WO2016002886A1 - 表面処理基材の製造方法 - Google Patents

表面処理基材の製造方法 Download PDF

Info

Publication number
WO2016002886A1
WO2016002886A1 PCT/JP2015/069146 JP2015069146W WO2016002886A1 WO 2016002886 A1 WO2016002886 A1 WO 2016002886A1 JP 2015069146 W JP2015069146 W JP 2015069146W WO 2016002886 A1 WO2016002886 A1 WO 2016002886A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
aluminum
substrate
oxygen compound
treatment
Prior art date
Application number
PCT/JP2015/069146
Other languages
English (en)
French (fr)
Inventor
吉村 国浩
直美 田口
聡子 原田
Original Assignee
東洋鋼鈑株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社 filed Critical 東洋鋼鈑株式会社
Publication of WO2016002886A1 publication Critical patent/WO2016002886A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • C25D9/10Electrolytic coating other than with metals with inorganic materials by cathodic processes on iron or steel

Definitions

  • the present invention relates to a method for producing a surface-treated substrate.
  • Patent Document 1 discloses that the surface of a substrate is subjected to a cathodic electrolytic treatment using an electrolytic treatment solution containing aluminum ions. A technique for forming a metal oxygen compound film containing aluminum is disclosed.
  • Patent Document 1 after forming a metal oxygen compound film containing aluminum on a base material, an organic resin layer is laminated on the metal oxygen compound film using, for example, a polyester film.
  • a polyester film When the film is formed, there is a problem that the adhesion between the metal oxygen compound film and the organic resin layer is low, and the organic resin layer is easily peeled off by retorting or the like.
  • an organic resin layer is formed on the metal oxygen compound film by application using, for example, an epoxy-phenol paint
  • a can container such as a food can
  • iron or tin constituting the base material reacts with sulfur contained in the food or beverage product, and turns into black sulfide, resulting in a poor appearance.
  • the fluoride ion is contained in the electrolytic treatment liquid, whereby the fluoride ion acts as a complexing agent for increasing the solubility of the aluminum compound in the electrolytic treatment liquid.
  • a metal oxygen compound film containing aluminum can be deposited better on the material.
  • this metal oxygen compound film is one of hydroxides and oxides such as fluorine-containing aluminum oxygen compounds (Al (OH) 3 , Al 2 O 3 , AlO X (OH) Y ). Part is substituted with fluorine), and a non-uniform portion is formed in the metal oxygen compound film at the time of electrolytic treatment, and due to the influence of this non-uniform portion, the adhesion of the organic resin layer is reduced. It has been found that sulfide blackening occurs due to the penetration of food and drink into the metal oxygen compound film.
  • fluorine-containing aluminum oxygen compounds Al (OH) 3 , Al 2 O 3 , AlO X (OH) Y .
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a method for producing a surface-treated substrate that is excellent in adhesion to an organic resin layer and can further suppress sulfide blackening. To do.
  • the present inventors obtained a film-forming substrate by forming a metal oxygen compound film containing aluminum and fluorine on the substrate, and then obtained film formation
  • the metal oxygen compound film of the film forming base material becomes a dense and uniform film, thereby finding that the above problems can be solved, and the present invention has been completed.
  • a film forming step of obtaining a film forming substrate by forming a metal oxygen compound film containing aluminum and fluorine on the substrate, and contacting the film forming substrate with an aqueous alkali solution There is provided a method for producing a surface-treated substrate characterized by comprising an alkali treatment step.
  • the alkaline aqueous solution is more preferably an alkaline aqueous solution having a pH of 8 to 11.
  • the alkali treatment is more preferably a treatment in which the film-forming substrate is immersed in an alkaline aqueous solution having a temperature of 30 to 60 ° C.
  • the alkali treatment is more preferably a treatment in which the film-forming substrate is immersed in an alkaline aqueous solution for 1 second or more.
  • the formation of the metal oxygen compound film in the film forming step is performed by subjecting the base material to an electrolytic treatment in an electrolytic treatment solution containing aluminum ions and fluoride ions.
  • the said base material is a tin plating steel plate which forms a tin plating layer on a steel plate, a nickel plating steel plate which forms a nickel plating layer on a steel plate, or tin, nickel, iron
  • the alloy-coated steel sheet is formed by forming an alloy layer composed of at least two of the above, and the metal oxygen compound film formed on the substrate in the film forming step is 1 mg / m 2 or more in terms of aluminum amount.
  • the said base material is a cold-rolled steel plate
  • membrane formed on this base material in the said film formation process shall be 15 mg / m ⁇ 2 > or more in conversion of aluminum amount. Is more preferable.
  • a base material on which a metal oxygen compound film containing aluminum and fluorine is subjected to an alkali treatment can make the metal oxygen compound film dense and uniform, thereby providing an organic resin. It is possible to provide a method for producing a surface-treated substrate that is excellent in adhesiveness to a layer and that can further suppress sulfide blackening.
  • FIG. 1 is a cross-sectional photograph of a base material on which a metal oxygen compound film containing aluminum and fluorine is formed.
  • FIG. 2 is a diagram showing the atomic concentration of each element measured by an X-ray photoelectron spectrometer for a base material on which a metal oxygen compound film containing aluminum and fluorine is formed.
  • the method for producing a surface-treated substrate of the present invention includes a film-forming step of obtaining a film-forming substrate by forming a metal oxygen compound film containing aluminum and fluorine on the substrate, and the film-forming substrate, And an alkali treatment step for contacting with an alkaline aqueous solution.
  • a base material for forming a metal oxygen compound film containing aluminum and fluorine is prepared.
  • the substrate is not particularly limited, and examples thereof include a metal plate that can be processed into a desired shape such as a steel plate, an aluminum plate, and an aluminum alloy plate.
  • a hot-rolled steel plate based on an aluminum-killed steel continuous cast material a cold-rolled steel plate obtained by cold rolling a hot-rolled steel plate, a tin plating formed by forming a tin plating layer on the hot-rolled steel plate or the cold-rolled steel plate
  • a nickel-plated steel plate formed by forming a nickel plating layer on a steel plate, a hot-rolled steel plate, or a cold-rolled steel plate can be used.
  • a tin-plated steel plate a nickel-plated steel plate, an alloy-coated steel plate formed with an alloy layer composed of at least two of tin, nickel, and iron, or at least on one side
  • a cold-rolled steel sheet in which iron is exposed is preferable.
  • the tin amount of the tin-plated layer may be appropriately adjusted according to the intended use of the surface-treated substrate to be produced, but preferably 0.5 to 20 g / m 2 , More preferably, it is 0.5 to 15 g / m 2 .
  • the tin-plated steel sheet it is preferable to use a tin-plated steel sheet that has been subjected to a heat-melting treatment in which a tin-plated layer is formed and then heated and held at a temperature higher than the melting point of tin.
  • a heat-melting treatment in which a tin-plated layer is formed and then heated and held at a temperature higher than the melting point of tin.
  • iron constituting the steel sheet and tin constituting the tin plating layer are thermally diffused to form an iron-tin alloy layer, and such an iron-tin alloy layer is formed.
  • the tin-plated steel sheet has a structure having an iron-tin alloy layer and a tin-plated layer in order from the steel sheet side, and the corrosion resistance is improved.
  • the tin-plated steel sheet may be one in which a tin-plated layer is directly formed on the steel sheet.
  • a nickel-plated steel sheet is provided between the steel sheet and tin-plated layer. A layer may be formed. Even when such a nickel plating layer is formed, it is preferable to subject the tin-plated steel sheet to the above-described heat-melting treatment.
  • the tin-plated steel sheet is subjected to the heating conditions of the heat-melting treatment, for example, A structure having an iron-nickel alloy layer and an iron-nickel-tin alloy layer in order from the steel sheet side, and an iron-nickel alloy layer, nickel plating layer, nickel-tin alloy layer, tin plating layer in order from the steel sheet side.
  • the corrosion resistance of the tin-plated steel sheet is further improved.
  • a cleaning treatment method for example, an aqueous solution of a carbonate such as sodium carbonate or sodium hydrogen carbonate is used, and a tin-plated steel sheet is applied with a current density of 0.5 to 20 A / dm 2 and an energization time of 0.1 to 1.
  • the nickel amount of the nickel-plated layer may be appropriately adjusted according to the intended use of the surface-treated substrate to be produced, but is preferably 0.03 to 10 g / m. 2 and more preferably 0.1 to 5 g / m 2 .
  • the nickel-plated steel sheet it is preferable to use a nickel-plated layer that has been subjected to a heat-melting treatment in which a nickel-plated layer is formed and then heated and held at a temperature equal to or higher than the melting point of nickel.
  • a heat-melting treatment in which a nickel-plated layer is formed and then heated and held at a temperature equal to or higher than the melting point of nickel.
  • iron constituting the steel sheet and nickel constituting the nickel plating layer are thermally diffused to form an iron-nickel alloy layer, and such an iron-nickel alloy layer is formed.
  • the nickel-plated steel sheet has a structure having an iron-nickel alloy layer and a nickel plating layer in order from the steel sheet side, and the corrosion resistance is improved.
  • the thickness of the substrate as described above is not particularly limited, and may be appropriately selected depending on the intended use of the surface-treated substrate to be manufactured, but is preferably 0.07 to 0.4 mm. is there.
  • a metal oxygen compound film containing aluminum and fluorine (hereinafter referred to as “aluminum oxygen compound film”) is formed on the above-described base material.
  • the method for forming the aluminum oxygen compound film is not particularly limited. However, in view of the fact that the aluminum oxygen compound film can be formed in a relatively short time, in the electrolytic treatment liquid containing aluminum ions and fluoride ions, A method of subjecting the material to cathodic electrolysis is preferred. In such a method for performing cathodic electrolysis, aluminum ions contained in the electrolysis solution are deposited on the substrate as metal oxygen compounds while taking in fluoride ions, so that an aluminum oxygen compound film is formed. It becomes.
  • examples of the aluminum compound for forming aluminum ions in the electrolytic treatment liquid include aluminum nitrate, potassium aluminum sulfate, aluminum sulfate, and phosphoric acid.
  • Aluminum dihydrogen, aluminum lactate, aluminum fluoride, aluminum hydroxide, aluminum oxide, aluminum silicate, aluminum aluminate such as sodium aluminate, sodium fluoroaluminate, or the like can be used alone or in combination of two or more.
  • Examples of the fluoride for forming fluoride ions in the electrolytic treatment liquid include zirconium ammonium fluoride, aluminum fluoride, titanium fluoride, sodium fluoride, hydrofluoric acid, calcium fluoride, and hexafluoro. Silicic acid, sodium hexafluorosilicate, and the like can be used.
  • the fluoride ions act as a complexing agent for increasing the solubility of the aluminum compound in the electrolytic treatment liquid.
  • An aluminum oxygen compound film can be deposited better.
  • a pH adjuster for adjusting the pH of the electrolytic treatment liquid and an electrolyte for improving the conductivity of the electrolytic treatment liquid as long as the formation of the aluminum oxygen compound film is not inhibited May be added.
  • the pH adjuster include an aqueous nitric acid solution and aqueous ammonia.
  • examples of the electrolyte include compounds that generate calcium ion, lactate ion, chloride ion, sulfate ion, sodium ion, magnesium ion, nitrate ion, ammonium ion, and the like. The electrolyte is used in combination with a pH adjuster.
  • a compound that generates ions similar to the ions derived from the pH adjuster that is, nitrate ions, ammonium ions, etc., from the viewpoint of easy management of the components in the electrolytic treatment solution.
  • the electrolytic treatment solution includes at least one of organic acids such as citric acid, lactic acid, tartaric acid and glycolic acid, carboxylic acids such as acrylic acid, methacrylic acid, maleic acid and itaconic acid, and organic components such as phenol.
  • organic acids such as citric acid, lactic acid, tartaric acid and glycolic acid
  • carboxylic acids such as acrylic acid, methacrylic acid, maleic acid and itaconic acid
  • organic components such as phenol.
  • a homopolymer having these monomers as constituent units, or a copolymer containing at least one of these monomers as constituent units may be added.
  • the pH of the electrolytic treatment solution is preferably 1 to 5, more preferably 2 to 4.
  • the electrolytic treatment liquid improves the stability of the components in the aqueous solution and becomes excellent in the deposition efficiency of the aluminum oxygen compound film.
  • the current density during the cathodic electrolysis is not particularly limited, but is preferably 1 to 30 A / dm 2 , more preferably 1 to 10 A / dm 2 .
  • an aluminum oxygen compound film can be more favorably formed on the substrate.
  • the counter electrode placed on the substrate may be anything as long as it does not dissolve in the electrolysis solution during the electrolysis, but the oxygen overvoltage is small.
  • a titanium plate coated with iridium oxide or platinum is preferably used because it is difficult to dissolve in the electrolytic treatment solution.
  • the amount of aluminum in the aluminum oxygen compound film formed on the substrate is not particularly limited, and is appropriately adjusted according to the type of the metal plate used as the substrate and the use of the surface treatment substrate. do it.
  • the amount of aluminum in the aluminum oxygen compound film is preferably 1 mg / m 2 or more, more preferably 5 mg / m 2 or more.
  • the upper limit of the amount of aluminum in the aluminum oxygen compound film is not particularly limited, but if the amount of aluminum in the aluminum oxygen compound film is too large, the weldability of the resulting surface-treated substrate may be reduced. 20 mg / m 2 or less from the point that there is a possibility that the adhesion between the surface-treated substrate and the organic resin layer may be lowered when the organic resin layer is coated on the obtained surface-treated substrate. More preferably, it is 10 mg / m 2 or less.
  • the amount of aluminum is preferably 15 mg / m 2 or more, more preferably 20 mg / m 2 or more.
  • the upper limit of the amount of aluminum in the aluminum oxygen compound film is not particularly limited, but if the amount of aluminum in the aluminum oxygen compound film is too large, the resulting surface-treated substrate is coated with an organic resin layer.
  • it is preferably 50 mg / m 2 or less, more preferably 40 mg / m 2 or less, from the viewpoint that the adhesion between the surface-treated substrate and the organic resin layer may be lowered.
  • the method for adjusting the amount of aluminum in the aluminum oxygen compound film formed on the substrate to the above range is not particularly limited.
  • cathodic electrolysis Examples include a method of controlling conditions such as current density and energization time in the above-described ranges, a method of appropriately adjusting the concentration of aluminum ions in the electrolytic treatment solution, and the like.
  • ⁇ Alkali treatment process> surface treatment is performed by subjecting the film-forming substrate obtained by forming the aluminum oxygen compound film on the substrate in the above-described film formation step to an alkali treatment in contact with an alkaline aqueous solution. A substrate is obtained.
  • the alkali treatment method for example, a method of immersing a film-forming substrate in an alkaline aqueous solution, a method of spraying or applying an alkaline aqueous solution to the film-forming substrate can be used.
  • the film-forming substrate When the film-forming substrate is brought into contact with the alkaline aqueous solution, the film-forming substrate may be brushed using a brush or the like.
  • the film forming substrate when the film forming substrate is immersed in an alkaline aqueous solution as an alkali treatment, the alkaline aqueous solution is flowed using a water pump, a stirrer, an air pump, or the like, or the film forming substrate is shaken in the alkaline aqueous solution. It may be moved or rotated.
  • the adhesion between the surface-treated substrate and the organic resin layer is improved. Furthermore, when the surface-treated substrate coated with such an organic resin layer is used as a can container such as a food can, even if the can container is filled with food and drink and stored for a long time, Blackening (sulfurization blackening) which occurs when iron or tin constituting the base material reacts with sulfur contained in the food or drink can be effectively suppressed.
  • FIG. 1A a carbon deposition film as a protective film was formed on the surface of a surface-treated substrate obtained by subjecting a film-formed substrate to a treatment of immersing in an alkaline aqueous solution as an alkali treatment.
  • the white arrow in FIG. 1 (A) has shown the aluminum oxygen compound membrane
  • FIG. 1 (B) is a cross-sectional photograph of the film-forming substrate before the alkali treatment is measured with a transmission electron microscope. 1A and 1B show the measurement results of the film-formed substrate and the surface-treated substrate prepared in Example 7 and Comparative Example 1 described later.
  • the aluminum-oxygen compound film of the surface-treated substrate subjected to the alkali treatment is compared with the aluminum-oxygen compound film of the film-forming substrate before the alkali treatment shown in FIG. 1 (B).
  • the film is denser and more uniform.
  • the inventors of the present invention have reported that the aluminum oxygen compound film has a fluorine-containing aluminum oxygen compound (Al (OH) 3 , Al 2 O 3 , AlO X (OH) Y, etc.) partially substituted with fluorine.
  • 1 (B) is formed in the aluminum oxygen compound film at the time of electrolytic treatment. In this case, the aluminum oxygen compound film is used as an organic resin.
  • the adhesiveness of the organic resin layer is reduced due to the influence of the heterogeneous portion containing fluorine in the aluminum oxygen compound film, and the food or drink is made of aluminum oxygen. It was found that sulfide blackening occurs due to penetration into the compound film.
  • the present inventors diligently studied, by performing alkali treatment on the film-forming substrate formed by forming the aluminum oxygen compound film on the substrate, fluorine in the aluminum oxygen compound film was removed. It has been found that the heterogeneous portion can be dissolved and removed, and the aluminum oxygen compound film can be made dense and uniform as shown in FIG.
  • the present invention has been made on the basis of such knowledge, and is used for food and beverage cans, etc., in which a film-forming substrate is covered with an organic resin layer to be filled with food or drink by treating with alkali. In this case, peeling of the organic resin layer can be prevented and sulfide blackening can be effectively suppressed when stored for a long period of time.
  • FIG. 2 (A) shows the X-ray photoelectron spectroscopy of the surface-treated substrate obtained by subjecting the film-formed substrate to a treatment of immersing in an alkaline aqueous solution as an alkali treatment while etching the surface with argon gas. It is a graph which shows the result of having measured using the apparatus.
  • the horizontal axis represents the time when the surface-treated substrate was etched from the surface using argon gas
  • the vertical axis represents Al2p 3 / obtained by measurement with an X-ray photoelectron spectrometer.
  • FIG. 2B is a graph showing the results of measuring the film-forming substrate before the alkali treatment with an X-ray photoelectron spectrometer.
  • 2A and 2B show the measurement results of the film-forming substrate and the surface-treated substrate prepared in Example 7 and Comparative Example 1 described later.
  • the surface-treated substrate subjected to the alkali treatment has a fluorine calculated from the F1s peak as compared to the film-formed substrate before the alkali treatment shown in FIG. 2 (B). It can be confirmed that the atomic concentration of is reduced. In particular, in the film-forming substrate shown in FIG. 2B, the atomic concentration of fluorine atoms is higher as it is closer to the surface (that is, as the etching time is closer to 0), and toward the inside (that is, when the etching time is longer). As shown in FIG. 2 (A), an inclined structure with a fluorine atomic concentration is obtained by subjecting such a film-forming substrate to an alkali treatment.
  • the atomic concentration of fluorine generally decreases from the surface to the inside. Thereby, it can be confirmed that the non-uniform portion containing fluorine in the aluminum oxygen compound film is dissolved and removed from the surface-treated substrate by alkali treatment.
  • coat is more precise and uniform by adjusting pH of alkaline aqueous solution to a predetermined range. It can be.
  • the pH of the alkaline aqueous solution used for the alkali treatment is preferably 8 to 11, more preferably 8 to 10. If the pH of the aqueous alkaline solution is too low, there is a risk that the dissolution and removal of the non-uniform portion in the aluminum oxygen compound film will be insufficient. On the other hand, when the pH of the alkaline aqueous solution is too high, the aluminum oxygen compound film is excessively dissolved, resulting in a large loss of aluminum oxygen compound film material and a decrease in the production yield of the surface-treated substrate. There is a risk that.
  • the alkaline compound for adjusting the pH of the alkaline aqueous solution to the above range is not particularly limited, but ammonia, sodium hydroxide, sodium carbonate, sodium hydrogen carbonate and the like are preferably used.
  • a buffer solution may be used.
  • a phosphate buffer solution in which phosphoric acid and sodium phosphate are dissolved in water trishydroxymethylamino
  • Tris-hydrochloric acid buffer in which hydrochloric acid is mixed with an aqueous solution of methane Tris-hydrochloric acid buffer in which hydrochloric acid is mixed with an aqueous solution of methane, glycine-sodium hydroxide buffer in which glycine and sodium hydroxide are dissolved in water can be used.
  • the temperature of the alkaline aqueous solution is preferably 30 to 60 ° C., more preferably 40 to 60 ° C.
  • the immersion time is preferably 1 second or longer, more preferably 1 to 5 seconds.
  • the above-described non-uniform portion present in the aluminum oxygen compound film can be dissolved and removed more appropriately, By making the aluminum oxygen compound film a denser and more uniform film, the effect of improving adhesion to the organic resin layer and suppressing sulfide blackening can be made more remarkable.
  • the atomic concentration ratio (F / Al ratio) of the fluorine amount to the aluminum amount in the aluminum oxygen compound film in the surface-treated substrate subjected to the alkali treatment is preferably 0.35 or less. Preferably it is 0.25 or less.
  • each atom (aluminum, fluorine, iron, oxygen, 2)
  • the atomic concentration of each atom is obtained as shown in FIGS. 2A and 2B, and “fluorine near the outermost surface of the surface-treated substrate is calculated.
  • a method of obtaining the F / Al ratio by calculating “atomic concentration of aluminum / atomic concentration of aluminum”.
  • the alkali-treating step is performed after forming a film-forming substrate by forming an aluminum oxygen compound film containing aluminum and fluorine on the substrate by the film-forming step.
  • the alkali-treating step is performed by subjecting the obtained film-forming substrate to an alkali treatment.
  • a surface-treated substrate in which a dense and uniform aluminum oxygen compound film is formed on the substrate can be produced.
  • the surface-treated substrate obtained in the present embodiment is excellent in the adhesion of the organic resin layer when an organic resin layer is formed on the surface. Since it is possible to effectively suppress the blackening of the iron or tin constituting, it can be suitably used as a member of a can container such as a food can.
  • an organic resin layer is usually formed on the surface of the surface-treated substrate.
  • the organic resin for forming the organic resin layer is not particularly limited, and may be appropriately selected according to the use of the surface treatment substrate (for example, a use of a can container filled with a specific content).
  • a thermoplastic resin, a thermosetting paint, etc. can be mentioned.
  • thermoplastic resin for constituting the organic resin layer examples include olefin resin films such as polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-vinyl acetate copolymer, ethylene-acrylic ester copolymer, and ionomer.
  • Polyester films such as polyethylene terephthalate and polybutylene terephthalate, polyamide films such as nylon 6, nylon 6, 6, nylon 11 and nylon 12, or unstretched films of thermoplastic resins such as polyvinyl chloride films and polyvinylidene chloride films
  • a biaxially stretched film can be used, and among these, biaxially or unoriented polyethylene terephthalate obtained by copolymerizing isophthalic acid is particularly preferable.
  • the thermoplastic resin for comprising such an organic resin layer may be used independently, and may be used in combination of 2 or more.
  • thermosetting paint for constituting the organic resin layer for example, an epoxy-phenol paint, a polyester paint, etc. can be used, and among these, an epoxy-phenol resin is particularly preferred.
  • the thickness of the organic resin layer is preferably 3 to 50 ⁇ m, more preferably 5 to 40 ⁇ m when a thermoplastic resin is used for forming the organic resin layer.
  • the thickness of the organic resin layer after baking is preferably 1 to 50 ⁇ m, more preferably 3 to 30 ⁇ m.
  • the surface-treated substrate obtained by immersing the film-forming substrate in a predetermined treatment solution is measured under the following conditions using an X-ray electron spectrometer (manufactured by JEOL Ltd., model number: JPS-9200). After the background of the obtained peak is removed, the atomic concentration of each atom is obtained by calculating the integrated value of the peak derived from each atom (aluminum, fluorine, iron, oxygen, carbon), and the surface treatment.
  • F / Al ratio was obtained by calculating “atom concentration of fluorine / atom concentration of aluminum” in the vicinity of the outermost surface of the substrate.
  • the bottom of the can was immersed in water, and a hot water retort treatment was performed at 125 ° C. for 30 minutes.
  • the bottom of the can taken out from water was immersed in an aqueous sodium chloride solution having a concentration of 1% by weight at a temperature of 37 ° C. for 1 day.
  • the bottom of the can is taken out from the sodium chloride aqueous solution, cut into a size of 40 mm in width and 30 mm in length so as to include the bottom radius, and then the state of peeling of the organic resin layer in the vicinity of the bottom radius is visually observed.
  • the evaluation was made in the range of 1 to 5 points according to the following criteria. Retort adhesion was evaluated only for Examples 1 to 9 and Comparative Examples 1 and 2 among all Examples and Comparative Examples described later. 5 points: The peel ratio of the organic resin layer of the test piece was less than 20% out of a length of 30 mm. 4 points: The peel ratio of the organic resin layer of the test piece was 20% or more and less than 40% in a length of 30 mm.
  • the peel ratio of the organic resin layer of the test piece was 40% or more and less than 60% in a length of 30 mm.
  • 2 points The peel rate of the organic resin layer of the test piece was 60% or more and less than 80% in a length of 30 mm.
  • 1 point The peeling rate of the organic resin layer of the test piece was 80% or more out of a length of 30 mm.
  • the organic resin-coated substrate obtained by applying a resin to one surface of the surface-treated substrate was evaluated for cross-cut corrosion resistance as follows. That is, first, an organic resin-coated base material is subjected to a cross-cut flaw that reaches the base material, and the intersection of the cross-cuts becomes the apex of the overhang processing part (Ericsen Tester) The overhanging process with a height of 3 mm was performed.
  • the overhanging surface was immersed in a model solution (an aqueous solution in which citric acid and sodium chloride were dissolved at 1.5% by weight) for 70 hours in an environment at a temperature of 70 ° C., and the degree of corrosion in the overhanging portion was visually observed. Observed and evaluated in the range of 1 to 5 points according to the following criteria.
  • the cross-cut corrosion resistance was evaluated with reference to Comparative Example 3 described later as a reference (three points), and only Examples 10 to 15 and Comparative Examples 3 to 6 among all Examples and Comparative Examples described later. went. 5 points: The degree of corrosion at the projecting portion of the test piece was smaller than that of Comparative Example 3.
  • the organic resin-coated substrate obtained by applying a resin to one surface of the surface-treated substrate was evaluated for resistance to sulfurization blackening as follows. That is, first, the organic resin-coated substrate was cut to a size of 4 cm square, and the end surface was covered with an acid resistant tape to prepare a test piece. Next, after preparing a can container (Toyo Seikan Co., Ltd., J280TULC), putting the prepared test piece into the prepared can container, filling it with boiled water so that the entire test piece is immersed, and tightening, Retort treatment was performed at 125 ° C. for 30 minutes. Thereafter, it was stored in an environment of 37 ° C.
  • a can container Toyo Seikan Co., Ltd., J280TULC
  • Example 1 A low carbon cold rolled steel sheet (thickness 0.225 mm, width 200 mm) was prepared as a base material.
  • Electrolytic treatment solution An aqueous solution having an aluminum ion concentration of 2,000 ppm by weight and a fluoride ion concentration of 2,500 ppm by weight obtained by dissolving aluminum nitrate as an aluminum compound and sodium fluoride as a fluoride.
  • Electrolytic solution temperature 40 ° C
  • Current density 4 A / dm 2
  • Total energization time 0.45 seconds (total energization time when the cycle of energization of 0.15 sec and 0.5 sec energization is repeated 3 times)
  • the surface treatment base material was obtained by carrying out the alkali treatment by making the film formation base material obtained immersed in a process liquid on the following conditions, and then washing and drying.
  • Treatment solution aqueous sodium hydrogen carbonate solution
  • Treatment solution pH 8
  • the obtained surface-treated substrate is heated to 250 ° C., and non-oriented polyethylene terephthalate (PET) obtained by copolymerizing 15 mol% of isophthalic acid on one surface of the surface-treated substrate using a laminate roll.
  • PET polyethylene terephthalate
  • a film thickness 20 ⁇ m was thermocompression bonded and immediately cooled with water to form an organic resin layer.
  • an organic resin layer was formed on only one surface of the surface-treated substrate, and an organic resin-coated substrate with an aluminum oxygen compound film exposed on the other surface was obtained.
  • the organic resin-coated substrate thus obtained was evaluated for retort adhesion in accordance with the method described above. The results are shown in Table 1.
  • Examples 2 to 7 When the film-forming substrate formed by forming an aluminum oxygen compound film on the same low-carbon cold-rolled steel plate as in Example 1 is immersed in the processing liquid, the type, pH, temperature, and immersion time of the processing liquid are shown in Table 1. A surface-treated substrate and an organic resin-coated substrate were produced in the same manner as in Example 1 except that the changes were made, and the evaluation was performed in the same manner. In Example 7, the F / Al ratio in the aluminum oxygen compound film was also calculated according to the method described above. The results are shown in Table 1.
  • Example 8 When forming an aluminum oxygen compound film on the same low carbon cold-rolled steel sheet as in Example 1, the total energization time during the cathodic electrolysis treatment for forming the aluminum oxygen compound film was 0.16 seconds (0.08 second energization). The total energization time when the 0.5 second energization stop cycle was repeated twice), and when the film-forming substrate was immersed in the treatment liquid, the type and pH of the treatment liquid are shown in Table 1. A surface-treated substrate and an organic resin-coated substrate were produced in the same manner as in Example 1 except that the change was made and evaluated in the same manner. The results are shown in Table 1.
  • Example 9 Table 1 shows the type, pH, temperature, and immersion time of the treatment liquid when a film-forming substrate formed by forming an aluminum oxygen compound film on the same low-carbon cold-rolled steel plate as in Example 1 is immersed in the treatment liquid.
  • a surface-treated substrate and an organic resin-coated substrate were prepared in the same manner as in Example 1 except that the changes were made as described above, and evaluation was performed in the same manner. The results are shown in Table 1.
  • Comparative Examples 1 and 2 When immersing a film-forming substrate formed by forming an aluminum oxygen compound film on the same low-carbon cold-rolled steel plate as in Example 1 in the treatment liquid, water at pH 7 is used as the treatment liquid, and the temperature and immersion time are set. A surface-treated substrate and an organic resin-coated substrate were prepared in the same manner as in Example 1 except that the conditions were as shown in Table 1, and were evaluated in the same manner. In Comparative Examples 1 and 2, the F / Al ratio in the aluminum oxygen compound film was also calculated according to the method described above. The results are shown in Table 1.
  • Example 10 A tin-plated steel sheet (thickness 0.225 mm, width 200 mm, tin content 2 in the tin-plated layer) obtained by performing a treatment for heating and melting the tin-plated layer after forming a tin-plated layer on the steel sheet as a base material .8 g / m 2 ) was prepared.
  • Electrolytic treatment solution An aqueous solution having an aluminum ion concentration of 2,000 ppm by weight and a fluoride ion concentration of 2,500 ppm by weight obtained by dissolving aluminum nitrate as an aluminum compound and sodium fluoride as a fluoride.
  • PH of the electrolytic treatment solution 3.0
  • Electrolytic solution temperature 40 ° C
  • Current density 4 A / dm 2
  • the surface treatment base material was obtained by carrying out the alkali treatment by making the film formation base material obtained immersed in a process liquid on the following conditions, and then washing and drying.
  • Treatment liquid aqueous ammonia treatment solution pH: 10.5
  • an organic resin layer is formed by baking at a temperature of 200 ° C. for 10 minutes to obtain an organic resin-coated substrate. It was.
  • the application amount of the epoxy-phenol resin was 70 mg / m 2 in terms of the weight after baking.
  • the organic resin-coated substrate thus obtained was evaluated for cross-cut corrosion resistance and sulfur blackening resistance according to the methods described above. The results are shown in Table 2.
  • Examples 11 to 14 When forming an aluminum oxygen compound film on the same low carbon cold-rolled steel sheet as in Example 1, the total energization time during the cathodic electrolysis treatment for forming the aluminum oxygen compound film was 0.4 seconds (0.2 second energization). , The total energization time when the 0.5 second energization stop cycle was repeated twice), and when the film-forming substrate was immersed in the treatment liquid, the type, pH and temperature of the treatment liquid are shown in Table 2. A surface-treated substrate and an organic resin-coated substrate were produced in the same manner as in Example 10 except that the changes were made, and the evaluation was performed in the same manner. Note that the evaluation of resistance to sulfurization blackening was carried out only for Example 11. In Example 12, the F / Al ratio in the aluminum oxygen compound film was also calculated according to the method described above. The results are shown in Table 2.
  • Example 15 Before applying the cathodic electrolysis treatment to form an aluminum oxygen compound film on the tin-plated steel sheet, a cleaning process was performed to remove the oxide film by immersing the tin-plated steel sheet in sodium carbonate and performing the cathodic electrolysis process. Except for the above, a surface-treated substrate and an organic resin-coated substrate were prepared in the same manner as in Example 10 and evaluated in the same manner. The results are shown in Table 2.
  • Comparative Examples 3 to 6 When forming an aluminum oxygen compound film on the same low carbon cold-rolled steel sheet as in Example 1, the total energization time during cathodic electrolysis for forming the aluminum oxygen compound film was changed as shown in Table 2, When immersing the forming base material in the treatment liquid, the surface treatment base material and the organic resin-coated base were the same as in Example 10 except that pH 7 was used as the treatment liquid and the temperature was as shown in Table 2. A material was prepared and evaluated in the same manner. In Comparative Examples 4 and 6, the F / Al ratio in the aluminum oxygen compound film was also calculated according to the method described above. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

 基材上に、アルミニウム及びフッ素を含有する金属酸素化合物皮膜を形成することで皮膜形成基材を得る皮膜形成工程と、前記皮膜形成基材を、アルカリ水溶液に接触させるアルカリ処理工程と、を有することを特徴とする表面処理基材の製造方法を提供する。本発明の製造方法において、前記アルカリ水溶液は、pH8~11のアルカリ水溶液であることがより好ましい。本発明の製造方法において、前記アルカリ処理は、前記皮膜形成基材を、温度30~60℃のアルカリ水溶液に浸漬させる処理であることがより好ましい。

Description

表面処理基材の製造方法
 本発明は、表面処理基材の製造方法に関する。
 家電製品、建材、車両、航空機、容器等の分野で用いられる基材において、表面に形成する有機樹脂層との密着性を向上させる方法として、有機樹脂層との密着性及び耐食性に優れるクロメート処理が知られているが、このようなクロメート処理に代わるノンクロム系表面処理として、たとえば、特許文献1には、アルミニウムイオンを含有する電解処理液を用いて、陰極電解処理により、基材の表面に、アルミニウムを含有する金属酸素化合物皮膜を形成する技術が開示されている。
特開2006-348360号公報
 しかしながら、上記特許文献1に記載の技術では、基材上にアルミニウムを含有する金属酸素化合物皮膜を形成した後、該金属酸素化合物皮膜上に、たとえば、ポリエステルフィルムなどを用いてラミネートにより有機樹脂層を形成した場合には、金属酸素化合物皮膜と有機樹脂層との密着性が低く、レトルト処理などにより有機樹脂層が剥離し易くなってしまうという問題がある。また、該金属酸素化合物皮膜上に、たとえば、エポキシ-フェノール塗料などを用いて塗布により有機樹脂層を形成した場合において、これを飲食缶などの缶容器として用いた際には、缶容器に飲食品物を充填して長期間保存すると、基材を構成する鉄や錫が、飲食品物に含まれる硫黄と反応して硫化黒変し、外観不良が発生してしまうという問題もある。上記特許文献1に記載の技術では、電解処理液にフッ化物イオンを含有させることにより、フッ化物イオンが、電解処理液中においてアルミニウム化合物の溶解性を高めるための錯化剤として作用し、基材上に、より良好に、アルミニウムを含有する金属酸素化合物皮膜を析出させることができる。しかしながら、本発明者らが探求したところ、この金属酸素化合物皮膜はフッ素を含むアルミニウム酸素化合物(Al(OH)、Al、AlO(OH)など水酸化物や酸化物の一部がフッ素に置換されている)で形成されており、電解処理時に金属酸素化合物皮膜中に不均一部分が形成されてしまい、この不均一部分の影響によって、有機樹脂層の密着性の低下や、飲食品物が金属酸素化合物皮膜に浸透することによる硫化黒変が発生してしまうことが判明した。
 本発明はこのような実状に鑑みてなされたものであり、有機樹脂層との密着性に優れ、さらに硫化黒変を抑制することができる表面処理基材の製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意検討した結果、基材上にアルミニウム及びフッ素を含有する金属酸素化合物皮膜を形成することで皮膜形成基材を得た後、得られた皮膜形成基材をアルカリ水溶液と接触させることにより、皮膜形成基材の金属酸素化合物皮膜が緻密で均一な皮膜となり、これにより、上記課題を解決できることを見出し、本発明を完成させるに至った。
 すなわち、本発明によれば、基材上に、アルミニウム及びフッ素を含有する金属酸素化合物皮膜を形成することで皮膜形成基材を得る皮膜形成工程と、前記皮膜形成基材を、アルカリ水溶液と接触させるアルカリ処理工程と、を有することを特徴とする表面処理基材の製造方法が提供される。
 本発明の製造方法において、前記アルカリ水溶液は、pH8~11のアルカリ水溶液であることがより好ましい。
 本発明の製造方法において、前記アルカリ処理は、前記皮膜形成基材を、温度30~60℃のアルカリ水溶液に浸漬させる処理であることがより好ましい。
 本発明の製造方法において、前記アルカリ処理は、前記皮膜形成基材を、アルカリ水溶液に1秒以上浸漬させる処理であることがより好ましい。
 本発明の製造方法において、前記皮膜形成工程における前記金属酸素化合物皮膜の形成を、アルミニウムイオン及びフッ化物イオンを含む電解処理液中で、前記基材に電解処理を施すことで行うことがより好ましい。
 また、本発明の製造方法において、前記基材が、鋼板上に錫めっき層を形成してなる錫めっき鋼板、鋼板上にニッケルめっき層を形成してなるニッケルめっき鋼板、又は錫、ニッケル、鉄のうち少なくとも2種からなる合金層を形成してなる合金被覆鋼板であり、前記皮膜形成工程における該基材上に形成する前記金属酸素化合物皮膜を、アルミニウム量換算で1mg/m以上とすることがより好ましい。
 さらに、本発明の製造方法において、前記基材が冷延鋼板であり、前記皮膜形成工程における該基材上に形成する前記金属酸素化合物皮膜を、アルミニウム量換算で15mg/m以上とすることがより好ましい。
 本発明によれば、アルミニウム及びフッ素を含有する金属酸素化合物皮膜を形成した基材を、アルカリ処理することにより、金属酸素化合物皮膜を緻密で均一なものとすることができ、これにより、有機樹脂層との密着性に優れ、さらに硫化黒変を抑制することができる表面処理基材の製造方法を提供することができる。
図1は、表面にアルミニウム及びフッ素を含有する金属酸素化合物皮膜が形成された基材の断面写真である。 図2は、表面にアルミニウム及びフッ素を含有する金属酸素化合物皮膜が形成された基材について、X線光電子分光装置により測定した各元素の原子濃度を示す図である。
 本発明の表面処理基材の製造方法は、基材上に、アルミニウム及びフッ素を含有する金属酸素化合物皮膜を形成することで皮膜形成基材を得る皮膜形成工程と、前記皮膜形成基材を、アルカリ水溶液と接触させるアルカリ処理工程と、を有することを特徴とする。
 以下、本発明における表面処理基材の製造方法について説明する。
<皮膜形成工程>
 まず、本実施形態においては、アルミニウム及びフッ素を含有する金属酸素化合物皮膜を形成するための基材を準備する。基材としては、特に限定されず、たとえば、鋼板、アルミニウム板、アルミニウム合金板などの所望の形状に加工可能な金属板が挙げられる。なお、鋼板としては、アルミキルド鋼連鋳材などをベースとした熱延鋼板、熱延鋼板を冷間圧延した冷延鋼板、熱延鋼板や冷延鋼板に錫めっき層を形成してなる錫めっき鋼板、熱延鋼板や冷延鋼板にニッケルめっき層を形成してなるニッケルめっき鋼板などを用いることができる。本実施形態においては、基材としては、これらの中でも、錫めっき鋼板、ニッケルめっき鋼板、錫、ニッケル、鉄のうち少なくとも2種からなる合金層を形成してなる合金被覆鋼板、又は少なくとも片面に鉄が露出している冷延鋼板が好ましい。
 基材として錫めっき鋼板を用いる場合には、錫めっき層の錫量は、製造する表面処理基材の使用用途に応じて適宜調整すればよいが、好ましくは0.5~20g/m、より好ましくは0.5~15g/mである。
 また、錫めっき鋼板としては、鋼板上に錫めっき層を形成した後、錫の融点以上の温度で加熱保持する加熱溶融処理を施したものを用いるのが好ましい。このような加熱溶融処理を施すことにより、鋼板を構成する鉄と、錫めっき層を構成する錫とが熱拡散することで鉄-錫合金層が形成され、このような鉄-錫合金層が形成されることにより、錫めっき鋼板は、鋼板側から順に、鉄-錫合金層、錫めっき層を有するような構成となり、耐食性が向上する。
 なお、錫めっき鋼板としては、鋼板上に直接錫めっき層を形成したものであってもよいが、錫めっき鋼板の耐食性をより向上させるために、鋼板と錫めっき層との間に、ニッケルめっき層を形成したものであってもよい。このようなニッケルめっき層を形成した場合においても、錫めっき鋼板に対して上述した加熱溶融処理を施すことが好ましく、この際においては、錫めっき鋼板は、加熱溶融処理の加熱条件によって、たとえば、鋼板側から順に、鉄-ニッケル合金層、鉄-ニッケル-錫合金層を有するような構成や、鋼板側から順に、鉄-ニッケル合金層、ニッケルめっき層、ニッケル-錫合金層、錫めっき層を有するような構成とすることができ、錫めっき鋼板の耐食性がより向上する。
 また、錫めっき鋼板に対しては、上述した加熱溶融処理を施した後、さらに、錫めっき層の表面に形成された酸化皮膜を除去するための清浄化処理を行うことが好ましい。清浄化処理の方法としては、たとえば、炭酸ナトリウム、炭酸水素ナトリウムなどの炭酸塩の水溶液を用いて、錫めっき鋼板を、電流密度0.5~20A/dm、通電時間0.1~1.0秒間の条件にて、陰極電解処理及び陽極電解処理のいずれか一方又は両方を行う方法が挙げられる。
 一方、基材としてニッケルめっき鋼板を用いる場合には、ニッケルめっき層のニッケル量は、製造する表面処理基材の使用用途に応じて適宜調整すればよいが、好ましくは0.03~10g/m、より好ましくは0.1~5g/mである。
 また、ニッケルめっき鋼板としては、鋼板上にニッケルめっき層を形成した後、ニッケルの融点以上の温度で加熱保持する加熱溶融処理を施したものを用いることが好ましい。このような加熱溶融処理を施すことにより、鋼板を構成する鉄と、ニッケルめっき層を構成するニッケルとが熱拡散して鉄-ニッケル合金層が形成され、このような鉄-ニッケル合金層が形成されることにより、ニッケルめっき鋼板は、鋼板側から順に、鉄-ニッケル合金層、ニッケルめっき層を有するような構成となり、耐食性が向上する。
 本実施形態においては、上述したような基材の厚みは、特に限定されず、製造する表面処理基材の使用用途に応じて適宜選択すればよいが、好ましくは0.07~0.4mmである。
 そして、本実施形態の皮膜形成工程では、上述した基材上に、アルミニウム及びフッ素を含有する金属酸素化合物皮膜(以下、「アルミニウム酸素化合物皮膜」という。)を形成する。アルミニウム酸素化合物皮膜を形成する方法としては、特に限定されないが、アルミ酸素化合物皮膜を比較的短時間で形成することができるという点より、アルミニウムイオン及びフッ化物イオンを含む電解処理液中で、基材に陰極電解処理を施す方法が好ましい。このような陰極電解処理を施す方法においては、電解処理液に含まれるアルミニウムイオンが、フッ化物イオンを取り込みながら金属酸素化合物として基材上に析出することで、アルミニウム酸素化合物皮膜が形成されることとなる。
 なお、アルミニウム酸素化合物皮膜を上述した陰極電解処理により形成する場合には、電解処理液中のアルミニウムイオンを形成するためのアルミニウム化合物としては、たとえば、硝酸アルミニウム、硫酸アルミニウムカリウム、硫酸アルミニウム、リン酸二水素アルミニウム、乳酸アルミニウム、フッ化アルミニウム、水酸化アルミニウム、酸化アルミニウム、珪酸アルミニウム、アルミン酸ナトリウムなどのアルミン酸塩、フルオロアルミニウム酸ナトリウムなどを、単独又は2つ以上を組合せて用いることができる。
 また、電解処理液中のフッ化物イオンを形成するためのフッ化物としては、たとえば、フッ化ジルコニウムアンモニウム、フッ化アルミニウム、フッ化チタン、フッ化ナトリウム、フッ化水素酸、フッ化カルシウム、ヘキサフルオロ珪酸、ヘキサフルオロ珪酸ナトリウムなどを用いることができる。本実施形態においては、電解処理液にフッ化物イオンを含有させることにより、フッ化物イオンが、電解処理液中においてアルミニウム化合物の溶解性を高めるための錯化剤として作用し、基材上に、より良好にアルミ酸素化合物皮膜を析出させることができる。
 なお、このような電解処理液には、アルミニウム酸素化合物皮膜の形成を阻害しない範囲で、電解処理液のpHを調整するためのpH調整剤、電解処理液の導電率を向上させるための電解質などを添加してもよい。pH調整剤としては、たとえば、硝酸水溶液やアンモニア水などが挙げられる。また、電解質としては、カルシウムイオン、乳酸イオン、塩化物イオン、硫酸イオン、ナトリウムイオン、マグネシウムイオン、硝酸イオン、アンモニウムイオンなどを発生させる化合物が挙げられるが、電解質をpH調整剤と併用して用いる場合には、電解処理液中の成分の管理が容易になるという観点より、pH調整剤に由来するイオンと同様のイオン、すなわち、硝酸イオン、アンモニウムイオンなどを発生させる化合物を用いることが好ましい。
 さらに、電解処理液には、クエン酸、乳酸、酒石酸及びグリコール酸などの有機酸、アクリル酸、メタクリル酸、マレイン酸、イタコン酸などのカルボン酸、並びにフェノールなどの有機成分のうち、少なくとも1種以上が添加されていてもよく、これらのモノマーを構成単位とするホモポリマー、又はこれらのモノマーの少なくとも1種を構成単位として含むコポリマーが添加されていても良い。これら有機成分の中でも、特に、ポリイタコン酸および/またはポリアクリル酸が添加されていることが最も好ましい。電解処理液に、このような有機成分を添加することにより、形成されるアルミニウム酸素化合物皮膜中に有機成分を含有させることができ、これにより、アルミニウム酸素化合物皮膜上にフィルムや塗膜などの有機樹脂層を形成する場合に、アルミニウム酸素化合物皮膜と有機樹脂層との密着性を向上させることができる。
 また、電解処理液のpHは、好ましくは1~5、より好ましくは2~4である。電解処理液のpHを上記範囲に制御することにより、電解処理液は、水溶液中の成分の安定性が向上し、アルミニウム酸素化合物皮膜の析出効率に優れたものとなる。
 また、陰極電解処理を行う際における電流密度としては、特に限定されないが、好ましくは1~30A/dm、より好ましくは1~10A/dmである。電流密度を上記範囲とすることにより、基材上に、より良好にアルミニウム酸素化合物皮膜を形成することができる。
 基材に陰極電解処理を施す際には、基材に対して設置する対極板としては、電解処理を行っている間に電解処理液に溶解しないものであれば何でもよいが、酸素過電圧が小さく電解処理液に溶解し難いという点より、酸化イリジウム又は白金で被覆されたチタン板を用いるのが好ましい。
 本実施形態においては、基材上に形成するアルミニウム酸素化合物皮膜中のアルミニウム量は、特に限定されず、基材として用いる金属板の種類や、表面処理基材の用途などに応じて、適宜調整すればよい。
 たとえば、基材として、上述した錫めっき鋼板又はニッケルめっき鋼板を用いる場合には、アルミニウム酸素化合物皮膜中のアルミニウム量は、好ましくは1mg/m以上、より好ましくは5mg/m以上である。この際においては、アルミニウム酸素化合物皮膜中のアルミニウム量の上限は、特に限定されないが、アルミニウム酸素化合物皮膜中のアルミニウム量が多くなりすぎると、得られる表面処理基材の溶接性が低下するおそれがあるという点や、得られる表面処理基材に有機樹脂層を被覆する場合に、表面処理基材と有機樹脂層との密着性が低下するおそれがあるという点より、好ましくは20mg/m以下、より好ましくは10mg/m以下である。
 あるいは、基材として、冷延鋼板(少なくとも片面において、錫めっき層やニッケルめっき層などに覆われておらず、鉄が露出している冷延鋼板)を用いる場合には、アルミニウム酸素化合物皮膜中のアルミニウム量は、好ましくは15mg/m以上、より好ましくは20mg/m以上である。この際においては、アルミニウム酸素化合物皮膜中のアルミニウム量の上限は、特に限定されないが、アルミニウム酸素化合物皮膜中のアルミニウム量が多くなりすぎると、得られる表面処理基材に有機樹脂層を被覆する場合に、表面処理基材と有機樹脂層との密着性が低下するおそれがあるという点より、好ましくは50mg/m以下、より好ましくは40mg/m以下である。
 基材上に形成するアルミニウム酸素化合物皮膜中のアルミニウム量を、上記範囲に調整する方法としては、特に限定されないが、たとえば、アルミニウム酸素化合物皮膜を陰極電解処理により形成する場合には、陰極電解処理時における電流密度、通電時間などの条件を上述した範囲に制御する方法や、電解処理液中のアルミニウムイオンの濃度を適宜調整する方法などが挙げられる。
<アルカリ処理工程>
 次いで、アルカリ処理工程においては、上述した皮膜形成工程にて基材上にアルミ酸素化合物皮膜を形成することにより得られた皮膜形成基材に、アルカリ水溶液と接触させるアルカリ処理を施すことで表面処理基材を得る。
 アルカリ処理の方法としては、たとえば、皮膜形成基材をアルカリ水溶液に浸漬させる方法、皮膜形成基材にアルカリ水溶液を噴射又は塗布する方法などを用いることができる。
 なお、皮膜形成基材をアルカリ水溶液に接触させる際にはブラシなどを用いて皮膜形成基材をブラッシングしてもよい。また、アルカリ処理として皮膜形成基材をアルカリ水溶液に浸漬させる処理を行う場合には、アルカリ水溶液を水流ポンプ、撹拌装置、エアポンプなどを用いて流動させたり、アルカリ水溶液中で皮膜形成基材を揺動や回転させたりしてもよい。
 本実施形態によれば、皮膜形成基材をアルカリ処理することにより、得られる表面処理基材について、表面に有機樹脂層を被覆する場合に、表面処理基材と有機樹脂層との密着性を向上させることができ、さらに、このような有機樹脂層を被覆した表面処理基材を飲食缶などの缶容器として用いた際に、缶容器に飲食品物を充填して長期間保存したとしても、基材を構成する鉄や錫が飲食品物に含まれる硫黄と反応することにより発生する黒変(硫化黒変)を、有効に抑制することができるようになる。
 ここで、図1(A)は、皮膜形成基材に対して、アルカリ処理としてアルカリ水溶液に浸漬させる処理を施して得た表面処理基材について、表面に保護膜としてのカーボン蒸着膜を形成した後で切断し、切断した断面を透過型電子顕微鏡により測定した断面写真である。なお、図1(A)中の白抜き矢印は、表面処理基材のアルミニウム酸素化合物皮膜を示している。同様に、図1(B)は、アルカリ処理を施す前の皮膜形成基材を、透過型電子顕微鏡により測定した断面写真である。なお、図1(A)、図1(B)は、後述する実施例7、比較例1にて作製した皮膜形成基材及び表面処理基材の測定結果を示している。
 図1(A)に示すように、アルカリ処理を施した表面処理基材のアルミニウム酸素化合物皮膜は、図1(B)に示すアルカリ処理を施す前の皮膜形成基材のアルミニウム酸素化合物皮膜と比較して、より緻密で均一な皮膜となっていることが確認できる。本発明者らは、アルミ酸素化合物皮膜が、フッ素を含むアルミニウム酸素化合物(Al(OH)、Al、AlO(OH)など水酸化物や酸化物の一部がフッ素に置換されている)で形成されており、電解処理時にアルミ酸素化合物皮膜中に図1(B)に示すような不均一部分が形成されてしまい、この際においては、アルミニウム酸素化合物皮膜を、有機樹脂層で被覆して飲食品物を充填させる飲食缶などに用いた場合に、アルミニウム酸素化合物皮膜中のフッ素を含む不均一部分の影響によって、有機樹脂層の密着性の低下や、飲食品物がアルミニウム酸素化合物皮膜に浸透することによる硫化黒変が発生してしまうという知見を得た。
 これに対し、本発明者らが、鋭意検討を行ったところ、基材上にアルミニウム酸素化合物皮膜を形成してなる皮膜形成基材を、アルカリ処理することにより、アルミニウム酸素化合物皮膜中のフッ素を含む不均一部分を溶解及び除去することができ、アルミニウム酸素化合物皮膜を、図1(A)に示すような緻密で均一なものとすることができることを見出した。本発明は、このような知見に基づいてなされたものであり、皮膜形成基材をアルカリ処理することにより、表面処理基材を有機樹脂層で被覆して飲食品物を充填させる飲食缶などに用いた場合に、有機樹脂層の剥離を防止し、長期間保存した際における硫化黒変を有効に抑制することができるものである。
 上記効果が得られるメカニズムは明らかではないが、アルカリ処理を行うことにより皮膜中のフッ素が水酸基に置換されたり、水溶液に可溶し易いフッ素を含むアルミニウム酸素化合物が皮膜中から除かれたりすることにより、金属酸素化合物皮膜を緻密で均一なものにすることが可能となると考えられる。
 また、図2(A)は、皮膜形成基材に対して、アルカリ処理としてアルカリ水溶液に浸漬させる処理を施して得た表面処理基材について、表面をアルゴンガスによりエッチングしながら、X線光電子分光装置を用いて測定を行った結果を示すグラフである。図2(A)に示すグラフでは、横軸は、アルゴンガスを用いて表面処理基材を表面からエッチングした時間を示し、縦軸は、X線光電子分光装置による測定で得られたAl2p3/2ピーク、F1sピーク、Fe2p3/2ピーク、O1sピーク及びC1sピークの積分値に基づいて算出した各原子(アルミニウム,フッ素,鉄,酸素,炭素)の原子濃度を示している。同様に、図2(B)は、アルカリ処理を施す前の皮膜形成基材を、X線光電子分光装置により測定した結果を示すグラフである。なお、図2(A)、図2(B)は、後述する実施例7、比較例1にて作製した皮膜形成基材及び表面処理基材の測定結果を示している。
 図2(A)に示すように、アルカリ処理を施した表面処理基材は、図2(B)に示すアルカリ処理を施す前の皮膜形成基材と比較して、F1sピークから算出されたフッ素の原子濃度が小さくなっていることが確認できる。特に、図2(B)に示す皮膜形成基材においては、フッ素原子の原子濃度は、表面に近いほど(すなわち、エッチング時間が0に近いほど)高く、内部に向かうにつれて(すなわち、エッチング時間が長くなるにつれて)低くなっているような傾斜構造となっているが、このような皮膜形成基材をアルカリ処理することにより、図2(A)に示すように、フッ素の原子濃度の傾斜構造が解消され、表面から内部にかけて全体的にフッ素の原子濃度が低くなっている。これにより、表面処理基材は、アルカリ処理によって、アルミニウム酸素化合物皮膜中におけるフッ素が含まれる不均一部分が溶解し、除去されていることが確認できる。
 なお、本実施形態においては、アルカリ処理としてアルカリ水溶液に接触させる処理を行う場合には、アルカリ水溶液のpHを所定の範囲に調整することにより、より適切にアルミニウム酸素化合物皮膜を緻密で均一なものとすることができる。
 特に、本実施形態においては、アルカリ処理に用いるアルカリ水溶液のpHは、好ましくは8~11、より好ましくは8~10である。アルカリ水溶液のpHが低すぎる場合には、アルミニウム酸素化合物皮膜中の不均一部分の溶解及び除去が不十分となってしまうおそれがある。一方、アルカリ水溶液のpHが高すぎる場合には、アルミニウム酸素化合物皮膜が過剰に溶解してしまうことで、アルミニウム酸素化合物皮膜の材料のロスが大きくなり、表面処理基材の製造歩留まりが低下してしまうおそれがある。
 なお、アルカリ水溶液のpHを上記範囲に調整するためのアルカリ性化合物としては、特に限定されないが、アンモニア、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウムなどを用いることが好ましい。
 また、アルカリ水溶液のpHを上記範囲に調整する際には、緩衝液を用いてもよく、緩衝液としては、リン酸及びリン酸ナトリウムを水に溶解させたリン酸緩衝液、トリスヒドロキシメチルアミノメタンの水溶液に塩酸を混合させたトリス-塩酸緩衝液、グリシン及び水酸化ナトリウムを水に溶解させたグリシン-水酸化ナトリウム緩衝液など公知の緩衝液を用いることができる。
 また、アルカリ処理として皮膜形成基材をアルカリ水溶液に浸漬させる処理を行う場合には、次のような条件とすることが好ましい。すなわち、アルカリ水溶液の温度は、好ましくは30~60℃、より好ましくは40~60℃である。また、浸漬時間としては、好ましくは1秒以上、より好ましくは1~5秒である。皮膜形成基材をアルカリ水溶液に浸漬させる際の温度及び浸漬時間を上記範囲とすることにより、アルミニウム酸素化合物皮膜中に存在する上述した不均一部分の溶解及び除去をより適切に行うことができ、アルミニウム酸素化合物皮膜を、より緻密で均一な皮膜とし、これにより、有機樹脂層との密着性が向上し、硫化黒変を抑制することができるという効果をより顕著なものとすることができる。
 また、本実施形態においては、アルカリ処理を施した表面処理基材における、アルミニウム酸素化合物皮膜中のアルミニウム量に対するフッ素量の原子濃度比(F/Al割合)は、好ましくは0.35以下、より好ましくは0.25以下である。アルミニウム酸素化合物皮膜中のF/Al割合を上記範囲とすることにより、表面処理基材について、有機樹脂層との密着性が向上し、硫化黒変を抑制することができるという効果をより顕著なものとすることができる。
 F/Al割合を求める方法としては、たとえば、表面処理基材を、X線電子分光装置により測定し、得られたピークのバックグラウンドを除いた後、各原子(アルミニウム,フッ素,鉄,酸素,炭素)に由来するピークの積分値をそれぞれ算出することで、図2(A)、図2(B)に示すように各原子の原子濃度を求め、表面処理基材の最表面付近における「フッ素の原子濃度/アルミニウムの原子濃度」を算出することでF/Al割合を得る方法が挙げられる。
 以上のようにして、本実施形態においては、皮膜形成工程により、基材上に、アルミニウム及びフッ素を含有するアルミニウム酸素化合物皮膜を形成することで皮膜形成基材を形成した後、アルカリ処理工程により、得られた皮膜形成基材をアルカリ処理することにより、基材上に緻密で均一なアルミ酸素化合物皮膜が形成された表面処理基材を製造することができる。本実施形態において得られる表面処理基材は、その表面に有機樹脂層を形成した際に、有機樹脂層の密着性に優れたものとなり、さらに、長期間保存された場合においても、基材を構成する鉄や錫の硫化黒変を有効に抑制することができるものであるため、飲食缶などの缶容器の部材として好適に用いることができる。
 なお、本実施形態において得られる表面処理基材は、飲食缶などの缶容器の部材として用いられる場合には、通常、表面処理基材の表面に有機樹脂層が形成される。有機樹脂層を形成するための有機樹脂としては、特に限定されず、表面処理基材の用途(たとえば、特定の内容物を充填する缶容器などの用途)に応じて適宜選択すればよいが、熱可塑性樹脂や、熱硬化性塗料などを挙げることができる。
 有機樹脂層を構成するための熱可塑性樹脂としては、たとえば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体、エチレン-アクリルエステル共重合体、アイオノマー等のオレフィン系樹脂フィルム、ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステルフィルム、ナイロン6、ナイロン6、6、ナイロン11、ナイロン12等のポリアミドフィルム、又はポリ塩化ビニルフィルム、ポリ塩化ビニリデンフィルム等の熱可塑性樹脂の未延伸フィルムや二軸延伸フィルムなどを用いることができ、これらの中でも、イソフタル酸を共重合化してなる二軸配向あるいは無配向のポリエチレンテレフタレートが特に好ましい。なお、このような有機樹脂層を構成するための熱可塑性樹脂は、単独で用いてもよく、2つ以上を組合せて用いてもよい。
 有機樹脂層を構成するための熱硬化性塗料としては、たとえば、エポキシ-フェノール系塗料、ポリエステル系塗料などを用いることができ、これらの中でも、エポキシ-フェノール樹脂が特に好ましい。
 有機樹脂層の厚みは、有機樹脂層の形成に熱可塑性樹脂を用いる場合には、好ましくは3~50μm、より好ましくは5~40μmである。あるいは、有機樹脂層の形成に熱硬化性塗料を用いる場合には、有機樹脂層の厚みは、焼付け後の厚みで、好ましくは1~50μm、より好ましくは3~30μmである。有機樹脂層の厚みを上記範囲とすることにより、有機樹脂層を形成した表面処理基材を、加工性及び耐食性に優れたものとすることができる。
 以下に、実施例を挙げて、本発明についてより具体的に説明するが、本発明は、これら実施例に限定されない。
 なお、各特性の評価方法は、以下のとおりである。
<アルミニウム酸素化合物皮膜中のアルミニウム量の測定>
 基材上にアルミニウム酸素化合物皮膜を形成してなる皮膜形成基材を、所定の処理液に浸漬させることで得た表面処理基材について、蛍光X線分析装置(リガク社製、型番:ZSX100e)を用いて、アルミニウム酸素化合物皮膜中のアルミニウム量を測定した。なお、アルミニウム酸素化合物皮膜中のアルミニウム量の測定は、後述するすべての実施例及び比較例について行った。
<アルミニウム酸素化合物皮膜中のF/Al割合の算出>
 皮膜形成基材を所定の処理液に浸漬させることで得た表面処理基材について、X線電子分光装置(日本電子社製、型番:JPS-9200)を用いて、下記条件にて測定を行い、得られたピークのバックグラウンドを除いた後、各原子(アルミニウム,フッ素,鉄,酸素,炭素)に由来するピークの積分値をそれぞれ算出することで、各原子の原子濃度を求め、表面処理基材の最表面付近における「フッ素の原子濃度/アルミニウムの原子濃度」を算出することでF/Al割合を得た。また、アルミニウム酸素化合物皮膜中のF/Al割合の算出は、後述する実施例及び比較例のうち、実施例7,12及び比較例1,2,4,6についてのみ行った。
 励起X線源:Mg(電圧10kV、電流12.5mA)
 測定径:直径1mm
 解析ソフト:SpecSurf(日本電子社製)
<レトルト密着性の評価>
 表面処理基材の片面にフィルムを熱圧着することで得た有機樹脂被覆基材を、有機樹脂層が形成された面が缶の内面となるように試験片を2ピース陰圧缶の缶底の形に加工した。次いで、この缶底部を水に浸漬させ、125℃、30分間の条件にて熱水レトルト処理を行った。そして、水中から取り出した缶底部を、濃度1重量%の塩化ナトリウム水溶液に、温度37℃の条件で1日間浸漬させた。その後、缶底部を塩化ナトリウム水溶液から取り出し、ボトムラジアス部を含むように、幅40mm、長さ30mmの大きさに切り出した後、ボトムラジアス部付近の有機樹脂層の剥離の状態を目視にて観察して、以下の基準にて1~5点の範囲で評価した。なお、レトルト密着性の評価は、後述するすべての実施例及び比較例のうち、実施例1~9及び比較例1,2についてのみ行った。
  5点:試験片の有機樹脂層の剥離割合が、長さ30mmのうち、20%未満であった。
  4点:試験片の有機樹脂層の剥離割合が、長さ30mmのうち、20%以上、40%未満であった。
  3点:試験片の有機樹脂層の剥離割合が、長さ30mmのうち、40%以上、60%未満であった。
  2点:試験片の有機樹脂層の剥離割合が、長さ30mmのうち、60%以上、80%未満であった。
  1点:試験片の有機樹脂層の剥離割合が、長さ30mmのうち、80%以上であった。
<クロスカット耐食性の評価>
 表面処理基材の片面に樹脂を塗布することで得た有機樹脂被覆基材について、以下のようにしてクロスカット耐食性の評価を行った。すなわち、まず、有機樹脂被覆基材に、基材まで達する深さのクロスカット傷をつけて、クロスカットの交点部分が張出し加工部の頂点になるように、エリクセン試験機(コーティングテスター社製)により高さ3mmの張出し加工を行った。その後、張出し面をモデル液(クエン酸及び食塩をそれぞれ1.5重量%で溶解させた水溶液)に、温度70℃の環境下で70時間浸漬し、張出し加工部における腐食の程度を目視にて観察し、以下の基準にて、1~5点の範囲で評価した。なお、クロスカット耐食性の評価は、後述する比較例3を基準(3点)として評価を行い、後述するすべての実施例及び比較例のうち、実施例10~15及び比較例3~6についてのみ行った。
  5点:試験片の張出し加工部における腐食の程度が、比較例3より小さかった。
  4点:試験片の張出し加工部における腐食の程度が、比較例3よりわずかに小さかった。
  3点:試験片の張出し加工部における腐食の程度が、比較例3と同等であった。
  2点:試験片の張出し加工部における腐食の程度が、比較例3よりわずかに大きかった。
  1点:試験片の張出し加工部における腐食の程度が、比較例3より大きかった。
<耐硫化黒変性の評価>
 表面処理基材の片面に樹脂を塗布することで得た有機樹脂被覆基材について、以下のようにして耐硫化黒変性の評価を行った。すなわち、まず、有機樹脂被覆基材を、4cm角の大きさに切断し、端面を耐酸性テープにて被覆して試験片を作製した。次いで、缶容器(東洋製罐社製、J280TULC)を準備し、準備した缶容器に、作製した試験片を入れ、試験片全体が浸漬するように鮭水煮を充填し、巻締めた後、125℃、30分間の条件にてレトルト処理を行った。その後、37℃環境下で6ヶ月間保管し、開缶後の試験片の黒変の程度を目視にて観察し、以下の基準にて、1~5点の範囲で評価した。なお、耐硫化黒変性の評価は、後述する比較例3を基準(3点)として評価を行い、後述するすべての実施例及び比較例のうち、実施例10,11,15及び比較例3~6についてのみ行った。
  5点:試験片の黒変の程度が、比較例3より小さかった。
  4点:試験片の黒変の程度が、比較例3よりわずかに小さかった。
  3点:試験片の黒変の程度が、比較例3と同等であった。
  2点:試験片の黒変の程度が、比較例3よりわずかに大きかった。
  1点:試験片の黒変の程度が、比較例3より大きかった。
《実施例1》
 基材として、低炭素冷延鋼板(厚さ0.225mm、幅200mm)を準備した。
 次いで、準備した基材を、アルカリ電解脱脂により脱脂し、硫酸水溶液に浸漬させることで酸洗した。その後、下記条件にて、基材を電解処理液に浸漬させて陰極電解処理を行うことにより、基材の両面にアルミニウム酸素化合物皮膜を形成して皮膜形成基材を得た。
 電解処理液:アルミニウム化合物として硝酸アルミニウムを、フッ化物としてフッ化ナトリウムをそれぞれ溶解させて得た、アルミニウムイオン濃度2,000重量ppm、フッ化物イオン濃度2,500重量ppmの水溶液
 電解処理液のpH:3.0
 電解処理液の温度:40℃
 電流密度:4A/dm
 トータル通電時間:0.45秒(0.15秒通電、0.5秒通電停止のサイクルを3回繰り返した際の合計の通電時間)
 そして、得られた皮膜形成基材を、下記条件にて、処理液に浸漬させることでアルカリ処理し、その後、水洗及び乾燥させることで、表面処理基材を得た。
 処理液:炭酸水素ナトリウム水溶液
 処理液のpH:8
 処理液の温度:40℃
 浸漬時間:1秒
 次いで、得られた表面処理基材について、上述した方法に従って、アルミニウム酸素化合物皮膜中のアルミニウム量の測定を行った。結果を表1に示す。
 そして、得られた表面処理基材を250℃に加熱し、表面処理基材の一方の面上に、ラミネートロールを用いて、イソフタル酸を15mol%共重合化してなる無配向のポリエチレンテレフタレート(PET)フィルム(厚さ20μm)を熱圧着し、直ちに水冷することにより、有機樹脂層を形成した。これにより、本実施例においては、表面処理基材の一方の面のみに有機樹脂層が形成され、もう一方の面はアルミニウム酸素化合物皮膜が露出した有機樹脂被覆基材を得た。次いで、このようにして得られた有機樹脂被覆基材について、上述した方法にしたがって、レトルト密着性の評価を行った。結果を表1に示す。
《実施例2~7》
 実施例1と同じ低炭素冷延鋼板上にアルミニウム酸素化合物皮膜を形成してなる皮膜形成基材を、処理液に浸漬させる際において、処理液の種類、pH、温度及び浸漬時間を表1に示すように変更した以外は、実施例1と同様にして表面処理基材及び有機樹脂被覆基材を作製し、同様に評価を行った。なお、実施例7においては、上述した方法にしたがって、アルミニウム酸素化合物皮膜中のF/Al割合の算出も行った。結果を表1に示す。
《実施例8》
 実施例1と同じ低炭素冷延鋼板上にアルミニウム酸素化合物皮膜を形成する際において、アルミニウム酸素化合物皮膜を形成するための陰極電解処理時のトータル通電時間を0.16秒(0.08秒通電、0.5秒通電停止のサイクルを2回繰り返した際の合計の通電時間)とし、さらに、皮膜形成基材を処理液に浸漬させる際において、処理液の種類及びpHを表1に示すように変更した以外は、実施例1と同様にして表面処理基材及び有機樹脂被覆基材を作製し、同様に評価を行った。結果を表1に示す。
《実施例9》
 実施例1と同じ低炭素冷延鋼板上にアルミニウム酸素化合物皮膜を形成してなる皮膜形成基材を処理液に浸漬させる際において、処理液の種類、pH、温度及び浸漬時間を表1に示すように変更した以外は、実施例1と同様にして表面処理基材及び有機樹脂被覆基材を作製し、同様に評価を行った。結果を表1に示す。
《比較例1,2》
 実施例1と同じ低炭素冷延鋼板上にアルミニウム酸素化合物皮膜を形成してなる皮膜形成基材を処理液に浸漬させる際において、処理液としてpH7の水を用いて、温度、及び浸漬時間を表1に示すようにした以外は、実施例1と同様にして表面処理基材及び有機樹脂被覆基材を作製し、同様に評価を行った。なお、比較例1,2においては、上述した方法にしたがって、アルミニウム酸素化合物皮膜中のF/Al割合の算出も行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、皮膜形成基材にアルカリ処理を施した実施例1~9においては、得られた有機樹脂被覆基材は、レトルト密着性の評価結果が良好であり、有機樹脂層の密着性に優れていることが確認された。中でも、アルカリ処理に用いた処理液のpHを8~11とした比較例1~8は、レトルト密着性の評価結果がより良好であり、有機樹脂層の密着性が、特に優れていることが確認された。なお、図1(A)、図1(B)に、実施例7、比較例1にて作製した皮膜形成基材及び表面処理基材の断面写真を示す。また、図2(A)、図2(B)に、実施例7、比較例1にて作製した皮膜形成基材及び表面処理基材について、X線光電子分光装置により測定した各元素の原子濃度の測定結果を示す。
 一方、表1に示すように、皮膜形成基材にアルカリ処理を施さなかった(すなわち、皮膜形成基材を浸漬させる溶液をpH7の水とした)比較例1,2においては、得られた有機樹脂被覆基材は、いずれも、レトルト密着性の評価結果が悪く、有機樹脂層の密着性に劣ることが確認された。
《実施例10》
 基材として、鋼板上に錫めっき層を形成した後、錫めっき層を加熱溶融させる処理を行うことで得られた錫めっき鋼板(厚さ0.225mm、幅200mm、錫めっき層の錫量2.8g/m)を準備した。
 次いで、下記条件にて、基材を電解処理液に浸漬させて陰極電解処理を行うことにより、基材の両面にアルミニウム酸素化合物皮膜を形成して皮膜形成基材を得た。
 電解処理液:アルミニウム化合物として硝酸アルミニウムを、フッ化物としてフッ化ナトリウムをそれぞれ溶解させて得た、アルミニウムイオン濃度2,000重量ppm、フッ化物イオン濃度2,500重量ppmの水溶液
 電解処理液のpH:3.0
 電解処理液の温度:40℃
 電流密度:4A/dm
 トータル通電時間:0.2秒(0.2秒通電を1回行った)
 そして、得られた皮膜形成基材を、下記条件にて、処理液に浸漬させることでアルカリ処理し、その後、水洗及び乾燥させることで、表面処理基材を得た。
 処理液:アンモニア水溶液
 処理液のpH:10.5
 処理液の温度:40℃
 浸漬時間:1秒
 次いで、得られた表面処理基材について、上述した方法に従って、アルミニウム酸素化合物皮膜中のアルミニウム量の測定を行った。結果を表1に示す。
 そして、得られた表面処理基材の片面にエポキシ-フェノール樹脂を塗布した後、温度200℃、10分間の条件にて焼付けを行うことにより有機樹脂層を形成し、有機樹脂被覆基材を得た。なお、エポキシ-フェノール樹脂の塗布量は焼付け後の重量で70mg/mとした。このようにして得られた有機樹脂被覆基材について、上述した方法にしたがって、クロスカット耐食性の評価、及び耐硫化黒変性の評価を行った。結果を表2に示す。
《実施例11~14》
 実施例1と同じ低炭素冷延鋼板上にアルミニウム酸素化合物皮膜を形成する際において、アルミニウム酸素化合物皮膜を形成するための陰極電解処理時のトータル通電時間を0.4秒(0.2秒通電、0.5秒通電停止のサイクルを2回繰り返した際の合計の通電時間)とし、さらに、皮膜形成基材を処理液に浸漬させる際において、処理液の種類、pH及び温度を表2に示すように変更した以外は、実施例10と同様にして表面処理基材及び有機樹脂被覆基材を作製し、同様に評価を行った。なお、耐硫化黒変性の評価は、実施例11についてのみ行った。また、実施例12においては、上述した方法にしたがって、アルミニウム酸素化合物皮膜中のF/Al割合の算出も行った。結果を表2に示す。
《実施例15》
 錫めっき鋼板上にアルミニウム酸素化合物皮膜を形成するための陰極電解処理を施す前に、錫めっき鋼板を炭酸ナトリウムに浸漬させて陰極電解処理を行うことで酸化皮膜を除去する清浄化処理を行った以外は、実施例10と同様にして表面処理基材及び有機樹脂被覆基材を作製し、同様に評価を行った。結果を表2に示す。
《比較例3~6》
 実施例1と同じ低炭素冷延鋼板上にアルミニウム酸素化合物皮膜を形成する際において、アルミニウム酸素化合物皮膜を形成するための陰極電解処理時のトータル通電時間を表2に示すように変更し、皮膜形成基材を処理液に浸漬させる際において、処理液としてpH7の水を用いて、温度を表2に示すようにした以外は、実施例10と同様にして表面処理基材及び有機樹脂被覆基材を作製し、同様に評価を行った。なお、比較例4,6においては、上述した方法にしたがって、アルミ酸素化合物皮膜中のF/Al割合の算出も行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、皮膜形成基材にアルカリ処理を施した実施例10~15においては、得られた有機樹脂被覆基材は、クロスカット耐食性の評価、及び耐硫化黒変性の評価の結果が良好であり、耐食性に優れるとともに、硫化黒変を有効に防止することができるものであることが確認された。
 一方、表2に示すように、皮膜形成基材にアルカリ処理を施さなかった(すなわち、皮膜形成基材を浸漬させる溶液をpH7の水とした)比較例3~6においては、得られた有機樹脂被覆基材は、クロスカット耐食性の評価、及び耐硫化黒変性の評価の結果が悪く、耐食性に劣るとともに、硫化黒変が発生してしまうことが確認された。

Claims (7)

  1.  基材上に、アルミニウム及びフッ素を含有する金属酸素化合物皮膜を形成することで皮膜形成基材を得る皮膜形成工程と、
     前記皮膜形成基材を、アルカリ水溶液に接触させるアルカリ処理工程と、を有することを特徴とする表面処理基材の製造方法。
  2.  前記アルカリ水溶液は、pH8~11のアルカリ水溶液であることを特徴とする請求項1に記載の表面処理基材の製造方法。
  3.  前記アルカリ処理は、前記皮膜形成基材を、温度30~60℃のアルカリ水溶液に浸漬させる処理であることを特徴とする請求項1又は2に記載の表面処理基材の製造方法。
  4.  前記アルカリ処理は、前記皮膜形成基材を、アルカリ水溶液に1秒以上浸漬させる処理であることを特徴とする請求項1~3のいずれかに記載の表面処理基材の製造方法。
  5.  前記皮膜形成工程における前記金属酸素化合物皮膜の形成を、アルミニウムイオン及びフッ化物イオンを含む電解処理液中で、前記基材に電解処理を施すことで行うことを特徴とする請求項1~4のいずれかに記載の表面処理基材の製造方法。
  6.  前記基材が、鋼板上に錫めっき層を形成してなる錫めっき鋼板、鋼板上にニッケルめっき層を形成してなるニッケルめっき鋼板、又は錫、ニッケル、鉄のうち少なくとも2種からなる合金層を形成してなる合金被覆鋼板であり、前記皮膜形成工程における該基材上に形成する前記金属酸素化合物皮膜を、アルミニウム量換算で1mg/m以上とすることを特徴とする請求項1~5のいずれかに記載の表面処理基材の製造方法。
  7.  前記基材が冷延鋼板であり、前記皮膜形成工程における該基材上に形成する前記金属酸素化合物皮膜を、アルミニウム量換算で15mg/m以上とすることを特徴とする請求項1~5のいずれかに記載の表面処理基材の製造方法。
PCT/JP2015/069146 2014-07-02 2015-07-02 表面処理基材の製造方法 WO2016002886A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014136477A JP6462249B2 (ja) 2014-07-02 2014-07-02 表面処理基材の製造方法
JP2014-136477 2014-07-02

Publications (1)

Publication Number Publication Date
WO2016002886A1 true WO2016002886A1 (ja) 2016-01-07

Family

ID=55019413

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069146 WO2016002886A1 (ja) 2014-07-02 2015-07-02 表面処理基材の製造方法

Country Status (2)

Country Link
JP (1) JP6462249B2 (ja)
WO (1) WO2016002886A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023136265A1 (ja) * 2022-01-11 2023-07-20 東洋鋼鈑株式会社 表面処理アルミニウム板、樹脂被覆表面処理アルミニウム板、及び成形体

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079263A (ja) * 2007-09-26 2009-04-16 Sumitomo Metal Ind Ltd 表面処理亜鉛系めっき金属材及びその製造方法
WO2012133111A1 (ja) * 2011-03-25 2012-10-04 日本ペイント株式会社 錫めっき鋼材用表面処理剤組成物及び表面処理された錫めっき鋼材
WO2012133112A1 (ja) * 2011-03-25 2012-10-04 日本ペイント株式会社 表面処理剤組成物、表面処理鋼板の製造方法、表面処理鋼板、有機被覆表面処理鋼板、缶蓋、缶体及びシームレス缶

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079263A (ja) * 2007-09-26 2009-04-16 Sumitomo Metal Ind Ltd 表面処理亜鉛系めっき金属材及びその製造方法
WO2012133111A1 (ja) * 2011-03-25 2012-10-04 日本ペイント株式会社 錫めっき鋼材用表面処理剤組成物及び表面処理された錫めっき鋼材
WO2012133112A1 (ja) * 2011-03-25 2012-10-04 日本ペイント株式会社 表面処理剤組成物、表面処理鋼板の製造方法、表面処理鋼板、有機被覆表面処理鋼板、缶蓋、缶体及びシームレス缶

Also Published As

Publication number Publication date
JP2016014172A (ja) 2016-01-28
JP6462249B2 (ja) 2019-01-30

Similar Documents

Publication Publication Date Title
JP5015239B2 (ja) 缶用めっき鋼板及びその製造方法
JP4920800B2 (ja) 容器用鋼板の製造方法
JP5754099B2 (ja) 容器用鋼板の製造方法
TWI713833B (zh) Sn鍍敷鋼板及Sn鍍敷鋼板之製造方法
TWI633211B (zh) Sn鍍敷鋼板
TWI633210B (zh) Sn系合金鍍敷鋼板
JP5986342B1 (ja) 表面処理鋼板、金属容器及び表面処理鋼板の製造方法
JP5986343B1 (ja) 表面処理鋼板、金属容器及び表面処理鋼板の製造方法
JP6040716B2 (ja) 処理液、容器用鋼板、および、容器用鋼板の製造方法
JP6462249B2 (ja) 表面処理基材の製造方法
TW201937007A (zh) Sn鍍敷鋼板及Sn鍍敷鋼板的製造方法
JP6119931B2 (ja) 容器用鋼板及び容器用鋼板の製造方法
JP2018135570A (ja) Sn系合金めっき鋼板及びSn系合金めっき鋼板の製造方法
JP5986344B1 (ja) 表面処理鋼板の製造方法
JP6156299B2 (ja) 容器用鋼板およびその製造方法
WO2021261155A1 (ja) 表面処理鋼板、金属容器および表面処理鋼板の製造方法
JP6146402B2 (ja) 容器用鋼板
JP6135650B2 (ja) 容器用鋼板
TW202124788A (zh) Sn系鍍敷鋼板
JP6052305B2 (ja) 容器用鋼板
JP6003553B2 (ja) 処理液、容器用鋼板、および、容器用鋼板の製造方法
TW202039933A (zh) 表面處理鋼板之製造方法及表面處理鋼板
JP2010133014A (ja) 錫めっき鋼板の製造方法および錫めっき鋼板
TW201923146A (zh) 表面處理劑、具有表面處理覆膜的罐用鋁合金材料的製造方法以及用其所製的鋁合金罐體及罐蓋

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15814313

Country of ref document: EP

Kind code of ref document: A1