be supplied, but it is desirable that the resistance be low from the viewpoint of power consumption of the element.
  • an ITO substrate with a resistance of 300 ⁇ / ⁇ or less will function as a device electrode, but since it is now possible to supply a substrate with a resistance of approximately 10 ⁇ / ⁇ , use a substrate with a low resistance of 20 ⁇ / ⁇ or less. Is particularly desirable.
  • the thickness of ITO can be arbitrarily selected according to the resistance value, but is usually used in a range of 45 to 300 nm.
  • the light emitting element is preferably formed over a substrate.
  • a glass substrate such as soda glass or non-alkali glass is preferably used.
  • the thickness of the glass substrate it is sufficient that the thickness is sufficient to maintain the mechanical strength.
  • alkali-free glass is preferred because it is better that there are fewer ions eluted from the glass.
  • soda lime glass provided with a barrier coat such as SiO 2 is also commercially available and can be used.
  • the substrate need not be glass, and for example, an anode may be formed on a plastic substrate.
  • the ITO film forming method is not particularly limited, such as an electron beam method, a sputtering method, and a chemical reaction method.
  • the material used for the cathode is not particularly limited as long as it can efficiently inject electrons into the light emitting layer.
  • metals such as platinum, gold, silver, copper, iron, tin, aluminum, and indium, or alloys and multilayer stacks of these metals with low work function metals such as lithium, sodium, potassium, calcium, and magnesium Is preferred.
  • aluminum, silver, and magnesium are preferable as the main component from the viewpoints of electrical resistance, ease of film formation, film stability, luminous efficiency, and the like.
  • magnesium and silver are preferable because electron injection into the electron transport layer and the electron injection layer in the present invention is facilitated and low voltage driving is possible.
  • metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium, or alloys using these metals, inorganic materials such as silica, titania and silicon nitride, polyvinyl alcohol, polyvinyl chloride
  • an organic polymer compound such as a hydrocarbon polymer compound is laminated on the cathode as a protective film layer.
  • the protective film layer is selected from materials that are light transmissive in the visible light region.
  • the production method of these electrodes is not particularly limited, such as resistance heating, electron beam, sputtering, ion plating and coating.
  • the hole injection layer is a layer inserted between the anode and the hole transport layer.
  • the hole injection layer may be either a single layer or a plurality of layers stacked.
  • the presence of a hole injection layer between the hole transport layer and the anode is preferable because it not only drives at a lower voltage and improves the durability life, but also improves the carrier balance of the device and the light emission efficiency.
  • the material used for the hole injection layer is not particularly limited.
  • the monoamine derivative represented by General formula (1) can also be used.
  • a benzidine derivative and a starburst arylamine group of materials have a shallower HOMO level than the monoamine derivative represented by the general formula (1), and from the viewpoint of smoothly injecting and transporting holes from the anode to the hole transport layer. More preferably used.
  • the materials may be used alone or as a mixture of two or more materials.
  • a plurality of materials may be stacked to form a hole injection layer.
  • the hole injection layer is composed of an acceptor compound alone or that the hole injection material is doped with an acceptor compound so that the above-described effects can be obtained more remarkably.
  • An acceptor compound is a material that forms a charge transfer complex with a material that forms a hole-injecting layer in contact with a hole-transporting layer when used as a single-layer film and a material that forms a hole-injecting layer when used as a doped layer. When such a material is used, the conductivity of the hole injection layer is improved, which contributes to lowering of the driving voltage of the device, and the effects of improving the light emission efficiency and improving the durability life can be obtained.
  • acceptor compounds include metal chlorides such as iron (III) chloride, aluminum chloride, gallium chloride, indium chloride, antimony chloride, metal oxides such as molybdenum oxide, vanadium oxide, tungsten oxide, ruthenium oxide, A charge transfer complex such as tris (4-bromophenyl) aminium hexachloroantimonate (TBPAH).
  • metal chlorides such as iron (III) chloride, aluminum chloride, gallium chloride, indium chloride, antimony chloride, metal oxides such as molybdenum oxide, vanadium oxide, tungsten oxide, ruthenium oxide,
  • a charge transfer complex such as tris (4-bromophenyl) aminium hexachloroantimonate (TBPAH).
  • organic compounds having a nitro group, cyano group, halogen or trifluoromethyl group in the molecule quinone compounds, acid anhydride compounds, fullerenes, and the like are also preferably used.
  • these compounds include hexacyanobutadiene, hexacyanobenzene, tetracyanoethylene, tetracyanoquinodimethane (TCNQ), tetrafluorotetracyanoquinodimethane (F4-TCNQ), a radiane derivative, p-fluoranil, p-chloranil, p-bromanyl, p-benzoquinone, 2,6-dichlorobenzoquinone, 2,5-dichlorobenzoquinone, tetramethylbenzoquinone, 1,2,4,5-tetracyanobenzene, o-dicyanobenzene, p-dicyano Benzene, 1,4-dicyanotetrafluorobenzene, 2,3-dichloro-5,6-dicyanobenzoquinone, p-dinitrobenzene, m-dinitrobenzene, o-dinitrobenzene,
  • the hole injection layer is composed of an acceptor compound alone or when the hole injection layer is doped with an acceptor compound, the hole injection layer may be a single layer, A plurality of layers may be laminated.
  • the hole transport layer is a layer that transports holes injected from the anode to the light emitting layer.
  • the hole transport layer may be a single layer or may be configured by laminating a plurality of layers.
  • the monoamine derivative represented by the general formula (1) has an ionization potential of 5.1 to 6.0 eV (measured value of deposited film AC-2 (RIKEN Keiki)), a high triplet energy level, and a high hole transport property. In addition, since it has thin film stability, it is preferably used for a hole injection layer and a hole transport layer of a light-emitting element. In addition, the monoamine derivative represented by the general formula (1) has a large LUMO level and an excellent electron blocking property because it has a large energy gap with respect to a conventional hole transport material having a benzidine skeleton. Furthermore, the monoamine derivative represented by the general formula (1) is preferably used as a hole transport material of an element using a triplet light emitting material.
  • a conventional hole transport material having a benzidine skeleton has a low triplet level, and if it is in direct contact with a light-emitting layer containing a triplet light-emitting material, leakage of triplet energy occurs and the light emission efficiency decreases. This is because the monoamine derivative represented by the formula (1) has a high triplet energy and does not cause such a problem.
  • the hole transport layer containing the monoamine derivative represented by the general formula (1) is preferably in direct contact with the light emitting layer. This is because the monoamine derivative represented by the general formula (1) has high electron blocking properties and can prevent intrusion of electrons flowing out from the light emitting layer. Furthermore, since the monoamine derivative represented by the general formula (1) has a high triplet level, it also has an effect of confining the excitation energy of the triplet light-emitting material. Therefore, even when a triplet light emitting material is included in the light emitting layer, the hole transport layer containing the monoamine derivative represented by the general formula (1) is preferably in direct contact with the light emitting layer.
  • the hole transport layer may be composed only of the monoamine derivative represented by the general formula (1), or may be mixed with other materials as long as the effects of the present invention are not impaired.
  • other materials used for example, 4,4′-bis (N- (3-methylphenyl) -N-phenylamino) biphenyl (TPD), 4,4′-bis (N- (1 -Naphthyl) -N-phenylamino) biphenyl (NPD), 4,4'-bis (N, N-bis (4-biphenylyl) amino) biphenyl (TBDB), bis (N, N'-diphenyl-4-amino) Benzidine derivatives such as phenyl) -N, N-diphenyl-4,4′-diamino-1,1′-biphenyl (TPD232), 4,4 ′, 4 ′′ -tris (3-methylphenyl (phenyl) amino) triphenyl Starburst aryl such as
  • the organic layer includes at least a light emitting layer and a plurality of organic layers between the light emitting layer and the anode, and a layer in contact with the light emitting layer among the plurality of organic layers is represented by the general formula (1).
  • a structure containing a monoamine derivative and having a compound represented by the following general formula (7) or (8) in a layer other than the layer in contact with the light emitting layer among the plurality of organic layers is also preferable.
  • L 101 and L 201 are substituted or unsubstituted arylene groups having 10 to 40 nuclear carbon atoms.
  • Ar 101 to Ar 104 may be the same as or different from each other, and are a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, or a substituted or unsubstituted heteroaryl group having 6 to 60 nuclear carbon atoms.
  • R 401 to R 408 may be the same or different and each represents hydrogen, an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, a substituted or unsubstituted phenyl group, a substituted or Unsubstituted naphthyl group, substituted or unsubstituted phenanthrenyl group, substituted or unsubstituted terphenyl group, halogen, carbonyl group, carboxyl group, oxycarbonyl group and carbamoyl group, silyl group and —P ( ⁇ O) R 16 R Selected from the group consisting of 17 .
  • R 16 and R 17 are an aryl group or a heteroaryl group. R 16 and R 17 may be condensed to form a ring.
  • Ar 201 to Ar 204 are each a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, or a substituted or unsubstituted heteroaryl group having 6 to 60 nuclear carbon atoms.
  • the light emitting layer may be either a single layer or a plurality of layers, each formed by a light emitting material (host material, dopant material), which may be a mixture of a host material and a dopant material or a host material alone, It may be a mixture of two types of host materials and one type of dopant material. That is, in the light emitting element of the present invention, only the host material or the dopant material may emit light in each light emitting layer, or both the host material and the dopant material may emit light. From the viewpoint of efficiently using electric energy and obtaining light emission with high color purity, the light emitting layer is preferably composed of a mixture of a host material and a dopant material.
  • the host material and the dopant material may be either one kind or a plurality of combinations, respectively.
  • the dopant material may be included in the entire host material or may be partially included.
  • the dopant material may be laminated or dispersed.
  • the dopant material can control the emission color.
  • the doping method can be formed by a co-evaporation method with a host material, but may be simultaneously deposited after being previously mixed with the host material.
  • Luminescent materials include monoamine derivatives represented by the general formula (1), metal ring chelates including fused ring derivatives such as anthracene and pyrene, tris (8-quinolinolato) aluminum, which have been known as light emitters.
  • Oxynoid compounds bisstyryl derivatives such as bisstyryl anthracene derivatives and distyrylbenzene derivatives, tetraphenylbutadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, oxadiazole derivatives,
  • thiadiazolopyridine derivatives dibenzofuran derivatives, carbazole derivatives, indolocarbazole derivatives, polymer systems, polyphenylene vinylene derivatives, polyparaphenylene derivatives, and polythiophene derivatives Derivatives and the like can be used but are not particularly limited.
  • the host material contained in the light-emitting material is not limited to a single compound, and a plurality of compounds of the present invention may be mixed and used, or one or more other host materials may be mixed and used. . Further, they may be used in a stacked manner.
  • the host material is not particularly limited, but is a compound having a condensed aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, indene, or a derivative thereof, N, N′-dinaphthyl- Aromatic amine derivatives such as N, N′-diphenyl-4,4′-diphenyl-1,1′-diamine, metal chelated oxinoid compounds such as tris (8-quinolinato) aluminum (III), distyrylbenzene Bisstyryl derivatives such as derivatives, tetraphenylbutadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, pyrrolopyrrole derivatives,
  • Absent can be used but are not particularly limited. Absent. Among them, as a host used when the light emitting layer performs triplet light emission (phosphorescence light emission), metal chelated oxinoid compounds, dibenzofuran derivatives, dibenzothiophene derivatives, carbazole derivatives, indolocarbazole derivatives, triazine derivatives, triphenylene derivatives, etc. Are preferably used. Among them, a host material having an anthracene skeleton or a pyrene skeleton is preferable because high luminous efficiency can be easily obtained.
  • the dopant material contained in the light-emitting material is not particularly limited, but a compound having an aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, fluoranthene, triphenylene, perylene, fluorene, indene, or a derivative thereof (for example, 2- (benzothiazole- 2-yl) -9,10-diphenylanthracene and 5,6,11,12-tetraphenylnaphthacene), furan, pyrrole, thiophene, silole, 9-silafluorene, 9,9'-spirobisilafluorene, Compounds having heteroaryl rings such as benzothiophene, benzofuran, indole, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyrazine, naphthyridine, quinoxaline, pyrrol
  • a dopant including a diamine skeleton or a dopant including a fluoranthene skeleton because high-efficiency light emission is easily obtained.
  • a dopant containing a diamine skeleton has a high hole trapping property
  • a dopant containing a fluoranthene skeleton has a high electron trapping property.
  • the dopant used when the light emitting layer emits triplet light (phosphorescence) includes iridium (Ir), ruthenium (Ru), palladium (Pd), platinum (Pt), osmium (Os), and rhenium.
  • a metal complex compound containing at least one metal selected from the group consisting of (Re) is preferable.
  • the ligand preferably has a nitrogen-containing aromatic heterocycle such as a phenylpyridine skeleton, a phenylquinoline skeleton, or a carbene skeleton. However, it is not limited to these, and an appropriate complex is selected from the relationship with the required emission color, device performance, and host compound.
  • tris (2-phenylpyridyl) iridium complex tris ⁇ 2- (2-thiophenyl) pyridyl ⁇ iridium complex, tris ⁇ 2- (2-benzothiophenyl) pyridyl ⁇ iridium complex, tris (2-phenyl) Benzothiazole) iridium complex, tris (2-phenylbenzoxazole) iridium complex, trisbenzoquinoline iridium complex, bis (2-phenylpyridyl) (acetylacetonato) iridium complex, bis ⁇ 2- (2-thiophenyl) pyridyl ⁇ iridium Complex, bis ⁇ 2- (2-benzothiophenyl) pyridyl ⁇ (acetylacetonato) iridium complex, bis (2-phenylbenzothiazole) (acetylacetonato) iridium complex, bis (2-phenylbenzox
  • the triplet light-emitting material used as the dopant material may contain only one type in the light-emitting layer, or a mixture of two or more types.
  • the total weight of the dopant material is preferably 30% by weight or less, more preferably 20% by weight or less, based on the host material.
  • the light emitting layer may further include a third component for adjusting the carrier balance in the light emitting layer or stabilizing the layer structure of the light emitting layer.
  • a third component for adjusting the carrier balance in the light emitting layer or stabilizing the layer structure of the light emitting layer.
  • the third component a material that does not cause an interaction between the host material composed of the monoamine derivative represented by the general formula (1) and the dopant material composed of the triplet light emitting material is selected.
  • the preferred host and dopant in the triplet emission system are not particularly limited, but specific examples include the following.
  • the electron transport layer is a layer in which electrons are injected from the cathode and further transports electrons.
  • the electron transport layer has high electron injection efficiency, and it is desired to efficiently transport injected electrons.
  • the electron transport layer is required to be a substance having a high electron affinity, a high electron mobility, excellent stability, and a trapping impurity that is unlikely to be generated during manufacture and use.
  • a compound having a molecular weight of 400 or more that maintains a stable film quality is preferable because a low molecular weight compound is likely to be crystallized to deteriorate the film quality.
  • the electron transport layer in the present invention includes a hole blocking layer that can efficiently block the movement of holes as the same meaning.
  • Examples of the electron transport material used for the electron transport layer include condensed polycyclic aromatic derivatives such as naphthalene and anthracene, styryl aromatic ring derivatives represented by 4,4′-bis (diphenylethenyl) biphenyl, anthraquinone and diphenoquinone Quinoline derivatives, phosphorus oxide derivatives, quinolinol complexes such as tris (8-quinolinolato) aluminum (III), benzoquinolinol complexes, hydroxyazole complexes, azomethine complexes, tropolone metal complexes, and flavonol metal complexes.
  • the electron-accepting nitrogen mentioned here represents a nitrogen atom forming a multiple bond with an adjacent atom. Since the nitrogen atom has a high electronegativity, the multiple bond has an electron accepting property. Therefore, an aromatic heterocycle containing electron-accepting nitrogen has a high electron affinity. An electron transport material having electron-accepting nitrogen makes it easier to receive electrons from a cathode having a high electron affinity, and can be driven at a lower voltage. In addition, since the number of electrons supplied to the light emitting layer is increased and the recombination probability is increased, the light emission efficiency is improved.
  • heteroaryl ring containing an electron-accepting nitrogen examples include, for example, triazine ring, pyridine ring, pyrazine ring, pyrimidine ring, quinoline ring, quinoxaline ring, naphthyridine ring, pyrimidopyrimidine ring, benzoquinoline ring, phenanthroline ring, imidazole ring, Examples thereof include an oxazole ring, an oxadiazole ring, a triazole ring, a thiazole ring, a thiadiazole ring, a benzoxazole ring, a benzothiazole ring, a benzimidazole ring, and a phenanthrimidazole ring.
  • Examples of these compounds having a heteroaryl ring structure include triazine derivatives, benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, pyrazine derivatives, phenanthroline derivatives, quinoxaline derivatives, quinoline.
  • Preferred examples include derivatives, benzoquinoline derivatives, oligopyridine derivatives such as bipyridine and terpyridine, quinoxaline derivatives, and naphthyridine derivatives.
  • imidazole derivatives such as tris (N-phenylbenzimidazol-2-yl) benzene, oxadiazole derivatives such as 1,3-bis [(4-tert-butylphenyl) 1,3,4-oxadiazolyl] phenylene, Triazole derivatives such as N-naphthyl-2,5-diphenyl-1,3,4-triazole, phenanthroline derivatives such as bathocuproine and 1,3-bis (1,10-phenanthroline-9-yl) benzene, 2,2 ′
  • a benzoquinoline derivative such as bis (benzo [h] quinolin-2-yl) -9,9′-spirobifluorene, 2,5-bis (6 ′-(2 ′, 2 ′′ -bipyridyl))-1, Bipyridine derivatives such as 1-dimethyl-3,4-diphenylsilole, 1,3-bis (4 ′-(2,2 )
  • the condensed polycyclic aromatic skeleton is more preferably a fluoranthene skeleton, anthracene skeleton, pyrene skeleton or phenanthroline skeleton.
  • a fluoranthene skeleton is particularly preferable. That is, it is particularly preferable that the electron transport layer contains a compound containing a fluoranthene skeleton.
  • the compound containing a fluoranthene skeleton is preferably a compound represented by the following general formula (9).
  • Ar 301 represents a group containing a fluoranthene skeleton.
  • L 101 and L 102 are a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group.
  • a 101 and A 102 are each a substituted or unsubstituted benzene ring having 6 to 40 carbon atoms, a substituted or unsubstituted condensed aromatic hydrocarbon ring having 6 to 40 carbon atoms, and a substituted or unsubstituted one having 1 to 40 carbon atoms.
  • a substituted monocyclic aromatic heterocyclic ring or a substituted or unsubstituted condensed aromatic heterocyclic ring having 1 to 40 carbon atoms is represented. However, at least one atom constituting A 101 and A 102 is electron-accepting nitrogen.
  • L 102 is a substituted or unsubstituted arylene group, and A 102 is a substituted or unsubstituted benzene ring having 6 to 40 carbon atoms, or a substituted or unsubstituted condensed aromatic hydrocarbon having 6 to 40 carbon atoms. In the case of a ring, L 102 and A 102 may form a ring.
  • the substituents are alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, respectively.
  • R 201 and R 202 are an aryl group or a heteroaryl group.
  • R 201 and R 202 may be condensed to form a ring.
  • a 101 and A 102 are not both heteroaryl groups having two or more electron-accepting nitrogens.
  • the other L 101 or L 102 does not become a heteroarylene group having two or more electron-accepting nitrogens.
  • n is 1 or 2.
  • two L 2 —N (A 1 ) (A 2 ) may be the same or different.
  • a carbazolylene group is not included as a heteroarylene group.
  • L 101 does not become an acene having 3 or more rings.
  • the group containing a fluoranthene skeleton is a group having a fluoranthene skeleton in the molecular structure, and may or may not have a substituent.
  • a ring may be formed by adjacent substituents, and the size of the ring formed by adjacent substituents is not particularly limited, but a 5-membered ring or a 6-membered ring is preferable from the viewpoint of the stability of the molecular structure.
  • the formed ring may be an aliphatic ring or an aromatic ring.
  • a ring formed by adjacent substituents may further have a substituent, or may be further condensed.
  • the formed ring may contain heteroatoms other than carbon.
  • the ring is composed of only carbon and hydrogen because the electrochemical stability is increased and the durability of the device is improved.
  • the number of carbon atoms of the group containing the fluoranthene skeleton is not particularly limited, but is preferably in the range of 16 or more and 40 or less. Specific examples include a fluoranthenyl group, a benzofluoranthenyl group, a benzoaceanthrylenyl group, a benzoacephenanthrenyl group, an indenofluoranthenyl group, and an acenaphthofluoranthenyl group.
  • At least one atom constituting A 101 and A 102 is electron-accepting nitrogen.
  • an electron-accepting nitrogen-containing group may be directly bonded to N, or the electron-accepting nitrogen-containing group is substituted via a linking group. May be.
  • a 101 may be a benzene ring and A 102 may be a benzene ring substituted with a pyridyl group.
  • the electron-accepting nitrogen represents a nitrogen atom that forms a multiple bond with an adjacent atom.
  • the multiple bond has an electron accepting property. Therefore, L 102 -N (A 101 ) (A 102 ) having electron-accepting nitrogen has a high electron affinity. Therefore, when the fluoranthene derivative represented by the general formula (9) is used for the electron transport layer and the monoamine derivative represented by the general formula (1) is used for the hole transport layer, the carrier of the light emitting device The balance can be improved and the luminous efficiency can be greatly improved. In addition, it contributes to extending the life of the light emitting element.
  • Ar 401 to Ar 402 each represents a substituted or unsubstituted phenyl group, pyridyl group, or pyrimidyl group.
  • Ar 403 to Ar 404 each represents a substituted or unsubstituted aryl group having 10 to 20 nuclear carbon atoms or a substituted or unsubstituted carbazolyl group.
  • X 1 to X 3 each represents a carbon atom or a nitrogen atom. However, at least two of X 1 to X 3 are nitrogen atoms.
  • L p 1 and L q 2 represent a phenylene group or a pyridylene group. p to q each represents an integer of 0 to 2.
  • Ar 1 and Ar 2 are preferably substituted or unsubstituted phenyl groups in consideration of thermal stability during sublimation purification.
  • an alkyl group, a cyano group, or a halogen is preferable as the substituent when substituting for these.
  • Ar 403 to Ar 404 are naphthyl group, anthryl group, phenanthryl group, fluorenyl group, benzofluorenyl group, pyrenyl group, triphenylenyl from the viewpoint of easy formation of an amorphous thin film and improved electron mobility.
  • Group, carbazolyl group is preferable.
  • an alkyl group, a cyano group, or a halogen is preferable as the substituent when substituting for these.
  • X 1 to X 3 are all nitrogen atoms, so that the electron injectability from the cathode is improved, and high luminous efficiency can be achieved.
  • the use of the monoamine derivative of the general formula (1) in the hole transport layer in the light emitting element is preferable because the carrier balance is greatly improved, and the driving voltage can be reduced, the luminous efficiency can be improved, and the lifetime can be increased. .
  • L p 1 to L q 2 represent a phenylene group or a pyridylene group from the viewpoint of not increasing the molecular weight too much.
  • an alkyl group, a cyano group, or a halogen is preferable in consideration of thermal stability during sublimation purification.
  • p to q are each preferably 0 or 1 from the viewpoint of not increasing the molecular weight too much.
  • the electron transport material may be used alone, but two or more of the electron transport materials may be mixed and used, or one or more of the other electron transport materials may be mixed and used in the electron transport material. Absent.
  • the preferred electron transport material is not particularly limited, but specific examples include the following.
  • the electron transport material may be used alone, but two or more of the electron transport materials may be mixed and used, or one or more of the other electron transport materials may be mixed and used in the electron transport material. Absent. Moreover, you may contain a donor compound.
  • the donor compound is a compound that facilitates electron injection from the cathode or the electron injection layer to the electron transport layer by improving the electron injection barrier and further improves the electrical conductivity of the electron transport layer.
  • Preferred examples of the donor compound include an alkali metal, an inorganic salt containing an alkali metal, a complex of an alkali metal and an organic substance, an alkaline earth metal, an inorganic salt containing an alkaline earth metal, or an alkaline earth metal and an organic substance. And the like.
  • Preferred types of alkali metals and alkaline earth metals include alkaline metals such as lithium, sodium, potassium, rubidium, and cesium that have a large effect of improving the electron transport ability with a low work function, and alkaline earths such as magnesium, calcium, cerium, and barium. A metal is mentioned.
  • inorganic salts include oxides such as LiO and Li 2 O, nitrides, fluorides such as LiF, NaF, and KF, Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Rb 2 CO 3 , Examples thereof include carbonates such as Cs 2 CO 3 .
  • alkali metal or alkaline earth metal include lithium and cesium from the viewpoint that a large low-voltage driving effect can be obtained.
  • organic substance in the complex with the organic substance include quinolinol, benzoquinolinol, pyridylphenol, flavonol, hydroxyimidazopyridine, hydroxybenzazole, and hydroxytriazole.
  • a complex of an alkali metal and an organic substance is preferable from the viewpoint that the effect of lowering the voltage of the light emitting device is larger, and a complex of lithium and an organic substance is more preferable from the viewpoint of ease of synthesis and thermal stability, Particularly preferred is lithium quinolinol (Liq), which is available at a low cost.
  • the ionization potential of the electron transport layer is not particularly limited, but is preferably 5.6 eV or more and 8.0 eV or less, and more preferably 5.6 eV or more and 7.0 eV or less.
  • each layer constituting the light emitting element is not particularly limited, such as resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, coating method, etc., but resistance heating vapor deposition or electron beam vapor deposition is usually used in terms of element characteristics. preferable.
  • the thickness of the organic layer is not limited because it depends on the resistance value of the luminescent material, but is preferably 1 to 1000 nm.
  • the film thicknesses of the light emitting layer, the electron transport layer, and the hole transport layer are each preferably 1 nm to 200 nm, and more preferably 5 nm to 100 nm.
  • the light emitting element of the present invention has a function of converting electrical energy into light.
  • a direct current is mainly used as the electric energy, but a pulse current or an alternating current can also be used.
  • the current value and voltage value are not particularly limited, but should be selected so that the maximum luminance can be obtained with as low energy as possible in consideration of the power consumption and lifetime of the device.
  • the light-emitting element of the present invention is suitably used as a display for displaying in a matrix and / or segment system, for example.
  • pixels for display are arranged two-dimensionally such as a lattice shape or a mosaic shape, and characters and images are displayed by a set of pixels.
  • the shape and size of the pixel are determined by the application. For example, a square pixel with a side of 300 ⁇ m or less is usually used for displaying images and characters on a personal computer, monitor, TV, and a pixel with a side of mm order for a large display such as a display panel. become.
  • monochrome display pixels of the same color may be arranged. However, in color display, red, green, and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type.
  • the matrix driving method may be either a line sequential driving method or an active matrix. Although the structure of the line sequential drive is simple, the active matrix may be superior in consideration of the operation characteristics, and it is necessary to use it depending on the application.
  • the segment system in the present invention is a system in which a pattern is formed so as to display predetermined information and a region determined by the arrangement of the pattern is caused to emit light.
  • a pattern is formed so as to display predetermined information and a region determined by the arrangement of the pattern is caused to emit light.
  • the time and temperature display in a digital clock or a thermometer the operation state display of an audio device or an electromagnetic cooker, the panel display of an automobile, and the like can be mentioned.
  • the matrix display and the segment display may coexist in the same panel.
  • the light-emitting element of the present invention is also preferably used as a backlight for various devices.
  • the backlight is used mainly for the purpose of improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display panel, a sign, and the like.
  • the light-emitting element of the present invention is preferably used for a backlight for a liquid crystal display device, particularly a personal computer for which a reduction in thickness is being considered, and a backlight that is thinner and lighter than conventional ones can be provided.
  • Synthesis example 1 Synthesis of Compound [59] 4.13 g of 4-chloroaniline, bromobenzene-d5 ⁇ 11.54 g, 372 mg of bis (dibenzylideneacetone) palladium, 376 mg of trit-butylphosphine tetrafluoroborate, 8.71 g of sodium tert-butoxide The mixed solution of 162 ml of orthoxylene was heated and stirred for 5 hours under reflux in a nitrogen stream. After cooling to room temperature, water was added to separate and recover the organic layer. The organic layer was dried over magnesium sulfate and evaporated.
  • the obtained concentrate was purified by silica gel column chromatography, and the solid obtained by evaporation was vacuum-dried, and then 4-chloro-N, N-di ( 2 H 5 ) phenylaniline (intermediate A) 7. 44 g was obtained.
  • This compound [59] was used as a light emitting device material after sublimation purification at about 320 ° C. under a pressure of 1 ⁇ 10 ⁇ 3 Pa using an oil diffusion pump.
  • the HPLC purity (area% at a measurement wavelength of 254 nm) was 99.9% before sublimation purification and 99.9% after sublimation purification.
  • Example 1 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less. Compound HI-1 was deposited as a hole injection layer by 10 nm by resistance heating.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • Compound [59] was deposited by 50 nm.
  • the compound H-1 was used as the host material
  • the compound D-1 was used as the dopant material
  • the dopant material was evaporated to a thickness of 20 nm so that the doping concentration was 3 wt%.
  • Compound E-1 was laminated to a thickness of 30 nm as an electron transport layer.
  • the film thickness referred to here is a crystal oscillation type film thickness monitor display value. When this light emitting device was DC-driven at 10 mA / cm 2 , blue light emission with an external quantum efficiency of 4.8% was obtained.
  • the external quantum efficiency (%), the front luminance (cd / m 2 ) obtained from a spectral radiance meter (CS-1000, manufactured by Konica Minolta), and a value calculated from an EL spectrum were used. However, for the obtained EL spectrum, the external quantum efficiency was calculated on the assumption of Lambasian (complete diffusion surface). When this light emitting device was continuously driven with a direct current of 10 mA / cm 2 , the luminance was reduced by half in 1550 hours.
  • Compounds HI-1, H-1, D-1, and ET-1 are the compounds shown below.
  • Examples 2-8, Comparative Examples 1-8 A light emitting device was produced in the same manner as in Example 1 except that the materials described in Table 1 were used as the hole transport layer. The results of each example and comparative example are shown in Table 1.
  • HT-1 to HT-8 are the compounds shown below.
  • Examples 9 to 16 A light emitting device was produced in the same manner as in Example 1 except that the materials described in Table 1 were used for the hole transport layer, the light emitting layer, and the electron transport layer. The results of each example are shown in Table 1. H-2, D-2 and ET-2 are the compounds shown below.
  • Example 17 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less. Compound HI-1 was deposited as a hole injection layer by 10 nm by resistance heating.
  • HT-1 HT-1
  • the compound [59] was deposited by 10 nm as a second hole transport layer.
  • the compound H-1 was used as the host material
  • the compound D-1 was used as the dopant material
  • the dopant material was evaporated to a thickness of 20 nm so that the doping concentration was 3 wt%.
  • Compound ET-1 was laminated to a thickness of 30 nm as an electron transport layer.
  • the film thickness referred to here is a crystal oscillation type film thickness monitor display value.
  • Examples 18 to 40, Comparative Examples 9 to 16 A light emitting device was produced in the same manner as in Example 17 except that the materials described in Table 2 were used as the first hole transport layer and the second hole transport layer. The results of each example are shown in Table 2.
  • Example 41 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which an ITO transparent conductive film was deposited by 90 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less. Compound HI-1 was deposited as a hole injection layer by 10 nm by resistance heating.
  • HT-1 was deposited to 110 nm as the first hole transport layer.
  • 20 nm of compound [59] was vapor-deposited as a 2nd positive hole transport layer.
  • the compound H-2 was used as the host material
  • the compound D-2 was used as the dopant material
  • vapor deposition was performed to a thickness of 40 nm so that the dopant concentration was 10 wt%.
  • Compound E-1 was laminated to a thickness of 20 nm as an electron transport layer.
  • the film thickness referred to here is a crystal oscillation type film thickness monitor display value. When this light emitting device was DC-driven at 10 mA / cm 2 , green light emission with a luminous efficiency of 46.5 lm / W was obtained.
  • the effective efficiency (lm / W) is the front luminance (cd / cm 2 ) obtained by measurement with a spectral radiance meter (CS-1000, manufactured by Konica Minolta), and the power density (W / cm 2 ) input to the device. 2 ) and the radiation angle (sr, steradian).
  • CS-1000 spectral radiance meter
  • W / cm 2 power density
  • sr, steradian the radiation angle
  • Examples 42 to 48, Comparative Examples 17 to 24 A light emitting device was prepared and evaluated in the same manner as in Example 41 except that the materials described in Table 3 were used as the hole transport layer. The results are shown in Table 3.
  • Example 49 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which an ITO transparent conductive film was deposited by 90 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less. Compound HI-1 was deposited as a hole injection layer by 10 nm by resistance heating.
  • HT-1 was deposited to 110 nm as the first hole transport layer.
  • 20 nm of compound [59] was vapor-deposited as a 2nd positive hole transport layer.
  • Compound H-3 was used as the host material
  • Compound D-3 was used as the dopant material
  • the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 10 wt%.
  • Compound ET-1 was laminated to a thickness of 20 nm as an electron transport layer.
  • the film thickness referred to here is a crystal oscillation type film thickness monitor display value.
  • Examples 50 to 56, Comparative Examples 25 to 32 A light emitting device was prepared and evaluated in the same manner as in Example 49 except that the materials described in Table 4 were used as the second hole transport layer. The results are shown in Table 4.
  • Example 57 A glass substrate (manufactured by Geomat Co., Ltd., 11 ⁇ / ⁇ , sputtered product) on which an ITO transparent conductive film was deposited to 50 nm was cut into 38 ⁇ 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 ⁇ 10 ⁇ 4 Pa or less.
  • “Semico Clean 56” trade name, manufactured by Furuuchi Chemical Co., Ltd.
  • Compound HT-8 and Compound HI-2 were used as the hole injection layer, and 10 nm was deposited so that the doping concentration of Compound HI-2 was 5 wt% with respect to Compound HT-9.
  • 80 nm of HT-8 was deposited as a first hole transport layer.
  • the compound [59] was deposited by 10 nm as a second hole transport layer.
  • the compound H-1 was used as the host material
  • the compound D-1 was used as the dopant material
  • the dopant material was evaporated to a thickness of 20 nm so that the doping concentration was 3 wt%.
  • an electron transport layer a layer in which ET-2 and lithium quinolinol were mixed at a deposition rate ratio of 1: 1 was deposited by 30 nm.
  • the film thickness referred to here is a crystal oscillation type film thickness monitor display value.
  • Examples 58 to 72, Comparative Examples 33 to 40 A light emitting device was produced and evaluated in the same manner as in Example 57 except that the materials described in Table 5 were used as the second hole transport layer. The results are shown in Table 5.
  • ET-4 and ET-5 are the compounds shown below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Provided is an organic thin-film luminescent element which includes a monoamine derivative represented by a specific structure and hence combines a high luminescent efficiency with durability.

Description

モノアミン誘導体、それを用いた発光素子材料および発光素子Monoamine derivative, light emitting device material and light emitting device using the same
 本発明は、電気エネルギーを光に変換できる発光素子およびそれに用いられる発光素子材料として有用なモノアミン誘導体に関する。より詳しくは、表示素子、フラットパネルディスプレイ、バックライト、照明、インテリア、標識、看板、電子写真機および光信号発生器などの分野に利用可能な発光素子およびそれに用いられる発光素子材料に関するものである。 The present invention relates to a light-emitting element capable of converting electric energy into light and a monoamine derivative useful as a light-emitting element material used therefor. More specifically, the present invention relates to a light-emitting element that can be used in the fields of display elements, flat panel displays, backlights, lighting, interiors, signs, signboards, electrophotographic machines, optical signal generators, and light-emitting element materials used therefor. .
 陰極から注入された電子と陽極から注入された正孔が両極に挟まれた有機蛍光体内で再結合する際に発光するという有機薄膜発光素子の研究が、近年活発に行われている。この発光素子は、薄型でかつ低駆動電圧下での高輝度発光と、蛍光材料を選ぶことによる多色発光が特徴であり、注目を集めている。 In recent years, research on organic thin-film light emitting devices that emit light when electrons injected from a cathode and holes injected from an anode are recombined in an organic phosphor sandwiched between both electrodes has been actively conducted. This light emitting element is characterized by thin light emission with high luminance under a low driving voltage and multicolor light emission by selecting a fluorescent material.
 この研究は、コダック社のC.W.Tangらによって有機薄膜素子が高輝度に発光することが示されて以来、多数の実用化検討がなされており、有機薄膜発光素子は、携帯電話のメインディスプレイなどに採用されるなど着実に実用化が進んでいる。しかし、まだ技術的な課題も多く、中でも素子の高効率化と長寿命化の両立は大きな課題のひとつである。 This research was conducted by C.D. W. Since Tang et al. Showed that organic thin film devices emit light with high brightness, many practical studies have been made, and organic thin film light emitting devices have been steadily put into practical use, such as being used in mobile phone main displays. Is progressing. However, there are still many technical issues. Above all, it is one of the major issues to achieve both high efficiency and long life of the device.
 素子の発光効率は、正孔や電子といったキャリアを発光層まで輸送するキャリア輸送材料に大きく左右される。このうち正孔を輸送する材料(正孔輸送材料)としてモノアミン骨格を有する材料が知られている(例えば、特許文献1~6参照)。 The luminous efficiency of the device is greatly influenced by the carrier transport material that transports carriers such as holes and electrons to the light emitting layer. Among these, materials having a monoamine skeleton are known as materials that transport holes (hole transport materials) (see, for example, Patent Documents 1 to 6).
特許第5261887号Japanese Patent No. 5261887 特開2010-222268号JP 2010-222268 A 国際公開第2012/134203号International Publication No. 2012/134203 国際公開第2013/157367号International Publication No. 2013/157367 国際公開第2013/061805号International Publication No. 2013/061805 大韓民国特許出願公開第2011-0034977号公報Korean Patent Application Publication No. 2011-0034977
 しかしながら、従来の技術では素子の発光効率を高めつつ、耐久性を向上させることは困難であり、また駆動電圧を下げることができたとしても、素子の発光効率、耐久寿命の両立が不十分であった。このように、高い発光効率と耐久寿命を両立させる技術は未だ見出されていない。 However, it is difficult to improve the durability while increasing the light emission efficiency of the element with the conventional technology, and even if the drive voltage can be lowered, the light emission efficiency and the durability life of the element are not sufficient. there were. Thus, no technology has yet been found to achieve both high luminous efficiency and durable life.
 本発明は、かかる従来技術の問題を解決し、発光効率および耐久寿命を改善した有機薄膜発光素子を提供することを目的とするものである。 An object of the present invention is to provide an organic thin film light emitting device that solves the problems of the prior art and has improved luminous efficiency and durability.
 本発明は、下記一般式(1)で表されるモノアミン誘導体である。 The present invention is a monoamine derivative represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式中、L~Lは単結合、または置換もしくは無置換の核炭素数6~12のアリーレン基である。R~Rのうち、少なくとも一つは置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基、置換もしくは無置換のフルオレニル基、置換もしくは無置換のフェナントレニル基、または置換もしくは無置換のターフェニル基から選ばれ、それ以外は全て重水素である。AおよびAはそれぞれ同じでも異なっていてもよく、置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基、置換もしくは無置換のフルオレニル基、置換もしくは無置換のフェナントレニル基、または置換もしくは無置換のターフェニル基から選ばれる。 In the formula, L 1 and L 2 are a single bond or a substituted or unsubstituted arylene group having 6 to 12 nuclear carbon atoms. At least one of R 1 to R 5 is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted phenanthrenyl group, or a substituted or unsubstituted group Selected from the terphenyl group, all others are deuterium. A 1 and A 2 may be the same or different and each represents a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted phenanthrenyl group, or substituted or unsubstituted It is selected from unsubstituted terphenyl groups.
 本発明により、高い発光効率を有し、さらに十分な耐久寿命も兼ね備えた有機電界発光素子を提供することができる。 According to the present invention, it is possible to provide an organic electroluminescent device having high luminous efficiency and further having a sufficient durability life.
 (一般式(1)で表されるモノアミン誘導体)
 一般式(1)で表されるモノアミン誘導体について詳細に説明する。
(Monoamine derivative represented by the general formula (1))
The monoamine derivative represented by the general formula (1) will be described in detail.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 式中、L~Lは単結合、または置換もしくは無置換の核炭素数6~12のアリーレン基である。R~Rのうち、少なくとも一つは置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基、置換もしくは無置換のフルオレニル基、置換もしくは無置換のフェナントレニル基、または置換もしくは無置換のターフェニル基から選ばれ、それ以外は全て重水素である。AおよびAはそれぞれ同じでも異なっていてもよく、置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基、置換もしくは無置換のフルオレニル基、置換もしくは無置換のフェナントレニル基、または置換もしくは無置換のターフェニル基から選ばれる。 In the formula, L 1 and L 2 are a single bond or a substituted or unsubstituted arylene group having 6 to 12 nuclear carbon atoms. At least one of R 1 to R 5 is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted phenanthrenyl group, or a substituted or unsubstituted group Selected from the terphenyl group, all others are deuterium. A 1 and A 2 may be the same or different and each represents a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted phenanthrenyl group, or substituted or unsubstituted It is selected from unsubstituted terphenyl groups.
 アリーレン基とはアリール基から導かれる2価の基を示し、例えば、フェニレン基、ナフチレン基、ビフェニレン基、フルオレニレン基、フェナントリレン基、ターフェニレン基、アントラセニレン基、ピレニレン基などが例示される。これらは置換基を有していても有していなくてもよい。アリーレン基の炭素数は特に限定されないが、通常、6以上40以下の範囲である。また、アリーレン基が置換基を有する場合は、置換基も含めて炭素数は6以上60以下の範囲であることが好ましい。 The arylene group is a divalent group derived from an aryl group, and examples thereof include a phenylene group, a naphthylene group, a biphenylene group, a fluorenylene group, a phenanthrylene group, a terphenylene group, an anthracenylene group, and a pyrenylene group. These may or may not have a substituent. The carbon number of the arylene group is not particularly limited, but is usually in the range of 6 or more and 40 or less. Moreover, when an arylene group has a substituent, it is preferable that carbon number is 6 or more and 60 or less including a substituent.
 なお、核炭素数6~12のアリーレン基とは、アリーレン基の中で置換基以外の骨格に含まれる炭層数が6~12であるものをいう。 An arylene group having 6 to 12 nuclear carbon atoms means an arylene group having 6 to 12 carbon layers contained in a skeleton other than a substituent.
 アリール基とは、例えば、フェニル基、ビフェニル基、フルオレニル基、フェナントリル基、トリフェニレニル基、ターフェニル基などの芳香族炭化水素基を示す。アリール基は、置換基を有していても有していなくてもよい。アリール基の炭素数は特に限定されないが、通常、6以上40以下の範囲である。 The aryl group refers to, for example, an aromatic hydrocarbon group such as a phenyl group, a biphenyl group, a fluorenyl group, a phenanthryl group, a triphenylenyl group, or a terphenyl group. The aryl group may or may not have a substituent. Although carbon number of an aryl group is not specifically limited, Usually, it is the range of 6-40.
 フルオレニル基は、分子内に存在するメチレン基の水素原子の2つともがアルキル基、特にメチル基に置き換わっていると、電子供与性が増すため好ましい。 The fluorenyl group is preferred because both of the hydrogen atoms of the methylene group present in the molecule are replaced with alkyl groups, particularly methyl groups, because electron donating properties are increased.
 従来のモノアミン骨格を有する化合物は、発光素子材料として必ずしも十分な性能を有するものではなかった。例えば、特許文献1~6には下記式で表されるモノアミン骨格を有する化合物A~Fが示されている。 A conventional compound having a monoamine skeleton does not necessarily have sufficient performance as a light emitting device material. For example, Patent Documents 1 to 6 show compounds A to F having a monoamine skeleton represented by the following formula.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 しかしながら、これらの化合物を正孔注入層や正孔輸送層に使用した素子では、未だ十分な性能は出せておらず、効率、耐久性の面で更なる特性向上が可能となる化合物の創出が求められている。 However, devices using these compounds in the hole injection layer and the hole transport layer have not yet been able to provide sufficient performance, and the creation of compounds that can further improve the properties in terms of efficiency and durability can be achieved. It has been demanded.
 本発明者らは、その改良の検討において、窒素原子に直接連結する置換基の効果について着目した。一般に、モノアミン骨格を有する化合物において窒素原子上をアリール基で置換すると、蛍光量子効率が高くなり、それに伴い一重項励起状態の安定性が増すため、分子が励起状態において分解しにくくなる。しかしながら、核炭素数の多いアリール基を窒素原子上に直接連結させるか、もしくは分子内に共存させると、蛍光量子効率は高くなる傾向にある一方、共役が広すぎることで一重項状態でのエネルギーギャップが小さくなる。その結果、正孔輸送材料の要求特性の1つとして重要である電子ブロック性を損ねることになるので、高発光効率化の観点から好ましくない。また、三重項発光型の発光素子や熱活性化型の遅延蛍光素子において重要な値である三重項準位も著しく小さくなるため、三重項励起状態を経由するドーパントを利用した素子においても、発光効率を低下させる要因となるため、好ましくない。たとえば、化合物Fは、分子内にピレン骨格を含んでおり、上記の理由から好ましくない。 In the study of the improvement, the present inventors paid attention to the effect of the substituent directly linked to the nitrogen atom. In general, when a nitrogen atom in a compound having a monoamine skeleton is substituted with an aryl group, the fluorescence quantum efficiency is increased, and the stability of the singlet excited state is increased accordingly, so that the molecule is hardly decomposed in the excited state. However, when an aryl group having a large number of nuclear carbons is directly linked to the nitrogen atom or coexists in the molecule, the fluorescence quantum efficiency tends to be high, but the conjugation is too wide and the energy in the singlet state is increased. The gap becomes smaller. As a result, the electron blocking property, which is important as one of the required characteristics of the hole transport material, is impaired, which is not preferable from the viewpoint of increasing the light emission efficiency. In addition, the triplet level, which is an important value in triplet emission type light-emitting elements and thermally activated delayed fluorescent elements, is also significantly reduced, so even in an element using a dopant via a triplet excited state, light emission Since it becomes a factor which reduces efficiency, it is not preferable. For example, compound F contains a pyrene skeleton in the molecule and is not preferred for the above reasons.
 そのため、窒素原子に直接連結する置換基はフェニル基のように炭素数を限定することで高発光効率化が達成できる。さらに分子内には、フェニル基、ナフチル基、フェナントレニル基、ターフェニル基、フルオレニル基といった、核炭素数が少なく、共役が広すぎない置換基を導入することが、高効率化の達成には重要である。ただし、核炭素数が大きくても、トリフェニレニル基のように高い三重項エネルギーを有する置換基であれば、発光効率低下の原因とはならないため、好ましい置換基である。 Therefore, the substituent directly linked to the nitrogen atom can achieve high emission efficiency by limiting the number of carbon atoms such as a phenyl group. In order to achieve high efficiency, it is important to introduce substituents in the molecule, such as phenyl, naphthyl, phenanthrenyl, terphenyl, and fluorenyl groups, which have few nuclear carbon atoms and are not too wide. It is. However, even if the number of nuclear carbon atoms is large, a substituent having a high triplet energy such as a triphenylenyl group is a preferable substituent because it does not cause a decrease in light emission efficiency.
 さらに本発明者らは、従来のモノアミン骨格を有する化合物の多くは、窒素原子上の置換基が重水素化されていないため、蛍光量子効率が低下し、素子の連続駆動時の輝度劣化、すなわち耐久性の低下につながっているのではないかと考えた。そこで本発明の化合物のように窒素原子上のフェニル基を重水素化させることで、蛍光量子効率を高め、励起状態の安定性を向上させ、素子駆動時の耐久性を向上できるのではないかと考えた。 Furthermore, the present inventors have found that many of the conventional compounds having a monoamine skeleton are not deuterated on a substituent on the nitrogen atom, so that the fluorescence quantum efficiency is lowered, and the luminance is deteriorated during continuous driving of the device, that is, I thought it might have led to a decrease in durability. Therefore, by deuterating the phenyl group on the nitrogen atom like the compound of the present invention, the fluorescence quantum efficiency can be improved, the stability of the excited state can be improved, and the durability at the time of driving the device can be improved. Thought.
 以上のように、発明者らは鋭意検討の結果、一般式(1)で表されるモノアミン誘導体が発光効率および耐久性を向上させることを見出し、本発明に至った。 As described above, as a result of intensive studies, the inventors have found that the monoamine derivative represented by the general formula (1) improves the light emission efficiency and durability, and have reached the present invention.
 一般式(1)で表されるモノアミン誘導体は、分子中に重水素化されたフェニル基を少なくとも1つ有することが、高い蛍光量子効率を有するために好ましい。 It is preferable for the monoamine derivative represented by the general formula (1) to have at least one deuterated phenyl group in the molecule because of high fluorescence quantum efficiency.
  共役を広げすぎないという観点から、一般式(1)におけるR~Rのうち、少なくとも1つは置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基、置換もしくは無置換のフルオレニル基、置換もしくは無置換のフェナントレニル基、または置換もしくは無置換のターフェニル基から選ばれることが好ましい。また、それ以外は全て重水素であると、蛍光量子効率が向上し、一重項励起状態の安定性が増すため好ましい。 From the viewpoint of not spreading the conjugation too much, at least one of R 1 to R 5 in the general formula (1) is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted fluorenyl group. , A substituted or unsubstituted phenanthrenyl group, or a substituted or unsubstituted terphenyl group. In addition, it is preferable that all other than that is deuterium because fluorescence quantum efficiency is improved and stability of a singlet excited state is increased.
 一般式(1)におけるLおよびLが置換の核炭素数6~12のアリーレン基であるとき、置換基としては、共役にほとんど影響を与えず、高い三重項準位を維持することができるという観点から、アルキル基またはハロゲンが好ましい。 When L 1 and L 2 in the general formula (1) are substituted arylene groups having 6 to 12 nuclear carbon atoms, the substituent has little influence on conjugation and can maintain a high triplet level. From the viewpoint of being able to do so, an alkyl group or halogen is preferable.
 アルキル基とは、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基などの飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキル基の炭素数は特に限定されないが、入手の容易性やコストの点から、通常1以上20以下、より好ましくは1以上8以下の範囲である。 The alkyl group represents, for example, a saturated aliphatic hydrocarbon group such as a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, or a tert-butyl group, which is a substituent. It may or may not have. The number of carbon atoms of the alkyl group is not particularly limited, but is usually in the range of 1 to 20 and more preferably 1 to 8 in terms of availability and cost.
 ハロゲンとは、フッ素、塩素、臭素、ヨウ素を示す。 Halogen means fluorine, chlorine, bromine and iodine.
 一般式(1)におけるA、すなわちAおよびAが、置換されている場合の置換基としては、共役にほとんど影響を与えず、高い三重項準位を維持することができるという観点から、アルキル基またはハロゲンが好ましい。 In the general formula (1), A, that is, when A 1 and A 2 are substituted, the substituent has little influence on conjugation and can maintain a high triplet level. Alkyl groups or halogens are preferred.
 LおよびLの好ましい例としては、共役を広げすぎないという観点から、フェニレン基、ナフチレン基、フェナントレニレン基、ターフェニレン基、フルオレニレン基が好ましい。AおよびAの好ましい例としては、共役を広げすぎないという観点から、フェニル基、ナフチル基、フェナントレニル基、ターフェニル基、フルオレニル基が好ましい。 Preferable examples of L 1 and L 2 are preferably a phenylene group, a naphthylene group, a phenanthrenylene group, a terphenylene group, and a fluorenylene group from the viewpoint of not spreading the conjugation too much. Preferable examples of A 1 and A 2 are preferably a phenyl group, a naphthyl group, a phenanthrenyl group, a terphenyl group, and a fluorenyl group from the viewpoint of not spreading the conjugation too much.
 なかでも、一般式(1)が一般式(2)で表されるように、重水素化されたベンゼン環が、窒素原子上に2つ置換することで、さらに蛍光量子効率が向上するため、好ましい。 Among them, as the general formula (1) is represented by the general formula (2), the substitution of two deuterated benzene rings on the nitrogen atom further improves the fluorescence quantum efficiency. preferable.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 式中、LおよびAは一般式(1)におけるものと同様である。R~R10のうち、少なくとも1つは置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基、置換もしくは無置換のフルオレニル基、置換もしくは無置換のフェナントレニル基、または置換もしくは無置換のターフェニル基から選ばれ、それ以外は全て重水素である。 In the formula, L 1 and A 1 are the same as those in the general formula (1). At least one of R 1 to R 10 is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted phenanthrenyl group, or a substituted or unsubstituted group Selected from the terphenyl group, all others are deuterium.
 さらに、一般式(2)が、一般式(3)で表されるように、重水素化されたベンゼン環上のパラ位に置換もしくは無置換の核炭素数6~12のアリール基を有することにより、共役が広がることで励起状態の安定性が向上し、さらに正孔輸送性も向上することで、素子の低駆動電圧化につながるため、好ましい。 Furthermore, as represented by the general formula (3), the general formula (2) has a substituted or unsubstituted aryl group having 6 to 12 nuclear carbon atoms at the para position on the deuterated benzene ring. Therefore, it is preferable that the conjugation is widened to improve the stability of the excited state and further improve the hole transport property, which leads to a lower driving voltage of the element.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式中、LおよびAは一般式(1)におけるものと同様である。ArおよびArはそれぞれ同じでも異なっていてもよく、置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基、置換もしくは無置換のフルオレニル基、置換もしくは無置換のフェナントレニル基、または置換もしくは無置換のターフェニル基から選ばれる。 In the formula, L 1 and A 1 are the same as those in the general formula (1). Ar 1 and Ar 2 may be the same or different and each represents a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted phenanthrenyl group, or substituted or unsubstituted It is selected from unsubstituted terphenyl groups.
 さらに、一般式(3)が、一般式(4)で表されるように、ArおよびArが置換もしくは無置換のフェニル基であることにより、エネルギーギャップを大きく低下させることなく正孔輸送性が向上するので、好ましい。また、分子量も増えすぎないため、昇華性での安定性も向上するため好ましい。 Moreover, the general formula (3) is, as represented by the general formula (4), by Ar 1 and Ar 2 are substituted or unsubstituted phenyl group, a hole transport without reducing an energy gap larger This is preferable because the property is improved. In addition, since the molecular weight does not increase too much, the sublimation stability is also improved, which is preferable.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式中、LおよびAは一般式(1)におけるものと同様である。R101~R110はそれぞれ同じでも異なっていてもよく、水素、重水素、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基、置換もしくは無置換のフェナントレニル基、置換もしくは無置換のターフェニル基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、シリル基及び-P(=O)R111112からなる群より選ばれる。R111およびR112はアリール基またはヘテロアリール基である。またR111およびR112が縮合して環を形成していてもよい。 In the formula, L 1 and A 1 are the same as those in the general formula (1). R 101 to R 110 may be the same or different and are each hydrogen, deuterium, alkyl group, cycloalkyl group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, substituted or unsubstituted phenyl group. , Substituted or unsubstituted naphthyl group, substituted or unsubstituted phenanthrenyl group, substituted or unsubstituted terphenyl group, halogen, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group, silyl group, and —P (═O) R 111 is selected from the group consisting of R 112 . R 111 and R 112 are an aryl group or a heteroaryl group. R 111 and R 112 may be condensed to form a ring.
 これらの置換基のうち、水素は重水素であってもよい。 Of these substituents, hydrogen may be deuterium.
 シクロアルキル基とは、例えば、シクロプロピル、シクロヘキシル、ノルボルニル、アダマンチルなどの飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキル基部分の炭素数は特に限定されないが、通常、3以上20以下の範囲である。 The cycloalkyl group represents, for example, a saturated alicyclic hydrocarbon group such as cyclopropyl, cyclohexyl, norbornyl, adamantyl, etc., which may or may not have a substituent. Although carbon number of an alkyl group part is not specifically limited, Usually, it is the range of 3-20.
 アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルケニル基の炭素数は特に限定されないが、通常、2以上20以下の範囲である。 An alkenyl group refers to an unsaturated aliphatic hydrocarbon group containing a double bond such as a vinyl group, an allyl group, or a butadienyl group, which may or may not have a substituent. Although carbon number of an alkenyl group is not specifically limited, Usually, it is the range of 2-20.
 シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。シクロアルケニル基の炭素数は特に限定されないが、通常、2以上20以下の範囲である。 The cycloalkenyl group refers to an unsaturated alicyclic hydrocarbon group containing a double bond such as a cyclopentenyl group, a cyclopentadienyl group, or a cyclohexenyl group, which may have a substituent. You don't have to. Although carbon number of a cycloalkenyl group is not specifically limited, Usually, it is the range of 2-20.
 アルキニル基とは、例えば、エチニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキニル基の炭素数は特に限定されないが、通常、2以上20以下の範囲である。 The alkynyl group indicates, for example, an unsaturated aliphatic hydrocarbon group containing a triple bond such as an ethynyl group, which may or may not have a substituent. Although carbon number of an alkynyl group is not specifically limited, Usually, it is the range of 2-20.
 アルコキシ基とは、例えば、メトキシ基、エトキシ基、プロポキシ基などのエーテル結合を介して脂肪族炭化水素基が結合した官能基を示し、この脂肪族炭化水素基は置換基を有していてもいなくてもよい。アルコキシ基の炭素数は特に限定されないが、通常、1以上20以下の範囲である。 The alkoxy group refers to a functional group to which an aliphatic hydrocarbon group is bonded through an ether bond such as a methoxy group, an ethoxy group, or a propoxy group, and the aliphatic hydrocarbon group may have a substituent. It does not have to be. Although carbon number of an alkoxy group is not specifically limited, Usually, it is the range of 1-20.
 アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アルキルチオ基の炭化水素基は置換基を有していてもいなくてもよい。アルキルチオ基の炭素数は特に限定されないが、通常、1以上20以下の範囲である。 The alkylthio group is a group in which an oxygen atom of an ether bond of an alkoxy group is substituted with a sulfur atom. The hydrocarbon group of the alkylthio group may or may not have a substituent. Although carbon number of an alkylthio group is not specifically limited, Usually, it is the range of 1-20.
 カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基は、置換基を有していても有していなくてもよい。 The carbonyl group, carboxyl group, oxycarbonyl group and carbamoyl group may or may not have a substituent.
 シリル基とは、例えば、トリメチルシリル基などのケイ素原子への結合を有する官能基を示し、これは置換基を有していても有していなくてもよい。シリル基の炭素数は特に限定されないが、通常、3以上20以下の範囲である。また、ケイ素数は、通常、1以上6以下の範囲である。 The silyl group refers to, for example, a functional group having a bond to a silicon atom such as a trimethylsilyl group, which may or may not have a substituent. Although carbon number of a silyl group is not specifically limited, Usually, it is the range of 3-20. The number of silicon is usually in the range of 1 to 6.
 -P(=O)R1112は置換基を有していても有していなくてもよい。 —P (═O) R 11 R 12 may or may not have a substituent.
 ヘテロアリール基とは、フラニル基、チオフェニル基、ピリジル基、ピラジニル基、ピリミジニル基、トリアジニル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基などの炭素以外の原子を一個または複数個環内に有する環状芳香族基を示し、これは無置換でも置換されていてもかまわない。ヘテロアリール基の炭素数は特に限定されないが、通常、2以上30以下の範囲である。 A heteroaryl group is a ring having one or more atoms other than carbon such as furanyl group, thiophenyl group, pyridyl group, pyrazinyl group, pyrimidinyl group, triazinyl group, benzofuranyl group, benzothiophenyl group, indolyl group in the ring. Represents an aromatic group, which may be unsubstituted or substituted. Although carbon number of heteroaryl group is not specifically limited, Usually, it is the range of 2-30.
 さらに、一般式(4)が、一般式(5)で表されるように、ArおよびArに置換おけるR101、R102、R104~R107、R109およびR110が水素または重水素であることで、さらに蛍光量子効率が向上するため、素子の高効率化につながり、好ましい。 Furthermore, as represented by general formula (5), R 101 , R 102 , R 104 to R 107 , R 109, and R 110 in Ar 1 and Ar 2 are hydrogen or heavy as represented by general formula (5). Since it is hydrogen, the fluorescence quantum efficiency is further improved, leading to higher efficiency of the device, which is preferable.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式中、LおよびAは一般式(1)におけるものと同様である。R103およびR108は一般式(4)におけるものと同様であり、それぞれ同じでも異なっていてもよい。aおよびbはそれぞれ0~4であり、aおよびbが0~3のとき、重水素以外の部分は水素である。 In the formula, L 1 and A 1 are the same as those in the general formula (1). R 103 and R 108 are the same as those in the general formula (4), and may be the same or different. a and b are each 0 to 4, and when a and b are 0 to 3, the portion other than deuterium is hydrogen.
 さらに、一般式(5)が、一般式(6)で表されるように、ArおよびArにおけるR101、R102、R104~R107、R109およびR110が重水素であることで、より蛍光量子効率が向上し、励起状態の安定性が向上するため、好ましい。 Furthermore, as general formula (5) is represented by general formula (6), R 101 , R 102 , R 104 to R 107 , R 109 and R 110 in Ar 1 and Ar 2 are deuterium. Therefore, it is preferable because the fluorescence quantum efficiency is further improved and the stability of the excited state is improved.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式中、LおよびAは一般式(1)におけるものと同様である。R103およびR108は一般式(4)におけるものと同様であり、それぞれ同じでも異なっていてもよい。 In the formula, L 1 and A 1 are the same as those in the general formula (1). R 103 and R 108 are the same as those in the general formula (4), and may be the same or different.
 R103およびR108は分子量の観点から置換もしくは無置換のフェニル基が好ましく、さらに水素が全て重水素化されたものが、蛍光量子効率を向上させるため好ましい。 R 103 and R 108 are preferably a substituted or unsubstituted phenyl group from the viewpoint of molecular weight, and those in which all hydrogen is deuterated are preferable in order to improve the fluorescence quantum efficiency.
 上記一般式(1)で表されるモノアミン誘導体としては、特に限定されるものではないが、具体的には以下のような例が挙げられる。なお、以下は例示であり、ここに明記された化合物以外であっても一般式(1)で表されるものであれば同様に好ましく用いられる。 The monoamine derivative represented by the general formula (1) is not particularly limited, but specific examples include the following. In addition, the following is an illustration, and even if it is other than the compound specified here, if it is represented by General formula (1), it is preferably used similarly.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 上記のようなモノアミン骨格を有する化合物の合成には、公知の方法を使用することができる。合成法としては、例えば、パラジウムや銅触媒を用いた1級もしくは2級アミン誘導体とハロゲン化物またはトリフラート化体とのカップリング反応を用いる方法が挙げられるが、これに限定されるものではない。一例として、p-クロロアニリンとブロモビフェニルを用いた例を以下に示す。 A known method can be used for the synthesis of a compound having a monoamine skeleton as described above. Examples of the synthesis method include, but are not limited to, a method using a coupling reaction between a primary or secondary amine derivative using a palladium or copper catalyst and a halide or triflate. As an example, an example using p-chloroaniline and bromobiphenyl is shown below.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 (発光素子材料)
 一般式(1)で表されるモノアミン誘導体は発光素子材料として好ましく用いられる。ここで本発明における発光素子材料とは、発光素子のいずれかの層に使用される材料を表し、後述するように、正孔注入層、正孔輸送層、発光層および/または電子輸送層に使用される材料であるほか、陰極の保護膜に使用される材料も含む。本発明における一般式(1)で表されるモノアミン誘導体を発光素子のいずれかの層に使用することにより、高い発光効率が得られ、かつ耐久性に優れた発光素子が得られる。
(Light-emitting element material)
The monoamine derivative represented by the general formula (1) is preferably used as a light emitting device material. Here, the light emitting device material in the present invention represents a material used for any layer of the light emitting device, and as described later, in the hole injection layer, the hole transport layer, the light emitting layer and / or the electron transport layer. In addition to the materials used, the materials used for the cathode protective film are also included. By using the monoamine derivative represented by the general formula (1) in the present invention in any layer of the light-emitting element, a light-emitting element having high luminous efficiency and excellent durability can be obtained.
 (発光素子)
 次に、本発明の発光素子の実施の形態について詳細に説明する。本発明の発光素子は、陽極と陰極、およびそれら陽極と陰極との間に介在する有機層を有し、該有機層が電気エネルギーにより発光する。
(Light emitting element)
Next, embodiments of the light emitting device of the present invention will be described in detail. The light emitting device of the present invention has an anode and a cathode and an organic layer interposed between the anode and the cathode, and the organic layer emits light by electric energy.
 このような発光素子における陽極と陰極の間の層構成は、発光層のみからなる構成の他に、1)発光層/電子輸送層、2)正孔輸送層/発光層、3)正孔輸送層/発光層/電子輸送層、4)正孔注入層/正孔輸送層/発光層/電子輸送層、5)正孔輸送層/発光層/電子輸送層/電子注入層、6)正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層、といった積層構成が挙げられる。 In such a light emitting device, the layer structure between the anode and the cathode is composed of only the light emitting layer, 1) light emitting layer / electron transport layer, 2) hole transport layer / light emitting layer, and 3) hole transport. Layer / light emitting layer / electron transport layer, 4) hole injection layer / hole transport layer / light emitting layer / electron transport layer, 5) hole transport layer / light emitting layer / electron transport layer / electron injection layer, 6) hole A laminated structure such as injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer may be mentioned.
 さらに、上記の積層構成を中間層を介して複数積層したタンデム型であってもよい。中間層は、一般的に、中間電極、中間導電層、電荷発生層、電子引抜層、接続層、中間絶縁層とも呼ばれ、公知の材料構成を用いることができる。タンデム型の具体例は、例えば7)正孔輸送層/発光層/電子輸送層/電荷発生層/正孔輸送層/発光層/電子輸送層、8)正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/電荷発生層/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層といった、陽極と陰極の間に中間層として電荷発生層を含む積層構成が挙げられる。中間層を構成する材料としては、具体的にはピリジン誘導体、フェナントロリン誘導体が好ましく用いられる。 Furthermore, a tandem type in which a plurality of the above-described laminated structures are laminated via an intermediate layer may be used. The intermediate layer is generally called an intermediate electrode, an intermediate conductive layer, a charge generation layer, an electron extraction layer, a connection layer, or an intermediate insulating layer, and a known material structure can be used. Specific examples of the tandem type are, for example, 7) hole transport layer / light emitting layer / electron transport layer / charge generation layer / hole transport layer / light emitting layer / electron transport layer, 8) hole injection layer / hole transport layer / A charge generation layer as an intermediate layer between an anode and a cathode, such as a light emitting layer / electron transport layer / electron injection layer / charge generation layer / hole injection layer / hole transport layer / light emission layer / electron transport layer / electron injection layer The laminated structure including is mentioned. Specifically, pyridine derivatives and phenanthroline derivatives are preferably used as the material constituting the intermediate layer.
 また、上記各層は、それぞれ単一層、複数層のいずれでもよく、ドーピングされていてもよい。さらに上記各層は、陽極、発光層を含む一以上の有機層、陰極を含み、さらに光学干渉効果に起因して発光効率を向上させるためのキャッピング材料を用いた層を含む素子構成も挙げられる。 Further, each of the above layers may be either a single layer or a plurality of layers, and may be doped. Further, each of the above layers includes an anode, one or more organic layers including a light emitting layer, a cathode, and an element configuration including a layer using a capping material for improving light emission efficiency due to an optical interference effect.
 一般式(1)で表されるモノアミン誘導体は、発光素子において上記のいずれの層に用いられてもよいが、正孔輸送層に特に好適に用いられる。 The monoamine derivative represented by the general formula (1) may be used in any of the above layers in the light emitting device, but is particularly preferably used in the hole transport layer.
 本発明の発光素子において、陽極と陰極は素子の発光のために十分な電流を供給するための役割を有するものであり、光を取り出すために少なくとも一方は透明または半透明であることが望ましい。通常、基板上に形成される陽極を透明電極とする。 In the light emitting device of the present invention, the anode and the cathode have a role of supplying a sufficient current for light emission of the device, and it is desirable that at least one of them is transparent or translucent in order to extract light. Usually, the anode formed on the substrate is a transparent electrode.
 (陽極)
 陽極に用いる材料は、正孔を有機層に効率よく注入できる材料、かつ光を取り出すために透明または半透明であれば、酸化亜鉛、酸化錫、酸化インジウム、酸化錫インジウム(ITO)、酸化亜鉛インジウム(IZO)などの導電性金属酸化物、あるいは、金、銀、クロムなどの金属、ヨウ化銅、硫化銅などの無機導電性物質、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーなど特に限定されるものでないが、ITOガラスやネサガラスを用いることが特に望ましい。これらの電極材料は、単独で用いてもよいが、複数の材料を積層または混合して用いてもよい。透明電極の抵抗は素子の発光に十分な電流が供給できればよいので限定されないが、素子の消費電力の観点からは低抵抗であることが望ましい。例えば300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、20Ω/□以下の低抵抗の基板を使用することが特に望ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常45~300nmの間で用いられることが多い。
(anode)
If the material used for the anode is a material that can efficiently inject holes into the organic layer and is transparent or translucent to extract light, zinc oxide, tin oxide, indium oxide, indium tin oxide (ITO), zinc oxide In particular, conductive metal oxides such as indium (IZO), metals such as gold, silver and chromium, inorganic conductive materials such as copper iodide and copper sulfide, and conductive polymers such as polythiophene, polypyrrole and polyaniline are particularly limited. Although not intended, it is particularly desirable to use ITO glass or Nesa glass. These electrode materials may be used alone, or a plurality of materials may be laminated or mixed. The resistance of the transparent electrode is not limited as long as a current sufficient for light emission of the element can be supplied, but it is desirable that the resistance be low from the viewpoint of power consumption of the element. For example, an ITO substrate with a resistance of 300Ω / □ or less will function as a device electrode, but since it is now possible to supply a substrate with a resistance of approximately 10Ω / □, use a substrate with a low resistance of 20Ω / □ or less. Is particularly desirable. The thickness of ITO can be arbitrarily selected according to the resistance value, but is usually used in a range of 45 to 300 nm.
 また、発光素子の機械的強度を保つために、発光素子を基板上に形成することが好ましい。基板は、ソーダガラスや無アルカリガラスなどのガラス基板が好適に用いられる。ガラス基板の厚みは、機械的強度を保つのに十分な厚みがあればよいので、0.5mm以上あれば十分である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましい。または、SiOなどのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することもできる。さらに、第一電極が安定に機能するのであれば、基板はガラスである必要はなく、例えば、プラスチック基板上に陽極を形成しても良い。ITO膜形成方法は、電子線ビーム法、スパッタリング法および化学反応法など特に制限を受けるものではない。 In order to maintain the mechanical strength of the light emitting element, the light emitting element is preferably formed over a substrate. As the substrate, a glass substrate such as soda glass or non-alkali glass is preferably used. As the thickness of the glass substrate, it is sufficient that the thickness is sufficient to maintain the mechanical strength. As for the glass material, alkali-free glass is preferred because it is better that there are fewer ions eluted from the glass. Alternatively, soda lime glass provided with a barrier coat such as SiO 2 is also commercially available and can be used. Furthermore, if the first electrode functions stably, the substrate need not be glass, and for example, an anode may be formed on a plastic substrate. The ITO film forming method is not particularly limited, such as an electron beam method, a sputtering method, and a chemical reaction method.
 (陰極)
 陰極に用いる材料は、電子を効率よく発光層に注入できる物質であれば特に限定されない。一般的には白金、金、銀、銅、鉄、錫、アルミニウム、インジウムなどの金属、またはこれらの金属とリチウム、ナトリウム、カリウム、カルシウム、マグネシウムなどの低仕事関数金属との合金や多層積層などが好ましい。中でも、主成分としてはアルミニウム、銀、マグネシウムが電気抵抗値や製膜しやすさ、膜の安定性、発光効率などの面から好ましい。特にマグネシウムと銀で構成されると、本発明における電子輸送層および電子注入層への電子注入が容易になり、低電圧駆動が可能になるため好ましい。
(cathode)
The material used for the cathode is not particularly limited as long as it can efficiently inject electrons into the light emitting layer. Generally, metals such as platinum, gold, silver, copper, iron, tin, aluminum, and indium, or alloys and multilayer stacks of these metals with low work function metals such as lithium, sodium, potassium, calcium, and magnesium Is preferred. Among these, aluminum, silver, and magnesium are preferable as the main component from the viewpoints of electrical resistance, ease of film formation, film stability, luminous efficiency, and the like. In particular, magnesium and silver are preferable because electron injection into the electron transport layer and the electron injection layer in the present invention is facilitated and low voltage driving is possible.
 さらに、陰極保護のために白金、金、銀、銅、鉄、錫、アルミニウムおよびインジウムなどの金属、またはこれら金属を用いた合金、シリカ、チタニアおよび窒化ケイ素などの無機物、ポリビニルアルコール、ポリ塩化ビニル、炭化水素系高分子化合物などの有機高分子化合物を、保護膜層として陰極上に積層することが好ましい例として挙げられる。ただし、陰極側から光を取り出す素子構造(トップエミッション構造)の場合は、保護膜層は可視光領域で光透過性のある材料から選択される。これらの電極の作製法は、抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティングおよびコーティングなど特に制限されない。 Furthermore, for cathode protection, metals such as platinum, gold, silver, copper, iron, tin, aluminum and indium, or alloys using these metals, inorganic materials such as silica, titania and silicon nitride, polyvinyl alcohol, polyvinyl chloride As a preferred example, an organic polymer compound such as a hydrocarbon polymer compound is laminated on the cathode as a protective film layer. However, in the case of an element structure (top emission structure) that extracts light from the cathode side, the protective film layer is selected from materials that are light transmissive in the visible light region. The production method of these electrodes is not particularly limited, such as resistance heating, electron beam, sputtering, ion plating and coating.
 (正孔注入層)
 正孔注入層は陽極と正孔輸送層の間に挿入される層である。正孔注入層は1層であっても複数の層が積層されていてもどちらでもよい。正孔輸送層と陽極の間に正孔注入層が存在すると、より低電圧駆動し、耐久寿命も向上するだけでなく、さらに素子のキャリアバランスが向上して発光効率も向上するため好ましい。
(Hole injection layer)
The hole injection layer is a layer inserted between the anode and the hole transport layer. The hole injection layer may be either a single layer or a plurality of layers stacked. The presence of a hole injection layer between the hole transport layer and the anode is preferable because it not only drives at a lower voltage and improves the durability life, but also improves the carrier balance of the device and the light emission efficiency.
 正孔注入層に用いられる材料は特に限定されないが、例えば、4,4’-ビス(N-(3-メチルフェニル)-N-フェニルアミノ)ビフェニル(TPD)、4,4’-ビス(N-(1-ナフチル)-N-フェニルアミノ)ビフェニル(NPD)、4,4’-ビス(N,N-ビス(4-ビフェニリル)アミノ)ビフェニル(TBDB),ビス(N,N’-ジフェニル-4-アミノフェニル)-N,N-ジフェニル-4,4’ -ジアミノ-1,1’-ビフェニル(TPD232)といったベンジジン誘導体、4,4’,4”-トリス(3-メチルフェニル(フェニル)アミノ)トリフェニルアミン(m-MTDATA)、4,4’,4”-トリス(1-ナフチル(フェニル)アミノ)トリフェニルアミン(1-TNATA)などのスターバーストアリールアミンと呼ばれる材料群、ビス(N-アリールカルバゾール)またはビス(N-アルキルカルバゾール)などのビスカルバゾール誘導体、ピラゾリン誘導体、スチルベン系化合物、ヒドラゾン系化合物、ベンゾフラン誘導体、チオフェン誘導体、オキサジアゾール誘導体、フタロシアニン誘導体、ポルフィリン誘導体などの複素環化合物、ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリチオフェン、ポリアニリン、ポリフルオレン、ポリビニルカルバゾールおよびポリシランなどが用いられる。また、一般式(1)で表されるモノアミン誘導体を用いることもできる。中でも一般式(1)で表されるモノアミン誘導体より浅いHOMO準位を有し、陽極から正孔輸送層へ円滑に正孔を注入輸送するという観点からベンジジン誘導体、スターバーストアリールアミン系材料群がより好ましく用いられる。 The material used for the hole injection layer is not particularly limited. For example, 4,4′-bis (N- (3-methylphenyl) -N-phenylamino) biphenyl (TPD), 4,4′-bis (N -(1-naphthyl) -N-phenylamino) biphenyl (NPD), 4,4'-bis (N, N-bis (4-biphenylyl) amino) biphenyl (TBDB), bis (N, N'-diphenyl- Benzidine derivatives such as 4-aminophenyl) -N, N-diphenyl-4,4 ′ -diamino-1,1′-biphenyl (TPD232), 4,4 ′, 4 ″ -tris (3-methylphenyl (phenyl) amino ) Starboards such as triphenylamine (m-MTDATA), 4,4 ′, 4 ″ -tris (1-naphthyl (phenyl) amino) triphenylamine (1-TNATA) Material group called store reel amine, biscarbazole derivatives such as bis (N-arylcarbazole) or bis (N-alkylcarbazole), pyrazoline derivatives, stilbene compounds, hydrazone compounds, benzofuran derivatives, thiophene derivatives, oxadiazole derivatives , Phthalocyanine derivatives, heterocyclic compounds such as porphyrin derivatives, and polymer systems such as polycarbonates and styrene derivatives, polythiophene, polyaniline, polyfluorene, polyvinylcarbazole, and polysilane having the above monomers in the side chain are used. Moreover, the monoamine derivative represented by General formula (1) can also be used. Among these, a benzidine derivative and a starburst arylamine group of materials have a shallower HOMO level than the monoamine derivative represented by the general formula (1), and from the viewpoint of smoothly injecting and transporting holes from the anode to the hole transport layer. More preferably used.
 これらの材料は単独で用いてもよいし、2種以上の材料を混合して用いてもよい。また、複数の材料を積層して正孔注入層としてもよい。さらにこの正孔注入層が、アクセプター性化合物単独で構成されているか、または上記のような正孔注入材料にアクセプター性化合物をドープして用いると、上述した効果がより顕著に得られるのでより好ましい。アクセプター性化合物とは、単層膜として用いる場合は接している正孔輸送層と、ドープして用いる場合は正孔注入層を構成する材料と電荷移動錯体を形成する材料である。このような材料を用いると正孔注入層の導電性が向上し、より素子の駆動電圧低下に寄与し、発光効率の向上、耐久寿命向上といった効果が得られる。 These materials may be used alone or as a mixture of two or more materials. A plurality of materials may be stacked to form a hole injection layer. Further, it is more preferable that the hole injection layer is composed of an acceptor compound alone or that the hole injection material is doped with an acceptor compound so that the above-described effects can be obtained more remarkably. . An acceptor compound is a material that forms a charge transfer complex with a material that forms a hole-injecting layer in contact with a hole-transporting layer when used as a single-layer film and a material that forms a hole-injecting layer when used as a doped layer. When such a material is used, the conductivity of the hole injection layer is improved, which contributes to lowering of the driving voltage of the device, and the effects of improving the light emission efficiency and improving the durability life can be obtained.
 アクセプター性化合物の例としては、塩化鉄(III)、塩化アルミニウム、塩化ガリウム、塩化インジウム、塩化アンチモンのような金属塩化物、酸化モリブデン、酸化バナジウム、酸化タングステン、酸化ルテニウムのような金属酸化物、トリス(4-ブロモフェニル)アミニウムヘキサクロロアンチモネート(TBPAH)のような電荷移動錯体が挙げられる。また分子内にニトロ基、シアノ基、ハロゲンまたはトリフルオロメチル基を有する有機化合物や、キノン系化合物、酸無水物系化合物、フラーレンなども好適に用いられる。これらの化合物の具体的な例としては、ヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン(TCNQ)、テトラフルオロテトラシアノキノジメタン(F4-TCNQ)、ラジアレーン誘導体、p-フルオラニル、p-クロラニル、p-ブロマニル、p-ベンゾキノン、2,6-ジクロロベンゾキノン、2,5-ジクロロベンゾキノン、テトラメチルベンゾキノン、1,2,4,5-テトラシアノベンゼン、o-ジシアノベンゼン、p-ジシアノベンゼン、1,4-ジシアノテトラフルオロベンゼン、2,3-ジクロロ-5,6-ジシアノベンゾキノン、p-ジニトロベンゼン、m-ジニトロベンゼン、o-ジニトロベンゼン、p-シアノニトロベンゼン、m-シアノニトロベンゼン、o-シアノニトロベンゼン、1,4-ナフトキノン、2,3-ジクロロナフトキノン、1-ニトロナフタレン、2-ニトロナフタレン、1,3-ジニトロナフタレン、1,5-ジニトロナフタレン、9-シアノアントラセン、9-ニトロアントラセン、9,10-アントラキノン、1,3,6,8-テトラニトロカルバゾール、2,4,7-トリニトロ-9-フルオレノン、2,3,5,6-テトラシアノピリジン、マレイン酸無水物、フタル酸無水物、C60、およびC70などが挙げられる。 Examples of acceptor compounds include metal chlorides such as iron (III) chloride, aluminum chloride, gallium chloride, indium chloride, antimony chloride, metal oxides such as molybdenum oxide, vanadium oxide, tungsten oxide, ruthenium oxide, A charge transfer complex such as tris (4-bromophenyl) aminium hexachloroantimonate (TBPAH). In addition, organic compounds having a nitro group, cyano group, halogen or trifluoromethyl group in the molecule, quinone compounds, acid anhydride compounds, fullerenes, and the like are also preferably used. Specific examples of these compounds include hexacyanobutadiene, hexacyanobenzene, tetracyanoethylene, tetracyanoquinodimethane (TCNQ), tetrafluorotetracyanoquinodimethane (F4-TCNQ), a radiane derivative, p-fluoranil, p-chloranil, p-bromanyl, p-benzoquinone, 2,6-dichlorobenzoquinone, 2,5-dichlorobenzoquinone, tetramethylbenzoquinone, 1,2,4,5-tetracyanobenzene, o-dicyanobenzene, p-dicyano Benzene, 1,4-dicyanotetrafluorobenzene, 2,3-dichloro-5,6-dicyanobenzoquinone, p-dinitrobenzene, m-dinitrobenzene, o-dinitrobenzene, p-cyanonitrobenzene, m-cyanonitrobenzene, o - Anonitrobenzene, 1,4-naphthoquinone, 2,3-dichloronaphthoquinone, 1-nitronaphthalene, 2-nitronaphthalene, 1,3-dinitronaphthalene, 1,5-dinitronaphthalene, 9-cyanoanthracene, 9-nitroanthracene, 9,10-anthraquinone, 1,3,6,8-tetranitrocarbazole, 2,4,7-trinitro-9-fluorenone, 2,3,5,6-tetracyanopyridine, maleic anhydride, phthalic anhydride Product, C60, and C70.
 これらの中でも、金属酸化物やシアノ基含有化合物が取り扱いやすく、蒸着もしやすいことから、容易に上述した効果が得られるので好ましい。正孔注入層がアクセプター性化合物単独で構成される場合、または正孔注入層にアクセプター性化合物がドープされている場合のいずれの場合も、正孔注入層は1層であってもよいし、複数の層が積層されて構成されていてもよい。 Among these, metal oxides and cyano group-containing compounds are preferable because they are easy to handle and can be easily deposited, so that the above-described effects can be easily obtained. In any case where the hole injection layer is composed of an acceptor compound alone or when the hole injection layer is doped with an acceptor compound, the hole injection layer may be a single layer, A plurality of layers may be laminated.
 (正孔輸送層)
 正孔輸送層は、陽極から注入された正孔を発光層まで輸送する層である。正孔輸送層は単層であっても複数の層が積層されて構成されていてもどちらでもよい。
(Hole transport layer)
The hole transport layer is a layer that transports holes injected from the anode to the light emitting layer. The hole transport layer may be a single layer or may be configured by laminating a plurality of layers.
 一般式(1)で表されるモノアミン誘導体は、5.1~6.0eVのイオン化ポテンシャル(蒸着膜のAC-2(理研計器)測定値)、高い三重項エネルギー準位、高い正孔輸送性および薄膜安定性を有しているため、発光素子の正孔注入層および正孔輸送層に用いることが好ましい。また、一般式(1)で表されるモノアミン誘導体は、従来のベンジジン骨格を有する正孔輸送材料に対してエネルギーギャップが大きいため、LUMO準位が高く、電子ブロック性に優れる。さらに、一般式(1)で表されるモノアミン誘導体は三重項発光材料を使用した素子の正孔輸送材料として用いることが好ましい。従来のベンジジン骨格を有する正孔輸送材料は三重項準位が低く、三重項発光材料を含有する発光層に直接接していると三重項エネルギーの漏れが発生し、発光効率が低下するが、一般式(1)で表されるモノアミン誘導体は高い三重項エネルギーを有しており、そのような問題が生じないからである。 The monoamine derivative represented by the general formula (1) has an ionization potential of 5.1 to 6.0 eV (measured value of deposited film AC-2 (RIKEN Keiki)), a high triplet energy level, and a high hole transport property. In addition, since it has thin film stability, it is preferably used for a hole injection layer and a hole transport layer of a light-emitting element. In addition, the monoamine derivative represented by the general formula (1) has a large LUMO level and an excellent electron blocking property because it has a large energy gap with respect to a conventional hole transport material having a benzidine skeleton. Furthermore, the monoamine derivative represented by the general formula (1) is preferably used as a hole transport material of an element using a triplet light emitting material. A conventional hole transport material having a benzidine skeleton has a low triplet level, and if it is in direct contact with a light-emitting layer containing a triplet light-emitting material, leakage of triplet energy occurs and the light emission efficiency decreases. This is because the monoamine derivative represented by the formula (1) has a high triplet energy and does not cause such a problem.
 複数層の正孔輸送層から構成される場合は、一般式(1)で表されるモノアミン誘導体を含む正孔輸送層は発光層に直接接していることが好ましい。一般式(1)で表されるモノアミン誘導体は高い電子ブロック性を有しており、発光層から流れ出る電子の侵入を防止することができるからである。さらに、一般式(1)で表されるモノアミン誘導体は、高い三重項準位を有しているため、三重項発光材料の励起エネルギーを閉じ込める効果も有している。そのため、発光層に三重項発光材料が含まれる場合も、一般式(1)で表されるモノアミン誘導体を含む正孔輸送層は、発光層に直接接していることが好ましい。 In the case of being composed of a plurality of hole transport layers, the hole transport layer containing the monoamine derivative represented by the general formula (1) is preferably in direct contact with the light emitting layer. This is because the monoamine derivative represented by the general formula (1) has high electron blocking properties and can prevent intrusion of electrons flowing out from the light emitting layer. Furthermore, since the monoamine derivative represented by the general formula (1) has a high triplet level, it also has an effect of confining the excitation energy of the triplet light-emitting material. Therefore, even when a triplet light emitting material is included in the light emitting layer, the hole transport layer containing the monoamine derivative represented by the general formula (1) is preferably in direct contact with the light emitting layer.
 正孔輸送層は一般式(1)で表されるモノアミン誘導体のみから構成されていてもよいし、本発明の効果を損なわない範囲で他の材料が混合されていてもよい。この場合、用いられる他の材料としては、例えば、4,4’-ビス(N-(3-メチルフェニル)-N-フェニルアミノ)ビフェニル(TPD)、4,4’-ビス(N-(1-ナフチル)-N-フェニルアミノ)ビフェニル(NPD)、4,4’-ビス(N,N-ビス(4-ビフェニリル)アミノ)ビフェニル(TBDB),ビス(N,N’-ジフェニル-4-アミノフェニル)-N,N-ジフェニル-4,4’-ジアミノ-1,1’-ビフェニル(TPD232)といったベンジジン誘導体、4,4’,4”-トリス(3-メチルフェニル(フェニル)アミノ)トリフェニルアミン(m-MTDATA)、4,4’,4”-トリス(1-ナフチル(フェニル)アミノ)トリフェニルアミン(1-TNATA)などのスターバーストアリールアミンと呼ばれる材料群、ビス(N-アリールカルバゾール)またはビス(N-アルキルカルバゾール)などのビスカルバゾール誘導体、ピラゾリン誘導体、スチルベン系化合物、ヒドラゾン系化合物、ベンゾフラン誘導体、チオフェン誘導体、オキサジアゾール誘導体、フタロシアニン誘導体、ポルフィリン誘導体などの複素環化合物、ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリチオフェン、ポリアニリン、ポリフルオレン、ポリビニルカルバゾールおよびポリシランなどが挙げられる。 The hole transport layer may be composed only of the monoamine derivative represented by the general formula (1), or may be mixed with other materials as long as the effects of the present invention are not impaired. In this case, as other materials used, for example, 4,4′-bis (N- (3-methylphenyl) -N-phenylamino) biphenyl (TPD), 4,4′-bis (N- (1 -Naphthyl) -N-phenylamino) biphenyl (NPD), 4,4'-bis (N, N-bis (4-biphenylyl) amino) biphenyl (TBDB), bis (N, N'-diphenyl-4-amino) Benzidine derivatives such as phenyl) -N, N-diphenyl-4,4′-diamino-1,1′-biphenyl (TPD232), 4,4 ′, 4 ″ -tris (3-methylphenyl (phenyl) amino) triphenyl Starburst aryl such as amine (m-MTDATA), 4,4 ′, 4 ″ -tris (1-naphthyl (phenyl) amino) triphenylamine (1-TNATA) A group of materials called min, biscarbazole derivatives such as bis (N-arylcarbazole) or bis (N-alkylcarbazole), pyrazoline derivatives, stilbene compounds, hydrazone compounds, benzofuran derivatives, thiophene derivatives, oxadiazole derivatives, phthalocyanines Derivatives, heterocyclic compounds such as porphyrin derivatives, in the case of polymer systems, polycarbonates and styrene derivatives, polythiophene, polyaniline, polyfluorene, polyvinylcarbazole, polysilane and the like having the above-mentioned monomer in the side chain are exemplified.
 なお、有機層に少なくとも発光層と、該発光層と前記陽極の間の複数の有機層が存在し、前記複数の有機層のうち前記発光層と接する層に一般式(1)で表されるモノアミン誘導体を含有し、前記複数の有機層のうち前記発光層と接する層以外の層に下記一般式(7)または(8)で表される化合物を有する構成も好ましい。 The organic layer includes at least a light emitting layer and a plurality of organic layers between the light emitting layer and the anode, and a layer in contact with the light emitting layer among the plurality of organic layers is represented by the general formula (1). A structure containing a monoamine derivative and having a compound represented by the following general formula (7) or (8) in a layer other than the layer in contact with the light emitting layer among the plurality of organic layers is also preferable.
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 式中、L101およびL201は置換もしくは無置換の核炭素数10~40のアリーレン基である。Ar101~Ar104はそれぞれおなじでも異なっていてもよく、置換もしくは無置換の核炭素数6~60のアリール基、又は置換もしくは無置換の核炭素数6~60のヘテロアリール基である。R401~R408はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基、置換もしくは無置換のフェナントレニル基、置換もしくは無置換のターフェニル基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基およびカルバモイル基、シリル基及び-P(=O)R1617からなる群より選ばれる。R16およびR17はアリール基またはヘテロアリール基である。またR16およびR17が縮合して環を形成していてもよい。Ar201~Ar204は、それぞれ置換もしくは無置換の核炭素数6~60のアリール基、又は置換もしくは無置換の核炭素数6~60のヘテロアリール基である。 In the formula, L 101 and L 201 are substituted or unsubstituted arylene groups having 10 to 40 nuclear carbon atoms. Ar 101 to Ar 104 may be the same as or different from each other, and are a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, or a substituted or unsubstituted heteroaryl group having 6 to 60 nuclear carbon atoms. R 401 to R 408 may be the same or different and each represents hydrogen, an alkyl group, a cycloalkyl group, an alkenyl group, a cycloalkenyl group, an alkynyl group, an alkoxy group, an alkylthio group, a substituted or unsubstituted phenyl group, a substituted or Unsubstituted naphthyl group, substituted or unsubstituted phenanthrenyl group, substituted or unsubstituted terphenyl group, halogen, carbonyl group, carboxyl group, oxycarbonyl group and carbamoyl group, silyl group and —P (═O) R 16 R Selected from the group consisting of 17 . R 16 and R 17 are an aryl group or a heteroaryl group. R 16 and R 17 may be condensed to form a ring. Ar 201 to Ar 204 are each a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, or a substituted or unsubstituted heteroaryl group having 6 to 60 nuclear carbon atoms.
 (発光層)
 発光層は単一層、複数層のどちらでもよく、それぞれ発光材料(ホスト材料、ドーパント材料)により形成され、これはホスト材料とドーパント材料との混合物であっても、ホスト材料単独であっても、2種類のホスト材料と1種類のドーパント材料との混合物であっても、いずれでもよい。すなわち、本発明の発光素子では、各発光層において、ホスト材料もしくはドーパント材料のみが発光してもよいし、ホスト材料とドーパント材料がともに発光してもよい。電気エネルギーを効率よく利用し、高色純度の発光を得るという観点からは、発光層はホスト材料とドーパント材料の混合からなることが好ましい。また、ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれでもよい。ドーパント材料は積層されていても、分散されていても、いずれでもよい。ドーパント材料は発光色の制御ができる。ドーパント材料の量は、多すぎると濃度消光現象が起きるため、ホスト材料に対して30重量%以下で用いることが好ましく、さらに好ましくは20重量%以下である。ドーピング方法は、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着してもよい。
(Light emitting layer)
The light emitting layer may be either a single layer or a plurality of layers, each formed by a light emitting material (host material, dopant material), which may be a mixture of a host material and a dopant material or a host material alone, It may be a mixture of two types of host materials and one type of dopant material. That is, in the light emitting element of the present invention, only the host material or the dopant material may emit light in each light emitting layer, or both the host material and the dopant material may emit light. From the viewpoint of efficiently using electric energy and obtaining light emission with high color purity, the light emitting layer is preferably composed of a mixture of a host material and a dopant material. Further, the host material and the dopant material may be either one kind or a plurality of combinations, respectively. The dopant material may be included in the entire host material or may be partially included. The dopant material may be laminated or dispersed. The dopant material can control the emission color. When the amount of the dopant material is too large, a concentration quenching phenomenon occurs, so that it is preferably used at 30% by weight or less, more preferably 20% by weight or less with respect to the host material. The doping method can be formed by a co-evaporation method with a host material, but may be simultaneously deposited after being previously mixed with the host material.
 発光材料は、一般式(1)で表されるモノアミン誘導体の他に、以前から発光体として知られていたアントラセンやピレンなどの縮合環誘導体、トリス(8-キノリノラート)アルミニウムを始めとする金属キレート化オキシノイド化合物、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、オキサジアゾール誘導体、チアジアゾロピリジン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、そして、ポリチオフェン誘導体などが使用できるが特に限定されるものではない。 Luminescent materials include monoamine derivatives represented by the general formula (1), metal ring chelates including fused ring derivatives such as anthracene and pyrene, tris (8-quinolinolato) aluminum, which have been known as light emitters. Oxynoid compounds, bisstyryl derivatives such as bisstyryl anthracene derivatives and distyrylbenzene derivatives, tetraphenylbutadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, oxadiazole derivatives, For thiadiazolopyridine derivatives, dibenzofuran derivatives, carbazole derivatives, indolocarbazole derivatives, polymer systems, polyphenylene vinylene derivatives, polyparaphenylene derivatives, and polythiophene derivatives Derivatives and the like can be used but are not particularly limited.
 発光材料に含有されるホスト材料は、化合物一種のみに限る必要はなく、本発明の複数の化合物を混合して用いたり、その他のホスト材料の一種類以上を混合して用いたりしてもよい。また、積層して用いてもよい。ホスト材料としては、特に限定されないが、ナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、ナフタセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデンなどの縮合アリール環を有する化合物やその誘導体、N,N’-ジナフチル-N,N’-ジフェニル-4,4’-ジフェニル-1,1’-ジアミンなどの芳香族アミン誘導体、トリス(8-キノリナート)アルミニウム(III)をはじめとする金属キレート化オキシノイド化合物、ジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、ピロロピロール誘導体、チアジアゾロピリジン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、トリアジン誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体などが使用できるが特に限定されるものではない。中でも、発光層が三重項発光(りん光発光)を行う際に用いられるホストとしては、金属キレート化オキシノイド化合物、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、トリアジン誘導体、トリフェニレン誘導体などが好適に用いられる。その中でも、アントラセン骨格やピレン骨格を有するホスト材料が、高発光効率が得られやすいことから、好ましい。 The host material contained in the light-emitting material is not limited to a single compound, and a plurality of compounds of the present invention may be mixed and used, or one or more other host materials may be mixed and used. . Further, they may be used in a stacked manner. The host material is not particularly limited, but is a compound having a condensed aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, chrysene, naphthacene, triphenylene, perylene, fluoranthene, fluorene, indene, or a derivative thereof, N, N′-dinaphthyl- Aromatic amine derivatives such as N, N′-diphenyl-4,4′-diphenyl-1,1′-diamine, metal chelated oxinoid compounds such as tris (8-quinolinato) aluminum (III), distyrylbenzene Bisstyryl derivatives such as derivatives, tetraphenylbutadiene derivatives, indene derivatives, coumarin derivatives, oxadiazole derivatives, pyrrolopyridine derivatives, perinone derivatives, cyclopentadiene derivatives, pyrrolopyrrole derivatives, thiadiazolopyridines In derivatives, dibenzofuran derivatives, carbazole derivatives, indolocarbazole derivatives, triazine derivatives, polymer systems, polyphenylene vinylene derivatives, polyparaphenylene derivatives, polyfluorene derivatives, polyvinyl carbazole derivatives, polythiophene derivatives, etc. can be used but are not particularly limited. Absent. Among them, as a host used when the light emitting layer performs triplet light emission (phosphorescence light emission), metal chelated oxinoid compounds, dibenzofuran derivatives, dibenzothiophene derivatives, carbazole derivatives, indolocarbazole derivatives, triazine derivatives, triphenylene derivatives, etc. Are preferably used. Among them, a host material having an anthracene skeleton or a pyrene skeleton is preferable because high luminous efficiency can be easily obtained.
 発光材料に含有されるドーパント材料は、特に限定されないが、ナフタレン、アントラセン、フェナンスレン、ピレン、フルオランテン、トリフェニレン、ペリレン、フルオレン、インデンなどのアリール環を有する化合物やその誘導体(例えば2-(ベンゾチアゾール-2-イル)-9,10-ジフェニルアントラセンや5,6,11,12-テトラフェニルナフタセンなど)、フラン、ピロール、チオフェン、シロール、9-シラフルオレン、9,9’-スピロビシラフルオレン、ベンゾチオフェン、ベンゾフラン、インドール、ジベンゾチオフェン、ジベンゾフラン、イミダゾピリジン、フェナントロリン、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン、チオキサンテンなどのヘテロアリール環を有する化合物やその誘導体、ジスチリルベンゼン誘導体、4,4’-ビス(2-(4-ジフェニルアミノフェニル)エテニル)ビフェニル、4,4’-ビス(N-(スチルベン-4-イル)-N-フェニルアミノ)スチルベンなどのアミノスチリル誘導体、芳香族アセチレン誘導体、テトラフェニルブタジエン誘導体、スチルベン誘導体、アルダジン誘導体、ピロメテン誘導体、ジケトピロロ[3,4-c]ピロール誘導体、2,3,5,6-1H,4H-テトラヒドロ-9-(2’-ベンゾチアゾリル)キノリジノ[9,9a,1-gh]クマリンなどのクマリン誘導体、イミダゾール、チアゾール、チアジアゾール、カルバゾール、オキサゾール、オキサジアゾール、トリアゾールなどのアゾール誘導体およびその金属錯体およびN,N’-ジフェニル-N,N’-ジ(3-メチルフェニル)-4,4’-ジフェニル-1,1’-ジアミンに代表される芳香族アミン誘導体などが挙げられる。その中でも、ジアミン骨格を含むドーパントや、フルオランテン骨格を含むドーパントを用いることで、高効率発光が得られやすいことから、好ましい。ジアミン骨格を含むドーパントは正孔トラップ性が高く、フルオランテン骨格を含むドーパントは電子トラップ性が高い。 The dopant material contained in the light-emitting material is not particularly limited, but a compound having an aryl ring such as naphthalene, anthracene, phenanthrene, pyrene, fluoranthene, triphenylene, perylene, fluorene, indene, or a derivative thereof (for example, 2- (benzothiazole- 2-yl) -9,10-diphenylanthracene and 5,6,11,12-tetraphenylnaphthacene), furan, pyrrole, thiophene, silole, 9-silafluorene, 9,9'-spirobisilafluorene, Compounds having heteroaryl rings such as benzothiophene, benzofuran, indole, dibenzothiophene, dibenzofuran, imidazopyridine, phenanthroline, pyrazine, naphthyridine, quinoxaline, pyrrolopyridine, thioxanthene and derivatives thereof , Distyrylbenzene derivatives, 4,4′-bis (2- (4-diphenylaminophenyl) ethenyl) biphenyl, 4,4′-bis (N- (stilben-4-yl) -N-phenylamino) stilbene Aminostyryl derivatives, aromatic acetylene derivatives, tetraphenylbutadiene derivatives, stilbene derivatives, aldazine derivatives, pyromethene derivatives, diketopyrrolo [3,4-c] pyrrole derivatives, 2,3,5,6-1H, 4H-tetrahydro- 9- (2′-benzothiazolyl) quinolidino [9,9a, 1-gh] coumarin derivatives such as coumarin, azole derivatives such as imidazole, thiazole, thiadiazole, carbazole, oxazole, oxadiazole, triazole and metal complexes thereof, N, N′-diphenyl-N, '- and di (3-methylphenyl) -4,4'-aromatic amine derivative typified by diphenyl 1,1'-diamine. Among them, it is preferable to use a dopant including a diamine skeleton or a dopant including a fluoranthene skeleton because high-efficiency light emission is easily obtained. A dopant containing a diamine skeleton has a high hole trapping property, and a dopant containing a fluoranthene skeleton has a high electron trapping property.
 また、発光層が三重項発光(りん光発光)を行う際に用いられるドーパントとしては、イリジウム(Ir)、ルテニウム(Ru)、パラジウム(Pd)、白金(Pt)、オスミウム(Os)、及びレニウム(Re)からなる群から選択される少なくとも一つの金属を含む金属錯体化合物であることが好ましい。配位子は、フェニルピリジン骨格またはフェニルキノリン骨格またはカルベン骨格などの含窒素芳香族複素環を有することが好ましい。しかしながら、これらに限定されるものではなく、要求される発光色、素子性能、ホスト化合物との関係から適切な錯体が選ばれる。具体的には、トリス(2-フェニルピリジル)イリジウム錯体、トリス{2-(2-チオフェニル)ピリジル}イリジウム錯体、トリス{2-(2-ベンゾチオフェニル)ピリジル}イリジウム錯体、トリス(2-フェニルベンゾチアゾール)イリジウム錯体、トリス(2-フェニルベンゾオキサゾール)イリジウム錯体、トリスベンゾキノリンイリジウム錯体、ビス(2-フェニルピリジル)(アセチルアセトナート)イリジウム錯体、ビス{2-(2-チオフェニル)ピリジル}イリジウム錯体、ビス{2-(2-ベンゾチオフェニル)ピリジル}(アセチルアセトナート)イリジウム錯体、ビス(2-フェニルベンゾチアゾール)(アセチルアセトナート)イリジウム錯体、ビス(2-フェニルベンゾオキサゾール)(アセチルアセトナート)イリジウム錯体、ビスベンゾキノリン(アセチルアセトナート)イリジウム錯体、ビス{2-(2,4-ジフルオロフェニル)ピリジル}(アセチルアセトナート)イリジウム錯体、テトラエチルポルフィリン白金錯体、{トリス(セノイルトリフルオロアセトン)モノ(1,10-フェナントロリン)}ユーロピウム錯体、{トリス(セノイルトリフルオロアセトン)モノ(4,7-ジフェニル-1,10-フェナントロリン)}ユーロピウム錯体、{トリス(1,3-ジフェニル-1,3-プロパンジオン)モノ(1,10-フェナントロリン)}ユーロピウム錯体、トリスアセチルアセトンテルビウム錯体などが挙げられる。また、特開2009-130141号に記載されているリン光ドーパントも好適に用いられる。これらに限定されるものではないが、高効率発光が得られやすいことから、イリジウム錯体または白金錯体が好ましく用いられる。 The dopant used when the light emitting layer emits triplet light (phosphorescence) includes iridium (Ir), ruthenium (Ru), palladium (Pd), platinum (Pt), osmium (Os), and rhenium. A metal complex compound containing at least one metal selected from the group consisting of (Re) is preferable. The ligand preferably has a nitrogen-containing aromatic heterocycle such as a phenylpyridine skeleton, a phenylquinoline skeleton, or a carbene skeleton. However, it is not limited to these, and an appropriate complex is selected from the relationship with the required emission color, device performance, and host compound. Specifically, tris (2-phenylpyridyl) iridium complex, tris {2- (2-thiophenyl) pyridyl} iridium complex, tris {2- (2-benzothiophenyl) pyridyl} iridium complex, tris (2-phenyl) Benzothiazole) iridium complex, tris (2-phenylbenzoxazole) iridium complex, trisbenzoquinoline iridium complex, bis (2-phenylpyridyl) (acetylacetonato) iridium complex, bis {2- (2-thiophenyl) pyridyl} iridium Complex, bis {2- (2-benzothiophenyl) pyridyl} (acetylacetonato) iridium complex, bis (2-phenylbenzothiazole) (acetylacetonato) iridium complex, bis (2-phenylbenzoxazole) (acetylacetate) Iridium complex, bisbenzoquinoline (acetylacetonato) iridium complex, bis {2- (2,4-difluorophenyl) pyridyl} (acetylacetonato) iridium complex, tetraethylporphyrin platinum complex, {tris (cenoyltrifluoro) Acetone) mono (1,10-phenanthroline)} europium complex, {tris (cenoyltrifluoroacetone) mono (4,7-diphenyl-1,10-phenanthroline)} europium complex, {tris (1,3-diphenyl-1 , 3-propanedione) mono (1,10-phenanthroline)} europium complex, trisacetylacetone terbium complex, and the like. Further, a phosphorescent dopant described in JP2009-130141A is also preferably used. Although not limited thereto, an iridium complex or a platinum complex is preferably used because high-efficiency light emission is easily obtained.
 ドーパント材料として用いられる上記三重項発光材料は、発光層中に各々一種類のみが含まれていてもよいし、二種以上を混合して用いてもよい。三重項発光材料を二種以上用いる際には、ドーパント材料の総重量がホスト材料に対して30重量%以下であることが好ましく、さらに好ましくは20重量%以下である。 The triplet light-emitting material used as the dopant material may contain only one type in the light-emitting layer, or a mixture of two or more types. When two or more triplet light emitting materials are used, the total weight of the dopant material is preferably 30% by weight or less, more preferably 20% by weight or less, based on the host material.
 また、発光層には上記ホスト材料および三重項発光材料の他に、発光層内のキャリアバランスを調整するためや発光層の層構造を安定化させるための第3成分を更に含んでいてもよい。但し、第3成分としては、一般式(1)で表されるモノアミン誘導体からなるホスト材料および三重項発光材料からなるドーパント材料との間で相互作用を起こさないような材料を選択する。 In addition to the host material and the triplet light emitting material, the light emitting layer may further include a third component for adjusting the carrier balance in the light emitting layer or stabilizing the layer structure of the light emitting layer. . However, as the third component, a material that does not cause an interaction between the host material composed of the monoamine derivative represented by the general formula (1) and the dopant material composed of the triplet light emitting material is selected.
 三重項発光系における好ましいホストおよびドーパントとしては、特に限定されるものではないが、具体的には以下のような例が挙げられる。 The preferred host and dopant in the triplet emission system are not particularly limited, but specific examples include the following.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
 (電子輸送層)
 本発明において、電子輸送層とは、陰極から電子が注入され、さらに電子を輸送する層である。電子輸送層には、電子注入効率が高く、注入された電子を効率良く輸送することが望まれる。そのため電子輸送層は、電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが要求される。特に膜厚を厚く積層する場合には、低分子量の化合物は結晶化するなどして膜質が劣化しやすいため、安定な膜質を保つ分子量400以上の化合物が好ましい。しかしながら、正孔と電子の輸送バランスを考えた場合に、電子輸送層が陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たすならば、電子輸送能力がそれ程高くない材料で構成されていても、発光効率を向上させる効果は電子輸送能力が高い材料で構成されている場合と同等となる。したがって、本発明における電子輸送層には、正孔の移動を効率よく阻止できる正孔阻止層も同義のものとして含まれる。
(Electron transport layer)
In the present invention, the electron transport layer is a layer in which electrons are injected from the cathode and further transports electrons. The electron transport layer has high electron injection efficiency, and it is desired to efficiently transport injected electrons. For this reason, the electron transport layer is required to be a substance having a high electron affinity, a high electron mobility, excellent stability, and a trapping impurity that is unlikely to be generated during manufacture and use. In particular, in the case of stacking a thick film, a compound having a molecular weight of 400 or more that maintains a stable film quality is preferable because a low molecular weight compound is likely to be crystallized to deteriorate the film quality. However, considering the transport balance between holes and electrons, if the electron transport layer mainly plays a role of effectively preventing the holes from the anode from recombining and flowing to the cathode side, the electron transport Even if it is made of a material that does not have a high capability, the effect of improving the luminous efficiency is equivalent to that of a material that has a high electron transport capability. Therefore, the electron transport layer in the present invention includes a hole blocking layer that can efficiently block the movement of holes as the same meaning.
 電子輸送層に用いられる電子輸送材料としては、ナフタレン、アントラセンなどの縮合多環芳香族誘導体、4,4’-ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香環誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、リンオキサイド誘導体、トリス(8-キノリノラート)アルミニウム(III)などのキノリノール錯体、ベンゾキノリノール錯体、ヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体およびフラボノール金属錯体などの各種金属錯体が挙げられるが、駆動電圧を低減し、高効率発光が得られることから、炭素、水素、窒素、酸素、ケイ素、リンの中から選ばれる元素で構成され、電子受容性窒素を含むヘテロアリール環構造を有する化合物を用いることが好ましい。 Examples of the electron transport material used for the electron transport layer include condensed polycyclic aromatic derivatives such as naphthalene and anthracene, styryl aromatic ring derivatives represented by 4,4′-bis (diphenylethenyl) biphenyl, anthraquinone and diphenoquinone Quinoline derivatives, phosphorus oxide derivatives, quinolinol complexes such as tris (8-quinolinolato) aluminum (III), benzoquinolinol complexes, hydroxyazole complexes, azomethine complexes, tropolone metal complexes, and flavonol metal complexes. A compound having a heteroaryl ring structure composed of an element selected from carbon, hydrogen, nitrogen, oxygen, silicon, and phosphorus and containing electron-accepting nitrogen, because driving voltage is reduced and high-efficiency light emission is obtained. Is preferably used.
 ここで言う電子受容性窒素とは、隣接原子との間に多重結合を形成している窒素原子を表す。窒素原子が高い電子陰性度を有することから、該多重結合は電子受容的な性質を有する。それゆえ、電子受容性窒素を含む芳香族複素環は、高い電子親和性を有する。電子受容性窒素を有する電子輸送材料は、高い電子親和力を有する陰極からの電子を受け取りやすくし、より低電圧駆動が可能となる。また、発光層への電子の供給が多くなり、再結合確率が高くなるので発光効率が向上する。 The electron-accepting nitrogen mentioned here represents a nitrogen atom forming a multiple bond with an adjacent atom. Since the nitrogen atom has a high electronegativity, the multiple bond has an electron accepting property. Therefore, an aromatic heterocycle containing electron-accepting nitrogen has a high electron affinity. An electron transport material having electron-accepting nitrogen makes it easier to receive electrons from a cathode having a high electron affinity, and can be driven at a lower voltage. In addition, since the number of electrons supplied to the light emitting layer is increased and the recombination probability is increased, the light emission efficiency is improved.
 電子受容性窒素を含むヘテロアリール環としては、例えば、トリアジン環、ピリジン環、ピラジン環、ピリミジン環、キノリン環、キノキサリン環、ナフチリジン環、ピリミドピリミジン環、ベンゾキノリン環、フェナントロリン環、イミダゾール環、オキサゾール環、オキサジアゾール環、トリアゾール環、チアゾール環、チアジアゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンズイミダゾール環、フェナンスロイミダゾール環などが挙げられる。 Examples of the heteroaryl ring containing an electron-accepting nitrogen include, for example, triazine ring, pyridine ring, pyrazine ring, pyrimidine ring, quinoline ring, quinoxaline ring, naphthyridine ring, pyrimidopyrimidine ring, benzoquinoline ring, phenanthroline ring, imidazole ring, Examples thereof include an oxazole ring, an oxadiazole ring, a triazole ring, a thiazole ring, a thiadiazole ring, a benzoxazole ring, a benzothiazole ring, a benzimidazole ring, and a phenanthrimidazole ring.
 これらのヘテロアリール環構造を有する化合物としては、例えば、トリアジン誘導体、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ピラジン誘導体、フェナントロリン誘導体、キノキサリン誘導体、キノリン誘導体、ベンゾキノリン誘導体、ビピリジンやターピリジンなどのオリゴピリジン誘導体、キノキサリン誘導体およびナフチリジン誘導体などが好ましい化合物として挙げられる。中でも、トリス(N-フェニルベンズイミダゾール-2-イル)ベンゼンなどのイミダゾール誘導体、1,3-ビス[(4-tert-ブチルフェニル)1,3,4-オキサジアゾリル]フェニレンなどのオキサジアゾール誘導体、N-ナフチル-2,5-ジフェニル-1,3,4-トリアゾールなどのトリアゾール誘導体、バソクプロインや1,3-ビス(1,10-フェナントロリン-9-イル)ベンゼンなどのフェナントロリン誘導体、2,2’-ビス(ベンゾ[h]キノリン-2-イル)-9,9’-スピロビフルオレンなどのベンゾキノリン誘導体、2,5-ビス(6’-(2’,2”-ビピリジル))-1,1-ジメチル-3,4-ジフェニルシロールなどのビピリジン誘導体、1,3-ビス(4’-(2,2’:6’2”-ターピリジニル))ベンゼンなどのターピリジン誘導体、ビス(1-ナフチル)-4-(1,8-ナフチリジン-2-イル)フェニルホスフィンオキサイドなどのナフチリジン誘導体が、電子輸送能の観点から好ましく用いられる。 Examples of these compounds having a heteroaryl ring structure include triazine derivatives, benzimidazole derivatives, benzoxazole derivatives, benzthiazole derivatives, oxadiazole derivatives, thiadiazole derivatives, triazole derivatives, pyrazine derivatives, phenanthroline derivatives, quinoxaline derivatives, quinoline. Preferred examples include derivatives, benzoquinoline derivatives, oligopyridine derivatives such as bipyridine and terpyridine, quinoxaline derivatives, and naphthyridine derivatives. Among them, imidazole derivatives such as tris (N-phenylbenzimidazol-2-yl) benzene, oxadiazole derivatives such as 1,3-bis [(4-tert-butylphenyl) 1,3,4-oxadiazolyl] phenylene, Triazole derivatives such as N-naphthyl-2,5-diphenyl-1,3,4-triazole, phenanthroline derivatives such as bathocuproine and 1,3-bis (1,10-phenanthroline-9-yl) benzene, 2,2 ′ A benzoquinoline derivative such as bis (benzo [h] quinolin-2-yl) -9,9′-spirobifluorene, 2,5-bis (6 ′-(2 ′, 2 ″ -bipyridyl))-1, Bipyridine derivatives such as 1-dimethyl-3,4-diphenylsilole, 1,3-bis (4 ′-(2,2 ′: 6′2 ″ -ta Terpyridine derivatives such as pyridinyl)) benzene, naphthyridine derivatives such as bis (1-naphthyl) -4- (1,8-naphthyridin-2-yl) phenylphosphine oxide are preferably used from the viewpoint of electron transporting capability.
 また、これらの誘導体が、縮合多環芳香族骨格を有していると、ガラス転移温度が向上すると共に、電子移動度も大きくなり発光素子の低電圧化の効果が大きいのでより好ましい。さらに、素子耐久寿命が向上し、合成のし易さ、原料入手が容易であることを考慮すると、縮合多環芳香族骨格はフルオランテン骨格、アントラセン骨格、ピレン骨格またはフェナントロリン骨格であることがより好ましく、フルオランテン骨格が特に好ましい。すなわち、電子輸送層にフルオランテン骨格を含有する化合物を含むことが特に好ましい。 In addition, it is more preferable that these derivatives have a condensed polycyclic aromatic skeleton because the glass transition temperature is improved, the electron mobility is increased, and the effect of lowering the voltage of the light emitting element is great. Furthermore, considering that the device durability life is improved, the ease of synthesis, and the availability of raw materials are taken into consideration, the condensed polycyclic aromatic skeleton is more preferably a fluoranthene skeleton, anthracene skeleton, pyrene skeleton or phenanthroline skeleton. A fluoranthene skeleton is particularly preferable. That is, it is particularly preferable that the electron transport layer contains a compound containing a fluoranthene skeleton.
 フルオランテン骨格を含有する化合物として、具体的には、下記一般式(9)で表されるものが好ましい。 Specifically, the compound containing a fluoranthene skeleton is preferably a compound represented by the following general formula (9).
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
 式中、Ar301はフルオランテン骨格を含む基を表す。L101およびL102は単結合、置換もしくは無置換のアリーレン基、または置換もしくは無置換のヘテロアリーレン基である。A101およびA102は、それぞれ、炭素数6~40の置換もしくは無置換のベンゼン環、炭素数6~40の置換もしくは無置換の縮合芳香族炭化水素環、炭素数1~40の置換もしくは無置換の単環芳香族複素環、または炭素数1~40の置換もしくは無置換の縮合芳香族複素環を表す。但し、A101およびA102を構成する少なくとも1つの原子は電子受容性窒素である。また、L102が置換もしくは無置換のアリーレン基で、且つ、A102が炭素数6~40の置換もしくは無置換のベンゼン環、または炭素数6~40の置換もしくは無置換の縮合芳香族炭化水素環の場合、L102とA102で環を形成していてもよい。L101、L102、A101、A102が置換されている場合の置換基は、それぞれ、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、シアノ基、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基および-P(=O)R201202からなる群より選ばれる。R201およびR202はアリール基またはヘテロアリール基である。またR201およびR202が縮合して環を形成していてもよい。但し、L101、L102が共に単結合の場合、A101およびA102が共に電子受容性窒素を2つ以上有するヘテロアリール基になることはない。また、L101もしくはL102のどちらか一方が単結合の場合、もう一方のL101もしくはL102は電子受容性窒素を2つ以上有するヘテロアリーレン基になることはない。nは1もしくは2である。nが2のとき、2つのL-N(A)(A)は同じでも異なっていてもよい。但し、ヘテロアリーレン基としてカルバゾリレン基は含まない。また、nが2で、且つ、L102が単結合の場合、L101が3環以上のアセンになることはない。 In the formula, Ar 301 represents a group containing a fluoranthene skeleton. L 101 and L 102 are a single bond, a substituted or unsubstituted arylene group, or a substituted or unsubstituted heteroarylene group. A 101 and A 102 are each a substituted or unsubstituted benzene ring having 6 to 40 carbon atoms, a substituted or unsubstituted condensed aromatic hydrocarbon ring having 6 to 40 carbon atoms, and a substituted or unsubstituted one having 1 to 40 carbon atoms. A substituted monocyclic aromatic heterocyclic ring or a substituted or unsubstituted condensed aromatic heterocyclic ring having 1 to 40 carbon atoms is represented. However, at least one atom constituting A 101 and A 102 is electron-accepting nitrogen. L 102 is a substituted or unsubstituted arylene group, and A 102 is a substituted or unsubstituted benzene ring having 6 to 40 carbon atoms, or a substituted or unsubstituted condensed aromatic hydrocarbon having 6 to 40 carbon atoms. In the case of a ring, L 102 and A 102 may form a ring. When L 101 , L 102 , A 101 , and A 102 are substituted, the substituents are alkyl group, cycloalkyl group, heterocyclic group, alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, respectively. , Aryl ether group, aryl thioether group, aryl group, heteroaryl group, halogen, cyano group, carbonyl group, carboxyl group, oxycarbonyl group, carbamoyl group and —P (═O) R 201 R 202 . R 201 and R 202 are an aryl group or a heteroaryl group. R 201 and R 202 may be condensed to form a ring. However, when both L 101 and L 102 are single bonds, A 101 and A 102 are not both heteroaryl groups having two or more electron-accepting nitrogens. When either L 101 or L 102 is a single bond, the other L 101 or L 102 does not become a heteroarylene group having two or more electron-accepting nitrogens. n is 1 or 2. When n is 2, two L 2 —N (A 1 ) (A 2 ) may be the same or different. However, a carbazolylene group is not included as a heteroarylene group. In addition, when n is 2 and L 102 is a single bond, L 101 does not become an acene having 3 or more rings.
 フルオランテン骨格を含む基とは、フルオランテン骨格を分子構造内に有する基であり、置換基を有していても有していなくてもよい。隣接する置換基で環を形成してもよく、隣接する置換基で形成された環の大きさについては特に限定されないが、分子構造の安定性の観点から5員環もしくは6員環が好ましい。また、形成される環は脂肪族環でも芳香族環でもよい。隣接する置換基で形成された環はさらに置換基を有していてもよく、もしくはさらに縮環されていてもよい。形成される環には炭素以外のヘテロ原子が含まれていてもよい。特に、炭素および水素のみで環が構成されていると電気化学的安定性が増し、素子の耐久性向上に寄与するため好ましい。フルオランテン骨格を含む基の炭素数は特に限定されないが、好ましくは、16以上40以下の範囲である。具体的には、例えば、フルオランテニル基、ベンゾフルオランテニル基、ベンゾアセアントリレニル基、ベンゾアセフェナントレニル基、インデノフルオランテニル基、アセナフトフルオランテニル基などが挙げられる。 The group containing a fluoranthene skeleton is a group having a fluoranthene skeleton in the molecular structure, and may or may not have a substituent. A ring may be formed by adjacent substituents, and the size of the ring formed by adjacent substituents is not particularly limited, but a 5-membered ring or a 6-membered ring is preferable from the viewpoint of the stability of the molecular structure. The formed ring may be an aliphatic ring or an aromatic ring. A ring formed by adjacent substituents may further have a substituent, or may be further condensed. The formed ring may contain heteroatoms other than carbon. In particular, it is preferable that the ring is composed of only carbon and hydrogen because the electrochemical stability is increased and the durability of the device is improved. The number of carbon atoms of the group containing the fluoranthene skeleton is not particularly limited, but is preferably in the range of 16 or more and 40 or less. Specific examples include a fluoranthenyl group, a benzofluoranthenyl group, a benzoaceanthrylenyl group, a benzoacephenanthrenyl group, an indenofluoranthenyl group, and an acenaphthofluoranthenyl group.
 上記一般式(9)で表されるフルオランテン誘導体のL102-N(A101)(A102)において、A101およびA102を構成する少なくとも1つの原子は電子受容性窒素である。尚、A101およびA102で表される置換基は、電子受容性窒素を含む基がNに直接結合していてもよいし、電子受容性窒素を含む基が連結基を介して置換されていてもよい。具体的には、A101がベンゼン環で、A102がピリジル基で置換されたベンゼン環であってもよい。ここで、電子受容性窒素とは、隣接原子との間に多重結合を形成している窒素原子を表す。窒素原子が高い電気陰性度を有することから、該多重結合は電子受容的な性質を有する。それゆえ、電子受容性窒素を有するL102-N(A101)(A102)は、高い電子親和性をもつ。このため、上記一般式(9)で表されるフルオランテン誘導体を電子輸送層に用い、かつ一般式(1)で表されるモノアミン誘導体を正孔輸送層に用いた場合には、発光素子のキャリアバランスの改善ができ、発光効率を大幅に向上させることができる。また、発光素子の長寿命化にも寄与する。 In L 102 -N (A 101 ) (A 102 ) of the fluoranthene derivative represented by the general formula (9), at least one atom constituting A 101 and A 102 is electron-accepting nitrogen. In the substituents represented by A 101 and A 102 , an electron-accepting nitrogen-containing group may be directly bonded to N, or the electron-accepting nitrogen-containing group is substituted via a linking group. May be. Specifically, A 101 may be a benzene ring and A 102 may be a benzene ring substituted with a pyridyl group. Here, the electron-accepting nitrogen represents a nitrogen atom that forms a multiple bond with an adjacent atom. Since the nitrogen atom has high electronegativity, the multiple bond has an electron accepting property. Therefore, L 102 -N (A 101 ) (A 102 ) having electron-accepting nitrogen has a high electron affinity. Therefore, when the fluoranthene derivative represented by the general formula (9) is used for the electron transport layer and the monoamine derivative represented by the general formula (1) is used for the hole transport layer, the carrier of the light emitting device The balance can be improved and the luminous efficiency can be greatly improved. In addition, it contributes to extending the life of the light emitting element.
 上述のヘテロアリール環構造を有する化合物の中でも、以下の一般式(10)で表される化合物が好ましい。 Among the compounds having the heteroaryl ring structure described above, compounds represented by the following general formula (10) are preferable.
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
 式中、Ar401~Ar402は、置換もしくは無置換のフェニル基、ピリジル基、ピリミジル基を表す。Ar403~Ar404は、置換もしくは無置換の核炭素数10~20のアリール基または置換もしくは無置換のカルバゾリル基を表す。X~Xは炭素原子または窒素原子を表す。ただし、X~Xの少なくとも2つは窒素原子である。L およびL は、フェニレン基またはピリジレン基を表す。p~qは、それぞれ0から2の整数を表す。Ar~Arは昇華精製時の熱安定性を考慮すると、置換もしくは無置換のフェニル基が好ましい。これらに置換する場合の置換基としては、昇華精製時の熱安定性を考慮すると、アルキル基、シアノ基、もしくはハロゲンが好ましい。Ar403~Ar404は、非晶質の薄膜形成が容易で、かつ電子移動度が向上するという観点から、ナフチル基、アントリル基、フェナントリル基、フルオレニル基、ベンゾフルオレニル基、ピレニル基、トリフェニレニル基、カルバゾリル基が好ましい。これらに置換する場合の置換基としては、昇華精製時の熱安定性を考慮すると、アルキル基、シアノ基、もしくはハロゲンが好ましい。X~Xが全て窒素原子であると、LUMO準位が深くなることで陰極からの電子注入性が改善され、高い発光効率が達成できる。さらに、発光素子において一般式(1)のモノアミン誘導体を正孔輸送層に使用することで、キャリアバランスが大幅に改善され、駆動電圧低減化、発光効率の向上、長寿命化が達成できるため好ましい。 In the formula, Ar 401 to Ar 402 each represents a substituted or unsubstituted phenyl group, pyridyl group, or pyrimidyl group. Ar 403 to Ar 404 each represents a substituted or unsubstituted aryl group having 10 to 20 nuclear carbon atoms or a substituted or unsubstituted carbazolyl group. X 1 to X 3 each represents a carbon atom or a nitrogen atom. However, at least two of X 1 to X 3 are nitrogen atoms. L p 1 and L q 2 represent a phenylene group or a pyridylene group. p to q each represents an integer of 0 to 2. Ar 1 and Ar 2 are preferably substituted or unsubstituted phenyl groups in consideration of thermal stability during sublimation purification. In view of the thermal stability during sublimation purification, an alkyl group, a cyano group, or a halogen is preferable as the substituent when substituting for these. Ar 403 to Ar 404 are naphthyl group, anthryl group, phenanthryl group, fluorenyl group, benzofluorenyl group, pyrenyl group, triphenylenyl from the viewpoint of easy formation of an amorphous thin film and improved electron mobility. Group, carbazolyl group is preferable. In view of the thermal stability during sublimation purification, an alkyl group, a cyano group, or a halogen is preferable as the substituent when substituting for these. When X 1 to X 3 are all nitrogen atoms, the LUMO level is deepened, so that the electron injectability from the cathode is improved, and high luminous efficiency can be achieved. Furthermore, the use of the monoamine derivative of the general formula (1) in the hole transport layer in the light emitting element is preferable because the carrier balance is greatly improved, and the driving voltage can be reduced, the luminous efficiency can be improved, and the lifetime can be increased. .
 L ~L は、分子量を大きくしすぎないという観点から、フェニレン基またはピリジレン基を表す。これらに置換する場合の置換基としては、昇華精製時の熱安定性を考慮して、アルキル基、シアノ基、もしくはハロゲンが好ましい。p~qは、それぞれ分子量を大きくしすぎないという観点から、0または1が好ましい。 L p 1 to L q 2 represent a phenylene group or a pyridylene group from the viewpoint of not increasing the molecular weight too much. In the case of substituting these, an alkyl group, a cyano group, or a halogen is preferable in consideration of thermal stability during sublimation purification. p to q are each preferably 0 or 1 from the viewpoint of not increasing the molecular weight too much.
 上記電子輸送材料は単独でも用いられるが、上記電子輸送材料の2種以上を混合して用いたり、その他の電子輸送材料の一種以上を上記の電子輸送材料に混合して用いたりしても構わない。 The electron transport material may be used alone, but two or more of the electron transport materials may be mixed and used, or one or more of the other electron transport materials may be mixed and used in the electron transport material. Absent.
 好ましい電子輸送材料としては、特に限定されるものではないが、具体的には以下のような例が挙げられる。 The preferred electron transport material is not particularly limited, but specific examples include the following.
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
 上記電子輸送材料は単独でも用いられるが、上記電子輸送材料の2種以上を混合して用いたり、その他の電子輸送材料の一種以上を上記の電子輸送材料に混合して用いたりしても構わない。また、ドナー性化合物を含有してもよい。ここで、ドナー性化合物とは電子注入障壁の改善により、陰極または電子注入層からの電子輸送層への電子注入を容易にし、さらに電子輸送層の電気伝導性を向上させる化合物である。 The electron transport material may be used alone, but two or more of the electron transport materials may be mixed and used, or one or more of the other electron transport materials may be mixed and used in the electron transport material. Absent. Moreover, you may contain a donor compound. Here, the donor compound is a compound that facilitates electron injection from the cathode or the electron injection layer to the electron transport layer by improving the electron injection barrier and further improves the electrical conductivity of the electron transport layer.
 ドナー性化合物の好ましい例としては、アルカリ金属、アルカリ金属を含有する無機塩、アルカリ金属と有機物との錯体、アルカリ土類金属、アルカリ土類金属を含有する無機塩またはアルカリ土類金属と有機物との錯体などが挙げられる。アルカリ金属、アルカリ土類金属の好ましい種類としては、低仕事関数で電子輸送能向上の効果が大きいリチウム、ナトリウム、カリウム、ルビジウム、セシウムといったアルカリ金属や、マグネシウム、カルシウム、セリウム、バリウムといったアルカリ土類金属が挙げられる。 Preferred examples of the donor compound include an alkali metal, an inorganic salt containing an alkali metal, a complex of an alkali metal and an organic substance, an alkaline earth metal, an inorganic salt containing an alkaline earth metal, or an alkaline earth metal and an organic substance. And the like. Preferred types of alkali metals and alkaline earth metals include alkaline metals such as lithium, sodium, potassium, rubidium, and cesium that have a large effect of improving the electron transport ability with a low work function, and alkaline earths such as magnesium, calcium, cerium, and barium. A metal is mentioned.
 また、真空中での蒸着が容易で取り扱いに優れることから、金属単体よりも無機塩、あるいは有機物との錯体の状態であることが好ましい。さらに、大気中での取扱を容易にし、添加濃度の制御のし易さの点で、有機物との錯体の状態にあることがより好ましい。無機塩の例としては、LiO、Li2O等の酸化物、窒化物、LiF、NaF、KF等のフッ化物、Li2CO3、Na2CO3、K2CO3、Rb2CO3、Cs2CO3等の炭酸塩などが挙げられる。また、アルカリ金属またはアルカリ土類金属の好ましい例としては、大きな低電圧駆動効果が得られるという観点ではリチウム、セシウムが挙げられる。また、有機物との錯体における有機物の好ましい例としては、キノリノール、ベンゾキノリノール、ピリジルフェノール、フラボノール、ヒドロキシイミダゾピリジン、ヒドロキシベンズアゾール、ヒドロキシトリアゾールなどが挙げられる。中でも、より発光素子の低電圧化の効果が大きいという観点ではアルカリ金属と有機物との錯体が好ましく、さらに合成のしやすさ、熱安定性という観点からリチウムと有機物との錯体がより好ましく、比較的安価で入手できるリチウムキノリノール(Liq)が特に好ましい。 In addition, since it is easy to deposit in vacuum and is excellent in handling, it is preferably in the form of a complex with an inorganic salt or an organic substance rather than a single metal. Furthermore, it is more preferable that it is in the state of a complex with an organic substance in terms of facilitating handling in the air and easy control of the addition concentration. Examples of inorganic salts include oxides such as LiO and Li 2 O, nitrides, fluorides such as LiF, NaF, and KF, Li 2 CO 3 , Na 2 CO 3 , K 2 CO 3 , Rb 2 CO 3 , Examples thereof include carbonates such as Cs 2 CO 3 . Further, preferred examples of the alkali metal or alkaline earth metal include lithium and cesium from the viewpoint that a large low-voltage driving effect can be obtained. In addition, preferable examples of the organic substance in the complex with the organic substance include quinolinol, benzoquinolinol, pyridylphenol, flavonol, hydroxyimidazopyridine, hydroxybenzazole, and hydroxytriazole. Among them, a complex of an alkali metal and an organic substance is preferable from the viewpoint that the effect of lowering the voltage of the light emitting device is larger, and a complex of lithium and an organic substance is more preferable from the viewpoint of ease of synthesis and thermal stability, Particularly preferred is lithium quinolinol (Liq), which is available at a low cost.
 電子輸送層のイオン化ポテンシャルは、特に限定されないが、好ましくは5.6eV以上8.0eV以下であり、より好ましくは5.6eV以上7.0eV以下である。 The ionization potential of the electron transport layer is not particularly limited, but is preferably 5.6 eV or more and 8.0 eV or less, and more preferably 5.6 eV or more and 7.0 eV or less.
 発光素子を構成する上記各層の形成方法は、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、コーティング法など特に限定されないが、通常は、素子特性の点から抵抗加熱蒸着または電子ビーム蒸着が好ましい。 The method of forming each layer constituting the light emitting element is not particularly limited, such as resistance heating vapor deposition, electron beam vapor deposition, sputtering, molecular lamination method, coating method, etc., but resistance heating vapor deposition or electron beam vapor deposition is usually used in terms of element characteristics. preferable.
 有機層の厚みは、発光物質の抵抗値にもよるので限定することはできないが、1~1000nmであることが好ましい。発光層、電子輸送層、正孔輸送層の膜厚はそれぞれ、好ましくは1nm以上200nm以下であり、さらに好ましくは5nm以上100nm以下である。 The thickness of the organic layer is not limited because it depends on the resistance value of the luminescent material, but is preferably 1 to 1000 nm. The film thicknesses of the light emitting layer, the electron transport layer, and the hole transport layer are each preferably 1 nm to 200 nm, and more preferably 5 nm to 100 nm.
 本発明の発光素子は、電気エネルギーを光に変換できる機能を有する。ここで電気エネルギーとしては主に直流電流が使用されるが、パルス電流や交流電流を用いることも可能である。電流値および電圧値は特に制限はないが、素子の消費電力や寿命を考慮すると、できるだけ低いエネルギーで最大の輝度が得られるよう選ばれるべきである。 The light emitting element of the present invention has a function of converting electrical energy into light. Here, a direct current is mainly used as the electric energy, but a pulse current or an alternating current can also be used. The current value and voltage value are not particularly limited, but should be selected so that the maximum luminance can be obtained with as low energy as possible in consideration of the power consumption and lifetime of the device.
 本発明の発光素子は、例えば、マトリクスおよび/またはセグメント方式で表示するディスプレイとして好適に用いられる。 The light-emitting element of the present invention is suitably used as a display for displaying in a matrix and / or segment system, for example.
 マトリクス方式とは、表示のための画素が格子状やモザイク状など二次元的に配置され、画素の集合で文字や画像を表示する。画素の形状やサイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法は、線順次駆動方法やアクティブマトリクスのどちらでもよい。線順次駆動はその構造が簡単であるが、動作特性を考慮した場合、アクティブマトリクスの方が優れる場合があるので、これも用途によって使い分けることが必要である。 In the matrix method, pixels for display are arranged two-dimensionally such as a lattice shape or a mosaic shape, and characters and images are displayed by a set of pixels. The shape and size of the pixel are determined by the application. For example, a square pixel with a side of 300 μm or less is usually used for displaying images and characters on a personal computer, monitor, TV, and a pixel with a side of mm order for a large display such as a display panel. become. In monochrome display, pixels of the same color may be arranged. However, in color display, red, green, and blue pixels are displayed side by side. In this case, there are typically a delta type and a stripe type. The matrix driving method may be either a line sequential driving method or an active matrix. Although the structure of the line sequential drive is simple, the active matrix may be superior in consideration of the operation characteristics, and it is necessary to use it depending on the application.
 本発明におけるセグメント方式とは、予め決められた情報を表示するようにパターンを形成し、このパターンの配置によって決められた領域を発光させる方式である。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示および自動車のパネル表示などが挙げられる。そして、前記マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。 The segment system in the present invention is a system in which a pattern is formed so as to display predetermined information and a region determined by the arrangement of the pattern is caused to emit light. For example, the time and temperature display in a digital clock or a thermometer, the operation state display of an audio device or an electromagnetic cooker, the panel display of an automobile, and the like can be mentioned. The matrix display and the segment display may coexist in the same panel.
 本発明の発光素子は、各種機器等のバックライトとしても好ましく用いられる。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。特に、液晶表示装置、中でも薄型化が検討されているパソコン用途のバックライトに本発明の発光素子は好ましく用いられ、従来のものより薄型で軽量なバックライトを提供できる。 The light-emitting element of the present invention is also preferably used as a backlight for various devices. The backlight is used mainly for the purpose of improving the visibility of a display device that does not emit light, and is used for a liquid crystal display device, a clock, an audio device, an automobile panel, a display panel, a sign, and the like. In particular, the light-emitting element of the present invention is preferably used for a backlight for a liquid crystal display device, particularly a personal computer for which a reduction in thickness is being considered, and a backlight that is thinner and lighter than conventional ones can be provided.
 以下、実施例をあげて本発明を説明するが、本発明はこれらの実施例によって限定されるものではない。なお、下記の各実施例にある化合物の番号は上記に記載した化合物の番号を指すものである。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples. In addition, the number of the compound in each following Example points out the number of the compound described above.
 合成例1
 化合物[59]の合成
 4-クロロアニリン4.13g、ブロモベンゼン-d5・11.54g、ビス(ジベンジリデンアセトン)パラジウム372mg、トリt-ブチルホスフィンテトラフルオロほう酸塩376mg、ナトリウムtert-ブトキシド8.71g、オルトキシレン162mlの混合溶液を窒素気流下、還流下で5時間加熱攪拌した。室温に冷却した後、水を加えて有機層を分液回収した。有機層を硫酸マグネシウムで乾燥後、エバポレートした。得られた濃縮物をシリカゲルカラムクロマトグラフィーにより精製し、エバポレートして得られた固体を真空乾燥した後、4-クロロ-N,N-ジ()フェニルアニリン(中間体A)7.44gを得た。
Synthesis example 1
Synthesis of Compound [59] 4.13 g of 4-chloroaniline, bromobenzene-d5 · 11.54 g, 372 mg of bis (dibenzylideneacetone) palladium, 376 mg of trit-butylphosphine tetrafluoroborate, 8.71 g of sodium tert-butoxide The mixed solution of 162 ml of orthoxylene was heated and stirred for 5 hours under reflux in a nitrogen stream. After cooling to room temperature, water was added to separate and recover the organic layer. The organic layer was dried over magnesium sulfate and evaporated. The obtained concentrate was purified by silica gel column chromatography, and the solid obtained by evaporation was vacuum-dried, and then 4-chloro-N, N-di ( 2 H 5 ) phenylaniline (intermediate A) 7. 44 g was obtained.
 次に、中間体A7.44g、N-ブロモスクシンイミド9.60g、テトラヒドロフラン178mlの混合溶液を窒素気流下、室温で4時間攪拌した。水、トルエンを加えて有機層を抽出し、回収した有機層を硫酸マグネシウムで乾燥後、エバポレートした。濃縮物にメタノールを加えてろ過し、得られた固体を真空乾燥した後、中間体B10.91gを得た。 Next, a mixed solution of Intermediate A (7.44 g), N-bromosuccinimide (9.60 g), and tetrahydrofuran (178 ml) was stirred at room temperature for 4 hours under a nitrogen stream. Water and toluene were added to extract the organic layer, and the collected organic layer was dried over magnesium sulfate and evaporated. Methanol was added to the concentrate for filtration, and the resulting solid was vacuum-dried to obtain 10.91 g of Intermediate B.
 次に、中間体B3.34g、フェニルボロン酸-d5・2.0g、ジクロロビス(とりフェニルホスフィンパラジウム)ジクロリド211mg、1.5M炭酸ナトリウム水溶液21ml、ジメトキシエタン38mlの混合溶液を窒素気流下、還流下で3時間加熱攪拌した。室温に冷却した後、水、トルエンを加えて有機層を回収し、回収した有機層を硫酸マグネシウムで乾燥後、エバポレートした。得られた濃縮物をシリカゲルカラムクロマトグラフィーにより精製し、エバポレートして得られた固体を真空乾燥した後、中間体C2.49gを得た。 Next, a mixed solution of Intermediate B 3.34 g, phenylboronic acid-d5 · 2.0 g, dichlorobis (triphenylphosphine palladium) dichloride 211 mg, 1.5 M aqueous sodium carbonate solution 21 ml, and dimethoxyethane 38 ml under a nitrogen stream under reflux. And stirred for 3 hours. After cooling to room temperature, water and toluene were added to recover the organic layer, and the recovered organic layer was dried over magnesium sulfate and evaporated. The obtained concentrate was purified by silica gel column chromatography, and the solid obtained by evaporation was vacuum-dried to obtain 2.49 g of intermediate C.
 次に、中間体C5.60g、[1,1’:3’,1’’-ターフェニル]-5’-イルボロン酸3.75g、ビス(ジベンジリデンアセトン)パラジウム429mg、トリシクロヘキシルホスフィンテトラフルオロほう酸塩550mg、1.27Mリン酸カリウム水溶液14ml、1,4-ジオキサン62mlの混合溶液を窒素気流下、還流下で3時間加熱攪拌した。室温に冷却した後、水を加えてろ過を行い、メタノールで洗浄して真空乾燥した。得られた固体をシリカゲルカラムクロマトグラフィーにより精製し、エバポレートして得られた固体を真空乾燥した後、化合物[59]4.78gを得た。 Next, Intermediate C 5.60 g, [1,1 ′: 3 ′, 1 ″ -terphenyl] -5′-ylboronic acid 3.75 g, bis (dibenzylideneacetone) palladium 429 mg, tricyclohexylphosphine tetrafluoroborate A mixed solution of 550 mg of salt, 14 ml of 1.27M potassium phosphate aqueous solution and 62 ml of 1,4-dioxane was heated and stirred for 3 hours under reflux in a nitrogen stream. After cooling to room temperature, water was added for filtration, washing with methanol and vacuum drying. The obtained solid was purified by silica gel column chromatography, and the solid obtained by evaporation was vacuum dried to obtain 4.78 g of compound [59].
 得られた粉末のH-NMR分析結果は次の通りであり、上記で得られた白色固体が化合物[59]であることが確認された。
H-NMR(CDCl(d=ppm)):7.26-7.29(m,2H),7.36-7.51(m,5H),7.61-7.79(m,10H)。
The results of 1 H-NMR analysis of the obtained powder are as follows, and it was confirmed that the white solid obtained above was Compound [59].
1 H-NMR (CDCl 3 (d = ppm)): 7.26-7.29 (m, 2H), 7.36-7.51 (m, 5H), 7.61-7.79 (m, 10H).
 なお、この化合物[59]は、油拡散ポンプを用いて1×10-3Paの圧力下、約320℃で昇華精製を行ってから発光素子材料として使用した。HPLC純度(測定波長254nmにおける面積%)は昇華精製前が99.9%、昇華精製後が99.9%であった。  This compound [59] was used as a light emitting device material after sublimation purification at about 320 ° C. under a pressure of 1 × 10 −3 Pa using an oil diffusion pump. The HPLC purity (area% at a measurement wavelength of 254 nm) was 99.9% before sublimation purification and 99.9% after sublimation purification.
 実施例1
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を、素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、正孔注入層として化合物HI-1を10nm蒸着した。正孔輸送層として、化合物[59]を50nm蒸着した。次に、発光層として、ホスト材料に化合物H-1を、ドーパント材料に化合物D-1を用い、ドーパント材料のドープ濃度が3重量%になるようにして20nmの厚さに蒸着した。次に、電子輸送層として、化合物E-1を30nmの厚さに積層した。
Example 1
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. Compound HI-1 was deposited as a hole injection layer by 10 nm by resistance heating. As a hole transport layer, Compound [59] was deposited by 50 nm. Next, as a light emitting layer, the compound H-1 was used as the host material, the compound D-1 was used as the dopant material, and the dopant material was evaporated to a thickness of 20 nm so that the doping concentration was 3 wt%. Next, Compound E-1 was laminated to a thickness of 30 nm as an electron transport layer.
 次に、リチウムキノリノールを1nm蒸着した後、マグネシウムと銀の共蒸着膜を蒸着速度比がマグネシウム:銀=10:1(=0.5nm/s:0.05nm/s)で60nm蒸着して陰極とし、5×5mm角の素子を作製した。ここで言う膜厚は、水晶発振式膜厚モニター表示値である。この発光素子を10mA/cmで直流駆動したところ、外部量子効率4.8%の青色発光が得られた。なお、外部量子効率(%)については、分光放射輝度計(CS-1000、コニカミノルタ社製)により得られた正面輝度(cd/m)、ELスペクトルから算出した値を用いた。ただし、得られたELスペクトルはランバシアン(完全拡散面)を仮定して外部量子効率を算出した。この発光素子を10mA/cmの直流で連続駆動したところ、1550時間で輝度半減した。なお化合物HI-1、H-1、D-1、ET-1は以下に示す化合物である。 Next, after depositing 1 nm of lithium quinolinol, a cathode co-deposited film of magnesium and silver was deposited at a deposition rate ratio of magnesium: silver = 10: 1 (= 0.5 nm / s: 0.05 nm / s) to 60 nm. Then, a 5 × 5 mm square element was produced. The film thickness referred to here is a crystal oscillation type film thickness monitor display value. When this light emitting device was DC-driven at 10 mA / cm 2 , blue light emission with an external quantum efficiency of 4.8% was obtained. For the external quantum efficiency (%), the front luminance (cd / m 2 ) obtained from a spectral radiance meter (CS-1000, manufactured by Konica Minolta), and a value calculated from an EL spectrum were used. However, for the obtained EL spectrum, the external quantum efficiency was calculated on the assumption of Lambasian (complete diffusion surface). When this light emitting device was continuously driven with a direct current of 10 mA / cm 2 , the luminance was reduced by half in 1550 hours. Compounds HI-1, H-1, D-1, and ET-1 are the compounds shown below.
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 実施例2~8、比較例1~8
 正孔輸送層として表1に記載した材料を用いたこと以外は実施例1と同様にして発光素子を作製した。各実施例および比較例の結果を表1に示す。なお、HT-1~HT-8は以下に示す化合物である。
Examples 2-8, Comparative Examples 1-8
A light emitting device was produced in the same manner as in Example 1 except that the materials described in Table 1 were used as the hole transport layer. The results of each example and comparative example are shown in Table 1. HT-1 to HT-8 are the compounds shown below.
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 実施例9~16
 正孔輸送層、発光層および電子輸送層を表1に記載した材料を用いたこと以外は実施例1と同様にして発光素子を作製した。各実施例の結果を表1に示す。なお、H-2、D-2、ET-2は以下に示す化合物である。
Examples 9 to 16
A light emitting device was produced in the same manner as in Example 1 except that the materials described in Table 1 were used for the hole transport layer, the light emitting layer, and the electron transport layer. The results of each example are shown in Table 1. H-2, D-2 and ET-2 are the compounds shown below.
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
 実施例17
 ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を、素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、正孔注入層として化合物HI-1を10nm蒸着した。次に、第一正孔輸送層として、HT-1を40nm蒸着した。次に、第二正孔輸送層として、化合物[59]を10nm蒸着した。次に、発光層として、ホスト材料に化合物H-1を、ドーパント材料に化合物D-1を用い、ドーパント材料のドープ濃度が3重量%になるようにして20nmの厚さに蒸着した。次に、電子輸送層として、化合物ET-1を30nmの厚さに積層した。
Example 17
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which ITO transparent conductive film was deposited at 165 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. Compound HI-1 was deposited as a hole injection layer by 10 nm by resistance heating. Next, 40 nm of HT-1 was deposited as a first hole transport layer. Next, the compound [59] was deposited by 10 nm as a second hole transport layer. Next, as a light emitting layer, the compound H-1 was used as the host material, the compound D-1 was used as the dopant material, and the dopant material was evaporated to a thickness of 20 nm so that the doping concentration was 3 wt%. Next, Compound ET-1 was laminated to a thickness of 30 nm as an electron transport layer.
 次に、リチウムキノリノールを1nm蒸着した後、マグネシウムと銀の共蒸着膜を蒸着速度比がマグネシウム:銀=10:1(=0.5nm/s:0.05nm/s)で60nm蒸着して陰極とし、5×5mm角の素子を作製した。ここで言う膜厚は、水晶発振式膜厚モニター表示値である。この発光素子を10mA/cmで直流駆動したところ、外部量子効率4.9%の青色発光が得られた。この発光素子を10mA/cmの直流で連続駆動したところ、1570時間で輝度半減した。 Next, after depositing 1 nm of lithium quinolinol, a cathode co-deposited film of magnesium and silver was deposited at a deposition rate ratio of magnesium: silver = 10: 1 (= 0.5 nm / s: 0.05 nm / s) to 60 nm. Then, a 5 × 5 mm square element was produced. The film thickness referred to here is a crystal oscillation type film thickness monitor display value. When this light emitting device was DC-driven at 10 mA / cm 2 , blue light emission with an external quantum efficiency of 4.9% was obtained. When this light emitting device was continuously driven with a direct current of 10 mA / cm 2 , the luminance was reduced by half in 1570 hours.
 実施例18~40、比較例9~16
 第一正孔輸送層、第二正孔輸送層として表2に記載した材料を用いたこと以外は実施例17と同様にして発光素子を作製した。各実施例の結果を表2に示す。
Examples 18 to 40, Comparative Examples 9 to 16
A light emitting device was produced in the same manner as in Example 17 except that the materials described in Table 2 were used as the first hole transport layer and the second hole transport layer. The results of each example are shown in Table 2.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
 実施例41
 ITO透明導電膜を90nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を、素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、正孔注入層として化合物HI-1を10nm蒸着した。次に、第一正孔輸送層として、HT-1を110nm蒸着した。次に、第二正孔輸送層として、化合物[59]を20nm蒸着した。次に、発光層として、ホスト材料に化合物H-2を、ドーパント材料に化合物D-2を用い、ドーパント材料のドープ濃度が10重量%になるようにして40nmの厚さに蒸着した。次に、電子輸送層として、化合物E-1を20nmの厚さに積層した。
Example 41
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which an ITO transparent conductive film was deposited by 90 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. Compound HI-1 was deposited as a hole injection layer by 10 nm by resistance heating. Next, HT-1 was deposited to 110 nm as the first hole transport layer. Next, 20 nm of compound [59] was vapor-deposited as a 2nd positive hole transport layer. Next, as a light emitting layer, the compound H-2 was used as the host material, the compound D-2 was used as the dopant material, and vapor deposition was performed to a thickness of 40 nm so that the dopant concentration was 10 wt%. Next, Compound E-1 was laminated to a thickness of 20 nm as an electron transport layer.
 次に、リチウムキノリノールを1nm蒸着した後、マグネシウムと銀の共蒸着膜を蒸着速度比がマグネシウム:銀=10:1(=0.5nm/s:0.05nm/s)で60nm蒸着して陰極とし、5×5mm角の素子を作製した。ここで言う膜厚は、水晶発振式膜厚モニター表示値である。この発光素子を10mA/cmで直流駆動したところ、発光効率46.5lm/Wの緑色発光が得られた。なお、発効効率(lm/W)については分光放射輝度計(CS-1000、コニカミノルタ社製)の測定により得られる正面輝度(cd/cm)と、素子に投入した電力密度(W/cm)および放射角(sr,ステラジアン)から算出した。この発光素子を10mA/cmの直流で連続駆動したところ、5450時間で輝度半減した。なお、H-3、D-3は以下に示す化合物である。 Next, after depositing 1 nm of lithium quinolinol, a cathode co-deposited film of magnesium and silver was deposited at a deposition rate ratio of magnesium: silver = 10: 1 (= 0.5 nm / s: 0.05 nm / s) to 60 nm. Then, a 5 × 5 mm square element was produced. The film thickness referred to here is a crystal oscillation type film thickness monitor display value. When this light emitting device was DC-driven at 10 mA / cm 2 , green light emission with a luminous efficiency of 46.5 lm / W was obtained. The effective efficiency (lm / W) is the front luminance (cd / cm 2 ) obtained by measurement with a spectral radiance meter (CS-1000, manufactured by Konica Minolta), and the power density (W / cm 2 ) input to the device. 2 ) and the radiation angle (sr, steradian). When this light emitting device was continuously driven with a direct current of 10 mA / cm 2 , the luminance was reduced by half in 5450 hours. H-3 and D-3 are the compounds shown below.
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 実施例42~48、比較例17~24
 正孔輸送層として表3に記載した材料を用いたこと以外は実施例41と同様にして発光素子を作製し、評価した。結果を表3に示す。
Examples 42 to 48, Comparative Examples 17 to 24
A light emitting device was prepared and evaluated in the same manner as in Example 41 except that the materials described in Table 3 were used as the hole transport layer. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000045
Figure JPOXMLDOC01-appb-T000045
 実施例49
 ITO透明導電膜を90nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を、素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、正孔注入層として化合物HI-1を10nm蒸着した。次に、第一正孔輸送層として、HT-1を110nm蒸着した。次に、第二正孔輸送層として、化合物[59]を20nm蒸着した。次に、発光層として、ホスト材料に化合物H-3を、ドーパント材料に化合物D-3を用い、ドーパント材料のドープ濃度が10重量%になるようにして40nmの厚さに蒸着した。次に、電子輸送層として、化合物ET-1を20nmの厚さに積層した。
Example 49
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which an ITO transparent conductive film was deposited by 90 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. Compound HI-1 was deposited as a hole injection layer by 10 nm by resistance heating. Next, HT-1 was deposited to 110 nm as the first hole transport layer. Next, 20 nm of compound [59] was vapor-deposited as a 2nd positive hole transport layer. Next, as a light-emitting layer, Compound H-3 was used as the host material, Compound D-3 was used as the dopant material, and the dopant material was deposited to a thickness of 40 nm so that the doping concentration was 10 wt%. Next, Compound ET-1 was laminated to a thickness of 20 nm as an electron transport layer.
 次に、リチウムキノリノールを1nm蒸着した後、マグネシウムと銀の共蒸着膜を蒸着速度比がマグネシウム:銀=10:1(=0.5nm/s:0.05nm/s)で60nm蒸着して陰極とし、5×5mm角の素子を作製した。ここで言う膜厚は、水晶発振式膜厚モニター表示値である。この発光素子を10mA/cmで直流駆動したところ、発光効率8.8lm/Wの赤色発光が得られた。この発光素子を10mA/cmの直流で連続駆動したところ、1480時間で輝度半減した。なお、H-4、D-4は以下に示す化合物である。 Next, after depositing 1 nm of lithium quinolinol, a cathode co-deposited film of magnesium and silver was deposited at a deposition rate ratio of magnesium: silver = 10: 1 (= 0.5 nm / s: 0.05 nm / s) to 60 nm. Then, a 5 × 5 mm square element was produced. The film thickness referred to here is a crystal oscillation type film thickness monitor display value. When this light emitting device was DC-driven at 10 mA / cm 2 , red light emission with a light emission efficiency of 8.8 lm / W was obtained. When this light emitting device was continuously driven with a direct current of 10 mA / cm 2 , the luminance was reduced by half in 1480 hours. H-4 and D-4 are the compounds shown below.
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 実施例50~56、比較例25~32
 第二正孔輸送層として表4に記載した材料を用いたこと以外は実施例49と同様に発光素子を作製し、評価した。結果を表4に示す。
Examples 50 to 56, Comparative Examples 25 to 32
A light emitting device was prepared and evaluated in the same manner as in Example 49 except that the materials described in Table 4 were used as the second hole transport layer. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000047
Figure JPOXMLDOC01-appb-T000047
 実施例57
 ITO透明導電膜を50nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を、素子を作製する直前に1時間UV-オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10-4Pa以下になるまで排気した。抵抗加熱法によって、正孔注入層として化合物HT-8と化合物HI-2を用い、化合物HT-9に対して化合物HI-2のドープ濃度が5重量%になるようにして10nm蒸着した。次に、第一正孔輸送層として、HT-8を80nm蒸着した。次に、第二正孔輸送層として、化合物[59]を10nm蒸着した。次に、発光層として、ホスト材料に化合物H-1を、ドーパント材料に化合物D-1を用い、ドーパント材料のドープ濃度が3重量%になるようにして20nmの厚さに蒸着した。次に、電子輸送層として、ET-2とリチウムキノリノールを蒸着速度比1:1で混合した層を30nm蒸着した。
Example 57
A glass substrate (manufactured by Geomat Co., Ltd., 11Ω / □, sputtered product) on which an ITO transparent conductive film was deposited to 50 nm was cut into 38 × 46 mm and etched. The obtained substrate was ultrasonically cleaned with “Semico Clean 56” (trade name, manufactured by Furuuchi Chemical Co., Ltd.) for 15 minutes and then with ultrapure water. This substrate was subjected to UV-ozone treatment for 1 hour immediately before producing the device, placed in a vacuum deposition apparatus, and evacuated until the degree of vacuum in the apparatus became 5 × 10 −4 Pa or less. Using a resistance heating method, Compound HT-8 and Compound HI-2 were used as the hole injection layer, and 10 nm was deposited so that the doping concentration of Compound HI-2 was 5 wt% with respect to Compound HT-9. Next, 80 nm of HT-8 was deposited as a first hole transport layer. Next, the compound [59] was deposited by 10 nm as a second hole transport layer. Next, as a light emitting layer, the compound H-1 was used as the host material, the compound D-1 was used as the dopant material, and the dopant material was evaporated to a thickness of 20 nm so that the doping concentration was 3 wt%. Next, as an electron transport layer, a layer in which ET-2 and lithium quinolinol were mixed at a deposition rate ratio of 1: 1 was deposited by 30 nm.
 次に、リチウムキノリノールを1nm蒸着した後、マグネシウムと銀の共蒸着膜を蒸着速度比がマグネシウム:銀=10:1(=0.5nm/s:0.05nm/s)で60nm蒸着して陰極とし、5×5mm角の素子を作製した。ここで言う膜厚は、水晶発振式膜厚モニター表示値である。この発光素子を10mA/cmで直流駆動したところ、外部量子効率5.1%の青色発光が得られた。この発光素子を10mA/cmの直流で連続駆動したところ、1670時間で輝度半減した。なお、HI-2、HT-8、ET-3は以下に示す化合物である。 Next, after depositing 1 nm of lithium quinolinol, a co-deposited film of magnesium and silver was deposited at a deposition rate ratio of magnesium: silver = 10: 1 (= 0.5 nm / s: 0.05 nm / s) to 60 nm to form a cathode. Then, a 5 × 5 mm square element was produced. The film thickness referred to here is a crystal oscillation type film thickness monitor display value. When this light emitting device was DC-driven at 10 mA / cm 2 , blue light emission with an external quantum efficiency of 5.1% was obtained. When this light emitting device was continuously driven with a direct current of 10 mA / cm 2 , the luminance was reduced by half in 1670 hours. HI-2, HT-8, and ET-3 are the compounds shown below.
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 実施例58~72、比較例33~40
 第二正孔輸送層として表5に記載した材料を用いたこと以外は実施例57と同様に発光素子を作製し、評価した。結果を表5に示す。なお、ET-4、ET-5は以下に示す化合物である。
Examples 58 to 72, Comparative Examples 33 to 40
A light emitting device was produced and evaluated in the same manner as in Example 57 except that the materials described in Table 5 were used as the second hole transport layer. The results are shown in Table 5. ET-4 and ET-5 are the compounds shown below.
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000050

Claims (18)

  1. 下記一般式(1)で表されるモノアミン誘導体。
    Figure JPOXMLDOC01-appb-C000001
    (式中、L~Lは単結合、または置換もしくは無置換の核炭素数6~12のアリーレン基である。R~Rのうち、少なくとも一つは置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基、置換もしくは無置換のフルオレニル基、置換もしくは無置換のフェナントレニル基、または置換もしくは無置換のターフェニル基から選ばれ、それ以外は全て重水素である。AおよびAはそれぞれ同じでも異なっていてもよく、置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基、置換もしくは無置換のフルオレニル基、置換もしくは無置換のフェナントレニル基、または置換もしくは無置換のターフェニル基から選ばれる。)
    A monoamine derivative represented by the following general formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (Wherein L 1 to L 2 are a single bond or a substituted or unsubstituted arylene group having 6 to 12 nuclear carbon atoms. At least one of R 1 to R 5 is a substituted or unsubstituted phenyl group. , substituted or unsubstituted naphthyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted phenanthrenyl group, or selected from a substituted or unsubstituted terphenyl group,, .A 1 and the others are all deuterium A 2 may be the same or different and each represents a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted phenanthrenyl group, or a substituted or unsubstituted group Selected from terphenyl groups.)
  2. 前記一般式(1)が下記一般式(2)で表される請求項1に記載のモノアミン誘導体。
    Figure JPOXMLDOC01-appb-C000002
    (式中、LおよびAは一般式(1)におけるものと同様である。R~R10のうち、少なくとも1つは置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基、置換もしくは無置換のフルオレニル基、置換もしくは無置換のフェナントレニル基、または置換もしくは無置換のターフェニル基から選ばれ、それ以外は全て重水素である。)
    The monoamine derivative according to claim 1, wherein the general formula (1) is represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002
    (Wherein L 1 and A 1 are the same as those in formula (1). At least one of R 1 to R 10 is a substituted or unsubstituted phenyl group, a substituted or unsubstituted naphthyl group, It is selected from a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted phenanthrenyl group, or a substituted or unsubstituted terphenyl group, and everything else is deuterium.)
  3. 前記一般式(1)において、AおよびAがそれぞれ同じでも異なっていてもよく、置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基、置換もしくは無置換のフルオレニル基、置換もしくは無置換のフェナントレニル基、または置換もしくは無置換のターフェニル基から選ばれ、AおよびAが置換されている場合の置換基がアルキル基またはハロゲンである請求項1に記載のモノアミン誘導体。 In the general formula (1), A 1 and A 2 may be the same or different from each other, and are substituted or unsubstituted phenyl group, substituted or unsubstituted naphthyl group, substituted or unsubstituted fluorenyl group, substituted or unsubstituted The monoamine derivative according to claim 1, wherein the monoamine derivative is selected from a substituted phenanthrenyl group or a substituted or unsubstituted terphenyl group, and when A 1 and A 2 are substituted, the substituent is an alkyl group or a halogen.
  4. 前記一般式(2)が下記一般式(3)で表される請求項2に記載のモノアミン誘導体。
    Figure JPOXMLDOC01-appb-C000003
    (式中、LおよびAは一般式(1)におけるものと同様である。ArおよびArはそれぞれ同じでも異なっていてもよく、置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基、置換もしくは無置換のフルオレニル基、置換もしくは無置換のフェナントレニル基、または置換もしくは無置換のターフェニル基から選ばれる。)
    The monoamine derivative according to claim 2, wherein the general formula (2) is represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, L 1 and A 1 are the same as those in the general formula (1). Ar 1 and Ar 2 may be the same or different, and each may be a substituted or unsubstituted phenyl group, a substituted or unsubstituted group; (Selected from a naphthyl group, a substituted or unsubstituted fluorenyl group, a substituted or unsubstituted phenanthrenyl group, or a substituted or unsubstituted terphenyl group.)
  5. 前記一般式(3)が、下記一般式(4)で表される請求項3記載のモノアミン誘導体。
    Figure JPOXMLDOC01-appb-C000004
    (式中、LおよびAは一般式(1)におけるものと同様である。R101~R110はそれぞれ同じでも異なっていてもよく、水素、重水素、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基、置換もしくは無置換のフェナントレニル基、置換もしくは無置換のターフェニル基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基、シリル基及び-P(=O)R111112からなる群より選ばれる。R111およびR112はアリール基またはヘテロアリール基である。またR111およびR112が縮合して環を形成していてもよい。)
    The monoamine derivative according to claim 3, wherein the general formula (3) is represented by the following general formula (4).
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, L 1 and A 1 are the same as those in the general formula (1). R 101 to R 110 may be the same as or different from each other, and may be hydrogen, deuterium, an alkyl group, a cycloalkyl group, or an alkenyl. Group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, substituted or unsubstituted phenyl group, substituted or unsubstituted naphthyl group, substituted or unsubstituted phenanthrenyl group, substituted or unsubstituted terphenyl group, halogen, The group is selected from the group consisting of a carbonyl group, a carboxyl group, an oxycarbonyl group, a carbamoyl group, a silyl group, and —P (═O) R 111 R 112. R 111 and R 112 are an aryl group or a heteroaryl group. 111 and R 112 may be condensed to form a ring.)
  6. 前記一般式(4)が、下記一般式(5)で表される請求項4記載のモノアミン誘導体。
    Figure JPOXMLDOC01-appb-C000005
    (式中、LおよびAは一般式(1)におけるものと同様である。R103およびR108は一般式(4)におけるものと同様であり、それぞれ同じでも異なっていてもよい。aおよびbはそれぞれ0~4であり、aおよびbが0~3のとき、重水素以外の部分は水素である。)
    The monoamine derivative according to claim 4, wherein the general formula (4) is represented by the following general formula (5).
    Figure JPOXMLDOC01-appb-C000005
    (In the formula, L 1 and A 1 are the same as those in the general formula (1). R 103 and R 108 are the same as those in the general formula (4), and may be the same or different from each other. And b are each 0 to 4, and when a and b are 0 to 3, the portion other than deuterium is hydrogen.)
  7. 前記一般式(5)が、下記一般式(6)で表される請求項5記載のモノアミン誘導体。
    Figure JPOXMLDOC01-appb-C000006
    (式中、LおよびAは一般式(1)におけるものと同様である。R103およびR108は一般式(4)におけるものと同様であり、それぞれ同じでも異なっていてもよい。)
    The monoamine derivative according to claim 5, wherein the general formula (5) is represented by the following general formula (6).
    Figure JPOXMLDOC01-appb-C000006
    (In the formula, L 1 and A 1 are the same as those in general formula (1). R 103 and R 108 are the same as those in general formula (4) and may be the same or different.)
  8. 陽極と陰極の間に有機層が存在し、電気エネルギーにより発光する発光素子であって、前記陽極と陰極の間のいずれかの層に請求項1~6のいずれか記載のモノアミン誘導体を含有することを特徴とする発光素子。 7. A light-emitting element in which an organic layer exists between an anode and a cathode and emits light by electric energy, and the monoamine derivative according to claim 1 is contained in any layer between the anode and the cathode. A light emitting element characterized by the above.
  9. 前記有機層に少なくとも正孔輸送層が存在し、前記正孔輸送層に請求項1~6のいずれか記載のモノアミン誘導体を含有する請求項7記載の発光素子。 The light-emitting element according to claim 7, wherein at least a hole transport layer is present in the organic layer, and the monoamine derivative according to any one of claims 1 to 6 is contained in the hole transport layer.
  10. 前記有機層に少なくとも発光層が存在し、前記発光層にアントラセンまたはピレン骨格を有するホスト材料を含む請求項7または8記載の発光素子。 The light-emitting element according to claim 7 or 8, wherein at least a light-emitting layer is present in the organic layer, and the light-emitting layer includes a host material having an anthracene or pyrene skeleton.
  11. 前記発光層にジアミン骨格またはフルオランテン骨格を含むドーパントを含む請求項9記載の発光素子。 The light emitting element of Claim 9 containing the dopant containing a diamine skeleton or a fluoranthene skeleton in the said light emitting layer.
  12. 前記有機層に少なくとも発光層と、該発光層と前記陽極の間の複数の有機層が存在し、前記複数の有機層のうち前記発光層と接する層に請求項1~6のいずれか記載のモノアミン誘導体を含有し、前記複数の有機層のうち前記発光層と接する層以外の層に下記一般式(7)または(8)で表される化合物を有する請求項7~10のいずれか記載の発光素子。
    Figure JPOXMLDOC01-appb-C000007
    (式中、L101およびL201は置換もしくは無置換の核炭素数10~40のアリーレン基である。Ar101~Ar104はそれぞれおなじでも異なっていてもよく、置換もしくは無置換の核炭素数6~60のアリール基、又は置換もしくは無置換の核炭素数6~60のヘテロアリール基である。R401~R408はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、置換もしくは無置換のフェニル基、置換もしくは無置換のナフチル基、置換もしくは無置換のフェナントレニル基、置換もしくは無置換のターフェニル基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基およびカルバモイル基、シリル基及び-P(=O)R1617からなる群より選ばれる。R16およびR17はアリール基またはヘテロアリール基である。またR16およびR17が縮合して環を形成していてもよい。Ar201~Ar204は、それぞれ置換もしくは無置換の核炭素数6~60のアリール基、又は置換もしくは無置換の核炭素数6~60のヘテロアリール基である。)
    7. The organic layer according to claim 1, wherein the organic layer includes at least a light emitting layer and a plurality of organic layers between the light emitting layer and the anode, and a layer in contact with the light emitting layer among the plurality of organic layers. The monoamine derivative is contained, and the compound represented by the following general formula (7) or (8) is included in a layer other than the layer in contact with the light emitting layer among the plurality of organic layers. Light emitting element.
    Figure JPOXMLDOC01-appb-C000007
    (In the formula, L 101 and L 201 are substituted or unsubstituted arylene groups having 10 to 40 nuclear carbon atoms. Ar 101 to Ar 104 may be the same as or different from each other, and substituted or unsubstituted nuclear carbon numbers are the same. An aryl group having 6 to 60, or a substituted or unsubstituted heteroaryl group having 6 to 60 nuclear carbon atoms, R 401 to R 408 may be the same or different from each other, and may be hydrogen, an alkyl group, a cycloalkyl group, Alkenyl group, cycloalkenyl group, alkynyl group, alkoxy group, alkylthio group, substituted or unsubstituted phenyl group, substituted or unsubstituted naphthyl group, substituted or unsubstituted phenanthrenyl group, substituted or unsubstituted terphenyl group, halogen Carbonyl group, carboxyl group, oxycarbonyl group and carbamoyl group, .R 16 and R 17 is selected from the group consisting of Lil group and -P (= O) R 16 R 17 is an aryl or heteroaryl group. Also have engaged R 16 and R 17 are condensed to form a ring Ar 201 to Ar 204 are each a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, or a substituted or unsubstituted heteroaryl group having 6 to 60 nuclear carbon atoms.)
  13. 前記一般式(8)のAr201~Ar202の少なくとも一つが置換又は無置換のジメチルフルオレニル基である請求項11記載の発光素子。 12. The light emitting device according to claim 11, wherein at least one of Ar 201 to Ar 202 in the general formula (8) is a substituted or unsubstituted dimethylfluorenyl group.
  14. 陽極と陰極の間に少なくとも正孔輸送層および発光層が存在し、電気エネルギーにより発光する素子であって、正孔輸送層に請求項1~6のいずれか記載のモノアミン誘導体を含有し、発光層に三重項発光材料を含有することを特徴とする発光素子。 An element that has at least a hole transport layer and a light-emitting layer between an anode and a cathode and emits light by electric energy, wherein the hole transport layer contains the monoamine derivative according to any one of claims 1 to 6, and emits light. A light-emitting element including a triplet light-emitting material in a layer.
  15. 前記正孔輸送層と陽極との間に正孔注入層が存在し、正孔注入層がアクセプター性化合物を含有する請求項7~13のいずれか記載の発光素子。 14. The light emitting device according to claim 7, wherein a hole injection layer exists between the hole transport layer and the anode, and the hole injection layer contains an acceptor compound.
  16. 発光層と陰極との間に少なくとも電子輸送層が存在し、電子輸送層が電子受容性窒素を含み、さらに炭素、水素、窒素、酸素、ケイ素、リンの中から選ばれる元素で構成されるヘテロアリール環構造を有する化合物を特徴とする請求項7~14のいずれか記載の発光素子。 There is at least an electron transport layer between the light-emitting layer and the cathode, the electron transport layer contains electron-accepting nitrogen, and is further composed of an element selected from carbon, hydrogen, nitrogen, oxygen, silicon, and phosphorus. 15. The light emitting device according to claim 7, wherein the light emitting device is a compound having an aryl ring structure.
  17. 前記電子輸送層が下記一般式(10)で表される請求項8~16のいずれか記載の発光素子。
    Figure JPOXMLDOC01-appb-C000008
    (式中、Ar~Arは、置換もしくは無置換のフェニル基、ピリジル基、ピリミジル基を表す。Ar~Arは、置換もしくは無置換の核炭素数10~20のアリール基または置換もしくは無置換のカルバゾリル基を表す。X~Xは炭素原子または窒素原子を表す。ただし、X~Xの少なくとも2つは窒素原子である。L およびL は、フェニレン基またはピリジレン基を表す。p~qは、それぞれ0から2の整数を表す。)
    The light emitting device according to any one of claims 8 to 16, wherein the electron transport layer is represented by the following general formula (10).
    Figure JPOXMLDOC01-appb-C000008
    (In the formula, Ar 1 to Ar 2 represent a substituted or unsubstituted phenyl group, pyridyl group, or pyrimidyl group. Ar 3 to Ar 4 represent a substituted or unsubstituted aryl group having 10 to 20 nuclear carbon atoms or a substituted group. Or an unsubstituted carbazolyl group, wherein X 1 to X 3 each represents a carbon atom or a nitrogen atom, provided that at least two of X 1 to X 3 are nitrogen atoms, L p 1 and L q 2 represent phenylene Represents a group or a pyridylene group, and p to q each represents an integer of 0 to 2.)
  18. 前記電子輸送層にフルオランテン骨格を含有する化合物を含む請求項8~16のいずれか記載の発光素子。 The light emitting device according to any one of claims 8 to 16, wherein the electron transport layer contains a compound containing a fluoranthene skeleton.
PCT/JP2015/068780 2014-07-16 2015-06-30 Monoamine derivative, luminescent element material comprising same, and luminescent element WO2016009823A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015533367A JPWO2016009823A1 (en) 2014-07-16 2015-06-30 Monoamine derivative, light emitting device material and light emitting device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014145642 2014-07-16
JP2014-145642 2014-07-16

Publications (1)

Publication Number Publication Date
WO2016009823A1 true WO2016009823A1 (en) 2016-01-21

Family

ID=55078321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068780 WO2016009823A1 (en) 2014-07-16 2015-06-30 Monoamine derivative, luminescent element material comprising same, and luminescent element

Country Status (2)

Country Link
JP (1) JPWO2016009823A1 (en)
WO (1) WO2016009823A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10435350B2 (en) 2014-09-19 2019-10-08 Idemitsu Kosan Co., Ltd. Organic electroluminecence device
USRE47654E1 (en) 2010-01-15 2019-10-22 Idemitsu Koasn Co., Ltd. Organic electroluminescence device
WO2020004235A1 (en) 2018-06-25 2020-01-02 保土谷化学工業株式会社 Compound having triarylamine structure and electroluminescence device
KR20200040762A (en) 2017-08-28 2020-04-20 도레이 카부시키가이샤 Compound, light-emitting element using it, display device and lighting device
US11145819B2 (en) 2016-03-30 2021-10-12 Samsung Display Co., Ltd. Organic light emitting device
WO2021206477A1 (en) * 2020-04-10 2021-10-14 덕산네오룩스 주식회사 Compound for organic electric element, organic electric element using same, and electronic device thereof
WO2021206478A1 (en) * 2020-04-10 2021-10-14 덕산네오룩스 주식회사 Compound for organic electrical element, organic electrical element using same, and electronic device comprising same
US11258031B2 (en) 2017-12-11 2022-02-22 Lg Chem, Ltd. Organic light-emitting device and manufacturing method therefor
WO2022230963A1 (en) * 2021-04-28 2022-11-03 出光興産株式会社 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic appliance
US11678569B2 (en) 2020-03-31 2023-06-13 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
KR20230118092A (en) 2020-12-09 2023-08-10 이데미쓰 고산 가부시키가이샤 Organic electroluminescent devices and electronic devices
US11730054B2 (en) 2018-01-29 2023-08-15 Idemitsu Kosan Co., Ltd. Compound having dibenzofuran and naphthalene structures, and organic electroluminescent element using same
TWI841572B (en) 2018-06-25 2024-05-11 日商保土谷化學工業股份有限公司 Compound having triarylamine structure and organic electroluminescent element

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043058A (en) * 2000-07-25 2002-02-08 Nec Corp Organic electroluminescene element
JP2008540517A (en) * 2005-05-07 2008-11-20 ドゥサン コーポレーション Novel deuterated arylamine compound, preparation method thereof and organic light-emitting diode using the same
WO2010068000A2 (en) * 2008-12-08 2010-06-17 주식회사 두산 Aryl amine derivatives and organic electroluminescent device using the same
JP2011501463A (en) * 2007-10-26 2011-01-06 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー OLED device having fluoranthene electron transport material
JP2011160003A (en) * 2004-11-12 2011-08-18 Samsung Mobile Display Co Ltd Organic electroluminescence element
WO2012001969A1 (en) * 2010-06-30 2012-01-05 出光興産株式会社 Aromatic amine derivative, and organic electroluminescent element comprising same
JP2012513688A (en) * 2008-12-22 2012-06-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Long-life electronic devices
KR101165698B1 (en) * 2011-06-14 2012-07-18 덕산하이메탈(주) Organic electronic element comprising a new compound, and a new compound and a composition for organic electronic element
JP2012522781A (en) * 2009-04-03 2012-09-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Electroactive materials
WO2012177006A2 (en) * 2011-06-22 2012-12-27 덕산하이메탈(주) Compound for organic electronics, organic electronics using same, and electronic device for same
WO2013002514A2 (en) * 2011-06-29 2013-01-03 덕산하이메탈(주) Organic electroluminescence device using diarylamine derivatives, and novel compound and composition for organic electroluminescence device
KR20130096334A (en) * 2011-06-24 2013-08-30 덕산하이메탈(주) Organic electronic element, and a compound for the same
KR20130101726A (en) * 2012-03-06 2013-09-16 덕산하이메탈(주) Compound for organic electronic element, organic electronic element using the same, and a electronic device thereof
JP2013216667A (en) * 2010-01-26 2013-10-24 Hodogaya Chem Co Ltd Compound having triphenylamine structure, and organic electroluminescent element
KR20140080451A (en) * 2012-12-20 2014-06-30 주식회사 동진쎄미켐 Novel organic electroluminescent compound substituted with deuterium and organic electroluminescent device comprising same
KR20140081735A (en) * 2012-12-21 2014-07-01 주식회사 동진쎄미켐 Novel organic electroluminescent compound substituted with deuterium and organic electroluminescent device comprising same
KR20140091496A (en) * 2013-01-11 2014-07-21 주식회사 동진쎄미켐 Novel organic electroluminescent compound substituted with deuterium and organic electroluminescent device comprising same

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043058A (en) * 2000-07-25 2002-02-08 Nec Corp Organic electroluminescene element
JP2011160003A (en) * 2004-11-12 2011-08-18 Samsung Mobile Display Co Ltd Organic electroluminescence element
JP2008540517A (en) * 2005-05-07 2008-11-20 ドゥサン コーポレーション Novel deuterated arylamine compound, preparation method thereof and organic light-emitting diode using the same
JP2011501463A (en) * 2007-10-26 2011-01-06 グローバル・オーエルイーディー・テクノロジー・リミテッド・ライアビリティ・カンパニー OLED device having fluoranthene electron transport material
WO2010068000A2 (en) * 2008-12-08 2010-06-17 주식회사 두산 Aryl amine derivatives and organic electroluminescent device using the same
JP2012513688A (en) * 2008-12-22 2012-06-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Long-life electronic devices
JP2012522781A (en) * 2009-04-03 2012-09-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Electroactive materials
JP2013216667A (en) * 2010-01-26 2013-10-24 Hodogaya Chem Co Ltd Compound having triphenylamine structure, and organic electroluminescent element
WO2012001969A1 (en) * 2010-06-30 2012-01-05 出光興産株式会社 Aromatic amine derivative, and organic electroluminescent element comprising same
KR101165698B1 (en) * 2011-06-14 2012-07-18 덕산하이메탈(주) Organic electronic element comprising a new compound, and a new compound and a composition for organic electronic element
WO2012177006A2 (en) * 2011-06-22 2012-12-27 덕산하이메탈(주) Compound for organic electronics, organic electronics using same, and electronic device for same
KR20130096334A (en) * 2011-06-24 2013-08-30 덕산하이메탈(주) Organic electronic element, and a compound for the same
WO2013002514A2 (en) * 2011-06-29 2013-01-03 덕산하이메탈(주) Organic electroluminescence device using diarylamine derivatives, and novel compound and composition for organic electroluminescence device
KR20130101726A (en) * 2012-03-06 2013-09-16 덕산하이메탈(주) Compound for organic electronic element, organic electronic element using the same, and a electronic device thereof
KR20140080451A (en) * 2012-12-20 2014-06-30 주식회사 동진쎄미켐 Novel organic electroluminescent compound substituted with deuterium and organic electroluminescent device comprising same
KR20140081735A (en) * 2012-12-21 2014-07-01 주식회사 동진쎄미켐 Novel organic electroluminescent compound substituted with deuterium and organic electroluminescent device comprising same
KR20140091496A (en) * 2013-01-11 2014-07-21 주식회사 동진쎄미켐 Novel organic electroluminescent compound substituted with deuterium and organic electroluminescent device comprising same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIRATA,S. ET AL., ADVANCED FUNCTIONAL MATERIALS, vol. 23, 2013, pages 3386 - 3397 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE47654E1 (en) 2010-01-15 2019-10-22 Idemitsu Koasn Co., Ltd. Organic electroluminescence device
US10435350B2 (en) 2014-09-19 2019-10-08 Idemitsu Kosan Co., Ltd. Organic electroluminecence device
US11145819B2 (en) 2016-03-30 2021-10-12 Samsung Display Co., Ltd. Organic light emitting device
US11925111B2 (en) 2016-03-30 2024-03-05 Samsung Display Co., Ltd. Organic light emitting device
US11605780B2 (en) 2017-08-28 2023-03-14 Toray Industries, Inc. Compound, light-emitting element containing the same, display device, and lighting device
KR20200040762A (en) 2017-08-28 2020-04-20 도레이 카부시키가이샤 Compound, light-emitting element using it, display device and lighting device
US11258031B2 (en) 2017-12-11 2022-02-22 Lg Chem, Ltd. Organic light-emitting device and manufacturing method therefor
US11730054B2 (en) 2018-01-29 2023-08-15 Idemitsu Kosan Co., Ltd. Compound having dibenzofuran and naphthalene structures, and organic electroluminescent element using same
WO2020004235A1 (en) 2018-06-25 2020-01-02 保土谷化学工業株式会社 Compound having triarylamine structure and electroluminescence device
TWI841572B (en) 2018-06-25 2024-05-11 日商保土谷化學工業股份有限公司 Compound having triarylamine structure and organic electroluminescent element
US11925108B2 (en) 2018-06-25 2024-03-05 Hodogaya Chemical Co., Ltd. Compound having triarylamine structure and organic electroluminescence device
US11678569B2 (en) 2020-03-31 2023-06-13 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescent elements, organic electroluminescent element, and electronic device
CN115380025A (en) * 2020-04-10 2022-11-22 德山新勒克斯有限公司 Compound for organic electric element, organic electric element using the same, and electronic device including the organic electric element
CN115362148A (en) * 2020-04-10 2022-11-18 德山新勒克斯有限公司 Compound for organic electric element, organic electric element using the same, and electronic device thereof
WO2021206478A1 (en) * 2020-04-10 2021-10-14 덕산네오룩스 주식회사 Compound for organic electrical element, organic electrical element using same, and electronic device comprising same
WO2021206477A1 (en) * 2020-04-10 2021-10-14 덕산네오룩스 주식회사 Compound for organic electric element, organic electric element using same, and electronic device thereof
KR20230118092A (en) 2020-12-09 2023-08-10 이데미쓰 고산 가부시키가이샤 Organic electroluminescent devices and electronic devices
WO2022230963A1 (en) * 2021-04-28 2022-11-03 出光興産株式会社 Compound, material for organic electroluminescent element, organic electroluminescent element, and electronic appliance

Also Published As

Publication number Publication date
JPWO2016009823A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP6361138B2 (en) Light emitting element
JP5376063B2 (en) Light emitting device material and light emitting device
JP6123679B2 (en) Benzoindolocarbazole derivative, light emitting device material and light emitting device using the same
JP5397568B1 (en) Light emitting device material and light emitting device
JP6183214B2 (en) Fluoranthene derivative, light emitting device material containing the same, and light emitting device
JP6627507B2 (en) Fluoranthene derivative, electronic device, light emitting element and photoelectric conversion element containing the same
JP6051864B2 (en) Light emitting device material and light emitting device
WO2016009823A1 (en) Monoamine derivative, luminescent element material comprising same, and luminescent element
JP6183211B2 (en) Light emitting device material and light emitting device
JP7144743B2 (en) COMPOUND, LIGHT-EMITTING ELEMENT, DISPLAY AND LIGHTING DEVICE USING THE SAME
WO2012090806A1 (en) Light emitting element material and light emitting element
JP2013183113A (en) Light-emitting element material and light-emitting element
JP6269060B2 (en) Light emitting device material and light emitting device
WO2016152855A1 (en) Compound, and electronic device, luminescent element, photoelectric conversion element, and image sensor containing same
JP6318617B2 (en) Light emitting device material and light emitting device
WO2014024750A1 (en) Light emitting element material and light emitting element
JP2014175590A (en) Organic electroluminescent element
JP2017084859A (en) Light-emitting element, and display device and lighting device including the same
WO2018180709A1 (en) Compound, electronic device containing same, organic thin film light emitting element, display device and lighting device
JP2014093501A (en) Light-emitting element material and light emitting element
WO2014007022A1 (en) Light emitting element material and light emitting element

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015533367

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15822255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15822255

Country of ref document: EP

Kind code of ref document: A1