WO2016006290A1 - コンデンサ陽極体、固体電解コンデンサ素子、固体電解コンデンサおよびコンデンサ陽極体の製造方法 - Google Patents
コンデンサ陽極体、固体電解コンデンサ素子、固体電解コンデンサおよびコンデンサ陽極体の製造方法 Download PDFInfo
- Publication number
- WO2016006290A1 WO2016006290A1 PCT/JP2015/060720 JP2015060720W WO2016006290A1 WO 2016006290 A1 WO2016006290 A1 WO 2016006290A1 JP 2015060720 W JP2015060720 W JP 2015060720W WO 2016006290 A1 WO2016006290 A1 WO 2016006290A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- capacitor
- anode body
- solid electrolytic
- tungsten
- capacitor anode
- Prior art date
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 141
- 239000007787 solid Substances 0.000 title claims abstract description 59
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims abstract description 79
- 229910052721 tungsten Inorganic materials 0.000 claims abstract description 60
- 239000010937 tungsten Substances 0.000 claims abstract description 60
- 229910001935 vanadium oxide Inorganic materials 0.000 claims abstract description 52
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 claims abstract description 51
- 239000004065 semiconductor Substances 0.000 claims description 31
- 239000011248 coating agent Substances 0.000 claims description 24
- 238000000576 coating method Methods 0.000 claims description 24
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical group O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 claims description 24
- 239000000126 substance Substances 0.000 claims description 23
- 239000007864 aqueous solution Substances 0.000 claims description 20
- 238000006243 chemical reaction Methods 0.000 claims description 19
- 238000001035 drying Methods 0.000 claims description 17
- 229910052720 vanadium Inorganic materials 0.000 claims description 17
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 17
- 238000007654 immersion Methods 0.000 claims description 6
- 238000006116 polymerization reaction Methods 0.000 abstract description 22
- 229920001940 conductive polymer Polymers 0.000 abstract description 7
- 239000010410 layer Substances 0.000 description 46
- 238000000034 method Methods 0.000 description 22
- 238000011282 treatment Methods 0.000 description 18
- 239000000843 powder Substances 0.000 description 15
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 12
- 239000011148 porous material Substances 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 239000004020 conductor Substances 0.000 description 8
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 5
- VLEFWOKGLOFXQB-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine;ethanol Chemical compound CCO.O1CCOC2=CSC=C21 VLEFWOKGLOFXQB-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 4
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical class O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 229910001930 tungsten oxide Inorganic materials 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 3
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052715 tantalum Inorganic materials 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Natural products CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 239000010955 niobium Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 238000002186 photoelectron spectrum Methods 0.000 description 2
- 238000004445 quantitative analysis Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000011863 silicon-based powder Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000012086 standard solution Substances 0.000 description 2
- -1 tungsten halide Chemical class 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- OFEAOSSMQHGXMM-UHFFFAOYSA-N 12007-10-2 Chemical compound [W].[W]=[B] OFEAOSSMQHGXMM-UHFFFAOYSA-N 0.000 description 1
- GKWLILHTTGWKLQ-UHFFFAOYSA-N 2,3-dihydrothieno[3,4-b][1,4]dioxine Chemical class O1CCOC2=CSC=C21 GKWLILHTTGWKLQ-UHFFFAOYSA-N 0.000 description 1
- JAJIPIAHCFBEPI-UHFFFAOYSA-N 9,10-dioxoanthracene-1-sulfonic acid Chemical compound O=C1C2=CC=CC=C2C(=O)C2=C1C=CC=C2S(=O)(=O)O JAJIPIAHCFBEPI-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 102100030343 Antigen peptide transporter 2 Human genes 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 101800000849 Tachykinin-associated peptide 2 Proteins 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910001080 W alloy Inorganic materials 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- MIVBAHRSNUNMPP-UHFFFAOYSA-N manganese(2+);dinitrate Chemical compound [Mn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MIVBAHRSNUNMPP-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 235000011837 pasties Nutrition 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- ZNOKGRXACCSDPY-UHFFFAOYSA-N tungsten trioxide Chemical compound O=[W](=O)=O ZNOKGRXACCSDPY-UHFFFAOYSA-N 0.000 description 1
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/042—Electrodes or formation of dielectric layers thereon characterised by the material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/0029—Processes of manufacture
- H01G9/0036—Formation of the solid electrolyte layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/008—Terminals
- H01G9/012—Terminals specially adapted for solid capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/04—Electrodes or formation of dielectric layers thereon
- H01G9/048—Electrodes or formation of dielectric layers thereon characterised by their structure
- H01G9/052—Sintered electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/07—Dielectric layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/15—Solid electrolytic capacitors
Definitions
- the present invention relates to a capacitor anode body, a solid electrolytic capacitor element, a solid electrolytic capacitor, and a method for manufacturing a capacitor anode body.
- a solid electrolytic capacitor element is a dielectric of a metal oxide formed on the surface by electrolytically oxidizing a conductive body such as a sintered body of valve action metal powder and an anode body in an aqueous electrolyte solution such as phosphoric acid.
- Patent Document 1 describes an electrolytic capacitor using tantalum, niobium, titanium, aluminum, hafnium, zirconium or the like as a valve action metal.
- Patent Document 2 describes an electrolytic capacitor using niobium as a valve metal.
- Patent Document 3 describes an electrolytic capacitor using a sintered body of tungsten powder. Electrolytic capacitors using a sintered body of tungsten powder can obtain a larger capacity than electrolytic capacitors using sintered bodies of other valve action metals. On the other hand, electrolytic capacitors using a sintered body of tungsten powder have problems such as a problem that the coating film is cracked in the chemical conversion process and a problem that a leakage current is large, and are being studied.
- a solid electrolytic capacitor element using a tungsten sintered body has a problem that it takes time to obtain a sufficient layer thickness at the time of electrolytic polymerization when forming a semiconductor layer. There was not enough progress on this issue.
- the semiconductor layer can be uniformly formed up to the pore surface inside the sintered body by performing electrolytic polymerization a plurality of times.
- a sufficient layer thickness cannot be obtained unless the number of times is increased.
- This electrolytic polymerization treatment has a problem in terms of productivity because it takes one hour or more each time. If productivity is taken into consideration and the number of electrolytic polymerization treatments is reduced, there is a problem that the semiconductor layer is not formed densely and a sufficient capacity cannot be obtained.
- the present invention has been made in view of the above circumstances, and an object of the present invention is to obtain a capacitor anode body, a solid electrolytic capacitor element, a solid electrolytic capacitor, and a method for manufacturing a capacitor anode body that can obtain a high capacity even with a small number of treatments.
- the inventors have made vanadium oxide adhere on the surface of the dielectric coating formed on the surface of the capacitor anode body including the tungsten sintered body, thereby achieving a high capacity even with a small number of electrolytic polymerization treatments.
- the inventors have found a capacitor anode body, a solid electrolytic capacitor element, a solid electrolytic capacitor, and a method for producing a capacitor anode body that can be obtained. That is, the present invention has the following configuration.
- a capacitor anode body according to an aspect of the present invention is a capacitor anode body including a tungsten sintered body and having a dielectric film on a surface thereof, and vanadium oxide is attached on the surface of the dielectric film. Yes.
- the vanadium oxide may be divanadium pentoxide.
- the vanadium element content is 0.002 to 0.2 mass% with respect to the total content of the vanadium element and the tungsten element. There may be.
- the vanadium oxide may adhere to a range of 5 nm from the surface of the dielectric coating.
- At least a part of the tungsten sintered body may be silicided.
- a solid electrolytic capacitor element according to one aspect of the present invention is obtained by further laminating a semiconductor layer on the dielectric film of the capacitor anode body according to any one of (1) to (5) above. Yes.
- the solid electrolytic capacitor concerning 1 aspect of this invention is equipped with the solid electrolytic capacitor element as described in said (6).
- a method for manufacturing a capacitor anode body according to an aspect of the present invention includes: attaching a capacitor anode body including a tungsten sintered body and having a dielectric film on a surface thereof; Process.
- the adhesion step includes an immersion step in which the tungsten sintered body after the chemical conversion step is immersed in an aqueous solution in which vanadium oxide is dissolved, A drying step of drying the tungsten sintered body.
- the drying step includes a first drying step performed at a temperature of 100 ° C. to 120 ° C. and a second drying performed at a temperature of 190 ° C. to 300 ° C. You may have a process.
- FIG. 1 is a schematic cross-sectional view of a capacitor anode body according to an embodiment of the present invention.
- FIG. 2 is an image obtained by enlarging a cross section of a capacitor anode body according to an embodiment of the present invention at 25000 times using a scanning electron microscope (SEM).
- the capacitor anode body 10 of the present invention includes a tungsten sintered body 2 provided with a dielectric coating 1. Vanadium oxide is deposited on the surface of the dielectric coating 1 (not shown).
- the tungsten sintered body 2 is composed of a plurality of tungsten powders 2a. The tungsten powders 2a are bonded to each other and are electrically connected.
- the “dielectric film surface” means a dielectric film surface formed on the outer surface of the tungsten sintered body and the pore surface inside the tungsten sintered body. As will be described later, this is because the dielectric coating is formed both on the outer surface of the tungsten sintered body and on the pore surface inside the tungsten sintered body.
- Vanadium oxide is attached on the surface of the dielectric coating 1. Since the vanadium oxide adheres to the surface of the dielectric film 1, the semiconductor layer formed on the dielectric film 1 can be formed densely. That is, by using the capacitor anode body 10, the capacity of the solid electrolytic capacitor can be increased.
- the dielectric coating 1 is obtained by oxidizing the tungsten sintered body 2 by chemical conversion treatment, and includes tungsten oxide (WO 3 ). In a solid electrolytic capacitor using a tungsten sintered body, a semiconductor layer is difficult to form and cannot be formed densely. This is considered because this tungsten oxide has some bad influence. On the other hand, when vanadium oxide is adhered to the dielectric coating 1, the semiconductor layer can be densely formed although the cause is not clear.
- vanadium oxide adheres means that vanadium oxide is not formed in layers on the dielectric film 1, but a small amount of vanadium oxide is dispersed and adhered near the surface of the dielectric film 1.
- This vanadium oxide is a peak derived from vanadium oxide in the vicinity of 516 eV in the photoelectron spectrum of V2p3 / 2 electrons using X-ray photoelectron spectroscopy (Quanta II, Quantara II) under conditions of AlK ⁇ X-rays of 25 W and 15 kV. Can be measured by observing.
- the vanadium oxide could be measured between about 5 nm from the surface of the dielectric coating. Specific measurement conditions for X-ray photoelectron spectroscopy are shown below.
- Quantera II manufactured by ULVAC-PHI
- X-ray Al monochrome beam diameter 100 ⁇ m, 25W, 15kV
- Analysis area diameter 100 ⁇ m
- electron / ion neutralization gun used
- photoelectron take-off angle 45 degrees
- Narrow scan Pass Energy 112eV
- Step 0.2eV
- Dwell 20ms Sweep time: 200ms
- the CC peak of the C1s spectrum was set to 284.6 eV.
- mapping analysis was attempted using Auger electron spectroscopy (AES) analysis (manufactured by ULVAC-PHI, PHI-680) under the conditions of an electron beam of 10 kV and 10 nA, the presence of vanadium oxide could not be measured. It was. Since the peak of the Auger electrons derived from vanadium is adjacent to the peak of the Auger electrons derived from oxygen, the background becomes high, and it is considered that a trace amount of vanadium could not be detected.
- AES Auger electron spectroscopy
- a small amount of vanadium oxide is within the range from the surface of the dielectric coating to 5 nm, which is measurable by X-ray photoelectron spectroscopy under the above conditions but not by the mapping analysis of Auger electron spectroscopy under the above conditions. Means adhering.
- the chemical conversion treatment forms the substantially uniform dielectric film 1 on the surface of the pores inside the tungsten sintered body. Therefore, as the “surface of the tungsten sintered body”, the part being directly measured is the “outer surface of the tungsten sintered body”, but the “pore surface inside the tungsten sintered body” is being measured. It can be replaced.
- Vanadium oxide deposited at this time is not particularly limited.
- Vanadium oxides include those having a valence of II, III, IV, and V. These may be present alone or in combination of a plurality of valences. Among them, it is preferable that the V-valent vanadium pentoxide valence (V 2 O 5).
- Divanadium pentoxide is preferable because it is stable and can be handled quantitatively. In view of the property of the adhesion operation described later, divanadium pentoxide which is generally distributed is preferable.
- the vanadium element content is preferably 0.002 to 0.2% by mass, more preferably 0.002 to 0.1% by mass, based on the total content of vanadium element and tungsten element. Preferably, the content is 0.002 to 0.025% by mass. If the vanadium element content is 0.002% by mass or more with respect to the total content of the vanadium element and the tungsten element, when the capacitor anode body 10 is used in a solid electrolytic capacitor, the semiconductor layer is densely packed. It is easy to form and tends to increase the capacity of the electrolytic capacitor. In particular, also from the examples described later, when the content of the vanadium element exceeds 0.01% by mass, the capacity reaches saturation sufficiently.
- the dielectric constant of vanadium oxide is smaller than that of tungsten oxide.
- the content of vanadium element is 0.2% by mass or less with respect to the total content of vanadium element and tungsten element, solid electrolysis It is easy to maintain the large capacity of the capacitor. That is, if it is in the said range, it is easy to enlarge the capacity of the solid electrolytic capacitor.
- Quantitative analysis of the vanadium element can be calculated by a calibration curve method using Co as an internal standard. Specifically, the tungsten sintered body 2 having the dielectric film 1 to which the vanadium oxide is adhered is heated and dissolved in a hydrofluoric acid aqueous solution at 60 ° C., a standard solution equivalent to Co 10 ng is added, and an ICP mass spectrometer is used. Can be quantified. In addition to this, the aqueous ammonia solution may be used to dissolve and quantify the dielectric film 1 to which vanadium oxide adheres out of the tungsten sintered body 2 having the dielectric film 1 to which vanadium oxide adheres.
- the tungsten sintered body 2 is obtained by sintering the tungsten powder 2a.
- the tungsten sintered body 2 has pores. By having pores inside, the specific surface area of the formed dielectric coating 1 is increased. That is, the capacity of the solid electrolytic capacitor using the capacitor anode body 10 can be increased.
- tungsten powder 2a can be used. It is preferable to use tungsten powder having a small particle size.
- the tungsten powder 2a having a smaller particle diameter can be obtained, for example, by pulverizing tungsten oxide powder in a hydrogen atmosphere.
- tungstic acid and its salts (such as ammonium tungstate) or tungsten halide can be obtained by using a reducing agent such as hydrogen or sodium and appropriately selecting the reducing conditions. Further, it can be obtained directly from the tungsten-containing mineral or by obtaining a plurality of steps and selecting reduction conditions.
- the raw material tungsten powder 2a has a 50% particle diameter (D50) in the volume-based cumulative particle size distribution, preferably 0.1 to 1 ⁇ m.
- the tungsten powder 2a may be ungranulated powder (hereinafter also referred to as “primary powder”) or granulated granulated powder. Use of the granulated powder is preferable because pores are easily formed in the capacitor anode body.
- the granulated powder may be one obtained by adjusting the pore distribution by the same method as disclosed in JP 2003-213302 A for niobium powder, for example.
- the tungsten sintered body 2 is silicided.
- a method of obtaining a partially sintered tungsten sintered body for example, a method in which partially silicided tungsten powder is used as a raw material, or silicon powder is mixed well with tungsten powder 2a and sintered. The method obtained by making it react can be mentioned.
- the silicon element content is preferably 0.05 to 7% by mass, more preferably 0.2 to 4% by mass with respect to the tungsten element. If it is in the said range, the leakage current (LC) of the solid electrolytic capacitor element using the said tungsten sintered compact 2 can be restrained small.
- tungsten powder a powder having one or both of tungsten carbide and tungsten boride in part of the surface is also preferably used. Those containing nitrogen in part of the surface of the tungsten powder are also preferably used.
- FIG. 3 is a schematic cross-sectional view schematically showing the solid electrolytic capacitor element of the present invention.
- a solid electrolytic capacitor element 100 shown in FIG. 3 is disposed so that the counter electrode (cathode) 20 covers the capacitor anode body described above, and functions as a solid electrolytic capacitor element by the dielectric coating 1.
- the counter electrode 20 includes a semiconductor layer 21 and a conductor layer 22.
- the counter electrode 20 is electrically connected to the outside by a cathode lead wire 23.
- the conductor layer 22 is formed in order to improve electrical connection with the cathode lead wire 23, and can be removed.
- the semiconductor layer 21 and the conductor layer 22 What is generally used can be used.
- the semiconductor layer 21 can be formed densely. Therefore, the capacity of the solid electrolytic capacitor element 100 can be increased.
- FIG. 4 is a schematic cross-sectional view schematically showing the solid electrolytic capacitor of the present invention.
- a solid electrolytic capacitor 1000 includes the solid electrolytic capacitor element 100.
- the anode lead wire 3 of the solid electrolytic capacitor element 100 is connected to the anode terminal 300, and the conductor layer 22 is connected to the cathode terminal 400 via the conductive adhesive layer 410.
- a configuration in which a part of the anode terminal 300 and the cathode terminal 400 is excluded and the resin sheathing 200 is used may be employed.
- the conductive adhesive layer 410 can be replaced with the cathode lead wire 23.
- the resin sheath 200 can suppress the solid charge capacitor element 100 from being influenced from the outside.
- a plurality of solid electrolytic capacitor elements can be placed in parallel in the same direction to function as a single solid electrolytic capacitor.
- a capacitor anode body is produced.
- the capacitor anode body here is in a state before the dielectric coating is added, and may be a tungsten sintered body itself, which will be described later, or a tungsten sintered body such as an anode lead lead added to the tungsten sintered body. What processed the ligature may be sufficient.
- the tungsten sintered body can be obtained by sintering and forming tungsten powder, and can be produced by a generally used method.
- the tungsten powder constituting the tungsten sintered body can be produced by the method described above.
- a dielectric film is formed on the surface of the capacitor anode body by chemical conversion treatment.
- the chemical conversion treatment a generally used method can be used.
- the capacitor anode body is immersed in the electrolyte solution, and the chemical conversion treatment is performed while limiting the amount of current.
- the electrolyte in the electrolyte solution include nitric acid, sulfuric acid, and ammonium persulfate.
- the end point of the chemical conversion treatment is generally the point where the chemical conversion treatment is started at a constant current, the constant voltage processing is continued when the voltage reaches a preset chemical formation voltage, and the current amount is reduced to a certain value. It is.
- vanadium oxide is deposited on the surface of the dielectric film of the capacitor anode body on which the dielectric film is formed.
- the adhesion of the vanadium oxide is preferably realized by a method of immersing the capacitor anode body in an aqueous solution in which the vanadium oxide is dissolved and then drying the capacitor anode body after the immersion. By drying the immersed capacitor anode body, the vanadium oxide uniformly adheres not only to the outer surface of the capacitor anode body but also to the inner pore surface.
- the aqueous solution in which vanadium oxide is dissolved is preferably neutral.
- an acidic solution such as an ammonium persulfate aqueous solution can be preferably used as long as it is an oxidizing solution.
- an aqueous solution in which divanadium pentoxide is dissolved is preferable from the viewpoint of attaching a sufficient amount at low cost.
- the aqueous solution concentration of divanadium pentoxide is preferably 0.05 to 0.5% by mass.
- the temperature of the aqueous solution when the capacitor anode body after the chemical conversion treatment is immersed in an aqueous solution of divanadium pentoxide is preferably 20 ° C. to 60 ° C., more preferably 25 ° C. to 50 ° C., and further preferably 30 ° C. to 50 ° C. .
- the immersion time of divanadium pentoxide in an aqueous solution is determined from a preliminary experiment in consideration of the size of the anode body. When soaking, the aqueous solution is preferably stirred in a stirrer or the like from the viewpoint of keeping the concentration uniform.
- the drying step preferably includes a first drying step performed at a temperature of 100 ° C. to 120 ° C. and a second drying step performed at a temperature of 190 ° C. to 300 ° C. By performing the first drying step under a temperature condition of 100 ° C. to 120 ° C., the attached moisture can be removed.
- the second drying step is preferably 190 ° C to 300 ° C.
- a capacitor anode body having a dielectric film on the surface and having vanadium oxide adhered on the surface of the dielectric film can be produced.
- a solid electrolytic capacitor element can be obtained by forming a semiconductor layer on the dielectric film of the obtained capacitor anode body.
- a conductor layer may be further formed to improve electrical connection with the cathode lead.
- the semiconductor layer which is the cathode of the solid electrolytic capacitor element thus obtained can be generally composed of an inorganic semiconductor such as manganese dioxide or an organic semiconductor such as a conductive polymer doped with a dopant.
- ESR equivalent series resistance
- the polymerization can be carried out by a chemical polymerization method, an electrolytic polymerization method using an external electrode, an electrolytic polymerization method using a means for energizing the anode body, or a combination thereof.
- the time required for forming the semiconductor layer can be shortened. Specifically, for example, when chemical polymerization and electrolytic polymerization are performed in a plurality of times so that the pores in the capacitor anode body are not blocked, a time of one hour or more is required for one chemical polymerization and electrolytic polymerization treatment. Necessary. That is, productivity can be greatly improved by reducing this number of times only once.
- the conductor layer is not particularly limited, but carbon or silver having high conductivity is often used.
- the manufacturing method is not particularly limited. For example, it can be produced by solidifying pasty carbon or silver. Carbon or silver may be laminated to form a conductor layer.
- the anode lead wire is electrically connected to the external anode terminal and the cathode lead wire is electrically connected to the external cathode terminal, and then the resin sheathing is performed.
- a solid electrolytic capacitor can be obtained through these steps.
- Examples 1 to 4, Comparative Examples 1 and 2 A commercially available tungsten powder having a 50% particle size of 0.5 ⁇ m was heated in a vacuum at 1350 ° C. for 30 minutes. After returning to room temperature, the lump was taken out, crushed, and then classified into 26 to 180 ⁇ m by sieving to obtain granulated powder having an average particle size of 65 ⁇ m. The granulated powder was molded with a TAP2 molder manufactured by Seiko. A tantalum wire having a diameter of 0.40 mm was planted to form an anode lead. This molded body was vacuum-sintered at 1450 ° C.
- tungsten sintered body having a size of 1.0 ⁇ 2.8 ⁇ 4.3 mm (a lead wire was planted on a 1.0 ⁇ 2.8 mm surface) was 500. I got it. The mass of the tungsten sintered body excluding the wire was 105 ⁇ 3 mg.
- the tungsten sintered body is immersed in a 4% by mass aqueous ammonium persulfate solution to a position where the entire sintered body is immersed, and subjected to chemical conversion treatment at 10 ° C. and 10 V for 3 hours, A tungsten oxide dielectric film was formed on the surface of the pores. And after water washing and ethanol washing
- the tungsten sintered body subjected to the chemical conversion treatment was immersed in divanadium pentoxide aqueous solutions having various concentrations shown in Table 1. Immersion was performed for 15 minutes while keeping the liquid temperature at 30 ° C. and stirring with a stirrer. Thereafter, it was lifted from the aqueous solution, dried at 105 ° C. for 15 minutes, then heated to 190 ° C. for 30 minutes to adhere vanadium oxide (mainly divanadium pentoxide) to the surface of the dielectric coating.
- vanadium oxide mainly divanadium pentoxide
- the capacitor anode body subjected to the adhesion operation was 0.5 ml of 48% hydrofluoric acid (HF) (special grade product manufactured by Kanto Chemical Co., Ltd.) and 0.5 ml of 68% nitric acid (HNO 3 ) (ultra high purity product manufactured by Kanto Chemical Co., Ltd.). And dissolved in a hydrofluoric acid aqueous solution at 60 ° C., and then water was added to make 30 ml.
- HF hydrofluoric acid
- HNO 3 nitric acid
- the remaining capacitor anode body used for the quantitative analysis of the vanadium element was immersed in a 10% by mass 3,4-ethylenedioxythiophene ethanol solution and pulled up, and separately prepared 5% by mass toluene sulfone at 60 ° C. It was immersed in an iron (III) acid aqueous solution for 10 minutes to cause a polymerization reaction. The operation so far was repeated twice (total 3 times) from the operation of immersing in the 3,4-ethylenedioxythiophene ethanol solution.
- the process was repeated a plurality of times to form a semiconductor layer made of a conductive polymer.
- the second to third electrolytic polymerizations at this time were performed at a current value of 70 ⁇ A per anode body, and at the fourth and subsequent times at a current value of 80 ⁇ A per anode body.
- Table 1 shows the number of operations for forming a series of semiconductor layers including the monomer solution impregnation, electrolytic polymerization, and post-chemical conversion. Subsequently, except for the surface on which the lead wires on the semiconductor layer were planted, a carbon layer and a silver layer formed by solidifying the silver paste were sequentially laminated to produce 64 solid electrolytic capacitor elements for each example.
- Example 1 when producing granulated powder, a commercially available silicon powder having a 50% particle diameter of 1 ⁇ m was mixed with 0.8% by mass tungsten powder to produce an anode body, and an operation of attaching vanadium oxide was performed. Then, before immersing in the 3,4-ethylenedioxythiophene ethanol solution, the anode body after the adhesion operation was immersed in a 1.5 mass% manganese nitrate aqueous solution and then reacted at 200 ° C. for 15 minutes to obtain a manganese dioxide layer (dots). 64 solid electrolytic capacitor elements were produced in the same manner as in Example 1 except that some portions were present and may not be formed uniformly). By mixing silicon, a part of the surface layer of the granulated powder was an alloy of tungsten and silicon.
- the average capacity of each of the 64 elements (120 Hz, bias 2 V) and the semiconductor layer formed by the same method as in each example, and the mass of the semiconductor layer (difference in anode body mass before and after the semiconductor layer formation) is the average of 10 elements
- Table 1 shows the numerical values obtained from the above.
- Example 3 and Example 4 and Example 7 and Example 8 are compared, vanadium oxide adhesion operation is performed, and the formed capacitor anode body in which a sufficient semiconductor layer is formed is further subjected to vanadium oxide. It can be seen that the capacity does not change even if the number of adhesion operations is increased.
- Example 1 The measurement results of the X-ray photoelectron spectroscopy of Example 1 and Comparative Example 1 are shown in FIG.
- the measurement apparatus and measurement conditions were the same as those described above.
- a peak derived from vanadium oxide was observed in the vicinity of 516 eV in the photoelectron spectrum of V2p3 / 2 electrons. That is, it can be confirmed that the vanadium oxide is adhered on the dielectric coating.
- no peak is confirmed in Comparative Example 1 in which the vanadium oxide adhesion treatment is not performed.
- chemical conversion, adhesion operation, and semiconductor layer formation were performed.
- Table 2 shows the concentration of the vanadium pentoxide aqueous solution in the adhesion operation.
- Table 2 shows the average capacity (120 Hz, bias 2 V) of 64 elements in each example and the values obtained from the average of 10 elements for the mass of the semiconductor layer.
- the capacitor anode body of the present invention is suitable for use in various fields such as a mobile phone and a personal computer as a solid electrolytic capacitor.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Powder Metallurgy (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
本願は、2014年7月9日に、日本に出願された特願2014-141485号に基づき優先権を主張し、その内容をここに援用する。
半導体層は、電解重合を複数回行うことで、焼結体内部の細孔表面まで均一に形成することができる。しかし、タングステンの焼結体を用いた固体電解コンデンサ素子では、その回数を多くしないと十分な層厚を得ることができなかった。この電解重合処理は一回毎に一時間以上の時間がかかるため、生産性の面で問題があった。
生産性を考慮して、電解重合処理回数を減らすと、半導体層が密に形成されず十分な容量を得ることができないという問題があった。
すなわち、本発明は以下に示す構成を備えるものである。
以下の説明で用いる図面は、本発明の特徴をわかりやすくするために便宜上特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際とは異なっていることがある。以下の説明において例示される材質、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。
図1は、本発明の一実施形態であるコンデンサ陽極体の断面模式図である。図2は、本発明の一実施形態であるコンデンサ陽極体の断面を走査型電子顕微鏡(SEM)を用いて25000倍に拡大した画像である。
本発明のコンデンサ陽極体10は、誘電体被膜1を備えるタングステン焼結体2を含む。誘電体被膜1表面上にバナジウム酸化物が付着している(図示略)。タングステン焼結体2は複数のタングステン粉2aからなる。タングステン粉2a同士は、互いに接着し、電気的につながっている。タングステン焼結体2内部には、陽極リード線3が接続されている。タングステン粉2a同士が電気的につながっているため、陽極リード線3から通電された電気は、タングステン焼結体全体に行きわたることができる。
ここで「誘電体被膜表面」とは、タングステン焼結体の外表面及びタングステン焼結体内部の細孔表面に形成された誘電体被膜表面を意味する。後述するが、誘電体被膜はタングステン焼結体の外表面にも、タングステン焼結体の内部の細孔表面にも形成されるためである。
誘電体被膜1は、タングステン焼結体2が化成処理によって酸化されたものであり、酸化タングステン(WO3)を含む。タングステン焼結体を用いた固体電解コンデンサでは、半導体層が形成され難く、密に形成することができない。これは、この酸化タングステンが何らかの悪影響を及ぼすためと考えられる。これに対し、当該誘電体被膜1にバナジウム酸化物を付着させると、原因は明確ではないが半導体層を密に形成することができる。
このバナジウム酸化物は、X線光電子分光法(アルバックファイ社製、QuanteraII)を用いて、AlKαX線を25W、15kVの条件で、V2p3/2電子の光電子スペクトルにおいて516eV付近のバナジウム酸化物由来のピークを観測することで測定することができる。Arスパッタにより誘電体被膜表面上にバナジウム酸化物が付着しているタングステン焼結体の表面をエッチングして測定したところ、誘電体被膜表面から5nm程度までの間でバナジウム酸化物が測定できた。
X線光電子分光法の具体的な測定条件を以下に示す。
装置:QuanteraII(アルバックファイ社製)
X線:Alモノクロ ビーム径100μm、25W、15kV
分析面積:直径100μm、電子・イオン中和銃:使用、光電子取出し角:45度
[測定条件]
Narrow scan
Pass Energy:112eV、Step:0.2eV、Dwell:20ms
Sweep time:200ms
結合エネルギー補正はC1sスペクトルのC-Cピークを284.6eVとした。
前述のように化成処理は、タングステン焼結体内部の細孔表面にもほぼ均一な誘電体被膜1を形成する。そのため、「タングステン焼結体の表面」として、直接測定している部分は「タングステン焼結体の外表面」ではあるが、「タングステン焼結体の内部の細孔表面」を測定していると読み替えることもできる。
バナジウム元素の含有量が、バナジウム元素及びタングステン元素の含有量の合計値に対して0.002質量%以上であれば、コンデンサ陽極体10を固体電解コンデンサに用いた際に、半導体層を密に形成しやすくなり、電解コンデンサの容量を大きくできる傾向にある。特に、後述する実施例からも、バナジウム元素の含有量が0.01質量%を超えると、容量は十分飽和に達する。
バナジウム酸化物の誘電率は、酸化タングステンと比較して小さいが、バナジウム元素の含有量が、バナジウム元素及びタングステン元素の含有量の合計値に対して0.2質量%以下であれば、固体電解コンデンサの大きな容量を維持しやすい。
すなわち、前記範囲内であれば、固体電解コンデンサの容量を大きくしやすい。
タングステン焼結体2は、細孔を有する。内部に細孔を有していることで、形成される誘電体被膜1の比表面積が大きくなる。すなわち、コンデンサ陽極体10を用いた固体電解コンデンサの容量を大きくすることができる。
一部がケイ化されたタングステン焼結体を得る方法としては、例えば、一部がケイ化されたタングステン粉を原料として用いる方法、または、タングステン粉2aにケイ素粉をよく混合し、焼結時に反応させることにより得る方法などを挙げることができる。タングステン焼結体2の少なくとも一部がケイ化されている場合に、ケイ素元素の含有量はタングステン元素に対して0.05~7質量%が好ましく、0.2~4質量%がより好ましい。
当該範囲内であれば、当該タングステン焼結体2を用いた固体電解コンデンサ素子の漏れ電流(LC)を小さく抑えることができる。
図3は、本発明の固体電解コンデンサ素子を模式的に図示した断面模式図である。図3に示す固体電解コンデンサ素子100は、上述のコンデンサ陽極体を対電極(陰極)20が覆うように配置され、誘電体被膜1により固体電解コンデンサ素子として機能する。対電極20は、半導体層21と導電体層22からなる。対電極20は、陰極リード線23によって電気的に外部と接続される。導電体層22は陰極リード線23との電気的接続をよくするために形成されているものであり、除くこともできる。
半導体層21および導電体層22としては、特に限定されてないが、一般に使用されているものを用いることができる。
上述のように、コンデンサ陽極体の誘電体被膜1の表面上にはバナジウム酸化物が付着しているため、半導体層21を密に形成することができる。そのため、固体電解コンデンサ素子100の容量を高くすることができる。
まずコンデンサ陽極体を作製する。ここでいうコンデンサ陽極体は、誘電体被膜が付加される前の状態であり、後述するタングステン焼結体そのものであってもよいし、タングステン焼結体に陽極引出リードを付加するなど、タングステン焼結体を加工したものであってもよい。タングステン焼結体は、タングステン粉を焼結成形することで得ることができ、一般に用いられる方法で作製することができる。タングステン焼結体を構成するタングステン粉は、上述の方法で作製することができる。
化成処理の終了点は、定電流で化成処理を開始し、電圧が予め設定した化成電圧に達したところで定電圧処理を継続し、電流量がある一定値まで減少したところとするのが一般的である。
化成処理後のコンデンサ陽極体を五酸化二バナジウムの水溶液に浸漬させる際の水溶液の温度は、好ましく20℃~60℃、より好ましくは25℃~50℃、さらに好ましくは30℃~50℃である。五酸化二バナジウムの水溶液への浸漬時間は、陽極体の大きさなどを考慮して予備実験などから決定される。浸漬させる際には、濃度を均一に保つ観点から水溶液をスターラー等で攪拌させた状態で行うのが好ましい。
乾燥工程は、100℃~120℃の温度で行う第1乾燥工程と、190℃~300℃の温度で行う第2乾燥工程とを有することが好ましい。100℃~120℃の温度条件で、第1乾燥工程を行うことで、付着した水分を除去することができる。第2乾燥工程としては190℃~300℃であることが好ましい。
このように得られる固体電解コンデンサ素子の陰極である半導体層は、一般に二酸化マンガンなどの無機半導体やドーパントをドープした導電性高分子などの有機半導体により構成できる。固体電解コンデンサ素子が低い等価直列抵抗(ESR)を得るためには、誘電体被膜を有する陽極体上で重合を行い、導電性高分子層を形成して半導体層とすることが好ましい。
最後に、得られた固体電解コンデンサ素子の、陽極リード線を外部の陽極端子に、陰極リード線を外部の陰極端子にそれぞれ電気的に接続し、次いで樹脂外装をする。これらの工程を経ることで固体電解コンデンサを得ることができる。
市販の50%粒子径0.5μmのタングステン粉を1350℃で30分真空加熱した。
室温に戻してから塊状物を取り出し、解砕、次いで篩分により26~180μmを分級して平均粒径65μmの造粒粉を得た。
造粒粉を精研製TAP2型成型器で成形した。直径0.40mmのタンタル線を植立させ陽極リードとした。この成形体を1450℃で20分真空焼結し、大きさ1.0×2.8×4.3mm(1.0×2.8mm面にリード線が植立)のタングステン焼結体を500個得た。線を除いたタングステン焼結体の質量は、105±3mgであった。
次に、前記タングステン焼結体を、4質量%の過硫酸アンモニウム水溶液中に、ちょうど焼結体全体が浸かる位置まで浸漬して、10℃、10Vで3時間化成処理し、タングステン焼結体表面および細孔内表面に酸化タングステンの誘電体被膜を形成した。そして水洗、エタノール洗浄後、105℃で30分乾燥した。
続いて、化成処理を行ったタングステン焼結体を、表1に記載した各種濃度の五酸化二バナジウム水溶液に浸漬した。浸漬は、液温を30℃に保ち、スターラーで攪拌させながら15分間行った。その後水溶液から引き揚げ、105℃で15分乾燥し、次いで昇温して190℃で30分乾燥して、誘電体被膜表層にバナジウム酸化物(主に、五酸化二バナジウム)を付着させた。
付着操作を行ったコンデンサ陽極体を、0.5mlの48%フッ酸(HF)(関東化学社製特級品)と0.5mlの68%硝酸(HNO3)(関東化学社製超高純度品)とを混合したフッ硝酸水溶液に60℃で加熱溶解させ、次いで水を加えて30mlとした。ここから0.5mlを取り出し、Co10ng相当の標準液(関東化学社製Co/HNO3(0.1mol/l)溶液)を加えて10mlとし、Agilent Technology社製のICP-MS7500を用いて定量した。バナジウム元素とタングステン元素の合計質量に対するバナジウム元素の質量比を算出し、表1に併記した。
さらに、モノマー溶液(10質量%3,4-エチレンジオキシチオフェンエタノール溶液)にコンデンサ陽極体を浸漬した後に、別途用意した飽和の3,4-エチレンジオキシチオフェンと3質量%のアントラキノンスルホン酸を溶解した溶液(溶媒は水70質量部エチレングリコール30質量部の混合溶媒)に漬け、コンデンサ陽極体1個あたり60μAの電流値で室温60分間電解重合した。液から引き上げ、水洗、エタノール洗浄し、80℃乾燥後、さらに前記化成液で7V15分の後化成を行った。当該工程を複数回繰り返し導電性高分子からなる半導体層を形成した。この時の2回目~3回目の電解重合は、陽極体1個あたり70μAの電流値で、4回目以降は陽極体1個あたり80μAの電流値で行った。前記モノマー溶液含浸、電解重合、後化成の一連の半導体層形成の操作回数を表1に記載した。
続いて、半導体層上のリード線が植立している面を除いてカーボン層及び銀ペーストの固化による銀層を順次積層し、固体電解コンデンサ素子を各例64個ずつ作製した。
実施例1で、造粒粉を作製する時に、市販の50%粒子径1μmのケイ素粉を0.8質量%タングステン粉に混合して陽極体を作製したこと、バナジウム酸化物の付着操作を行った後、3,4-エチレンジオキシチオフェンエタノール溶液に浸漬前に、1.5質量%の硝酸マンガン水溶液に前記付着操作後の陽極体を浸漬後200℃15分反応させて二酸化マンガン層(点在する部分もあり、均一に形成されないこともある)を形成したこと以外は、実施例1と同様にして固体電解コンデンサ素子を各例64個ずつ作製した。ケイ素を混合したことで、造粒粉の表層の一部が、タングステンとケイ素の合金になっていた。
比較例1と比較例2または比較例3と比較例4を比較すると、バナジウム酸化物の付着操作を行っていないコンデンサ陽極体を用いる場合でも、一連の電解重合の操作回数を増やすことにより十分な容量をもつ固体電解コンデンサ素子を作製できることが分かる。言い換えると、バナジウム酸化物の付着操作を行うことで、一連の電解重合の操作回数を減らすことができる。
実施例3と実施例4および実施例7と実施例8を比較すると、バナジウム酸化物の付着操作を行って、十分な半導体層が形成された化成済のコンデンサ陽極体に、さらにバナジウム酸化物の付着操作の回数を増やしても容量はおよそ変わらないことが分かる。
コンデンサ陽極体として、タンタル焼結体を用いた点が実施例1と異なる。より具体的には、市販の10万μF・V/gのタンタル粉を造粒粉として用いて成形体を作製して1360℃で焼結したこと以外は、実施例1と同様にして陽極体を各例64個ずつ作製した。リード線を除いた陽極体の質量は、64±3mgであった。
実施例1と同様にして、化成、付着操作および半導体層形成を行った。付着操作における五酸化バナジウム水溶液の濃度を表2に記した。
各例64素子の平均容量(120Hz、バイアス2V)と、半導体層の質量を10素子の平均から求めた数値を表2に併記した。
Claims (10)
- タングステン焼結体を含み、表面に誘電体被膜を備えるコンデンサ陽極体であって、
前記誘電体被膜表面上にバナジウム酸化物が付着していることを特徴とするコンデンサ陽極体。 - 前記バナジウム酸化物が五酸化二バナジウムである請求項1に記載のコンデンサ陽極体。
- バナジウム元素の含有量が、バナジウム元素及びタングステン元素の含有量の合計値に対して0.002~0.2質量%である請求項1または2に記載のコンデンサ陽極体。
- 前記バナジウム酸化物が誘電体被膜の表面から5nmまでの範囲に付着している請求項1~3のいずれか一項に記載のコンデンサ陽極体。
- 前記タングステン焼結体の少なくとも一部がケイ化されている請求項1~4のいずれか一項に記載のコンデンサ陽極体。
- 請求項1~5のいずれか一項に記載のコンデンサ陽極体の誘電体被膜の上に、さらに半導体層が積層されている固体電解コンデンサ素子。
- 請求項6に記載の固体電解コンデンサ素子を備えた固体電解コンデンサ。
- タングステン焼結体を含み表面に誘電体被膜を備えるコンデンサ陽極体の、前記誘電体被膜表面上にバナジウム酸化物を付着させる付着工程を有することを特徴とするコンデンサ陽極体の製造方法。
- 前記付着工程が、
バナジウム酸化物が溶解した水溶液に前記化成工程後のタングステン焼結体を浸漬する浸漬工程と、
浸漬後のタングステン焼結体を乾燥する乾燥工程とを有することを特徴とする請求項8に記載のコンデンサ陽極体の製造方法。 - 前記乾燥工程が、
100℃~120℃の温度で行う第1乾燥工程と、
190℃~300℃の温度で行う第2乾燥工程とを有することを特徴とする請求項9に記載のコンデンサ陽極体の製造方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/323,812 US9870867B2 (en) | 2014-07-09 | 2015-04-06 | Capacitor anode, solid electrolytic capacitor element, solid electrolytic capacitor, and method for producing capacitor anode |
JP2015545965A JP5851667B1 (ja) | 2014-07-09 | 2015-04-06 | コンデンサ陽極体、固体電解コンデンサ素子、固体電解コンデンサおよびコンデンサ陽極体の製造方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-141485 | 2014-07-09 | ||
JP2014141485 | 2014-07-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016006290A1 true WO2016006290A1 (ja) | 2016-01-14 |
Family
ID=55063935
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/060720 WO2016006290A1 (ja) | 2014-07-09 | 2015-04-06 | コンデンサ陽極体、固体電解コンデンサ素子、固体電解コンデンサおよびコンデンサ陽極体の製造方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9870867B2 (ja) |
JP (1) | JP5851667B1 (ja) |
WO (1) | WO2016006290A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020004758A (ja) * | 2018-06-25 | 2020-01-09 | テイカ株式会社 | 電解コンデンサの製造方法 |
US11763998B1 (en) * | 2020-06-03 | 2023-09-19 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7357238B2 (ja) * | 2019-06-28 | 2023-10-06 | パナソニックIpマネジメント株式会社 | 電解コンデンサおよび電解コンデンサの製造方法 |
US11943869B2 (en) * | 2020-02-04 | 2024-03-26 | Kemet Electronics Corporation | Electrically functional circuit board core material |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004349658A (ja) * | 2002-07-26 | 2004-12-09 | Sanyo Electric Co Ltd | 電解コンデンサ |
JP2009038365A (ja) * | 2007-07-11 | 2009-02-19 | Sanyo Electric Co Ltd | 固体電解コンデンサおよびその製造方法 |
WO2012086272A1 (ja) * | 2010-12-24 | 2012-06-28 | 昭和電工株式会社 | タングステン粉、コンデンサの陽極体及び電解コンデンサ |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7491246B2 (en) * | 2006-03-31 | 2009-02-17 | Medtronic, Inc. | Capacitor electrodes produced with atomic layer deposition for use in implantable medical devices |
JP5274344B2 (ja) | 2009-04-01 | 2013-08-28 | 三洋電機株式会社 | 固体電解コンデンサ |
WO2013058018A1 (ja) * | 2011-10-18 | 2013-04-25 | 昭和電工株式会社 | コンデンサの陽極体の製造方法 |
WO2013088845A1 (ja) * | 2011-12-14 | 2013-06-20 | 三洋電機株式会社 | 固体電解コンデンサ |
-
2015
- 2015-04-06 WO PCT/JP2015/060720 patent/WO2016006290A1/ja active Application Filing
- 2015-04-06 JP JP2015545965A patent/JP5851667B1/ja not_active Expired - Fee Related
- 2015-04-06 US US15/323,812 patent/US9870867B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004349658A (ja) * | 2002-07-26 | 2004-12-09 | Sanyo Electric Co Ltd | 電解コンデンサ |
JP2009038365A (ja) * | 2007-07-11 | 2009-02-19 | Sanyo Electric Co Ltd | 固体電解コンデンサおよびその製造方法 |
WO2012086272A1 (ja) * | 2010-12-24 | 2012-06-28 | 昭和電工株式会社 | タングステン粉、コンデンサの陽極体及び電解コンデンサ |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020004758A (ja) * | 2018-06-25 | 2020-01-09 | テイカ株式会社 | 電解コンデンサの製造方法 |
JP7083280B2 (ja) | 2018-06-25 | 2022-06-10 | テイカ株式会社 | 電解コンデンサの製造方法 |
US11763998B1 (en) * | 2020-06-03 | 2023-09-19 | KYOCERA AVX Components Corporation | Solid electrolytic capacitor |
Also Published As
Publication number | Publication date |
---|---|
US9870867B2 (en) | 2018-01-16 |
JPWO2016006290A1 (ja) | 2017-04-27 |
US20170169957A1 (en) | 2017-06-15 |
JP5851667B1 (ja) | 2016-02-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3664112B1 (en) | Solid electrolytic capacitor, and method for producing solid electrolytic capacitor | |
JP5851667B1 (ja) | コンデンサ陽極体、固体電解コンデンサ素子、固体電解コンデンサおよびコンデンサ陽極体の製造方法 | |
JP5698882B1 (ja) | コンデンサ陽極体およびその製造方法 | |
JP2004349658A (ja) | 電解コンデンサ | |
JP2010034384A (ja) | 固体電解コンデンサの製造方法 | |
JP2009071300A (ja) | 固体電解コンデンサ | |
JP5222438B1 (ja) | タングステン細粉の製造方法 | |
US20170263384A1 (en) | Tungsten capacitor element and method for manufacturing same | |
JP4131709B2 (ja) | 固体電解コンデンサの製造方法 | |
JP5302692B2 (ja) | コンデンサ材料およびその製造方法、ならびにその材料を含むコンデンサ、配線板および電子機器 | |
JP2009038365A (ja) | 固体電解コンデンサおよびその製造方法 | |
WO2011013375A1 (ja) | 固体電解コンデンサの製造方法 | |
US9704652B2 (en) | Method for manufacturing tungsten-based capacitor element | |
JP5798279B1 (ja) | タングステン系コンデンサ素子の製造方法 | |
JP5476511B1 (ja) | コンデンサ素子 | |
JP2007081067A (ja) | 電解コンデンサおよびその製造方法 | |
JP4401195B2 (ja) | 固体電解コンデンサおよびその製造方法 | |
JP5940222B2 (ja) | 固体電解コンデンサ素子の陽極体及びその製造方法 | |
KR102016481B1 (ko) | 고체 전해 캐패시터 및 이의 제조방법 | |
JP5840821B1 (ja) | タングステンコンデンサ素子及びその製造方法 | |
JP4864035B2 (ja) | 固体電解コンデンサ | |
CN115176322A (zh) | 电解电容器用电极及其制造方法、以及电解电容器 | |
JP2009182020A (ja) | 固体電解コンデンサ及びその製造方法 | |
JP2011044730A (ja) | 固体電解コンデンサ | |
JP2009027024A (ja) | 固体電解コンデンサ及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2015545965 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15819430 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15323812 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15819430 Country of ref document: EP Kind code of ref document: A1 |