WO2016002931A1 - 機械構造用圧延棒鋼及びその製造方法 - Google Patents

機械構造用圧延棒鋼及びその製造方法 Download PDF

Info

Publication number
WO2016002931A1
WO2016002931A1 PCT/JP2015/069272 JP2015069272W WO2016002931A1 WO 2016002931 A1 WO2016002931 A1 WO 2016002931A1 JP 2015069272 W JP2015069272 W JP 2015069272W WO 2016002931 A1 WO2016002931 A1 WO 2016002931A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel bar
rolled steel
less
steel
content
Prior art date
Application number
PCT/JP2015/069272
Other languages
English (en)
French (fr)
Inventor
啓督 ▲高▼田
真也 寺本
修 大山
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2016531473A priority Critical patent/JP6217859B2/ja
Priority to US15/322,251 priority patent/US10266908B2/en
Priority to CN201580034599.3A priority patent/CN106661688B/zh
Publication of WO2016002931A1 publication Critical patent/WO2016002931A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K7/00Cutting, scarfing, or desurfacing by applying flames
    • B23K7/008Preliminary treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K7/00Cutting, scarfing, or desurfacing by applying flames
    • B23K7/06Machines, apparatus, or equipment specially designed for scarfing or desurfacing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the present invention relates to a rolled steel bar for machine structure suitable as a raw material for machine parts and structural members (hereinafter referred to as machine structural members) manufactured by hot forging and the like, and a method for manufacturing the same.
  • machine structural members suitable as a raw material for machine parts and structural members (hereinafter referred to as machine structural members) manufactured by hot forging and the like, and a method for manufacturing the same.
  • Mechanical structural members used in automobiles, industrial machines, and the like may require excellent ductility and toughness in addition to high strength.
  • the mechanical structural member has a tempered martensite as its metal structure. Therefore, after forming the steel bar of the material by hot forging, tempering heat treatment such as quenching and tempering, and further machining are performed. In many cases, it is manufactured.
  • mechanical structural members that are not so required for toughness and ductility are generally manufactured by machining after hot forging and not by tempering heat treatment from the viewpoint of manufacturing cost.
  • the metal structure In steel (non-tempered steel) manufactured without performing tempering heat treatment, good machinability and a high yield ratio can be obtained when the metal structure is a composite structure composed of ferrite and pearlite.
  • the metal structure includes bainite, the machinability deteriorates and the yield ratio decreases. Therefore, in non-heat treated steel, the metal structure is often a composite structure composed of ferrite and pearlite.
  • the mechanical structural member whose metal structure is a composite structure of ferrite and pearlite has a problem that soft ferrite becomes a starting point of fatigue failure.
  • the ferrite is hardened by solid solution strengthening by addition of Si or precipitation strengthening by addition of V or the like, and the hardness difference from pearlite is reduced, thereby improving fatigue resistance.
  • Improved steels and hot forgings have been proposed.
  • it is essential to contain V exceeding 0.30%. Thus, when V is contained in a large amount, V does not sufficiently dissolve even if the heating temperature at the time of hot forging is sufficiently high.
  • Patent Document 4 uses solid solution strengthening with Si as an alternative to V, which is an expensive element, and further improves fatigue resistance (fatigue strength) by reducing the lamellar spacing by adding Cr. Steel has been proposed. However, when Si is contained in the steel material, if the amount is less than a certain amount, the fatigue resistance can be improved. However, if Si is contained in a large amount, a decarburized layer is formed on the surface of the steel material, and it is resistant to mechanical structures. There arises a problem that the fatigue characteristics are lowered. In Patent Document 4, the content of Cr of 0.10% or more is essential, but Cr is an element that promotes the transformation of bainite that deteriorates machinability and lowers the yield ratio.
  • Japanese Unexamined Patent Publication No. 7-3386 Japanese Patent Laid-Open No. 9-143610 Japanese Patent Laid-Open No. 11-152542 Japanese Unexamined Patent Publication No. 10-226847
  • an object of the present invention is to provide a rolled steel bar for a mechanical structure suitable as a material for a mechanical structural member that requires strength and fatigue resistance, and a method for producing the same.
  • the rolled steel bar (rolled steel bar for mechanical structure) is used as the material. It is effective to control the structure of the surface layer).
  • a rolled steel bar that does not contain Cr increases the Si content, and reduces costs is used as a material, decarburization of the surface layer of the mechanical structural member becomes remarkable, hardness decreases, It was found that the fatigue characteristics deteriorate.
  • the present inventors examined the influence of decarburization on the fatigue resistance and the cause of decarburization of a mechanical structural member made of rolled steel bar containing a large amount of Si. As a result, it was ascertained that the cause of decarburization of the surface layer of the mechanical structural member was the rolled steel bar as the material. And it was clarified that the decarburization of the surface layer of the rolled steel bar was reduced by removing the decarburized layer of the steel slab used for the production of the rolled steel bar, and succeeded in improving the fatigue resistance of the mechanical structural member. Furthermore, the inventors of the rolled steel bar that can improve the strength of the mechanical structural member formed by hot forging while ensuring the hot ductility of the rolled steel bar required for hot forging. The optimum chemical composition and production conditions were found. In addition, it has been found that excellent fatigue resistance characteristics can be obtained in a mechanical structural member obtained by hot forging this rolled steel bar.
  • the present invention was made based on the above findings.
  • the gist of the present invention is as follows.
  • the rolled steel bar for machine structure has a chemical composition of mass%, C: 0.45 to 0.65%, Si: more than 1.00%, 1.50% or less, Mn: more than 0.40%, 1.00% or less, P: 0.005 to 0.050%, S: 0.020 to 0.100%, V: 0.08 to 0.20%, Ti: 0 -0.050%, Ca: 0-0.0030%, Zr: 0-0.0030%, Te: 0-0.0030%, the balance being Fe and impurities; 0.10% or less, Al: less than 0.01%, N: 0.0060% or less; K1 obtained by the following formula 1 is 0.95 to 1.05; obtained by the following formula 2.
  • K2 is more than 35; the contents of Mn and S satisfy the following formula 3; the surface layer total decarburization depth is 500 ⁇ m or less.
  • K1 C + Si / 7 + Mn / 5 + 1.54 ⁇ V
  • K2 139-28.6 ⁇ Si + 105 ⁇ Mn ⁇ 833 ⁇ S-13420 ⁇ N
  • Mn / S ⁇ 8.0 (Formula 3)
  • C, Si, Mn, V, S, and N in the formula are contents in mass% of each element.
  • the rolled steel bar for machine structure described in the above (1) has the chemical composition of mass%, Ti: 0.010 to 0.050%, Ca: 0.0005 to 0.0030%, Zr: 0.0005.
  • One or more elements of up to 0.0030% and Te: 0.0005 to 0.0030% may be contained.
  • the manufacturing method of the rolled steel bar for machine structure which concerns on another aspect of this invention is a manufacturing method of the rolled steel bar as described in said (1) or (2), Comprising: The said as described in said (1) or (2) A smelting step of smelting molten steel having a chemical composition; a casting step in which the molten steel is cast as a slab by continuous casting; a split rolling step in which the slab is subjected to split rolling to obtain a steel slab; A cutting process in which all surfaces of the steel slab after the lump rolling process are cut by 2 mm or more from the surface; and the steel slab after the cutting process is held at a heating temperature of 1000 to 1150 ° C. for 7000 s or less, A steel bar rolling process for performing steel bar rolling.
  • the above aspect of the present invention it is possible to provide a rolled steel bar in which the content of Cr and Al is limited and the thickness of the surface decarburized layer is suppressed in a low-cost rolled steel bar for machine structure containing a large amount of Si. Since the machine structural member manufactured by hot forging using this rolled steel bar as a raw material has excellent fatigue resistance, the industrial contribution is extremely remarkable.
  • the rolled steel bar for machine structure according to an embodiment of the present invention has a chemical composition of mass% and C: 0.45 to 0.65. %, Si: more than 1.00%, 1.50% or less, Mn: more than 0.40%, 1.00% or less, P: 0.005 to 0.050%, S: 0.020 to 0.100 %, V: 0.08 to 0.20%, if necessary, Ti: 0.050% or less, Ca: 0.0030% or less, Zr: 0.0030% or less, Te: 0.0.
  • % related to chemical composition means mass%.
  • an upper limit and a lower limit are included unless otherwise specified. That is, when expressed as 0.45 to 0.65%, it means a range of 0.45% or more and 0.65% or less.
  • C (C: 0.45-0.65%) C is a useful element that can increase the tensile strength of a steel material at low cost. In order to obtain this effect, the C content is set to 0.45% or more.
  • the yield ratio of the mechanical structural member obtained by hot forging a rolled steel bar decreases as the C content of the steel material increases.
  • the yield ratio is a value obtained by dividing the 0.2% proof stress by the tensile strength.
  • the C content is set to 0.65% or less. Preferably, it is 0.60% or less.
  • Si more than 1.00%, 1.50% or less
  • Si is a useful element that is inexpensive and contributes to increasing the strength of steel.
  • the Si content is more than 1.00%.
  • it is 1.10% or more.
  • the Si content is set to 1.50% or less.
  • Mn is a solid solution strengthening element that can increase the strength of a steel material while suppressing a decrease in ductility as compared with Si and V.
  • Mn is an element that forms MnS that combines with S to improve machinability.
  • the Mn content is set to more than 0.40%.
  • the Mn content is 1.00% or less. Preferably it is 0.95% or less, More preferably, it is 0.90% or less.
  • P is an element having an action of promoting ferrite transformation and suppressing bainite transformation.
  • the P content is set to 0.005% or more.
  • the upper limit of the P content is limited to 0.050%. Preferably, it is 0.040% or less.
  • S is an element that forms Mn sulfide (MnS) that improves machinability, and contributes to improvement of machinability.
  • MnS Mn sulfide
  • the S content is set to 0.020% or more.
  • the S content exceeds 0.100%, a large amount of coarse MnS may be dispersed in the steel, the hot ductility may be reduced, and the steel slab may be wrinkled. Therefore, the upper limit of the S content is limited to 0.100%.
  • V 0.08 to 0.20%
  • V is an element that contributes to precipitation strengthening of steel by forming V carbide and / or V nitride, and has an effect of increasing the yield ratio of the steel. In order to obtain this effect, the V content is set to 0.08% or more.
  • V is an expensive alloy element and an element that promotes an undesirable bainite transformation during cooling after hot forging. Therefore, in order to reduce costs and suppress bainite transformation, the V content is set to 0.20% or less. Preferably, it is 0.15% or less.
  • the rolled steel bar according to the present embodiment basically contains the above chemical components and the balance is Fe and impurities.
  • the rolled steel bar according to the present embodiment may further include Ca, Te, Zr, and Ti in the range shown below instead of a part of Fe, if necessary.
  • the lower limit is 0%.
  • Impurities are components mixed in from raw materials such as ore or scrap, or various environments in the manufacturing process when steel is produced industrially, and are allowed within a range that does not adversely affect the present invention. Means things.
  • impurities Al, N, and Cr are particularly limited to the following ranges.
  • Al less than 0.01%
  • Al is an impurity.
  • Al When Al is present in the steel, it combines with oxygen to form a hard Al oxide, thereby reducing the machinability of the steel material. Therefore, it is preferable that the Al content is low. If the Al content is 0.01% or more, the machinability is remarkably lowered, so the Al content is limited to less than 0.01%.
  • N is an impurity.
  • N When N is present in the steel, it combines with V to form V nitride.
  • V nitride is coarser than V carbide and contributes little to precipitation strengthening. Therefore, if the N content is high, V nitride increases and V carbide decreases accordingly. As a result, the contribution to the precipitation strengthening of V becomes small.
  • the total amount of V nitride is preferably small, and therefore the N content is preferably small. If the N content exceeds 0.0060%, the contribution to the precipitation strengthening of V is remarkably reduced, so the N content is limited to 0.0060% or less. On the other hand, if steel is excessively reduced in terms of steelmaking technology, the cost will increase significantly, so the lower limit may be made 0.0020%.
  • Cr 0.10% or less
  • Cr is an impurity. Cr has little influence on strength, but promotes bainite transformation during cooling after hot forging. Therefore, when the Cr content increases, the yield ratio decreases in the mechanical structural member obtained by hot forging a rolled steel bar. A smaller Cr content is preferable, but when the Cr content exceeds 0.10%, the effect becomes significant, so the Cr content is limited to 0.10% or less.
  • Ca, Te, and Zr are all elements that refine and spheroidize MnS particles (that is, control the form of sulfide).
  • MnS expands, the anisotropy of hot ductility increases, so that cracking in a specific direction is likely to occur.
  • one or more selected from Ca, Zr, and Te may be included.
  • the Ca content, the Zr content and / or the Te content be 0.0005% or more, respectively.
  • Ti is an element that forms Ti nitride in steel.
  • Ti nitride has the effect of adjusting the structure of the steel material. When obtaining this effect, the Ti content is preferably 0.010% or more.
  • Ti nitride is hard and may reduce the tool life during cutting. Therefore, even when it contains, Ti content shall be 0.050% or less.
  • C, Si, Mn, V, S, and N must satisfy the relationship shown below.
  • C, Si, Mn, V, S, and N in the formula are the contents of each element in mass%.
  • K1 is a carbon equivalent which is an index related to strength, and is obtained by the following (formula 1).
  • K1 C + Si / 7 + Mn / 5 + 1.54 ⁇ V (Formula 1)
  • the tensile strength of the mechanical structural member formed by hot forging using the rolled steel bar according to the present embodiment as a raw material is affected by the carbon equivalent K1.
  • the structure is composed of ferrite and pearlite mainly composed of pearlite, and has a tensile strength of over 900 MPa and a 0.2 of 0.25 with 570 MPa or more.
  • K2 is an index related to hot ductility obtained from experiments described later by the present inventors, and is obtained by the following (formula 2).
  • K2 139-28.6 ⁇ Si + 105 ⁇ Mn ⁇ 833 ⁇ S-13420 ⁇ N (Formula 2)
  • K2 (Formula 2) Got.
  • the upper limit of K2 does not need to be limited, and is determined from the respective content ranges of Si, Mn, S, and N, but 100 may be the upper limit.
  • Si, S, and N are hot ductility reducing factors, and Mn is an improving factor. Therefore, basically, it is necessary to satisfy the value of K2 from the balance thereof.
  • harmful FeS is generated when Mn / S is less than 8.0, so even if the value of K2 exceeds 35, if Mn / S is less than 8.0, Characteristics are degraded.
  • Mn / S (Mn / S ⁇ 8.0)
  • S combines with Mn to form MnS.
  • S forms FeS on the austenite grain boundary in addition to MnS.
  • the hot ductility is remarkably lowered and cracks are generated by hot forging. Therefore, in order to suppress the production of FeS, Mn / S is set to 8.0 or more. If Mn / S is 8.0 or more, the hot ductility is governed by the value of K2 described above. Therefore, Mn / S should just be 8.0 or more, and an upper limit is determined by the minimum value of S, and the maximum value of Mn.
  • Total surface decarburization depth As described above, the decarburization depth of the rolled steel bar (surface total decarburization depth) affects the fatigue resistance characteristics of the mechanical structural member obtained by hot forging the rolled steel bar.
  • a mechanical structural member formed by hot forging using a rolled steel bar having a surface decarburization depth of more than 500 ⁇ m as a raw material deteriorates in fatigue resistance (fatigue limit ratio). Further, when the total surface decarburization depth becomes deep, the tensile strength, proof stress, and fatigue limit ratio may be lowered due to decarburization depending on the steel components. Therefore, the surface layer total decarburization depth of the rolled steel bar is set to 500 ⁇ m or less.
  • the lower limit is 0 ⁇ m (that is, there is no need for a decarburized layer).
  • the surface layer total decarburization depth of the rolled steel bar is the three cross sections obtained by cutting at the central part in the longitudinal direction of the rolled steel bar and at each 1/4 part of the total length from both ends. Is defined as the average value of the decarburization depths of the total 12 surface layers when measured at 4 locations that are 90 degrees different from each other in the circumferential direction.
  • the decarburization depth of the surface layer is defined as a depth at which the carbon amount measured on a straight line from the surface layer to the inside becomes 90% of the carbon amount that is constant inside (internal carbon amount). Electron Probe Micro Analyzer, called EPMA).
  • the mechanical structural member preferably has a composite structure (ferrite / pearlite structure) composed of ferrite and pearlite.
  • a rolled steel bar often has the same structure composed of ferrite and pearlite.
  • the rolled steel bar according to the present embodiment melts molten steel having the above-described chemical composition by a conventional method (melting process), and uses the molten steel as a slab by a conventional method such as continuous casting (casting process).
  • a conventional method such as continuous casting (casting process).
  • the deep decarburized layer generated in the surface layer of the steel slab containing a large amount of Si remains not only the rolled steel bar but also the hot forged product (machine structural member) manufactured using the rolled steel bar as a raw material. Deteriorate the mechanical properties, especially fatigue resistance. For example, results of studies made by the present inventors, and cast into the cross-sectional area 196000Cm 2, decarburization depth of the steel strip of the high Si steel with a cross-sectional area as 26244Cm 2 by slabbing was maximum 1.8 mm.
  • the decarburization depth of the steel slab depends on the size of the slab and the steel slab, but in the case of the steel slab manufactured through the partial rolling process, after the partial rolling, 2 mm from the surface of the steel slab. If the above is deleted by hot cutting and hot rolling is performed, the surface layer total decarburization depth of the rolled steel bar can be reduced to 500 ⁇ m or less. On the other hand, if the amount of cutting is too large, there is a concern about weight reduction, increase in rough skin, increase in cutting cost, and increase in time for cutting. Therefore, the amount of cutting is preferably 10 mm or less. It is preferable to perform the welding on all surfaces of the steel slab.
  • the slab cutting is aimed at removing the deep decarburized layer formed during continuous casting, and in the subsequent processes, the deep decarburized layer that deteriorates the fatigue characteristics of hot forged products by making the conditions appropriate. Does not generate.
  • the heating time in the partial rolling is set to 900 s or less.
  • the cutting of the steel slab can be performed by so-called scarfing, in which the surface of the steel slab is thermally and chemically cut with a combustion gas and oxygen.
  • the steel slab after the block rolling may be performed in a high temperature state or may be performed in a cooled state.
  • cutting with a grinder or the like is inefficient, it is excluded from the method employed in this embodiment.
  • the holding time at the heating temperature (1000 to 1150 ° C.) is set to 7000 s or less.
  • the lower limit of the holding time is preferably 10 s.
  • the rolled steel bar according to the present embodiment can be obtained. Further, by forging the rolled steel bar, a mechanical structural member having excellent fatigue resistance can be obtained.
  • the forging conditions may be in a condition range that is normally performed. For example, the heating temperature is 1000 to 1300 ° C.
  • hot forging is often performed by heating the material at a high frequency, but since the heating time required for reaching the predetermined temperature is short, the heating of the material (rolled steel bar) during that time Extreme decarburization rarely occurs on the surface layer.
  • Example 1 Steel A having the chemical composition shown in Table 1 was cast to a cross-sectional size of 350 ⁇ 560 mm to obtain a slab.
  • the chemical composition of steel A is a composition in which decarburization is likely to occur because the C content is low and the Si content is high.
  • the balance of Table 1 is Fe and impurities.
  • this slab was reheated to 1300 ° C and rolled into a 280 x 280 mm cross section, the entire surface of the steel slab was hot-cut at a depth of 1 mm, 2 mm, and 3 mm to obtain a 162 x 162 mm cross section.
  • Example 2 Steels (steel Nos. B to AD) having chemical compositions shown in Table 3 were melted and continuously cast to obtain slabs. This cast slab is subjected to ingot rolling to form a steel slab. Except for 12-19, the entire surface was cut at a depth of 3 mm. The balance of Table 3 is Fe and impurities.
  • the hot-rolled steel slab was subjected to hot rolling to produce a rolled steel bar having a diameter of 45 mm.
  • Some steel slabs (test Nos. 12 to 19 in Table 4) were subjected to hot-rolling by 1 mm over the entire surface and subjected to hot rolling to produce rolled steel bars having a diameter of 45 mm for comparison. Hot rolling was performed at a heating temperature of 1100 ° C. and a holding time of 3600 s. After hot rolling, it was air-cooled to room temperature.
  • the total decarburization depth of the steel bar obtained by hot rolling was determined by the method described above. Thereafter, a rolled steel bar having a diameter of 45 mm was heated to 1220 ° C. by high-frequency heating and held for 300 s, and then immediately rolled down in the diameter direction and forged into a 10 mm-thick flat plate. A side surface of the forged flat plate was cut to obtain a test piece having a parallel portion having a cross-sectional width of 15 mm, a thickness of 10 mm (thickness as forged), and a length of 20 mm, and subjected to a double-spin tensile compression fatigue test and a tensile test. .
  • the tensile compression fatigue test was performed according to JIS Z 2273, and the maximum load stress showing a life of 10 7 times or more was defined as the fatigue limit.
  • the tensile test was carried out at a normal temperature of 20 mm / min according to JIS Z 2241.
  • the forged surface of the parallel part is not processed and remains forged.
  • polished the surface for 500 micrometers after hot forging and removed the decarburized layer was also provided as reference (test No. 2 and 3 of Table 4).
  • the corners of the cut part of the test piece were all chamfered with a radius of 2 mm.
  • Tables 4 and 5 show the total surface decarburization depth of the rolled steel bar before hot forging, the microstructure of the forged plate after hot forging, 0.2% proof stress, tensile strength, yield ratio (0.2% strength / tensile strength) shows 10 7 times fatigue limit ratio of tension and compression tests (fatigue limit / tensile strength).
  • Test No. in Table 4 Reference numerals 4 to 11 and 20 are examples of the present invention.
  • the decarburization depth of the rolled steel bar in which all the side surfaces of the steel slab were melted at a depth of 3 mm was 500 ⁇ m or less.
  • the tensile strength of a forged product (forged flat plate) obtained by forging a rolled steel bar is as high as 948 MPa or more, and the 0.2% proof stress is as high as 597 MPa or more, and the fatigue limit ratio (fatigue strength) of the tensile compression fatigue test is high. / Tensile strength) was as good as 0.47 or more.
  • test No. in Table 4 in which the decarburized layer was deleted by grinding after hot forging. 2 and 3 and test no.
  • Test No. in Table 4 Nos. 12 to 19 are comparative examples in which the decarburization depth of the rolled steel bar exceeds 500 ⁇ m. These are rolled steel bars manufactured by hot-rolling 1 mm of all sides of a steel slab. A forged product obtained by forging the steel bar does not satisfy at least one of a tensile strength of 900 MPa or more, a 0.2% proof stress of 570 MPa or more, and a fatigue limit ratio of 0.45 or more.
  • Test No. in Table 5 Nos. 21 to 39 are steel Nos. 1 to 5 in which any one or more of steel components (chemical composition), Mn / S, K1 or K2 are out of the scope of the present invention. It is a comparative example manufactured using K-AD. Steel No. corresponding to at least one of M / S less than 8.0 and K2 value of 35 or less. Test No. using L, M, N, Q, R and V Nos. 22, 23, 24, 27, 28 and 32 had cracks and large flaws during bar steel forging, and could not be evaluated after hot forging. Therefore, “*” was shown in each evaluation column of Table 5. Test No. 33 (steel No.
  • Test No. 21 (steel No. K) has a low C and Si content as well as a K1 value, and the tensile strength and the 0.2% proof stress do not reach the target 900 MPa and 570 MPa, respectively.
  • Test No. 34 (steel No. X) has a low C content, and the tensile strength and the 0.2% yield strength do not reach the target 900 MPa and 570 MPa, respectively.
  • Test No. 25 (steel No.
  • test no. No. 25 has a 0.2% proof stress not reaching 570 MPa.
  • No. 26 (steel No. P) has a 0.2% yield strength below the target of the present invention.
  • Test No. No. 26 also has a tensile strength below the target of the present invention.
  • Test No. 29 (steel No. S) has a high C content, and thus has a high tensile strength, but a 0.2% proof stress and a fatigue limit ratio are low.
  • Test No. 30 (steel No.
  • T has low K1, and therefore has low tensile strength and 0.2% proof stress.
  • Test No. 35 (Steel No. Y), Test No. 36 (steel No. Z) satisfies the value of K1 and has a good tensile strength, but has a low 0.2% yield strength.
  • Test No. 36 has a low fatigue limit ratio.
  • Equation 2 shows, In Test No. 23 (steel No. M) in Table 5, since Mn / S was small, cracking and flaws occurred during forging. Since test No. 24 (steel No. N) is a sample having a large Si content and a small K2, cracking and flaws occurred during forging. In test No. 28 (steel No. R), since Mn / S was small, wrinkles occurred. Test No. 32 (steel No. V) had a high N content and a small K2, so cracking and flaws occurred during forging. Test No. 38 (steel No. AB) satisfies the value of K2, but since the N content is large, V nitride increases, the contribution to precipitation strengthening of V decreases, and the tensile strength, 0.2 Both% proof stress and fatigue limit ratio are low.
  • Test No. 25 (steel No. O)
  • test no. 37 (Steel No. AA)
  • Test No. 39 (steel No. AC)
  • No. 39 40 (steel No. AD) has a low yield strength because it contains a large amount of Mn or / and Cr, or because K1 is large, B (bainite) structure may be mixed in addition to FP (ferrite pearlite) structure. The reason is considered.
  • the above aspect of the present invention it is possible to provide a rolled steel bar in which the content of Cr and Al is limited and the formation of a deep decarburized layer is suppressed in the surface layer of a low-cost rolled steel bar for machine structure containing a large amount of Si. Since the machine structural member manufactured by hot forging using this rolled steel bar as a raw material has excellent fatigue resistance, the industrial contribution is extremely remarkable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

 この機械構造用圧延棒鋼は、所定の化学組成を有し、K1=C+Si/7+Mn/5+1.54×Vで求められるK1が0.95~1.05であり、K2=139-28.6×Si+105×Mn-833×S-13420×Nで求められるK2が35超であり、Mn及びSの含有量が、Mn/S≧8.0を満足し、表層全脱炭深さが500μm以下である。

Description

機械構造用圧延棒鋼及びその製造方法
 本発明は、熱間鍛造などを施して製造される機械部品や構造部材など(以下、機械構造部材と称する)の素材として好適な、機械構造用圧延棒鋼及びその製造方法に関する。
 本願は、2014年07月03日に、日本に出願された特願2014-137878号に基づき優先権を主張し、その内容をここに援用する。
 自動車、産業機械などに使用される機械構造部材は、高強度に加え、優れた延性や靱性が必要とされる場合がある。このような場合、機械構造部材は、その金属組織を焼戻しマルテンサイトとすることが好ましいので、素材の棒鋼を熱間鍛造によって成形した後、焼入れ-焼戻しなどの調質熱処理、更に、機械加工を施して製造されることが多い。
 一方、靱性や延性がそれほど要求されない機械構造部材は、一般に、製造コストの点から、熱間鍛造後、調質熱処理を施さず、機械加工を施して製造される。調質熱処理を施さずに製造される鋼(非調質鋼)では、その金属組織がフェライトとパーライトとからなる複合組織であると、良好な被削性及び高い降伏比が得られる。金属組織がベイナイトを含む場合には、被削性が劣化するとともに、降伏比が低下する。そのため、非調質鋼では、金属組織をフェライトとパーライトとからなる複合組織とすることが多い。
 また、機械構造部材には、耐疲労特性が要求される場合がある。
 このような場合、金属組織がフェライトとパーライトとの複合組織である機械構造部材は、軟質のフェライトが疲労破壊の起点になるという問題を有していた。これに対し、例えば特許文献1~3には、Si添加による固溶強化や、Vなどの添加による析出強化によって、フェライトを硬化させ、パーライトとの硬度差を小さくすることで、耐疲労特性を向上させた鋼材や熱間鍛造品が提案されている。
 しかしながら、特許文献1では、0.30%超のVの含有が必須である。このようにVが多量に含有されると、熱間鍛造を行う際の加熱温度を十分高くしても、Vが十分に固溶しない。この場合、未溶解V炭化物が残存し、機械構造部材の強度と延性とが低下するという問題がある。
 また、特許文献2では、0.01%以上のAlの含有が必須である。しかしながら、Alは鋼中に硬質な酸化物を形成し、鋼の被削性を著しく低下させるという問題がある。
 また、特許文献3では、1.0%以上のMnと0.20%以上のCrの含有が必須である。しかしながら、Mn及びCrは被削性を劣化させ、降伏比を低下させるベイナイトの変態を促進する元素であるという問題がある。
 一方、例えば特許文献4には、高価な元素であるVの代替としてSiによる固溶強化を利用し、更に、Cr添加によるラメラ間隔の微細化によって、耐疲労特性(疲労強度)の向上を図った鋼材が提案されている。
 しかしながら、鋼材にSiを含有させた場合、一定量以下であれば、耐疲労特性の向上が図れるものの、Siを多量に含有させると鋼材の表面に脱炭層が形成され、機械構造部材としての耐疲労特性が低下するという問題が生じる。また、特許文献4では、0.10%以上のCrの含有が必須であるが、Crは被削性を劣化させ、降伏比を低下させるベイナイトの変態を促進する元素である。
日本国特開平7-3386号公報 日本国特開平9-143610号公報 日本国特開平11-152542号公報 日本国特開平10-226847号公報
 上述の通り、従来、Siを多量に含有し、かつ、Cr、Alを含有させず、低コストでかつ優れた耐疲労特性を有する機械構造部材は提供されていなかった。
 本発明者らは、鋭意検討を行った結果、機械構造部材の耐疲労特性を向上させるには、特に、機械構造部材表層の硬度を制御することが重要であることを見出した。また、本発明者らは、機械構造部材の表層の硬度を制御するためには、その素材となる圧延棒鋼(機械構造用圧延棒鋼)の表層部の組織を制御することが有効であることを見出した。
 本発明は、このような実情に鑑み、強度及び耐疲労特性が要求される機械構造部材の素材として好適な機械構造用圧延棒鋼、及びその製造方法の提供を課題とする。
 上述の通り、機械構造部材の耐疲労特性を向上させるには、特に、機械構造部材表層の硬度を制御することが重要であり、そのためには、その素材となる圧延棒鋼(機械構造用圧延棒鋼)の表層部の組織を制御することが有効である。
 しかしながら、Crを含有せず、Siの含有量を増加させて、低コスト化を図った圧延棒鋼を素材として用いる場合、機械構造部材表層の脱炭が顕著になり、硬度が低下して、耐疲労特性が劣化することがわかった。
 そのため、本発明者らは、Siを多量に含有する圧延棒鋼を素材とする機械構造部材の、耐疲労特性に及ぼす脱炭の影響及び脱炭の原因について検討した。その結果、機械構造部材の表層の脱炭の原因が、素材である圧延棒鋼にあることを突き止めた。そして、圧延棒鋼の製造に用いる鋼片の脱炭層を除去することにより、圧延棒鋼の表層の脱炭が軽減されることを明らかにし、機械構造部材の耐疲労特性の改善に成功した。
 更に、本発明者らは、熱間鍛造に必要とされる圧延棒鋼の熱間延性を確保しつつ、熱間鍛造によって成形された機械構造部材の強度を向上させることが可能な、圧延棒鋼の最適な化学組成及び製造条件を見いだした。
 また、この圧延棒鋼を熱間鍛造して得られる機械構造部材において、優れた耐疲労特性が得られることを見出した。
 本発明は上記の知見に基づいてなされた。本発明の要旨は以下のとおりである。
 (1)本発明の一態様に係る機械構造用圧延棒鋼は、化学組成が、質量%で、C:0.45~0.65%、Si:1.00%超、1.50%以下、Mn:0.40%超、1.00%以下、P:0.005~0.050%、S:0.020~0.100%、V:0.08~0.20%、Ti:0~0.050%、Ca:0~0.0030%、Zr:0~0.0030%、Te:0~0.0030%を含有し、残部がFe及び不純物であり;前記不純物として、Cr:0.10%以下、Al:0.01%未満、N:0.0060%以下、に制限し;下記式1で求められるK1が0.95~1.05であり;下記式2で求められるK2が35超であり;Mn及びSの含有量が、下記式3を満足し;表層全脱炭深さが500μm以下である。
 K1=C+Si/7+Mn/5+1.54×V  (式1)
 K2=139-28.6×Si+105×Mn-833×S-13420×N  (式2)
 Mn/S≧8.0  (式3)
 ここで、式中のC、Si、Mn、V、S、Nは各元素の質量%での含有量である。
 上記(1)に記載の機械構造用圧延棒鋼は、前記化学組成が、質量%で、Ti:0.010~0.050%、Ca:0.0005~0.0030%、Zr:0.0005~0.0030%、Te:0.0005~0.0030%の1種以上を含有してもよい。
 本発明の別の態様に係る機械構造用圧延棒鋼の製造方法は、上記(1)又は(2)に記載の圧延棒鋼の製造方法であって、上記(1)又は(2)に記載の前記化学組成を有する溶鋼を溶製する溶製工程と;前記溶鋼を、連続鋳造によって鋳片とする鋳造工程と;前記鋳片を分塊圧延して鋼片を得る分塊圧延工程と;前記分塊圧延工程後の前記鋼片の全ての面を表面から2mm以上溶削する溶削工程と;前記溶削工程後の前記鋼片を、1000~1150℃の加熱温度で7000s以下保持した後、棒鋼圧延を行う棒鋼圧延工程と;を有する。
 本発明の上記態様によれば、Cr、Alの含有量を制限し、Siを多く含有させた低コストの機械構造用圧延棒鋼において、表層の脱炭層の厚みを抑制した圧延棒鋼を提供できる。この圧延棒鋼を素材として熱間鍛造によって製造された機械構造部材は、優れた耐疲労特性を有するので、産業上の貢献が極めて顕著である。
 以下、本発明の一実施形態に係る機械構造用圧延棒鋼(以下、本実施形態に係る圧延棒鋼と言う場合がある)は、化学組成が、質量%で、C:0.45~0.65%、Si:1.00%超、1.50%以下、Mn:0.40%超、1.00%以下、P:0.005~0.050%、S:0.020~0.100%、V:0.08~0.20%を含有し、必要に応じてさらに、Ti:0.050%以下、Ca:0.0030%以下、Zr:0.0030%以下、Te:0.0030%以下を含有し、残部がFe及び不純物であり、前記不純物として、Cr:0.10%以下、Al:0.01%未満、N:0.0060%以下に制限し;K1=C+Si/7+Mn/5+1.54×Vで求められるK1が0.95~1.05であり;K2=139-28.6×Si+105×Mn-833×S-13420×Nで求められるK2が35超であり;Mn及びSの含有量が、Mn/S≧8.0を満足し;表層全脱炭深さが500μm以下である。
 まず、本実施形態に係る圧延棒鋼の化学組成について説明する。以下、化学組成に関する%は質量%を意味する。以下の説明において含有量を範囲で示す場合、特に説明が無い限り上限と下限を含むものとする。すなわち、0.45~0.65%と表記した場合、0.45%以上0.65%以下の範囲を意味する。
(C:0.45~0.65%)
 Cは、安価に鋼材の引張強さを高めることができる有用な元素である。この効果を得るため、C含有量を0.45%以上とする。一方、鋼材のC含有量が増加するほど、圧延棒鋼を熱間鍛造して得られる機械構造部材の降伏比が低下する。降伏比は、0.2%耐力を引張強さで除して求めた値である。降伏比が低下すると、0.2%耐力を所望の値とした場合に引張強度が過剰に高くなり、被削性低下の原因となる。したがって、機械構造部材の降伏比の低下を抑制するため、C含有量を0.65%以下とする。好ましくは、0.60%以下である。
(Si:1.00%超、1.50%以下)
 Siは、安価で鋼材の高強度化に寄与する有用な元素である。この効果を得るため、Si含有量を1.00%超とする。好ましくは、1.10%以上とする。一方、Si含有量が過剰になると、表層の脱炭層深さが過剰になる上、熱間延性が低下して、棒鋼圧延や熱間鍛造の際に、疵が発生し易くなる。そのため、Si含有量を1.50%以下とする。
(Mn:0.40%超、1.00%以下)
 Mnは、Si、Vに比べて、延性の低下を抑制しつつ鋼材を高強度化できる固溶強化元素である。また、Mnは、Sと結合して被削性を向上させるMnSを形成する元素である。Mn含有量が少ないと、SはFeSをオーステナイト粒界上に形成して熱間延性を著しく低下させるので、割れや疵が発生しやすくなる。したがって、FeSの生成を抑制し、熱間延性を確保するため、Mn含有量を0.40%超とする。一方、Mn含有量が過剰であると、熱間鍛造品の組織に、降伏比を低下させるベイナイトが混在する場合がある。そのため、Mn含有量は1.00%以下とする。好ましくは0.95%以下、より好ましくは0.90%以下である。
(P:0.005~0.050%)
 Pは、フェライト変態を促進してベイナイト変態を抑制する作用を有する元素である。熱間鍛造後の冷却時にベイナイト変態を抑制するため、P含有量を0.005%以上とする。一方、P含有量が過剰になると、熱間延性が低下し、鋼片に疵が発生する場合がある。そのため、P含有量の上限を0.050%に限定する。好ましくは、0.040%以下である。
(S:0.020~0.100%)
 Sは、被削性を向上させるMn硫化物(MnS)を形成する元素であり、被削性の向上に寄与する。この効果を得るため、S含有量を0.020%以上とする。一方、S含有量が0.100%超になると、粗大なMnSが多量に鋼中に分散し、熱間延性が低下して鋼片に疵が発生する場合がある。そのため、S含有量の上限を0.100%に限定する。
(V:0.08~0.20%)
 Vは、V炭化物及び/またはV窒化物を形成して鋼材の析出強化に寄与する元素であり、特に、鋼材の降伏比を高める効果を有する。この効果を得るため、V含有量を0.08%以上とする。一方、Vは高価な合金元素であり、また、熱間鍛造後の冷却時に、望ましくないベイナイト変態を促進する元素である。よって、コスト低減及びベイナイト変態抑制のため、V含有量を0.20%以下とする。好ましくは、0.15%以下とする。
 本実施形態に係る圧延棒鋼は、上記の化学成分を含有し、残部がFe及び不純物であることを基本とする。しかしながら、本実施形態に係る圧延棒鋼は、必要に応じて、Ca、Te、Zr、Tiを以下に示す範囲で、Feの一部に代えてさらに含んでもよい。ただし、これらの元素は必ずしも含有させる必要はないので、その下限は0%である。
 不純物とは、鋼材を工業的に製造する際に、鉱石若しくはスクラップ等のような原料、又は製造工程の種々の環境から混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。不純物のうち、Al、N及びCrについては、特に、その含有量を以下の範囲に制限する。
(Al:0.01%未満)
 Alは、不純物である。Alは、鋼中に存在すると、酸素と結合して硬質のAl酸化物を形成し鋼材の被削性を低下させる。したがって、Al含有量は少ない方が好ましい。Al含有量が0.01%以上であると、被削性が著しく低下するため、Al含有量を0.01%未満に制限する。
(N:0.0060%以下)
 Nは、不純物である。Nは、鋼中に存在すると、Vと結合してV窒化物を形成する。V窒化物は、V炭化物に比べると粗大であり、析出強化への寄与が小さい。したがって、N含有量が多いと、V窒化物が増加し、その分、V炭化物が少なくなる。その結果、Vの析出強化への寄与が小さくなる。
 V含有量を少なくしても、十分な析出強化の効果を得るためには、V窒化物の総量は少ない方が好ましく、従って、N含有量は少ない方が好ましい。N含有量が0.0060%超であると、Vの析出強化への寄与が著しく小さくなるので、N含有量を0.0060%以下に制限する。一方、製鋼技術上、Nを過剰に低減すると著しくコストが高くなるので、下限を0.0020%としてもよい。
(Cr:0.10%以下)
 Crは、不純物である。Crは、強度に対する影響は小さいが、熱間鍛造後の冷却時に、ベイナイト変態を促進する。そのため、Cr含有量が多くなると、圧延棒鋼を熱間鍛造して得られた機械構造部材において、降伏比が低下する。Cr含有量は少ない方が好ましいが、Cr含有量が0.10%を超えるとその影響が顕著になるため、Cr量を0.10%以下に制限する。
(Ca:0.0005~0.0030%)
(Zr:0.0005~0.0030%)
(Te:0.0005~0.0030%)
 Ca、Te、Zrは、何れもMnS粒子を微細化、球状化する(すなわち、硫化物の形態を制御する)元素である。MnSが伸長すると、熱間延性の異方性が大きくなるので、特定方向の割れが生じやすくなる。割れを抑制することが必要とされる場合、Ca、Zr、Teから選択される1種以上を含有させてもよい。MnSの微細化、球状化の効果を得る場合、Ca含有量、Zr含有量および/またはTe含有量を、それぞれ、0.0005%以上とすることが好ましい。一方、Ca含有量、Zr含有量、Te含有量が過剰になると、粗大なCa、Zr、Teの酸化物が形成され、被削性が低下する。そのため、含有させる場合でも、Ca含有量、Zr含有量、Te含有量は、何れも、0.0030%以下が好ましい。
(Ti:0.010~0.050%)
 Tiは、鋼中にTi窒化物を形成する元素である。Ti窒化物は、鋼材の組織を整粒にする効果を有する。この効果を得る場合、Ti含有量を0.010%以上とすることが好ましい。一方で、Ti窒化物は硬質であり、切削加工時の工具寿命を低下させることがある。そのため、含有させる場合でも、Ti含有量を0.050%以下とする。
 本実施形態に係る圧延棒鋼は、上記の各元素の含有量だけではなく、C、Si、Mn、V、S、Nが以下に示す関係を満たす必要がある。式中のC、Si、Mn、V、S、Nは、質量%での各元素の含有量である。
(K1:0.95~1.05)
 K1は強度に関する指標である炭素当量であり、下記(式1)で求められる。
  K1=C+Si/7+Mn/5+1.54×V  (式1)
 本実施形態に係る圧延棒鋼を素材とし、熱間鍛造によって成形した機械構造部材の引張強さは、炭素当量K1に影響される。K1が0.95以上の圧延棒鋼を用いて、熱間鍛造によって機械構造部材を製造すると、組織がパーライトを主体とするフェライト及びパーライトからなり、900MPa超の引張強さ、570MPa以上の0.2%耐力、0.45以上の疲労限度比(疲労限/引張強さ)を有する機械構造部材を得ることができる。一方、K1が1.05を超える場合、機械構造部材においてベイナイトが生成し、降伏比が低下する。したがって、炭素当量K1を0.95~1.05に限定する。
(K2>35)
 K2は、本発明者らが後述する実験から求めた、熱間延性に関する指標であり、下記(式2)で求められる。
  K2=139-28.6×Si+105×Mn-833×S-13420×N  (式2)
 実験には、0.52~0.54%のCを含有し、Si、Mn、P、S、Nの含有量がそれぞれ異なる17水準の圧延棒鋼を用いた。これらの圧延棒鋼から切り出し及び加工を行って得られた、直径10mm、長さ100mmの試験片の熱間延性を評価した。熱間延性は、試験片の中央部を、加熱して溶融させ、その後凝固させた直後に、種々の温度に保持し、0.05mm/sの速度で引っ張り、破断させて、破断後の絞り値で評価した。また、950℃、1100℃、1200℃の保持温度(引張温度)における絞り値を従属変数とし、合金元素含有量を独立変数として回帰計算し、有意な独立変数を平均してK2(式2)を得た。
 その結果、このK2の値が35を超える場合には、鋼片の鋳造、及び、圧延棒鋼の熱間鍛造において、疵、割れの発生は認められなかった。よって、熱間延性指標K2を35超とした。
 K2の上限は、限定する必要はなく、Si、Mn、S、Nのそれぞれの含有量の範囲から決定されるが、100を上限としてもよい。
 上記式2から分かるように、Si、S、Nが熱間延性の低下因子、Mnが向上因子となる。よって、基本的にそれらのバランスから、K2の値を満たすことが必要となる。しかしながら、後述するように、Mn/Sが8.0未満になると、有害なFeSが生成するので、仮に、K2の値が35超を満たしたとしても、Mn/Sが8.0未満ならば特性が低下する。
(Mn/S≧8.0)
 上述したように、SはMnと結合してMnSを形成する。しかしながら、Mnに対してSが過剰に含まれる場合、SはMnSの他に、FeSをオーステナイト粒界上に形成する。この場合、結果として、熱間延性が著しく低下し、熱間鍛造によって割れを生じる。したがって、FeSの生成を抑制するために、Mn/Sを8.0以上とする。Mn/Sが8.0以上であれば、熱間延性は、上述したK2の値に支配される。よって、Mn/Sは8.0以上であればよく、上限はSの最低値、Mnの最大値で決定される。
 次に、本実施形態に係る圧延棒鋼の脱炭深さ、組織について説明する。
「表層全脱炭深さ」
 上述の通り、圧延棒鋼の脱炭深さ(表層全脱炭深さ)は、圧延棒鋼を熱間鍛造して得られる機械構造部材の耐疲労特性に影響する。表層全脱炭深さが500μmを超える圧延棒鋼を素材として、熱間鍛造によって成形された機械構造部材は、耐疲労特性(疲労限度比)が劣化する。また、表層全脱炭深さが深くなると、鋼成分によっては、脱炭に起因して、引張強さ、耐力、疲労限度比が低くなることがある。したがって、圧延棒鋼の表層全脱炭深さを500μm以下とする。下限は0μmである(すなわち、脱炭層がなくてもかまわない)。
 本実施形態において、圧延棒鋼の表層全脱炭深さとは、圧延棒鋼の長手方向の中央部と、両端からそれぞれ全長の1/4の長さの部位とで切断して得られた3つの断面を、各々周方向に90度違いの4箇所で測定した場合の、合計12箇所の表層の脱炭深さの平均値と定義する。表層の脱炭深さは、表層から内部に向かう直線上で測定した炭素量が、内部で一定となった炭素量(内部炭素量)の90%となる深さと定義され、電子プローブマイクロアナライザ(Electron Probe Micro Analyzer、EPMAという。)によって測定することができる。
 本実施形態に係る圧延棒鋼の組織(金属組織)を限定する必要はない。しかしながら、上述したように、機械構造部材では、フェライトとパーライトとからなる複合組織(フェライト・パーライト組織)であることが好ましい。機械構造部材の組織をフェライトとパーライトとからなる組織にする場合、圧延棒鋼でも同様のフェライトとパーライトとからなる組織となる場合が多い。
 次に、本実施形態に係る圧延棒鋼の製造方法の一例について説明する。
 本実施形態に係る圧延棒鋼は、上述の化学組成を有する溶鋼を常法によって溶製し(溶製工程)、この溶鋼を連続鋳造等の常法によって、鋳片とし(鋳造工程)、鋳片を分塊圧延して鋼片とし(分塊圧延工程)、この鋼片の全ての面を溶削し(溶削工程)、溶削工程後の鋼片を熱間圧延(棒鋼圧延ともいう。)し(棒鋼圧延工程)、製造する。溶削工程において全ての面を表面から2mm以上溶削した鋼片を棒鋼圧延に供することにより、圧延棒鋼だけでなく、圧延棒鋼を素材として熱間鍛造によって製造された機械構造部材の脱炭も抑制され、機械構造部材の耐疲労特性の劣化を防止することができる。
 上述のようにSiを多く含有する鋼片の表層に生成する深い脱炭層は、圧延棒鋼だけでなく、圧延棒鋼を素材として製造される熱間鍛造品(機械構造部材)まで残り、機械構造部材の機械的性質、特に耐疲労特性を劣化させる。例えば、本発明者らの検討の結果、断面積196000cmに鋳造し、分塊圧延によって断面積を26244cmとした高Si鋼の鋼片の脱炭深さは最大1.8mmであった。そのため、鋼片の脱炭深さは鋳片及び鋼片の大きさにも左右されるが、分塊圧延工程を経て製造される鋼片の場合、分塊圧延後、鋼片の表面から2mm以上を溶削にて削除して熱間圧延を行えば、圧延棒鋼の表層全脱炭深さを500μm以下とすることができる。一方で、溶削量が多すぎると、重量の低減、肌荒れの増加、溶削コストの上昇、溶削時間の増大が懸念される。そのため、溶削量は、10mm以下とすることが好ましい。溶削は、鋼片の全ての面に対して行うことが好ましい。
 鋼片の溶削は、連続鋳造時に形成された深い脱炭層の除去を目的としており、その後の工程では、条件を適切にすることで熱間鍛造品の疲労特性を劣化させるような深い脱炭層は生成しない。鋼片のサイズによっては、分塊圧延後に溶削を行い、再度、分塊圧延を行ってもよいが、分塊圧延の際の加熱時間は、900s以下とする。 
 鋼片の溶削は、鋼片の表面を燃焼ガスと酸素とによって熱化学的に溶削する、いわゆる、スカーフィングによって行うことができる。また、溶削を行う場合、分塊圧延後の鋼片が高温の状態で行ってもよく、冷却された状態で行ってもよい。分塊圧延後に溶削を行い、再度、分塊圧延を行う場合は、冷却せずに高温の状態で溶削を行うことが好ましい。一方、グラインダー等による切削は、非効率的であるため、本実施形態で採用する方法からは除外する。
 棒鋼圧延(熱間圧延)工程では、鋼中へのVの固溶を促進するために、鋼片を1000℃以上に加熱して、熱間圧延を行う必要がある。棒鋼圧延の加熱時にVを固溶させることで熱間圧延後の圧延棒鋼中に再析出するV炭化物が微細となる。その結果、圧延棒鋼を素材として熱間鍛造を行う際の加熱時にも、V炭化物の固溶が容易となって、機械構造部材の強度と延性とを低下させる原因となる未固溶V炭化物が消滅する。加熱温度が1000℃未満であると、Vが十分に固溶しない。一方、棒鋼圧延の加熱温度の上限は1150℃とする必要がある。これは、鋼片を1150℃超の温度に加熱すると、表層の脱炭速度が急激に大きくなるためである。また、加熱温度での保持時間が長くなると脱炭が促進される。したがって、圧延棒鋼の表層全脱炭を500μm以下に抑制するため、加熱温度(1000~1150℃)での保持時間を7000s以下とする。十分にVを固溶させるため、保持時間の下限は、10sとすることが好ましい。
 上記の工程を含む製造方法によれば、本実施形態に係る圧延棒鋼を得ることができる。また、この圧延棒鋼を鍛造することによって、耐疲労特性に優れる機械構造部材を得ることができる。鍛造条件は、通常行われる条件範囲であればよく、例えば、加熱温度が1000~1300℃である。機械構造部材を鍛造によって成形する場合、素材を高周波加熱して熱間鍛造を行うことが多いが、高周波加熱は所定温度への到達に要する加熱時間が短いので、その間に素材(圧延棒鋼)の表層に極端な脱炭が生じることは少ない。
「実施例1」
 表1に示す化学組成を有する鋼Aを、断面サイズ350×560mmに鋳造して鋳片を得た。鋼Aの化学組成は、C含有量が低く、Si含有量が高いので、脱炭が起きやすい組成である。表1の残部は、Fe及び不純物である。この鋳片を1300℃に再加熱して280×280mm断面に分塊圧延した直後に、熱間で、深さ狙い1mm、2mm、3mmで鋼片の全面を溶削し、162×162mm断面に圧延し、さらに、冷却して棒鋼圧延の素材としての鋼片を得た。
 これらの鋼片を1150℃~1230℃に加熱して5000~10000s保持した後、熱間圧延して直径50mmの圧延棒鋼とし、常温まで空冷した。これらの圧延棒鋼の表層全脱炭深さを前述した方法で求めた。
 表2に、鋼片の溶削深さ、棒鋼圧延時の加熱条件と圧延棒鋼の表層全脱炭深さの測定結果とを示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
No.A1~A3の試料より、溶削深さを2.0mm以上とすることで、棒鋼圧延の加熱条件が1150℃×7000sという脱炭を促進する高温長時間であっても、圧延棒鋼の脱炭深さは500μm以下に抑制できることがわかる。
 上述した鋼片の溶削は、連続鋳造によって生成した深い脱炭層の除去を目的としており、その後の工程では、熱間鍛造品の疲労特性を劣化させるような深い脱炭層は生成しない。
 表2のNo.A4の試料は、1150℃で保持時間が長すぎる例であり、表層全脱炭深さが大きかった。また、No.A5の試料は、加熱温度が1230℃と高くなった例であり、表層全脱炭深さが大きかった。
「実施例2」
 表3に示す化学組成の鋼(鋼No.B~AD)を溶製し、連続鋳造して鋳片を得た。この鋳片を分塊圧延して鋼片とし、この鋼片について、試験No.12~19を除いて深さ狙い3mmで全面を溶削した。表3の残部は、Fe及び不純物である。溶削した鋼片に、熱間圧延を行って直径45mmの圧延棒鋼を製造した。一部の鋼片(表4の試験No.12~19)は、比較のために、全面を1mm溶削し、熱間圧延を行って直径45mmの圧延棒鋼を製造した。熱間圧延は、加熱温度を1100℃、保持時間を3600sとして行った。熱間圧延後は、常温まで空冷した。
Figure JPOXMLDOC01-appb-T000003
 次に、熱間圧延によって得られた棒鋼の表層全脱炭深さを前述した方法で求めた。
 その後、直径45mmの圧延棒鋼を高周波加熱によって、1220℃に加熱し、300s保持した後、直ちに直径方向に圧下し10mm厚さの平板に鍛造成形した。この鍛造平板の側面を切削加工し、断面幅15mm、厚さ10mm(鍛造ままの厚さ)、長さ20mmの平行部を有する試験片とし、両振りの引張圧縮疲労試験及び引張試験に供した。引張圧縮疲労試験はJIS Z 2273に準拠して行い、10回以上の寿命を示した最大負荷応力を疲労限とした。引張試験はJIS Z 2241に準拠して常温で20mm/minの速度にて実施した。
 平行部の鍛造面は、加工を施さず、鍛造肌のままであるが、鋼No.BとCについては、参考として、熱間鍛造後に表面を500μm研削し、脱炭層を除去した水準も設けた(表4の試験No.2及び3)。また、試験片の切断部の角は、全て半径2mmの面取り加工を行った。
 表4及び表5に、熱間鍛造前の圧延棒鋼の表層全脱炭深さ、熱間鍛造後の鍛造平板のミクロ組織、0.2%耐力、引張強さ、降伏比(0.2%耐力/引張強さ)、引張圧縮試験の10回の疲労限度比(疲労限/引張強さ)を示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表4の試験No.4~11、20は本発明例である。これら深さ狙い3mmで鋼片の全側面を溶削した圧延棒鋼の脱炭深さは、何れも500μm以下であった。また、圧延棒鋼を鍛造して得られた鍛造品(鍛造平板)の引張強さは948MPa以上と高く、0.2%耐力は597MPa以上と高く、引張圧縮疲労試験の疲労限度比(疲労強さ/引張強さ)は、0.47以上と良好であった。また、熱間鍛造後に脱炭層を研削で削除した表4の試験No.2及び3と、試験No.4及び5との比較から、圧延棒鋼における脱炭深さが500μm以下の場合、疲労限度比の低下が0.02以下であることが分かる。
 表4の試験No.12~19は、圧延棒鋼の脱炭深さが500μmを超える比較例である。これらは、鋼片の全側面を1mm溶削して熱間圧延して製造した圧延棒鋼である。この棒鋼を鍛造して得られた鍛造品は、900MPa以上の引張強さ、570MPa以上の0.2%耐力、0.45以上の疲労限度比のうち、少なくとも1以上を満たしていない。
 表5の試験No.21~39は、鋼成分(化学組成)、Mn/S、K1あるいはK2のいずれか1つ以上が本発明の範囲から外れる鋼No.K~ADを用いて製造された比較例である。
 M/Sが8.0未満、K2値が35以下の少なくとも一方に該当する鋼No.L、M、N、Q、R及びVを用いた試験No.22、23、24、27、28及び32は、棒鋼鍛造時に割れや大きな疵が発生し、熱間鍛造以降の評価ができなかったため、表5の各評価欄に「*」を示した。
 試験No.33(鋼No.W)は、K1値が低く、引張強さと0.2%耐力が、それぞれ目標とする900MPa、570MPaに達していない。
 試験No.21(鋼No.K)は、K1値とともに、C、Si含有量も低く、引張強さと0.2%耐力が、それぞれ目標とする900MPa、570MPaに達していない。
 試験No.34(鋼No.X)は、C含有量が低く、引張強さと0.2%耐力が、それぞれ目標とする900MPa、570MPaに達していない。
 試験No.25(鋼No.O)は、Mn含有量が多く、鍛造品のミクロ組織にフェライト及びパーライトに加えてベイナイトが混在していた。その結果、試験No.25は、0.2%耐力が570MPaに達していない。
 K1が低い試験No.26(鋼No.P)は、0.2%耐力が本発明の目標を下回っている。また、試験No.26は、引張強さも本発明の目標を下回っている。
 試験No.29(鋼No.S)は、C含有量が多いため、引張強さは高いが、0.2%耐力、疲労限度比が低い。
 試験No.30(鋼No.T)は、K1が低いため、引張強さと0.2%耐力が低い。
 試験No.35(鋼No.Y)、試験No.36(鋼No.Z)は、K1の値を満たしており引張強さは良好であるが、0.2%耐力が低い。試験No.36は疲労限度比も低い。
 試験No.31(鋼No.U)は、V含有量が高いために引張強さと疲労限度比は良好であるが、ベイナイト組織が混在した結果、0.2%耐力が低くなっている。
 K2=139-28.6×Si+105×Mn-833×S-13420×N 
(式2)が示すように、
 表5の試験No.23(鋼No.M)は、Mn/Sが小さいので鍛造時割れ、疵が発生した。
 試験No.24(鋼No.N)は、Si含有量が多く、K2が小さい試料であるので、鍛造時割れ、疵が発生した。
 試験No.28(鋼No.R)は、Mn/Sが小さいので、疵が発生した。
 試験No.32(鋼No.V)は、N含有量が多く、K2が小さいので鍛造時割れ、疵が発生した。
 試験No.38(鋼No.AB)は、K2の値を満たしているが、N含有量が多いため、V窒化物が増加し、Vの析出強化への寄与が小さくなり、引張強さ、0.2%耐力および疲労限度比ともに低くなっている。
 試験No.33(鋼No.W)はK1=0.93の試料である。K1が小さいので、引張強さが900MPa未満となった。
 試験No.25(鋼No.O)、試験No.37(鋼No.AA)、試験No.39(鋼No.AC)およびNo.40(鋼No.AD)の耐力が低いのは、Mnまたは/およびCr含有量が多い、またはK1が大きいため、FP(フェライト・パーライト)組織に加えてB(ベイナイト)組織が混在することが理由であると考えられる。
 本発明の上記態様によれば、Cr、Alの含有量を制限し、Siを多く含有させた低コストの機械構造用圧延棒鋼の表層において深い脱炭層の形成を抑制した圧延棒鋼を提供できる。この圧延棒鋼を素材として熱間鍛造によって製造された機械構造部材は、優れた耐疲労特性を有するので、産業上の貢献が極めて顕著である。

Claims (3)

  1.  化学組成が、質量%で、
    C:0.45~0.65%、
    Si:1.00%超、1.50%以下、
    Mn:0.40%超、1.00%以下、
    P:0.005~0.050%、
    S:0.020~0.100%、
    V:0.08~0.20%、
    Ti:0~0.050%、
    Ca:0~0.0030%、
    Zr:0~0.0030%、
    Te:0~0.0030%
    を含有し、残部がFe及び不純物であり;
     前記不純物として、
    Cr:0.10%以下、
    Al:0.01%未満、
    N:0.0060%以下、
    に制限し;
     下記式1で求められるK1が0.95~1.05であり;
     下記式2で求められるK2が35超であり;
     Mn及びSの含有量が、下記式3を満足し;
     表層全脱炭深さが500μm以下であることを特徴とする機械構造用圧延棒鋼。
     K1=C+Si/7+Mn/5+1.54×V  (式1)
     K2=139-28.6×Si+105×Mn-833×S-13420×N  (式2)
     Mn/S≧8.0  (式3)
     ここで、式中のC、Si、Mn、V、S、Nは各元素の質量%での含有量である。
  2.  前記化学組成が、質量%で、
    Ti:0.010~0.050%、
    Ca:0.0005~0.0030%、
    Zr:0.0005~0.0030%、
    Te:0.0005~0.0030%
    の1種以上を含有することを特徴とする請求項1に記載の機械構造用圧延棒鋼。
  3.  請求項1又は2に記載の機械構造用圧延棒鋼の製造方法であって、
     請求項1又は2に記載の前記化学組成を有する溶鋼を溶製する溶製工程と;
     前記溶鋼を、連続鋳造によって鋳片とする鋳造工程と;
     前記鋳片を分塊圧延して鋼片を得る分塊圧延工程と;
     前記分塊圧延工程後の前記鋼片の全ての面を表面から2mm以上溶削する溶削工程と;
     前記溶削工程後の前記鋼片を、1000~1150℃の加熱温度で7000s以下保持した後、棒鋼圧延を行う棒鋼圧延工程と;
    を有することを特徴とする機械構造用圧延棒鋼の製造方法。
PCT/JP2015/069272 2014-07-03 2015-07-03 機械構造用圧延棒鋼及びその製造方法 WO2016002931A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016531473A JP6217859B2 (ja) 2014-07-03 2015-07-03 機械構造用圧延棒鋼及びその製造方法
US15/322,251 US10266908B2 (en) 2014-07-03 2015-07-03 Rolled steel bar for machine structural use and method of producing the same
CN201580034599.3A CN106661688B (zh) 2014-07-03 2015-07-03 机械结构用轧制棒钢及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-137878 2014-07-03
JP2014137878 2014-07-03

Publications (1)

Publication Number Publication Date
WO2016002931A1 true WO2016002931A1 (ja) 2016-01-07

Family

ID=55019457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069272 WO2016002931A1 (ja) 2014-07-03 2015-07-03 機械構造用圧延棒鋼及びその製造方法

Country Status (4)

Country Link
US (1) US10266908B2 (ja)
JP (1) JP6217859B2 (ja)
CN (1) CN106661688B (ja)
WO (1) WO2016002931A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019178405A (ja) * 2018-03-30 2019-10-17 Jfeスチール株式会社 鋼線材の製造方法
EP3489380A4 (en) * 2016-07-19 2020-01-01 Nippon Steel Corporation STEEL FOR INDUCTION HARDNESS

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114393274B (zh) * 2021-12-28 2023-03-17 中铁物总资源科技有限公司 一种利用废旧钢轨制作装载机刀板的加工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177352A (ja) * 1983-03-25 1984-10-08 Daido Steel Co Ltd 連続鋳造用低脱炭ばね鋼
JPH05306432A (ja) * 1992-05-01 1993-11-19 Kawasaki Steel Corp 軸受用鋼
JP2000256741A (ja) * 1999-03-09 2000-09-19 Sumitomo Metal Ind Ltd 熱間圧延棒鋼または線材の製造方法
JP2004060049A (ja) * 2002-05-27 2004-02-26 Nippon Steel Corp 超高温熱間鍛造非調質部品とその製造方法
JP2004346415A (ja) * 2003-05-26 2004-12-09 Nippon Steel Corp 超高温熱間鍛造非調質部品とその製造方法
KR20090071163A (ko) * 2007-12-27 2009-07-01 주식회사 포스코 내식성이 우수한 고강도 스프링강 선재 및 그 제조 방법
JP2013107127A (ja) * 2011-11-24 2013-06-06 Kobe Steel Ltd 溶削異常検出装置および溶削異常検出方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3846186A (en) * 1970-04-06 1974-11-05 Republic Steel Corp Stainless steel having improved machinability
JP3327635B2 (ja) 1993-04-23 2002-09-24 新日本製鐵株式会社 疲労強度に優れた熱間鍛造用非調質鋼材及びその鋼材を用いた非調質熱間鍛造品の製造方法
JP3036416B2 (ja) 1995-11-15 2000-04-24 株式会社神戸製鋼所 高疲労強度を有する熱間鍛造非調質鋼および鍛造品の製造方法
JPH10226847A (ja) 1997-02-13 1998-08-25 Daido Steel Co Ltd V無添加熱間鍛造用非調質鋼
JP3485805B2 (ja) 1997-09-18 2004-01-13 株式会社神戸製鋼所 高い疲れ限度比を有する熱間鍛造非調質鋼およびその製造方法
CN1169992C (zh) 2001-11-15 2004-10-06 住友金属工业株式会社 机械结构用钢
JP4408617B2 (ja) 2002-06-05 2010-02-03 独立行政法人物質・材料研究機構 成形品とその製造方法
CN1169492C (zh) 2002-07-12 2004-10-06 清华大学 一种运动心电图中的t波交替的检测方法
DE602004018524D1 (de) * 2003-09-29 2009-01-29 Jfe Steel Corp Stahlteile für eine maschinenkonstruktion, material dafür und herstellungsverfahren dafür
DE602004032363D1 (de) * 2003-09-29 2011-06-01 Jfe Steel Corp Stahlprodukt für das induktionshärten, induktionsgehärtetes bauelement, bei dem dieses verwendet wird, und herstellungsverfahren dafür
WO2005106059A1 (ja) * 2004-04-28 2005-11-10 Jfe Steel Corporation 機械構造用部品およびその製造方法
US20080247900A1 (en) * 2004-07-16 2008-10-09 Jfe Steel Corporation Component for Machine Structure, Method of Producing the Same and Material for Induction Hardening
WO2008084749A1 (ja) 2006-12-25 2008-07-17 Nippon Steel Corporation 被削性と強度特性に優れた機械構造用鋼
JP5206056B2 (ja) 2008-03-21 2013-06-12 Jfeスチール株式会社 非調質鋼材の製造方法
PL2594654T3 (pl) * 2010-07-14 2016-09-30 Stal do konstrukcji maszyn mająca doskonałą skrawalność
JP5716640B2 (ja) * 2011-11-21 2015-05-13 新日鐵住金株式会社 熱間鍛造用圧延棒鋼
JP5778055B2 (ja) * 2012-02-15 2015-09-16 新日鐵住金株式会社 熱間鍛造用圧延棒鋼および熱間鍛造素形材ならびにコモンレールおよびその製造方法
JP5886119B2 (ja) * 2012-04-25 2016-03-16 新日鐵住金株式会社 肌焼鋼鋼材
US10036086B2 (en) 2013-04-30 2018-07-31 Nippon Steel & Sumitomo Metal Corporation Non-heat treated steel
WO2015125915A1 (ja) * 2014-02-24 2015-08-27 新日鐵住金株式会社 高周波焼入れ用鋼材

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59177352A (ja) * 1983-03-25 1984-10-08 Daido Steel Co Ltd 連続鋳造用低脱炭ばね鋼
JPH05306432A (ja) * 1992-05-01 1993-11-19 Kawasaki Steel Corp 軸受用鋼
JP2000256741A (ja) * 1999-03-09 2000-09-19 Sumitomo Metal Ind Ltd 熱間圧延棒鋼または線材の製造方法
JP2004060049A (ja) * 2002-05-27 2004-02-26 Nippon Steel Corp 超高温熱間鍛造非調質部品とその製造方法
JP2004346415A (ja) * 2003-05-26 2004-12-09 Nippon Steel Corp 超高温熱間鍛造非調質部品とその製造方法
KR20090071163A (ko) * 2007-12-27 2009-07-01 주식회사 포스코 내식성이 우수한 고강도 스프링강 선재 및 그 제조 방법
JP2013107127A (ja) * 2011-11-24 2013-06-06 Kobe Steel Ltd 溶削異常検出装置および溶削異常検出方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3489380A4 (en) * 2016-07-19 2020-01-01 Nippon Steel Corporation STEEL FOR INDUCTION HARDNESS
JP2019178405A (ja) * 2018-03-30 2019-10-17 Jfeスチール株式会社 鋼線材の製造方法

Also Published As

Publication number Publication date
CN106661688B (zh) 2018-05-08
US10266908B2 (en) 2019-04-23
US20170152578A1 (en) 2017-06-01
CN106661688A (zh) 2017-05-10
JP6217859B2 (ja) 2017-10-25
JPWO2016002931A1 (ja) 2017-06-01

Similar Documents

Publication Publication Date Title
CA2948297C (en) Railway vehicle wheel and method for manufacturing railway vehicle wheel
JP4888277B2 (ja) 熱間圧延棒鋼または線材
CA2969200C (en) Thick-walled high-toughness high-strength steel plate and method for manufacturing the same
KR101965520B1 (ko) 냉간 단조 부품용 압연 봉강 또는 압연 선재
EP2962776B1 (en) Roll outer layer material, and composite roll for hot rolling
JP5035137B2 (ja) 軸受鋼鋼材およびその製造方法
KR20190028781A (ko) 고주파 담금질용 강
KR20190028757A (ko) 고주파 담금질용 강
JP5678833B2 (ja) 高周波焼入れ用鋼及びそれを用いて製造されるクランクシャフト
JP6217859B2 (ja) 機械構造用圧延棒鋼及びその製造方法
JP4905031B2 (ja) ファインブランキング加工性に優れた鋼板およびその製造方法
JP3733967B2 (ja) 疲労特性に優れた鋼材およびその製造方法
JP6249100B2 (ja) 機械構造用圧延棒鋼及びその製造方法
JP4170294B2 (ja) 転造性、耐焼割れ性およびねじり特性に優れた機械構造用鋼材およびドライブシャフト
JP5476766B2 (ja) 冷間鍛造性に優れた機械構造用鋼およびその製造方法
JP5896673B2 (ja) せん断加工部品用熱延鋼板およびせん断加工部品用鋼板の製造法
JP5310095B2 (ja) 黒皮外周旋削性とねじり疲労強度に優れた鋼材の製造方法
JP3966210B2 (ja) 熱間圧延ままで球状化炭化物および黒鉛組織を有する機械構造用鋼の製造方法
JP5633426B2 (ja) 熱処理用鋼材
JP6620822B2 (ja)
JPH08127844A (ja) 被削性、高周波焼入れ・焼もどし後の疲労強度特性に優れる機械構造用鋼および機械構造用部材の製造方法
JP5016825B2 (ja) 捩り疲労特性に優れた動力伝達軸及びその製造方法
JP2003147433A (ja) 分塊圧延製品の製造方法
KR20130110629A (ko) 비조질강 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815916

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531473

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15322251

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815916

Country of ref document: EP

Kind code of ref document: A1