WO2016006687A1 - 車両制御装置および車両制御方法 - Google Patents

車両制御装置および車両制御方法 Download PDF

Info

Publication number
WO2016006687A1
WO2016006687A1 PCT/JP2015/069913 JP2015069913W WO2016006687A1 WO 2016006687 A1 WO2016006687 A1 WO 2016006687A1 JP 2015069913 W JP2015069913 W JP 2015069913W WO 2016006687 A1 WO2016006687 A1 WO 2016006687A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake operation
braking
force
vehicle
speed
Prior art date
Application number
PCT/JP2015/069913
Other languages
English (en)
French (fr)
Inventor
金子 聡
鈴木 圭介
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to US15/323,776 priority Critical patent/US20170113700A1/en
Priority to CN201580036762.XA priority patent/CN106660532A/zh
Priority to EP15818227.9A priority patent/EP3168098A4/en
Publication of WO2016006687A1 publication Critical patent/WO2016006687A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/06Improving the dynamic response of the control system, e.g. improving the speed of regulation or avoiding hunting or overshoot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T1/00Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles
    • B60T1/02Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels
    • B60T1/10Arrangements of braking elements, i.e. of those parts where braking effect occurs specially for vehicles acting by retarding wheels by utilising wheel movement for accumulating energy, e.g. driving air compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/04Brake-action initiating means for personal initiation foot actuated
    • B60T7/042Brake-action initiating means for personal initiation foot actuated by electrical means, e.g. using travel or force sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18181Propulsion control with common controlling member for different functions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions
    • B60W40/076Slope angle of the road
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D61/00Brakes with means for making the energy absorbed available for use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/022Collision avoidance systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/60Regenerative braking
    • B60T2270/604Merging friction therewith; Adjusting their repartition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • B60W2710/182Brake pressure, e.g. of fluid or between pad and disc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles

Definitions

  • the present invention relates to a vehicle control device and a vehicle control method.
  • the braking force is reduced as the brake operation amount is increased, so that the braking force is limited during sudden braking such as obstacle avoidance, and the braking distance becomes longer.
  • An object of the present invention is to provide a vehicle control device and a vehicle control method that can suppress an increase in braking distance during sudden braking.
  • the driver's braking operation is detected.
  • the driving force is reduced according to the brake operation state of the driver and the braking force is adjusted according to the driving force.
  • the braking force is generated according to the brake operation state.
  • FIG. 1 is a system diagram illustrating a configuration of an electric vehicle according to a first embodiment.
  • 3 is a control block diagram relating to creep control of a vehicle controller 4.
  • FIG. It is a setting map of the creep torque command value according to a motor rotation speed.
  • 5 is a control block diagram of a limit value calculation unit 23.
  • FIG. It is a setting map of the creep torque limit value according to the brake operation amount. It is a time chart which shows the operation
  • FIG. 1 is a system configuration diagram of an electric vehicle according to a first embodiment.
  • the electric vehicle according to the first embodiment includes an electric motor (hereinafter referred to as a motor) 1 that generates positive and negative torques (drive torque and braking torque).
  • a resolver is connected to the motor 1 as the motor rotation speed sensor 2.
  • the motor controller (motor control unit) 3 outputs an inverter drive command to the inverter 5 with reference to the motor rotational speed from the motor rotational speed sensor 2 based on the motor torque command value from the vehicle controller 4.
  • the inverter 5 supplies a current corresponding to the inverter drive command to the motor 1 to control the motor torque.
  • the output shaft 1 a of the motor 1 is connected to the speed reducer 6 and transmits torque to the axle 8 via the differential gear 7.
  • Electric power for driving the motor 1 is supplied from the high voltage battery 9.
  • the high voltage battery 9 is monitored by a battery controller 10 for the state of charge and the degree of heat generation.
  • a DC-DC converter 11 is connected to the high voltage battery 9, and the voltage is stepped down by the DC-DC converter 11 to charge the low voltage battery 12.
  • the vehicle controller 4 includes an accelerator pedal stroke (accelerator operation amount) from the accelerator stroke sensor 13, wheel speeds of the wheels 15FL, 15FR, 15RL, and 15RR inputted via the in-vehicle communication line 14, and a high-voltage battery 9
  • the motor torque command value is calculated on the basis of the state of charge. Further, the vehicle controller 4 regenerates torque for regenerative cooperative control based on each wheel speed input via the in-vehicle communication line 14, brake pedal stroke (brake operation amount), charging state of the high voltage battery 9, and the like. Calculate the command value.
  • Regenerative cooperative control refers to the brake calipers 21FL, 21FR, 21RL for the braking force required to generate deceleration according to the driver's braking operation.
  • the brake control that obtains the deceleration required by the driver as a whole vehicle with both braking forces by compensating with the friction braking force by 21RR.
  • the regenerative torque command value is output to the in-vehicle communication line 14.
  • the brake controller (hydraulic braking control unit) 16 obtains the braking force corresponding to the brake operation amount (brake operation state) from the brake stroke sensor (brake operation state detection unit) 17, that is, the braking force requested by the driver.
  • a braking force command value is calculated, and a hydraulic pressure control unit drive command is output to the hydraulic pressure control unit 19.
  • the hydraulic pressure control unit 19 is provided in each wheel 15FL, 15FR, 15RL, 15RR through the hydraulic pipe 20 by operating the pump motor and each valve in the hydraulic pressure control unit 19 according to the hydraulic pressure control unit drive command.
  • Brake fluid is sent to each brake caliper 21FL, 21FR, 21RL, 21RR to generate friction braking force.
  • the hydraulic control unit 19, the hydraulic piping 20, and the brake calipers 21FL, 21FR, 21RL, and 21RR constitute a hydraulic braking device that applies a braking force to the wheels 15FL, 15FR, 15RL, and 15RR.
  • the brake controller 16 subtracts the braking force command value corresponding to the brake operation amount from the braking force converted value of the regenerative torque command value input via the in-vehicle communication line 14 as a braking force command. Then, the hydraulic pressure control unit 19 is driven.
  • the brake controller 16 also includes the wheel speeds from the wheel speed sensors 18FL, 18FR, 18RL, and 18RR, the motor speed input through the in-vehicle communication line 14, the motor torque, and other parameters.
  • the brake controller 16 Based on information from in-vehicle sensors (yaw rate sensor, G sensor, etc.), it calculates braking force command values for driving slip prevention control (TCS control), braking slip prevention control (ABS control), automatic brake control, etc.
  • a hydraulic pressure control unit drive command is output to the pressure control unit 19.
  • the brake controller 16 includes a vehicle speed calculation unit 16a (see FIG. 2) that calculates the vehicle speed.
  • the vehicle speed calculation unit 16a calculates the vehicle speed from each wheel speed.
  • the brake controller 16 outputs the calculated vehicle speed to the in-vehicle communication line 14 in addition to being used for each control described above.
  • the vehicle speed is calculated from an average value of the wheel speeds of the front wheels 15FL and 15FR, for example.
  • FIG. 2 is a control block diagram relating to creep control of the vehicle controller 4.
  • a creep torque command value calculation unit (driver required driving force calculation unit) 22 calculates a creep torque command value according to the motor speed when the accelerator operation amount is zero.
  • FIG. 3 is a setting map of a creep torque command value according to the motor rotation speed.
  • the creep torque command value takes a maximum value in a section where the motor rotation speed is zero to a predetermined first rotation speed N th1 ( ⁇ N th2 ), and in the section of the first rotation speed N th1 to the second rotation speed N th2 It is set to be smaller as the rotational speed is higher and to be zero at the second rotational speed Nth2 .
  • the limit value calculation unit (driver required driving force limit unit) 23 is configured according to the post-limit creep torque command value that limits the creep torque command value according to the brake operation amount and the brake operation amount calculated by the brake controller 16.
  • a braking force limit value for limiting the braking force command value is calculated.
  • the motor controller 3 outputs an inverter drive command based on the post-limit creep torque command value to the inverter 5 during the creep control.
  • the brake controller 16 outputs a hydraulic pressure control unit drive command to the hydraulic pressure control unit 19 based on the post-restricted braking force command value obtained by subtracting the braking force limit value from the braking force command value during creep control.
  • a hydraulic pressure control unit drive command based on the braking force command value is output to the hydraulic pressure control unit 19.
  • FIG. 4 is a control block diagram of the limit value calculation unit 23.
  • the differential calculation unit 25 calculates the brake operation speed by first-order differentiation of the brake operation amount.
  • the sudden depression determination unit 26 compares the brake operation speed with a predetermined sudden depression determination threshold, and when the brake operation speed is equal to or higher than the sudden depression determination threshold, the sudden depression indicating the sudden depression state (rapid braking state).
  • the judgment flag is turned ON, and when the brake operation speed is smaller than the sudden step judgment threshold, the sudden step judgment flag is turned OFF.
  • the brake ON determination unit 27 compares the brake operation amount with a predetermined brake OFF determination threshold value, and if the brake operation amount is equal to or greater than the brake OFF determination threshold value, the brake ON determination flag indicates that the brake pedal is being operated.
  • the output switching unit 28 outputs the sudden step determination flag when the sudden step determination flag is ON, and outputs the sudden step determination flag one calculation cycle before when the sudden step determination flag is OFF. .
  • the previous value calculation unit 29 outputs a sudden step determination flag one calculation cycle before.
  • the sudden step determination flag holding unit 30 outputs the state of the sudden step determination flag from the output switching unit 28 when the brake ON determination flag is ON, and determines the sudden step determination when the brake ON determination flag is OFF. Turn off the flag.
  • the brake pedal When the sudden step determination flag is turned on once in the sudden step determination unit 26 by the operation of the output switching unit 28, the previous value calculation unit 29, and the sudden step determination flag holding unit 30, the brake pedal is not operated until the brake pedal is not operated. The state where the step determination flag is ON is maintained.
  • the road surface gradient detector 31 detects a road surface gradient.
  • the road surface gradient detection unit 31 estimates a braking force generated in the vehicle from the braking force limit value, and predicts a vehicle speed (predicted vehicle speed) when traveling on a flat road based on the braking force generated in the vehicle.
  • a speed prediction unit 31a is included.
  • the road surface gradient detection unit 31 obtains a road surface gradient from the difference between the predicted vehicle speed predicted by the vehicle speed prediction unit 31a and the vehicle speed (calculated vehicle speed) calculated by the brake controller 16.
  • the wheel speed is calculated from an average value of the wheel speeds of the left and right front wheels 15FL and 15FR, for example.
  • the creep torque limit value calculation unit 32 calculates a creep torque limit value for limiting the upper limit of the creep torque command value based on the brake operation amount and the road surface gradient.
  • FIG. 5 is a setting map of a creep torque limit value according to the brake operation amount. The creep torque limit value takes the maximum value when the brake operation amount is between zero and the first operation amount S th1.
  • the creep torque limit value decreases as the brake operation amount increases between the first operation amount S th1 and the second operation amount S th2. , It is set to be zero in the interval of the second operation amount S th2 or more.
  • the creep torque limit value calculated from the map of FIG. 5 is corrected according to the road surface gradient. In the case of an upward slope, the creep torque limit value is increased as the road surface slope is larger. As a result, the creep force of the vehicle on the ascending slope becomes a second creep force that is larger than the creep force (first creep force) corresponding to the brake operation amount. On the other hand, in the case of a downward gradient, the creep torque limit value is decreased as the road surface gradient increases.
  • the limiter processing unit 33 limits the upper limit of the rate of change of the creep torque limit value calculated by the creep torque limit value calculating unit 32 with a rate limiter value corresponding to the brake operation speed.
  • the rate limiter value increases as the brake operation speed increases.
  • the rate limiter value is synchronized (matched).
  • the brake operation speed is higher than the predetermined speed V th1
  • the value is smaller than the brake operation speed.
  • the lower limit value setting unit 34 compares the creep torque limit value whose upper limit of the change rate is limited by the limiter processing unit 33 with zero, and outputs the larger value as the creep torque limit value.
  • the post-restriction creep torque command value calculation unit 35 compares the creep torque command value with the creep torque limit value, and outputs the smaller value as the post-restriction creep torque command value.
  • the post-limit creep torque command value is sent to the motor controller 3.
  • the brake torque limit value calculation unit 36 calculates a brake torque limit value by subtracting the post-limit creep torque command value from the creep torque command.
  • the braking force limit value calculation unit 37 multiplies the brake torque limit value by an Nm ⁇ N conversion constant for converting torque into braking force, and outputs a braking force limit value.
  • the braking force limit value selection unit 38 outputs zero as the braking force limit value when the sudden step determination flag is ON, and calculates by the braking force limit value calculation unit 37 when the sudden step determination flag is OFF. Output the braking force limit value.
  • the braking force limit value is sent to the brake controller 16.
  • the brake operation amount is small (when smaller than the second operation amount S th2 )
  • the post-restriction creep torque command value is set to the maximum value and is not reduced to zero.
  • the amount of brake operation is small, the driver has a low intention to stop the vehicle, and there is a high possibility of re-acceleration immediately.
  • the brake operation amount becomes small while the vehicle is stopped, there is a high possibility that the vehicle will restart. Therefore, in this case, by not stopping the motor 1, it is possible to suppress a delay in the rising of the driving force when the accelerator is depressed during restart or reacceleration.
  • the limit value calculation unit 23 increases the braking force limit value as the post-limit creep torque command value decreases. Therefore, the post-restriction braking force command value obtained by subtracting the braking force limit value from the braking force command value becomes smaller as the post-restriction creep torque command value is smaller.
  • the creep force is decreased as the brake operation amount is increased, the actual deceleration becomes larger than the deceleration expected by the driver.
  • the actual deceleration obtained is smaller than the deceleration corresponding to the driver's brake operation amount.
  • the driver usually performs the brake operation on the premise that the deceleration is reduced by the generation of the creep force, although it is unconscious.
  • the brake operation amount is large, a deceleration larger than the deceleration expected by the driver is obtained.
  • the driver feels uncomfortable due to the discrepancy. Therefore, by reducing the braking force as the creep force limit amount increases (first state), it is possible to suppress the influence on the deceleration due to the limitation of the creep force, and to reduce the uncomfortable feeling given to the driver.
  • the limit value calculator 23 increases the rate limiter value as the brake operation speed increases. That is, the creep force reduction gradient is increased as the brake operation speed is higher, so that the deceleration can be increased more quickly as the brake operation speed is higher, and the deceleration can be changed according to the driver's intention to decelerate.
  • the rate limiter value is made to coincide with the brake operation speed. That is, by synchronizing the brake operation speed and the creep force reduction speed, it is possible to reduce the uncomfortable feeling caused by the discrepancy between the brake operation speed and the deceleration change speed.
  • the rate limiter value is made smaller than the brake operation speed.
  • the torque of the motor 1 is reduced in accordance with an abrupt braking operation, vibrations due to drive system resonance may occur in the drive system of the vehicle body (such as the gear of the speed reducer 6 and the differential gear 7). Drive system vibration causes shock and noise. Therefore, when the brake operation speed is high, the reduction of the creep force is made smaller than the brake operation speed, so that drive system vibration when the brake operation speed is high can be suppressed.
  • the road surface gradient detection unit 31 detects that there is a road surface gradient when there is a deviation between the predicted vehicle speed by the vehicle speed prediction unit 31a and the calculated vehicle speed calculated by the brake controller 16. Thereby, the presence or absence of a road surface gradient can be easily detected. In addition, since the deviation between the predicted vehicle speed and the calculated vehicle speed increases as the road surface gradient increases, the magnitude of the gradient can be estimated with high accuracy.
  • the braking force increases as the brake operation amount increases when the driver performs sudden braking (rapid depression of the brake pedal) such as obstacle avoidance during creep control. Is restricted, the braking distance becomes long.
  • the sudden braking state is detected from the brake operation speed, and when the sudden braking state is detected, the creep force is reduced according to the amount of brake operation as in the non-rapid braking state. Is not reduced, and a braking force corresponding to the amount of brake operation is generated (second state).
  • a braking force corresponding to the amount of brake operation is generated (second state).
  • FIG. 6 is a time chart showing the creep control operation of the first embodiment at the normal time (non-steep stepping time).
  • the vehicle speed starts to decrease. Since the brake operation speed is smaller than the sudden step determination threshold, the sudden step determination flag is maintained in the OFF state thereafter.
  • the motor rotational speed has decreased to the second rotational speed Nth2 , creep control is started, and the creep torque command value rises during the period from time t2 to time t3.
  • the creep torque limit value is also calculated according to the amount of brake operation, the creep torque command value is smaller than the creep torque limit value, so the creep torque command value becomes the post-limit creep torque command value, and the post-limit creep torque command value is To increase. Further, since the difference between the creep torque command value and the post-limit creep torque command value, that is, the braking force limit value is zero, the post-limit braking force command value matches the braking force command value corresponding to the brake operation amount. Yes. Since the creep torque limit value coincides with the creep torque command value at time t3, the creep torque limit value becomes the post-limit creep torque command value, and the post-limit creep torque command value decreases in the interval from time t3 to t4. The post-limit braking force command value is limited to a value obtained by subtracting the braking force limit value from the braking force command value.
  • the brake operation amount has reached the second operation amount S th2, and therefore the post-limit creep torque command value becomes zero.
  • the braking force command value was constant during the period from time t4 to t5, but the creep torque command value increased as the vehicle speed decreased.
  • the power limit value increases, and the post-limit braking force command value gradually decreases.
  • the motor rotation speed has decreased to the first rotation speed Nth1 , so the creep torque command value becomes the maximum value.
  • the post-limit creep torque command value increases in the period from time t7 to time t8. Since the braking force limit value decreases, the post-limit braking force command value increases. At time t8, the braking force command value coincides with the post-restriction braking force command value, so the braking force command value becomes the post-restriction braking force command value, and the post-restriction braking force command value decreases in the interval from time t8 to t9.
  • the post-restriction creep torque command value becomes the maximum value, while the post-restriction braking force command value becomes zero, so the vehicle starts moving forward with the creep force acting on the vehicle. To do.
  • FIG. 7 is a time chart showing the creep control operation of the first embodiment during a sudden stepping.
  • the vehicle speed starts to decrease. Since the brake operation speed exceeds the sudden depression determination threshold, the sudden depression determination flag is turned on.
  • the creep torque limit value is also calculated according to the amount of brake operation, the creep torque command value is smaller than the creep torque limit value, so the creep torque command value becomes the post-limit creep torque command value, and the post-limit creep torque command value is To increase.
  • the post-limit braking force command value matches the braking force command value corresponding to the brake operation amount. Yes. Since the creep torque limit value coincides with the creep torque command value at time t3, the creep torque limit value becomes the post-limit creep torque command value, and the post-limit creep torque command value decreases in the interval from time t3 to t4. Since the sudden step determination flag is in the ON state and the braking force limit value remains zero, the post-limit braking force command value matches the braking force command value.
  • the brake operation amount has reached the second operation amount S th2, and therefore the post-limit creep torque command value becomes zero.
  • the driver stops depressing the brake pedal, so that the post-restriction braking force command value is kept constant during the period from time t4 to t5.
  • the motor rotation speed has decreased to the first rotation speed Nth1 , so the creep torque command value becomes the maximum value.
  • the vehicle stops.
  • the post-restriction braking force command value in the section from time t5 to t7 is the same as that in the period from time t4 to t5.
  • the post-limit creep torque command value increases in the interval from time t7 to t8.
  • the post-limit braking force command value decreases as the brake operation amount decreases.
  • the post-restriction creep torque command value becomes the maximum value, but the post-restriction braking force command value becomes zero, so the vehicle starts moving forward with the creep force acting on the vehicle. To do.
  • the broken lines of the vehicle speed and the braking force indicate a case where the braking force is reduced during the sudden braking as in the normal case as a comparative example of the first embodiment.
  • the post-limit braking force command value decreases as the braking force limit value increases from time t3. For this reason, the post-limit braking force command value is greatly limited with respect to the braking force command value calculated according to the brake operation amount. Therefore, in the comparative example, the deceleration required by the driver during sudden braking cannot be obtained, and the braking distance becomes long.
  • the braking force limit value is set to zero during sudden braking, so that the deceleration required by the driver can be obtained, and the braking distance can be prevented from becoming long. While the stop time of the comparative example is t6 ′, the stop time of Example 1 is t6, and the braking distance is greatly shortened.
  • the vehicle control apparatus has the following effects.
  • a brake controller 16 that controls the braking force of the motor, and the motor controller 3 controls the electric motor 1 to reduce the driving force according to the amount of brake operation when the driver's brake operation is detected, and the brake controller 16 shows a first state in which the braking force is reduced according to the driving force generated by the motor controller 3 and a sudden braking state based on the amount of brake operation detected by the brake stroke sensor 17.
  • the motor controller 3 controls the driving force so as to generate a creep force when the driver performs a braking operation, and the brake controller 16 reduces the braking force in accordance with the calculated creep force in the first state. Change. Therefore, the influence on the deceleration due to the reduction of the creep force can be suppressed, and the uncomfortable feeling given to the driver can be reduced.
  • the reduction amount of the creep force is determined according to the brake operation amount of the driver. When the brake operation amount is large, the reduction amount is larger than when the brake operation amount is small. Therefore, useless energy consumption can be suppressed. (4) Reduce the creep force to zero when the brake operation amount is large. Therefore, useless energy consumption can be suppressed to the maximum. (5) The creep force is not reduced to zero when the brake operation amount is small. Therefore, it is possible to suppress a delay in the rising of the driving force when the accelerator is depressed during restart or reacceleration. (6) The slope of the creep force to be reduced is determined according to the brake operation speed of the driver. When the brake operation speed is high, the reduction slope is larger than when the brake operation speed is low.
  • the decreasing gradient has a magnitude corresponding to the brake operation speed when the brake operation speed is low, and is smaller than the brake operation speed when the brake operation speed is high. Therefore, it is possible to achieve both the reduction of the uncomfortable feeling caused by the discrepancy between the brake operation speed and the deceleration change and the suppression of the drive system vibration.
  • a road surface gradient detection unit 31 that detects the gradient of the road surface on which the vehicle stops by the driver's brake operation, and the motor controller 3 detects that the road surface gradient is detected by the road surface gradient detection unit 31, Further, the creep force determined according to the brake operation amount is increased. Therefore, the occurrence of excessive deceleration on the uphill road can be suppressed, and the rollback at the start can be suppressed.
  • the vehicle speed calculation unit 16a that calculates the vehicle speed and the vehicle speed prediction unit 31a that predicts the vehicle speed based on the braking force generated in the vehicle. When there is a deviation between the predicted vehicle speed by the speed prediction unit 31a and the calculated vehicle speed by the vehicle speed calculation unit 16a, it is detected that there is a road surface gradient.
  • Example 2 in the control block diagram of the limit value calculation unit 23 shown in FIG. 4, the operations of the differential calculation unit 25 and the sudden step determination unit 26 are different from those in the first embodiment.
  • the differential calculation unit 25 of the second embodiment calculates the brake operation acceleration by performing second order differentiation on the brake operation amount.
  • the sudden depression determination unit 26 compares the brake operation acceleration with a predetermined sudden depression determination threshold, and when the brake operation acceleration is equal to or greater than the sudden depression determination threshold, the sudden depression indicating a sudden depression state (rapid braking state).
  • the judgment flag is turned ON, and when the brake operation acceleration is smaller than the sudden depression judgment threshold, the sudden depression judgment flag is turned OFF. Since other configurations are the same as those of the first embodiment, illustration and description thereof are omitted.
  • the vehicle control apparatus has the following effects in addition to the effects (3) to (10) of the first embodiment.
  • (11) For the electric motor 1 that gives driving force to the wheels 15RL and 15RR, the brake stroke sensor 17 that detects the brake operation amount of the driver, and the wheels 15FL, 15FR, 15RL, and 15RR according to the brake operation amount Hydraulic braking device (hydraulic pressure control unit 19, hydraulic piping 20 and brake calipers 21FL, 21FR, 21RL, 21RR) that gives braking force and creep torque command that calculates the creep torque command value when the accelerator operation amount is zero
  • a value calculation unit 22 a motor controller 3 that controls the driving force of the electric motor 1 to generate a braking force according to the creep torque command value, and a limit value calculation that limits the creep torque command value according to the brake operation amount Unit 23 and a brake controller 16 that causes the hydraulic braking device to generate a braking force command value calculated according to the amount of brake operation, and the brake controller 16 includes a creep torque command value and A first state in which a hydraulic braking force is
  • the motor controller 3 controls the driving force so as to generate a creep force when the driver performs a brake operation, and reduces the creep force according to the amount of brake operation.
  • the magnitude of the reduced creep force is calculated based on the amount of brake operation, and the braking force is changed so as to decrease according to the calculated creep force. Therefore, the influence on the deceleration due to the reduction of the creep force can be suppressed, and the uncomfortable feeling given to the driver can be reduced.
  • the brake operation state of the driver is the amount of brake operation, but the brake operation force of the driver may be the brake operation state.
  • the creep torque limit value is corrected using an ascending slope and a descending slope.
  • the creep torque limit value may be corrected only in the case of an ascending slope.
  • the brake operation acceleration is obtained by second-order differentiation of the brake operation amount.
  • a sensor for detecting the brake operation acceleration may be provided.
  • the brake operation acceleration rises faster than the brake operation amount. Therefore, by detecting the brake operation acceleration directly, compared to the case where the brake operation amount is second-order differentiated, There is an advantage that the state can be judged early.
  • an electric motor that applies driving force to the wheels;
  • a brake operation state detection unit for detecting the brake operation state of the driver;
  • a hydraulic braking device that applies a braking force to the wheel according to the brake operation state or the vehicle state;
  • a motor control unit for controlling the driving force of the electric motor;
  • a hydraulic braking control unit for controlling a braking force of the hydraulic braking device;
  • the motor control unit controls the electric motor to reduce the driving force according to the brake operation state when a driver's brake operation is detected,
  • the hydraulic braking control unit is configured to reduce the braking operation when a braking state is detected by the first state in which the braking force is reduced according to the driving force generated by the motor control unit and the braking operation state detection unit.
  • a vehicle control device comprising: a second state that generates a braking force according to the state.
  • the motor control unit controls the driving force so as to generate a creep force during a brake operation by the driver
  • the fluid pressure braking control unit is a vehicle control device that changes the braking force to become smaller in accordance with the calculated creep force in the first state.
  • the creep force is reduced by a reduction amount determined according to a driver's brake operation amount, and the reduction amount is larger when the brake operation amount is large than when the brake operation amount is small.
  • the creep force is reduced to zero when the brake operation amount is equal to or greater than a predetermined operation amount.
  • the creep force is not reduced to zero when the brake operation amount is less than a predetermined operation amount.
  • the reduction gradient for reducing the creep force is determined so as to be reduced according to the brake operation speed of the driver. When the brake operation speed is high, the reduction gradient is larger than when the brake operation speed is low. apparatus.
  • the reduction gradient has a magnitude corresponding to the brake operation speed when the brake operation speed is equal to or lower than a predetermined speed, and is smaller than the brake operation speed when the brake operation speed is higher than the predetermined speed. Control device.
  • a road surface gradient detection unit that detects the gradient of the road surface on which the vehicle stops by the driver's braking operation, When the road surface gradient is detected by the road surface gradient detection unit, the motor control unit increases a creep force determined according to a brake operation amount in the case of an uphill gradient.
  • a vehicle speed calculator for calculating the speed of the vehicle; A vehicle speed prediction unit that predicts the speed of the vehicle based on the braking force generated in the vehicle; With The road surface gradient detection unit detects a road surface gradient when there is a deviation between a predicted vehicle speed by the vehicle speed prediction unit and a calculated vehicle speed by the vehicle speed calculation unit.
  • a brake operation state detection unit for detecting the brake operation state of the driver;
  • a hydraulic braking device that applies a braking force to the wheel according to the brake operation state or the vehicle state;
  • a driver-requested driving force calculation unit that calculates the driver-requested driving force based on the driver's accelerator operation;
  • a motor control unit for controlling the driving force of the electric motor so as to generate the driver-requested driving force;
  • a driver-requested driving force limiting unit that limits the driver-requested driving force to a limit value according to the brake operation state;
  • a hydraulic braking control unit that causes the hydraulic braking device to generate a braking force calculated according to the brake operation state;
  • the hydraulic braking control unit reduces the force of the difference between the driver required driving force and the limit value calculated by the driver required driving force limiting unit from the calculated braking force, thereby reducing the hydraulic braking force.
  • a vehicle control device comprising: a first state to be generated
  • the motor control unit controls a driving force so as to generate a creep force during a brake operation by a driver, and reduces the creep force according to the brake operation state.
  • the fluid pressure braking control unit is a vehicle control device that calculates the magnitude of the reduced creep force based on the brake operation state, and changes the braking force to become smaller according to the calculated creep force.
  • the creep control is a vehicle control device in which a reduction amount is determined according to a driver's brake operation amount, and when the brake operation amount is large, the reduction amount is larger than when the brake operation amount is small. Therefore, useless energy consumption can be suppressed.
  • the creep force is reduced to zero when the brake operation amount is equal to or greater than a predetermined operation amount. Therefore, useless energy consumption can be suppressed to the maximum.
  • the creep force is not reduced to zero when the brake operation amount is less than a predetermined operation amount. Therefore, it is possible to suppress a delay in the rising of the driving force when the accelerator is depressed during restart or reacceleration.
  • the vehicle control device wherein the creep gradient of the creep force is determined so as to be reduced according to the brake operation speed of the driver, and when the brake operation speed is high, the reduction gradient is larger than when the brake operation speed is low. Therefore, the deceleration can be changed according to the driver's intention to decelerate.
  • the reduction gradient has a magnitude corresponding to the brake operation speed when the brake operation speed is equal to or lower than a predetermined speed, and is smaller than the brake operation speed when the brake operation speed is higher than the predetermined speed. Control device. Therefore, it is possible to achieve both the reduction of the uncomfortable feeling caused by the discrepancy between the brake operation speed and the deceleration change and the suppression of the drive system vibration.
  • a vehicle speed calculator for calculating the speed of the vehicle;
  • a vehicle speed prediction unit that predicts the speed of the vehicle based on the braking force generated in the vehicle;
  • the road surface gradient detection unit detects a road surface gradient when there is a deviation between a predicted vehicle speed by the vehicle speed prediction unit and a calculated vehicle speed by the vehicle speed calculation unit. Therefore, the presence or absence of a road surface gradient can be easily detected.
  • Electric motor 3 Motor controller (motor controller) 16 Brake controller (hydraulic braking controller) 16a Vehicle speed calculator 17 Brake stroke sensor (brake operation state detector) 19 Hydraulic control unit (hydraulic braking device) 20 Hydraulic pressure Piping (hydraulic braking device) 21FL, 21FR, 21RL, 21RR Brake caliper (hydraulic braking device) 22 Creep torque command value calculation unit (driver required driving force calculation unit) 23 Limit value calculation unit (driver required driving force limit) Part) 31 Road surface gradient detection part 31a Vehicle speed prediction part

Abstract

 車輪に対して駆動力を与える電動モータの駆動力と、車輪に対して制動力を与える液圧制動装置の制動力とを制御する際、運転者のブレーキ操作が検出されると運転者のブレーキ操作量に応じて駆動力を低減すると共に当該駆動力に応じて制動力を調整し、急制動状態が検出されるとブレーキ操作量に応じて制動力を発生させる。

Description

車両制御装置および車両制御方法
 本発明は、車両制御装置および車両制御方法に関する。
 従来の車両制御装置では、ブレーキ操作量が大きいほどクリープ力を低減させると共に、クリープ力の低減量が大きいほど制動力を低減させる技術が開示されている。
特開2000-69604号公報
 しかしながら、上記従来技術にあっては、ブレーキ操作量が大きいほど制動力を低減させるため、障害物回避等の急制動時に制動力が制限され、制動距離が長くなるという問題があった。
  本発明の目的は、急制動時の制動距離が長くなるのを抑制できる車両制御装置および車両制御方法を提供することにある。
 本発明では、車輪に対して駆動力を与える電動モータの駆動力と、車輪に対して制動力を与える液圧制動装置の制動力とを制御する際、運転者のブレーキ操作が検出されると運転者のブレーキ操作状態に応じて駆動力を低減すると共に当該駆動力に応じて制動力を調整し、急制動状態が検出されるとブレーキ操作状態に応じて制動力を発生させる。
実施例1の電動車両の構成を表すシステム図である。 車両コントローラ4のクリープ制御に係る制御ブロック図である。 モータ回転数に応じたクリープトルク指令値の設定マップである。 制限値演算部23の制御ブロック図である。 ブレーキ操作量に応じたクリープトルク制限値の設定マップである。 通常時(非急踏み時)における実施例1のクリープ制御の動作を示すタイムチャートである。 急踏み時における実施例1のクリープ制御の動作を示すタイムチャートである。
 〔実施例1〕
  以下、本発明の電動車両の制御装置を実施するための形態を、図面に示す実施例に基づいて説明する。
  まず、構成を説明する。
  [電動車両のシステム構成]
  図1は、実施例1の電動車両のシステム構成図である。
  実施例1の電動車両は、正負のトルク(駆動トルク、制動トルク)を発生させる電動モータ(以下、モータ)1を備える。モータ1には、モータ回転数センサ2としてレゾルバが接続されている。モータコントローラ(モータ制御部)3は、車両コントローラ4からのモータトルク指令値に基づき、モータ回転数センサ2からのモータ回転数を参照してインバータ5にインバータ駆動指令を出力する。インバータ5は、インバータ駆動指令に応じた電流をモータ1に供給し、モータトルクを制御する。
  モータ1の出力軸1aは減速機6に接続され、ディファレンシャルギア7を介して車軸8にトルクを伝達する。モータ1を駆動する電力は高電圧バッテリ9から供給される。高電圧バッテリ9はバッテリコントローラ10によって充電状態や発熱の程度を監視されている。高電圧バッテリ9にはDC-DCコンバータ11が接続され、DC-DCコンバータ11により電圧を降圧して低電圧バッテリ12を充電する。
 車両コントローラ4は、アクセルストロークセンサ13からのアクセルペダルのストローク(アクセル操作量)、車内通信ライン14を経由して入力される各車輪15FL,15FR,15RL,15RRの各車輪速度、高電圧バッテリ9の充電状態等に基づいて、モータトルク指令値を演算する。また、車両コントローラ4は、車内通信ライン14を経由して入力される各車輪速度、ブレーキペダルストローク(ブレーキ操作量)、高電圧バッテリ9の充電状態等に基づいて回生協調制御のための回生トルク指令値を演算する。回生協調制御とは、運転者のブレーキ操作に応じた減速度を発生させるために必要な制動力に対し、モータ1の回生運転による回生制動力で不足する分を各ブレーキキャリパ21FL,21FR,21RL,21RRによる摩擦制動力で補うことにより、両制動力で車両全体として運転者の要求する減速度を得るブレーキ制御である。回生トルク指令値は車内通信ライン14へ出力される。
 ブレーキコントローラ(液圧制動制御部)16は、ブレーキストロークセンサ(ブレーキ操作状態検出部)17からのブレーキ操作量(ブレーキ操作状態)に応じた制動力、すなわち、運転者の要求する制動力を得る制動力指令値を演算し、液圧制御ユニット19に液圧制御ユニット駆動指令を出力する。液圧制御ユニット19は、液圧制御ユニット駆動指令に応じて、液圧制御ユニット19内のポンプモータや各バルブを作動させ、油圧配管20を通して各車輪15FL,15FR,15RL,15RRに設けられた各ブレーキキャリパ21FL,21FR,21RL,21RRにブレーキ液を送り、摩擦制動力を発生させる。液圧制御ユニット19、油圧配管20およびブレーキキャリパ21FL,21FR,21RL,21RRにより、車輪15FL,15FR,15RL,15RRに対して制動力を与える液圧制動装置が構成される。
  ブレーキコントローラ16は、回生協調制御中、ブレーキ操作量に応じた制動力指令値から、車内通信ライン14を経由して入力された回生トルク指令値の制動力換算値を減じた値を制動力指令値とし、液圧制御ユニット19を駆動する。また、ブレーキコントローラ16は、ブレーキ操作量に加え、各車輪速度センサ18FL,18FR,18RL,18RRからの各車輪速度、車内通信ライン14を経由して入力されるモータ回転数、モータトルク、他の車載センサ(ヨーレイトセンサ、Gセンサ等)からの情報等に基づいて、駆動スリップ防止制御(TCS制御)、制動スリップ防止制御(ABS制御)、自動ブレーキ制御等の制動力指令値を演算し、液圧制御ユニット19に液圧制御ユニット駆動指令を出力する。ブレーキコントローラ16は、車両速度を算出する車両速度算出部16a(図2参照)を備える。車両速度算出部16aは、各車輪速度から車両速度を算出する。ブレーキコントローラ16は、算出した車両速度を、上述した各制御に用いる他、車内通信ライン14へ出力する。車両速度は、例えば、前輪15FL,15FRの各車輪速度の平均値から算出される。
 [クリープ制御]
  車両コントローラ4は、アクセル操作量がゼロであって、モータ回転数が所定の第2回転数Nth2(例えば、車両速度10km/hのときのモータ回転数)以下である場合、オートマチックトランスミッション車のクリープ力を模擬するためのクリープトルク指令値をモータコントローラ3へ出力し、モータ1にクリープトルクを発生させる。このとき、運転者がブレーキペダルを操作した場合は、ブレーキ操作量に応じてクリープ力を低減させると同時に、クリープ力の低減量が大きいほど摩擦制動力を低減させる。
  図2は、車両コントローラ4のクリープ制御に係る制御ブロック図である。
  クリープトルク指令値演算部(運転者要求駆動力算出部)22は、アクセル操作量がゼロのとき、モータ回転数に応じてクリープトルク指令値を演算する。図3は、モータ回転数に応じたクリープトルク指令値の設定マップである。クリープトルク指令値は、モータ回転数がゼロ~所定の第1回転数Nth1(<Nth2)の区間で最大値を取り、第1回転数Nth1~第2回転数Nth2の区間ではモータ回転数が高いほど小さくなり、第2回転数Nth2のときゼロとなるように設定されている。
  制限値演算部(運転者要求駆動力制限部)23は、ブレーキ操作量に応じてクリープトルク指令値を制限した制限後クリープトルク指令値と、ブレーキコントローラ16で演算されるブレーキ操作量に応じた制動力指令値を制限するための制動力制限値を演算する。モータコントローラ3は、クリープ制御中、制限後クリープトルク指令値に基づくインバータ駆動指令をインバータ5へ出力する。ブレーキコントローラ16は、クリープ制御中、制動力指令値から制動力制限値を減じた制限後制動力指令値に基づく液圧制御ユニット駆動指令を液圧制御ユニット19へ出力する。なお、制動力指令値が制限後制動力指令値以下である場合は、制動力指令値に基づく液圧制御ユニット駆動指令を液圧制御ユニット19へ出力する。
 図4は、制限値演算部23の制御ブロック図である。
  微分演算部25は、ブレーキ操作量を1階微分してブレーキ操作速度を演算する。
  急踏み判断部26は、ブレーキ操作速度と所定の急踏み判断閾値とを比較し、ブレーキ操作速度が急踏み判断閾値以上である場合は急踏み状態(急制動状態)であることを示す急踏み判断フラグをONし、ブレーキ操作速度が急踏み判断閾値よりも小さい場合は急踏み判断フラグをOFFする。
  ブレーキON判断部27は、ブレーキ操作量と所定のブレーキOFF判断閾値とを比較し、ブレーキ操作量がブレーキOFF判断閾値以上である場合はブレーキペダルが操作されていることを示すブレーキON判断フラグをONし、ブレーキ操作量がブレーキOFF判断閾値よりも小さい場合はブレーキON判断フラグをOFFする。
  出力切り替え部28は、急踏み判断フラグがONされている場合は当該急踏み判断フラグを出力し、急踏み判断フラグがOFFされている場合には1演算周期前の急踏み判断フラグを出力する。
  前回値演算部29は、1演算周期前の急踏み判断フラグを出力する。
  急踏み判断フラグ保持部30は、ブレーキON判断フラグがONされている場合は出力切り替え部28からの急踏み判断フラグの状態を出力し、ブレーキON判断フラグがOFFされている場合は急踏み判断フラグをOFFする。
  出力切り替え部28、前回値演算部29および急踏み判断フラグ保持部30の動作により、急踏み判断部26で一度急踏み判断フラグがONされると、ブレーキペダルが操作されなくなるまでの間は急踏み判断フラグがONされた状態が維持される。
 路面勾配検出部31は、路面勾配を検出する。路面勾配検出部31は、制動力制限値から車両に発生している制動力を推定し、車両に発生している制動力に基づき平坦路走行時における車両速度(予測車両速度)を予測する車両速度予測部31aを有する。路面勾配検出部31は、車両速度予測部31aにより予測された予測車両速度と、ブレーキコントローラ16により算出された車両速度(算出車両速度)との差分から路面勾配を求める。車輪速度は、例えば左右前輪15FL,15FRの各車輪速度の平均値から算出される。上り勾配の場合は予測車両速度に対して算出車両速度が小さくなり、下り勾配の場合は予測車両速度に対して算出車両速度が大きくなる。また、路面勾配が大きいほど予測車両速度と算出車両速度との差は大きくなる。よって、予測車両速度と算出車両速度とを比較することで路面勾配を推定できる。
  クリープトルク制限値演算部32は、ブレーキ操作量と路面勾配とに基づいてクリープトルク指令値の上限を制限するためのクリープトルク制限値を演算する。図5は、ブレーキ操作量に応じたクリープトルク制限値の設定マップである。クリープトルク制限値は、ブレーキ操作量がゼロ~第1操作量Sth1の区間で最大値を取り、第1操作量Sth1~第2操作量Sth2の区間ではブレーキ操作量が大きいほど小さくなり、第2操作量Sth2以上の区間ではゼロとなるように設定されている。図5のマップにより演算されたクリープトルク制限値は、路面勾配に応じて補正される。上り勾配の場合は、路面勾配が大きいほどクリープトルク制限値を大きくする。これにより、上り勾配での車両のクリープ力は、ブレーキ操作量に応じたクリープ力(第1のクリープ力)よりも大きな第2のクリープ力となる。一方、下り勾配の場合は、路面勾配が大きいほどクリープトルク制限値を小さくする。
 リミッタ処理部33は、クリープトルク制限値演算部32で演算されたクリープトルク制限値の変化率の上限をブレーキ操作速度に応じたレートリミッタ値で制限する。レートリミッタ値は、ブレーキ操作速度が高いほど大きな値とし、ブレーキ操作速度が所定速度Vth1以下の場合はブレーキ操作速度と同期(一致)させ、ブレーキ操作速度が所定速度Vth1よりも高い場合はブレーキ操作速度よりも小さな値とする。
  下限値設定部34は、リミッタ処理部33により変化率の上限を制限されたクリープトルク制限値とゼロとを比較し、値の大きな方をクリープトルク制限値として出力する。
  制限後クリープトルク指令値演算部35は、クリープトルク指令値とクリープトルク制限値とを比較し、値の小さな方を制限後クリープトルク指令値として出力する。制限後クリープトルク指令値はモータコントローラ3へ送られる。
  ブレーキトルク制限値演算部36は、クリープトルク指令から制限後クリープトルク指令値を減じてブレーキトルク制限値を演算する。
  制動力制限値演算部37は、ブレーキトルク制限値に対しトルクを制動力に変換するNm→N変換定数を掛けて制動力制限値を出力する。
  制動力制限値選択部38は、急踏み判断フラグがONされている場合は制動力制限値としてゼロを出力し、急踏み判断フラグがOFFされている場合は制動力制限値演算部37により演算された制動力制限値を出力する。制動力制限値はブレーキコントローラ16へ送られる。
 次に、作用を説明する。
  [ブレーキ操作量に応じたクリープ力低減作用]
  制限値演算部23は、クリープ制御中にブレーキペダルが踏まれた場合、ブレーキ操作量が大きいほど制限後クリープトルク指令値を小さくする。ブレーキ操作量が大きいほど、運転者は車両を停車させる意図が強く、クリープ力は不要である。よって、ブレーキ操作量が大きいほどクリープ力を小さくすることで、無駄なエネルギー消費を抑制できる。このとき、ブレーキ操作量が大きい場合(第2操作量Sth2以上の場合)は、制限後クリープトルク指令値をゼロまで低下させるため、無駄なエネルギー消費を最大限抑制できる。一方、ブレーキ操作量が小さい場合(第2操作量Sth2よりも小さい場合)は、制限後クリープトルク指令値を最大値とし、ゼロまで低下させない。ブレーキ操作量が小さい場合、運転者は車両を停車させる意図が弱く、直ぐに再加速を行う可能性が高い。また、停車中にブレーキ操作量が小さくなった場合は、再発進を行う可能性が高い。よって、この場合はモータ1を停止させないことで、再発進時や再加速時にアクセルを踏み込んだ際の駆動力の立ち上がり遅れを抑制できる。
 [クリープ力の低減量に応じた制動力低減作用]
  制限値演算部23は、制限後クリープトルク指令値が小さいほど制動力制限値を大きくする。よって、制動力指令値から制動力制限値を減じた制限後制動力指令値は、制限後クリープトルク指令値が小さいほど小さな値となる。上述したようにブレーキ操作量が大きいほどクリープ力を小さくすると、実際の減速度が運転者の予期する減速度よりも大きくなる。ブレーキ操作中にクリープ力が発生させられる場合には、実際に得られる減速度は運転者のブレーキ操作量に対応した減速度よりも小さくなる。そして、運転者は、通常、クリープ力の発生により減速度が小さくされることを、無意識にではあるが前提にしてブレーキ操作を行っている。これに対し、クリープ力が上述のように制御され、かつ、ブレーキ操作量が大きい場合には、運転者の予期する減速度よりも大きな減速度が得られることになり、ブレーキ操作量と減速度との不一致により運転者に違和感を与える。そこで、クリープ力の制限量が大きいほど制動力を小さくする(第1の状態)ことで、クリープ力の制限による減速度への影響を抑制でき、運転者に与える違和感を軽減できる。
 [ブレーキ操作速度に応じたクループ力の低減勾配設定作用]
  制限値演算部23は、ブレーキ操作速度が高いほどレートリミッタ値を大きな値とする。すなわち、ブレーキ操作速度が高いほどクリープ力の低減勾配を大きくすることで、ブレーキ操作速度が高いほど減速度をより早く増加させ、運転者の減速意図に応じて減速度を変化させることができる。特に、ブレーキ操作速度が低い場合(所定速度Vth1以下の場合)には、レートリミッタ値をブレーキ操作速度と一致させる。すなわち、ブレーキ操作速度とクリープ力の低減速度とを同期させることで、ブレーキ操作速度と減速度の変化速度との不一致に伴う違和感を軽減できる。一方、ブレーキ操作速度が高い場合(所定速度Vth1よりも高い場合)は、レートリミッタ値をブレーキ操作速度よりも小さくする。急激なブレーキ操作に合わせてモータ1のトルクを低下させると、車体の駆動系(減速機6、ディファレンシャルギア7のギア等)に駆動系共振に起因する振動が発生する可能性がある。駆動系振動は、ショックや異音の発生を招く。そこで、ブレーキ操作速度が高い場合にはクリープ力の低減速度をブレーキ操作速度よりも小さくすることで、ブレーキ操作速度が高いときの駆動系振動を抑制できる。
 [路面勾配に応じたクリープ力設定作用]
  制限値演算部23は、路面が上り勾配の場合、路面勾配が大きいほどブレーキ操作量に応じて設定したクリープトルク制限値を増大補正する。登坂路の場合、路面勾配が大きいほど車両を後退させる力が強くなる。このため、登坂路でブレーキ操作量に応じてクリープ力を小さくすると、過度な減速度が発生するおそれがある。また、登坂路で停車状態から発進する際、運転者がブレーキペダルからアクセルペダルへの踏み替えを行う際、大きなロールバック(車両のずり下がり)が発生する可能性がある。そこで、登坂路では路面勾配が大きいほどブレーキ操作量に応じたクリープ力の低減を抑制することにより、登坂路での過度な減速度の発生を抑え、発進時のロールバックを抑制できる。
  なお、路面勾配検出部31において、車両速度予測部31aによる予測車両速度と、ブレーキコントローラ16により算出された算出車両速度との偏差がある場合に路面勾配があることを検出する。これにより、路面勾配の有無を容易に検出できる。また、路面勾配が大きいほど予測車両速度と算出車両速度との偏差が大きくなることから、勾配の大きさについても精度よく推定できる。
 [急制動時の制動力低減回避作用]
  制限値演算部23は、急踏み判断フラグがONされている場合、クリープトルク指令値をクリープトルク制限値で制限する一方、制動力制限値をゼロとする。よって、急踏み判断フラグがONされている場合、ブレーキコントローラ16において演算される制動力指令値は、制動力制限値(=0)によって制限を受けない。ブレーキ操作量が大きいほどクリープ力および制動力を低減する場合、クリープ制御中に運転者が障害物回避等の急制動(ブレーキペダルの急踏み)を行ったとき、ブレーキ操作量が大きいほど制動力が制限されるため、制動距離が長くなってしまう。そこで、実施例1では、急制動状態をブレーキ操作速度から検出し、急制動状態が検出された場合、クリープ力については非急制動状態と同様にブレーキ操作量に応じて低減させる一方、制動力は低減せず、ブレーキ操作量に応じた制動力を発生させる(第2の状態)。これにより、急制動時には制動力の制限を回避して運転者の要求する減速度を発生させ、制動距離が長くなるのを抑制できる。
 図6は、通常時(非急踏み時)における実施例1のクリープ制御の動作を示すタイムチャートである。
  時点t1では、運転者がブレーキペダルの踏み込みを開始したため、車両速度が低下し始める。ブレーキ操作速度は急踏み判断閾値よりも小さいため、以降、急踏み判断フラグはOFF状態に維持される。
  時点t2では、モータ回転数が第2回転数Nth2まで低下したため、クリープ制御を開始し、時点t2~t3の区間では、クリープトルク指令値が立ち上がる。ブレーキ操作量に応じてクリープトルク制限値も演算されるが、クリープトルク指令値はクリープトルク制限値よりも小さいため、クリープトルク指令値が制限後クリープトルク指令値となり、制限後クリープトルク指令値は増加する。また、クリープトルク指令値と制限後クリープトルク指令値との差分、すなわち、制動力制限値はゼロであるため、制限後制動力指令値はブレーキ操作量に応じた制動力指令値と一致している。
  時点t3では、クリープトルク制限値がクリープトルク指令値と一致したため、クリープトルク制限値が制限後クリープトルク指令値となり、時点t3~t4の区間では、制限後クリープトルク指令値が減少する。制限後制動力指令値は、制動力指令値から制動力制限値を減じた大きさに制限される。
 時点t4では、ブレーキ操作量が第2操作量Sth2に達したため、制限後クリープトルク指令値はゼロとなる。同時に、運転者はブレーキペダルの踏み込みを停止したため、時点t4~t5の区間では、制動力指令値は一定であるものの、クリープトルク指令値は車両速度の低下に応じて増加しているため、制動力制限値は増加し、制限後制動力指令値は徐々に小さくなる。
  時点t5では、モータ回転数が第1回転数Nth1まで低下したため、クリープトルク指令値は最大値となる。時点t6では、車両が停車する。時点t5~t7の区間では、制動力制限値が一定であるため、制限後制動力指令値は一定に維持される。
  時点t7では、運転者がブレーキペダルの踏み戻しを開始したため、時点t7~t8の区間では、制限後クリープトルク指令値が増加する。制動力制限値は減少するため、制限後制動力指令値は増加する。
  時点t8では、制動力指令値が制限後制動力指令値と一致したため、制動力指令値が制限後制動力指令値となり、時点t8~t9の区間では、制限後制動力指令値は減少する。
  時点t9では、ブレーキ操作量がゼロとなったため、制限後クリープトルク指令値は最大値となるのに対し、制限後制動力指令値はゼロとなるため、車両に作用するクリープ力によって前進を開始する。
 図7は、急踏み時における実施例1のクリープ制御の動作を示すタイムチャートである。
  時点t1では、運転者がブレーキペダルの踏み込みを開始したため、車両速度が低下し始める。ブレーキ操作速度は急踏み判断閾値を超えているため、急踏み判断フラグはON状態となる。
  時点t2では、モータ回転数が第2回転数Nth2まで低下したため、クリープ制御を開始し、時点t2~t3の区間では、クリープトルク指令値が立ち上がる。ブレーキ操作量に応じてクリープトルク制限値も演算されるが、クリープトルク指令値はクリープトルク制限値よりも小さいため、クリープトルク指令値が制限後クリープトルク指令値となり、制限後クリープトルク指令値は増加する。また、クリープトルク指令値と制限後クリープトルク指令値との差分、すなわち、制動力制限値はゼロであるため、制限後制動力指令値はブレーキ操作量に応じた制動力指令値と一致している。
  時点t3では、クリープトルク制限値がクリープトルク指令値と一致したため、クリープトルク制限値が制限後クリープトルク指令値となり、時点t3~t4の区間では、制限後クリープトルク指令値が減少する。急踏み判断フラグはON状態であり、制動力制限値はゼロのままであるため、制限後制動力指令値は制動力指令値と一致している。
 時点t4では、ブレーキ操作量が第2操作量Sth2に達したため、制限後クリープトルク指令値はゼロとなる。同時に、運転者はブレーキペダルの踏み込みを停止したため、時点t4~t5の区間では、制限後制動力指令値は一定に維持される。
  時点t5では、モータ回転数が第1回転数Nth1まで低下したため、クリープトルク指令値は最大値となる。時点t6では、車両が停車する。時点t5~t7の区間における制限後制動力指令値は、時点t4~t5の区間と同じである。
  時点t7では、運転者がブレーキペダルの踏み戻しを開始したため、時点t7~t8の区間では、制限後クリープトルク指令値が増加する。制限後制動力指令値は、ブレーキ操作量の減少に応じて減少する。
  時点t8では、ブレーキ操作量がゼロとなったため、制限後クリープトルク指令値は最大値となるのに対し、制限後制動力指令値はゼロとなるため、車両に作用するクリープ力によって前進を開始する。
 図7において、車両速度と制動力の破線は、実施例1の比較例として、急制動時にも通常時と同様に制動力低減を行った場合を示している。比較例の場合、時点t3から制動力制限値が増加するにつれて制限後制動力指令値が減少する。このため、ブレーキ操作量に応じて演算された制動力指令値に対し、制限後制動力指令値は大きく制限される。よって、比較例では、急制動時に運転者が要求する減速度が得られず、制動距離が長くなってしまう。これに対し、実施例1のクリープ制御では、急制動時には制動力制限値をゼロとするため、運転者が要求する減速度を得ることができ、制動距離が長くなるのを抑制できる。比較例の停車時刻はt6'であるのに対し、実施例1の停車時刻はt6であり、制動距離が大幅に短縮されている。
 次に、効果を説明する。
  実施例1の車両制御装置にあっては、以下に列挙する効果を奏する。
  (1) 車輪15RL,15RRに対して駆動力を与える電動モータ1と、運転者のブレーキ操作量を検出するブレーキストロークセンサ17と、ブレーキ操作量に応じて車輪15FL,15FR,15RL,15RRに対して制動力を与える液圧制動装置(液圧制御ユニット19、油圧配管20およびブレーキキャリパ21FL,21FR,21RL,21RR)と、電動モータ1の駆動力を制御するモータコントローラ3と、液圧制動装置の制動力を制御するブレーキコントローラ16と、を備え、モータコントローラ3は、運転者のブレーキ操作が検出されるとブレーキ操作量に応じて駆動力を低減するよう電動モータ1を制御し、ブレーキコントローラ16は、モータコントローラ3が発生する駆動力に応じて制動力を低減させる第1の状態と、ブレーキストロークセンサ17により検出されたブレーキ操作量に基づき急制動状態が検出されるとブレーキ操作量に応じて制動力を発生させる第2の状態とを備えた。
  よって、急制動時の制動距離が長くなるのを抑制できる。
  (2) モータコントローラ3は、運転者によるブレーキ操作時にクリープ力を発生するよう駆動力を制御し、ブレーキコントローラ16は、第1の状態において、算出されたクリープ力に応じて制動力が小さくなるよう変化させる。
  よって、クリープ力の低減による減速度への影響を抑制でき、運転者に与える違和感を軽減できる。
 (3) クリープ力は、運転者のブレーキ操作量に応じて低減量が決定され、ブレーキ操作量が大きいときは、ブレーキ操作量が小さいときに比べて低減量が大きい。
  よって、無駄なエネルギー消費を抑制できる。
  (4) クリープ力は、ブレーキ操作量が大きいときはゼロまで低減させる。
  よって、無駄なエネルギー消費を最大限抑制できる。
  (5) クリープ力は、ブレーキ操作量が小さいときはゼロまで低減しない。
  よって、再発進時や再加速時にアクセルを踏み込んだ際の駆動力の立ち上がり遅れを抑制できる。
  (6) クリープ力は、運転者のブレーキ操作速度に応じて低減する勾配が決定され、ブレーキ操作速度が高いときは、ブレーキ操作速度が低いときに比べて低減勾配が大きい。
  よって、運転者の減速意図に応じて減速度を変化させることができる。
  (7) 低減勾配は、ブレーキ操作速度が低いときはブレーキ操作速度に対応した大きさであり、ブレーキ操作速度が高いときはブレーキ操作速度よりも小さい。
  よって、ブレーキ操作速度と減速度変化との不一致に伴う違和感の軽減と、駆動系振動の抑制との両立を図ることができる。
 (8) 運転者のブレーキ操作によって車両が停車する路面の勾配を検出する路面勾配検出部31を備え、モータコントローラ3は、路面勾配検出部31により路面勾配が検出されると、上り勾配の場合に、ブレーキ操作量に応じて決定されるクリープ力を増加させる。
  よって、登坂路での過度な減速度の発生を抑え、発進時のロールバックを抑制できる。
  (9) 車両の速度を算出する車両速度算出部16aと、車両に発生している制動力に基づき車両の速度を予測する車両速度予測部31aと、を備え、路面勾配検出部31は、車両速度予測部31aによる予測車両速度と、車両速度算出部16aによる算出車両速度とに偏差がある場合に路面の勾配があることを検出する。
  よって、路面勾配の有無を容易に検出できる。
  (10) 車輪15RL,15RRに対して駆動力を与える電動モータ1の駆動力と、車輪15FL,15FR,15RL,15RRに対して制動力を与える液圧制動装置の制動力とを制御する際、運転者のブレーキ操作が検出されると運転者のブレーキ操作量に応じて駆動力を低減すると共に当該駆動力に応じて制動力を調整し、急制動状態が検出されるとブレーキ操作量に応じて制動力を発生させる。
  よって、急制動時の制動距離が長くなるのを抑制できる。
 〔実施例2〕
  実施例2では、図4に示した制限値演算部23の制御ブロック図において、微分演算部25と急踏み判断部26の動作が実施例1と相違する。
  実施例2の微分演算部25は、ブレーキ操作量を2階微分してブレーキ操作加速度を演算する。急踏み判断部26は、ブレーキ操作加速度と所定の急踏み判断閾値とを比較し、ブレーキ操作加速度が急踏み判断閾値以上である場合は急踏み状態(急制動状態)であることを示す急踏み判断フラグをONし、ブレーキ操作加速度が急踏み判断閾値よりも小さい場合は急踏み判断フラグをOFFする。
  他の構成については実施例1と同じであるため、図示ならびに説明は省略する。
 実施例2の車両制御装置にあっては、実施例1の効果(3)~(10)に加え、以下に列挙する効果を奏する。
  (11) 車輪15RL,15RRに対して駆動力を与える電動モータ1と、運転者のブレーキ操作量を検出するブレーキストロークセンサ17と、ブレーキ操作量に応じて車輪15FL,15FR,15RL,15RRに対して制動力を与える液圧制動装置(液圧制御ユニット19、油圧配管20およびブレーキキャリパ21FL,21FR,21RL,21RR)と、アクセル操作量がゼロのときのクリープトルク指令値を算出するクリープトルク指令値演算部22と、クリープトルク指令値に応じた制動力を発生するように電動モータ1の駆動力を制御するモータコントローラ3と、クリープトルク指令値をブレーキ操作量に応じて制限する制限値演算部23と、ブレーキ操作量に応じて算出された制動力指令値を液圧制動装置で発生させるブレーキコントローラ16と、を備え、ブレーキコントローラ16は、クリープトルク指令値と制限値演算部23により算出されたクリープトルク制限値との差分を制動力指令値から低減させた制限後制動力指令値に応じて液圧制動力を発生させる第1の状態と、ブレーキストロークセンサ17により検出されたブレーキ操作量の2階微分値(ブレーキ操作加速度)が所定の急踏み判断閾値以上になるとブレーキ操作量に応じて制動力を発生させる第2の状態とを備えた。
  よって、急制動時の制動距離が長くなるのを抑制できる。
  (12) モータコントローラ3は、第1の状態において、運転者によるブレーキ操作時にクリープ力を発生するよう駆動力を制御すると共に、ブレーキ操作量に応じてクリープ力を低減し、ブレーキコントローラ16は、低減したクリープ力の大きさをブレーキ操作量に基づいて算出し、算出されたクリープ力に応じて制動力が小さくなるよう変化させる。
  よって、クリープ力の低減による減速度への影響を抑制でき、運転者に与える違和感を軽減できる。
 〔他の実施例〕
  以上、本発明を実施するための形態を実施例に基づいて説明したが、本発明の具体的な構成は実施例に示した構成に限定されるものではなく、発明の要旨を逸脱しない範囲の設計変更等があっても本発明に含まれる。
  例えば、実施例では、運転者のブレーキ操作状態をブレーキ操作量としたが、運転者のブレーキ操作力をブレーキ操作状態としてもよい。
  また、実施例では、上り勾配と下り勾配でクリープトルク制限値を補正する例を示したが、上り勾配の場合にのみクリープトルク制限値を補正する構成としてもよい。
  実施例2では、ブレーキ操作量を2階微分してブレーキ操作加速度を求めたが、ブレーキ操作加速度を検出するセンサを設けてもよい。運転者がブレーキペダルを踏み込んだとき、ブレーキ操作加速度はブレーキ操作量よりもより早く立ち上がるため、ブレーキ操作加速度を直接検出することにより、ブレーキ操作量を2階微分する場合と比較して、急踏み状態を早期に判断できるという利点がある。
 上記実施形態によれば、急制動時の制動距離が長くなるのを抑制できる。
 上記実施例から少なくとも以下の技術的思想が把握される。技術的思想について説明する。
 (a) 車輪に対して駆動力を与える電動モータと、
 運転者のブレーキ操作状態を検出するブレーキ操作状態検出部と、
 前記ブレーキ操作状態または車両の状態に応じて前記車輪に対して制動力を与える液圧制動装置と、
 前記電動モータの駆動力を制御するモータ制御部と、
 前記液圧制動装置の制動力を制御する液圧制動制御部と、
 を備え、
 前記モータ制御部は、運転者のブレーキ操作が検出されると前記ブレーキ操作状態に応じて前記駆動力を低減するよう前記電動モータを制御し、
 前記液圧制動制御部は、前記モータ制御部が発生する駆動力に応じて前記制動力を低減させる第1の状態と、前記ブレーキ操作状態検出部により急制動状態が検出されると前記ブレーキ操作状態に応じて制動力を発生させる第2の状態とを備える、車両制御装置。
 (b) (a)に記載の車両制御装置において、
 前記モータ制御部は、運転者によるブレーキ操作時にクリープ力を発生するよう駆動力を制御し、
 前記液圧制動制御部は、前記第1の状態において、算出されたクリープ力に応じて制動力が小さくなるよう変化させる、車両制御装置。
 (c) (b)に記載の車両制御装置において、
 前記クリープ力は、運転者のブレーキ操作量に応じて決まる低減量で低減され、ブレーキ操作量が大きいときは、ブレーキ操作量が小さいときに比べて低減量が大きい、車両制御装置。
 (d) (c)に記載の車両制御装置において、
 前記クリープ力は、前記ブレーキ操作量が所定の操作量以上のときはゼロまで低減させる、車両制御装置。
 (e) (c)に記載の車両制御装置において、
 前記クリープ力は、前記ブレーキ操作量が所定の操作量未満のときはゼロまで低減しない、車両制御装置。
 (f) (b)から(e)の何れかに記載の車両制御装置において、
 前記クリープ力を低減する低減勾配が、運転者のブレーキ操作速度に応じて低減するように決定され、ブレーキ操作速度が高いときは、ブレーキ操作速度が低いときに比べて低減勾配が大きい、車両制御装置。
 (g) (f)に記載の車両制御装置において、
 前記低減勾配は、前記ブレーキ操作速度が所定速度以下のときは前記ブレーキ操作速度に対応した大きさであり、前記ブレーキ操作速度が前記所定速度よりも大きいときは前記ブレーキ操作速度よりも小さい、車両制御装置。
 (h) (b)から(g)の何れかに記載の車両制御装置において、
 運転者のブレーキ操作によって車両が停車する路面の勾配を検出する路面勾配検出部を備え、
 前記モータ制御部は、前記路面勾配検出部により路面勾配が検出されると、上り勾配の場合に、ブレーキ操作量に応じて決定されるクリープ力を増加させる、車両制御装置。
 (i) (h)に記載の車両制御装置において、
 車両の速度を算出する車両速度算出部と、
 車両に発生している制動力に基づき車両の速度を予測する車両速度予測部と、
 を備え、
 前記路面勾配検出部は、前記車両速度予測部による予測車両速度と、前記車両速度算出部による算出車両速度とに偏差がある場合に路面の勾配があることを検出する、車両制御装置。
 (j) 車輪に対して駆動力を与える電動モータと、
 運転者のブレーキ操作状態を検出するブレーキ操作状態検出部と、
 前記ブレーキ操作状態または車両の状態に応じて前記車輪に対して制動力を与える液圧制動装置と、
 運転者のアクセル操作に基づき運転者要求駆動力を算出する運転者要求駆動力算出部と、
 前記運転者要求駆動力を発生するように前記電動モータの駆動力を制御するモータ制御部と、
 前記運転者要求駆動力を前記ブレーキ操作状態に応じて制限値に制限する運転者要求駆動力制限部と、
 前記ブレーキ操作状態に応じて算出された制動力を前記液圧制動装置で発生させる液圧制動制御部と、
 を備え、
 前記液圧制動制御部は、前記運転者要求駆動力と前記運転者要求駆動力制限部により算出された前記制限値との差分の力を前記算出された制動力から低減させて液圧制動力を発生させる第1の状態と、前記ブレーキ操作状態検出部により所定の操作加速度が検出されると前記ブレーキ操作状態に応じて制動力を発生させる第2の状態とを備える、車両制御装置。
 (k) (j)に記載の車両制御装置において、
 前記モータ制御部は、前記第1の状態において、運転者によるブレーキ操作時にクリープ力を発生するよう駆動力を制御すると共に、前記ブレーキ操作状態に応じて前記クリープ力を低減し、
 前記液圧制動制御部は、前記低減したクリープ力の大きさを前記ブレーキ操作状態に基づいて算出し、算出されたクリープ力に応じて制動力が小さくなるよう変化させる、車両制御装置。
  (l) (k)に記載の車両制御装置において、
  前記クリープ力は、運転者のブレーキ操作量に応じて低減量が決定され、ブレーキ操作量が大きいときは、ブレーキ操作量が小さいときに比べて低減量が大きい、車両制御装置。
  よって、無駄なエネルギー消費を抑制できる。
  (m) (l)に記載の車両制御装置において、
  前記クリープ力は、前記ブレーキ操作量が所定の操作量以上のときはゼロまで低減させる、車両制御装置。
  よって、無駄なエネルギー消費を最大限抑制できる。
 (n) (m)に記載の車両制御装置において、
  前記クリープ力は、前記ブレーキ操作量が所定の操作量未満のときはゼロまで低減しない、車両制御装置。
  よって、再発進時や再加速時にアクセルを踏み込んだ際の駆動力の立ち上がり遅れを抑制できる。
  (o)(k)から(n)の何れかに記載の車両制御装置において、
  前記クリープ力の低減勾配が、運転者のブレーキ操作速度に応じて低減するように決定され、ブレーキ操作速度が高いときは、ブレーキ操作速度が低いときに比べて低減勾配が大きい、車両制御装置。
  よって、運転者の減速意図に応じて減速度を変化させることができる。
 (p) (o)に記載の車両制御装置において、
  前記低減勾配は、前記ブレーキ操作速度が所定速度以下のときは前記ブレーキ操作速度に対応した大きさであり、前記ブレーキ操作速度が前記所定速度よりも大きいときは前記ブレーキ操作速度よりも小さい、車両制御装置。
  よって、ブレーキ操作速度と減速度変化との不一致に伴う違和感の軽減と、駆動系振動の抑制との両立を図ることができる。
  (q)(k) から(p)の何れかに記載の車両制御装置において、
  運転者のブレーキ操作によって車両が停車する路面の勾配を検出する路面勾配検出部を備え、
  前記モータ制御部は、前記路面勾配検出部により路面勾配が検出されると、上り勾配の場合に、ブレーキ操作量に応じて決定されるクリープ力を増加させる、車両制御装置。
  よって、登坂路での過度な減速度の発生を抑え、発進時のロールバックを抑制できる。
  (r) (q)に記載の車両制御装置において、
  車両の速度を算出する車両速度算出部と、
  車両に発生している制動力に基づき車両の速度を予測する車両速度予測部と、
  を備え、
  前記路面勾配検出部は、前記車両速度予測部による予測車両速度と、前記車両速度算出部による算出車両速度とに偏差がある場合に路面の勾配があることを検出する、車両制御装置。
  よって、路面勾配の有無を容易に検出できる。
 (s) 車輪に対して駆動力を与える電動モータの駆動力と、前記車輪に対して制動力を与える液圧制動装置の制動力とを制御する際、
 運転者のブレーキ操作が検出されると運転者のブレーキ操作状態に応じて前記駆動力を低減すると共に当該駆動力に応じて前記制動力を調整し、急制動状態が検出されると前記ブレーキ操作状態に応じて前記制動力を発生させる、車両制御方法。
 以上、本発明の幾つかの実施形態のみを説明したが、本発明の新規の教示や利点から実質的に外れることなく例示の実施形態に、多様な変更または改良を加えることが可能であることが当業者には容易に理解できるであろう。従って、その様な変更または改良を加えた形態も本発明の技術的範囲に含むことを意図する。
 以上、いくつかの例に基づいて本発明の実施形態について説明してきたが、上記した発明の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得るとともに、本発明には、その均等物が含まれることはもちろんである。また、上述した課題の少なくとも一部を解決できる範囲、または、効果の少なくとも一部を奏する範囲において、特許請求の範囲および明細書に記載された各構成要素の任意の組み合わせ、または、省略が可能である。
 本願は、2014年7月11日出願の日本特許出願番号2014-143413号に基づく優先権を主張する。2014年7月11日出願の日本特許出願番号2014-143413号の明細書、特許請求の範囲、図面及び要約書を含む全ての開示内容は、参照により全体として本願に援用される。
 日本特許公開公報第2000-69604号公報(特許文献1)の明細書、特許請求の範囲、図面及び要約書を含む全ての開示は、参照により全体として本願に組み込まれる。
1 電動モータ3 モータコントローラ(モータ制御部)16 ブレーキコントローラ(液圧制動制御部)16a 車両速度算出部17 ブレーキストロークセンサ(ブレーキ操作状態検出部)19 液圧制御ユニット(液圧制動装置)20 油圧配管(液圧制動装置)21FL,21FR,21RL,21RR ブレーキキャリパ(液圧制動装置)22 クリープトルク指令値演算部(運転者要求駆動力算出部)23 制限値演算部(運転者要求駆動力制限部)31 路面勾配検出部31a 車両速度予測部

Claims (19)

  1.  車輪に対して駆動力を与える電動モータと、
     運転者のブレーキ操作状態を検出するブレーキ操作状態検出部と、
     前記ブレーキ操作状態または車両の状態に応じて前記車輪に対して制動力を与える液圧制動装置と、
     前記電動モータの駆動力を制御するモータ制御部と、
     前記液圧制動装置の制動力を制御する液圧制動制御部と、
     を備え、
     前記モータ制御部は、運転者のブレーキ操作が検出されると前記ブレーキ操作状態に応じて前記駆動力を低減するよう前記電動モータを制御し、
     前記液圧制動制御部は、前記モータ制御部が発生する駆動力に応じて前記制動力を低減させる第1の状態と、前記ブレーキ操作状態検出部により急制動状態が検出されると前記ブレーキ操作状態に応じて制動力を発生させる第2の状態とを備える、車両制御装置。
  2.  請求項1に記載の車両制御装置において、
     前記モータ制御部は、運転者によるブレーキ操作時にクリープ力を発生するよう駆動力を制御し、
     前記液圧制動制御部は、前記第1の状態において、算出されたクリープ力に応じて制動力が小さくなるよう変化させる、車両制御装置。
  3.  請求項2に記載の車両制御装置において、
     前記クリープ力は、運転者のブレーキ操作量に応じて決まる低減量で低減され、ブレーキ操作量が大きいときは、ブレーキ操作量が小さいときに比べて低減量が大きい、車両制御装置。
  4.  請求項3に記載の車両制御装置において、
     前記クリープ力は、前記ブレーキ操作量が所定の操作量以上のときはゼロまで低減させる、車両制御装置。
  5.  請求項3に記載の車両制御装置において、
     前記クリープ力は、前記ブレーキ操作量が所定の操作量未満のときはゼロまで低減しない、車両制御装置。
  6.  請求項2に記載の車両制御装置において、
     前記クリープ力を低減する低減勾配が、運転者のブレーキ操作速度に応じて低減するように決定され、ブレーキ操作速度が高いときは、ブレーキ操作速度が低いときに比べて低減勾配が大きい、車両制御装置。
  7.  請求項6に記載の車両制御装置において、
     前記低減勾配は、前記ブレーキ操作速度が所定速度以下のときは前記ブレーキ操作速度に対応した大きさであり、前記ブレーキ操作速度が前記所定速度よりも大きいときは前記ブレーキ操作速度よりも小さい、車両制御装置。
  8.  請求項2に記載の車両制御装置において、
     運転者のブレーキ操作によって車両が停車する路面の勾配を検出する路面勾配検出部を備え、
     前記モータ制御部は、前記路面勾配検出部により路面勾配が検出されると、上り勾配の場合に、ブレーキ操作量に応じて決定されるクリープ力を増加させる、車両制御装置。
  9.  請求項8に記載の車両制御装置において、
     車両の速度を算出する車両速度算出部と、
     車両に発生している制動力に基づき車両の速度を予測する車両速度予測部と、
     を備え、
     前記路面勾配検出部は、前記車両速度予測部による予測車両速度と、前記車両速度算出部による算出車両速度とに偏差がある場合に路面の勾配があることを検出する、車両制御装置。
  10.  車輪に対して駆動力を与える電動モータと、
     運転者のブレーキ操作状態を検出するブレーキ操作状態検出部と、
     前記ブレーキ操作状態または車両の状態に応じて前記車輪に対して制動力を与える液圧制動装置と、
     運転者のアクセル操作に基づき運転者要求駆動力を算出する運転者要求駆動力算出部と、
     前記運転者要求駆動力を発生するように前記電動モータの駆動力を制御するモータ制御部と、
     前記運転者要求駆動力を前記ブレーキ操作状態に応じて制限値に制限する運転者要求駆動力制限部と、
     前記ブレーキ操作状態に応じて算出された制動力を前記液圧制動装置で発生させる液圧制動制御部と、
     を備え、
     前記液圧制動制御部は、前記運転者要求駆動力と前記運転者要求駆動力制限部により算出された前記制限値との差分の力を前記算出された制動力から低減させて液圧制動力を発生させる第1の状態と、前記ブレーキ操作状態検出部により所定の操作加速度が検出されると前記ブレーキ操作状態に応じて制動力を発生させる第2の状態とを備える、車両制御装置。
  11.  請求項10に記載の車両制御装置において、
     前記モータ制御部は、前記第1の状態において、運転者によるブレーキ操作時にクリープ力を発生するよう駆動力を制御すると共に、前記ブレーキ操作状態に応じて前記クリープ力を低減し、
     前記液圧制動制御部は、前記低減したクリープ力の大きさを前記ブレーキ操作状態に基づいて算出し、算出されたクリープ力に応じて制動力が小さくなるよう変化させる、車両制御装置。
  12.  請求項11に記載の車両制御装置において、
     前記クリープ力は、運転者のブレーキ操作量に応じて低減量が決定され、ブレーキ操作量が大きいときは、ブレーキ操作量が小さいときに比べて低減量が大きい、車両制御装置。
  13.  請求項12に記載の車両制御装置において、
     前記クリープ力は、前記ブレーキ操作量が所定の操作量以上のときはゼロまで低減させる、車両制御装置。
  14.  請求項13に記載の車両制御装置において、
     前記クリープ力は、前記ブレーキ操作量が所定の操作量未満のときはゼロまで低減しない、車両制御装置。
  15.  請求項11に記載の車両制御装置において、
     前記クリープ力の低減勾配が、運転者のブレーキ操作速度に応じて低減するように決定され、ブレーキ操作速度が高いときは、ブレーキ操作速度が低いときに比べて低減勾配が大きい、車両制御装置。
  16.  請求項15に記載の車両制御装置において、
     前記低減勾配は、前記ブレーキ操作速度が所定速度以下のときは前記ブレーキ操作速度に対応した大きさであり、前記ブレーキ操作速度が前記所定速度よりも大きいときは前記ブレーキ操作速度よりも小さい、車両制御装置。
  17.  請求項11に記載の車両制御装置において、
     運転者のブレーキ操作によって車両が停車する路面の勾配を検出する路面勾配検出部を備え、
     前記モータ制御部は、前記路面勾配検出部により路面勾配が検出されると、上り勾配の場合に、ブレーキ操作量に応じて決定されるクリープ力を増加させる、車両制御装置。
  18.  請求項17に記載の車両制御装置において、
     車両の速度を算出する車両速度算出部と、
     車両に発生している制動力に基づき車両の速度を予測する車両速度予測部と、
    を備え、
     前記路面勾配検出部は、前記車両速度予測部による予測車両速度と、前記車両速度算出部による算出車両速度とに偏差がある場合に路面の勾配があることを検出する、車両制御装置。
  19.  車輪に対して駆動力を与える電動モータの駆動力と、前記車輪に対して制動力を与える液圧制動装置の制動力とを制御する際、
     運転者のブレーキ操作が検出されると運転者のブレーキ操作状態に応じて前記駆動力を低減すると共に当該駆動力に応じて前記制動力を調整し、急制動状態が検出されると前記ブレーキ操作状態に応じて前記制動力を発生させる、車両制御方法。
PCT/JP2015/069913 2014-07-11 2015-07-10 車両制御装置および車両制御方法 WO2016006687A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/323,776 US20170113700A1 (en) 2014-07-11 2015-07-10 Vehicle Control Apparatus and Vehicle Control Method
CN201580036762.XA CN106660532A (zh) 2014-07-11 2015-07-10 车辆控制装置以及车辆控制方法
EP15818227.9A EP3168098A4 (en) 2014-07-11 2015-07-10 Vehicle control device and vehicle control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-143413 2014-07-11
JP2014143413A JP6361916B2 (ja) 2014-07-11 2014-07-11 車両制御装置および車両制御方法

Publications (1)

Publication Number Publication Date
WO2016006687A1 true WO2016006687A1 (ja) 2016-01-14

Family

ID=55064315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069913 WO2016006687A1 (ja) 2014-07-11 2015-07-10 車両制御装置および車両制御方法

Country Status (5)

Country Link
US (1) US20170113700A1 (ja)
EP (1) EP3168098A4 (ja)
JP (1) JP6361916B2 (ja)
CN (1) CN106660532A (ja)
WO (1) WO2016006687A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107310555A (zh) * 2016-04-15 2017-11-03 福特全球技术公司 用于机动车辆平稳停止的方法和装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015226134A1 (de) * 2015-12-21 2017-06-22 Zf Friedrichshafen Ag Verfahren zum Betreiben eines Kraftfahrzeugs
JP6631453B2 (ja) * 2016-09-26 2020-01-15 株式会社アドヴィックス 車両の制動制御装置
JP6873643B2 (ja) * 2016-09-28 2021-05-19 Ntn株式会社 電動ブレーキ装置
KR102540917B1 (ko) * 2016-12-15 2023-06-07 현대자동차주식회사 전기 차량용 모터 토크 제어 방법
KR102353346B1 (ko) * 2017-01-31 2022-01-18 현대자동차주식회사 차량의 제동 제어 장치 및 방법
JP6747400B2 (ja) * 2017-07-31 2020-08-26 株式会社アドヴィックス 車両の速度制御装置
JP6881601B2 (ja) * 2017-12-15 2021-06-02 日産自動車株式会社 車両制御方法及び車両制御装置
US11001263B2 (en) * 2018-03-07 2021-05-11 Toyota Jidosha Kabushiki Kaisha Braking force control system, device, and method
JP6930466B2 (ja) * 2018-03-14 2021-09-01 トヨタ自動車株式会社 車両制御装置
KR102602922B1 (ko) * 2018-11-29 2023-11-15 현대자동차주식회사 전기차량의 크립토크 제어방법
US11142175B2 (en) 2019-01-07 2021-10-12 Toyota Motor Engineering & Manufacturing North America, Inc. Brake supplement assist control
JP7147585B2 (ja) * 2019-01-23 2022-10-05 トヨタ自動車株式会社 車両制御装置
JP7207004B2 (ja) * 2019-02-25 2023-01-18 トヨタ自動車株式会社 電動車両の制御装置
JP7300321B2 (ja) * 2019-06-20 2023-06-29 株式会社Subaru 制動制御装置
US11498428B2 (en) 2019-10-28 2022-11-15 Caterpillar Inc. Directional shift variable brake disengagement

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069604A (ja) * 1998-08-19 2000-03-03 Toyota Motor Corp 制動トルク制御方法および制動装置
JP2006298064A (ja) * 2005-04-18 2006-11-02 Nissan Motor Co Ltd 車両のクリープ制御装置
JP2007216763A (ja) * 2006-02-15 2007-08-30 Nissan Motor Co Ltd 車両の発進支援装置、車両の発進支援方法および発進支援装置付き車両

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1035447A (ja) * 1996-07-26 1998-02-10 Unisia Jecs Corp 電気制御制動装置
US20070191181A1 (en) * 2006-02-13 2007-08-16 Burns Robert D Method and apparatus for controlling vehicle rollback
JP4127310B2 (ja) * 2006-12-27 2008-07-30 トヨタ自動車株式会社 車両の制御装置、制御方法、その方法を実現するプログラムおよびそのプログラムを記録した記録媒体
US7909730B2 (en) * 2007-11-02 2011-03-22 GM Global Technology Operations LLC Method for vehicle creep torque control
JP2010075036A (ja) * 2008-08-22 2010-04-02 Fuji Heavy Ind Ltd 電気自動車の制御装置
JP5578089B2 (ja) * 2011-01-18 2014-08-27 トヨタ自動車株式会社 ハイブリッド自動車およびその制御方法
US9290169B2 (en) * 2011-02-04 2016-03-22 Suzuki Motor Corporation Vehicle control apparatus
FR2971460B1 (fr) * 2011-02-14 2015-05-22 Renault Sa Systeme et procede de freinage d'un vehicule a traction electrique ou hybride

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069604A (ja) * 1998-08-19 2000-03-03 Toyota Motor Corp 制動トルク制御方法および制動装置
JP2006298064A (ja) * 2005-04-18 2006-11-02 Nissan Motor Co Ltd 車両のクリープ制御装置
JP2007216763A (ja) * 2006-02-15 2007-08-30 Nissan Motor Co Ltd 車両の発進支援装置、車両の発進支援方法および発進支援装置付き車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3168098A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107310555A (zh) * 2016-04-15 2017-11-03 福特全球技术公司 用于机动车辆平稳停止的方法和装置
CN107310555B (zh) * 2016-04-15 2022-07-05 福特全球技术公司 用于机动车辆平稳停止的方法和装置

Also Published As

Publication number Publication date
JP2016020100A (ja) 2016-02-04
JP6361916B2 (ja) 2018-07-25
US20170113700A1 (en) 2017-04-27
EP3168098A4 (en) 2017-07-26
EP3168098A1 (en) 2017-05-17
CN106660532A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
JP6361916B2 (ja) 車両制御装置および車両制御方法
EP3050765B1 (en) Control device for electric vehicle
JP5804186B2 (ja) 制動制御装置
JP6618073B2 (ja) 制動制御装置
WO2013085000A1 (ja) 電動車両の制御装置
US9283936B2 (en) Braking force control apparatus for vehicle
JP2012200076A (ja) 電動車両の制御装置
CN107921878B (zh) 电动车辆的控制方法以及控制装置
CN110191818B (zh) 电动车辆的控制方法以及电动车辆的控制装置
WO2013137098A1 (ja) 制動制御装置及び制御方法
WO2015016326A1 (ja) 車両制御装置
JP2007131093A (ja) 車両用減速制御装置
JP6769279B2 (ja) 電動車両の制動制御方法、及び電動車両の制御装置
JP5560480B2 (ja) 電気自動車の車輪スリップ制御装置
WO2015016325A1 (ja) 車両制御装置
JP6056430B2 (ja) 車両用制動制御装置
JP5686721B2 (ja) 電動車両の制御装置
JP2016111878A (ja) 車両の駆動トルク制御装置
CN114667232B (zh) 电动四轮驱动车辆的控制方法以及控制装置
KR20150071568A (ko) 자동 긴급 제동 방법 및 시스템
JP2017158337A (ja) 電動車両の制御装置、電動車両の制御システムおよび電動車両の制御方法
JP6124123B2 (ja) 回生協調ブレーキ制御システム
US20150298678A1 (en) Traction control for a hybrid electric powertrain
JP2016179703A (ja) 車両用の制動制御装置
JP2014166845A (ja) 電気自動車の車輪スリップ制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818227

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15323776

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015818227

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015818227

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE