WO2016008174A1 - 一种(甲基)丙烯酸羟乙酯的制备方法 - Google Patents

一种(甲基)丙烯酸羟乙酯的制备方法 Download PDF

Info

Publication number
WO2016008174A1
WO2016008174A1 PCT/CN2014/083208 CN2014083208W WO2016008174A1 WO 2016008174 A1 WO2016008174 A1 WO 2016008174A1 CN 2014083208 W CN2014083208 W CN 2014083208W WO 2016008174 A1 WO2016008174 A1 WO 2016008174A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
tubular reactor
reactor
ethylene oxide
chromium
Prior art date
Application number
PCT/CN2014/083208
Other languages
English (en)
French (fr)
Inventor
李俊平
陈海波
张礼昌
崔纯燹
黎源
华卫琦
丁建生
张俊华
成兆坤
Original Assignee
万华化学集团股份有限公司
万华化学(宁波)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 万华化学集团股份有限公司, 万华化学(宁波)有限公司 filed Critical 万华化学集团股份有限公司
Priority to US15/300,566 priority Critical patent/US9845281B2/en
Priority to EP14897669.9A priority patent/EP3170806B1/en
Publication of WO2016008174A1 publication Critical patent/WO2016008174A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/24Preparation of carboxylic acid esters by reacting carboxylic acids or derivatives thereof with a carbon-to-oxygen ether bond, e.g. acetal, tetrahydrofuran
    • C07C67/26Preparation of carboxylic acid esters by reacting carboxylic acids or derivatives thereof with a carbon-to-oxygen ether bond, e.g. acetal, tetrahydrofuran with an oxirane ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/52Esters of acyclic unsaturated carboxylic acids having the esterified carboxyl group bound to an acyclic carbon atom
    • C07C69/533Monocarboxylic acid esters having only one carbon-to-carbon double bond
    • C07C69/54Acrylic acid esters; Methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof

Definitions

  • the invention belongs to the field of preparation of hydroxy acrylate, and in particular to a preparation method of hydroxyethyl (meth) acrylate, and a hydroxyethyl (meth) acrylate product prepared by the method.
  • Hydroxyethyl (meth)acrylate is a colorless transparent liquid with difunctional groups in the molecule. It has two-stage curing reaction function and is one of the most special and valuable poly(anthracene) acrylates in the world.
  • the polymer has special gloss, transparency and weather resistance; in the pharmaceutical industry, the self-polymer of hydroxyethyl methacrylate (HEMA) can be used for dental and orthopedic materials due to its lack of physiological rejection.
  • HEMA hydroxyethyl methacrylate
  • CN101891613A discloses a preparation method of hydroxyethyl methacrylate (HEMA): placing a flask equipped with a stirrer, a thermometer and a reflux condenser on a water bath, adding iron trioxide, hydroquinone and methacrylic acid, The water bath was heated to 80 ⁇ 85 ° C, and the air in the reaction flask was replaced with nitrogen. After the iron oxide was completely dissolved in methacrylic acid, ethylene oxide was introduced, the ventilation time was 4 hours, and the reaction was continued for 1 hour after the end of the aeration. The reaction was then transferred to a distillation flask, and an appropriate amount of hydroquinone was added under reduced pressure to collect 82-85. The fraction of C is the finished product.
  • HEMA hydroxyethyl methacrylate
  • CN102584579 A also discloses a preparation process of hydroxyethyl methacrylate, which is characterized in that the reaction kettle is vacuumed by a vacuum unit, the vacuum state of the reaction vessel is maintained, and the ruthenium propylene is vacuumed. Acid, catalyst, polymerization inhibitor, water are pumped into the reactor, and the vacuum in the reactor is ensured after completion.
  • the reaction temperature is controlled by cooling water cooling at 90 ⁇ 100 °C. After the completion of the dropping, the cooling water is turned off naturally, and the mass percentage of the thiol acrylic acid is less than 0.5% after the temperature drop.
  • the addition reaction is completed; then, the light component ethylene oxide, water and mercaptoacrylic acid are removed under reduced pressure, and the intermediate product is transferred to the intermediate tank to add 0.5 to 5% by mass. After the water was distilled under reduced pressure, hydroxyethyl methacrylate was obtained.
  • the currently reported process is mainly a batch tank reactor process, with slightly different process parameters such as catalyst selection, polymerization inhibitor, reaction temperature, and reaction time.
  • the batch reactor has a low reaction efficiency and cannot be continuously produced.
  • the invention independently controls the operating conditions (reaction temperature, pressure, residence time, etc.) of the tubular reactors and the amount of ethylene oxide charged by using a combination process of a three-stage tubular reactor and a tower reactor, and The operating conditions of the tower reactor achieve the goal of reducing the operational risk of the plant, achieving continuous production, improving production efficiency and improving product quality.
  • the present invention adopts the following technical scheme: a preparation method of (mercapto) hydroxyethyl acrylate, a combination of a three-stage tubular reactor and a tower reactor: first mixing a catalyst, and inhibiting polymerization And the (meth)acrylic acid is dissolved in the solid, and then mixed with a portion of the ethylene oxide to enter the first tubular reactor reaction, and the reaction liquid flowing out of the first tubular reactor is mixed with a certain amount of ethylene oxide.
  • the solution of the present invention comprises dissolving a solid in which all of the catalyst, the polymerization inhibitor and (mercapto)acrylic acid are mixed, and then a ring of 30 to 80%, preferably 50 to 70%, based on the total amount of ethylene oxide.
  • the oxyethane is mixed and added to the first tubular reactor for reaction;
  • the reaction temperature in the first tubular reactor is 80-120 ° C, preferably 90-110 ° C;
  • the reaction pressure is 0.2-0.5 MPa, preferably 0.3-0.4 MPa, residence time 0.1 ⁇ 0.3 h, preferably 0.15 ⁇ 0.25 h. Because the EO concentration in this section is relatively high, the reaction rate is faster, and the reaction temperature and pressure are adjusted to relatively low levels, which can effectively control the reaction rate and prevent the product from being further reversed with EO. Should reduce the by-product content.
  • the reaction liquid flowing out of the first tubular reactor is mixed with 10 to 50%, preferably 20 to 40%, of the total amount of ethylene oxide, and then reacted into the second tubular reactor; the second tube type
  • the reaction temperature in the reactor is excitation to 130 ° C, preferably 110 to 120 ° C;
  • the reaction pressure is 0.4 to 0.8 MPa, preferably 0.5 to 0.7 MPa;
  • the residence time is 0.2 to 0.5 h, preferably 0.25 to 0.4 h; Relatively low, increasing the pressure can increase the amount of EO dissolved in the liquid phase, increase the probability of ( ⁇ )acrylic acid reacting with the EO collision, ensure that the reaction proceeds at a faster rate, and not because the reaction temperature is high.
  • the reaction is increased to lower the product yield.
  • the reaction liquid flowing out of the second tubular reactor is mixed with 1 to 30%, preferably 5 to 20%, of the total amount of ethylene oxide, and then enters the third tubular reactor reaction; the third tubular reaction
  • the reaction temperature is 110 ⁇ 150 ° C, preferably 120 ⁇ 130 ° C;
  • the reaction pressure is 0.5 ⁇ 1 MPa, preferably 0.6 ⁇ 0.9 MPa;
  • the residence time is 0.25 ⁇ 0.6 h, preferably 0.3 ⁇ 0.5 h;
  • Acrylic acid and EO concentration are lower, increasing the pressure to ensure the liquid phase EO content, increasing the reaction temperature can increase the intensity of the collision of (fluorenyl) acrylic acid with EO molecules, increase the reaction rate, and help to improve (mercapto) acrylic acid and EO conversion. rate.
  • the reaction liquid flowing out of the third tubular reactor enters the column reactor for aging, and after the reaction, the product liquid is produced.
  • the column reactor preferably uses an adiabatic column reactor, the number of theoretical plates of the reactor is 4 to 20, preferably 6 to 15; the reaction pressure is 0.8 - 1.2 MPa, preferably 0.9 to 1.1 MPa; residence time 0.3 ⁇ 1 h, preferably 0.4 ⁇ 0.6 h; the thiol-based acrylic acid and the EO content in the reaction liquid flowing out from the third tubular reactor are very low, and the conventional reactor cannot achieve an efficient mixing reaction, and the tower reactor
  • the contact area is large, the reaction liquid in the reactor is continuously collided and mixed, and a small amount of gas phase EO is continuously reacted with (mercapto)acrylic acid through the column reactor to ensure acrylic acid and EO in a short residence time. Close to complete conversion, further increase product yield, and strive for low monomer recovery energy consumption and three wastes.
  • the tubular reactor adopts a thermostatic tubular reactor, and each tubular tubular reaction The reactor was protected with N 2 in the reaction.
  • the molar ratio of the total amount of ethylene oxide to (mercapto)acrylic acid in the entire reaction is from 1.0 to 1.2:1, preferably from 1.03 to 1.1:1.
  • the catalyst is one or more of an amine compound, an iron compound and a chromium compound;
  • the amine compound is selected from the group consisting of tetrabutylammonium bromide, tetradecyl ammonium bromide, tetradecyl One or more of ammonium chloride, tetrabutylammonium iodide, triethylamine and pyridine
  • the iron compound being selected from the group consisting of ferric chloride, iron powder, iron citrate, iron acetate, iron propylene hydride and One or more of iron methacrylate
  • the chromium compound being selected from the group consisting of chromium trichloride, chromium acrylate, chromium propyl acrylate, chromium acetylacetonate, chromium pyridinium citrate, chromium citrate and chromium acetate One or more; the catalyst is used in an amount
  • the polymerization inhibitor is selected from the group consisting of p-benzoquinone, p-phenylenediamine, phenothiazine, dimethyl, diisopropyl p-phenylenediamine, p-hydroxytetradecylpiperidine nitroxyl radical and One or more of carbonyl tetramethylpiperidine nitroxyl radicals; the polymerization inhibitor is used in an amount of 0.01 to 0.2% by mass of the (mercapto)acrylic acid, preferably 0.05 to 0.15%.
  • the mixing of the reaction materials in the respective stages of the reaction can be carried out in a jet mixer or a static mixer, preferably in a static mixer.
  • the combined process of the tubular reactor and the tower reactor is adopted, and the reaction liquid obtained by the reaction of the three-stage tubular reactor is further subjected to aging by a column reactor to ensure (meth) The conversion of acrylic acid reaches the target level, and the continuous extraction is carried out at the same rate as the feed to obtain the reaction liquid.
  • the process is a continuous reaction, and the exhaust gas to be discharged in the reactor is not discharged in the batch process.
  • the positive effects of the invention are as follows: (1) The multi-stage tubular reactor is combined with the tower reactor, the reaction time is shortened to about 1 ⁇ 2 h, and the reaction efficiency is obviously improved; (2) the reaction temperature is controlled in stages. Conditions such as pressure, which ensure a faster reaction rate and a higher conversion rate of raw materials, and can be reduced With the occurrence of few side reactions, the product yield is obviously improved, and the highest can reach more than 96%; (3) The technology of adding anti-separation under full-closed conditions can effectively prevent the leakage of ethylene oxide, reduce tail gas emissions and environmental pollution; Effectively reduce the generation of static electricity, improve the safety and stability of production; (4) Use a free radical polymerization inhibitor without oxygen coordination, high inhibition efficiency, and can effectively reduce the contact of EO with oxygen; The control scheme, the initial concentration of EO is low, at a relatively low reaction temperature, the possibility of EO self-polymerization causing an explosion is reduced, and safety is improved; (5) continuous production is realized, the operation flow is simplified, and the production is improved
  • reaction pressure means absolute pressure
  • (hydroxyl) hydroxyethyl acrylate means hydroxyethyl decyl acrylate or hydroxyethyl acrylate
  • (mercapto) acrylic means acrylic acid or methacrylic acid
  • Figure 1 is a schematic flow diagram of a process for preparing a hydroxyethyl acrylate of the present invention; wherein, 1 is a first static mixer; 2 is a first tubular reactor; 3 is a second static mixer; It is a second tubular reactor; 5 is a third static mixer; 6 is a third tubular reactor; and 7 is a tower reactor.
  • Figure 2 Gas chromatogram of Example 1 product liquid.
  • the preparation method of the hydroxyethyl methacrylate of the invention adopts a three-stage tubular reactor combined with a tower reactor: firstly mixing a catalyst, a polymerization inhibitor and a methacrylic acid to dissolve the solid, Then, after mixing with a portion of the ethylene oxide in the first static mixer, the reaction is carried out in a first tubular reactor protected by N 2 , and the reaction liquid flowing out from the first tubular reactor is reacted with a certain amount of ethylene oxide.
  • the second static mixer is mixed into the second tubular reactor reaction protected by N 2 , and the reaction liquid flowing out of the second tubular reactor is mixed with a certain amount of ethylene oxide in the third static mixer for use. >1 ⁇ 2 protected
  • the three-tube reactor reaction, and finally the reaction liquid flowing out of the third tubular reactor is subjected to aging through an adiabatic tower reactor to produce a product liquid.
  • the gas chromatographic analysis conditions in the present invention are as follows:
  • the tubular reactor uses a 316L stainless steel tube having an inner diameter of 0.02 m, and the first tubular reactor has a length of 0.85 m, and the second tubular reactor The length is 1.40 m, the length of the third tubular reactor is 2 m, the tower reactor is a standard bubble column reactor, and the residence time of the material in the adiabatic reactor is 0.5 h.
  • Raw material liquid; EO is separately added to three static mixers, and EO and methacrylic acid raw material liquid added to the first static mixer are mixed by the first static mixer and sent to the first tubular reactor protected by N 2 (Reactor 1 in the table below), the thioglycolic acid feedstock feed rate is 10Kg/h; the mass ratio of EO added to the first static mixer, the second static mixer, and the third static mixer is 60:30: 10.
  • the molar ratio of total EO to MAA is 1.05, the EO feed rate in the first tubular reactor is 3.22 Kg/h, and the EO feed rate in the second tubular reactor (reactor 2 in the table below) is 1.62.
  • the third tube reactor (reactor 3 in the table below) has an EO feed rate of 0.53 Kg / h; control the first tubular reactor reaction temperature of 100, the second tubular reactor reaction temperature of 115 °C, third tube reactor reaction temperature 125 ° C; first tube reactor pressure 0.35 MPa, second tube reactor Strength 0.60 MPa, the third tubular reactor The pressure was 0.80 MPa; the residence time of the first tubular reactor was 0.2 h, the residence time of the second tubular reactor was 0.35 h, and the residence time of the third tubular reactor was 0.4 h.
  • reaction liquid After the reaction liquid is reacted through a three-stage tubular reactor, it is subjected to aging in an adiabatic tower reactor (reactor 4 in the following table) to convert the remaining small amount of mercaptopropionic acid and ethylene oxide.
  • the tower reactor Theoretical plate number 10, reaction pressure l.OMPa, adiabatic reactor outlet temperature
  • the product liquid is composed of gas phase color analysis products.
  • Example 2 Different from Example 1, this example provides different EO feed ratios (ie, the mass ratio of EO added to the first static mixer, the second static mixer, and the third static mixer), and the reaction performance is investigated. The other parameters are the same as in the first embodiment.
  • the product liquid was analyzed by gas phase color analysis, and the results are shown in Table 2. Table 2: Example 2 product liquid analysis results
  • Example 2 Different from Example 1, this example provides the effect of different reaction temperatures on the reaction performance, and other parameters are the same as in Example 1.
  • the product liquid was analyzed by gas chromatography, and the results are shown in Table 3.
  • Example 4 provides the effect of different reaction pressures on the reaction performance, and other parameters are the same as in Example 1.
  • the product liquid was analyzed by gas chromatography, and the results are shown in Table 4.
  • Table 4 Example 4 Product Liquid Analysis Results

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种(甲基)丙烯酸羟乙酯的制备方法:采用三段管式反应器与塔式反应器的联用工艺:首先混合催化剂、阻聚剂和(甲基)丙烯酸至固体溶解,然后与部分环氧乙烷混合后进入第一管式反应器反应,从第一管式反应器流出的反应液与一定量的环氧乙烷混合进入第二管式反应器反应,从第二管式反应器流出的反应液再与一定量环氧乙烷混合后进入第三管式反应器,从第三管式反应器流出的反应液再经过一段绝热塔式反应器进行老化,采出得到产品液。该工艺反应效率明显提高,可进一步提高产品收率和降低副反应中双酯、单酯等杂质的生成,实现连续生产,并且降低装置的操作风险。

Description

一种 (甲基)丙烯酸羟乙酯的制备方法 技术领域
本发明属于羟基丙烯酸酯制备领域,具体涉及一种(曱基)丙烯酸羟乙酯的制 备方法, 以及由该方法制备得到的(甲基)丙烯酸羟乙酯产品。
背景技术
(甲基)丙烯酸羟乙酯是分子内具有双官能团的无色透明液体,具有两级固化 反应功能, 是目前国际上研究较多、 价值最大的特种 (曱基)丙烯酸酯之一, 主要 用于制造羟基丙烯酸树脂, 其聚合物具有特别的光泽、 透明度和耐候性; 在医 药行业, 曱基丙烯酸羟乙酯 (HEMA)的自聚物由于无生理排异性而可用于牙科和 骨科材料。 随着各下游行业的发展, 该单体的应用潜力仍在不断扩大。
(曱基)丙烯酸羟乙酯的制备方法很多, 目前在工业化生产上最常用的是开环 反应法:在反应釜中按一定的烷酸比 (环氧乙烷 (EO)与(曱基)丙烯酸的比例)将 EO 逐步滴加到(曱基)丙烯酸中, 在催化剂、 阻聚剂的共同作用下反应合成(曱基)丙 烯酸羟乙酯。
CN101891613A公开了一种曱基丙烯酸羟乙酯 (HEMA)的制备方法: 将装有 搅拌器、 温度计、 回流冷凝管的烧瓶置于水浴上, 加入三氧化铁、 对苯二酚及 曱基丙烯酸, 水浴加热至 80〜85°C , 用氮气置换反应瓶中的空气, 待三氧化铁完 全溶于甲基丙烯酸后开始通入环氧乙烷, 通气时间 4 小时, 通气结束后继续反 应 1 小时, 然后将反应物转入蒸馏瓶中, 再加入适量对苯二酚减压蒸傭, 收集 82-85。C的馏分即为成品。
CN102584579 A同样公开了一种甲基丙烯酸羟乙酯的制备工艺, 其特点是 通过真空机组将反应釜抽成真空, 保持反应釜真空状态, 利用真空将曱基丙烯 酸、 催化剂、 阻聚剂、 水抽入反应釜内, 完成后保证反应釜内真空在
-0.99Mpa〜0.75Mpa,加热至 80°C~85°C条件下滴加环氧乙烷,通过控制环氧乙烷 的滴速保证反应釜内压力低于 60KPa, 随着反应的进行, 反应速率改变, EO加 入速率需要随时调整, 通过冷却水冷却控制反应温度在 90~100°C ; 滴加完成后 关闭冷却水自然升温, 待温度下降后取样检测曱基丙烯酸质量百分数小于 0.5% 视为加成反应完毕; 之后减压脱除轻组分环氧乙烷、 水和曱基丙烯酸, 将中间 品转至中间釜添加质量百分比 0.5~5%。的水后减压蒸馏, 得曱基丙烯酸羟乙酯。
当前报道的工艺主要是间歇釜式反应器工艺, 在选择催化剂、 阻聚剂、 反 应温度、 反应时间等工艺参数略有区别。 但是间歇釜式反应器反应效率低, 无 法连续生产。
如果是搅拌釜式反应器工艺, 其缺点是反应效率低, 双酯、 单酯等副产物 较多, 存在大量气态环氧乙烷, 搅拌轴在长期旋转中易产生静电, 易导致气相 EO发生爆炸, 危险性较高; 随着反应的进行, 反应速率改变, EO加入速率需 要随时调整, 操作复杂; 且设备投资成本高。 连续反应釜同样存在反应物浓度 过低, 反应速率过慢的问题, 无法实现连续生产。
虽然采用管式反应器能够实现连续生产, 但如果将搅拌釜式反应器筒单地 替换为管式反应器, 当(曱基)丙烯酸与 EO进料时, EO浓度较高, 易发生爆炸; (曱基)丙烯酸羟乙酯合成为强放热反应, EO浓度高, 反应速率太快, 会导致放 热过于严重, 产生飞温风险; 而且 EO浓度过高会导致生成的(曱基)丙烯酸羟乙 酯进一步与 EO反应生成 (曱基)丙烯酸一缩二乙二醇酯, 导致产品收率降低; 再 者, 恒温反应条件下, 反应末段 (曱基)丙烯酸与 EO转化率偏低, (甲基)丙烯酸 残留较多, 增加后续分离的难度。
因此,需要寻找一种新的(曱基)丙烯酸羟乙酯的制备工艺以克服上述现有技 术工艺的缺陷。
发明内容
本发明的目的是提供一种新的制备 (甲基)丙烯酸羟乙酯的方法, 以解决现有 工艺中存在的问题, 并提供具有改善产品质量的, 例如杂质含量更低的(曱基) 丙烯酸羟乙酯产品。 本发明通过采用三段管式反应器与塔式反应器的联用工艺, 独立控制各段管式反应器的操作条件 (反应温度、 压力、 停留时间等)和环氧乙烷 投料量、 以及塔式反应器的操作条件, 达到了降低装置操作风险、 实现连续生 产、 提高生产效率和改善产品质量的目的。
为了达到以上目的, 本发明采用如下技术方案: 一种 (曱基)丙烯酸羟乙酯的制备方法,釆用三段管式反应器与塔式反应器联 用的工艺: 首先混合催化剂、 阻聚剂 和 (甲基)丙烯酸至固体溶解, 然后与部分 环氧乙烷混合后进入第一管式反应器反应, 从第一管式反应器流出的反应液与 一定量的环氧乙烷混合进入第二管式反应器反应, 从第二管式反应器流出的反 应液再与一定量环氧乙烷混合后进入第三管式反应器反应, 最后从第三管式反 应器流出的反应液再经过一段塔式反应器进行老化,采出得到(曱基)丙烯酸羟乙 酯产品液。 具体地, 本发明的方案包括将全部的催化剂、 阻聚剂和 (曱基)丙烯酸混合至其中的固 体溶解, 然后与占环氧乙烷总量 30~80%、 优选 50〜70%的环氧乙烷混合后加入 第一管式反应器中反应; 第一管式反应器中反应温度为 80~120°C , 优选 90〜110°C ; 反应压力为 0.2~0.5 MPa, 优选 0.3〜0.4 MPa, 停留时间 0.1〜0.3 h, 优 选 0.15~0.25 h。 因该段 EO浓度相对较高,反应速率较快, 将反应温度和压力调 整到相对低的水平可有效地控制反应速率,防止生成的产品与 EO进一步快速反 应, 降低副产物含量。
第一管式反应器流出的反应液与占环氧乙烷总量的 10~50%, 优选 20~40% 的环氧乙烷混合后进入第二管式反应器中反应; 第二管式反应器中反应温度为 励〜 130°C, 优选 110〜120°C ; 反应压力为 0.4〜0.8MPa, 优选 0.5〜0.7 MPa; 停留 时间 0.2~0.5 h, 优选 0.25~0.4 h; 该段 EO浓度相对较低, 提高压力可以使 EO 在液相中的溶解量提高, 提高 (曱基)丙烯酸与 EO碰撞发生反应的概率, 保证 反应以较快的速率进行, 同时不至于因为反应温度高导致副反应增加而使产品 收率降低。
第二管式反应器流出的反应液与占环氧乙烷总量的 1〜30%, 优选 5〜20%的 环氧乙烷混合后进入第三管式反应器反应; 第三管式反应器反应温度为 110~150°C, 优选 120〜130°C ; 反应压力为 0.5〜1 MPa, 优选 0.6〜0.9 MPa; 停留 时间 0.25~0.6 h, 优选 0.3〜0.5 h; 该段 (曱基)丙烯酸与 EO浓度均较低, 提高压 力保证了液相 EO含量, 提高反应温度可以提高(曱基)丙烯酸与 EO分子碰撞的 激烈程度, 提高反应速率, 有利于提高(曱基)丙烯酸与 EO转化率。
最后, 从第三管式反应器流出的反应液进入塔式反应器进行老化, 反应后 采出产品液。 本发明中, 所述塔式反应器优选使用绝热塔式反应器, 反应器理 论塔板数为 4〜20, 优选 6〜15; 反应压力为 0.8 - 1.2 MPa, 优选 0.9 ~ 1.1 MPa; 停留时间为 0.3~1 h, 优选 0.4〜0.6 h; 从第三管式反应器流出的反应液中(曱基) 丙烯酸与 EO含量很低,传统反应器无法实现高效的混合反应, 而塔式反应器接 触面积大,反应器中反应液不断发生碰撞混合,存在的少量气相 EO通过塔式反 应器继续与(曱基)丙烯酸进行反应, 保证了在较短的停留时间内(曱基)丙烯酸和 EO接近完全转化, 进一步提高产品收率, 争低单体回收能耗和三废量。
本发明的方法中, 所述管式反应器采用恒温管式反应器, 并且各段管式反 应器在反应中均采用 N2保护。
本发明的方法中, 整个反应中环氧乙烷总量与(曱基)丙烯酸的摩尔比为 1.0〜1.2:1 , 优选 1.03〜1.1:1。
本发明的方法中, 所述的催化剂为胺化合物、 铁化合物和铬化合物中的一 种或多种; 所述胺化合物选自四丁基溴化铵、 四曱基溴化铵、 四曱基氯化铵、 四丁基碘化铵、 三乙胺和吡啶中的一种或多种, 所述铁化合物选自三氯化铁、 铁粉、 曱酸铁、 乙酸铁、 丙婦酸铁和曱基丙烯酸铁中的一种或多种, 所述铬化 合物选自三氯化铬、 丙烯酸铬、 甲基丙烤酸铬、 乙酰丙酮铬、 吡啶曱酸铬、 曱 酸铬和乙酸铬中的一种或多种; 催化剂的用量为(曱基)丙烯酸质量的 0.1〜2 %, 优选 0.3~1 %。
本发明的方法中, 所述的阻聚剂选自对苯醌、 对苯二胺、 吩噻,秦、 二异丙 基对苯二胺、 对羟基四曱基哌啶氮氧自由基和对羰基四曱基哌啶氮氧自由基中 的一种或多种; 阻聚剂的用量为(曱基)丙烯酸质量的 0.01〜0.2 % , 优选 0.05〜0.15%。
本发明的方法中, 各段反应中反应物料的混合可以在喷射混合器或静态混 合器中进行, 优选在静态混合器中进行。
在本发明的方法中, 采用管式反应器与塔式反应器的联用工艺, 经三段管 式反应器反应后得到的反应液再经过一段塔式反应器进行老化,保证 (甲基)丙烯 酸转化率达到目标水平, 采用与进料相同的速率连续采出, 得到反应液, 工艺 为连续反应, 过程中不排放间歇工艺中反应釜置换需要排放的废气。
本发明的积极效果在于: (1) 采用多段管式反应器与塔式反应器联用工艺, 反应时间缩短至 l~2 h左右, 反应效率明显提高; (2) 采用分段控制反应温度、 压力等条件的方式, 既保证了较快的反应速率和较高的原料转化率, 又可以减 少副反应的发生, 产品收率明显提高, 最高可以达到 96%以上; (3)全密闭条件 进行加成反 的技术可有效防止环氧乙烷的泄露, 减少尾气排放和对环境的污 染; 有效降低了静电的产生, 提高了生产的安全性和稳定性; (4) 釆用无需氧气 配合的自由基阻聚剂, 阻聚效率高, 并可有效减少 EO与氧气接触; 且采用本发 明的控制方案, EO初始浓度低, 在相对较低的反应温度下, 降低了 EO自聚引 发爆炸的可能性, 提高了安全性; (5) 实现了连续生产, 简化了操作流程, 提高 了生产效率。
本发明中, 所述"反应压力"是指绝对压力, (曱基)丙烯酸羟乙酯是指曱基丙 烯酸羟乙酯或丙烯酸羟乙酯, (曱基)丙烯酸是指丙烯酸或甲基丙烯酸。
附图说明
图 1 : 本发明(曱基)丙烯酸羟乙酯制备方法的一种流程简图; 其中, 1为第 一静态混合器; 2为第一管式反应器; 3为第二静态混合器; 4为第二管式反应 器; 5为第三静态混合器; 6为第三管式反应器; 7为塔式反应器。
图 2 : 实施例 1产品液的气相色谱 " "图。
具体实施方式
下面以曱基丙烯酸羟乙酯制备为例, 进一步详细说明本发明所提供的工艺, 但本发明并不因此而受到任何限制。
根据图 1 所示流程, 本发明甲基丙烯酸羟乙酯的制备方法采用三段管式反 应器与塔式反应器联用的工艺: 首先混合催化剂、 阻聚剂 和曱基丙烯酸至固体 溶解, 然后与部分环氧乙烷在第一静态混合器混合后加入采用 N2保护的第一管 式反应器中反应, 从第一管式反应器流出的反应液与一定量的环氧乙烷在第二 静态混合器混合进入采用 N2保护的第二管式反应器反应, 从第二管式反应器流 出的反应液再与一定量环氧乙烷在第三静态混合器混合后进入釆用 >½保护的第 三管式反应器反应 , 最后从第三管式反应器流出的反应液再经过一段绝热塔式 反应器进行老化, 采出得到产品液。
本发明中的气相色谱分析条件如下:
采用 DB-5 非极性色谱柱、 釆用乙醇溶剂、 汽化室温度 250°C、 载气流速 lml/min、 进样量 1μ1、 色谱柱程序升温: 首先 50°C保持 2min, 然后以 5°C/min 升温至 80°C , 保持 5min, 然后以 20°C/min升温至 260°C , 保持 15min。
在以下实施例和对比例中, 如无特别注明, 所采用的"% "均为质量百分比。 实施例 1
采用本发明的三段管式反应器与绝热塔式反应器联用的工艺, 管式反应器 采用内径 0.02m的 316L不锈钢管, 第一管式反应器长度 0.85 m, 第二管式反应 器长度 1.40 m,第三管式反应器长度 2m,塔式反应器采用标准鼓泡塔式反应器, 物料在绝热反应器停留时间 0.5 h。
首先, 向配料罐中加入 500 Kg曱基丙烯酸、 2.5 Kg 曱酸铬、 0.5 Kg对羟基 四曱基哌啶氮氧自由基 (ZJ-701),搅拌至固体完全溶解,得到曱基丙浠 S原料液; 向三个静态混合器中分别加入 EO, 加入到第一静态混合器的 EO与甲基丙烯酸 原料液经过第一静态混合器混合后输送至采用 N2保护的第一管式反应器 (以下 表格中称反应器 1), 曱基丙烯酸原料液进料速率 10Kg/h; 第一静态混合器、 第 二静态混合器、 第三静态混合器中加入 EO的质量比例为 60:30:10, 总 EO与 MAA摩尔比为 1.05,第一管式反应器中 EO进料速率为 3.22 Kg/h,第二管式反 应器 (以下表格中称反应器 2)中 EO进料速率为 1.62 Kg/h,第三管式反应器 (以下 表格中称反应器 3)中 EO进料速率为 0.53 Kg/h; 控制第一管式反应器反应温度 100 , 第二管式反应器反应温度 115°C , 第三管式反应器反应温度 125°C ; 第 一管式反应器压力 0.35 MPa, 第二管式反应器压力 0.60 MPa, 第三管式反应器 压力 0.80 MPa;第一管式反应器停留时间 0.2 h,第二管式反应器停留时间 0.35 h, 第三管式反应器停留时间 0.4 h。 反应液通过三段管式反应器反应后, 进入绝热 塔式反应器 (以下表格中称反应器 4)进行老化以转化剩余的少量曱基丙浠酸及环 氧乙烷, 该塔式反应器理论塔板数 10, 反应压力 l.OMPa, 绝热反应器出口温度
130°C , 停留时间 0.5h, 反应完毕后产品液经气相色 i普分析产品组成。 谙图如图
2。 样品保留时间: MAA 6.17min, HEMA 14.86min, DEGMAA (单酯副产物:甲 基丙烯酸一缩二乙二醇酯) 18.43min, EGDMAA (双酯副产物:乙二醇二甲基丙烯 酸酯) 18.76 min。 分析结果见表 1。
表 1: 实施例 1产品液分析结果
Figure imgf000009_0001
实施例 2
与实施例 1 不同的是, 本实施例提供了不同 EO进料比例(即第一静态混合 器、 第二静态混合器、 第三静态混合器中加入 EO的质量比例), 考察其对反应 性能的影响, 其它参数同实施例 1。 产品液经气相色 i普分析, 其结果见表 2。 表 2: 实施例 2产品液分析结果
Figure imgf000009_0002
实施例 3
与实施例 1 不同的是, 本实施例提供了不同反应温度对反应性能的影响, 其它参数同实施例 1。 产品液经气相色语分析, 其结果见表 3。
表 3: 实施例 3产品液分析结果
Figure imgf000010_0001
实施例 4
与实施例 1 不同的是, 本实施例提供了不同反应压力对反应性能的影响, 其它参数同实施例 1。 产品液经气相色谱分析, 其结果见表 4。 表 4: 实施例 4产品液分析结果
Figure imgf000010_0002
对比例 1
搅拌釜式反应器工艺:
依次向釜内加入 500Kg甲基丙烯酸, 0.5 Kg ZJ-701 , 2.5 Kg甲酸铬, 蒸汽 加热至 85°C,采用氮气置换体系中空气, 80~85°C条件下滴加环氧乙烷 268.6 Kg, 进行加成反应约 3个小时, 环氧乙烷与甲基丙歸酸摩尔比为 1.05·. 1 , EO加入 完毕后,继续老化 2h反应,取样检测曱基丙烯酸质量百分数小于 0.5%视为加成 反应完毕, 反应完毕产品液经气相色谱分析, 其结果见表 5所示。
表 5: 对比例 1产品液分析结果
Figure imgf000011_0001

Claims

权利要求
1. 一种(曱基)丙浠酸羟乙酯的制备方法, 其特征在于, 采用三段管式反应器 与塔式反应器的联用工艺: 首先混合催化剂、 阻聚剂和 (曱基)丙烯酸至固体溶解, 然后与部分环氧乙烷混合后进入第一管式反应器反应 ,从第一管式反应器流出的 反应液与一定量的环氧乙烷混合进入第二管式反应器反应,从第二管式反应器流 出的反应液再与一定量环氧乙烷混合后进入第三管式反应器反应 ,从第三管式反 应器流出的反应液再经过一段塔式反应器进行老化, 釆出得到(曱基)丙烯酸羟乙 酯产品液。
2. 根据权利要求 1所述的方法,其特征在于,整个反应中的环氧乙烷总量与 (甲基)丙烯酸的摩尔比为 1.0〜1.2:1 , 优选 1.03〜1.1 : 1。
3.根据权利要求 1或 2所述的方法,其特征在于,所述的阻聚剂选自对苯醌、 对苯二胺、 吩噻嗪、 二异丙基对苯二胺、 对羟基四曱基哌啶氮氧自由基和对羰基 四曱基哌啶氮氧自由基中的一种或多种; 阻聚剂的用量为(曱基)丙烯酸质量的 0.01-0.2 %, 优选 0.05~0.15%。
4.根据权利要求 1或 2所述的方法,其特征在于,所述的催化剂为胺化合物、 铁化合物和铬化合物中的一种或多种; 所述胺化合物选自四丁基溴化铵、 四曱基 溴化铵、 四曱基氯化铵、 四丁基碘化铵、 三乙胺、 吡啶, 所述铁化合物选自三氯 化铁、 铁粉、 曱酸铁、 乙酸铁、 丙烯酸铁、 曱基丙烯酸铁, 所述铬化合物选自三 氯化铬、 丙烯酸铬、 曱基丙烯酸铬、 乙酰丙酮铬、 吡啶曱酸铬、 曱酸铬、 乙酸铬; 催化剂的用量为(曱基)丙烯酸质量的 0.1〜2 %, 优选 0.3〜1 %。
5. 根据权利要求 1或 2任一项所述的方法,其特征在于,第一管式反应器中 加入的环氧乙烷的量为整个反应中环氧乙烷总量的 30~80%,优选 50〜70%; 第二 管式反应器中加入的环氧乙烷的量为整个反应中环氧乙烷总量的 10~50%, 优选 20-40%; 第三管式反应器加入的环氧乙烷的量为整个反应中环氧乙烷总量的 1-30%, 优选 5~20%。
6. 根据权利要求 1-5任一项所述的方法, 其特征在于, 第一管式反应器中, 反应温度为 80〜120°C , 优选 90〜110°C ; 反应压力为 0.2~0.5 MPa, 优选 0.3〜0.4 MPa; 停留时间为 0.1~0.3 h, 优选 0.15〜0.25 h。
7.根据权利要求 1-5任一项所述的方法, 其特征在于, 第二管式反应器中, 反应温度为 100~130°C , 优选 110〜120°C ; 反应压力为 0.4〜0.8MPa, 优选 0.5〜0.7 MPa; 停留时间为 0.2〜0.5 h, 优选 0.25〜0.4 h。
8. 根据权利要求 1-5任一项所述的方法, 其特征在于, 第三管式反应器中, 反应温度为 110~150°C, 优选 120~130°C ; 反应压力为 0.5〜1 MPa, 优选 0.6〜0.9 MPa; 停留时间为 0.25~0.6 h, 优选 0.3~0.5 h。
9.根据权利要求 1所述的方法,其特征在于,反应中各段管式反应器均采用 N2保护。
10. 根据权利要求 1所述的方法, 其特征在于, 所述塔式反应器采用绝热塔 式反应器。
11. 根据权利要求 1、 2、 9或 10所述的方法, 其特征在于, 所述塔式反应器 理论塔板数为 4~20, 优选 6〜15; 反应压力为 0.8 ~ 1.2 MPa, 优选 0.9 ~ 1.1 MPa; 停留时间为 0.3-1 h, 优选 0.4-0.6 h。
12.根据权利要求 1-11任一项方法所制备得到的(曱基)丙烯酸羟乙酯产品。
PCT/CN2014/083208 2014-07-14 2014-07-29 一种(甲基)丙烯酸羟乙酯的制备方法 WO2016008174A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/300,566 US9845281B2 (en) 2014-07-14 2014-07-29 Method for preparing hydroxyethyl (meth) acrylate
EP14897669.9A EP3170806B1 (en) 2014-07-14 2014-07-29 Method for preparing hydroxyethyl (methyl)acrylate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410334216.1A CN105272851B (zh) 2014-07-14 2014-07-14 一种(甲基)丙烯酸羟乙酯的制备方法
CN201410334216.1 2014-07-14

Publications (1)

Publication Number Publication Date
WO2016008174A1 true WO2016008174A1 (zh) 2016-01-21

Family

ID=55077856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/083208 WO2016008174A1 (zh) 2014-07-14 2014-07-29 一种(甲基)丙烯酸羟乙酯的制备方法

Country Status (4)

Country Link
US (1) US9845281B2 (zh)
EP (1) EP3170806B1 (zh)
CN (1) CN105272851B (zh)
WO (1) WO2016008174A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200055799A1 (en) * 2017-05-09 2020-02-20 Exxonmobil Chemical Patents Inc. Linear Alpha Olefin Process Using Temperature Control in Oligomerization Reactor
CN108409565A (zh) * 2018-01-22 2018-08-17 安徽联化新材料有限公司 一种(甲基)丙烯酸羟乙酯的制备方法
CN108276283A (zh) * 2018-01-22 2018-07-13 安徽联化新材料有限公司 一种丙烯酸羟丙酯的连续生产方法
CN108409566A (zh) * 2018-01-22 2018-08-17 安徽联化新材料有限公司 一种(甲基)丙烯酸羟丙酯的制备方法
CN108358785A (zh) * 2018-01-22 2018-08-03 安徽联化新材料有限公司 一种丙烯酸羟乙酯的连续生产方法
CN108383725A (zh) * 2018-01-22 2018-08-10 安徽联化新材料有限公司 一种(甲基)丙烯酸羟乙酯的连续生产设备
CN108276282A (zh) * 2018-01-22 2018-07-13 安徽联化新材料有限公司 一种(甲基)丙烯酸羟丙酯的连续生产设备
CN109467505A (zh) * 2018-11-16 2019-03-15 潍坊科麦化工有限公司 一种甲基丙烯酸羟乙酯的制备方法
CN110922330B (zh) * 2019-11-22 2022-08-26 广东新华粤石化集团股份公司 一种丙烯酸羟乙酯的制备方法
CN113717048A (zh) * 2020-05-24 2021-11-30 广东工业大学 乙二醇二甲基丙烯酸酯的制备方法
CN112592296B (zh) * 2020-12-21 2023-01-20 浙江新和成股份有限公司 一种连续反应生产羟乙基磺酸钠的方法
CN115010842B (zh) * 2022-05-20 2024-02-02 万华化学集团股份有限公司 一种含氟强碱性阴离子树脂催化剂、制备方法及一种(甲基)丙烯酸羟乙酯的制备方法
CN114835578A (zh) * 2022-06-10 2022-08-02 安徽三禾化学科技有限公司 一种丙烯酸羟丙脂的制备方法
CN115779977B (zh) * 2022-11-04 2024-05-03 万华化学集团股份有限公司 一种连续化生产低价态铬负载催化剂的系统及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101591245A (zh) * 2009-06-23 2009-12-02 沈阳石蜡化工有限公司 一种丙烯酸正丁酯的生产方法
CN102584579A (zh) * 2012-01-16 2012-07-18 常州海克莱化学有限公司 一种甲基丙烯酸羟乙酯的制备工艺
CN103304413A (zh) * 2013-05-23 2013-09-18 无锡市华明化工有限公司 一种甲基丙烯酸羟乙酯的合成方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6414182B1 (en) * 1999-08-16 2002-07-02 Nippon Shokubai Co., Ltd. Production process for hydroxyalkyl ester
EP1090903A3 (en) * 1999-10-06 2003-04-16 Nippon Shokubai Co., Ltd. production process for hydroxyalkyl (meth)acrylate
JP3592970B2 (ja) * 1999-10-07 2004-11-24 株式会社日本触媒 ヒドロキシアルキル(メタ)アクリレートの精製方法
KR20010089991A (ko) * 2000-03-13 2001-10-17 아이다 겐지 히드록시알킬(메타)아크릴레이트의 제조방법
JP2002234861A (ja) * 2001-02-09 2002-08-23 Nippon Shokubai Co Ltd ヒドロキシアルキルエステルの製造方法
KR100580124B1 (ko) * 2003-12-01 2006-05-15 주식회사 한농화성 2-히드록시에틸메타아크릴레이트의 정제방법
WO2006013971A1 (ja) * 2004-08-06 2006-02-09 Nippon Shokubai Co., Ltd. ヒドロキシアルキル(メタ)アクリレートの製造方法
CN102153468B (zh) * 2007-02-14 2014-05-07 罗门哈斯公司 一种制备(甲基)丙烯酸羟烷基酯的方法
US20090209783A1 (en) * 2008-02-19 2009-08-20 Curtis Michael A Process for the production of hydroxyalkyl (meth)acrylates
CN101891613A (zh) * 2010-07-17 2010-11-24 天津市化学试剂研究所 甲基丙烯酸羟乙酯的制备方法
CN102584582B (zh) * 2012-01-16 2013-12-25 常州海克莱化学有限公司 一种丙烯酸羟基乙酯的制备工艺
CN104725169A (zh) * 2013-12-24 2015-06-24 辽宁奥克化学股份有限公司 一种在微反应器中进行烷氧基化反应的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101591245A (zh) * 2009-06-23 2009-12-02 沈阳石蜡化工有限公司 一种丙烯酸正丁酯的生产方法
CN102584579A (zh) * 2012-01-16 2012-07-18 常州海克莱化学有限公司 一种甲基丙烯酸羟乙酯的制备工艺
CN103304413A (zh) * 2013-05-23 2013-09-18 无锡市华明化工有限公司 一种甲基丙烯酸羟乙酯的合成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3170806A4 *

Also Published As

Publication number Publication date
US9845281B2 (en) 2017-12-19
CN105272851B (zh) 2017-09-19
EP3170806B1 (en) 2020-04-08
CN105272851A (zh) 2016-01-27
EP3170806A4 (en) 2018-03-07
US20170183288A1 (en) 2017-06-29
EP3170806A1 (en) 2017-05-24

Similar Documents

Publication Publication Date Title
WO2016008174A1 (zh) 一种(甲基)丙烯酸羟乙酯的制备方法
CN101712755B (zh) 末端含双键的烷氧基聚醚及其制备方法
CN106752879B (zh) 一种高固体分丙烯酸树脂的制备方法
CN109734895B (zh) 一种以羧酸为引发剂可控制备聚醚的方法
JP2010528079A (ja) 酸化中のエステル化によるメタクリル酸メチルの製造方法
CN101899151A (zh) 一种聚羧酸减水剂大单体的制备方法
JP5538214B2 (ja) 酸化によるメタクリル酸の製造における原料組成物の使用
CN103058849B (zh) 一种合成甲基丙烯酸酐的间歇反应精馏工艺
CN102079799B (zh) 一种二元聚合物蜡油降凝剂的制备方法
CN105541646A (zh) 用于合成两性型聚羧酸高效减水剂的有机单体及制备方法
JP6925079B2 (ja) アルコール又はアルカンから有機過酸化物を直接製造するオンライン完全連続ストリーム生産プロセス
CN109705281A (zh) 一种制备聚合物多元醇的方法
CN106589035A (zh) 一种醋酸泼尼松龙的制备工艺
JP6675492B2 (ja) アクリル酸エステルの液相の調製方法
CN102146071A (zh) 一种合成(2,3-环碳酸甘油酯)(甲基)丙烯酸酯的方法
Cheng et al. Green and sustainable synthesis of poly (δ-valerolactone) with a TBD catalyzed ring-opening polymerization reaction
CN102659720B (zh) 3,3-双[(甲基)丙烯酸甲酯基]氧杂环丁烷化合物及其制备方法
CN110240543A (zh) 一种4-溴-3-甲基-2-丁烯-1-醇乙酸酯的制备方法
KR20200131065A (ko) 연속식 반응공정을 사용하는 알킬 3-알콕시프로피오네이트의 제조방법
CN106748931B (zh) 一种星形聚羧酸减水剂成核剂三乙醇胺三(3-巯基丙酸)酯及其制备方法
CN110590555A (zh) 双(2-羟基乙基)对苯二甲酸酯的制法
KR101178238B1 (ko) 공비적 에스테르화에 의한 알킬 아크릴레이트의 제조방법
CN113896634B (zh) 一种3-甲氧基丙烯酸甲酯的制备方法
CN101792527B (zh) 一种聚氧乙烯醚酯型单体、其合成及在减水剂合成中的应用
CN104774190A (zh) 一种香料级苹果酯的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14897669

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014897669

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15300566

Country of ref document: US

Ref document number: 2014897669

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE