WO2012133111A1 - 錫めっき鋼材用表面処理剤組成物及び表面処理された錫めっき鋼材 - Google Patents

錫めっき鋼材用表面処理剤組成物及び表面処理された錫めっき鋼材 Download PDF

Info

Publication number
WO2012133111A1
WO2012133111A1 PCT/JP2012/057348 JP2012057348W WO2012133111A1 WO 2012133111 A1 WO2012133111 A1 WO 2012133111A1 JP 2012057348 W JP2012057348 W JP 2012057348W WO 2012133111 A1 WO2012133111 A1 WO 2012133111A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin
plated steel
agent composition
surface treatment
ions
Prior art date
Application number
PCT/JP2012/057348
Other languages
English (en)
French (fr)
Inventor
美和 内川
真彦 松川
富夫 平野
Original Assignee
日本ペイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ペイント株式会社 filed Critical 日本ペイント株式会社
Priority to US14/006,843 priority Critical patent/US20140377581A1/en
Priority to CN201280014674.6A priority patent/CN103620092B/zh
Priority to EP12762849.3A priority patent/EP2690201A4/en
Priority to JP2013507460A priority patent/JP5894576B2/ja
Publication of WO2012133111A1 publication Critical patent/WO2012133111A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals
    • C25D3/44Aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/10Anti-corrosive paints containing metal dust
    • C09D5/103Anti-corrosive paints containing metal dust containing Al
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D131/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid, or of a haloformic acid; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4407Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications with polymers obtained by polymerisation reactions involving only carbon-to-carbon unsaturated bonds
    • C09D5/4411Homopolymers or copolymers of acrylates or methacrylates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • C25D5/505After-treatment of electroplated surfaces by heat-treatment of electroplated tin coatings, e.g. by melting
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes
    • C25D9/10Electrolytic coating other than with metals with inorganic materials by cathodic processes on iron or steel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component

Definitions

  • the present invention relates to a surface treatment agent composition for tin-plated steel materials, and more specifically, a tin-plated steel material capable of imparting blackening resistance to the steel material by being used when electrolytically treating the tin-plated steel material.
  • the present invention relates to a surface treatment agent composition.
  • chromate treatment is known as a treatment for improving the adhesion to an organic film such as a coating film while imparting corrosion resistance to a steel material or a plated steel material.
  • Chromate treatment is widely used in the fields of home appliances, building materials, vehicles, aircraft, containers, etc. due to its excellent corrosion resistance and adhesion to organic films.
  • a metal container such as a beverage can as a use of tin or tin-based alloy plated steel material, but as a surface treatment for the metal container, cathodic electrolytic treatment of tin or tin-based alloy plated steel material in an aqueous solution of sodium dichromate Chromate treatment is performed.
  • the chromate-treated surface exhibits excellent adhesion to the organic resin coating, which is extremely useful for forming a barrier layer such as a coating film or a laminate on the surface of the metal container.
  • hexavalent chromium used for chromate treatment is toxic and has a heavy impact on the environment.
  • the final product is treated so that no hexavalent chromium remains, and there is no problem in using the product.
  • the drainage, exhaust treatment, disposal treatment, etc. caused by the chromate treatment require a large amount of money
  • we will omit the chromate treatment applied to tin or tin-based alloy plated steel materials There is a movement. Therefore, development of a non-chromium surface treatment as an alternative to chromate treatment is required.
  • Patent Document 1 proposes an immersion treatment using a treatment liquid containing zirconium or titanium.
  • a film made of an oxide of zirconium or titanium is formed on the surface of the steel material.
  • the steel material surface-treated by immersion treatment in a treatment solution containing zirconium or titanium is inferior in corrosion resistance of the formed film, and compared with electrolytic chromic acid treatment conventionally used for metal containers, Since film deposition was slow, there was a problem that productivity was remarkably inferior.
  • a zirconium and / or titanium treatment using cathodic electrolysis has also been proposed as a high-speed treatment process replacing the immersion treatment (see, for example, Patent Documents 2 and 3).
  • a surface-treated metal plate in which a treatment liquid containing aluminum as a film forming component is used to form a corrosion-resistant aluminum oxide film on the surface of a steel material by cathodic electrolysis (for example, a patent). (Ref. 4).
  • tin ions are eluted from the tin-plated steel material that is the substrate to be treated during the treatment.
  • tin ions are contained in the treatment bath.
  • tin ions in the treatment bath are taken into the formed film and adhere to the surface of the film, so that the sulfur content contained in the food or drink contained in the substrate to be treated that becomes the container.
  • the present invention has been made in view of the above situation, and in an electrolytic surface treatment for a tin-plated steel material, a film excellent in blackening resistance and yellowing resistance can be obtained by being excellent in removability of tin ions in a treatment bath. It is an object of the present invention to provide a surface treatment agent composition containing aluminum as a film forming component.
  • the present inventors have used a surface treatment composition containing aluminum ions as a film-forming component and further containing a polycarboxylic acid.
  • the polycarboxylic acid reacts selectively with the tin ions to precipitate it, and it is found that the concentration of tin ions in the treatment bath can be maintained so as not to adversely affect the properties of the film. It came to complete.
  • the present invention is a surface treating agent composition for tin-plated steel materials that is used when electrolytically treating tin or tin-based alloy-plated steel materials and contains aluminum ions, fluorine ions, and polycarboxylic acids.
  • the polycarboxylic acid is preferably a homopolymer having a monomer selected from acrylic acid, methacrylic acid, maleic acid and itaconic acid, or a copolymer containing at least one of these monomers as a structural unit.
  • the ratio [C group] / [Al] of the molar concentration [C group] of the carboxyl group contained in the polycarboxylic acid to the molar concentration [Al] of the aluminum ion is 0.005 to 2.0. Is preferred.
  • the ratio [F] / [Al] of the fluorine ion molar concentration [F] to the aluminum ion molar concentration [Al] is preferably 1 to 4.
  • the mass concentration of the aluminum ions is preferably 100 ppm to 10,000 ppm.
  • the pH of the surface treatment solution for tin-plated steel material at 25 ° C. is preferably 1 to 5.
  • the mass concentration of tin ions contained in the surface treatment solution for tin-plated steel is 500 ppm or less.
  • the present invention is a tin-plated steel material surface-treated with the above-described surface-treating agent composition for tin-plated steel material.
  • aluminum is used as a film-forming component, which forms a film excellent in blackening resistance and yellowing resistance by excellent removal of tin ions in a processing bath.
  • a surface treating agent composition is provided.
  • the surface treatment agent composition for tin-plated steel material of the present invention (hereinafter also simply referred to as “surface treatment agent composition”) is used when electrolytically treating tin or tin-based alloy-plated steel material, Contains fluoride ions and polycarboxylic acids.
  • tin-plated steel material which is the treatment target of the surface treatment agent composition, has been subjected to tin or tin-based alloy plating on the surface. It is a steel material.
  • the amount of tin or tin-based plating formed on the surface of the steel material is not particularly limited.
  • Tin-based alloys used for the production of tin-based alloy-plated steel materials include tin-silicon alloys, tin-silver alloys, tin-indium alloys, tin-copper alloys, tin-aluminum alloys, tin-germanium alloys, etc. Although illustrated, it is not particularly limited.
  • the tin-plated steel material to be treated is immersed in the surface treatment agent composition and subjected to an electrolytic surface treatment.
  • the tin-plated steel material is immersed in a treatment bath containing the surface treatment agent composition, and a negative charge is applied to become a cathode (cathode).
  • an anode (anode) to which a positive charge is applied is provided as a counter electrode of the tin-plated steel material to be treated.
  • the later-described aluminum ions or aluminum complexes contained in the surface treatment agent composition can no longer maintain a dissolved state, resulting in an aluminum compound film, Precipitates on the surface.
  • This deposited film imparts blackening resistance to the object to be treated.
  • the amount of electricity applied between the anode and the cathode is not particularly limited, but when the current density is 1 to 10 A / dm 2 and the energization time is 0.15 seconds and the stop time is 0.50 seconds, one cycle is 1
  • the cycle is preferably ⁇ 24 cycles, more preferably 1 to 10 cycles.
  • washing with water or washing with pure water may be performed with warm water or hot water, and depending on the application, the characteristics of the film may be further improved by reducing excess fluorine in the film.
  • the chemical species used for pH adjustment is not limited.
  • the surface treatment agent composition is preferably an aqueous solution, but may contain an aqueous solvent such as alcohol or ketone in order to dissolve various components. Next, each component contained in the surface treatment agent composition will be described.
  • the surface treatment agent composition contains aluminum ions. As described above, this aluminum ion becomes a film forming component in the electrolytic surface treatment, and in the surface treatment composition, a compound with components such as nitrate ion, fluorine ion, sulfate ion, and various ligands described later. (Complex) is also present (hereinafter, aluminum ions and their compounds (complexes) are collectively referred to as “aluminum ions”). By undergoing electrolytic surface treatment, the aluminum ions are deposited as a composition containing aluminum oxide or aluminum hydroxide as a main component on the surface of the tin-plated steel material to form a film. This coating imparts blackening resistance to the tinned steel material.
  • the aluminum ion content in the surface treating agent composition is preferably 100 ppm to 10,000 ppm. It is preferable that the content of aluminum ions in the surface treatment agent composition is 100 ppm or more, so that a film having sufficient blackening resistance can be formed on the surface of the tin-plated steel material, and is preferably 10,000 ppm or less. Thus, good solubility of aluminum ions in the surface treating agent composition can be maintained, and a uniform film can be formed on the surface of the tin-plated steel material.
  • the content of aluminum ions in the surface treating agent composition is more preferably 1000 ppm to 5000 ppm, and most preferably 1500 ppm to 3000 ppm, in terms of aluminum metal.
  • Aluminum ion sources include aluminates such as sodium aluminate, fluoroaluminums such as sodium fluoroaluminate, aluminum hydroxide, aluminum fluoride, aluminum oxide, aluminum sulfate, aluminum nitrate, aluminum silicate, potassium aluminum sulfate, and phosphoric acid. Examples thereof include aluminum dihydrogen and aluminum lactate. These aluminum ion sources can be used alone or in combination of two or more. As the aluminum ion source, aluminum nitrate is preferable.
  • the surface treatment agent composition contains fluorine ions. Fluorine ions coordinate with aluminum ions, which are film-forming components, solubilize them, and make the surface treatment agent composition contain a sufficient amount of aluminum ions and make the surface treatment agent composition a uniform solution. This contributes to improving the uniformity of the film formed.
  • Fluorine ion sources include hydrofluoric acid, sodium fluoride, ammonium fluoride, ammonium hydrogen fluoride, sodium hydrogen fluoride (HF / NaF), various fluoride salts such as potassium fluoride, and aluminum ion sources As mentioned above, it may be fluoroaluminum, aluminum fluoride, or the like. These fluorine ion sources can be used alone or in combination of two or more. As the fluoride ion source, sodium fluoride and / or ammonium fluoride is preferable.
  • fluorine ions solubilize aluminum ions by complex formation to make the surface treatment composition uniform and improve the uniformity of the film formed on the surface of the tin-plated steel material.
  • [F] / [Al] which is the ratio of the molar concentration [F] of fluorine ions to the molar concentration [Al] of aluminum ions contained in the surface treating agent composition, is 1 to 4. Is preferred. [F] / [Al] is preferably 1 or more, because aluminum ions are sufficiently solubilized in the surface treatment agent composition and the uniformity of the film formed on the surface of the tin-plated steel material is improved.
  • [F] / [Al] is more preferably 1.5 to 3.0, and most preferably 1.9 to 2.6.
  • the aluminum ion concentration and the fluorine ion concentration are respectively a metal-concentrated aluminum mass concentration and a fluorine-concentrated mass concentration.
  • the molar ratio [F] / [Al] of fluorine to aluminum ions is calculated after obtaining the molar concentration (mmol / L) of aluminum ions and fluorine from these mass concentrations (ppm).
  • the concentration of aluminum ions can be measured by ICP (inductively coupled plasma emission spectrometer), and the concentration of fluorine ions can be measured by ion chromatography.
  • the surface treatment agent composition contains a polycarboxylic acid.
  • tin ions are eluted from the tin-plated steel material to be treated into the treatment bath, but the tin ions are taken into the film formed on the surface of the tin-plated steel material. This leads to a decrease in blackening resistance and yellowing resistance of the film.
  • the inventors of the present invention have added polycarboxylic acid to the surface treatment agent composition, and this polycarboxylic acid captures tin ions eluted in the treatment bath.
  • the concentration of tin ions in the treatment bath is suppressed to 500 ppm or less, more preferably less than 300 ppm, and particularly preferably less than 50 ppm, which does not affect the properties of the film, while a film of aluminum ions or the like is suppressed. It was found that almost no forming components were captured and the film formation was not affected.
  • This invention is completed based on such knowledge, and the surface treating agent composition of this invention contains polycarboxylic acid. When removing tin ions from the treatment bath using polycarboxylic acid, it is not necessary to raise the pH of the treatment bath, so that tin ions can be formed without substantially precipitating film forming components such as aluminum ions contained in the treatment bath.
  • the treatment bath can be stably maintained, which contributes to improvement of long-term continuous productivity.
  • iron ions derived from steel materials may elute from tin-plated steel materials. In that case, the eluted iron ions are also a factor that reduces the blackening resistance and yellowing resistance of the film in the same manner as tin ions. Become.
  • the polycarboxylic acid can selectively remove such iron ions.
  • polycarboxylic acid has a chelating action on aluminum ions. Therefore, the polycarboxylic acid assists the dissolution of aluminum ions, which are film-forming components, in the surface treatment agent composition in the same manner as the above-described fluorine ions. Furthermore, aluminum ions form a chelate with an organic substance such as polycarboxylic acid, thereby slowing the precipitation rate on the surface of the tin-plated steel material due to the increase in pH in the electrolytic surface treatment. Thereby, precipitation of a coarse material due to local excessive precipitation on the surface of the tin-plated steel material is suppressed, and a uniform and dense film is formed on the surface of the tin-plated steel material. In addition, since aluminum ions form chelates with organic substances such as polycarboxylic acids, the change in precipitation behavior associated with pH fluctuations in the treatment bath is reduced, so that pH management of the treatment bath in continuous production is facilitated.
  • the polycarboxylic acid is preferably a polymer.
  • a homopolymer having a monomer selected from acrylic acid, methacrylic acid, maleic acid and itaconic acid as a structural unit, or a copolymer containing at least one of these monomers as a structural unit can be preferably exemplified.
  • the polycarboxylic acid is preferably polyitaconic acid and / or polyacrylic acid.
  • the copolymer When the copolymer is used as a polycarboxylic acid, a copolymer obtained by copolymerizing two or more of the above monomers may be used, or one or more of the above monomers may be copolymerized with other monomers. May be used.
  • “other monomers” include N-vinylpyrrolidone, N-vinylcarbazole, N-vinyloxazoline, N-vinyl-1,2,4-triazole, N-vinylcarbazole, N-vinylphthalimide, N-vinyl Vinyl compounds such as vinyl succinimide, N-vinyl imidazole, vinyl sulfonic acid, 2-sulfoethyl (meth) acrylate and vinyl sulfonic acid; vinyl ketones such as methyl vinyl ketone, phenyl vinyl ketone and divinyl ketone; (meth) acrylamide, N -Methylol (meth) acrylamide, N, N-dimethyl (meth) acrylamide, N, N-dibutyl (meth) acrylamide, N, N-dioctyl (meth) acrylamide, N-monobutyl (meth) acrylamide, N-monooct
  • polycarboxylic acid has a chelating effect on aluminum ions, thereby helping to dissolve aluminum ions, forming a uniform film on the surface of tin-plated steel, and facilitating management of surface treatment in continuous production There is an effect such as. And such a chelate effect is brought about by the carboxyl group contained in polycarboxylic acid. From such a viewpoint, the ratio [C group] / [Al] of the molar concentration [C group] of the carboxyl group contained in the polycarboxylic acid to the molar concentration [Al] of the aluminum ion contained in the surface treating agent composition is A predetermined range is preferable.
  • Such [C group] / [Al] is preferably 0.005 to 2.0, more preferably 0.01 to 1.0, and 0.02 to 0. .5 is most preferably exemplified.
  • the concentration of aluminum ions is the mass concentration of aluminum in terms of metal.
  • the molar ratio [C group] / [Al] of the carboxyl group contained in the polycarboxylic acid to the aluminum ion is the molar concentration of the carboxyl group contained in the aluminum ion and the polycarboxylic acid from these mass concentrations (ppm). Calculated after obtaining (mmol / L).
  • Aluminum ingredients In addition to the aluminum ions, fluorine ions, and polycarboxylic acids, other components may be added to the surface treating agent composition in order to improve various required characteristics. Examples of such components include antibacterial agents, surfactants, chelating agents, rust inhibitors, and the like.
  • Antibacterial agents include alcohols such as ethanol and isopropanol; guanidine group-containing compounds such as polyhexamethylenebiguanidine hydrochloride; benzimidazole compounds such as 2- (4-thiazolyl) benzimidazole and methyl-2-benzimidazole carbamate Phthalimide compounds such as N- (trichloromethylthio) tetrahydrophthalimide and N- (fluorochloromethylthio) phthalimide; phenol compounds such as p-chloro-m-xylenol and p-chloro-m-cresol; 2, 4, 5 Nitrile compounds such as 1,6-tetrachloroisophthalonitrile, 1,2-dibromo-2,4-dicyanobutane; (2-pyridylthio-1-oxide) sodium, bis (2-pyridylthio-1-oxide) zinc, etc.
  • alcohols such as ethanol and isopropanol
  • Pyridine compounds Isothiazolone compounds such as 2-methyl-4-isothiazolin-3-one and 5-chloro-2-methyl-4-isothiazolin-3-one; quaternary ammonium salts such as benzalkonium chloride and benzethonium chloride; benzoic acid, Examples thereof include ethyl p-oxybenzoate, sorbic acid, potassium sorbate, sodium dehydroacetate, sodium propionate and the like.
  • These antibacterial agents can be used alone or in combination of two or more.
  • the concentration of the antibacterial agent in the surface treatment composition may be set as appropriate according to the required characteristics, and may be, for example, 50 to 10,000 ppm.
  • the surfactant is not particularly limited, and known nonionic surfactants, cationic surfactants, and / or anionic surfactants can be used. These surfactants can be used alone or in combination of two or more.
  • the concentration of the surfactant in the surface treating agent composition may be appropriately set according to the required characteristics, and for example, it may be 50 to 10,000 ppm.
  • the chelating agent is added to maintain a stable dissolved state of aluminum ions like the above-described fluorine ions and polycarboxylic acids.
  • the chelating agent also acts as a scavenger for impurities mixed in the treatment bath. It does not specifically limit as a chelating agent, Citric acid, gluconic acid, malonic acid, succinic acid, tartaric acid, phosphonic acid, ethylenediaminetetraacetic acid etc. can be illustrated. These chelating agents can be used alone or in combination of two or more.
  • the concentration of the chelating agent in the surface treatment agent composition may be appropriately set according to the required characteristics, and for example, it may be 50 to 10,000 ppm.
  • the anticorrosive agent is not particularly limited, and tannic acid, imidazoles, triazines, guanines, hydrazines, biguanides, silane coupling agents, colloidal silica, amines, phenolic water-soluble organic compounds including phenol resins, etc. Can be illustrated.
  • These rust inhibitors can be used alone or in combination of two or more.
  • the concentration of the rust inhibitor in the surface treatment agent composition may be set as appropriate according to the required properties, and may be, for example, 10 to 10,000 ppm.
  • the surface treating agent composition is prepared by dissolving each of the above components in water and stirring uniformly. It does not specifically limit as water which dissolves said each component, A tap water, well water, industrial water, ion-exchange water etc. can be illustrated.
  • a known aqueous solvent can be added to the water in order to help the dissolution of the above components. Examples of such aqueous solvents include methanol, ethanol, isopropanol, methyl ethyl ketone, and the like.
  • the surface treating agent composition is electrolyzed when the surface to be treated is subjected to electrolytic surface treatment.
  • the surface treating agent composition needs to have a certain electric conductivity.
  • the electric conductivity at 20 ° C. is 10 to 60 mS / cm.
  • a method for adjusting the electrical conductivity of the surface treatment agent composition a method of adding a salt to the surface treatment agent composition can be mentioned.
  • a salt examples include sodium nitrate, sodium sulfate, ammonium nitrate, ammonium sulfate, lithium nitrate and the like, but are not particularly limited.
  • the amount of the salt to be added is not particularly limited, and may be determined by appropriately adjusting the electrical conductivity of the surface treating agent composition to a desired value.
  • the pH of the surface treating agent composition at 25 ° C. is preferably 1-5.
  • the pH of the surface treatment agent is 1 or more, excessive etching of the tin-plated steel material as the base material is suppressed, and a film having good characteristics can be formed on the surface of the base material.
  • the pH of the surface treatment agent is 5 or less, the solubility of aluminum ions is maintained, and a sufficient amount of aluminum ions can be contained in the surface treatment agent to form a film having good characteristics. it can.
  • the pH of the surface treating agent composition is more preferably 2.5 to 3.6.
  • an acidic or basic compound may be added to the surface treatment agent.
  • examples of such compounds include hydrochloric acid, sulfuric acid, nitric acid, sodium hydroxide, aqueous ammonia, amino alcohols such as triethanolamine and dimethylethanolamine, and potassium hydroxide, but are not particularly limited.
  • the amount of these compounds to be added is not particularly limited, and may be determined by appropriately adjusting the pH of the surface treatment agent composition to a desired value.
  • the tin-plated steel material is subjected to electrolytic surface treatment using the surface treating agent composition of the present invention, tin ions eluted from the tin-plated steel material are precipitated and removed from the treatment bath. Therefore, the mass concentration of tin ions in the treatment bath is suppressed to 500 ppm or less, and the film formed on the surface of the tin-plated steel material is excellent in blackening resistance and yellowing over time is suppressed.
  • the tin plating steel material surface-treated with the said surface treating agent composition for tin plating steel materials is also one of this invention.
  • this tin-plated steel material has a film of an aluminum compound formed on the surface thereof, and has good blackening resistance and yellowing resistance.
  • [Surface treatment composition] Polyitaconic acid (manufactured by Iwata Chemical Industry Co., Ltd., trade name PIA-728, molecular weight of about 3000) so that the concentrations of aluminum ion, polycarboxylic acid and fluorine are respectively aqueous solutions having mass concentrations (ppm) shown in Table 1.
  • polyacrylic acid manufactured by Nippon Shokubai Co., Ltd., trade name Aqualic HL-415, molecular weight 10,000
  • aluminum nitrate Al (NO 3) 3 ⁇ 9H 2 O and the sodium fluoride NaF blended with tap water, dissolved
  • the pH-adjusted surface treating agent compositions of Examples 1 to 16 and Comparative Examples 1 to 4 were prepared.
  • polyitaconic acid and polyacrylic acid are used as polycarboxylic acid, and in each of Examples and Comparative Examples except Example 11, polyitaconic acid is used as polycarboxylic acid, and only Example 11 is polyacrylic acid as polycarboxylic acid. It was used. That is, the surface treatment agent composition of Example 11 is the same as the surface treatment agent composition of Example 1 except that polyacrylic acid was used as the polycarboxylic acid instead of polyitaconic acid.
  • Aluminum nitrate and sodium fluoride are used as an aluminum ion source and a fluorine source, respectively, and the aluminum concentration and the fluorine concentration shown in Table 1 are a metal-concentrated aluminum mass concentration and a fluorine-concentrated mass concentration, respectively. .
  • the mass concentration (ppm) of each of the above components the molar concentration (mmol / L) of the carboxyl groups contained in the aluminum ions, fluorine, and polycarboxylic acid
  • the molar ratio [C group] / [Al] of the carboxyl groups contained in the polycarboxylic acid to the aluminum ions was calculated and shown in Table 1.
  • the concentration of the carboxyl group contained in the polycarboxylic acid can be calculated by, for example, polyitaconic acid by mass concentration of polyitaconic acid (ppm) / (1/2 of the molecular weight of itaconic acid as a structural unit).
  • generated deposit originates in the tin ion contained in the processing bath.
  • tin ions with a bulk height of 0.5 mm or more were removed (O), and those with a bulk height of 0.5 mm or less were made impossible to remove tin ions.
  • the results are shown in Table 2.
  • the pH shown in Table 2 was at 25 ° C., and nitric acid and aqueous ammonia were used for pH adjustment.
  • those having a supernatant concentration of 300 ppm or more and 500 ppm or less are preferred, those having 50 ppm or more and less than 300 ppm are more preferred, and those having a supernatant concentration of less than 50 ppm are most preferred.
  • the surface treatment agent composition of the present invention containing polycarboxylic acid as an essential component has good tin ion removability, tin ions are added to the treatment bath during the surface treatment of the tin-plated steel material. Even if it elutes, it is understood that the eluting tin ions can be prevented from being precipitated and removed from the treatment bath and being taken into the film formed on the surface of the tin-plated steel material.
  • the surface treatment agent compositions of Comparative Examples 1 and 2 containing polycarboxylic acid also show good tin ion removal properties (Comparative Test Examples 1 and 2). Since the treatment agent composition does not contain aluminum ions or fluorine, which are essential components of the present invention, a problem arises in terms of film formation performance.
  • the supernatant concentration in all the test examples was in the range of less than 500 ppm, and in Examples 1, 2, 13, 14, 17, and 18, the supernatant concentration was less than 50 ppm.
  • a low carbon cold-rolled steel sheet (plate thickness: 0.225 mm) was degreased by dipping at 70 ° C. for 15 seconds using a 3% aqueous solution of an alkaline degreasing agent (Surf Cleaner 322N8 manufactured by Nippon Paint Co., Ltd.). The degreased steel sheet was sprayed with tap water for 30 seconds and washed with water, and then pickled with a pickling agent (5% aqueous solution of sulfuric acid) at 70 ° C. for 5 seconds.
  • an alkaline degreasing agent Sudf Cleaner 322N8 manufactured by Nippon Paint Co., Ltd.
  • a tin plating layer having a plating thickness of 2.8 g / m 2 was formed on the surface of the steel plate under the following conditions: A reflow treatment was performed after washing with water to produce a tin-plated steel sheet.
  • the obtained tin-plated steel sheet was immersed in a treatment bath (bath temperature of 45 ° C.) composed of the surface treating agent compositions of Examples 1 to 16 and Comparative Examples 1 to 4 adjusted to a predetermined pH.
  • Cathodic electrolysis electrolysis condition: current density of 4 A / dm 2 , energization time of 0.15 seconds + stop time of 0.50 seconds
  • the iridium oxide-coated titanium plate disposed at a distance of 17 mm between the electrodes as the anode 1 cycle, and the number of cycles is adjusted with 1 to 7 cycles so that the coating amount is 5 to 10 mg / m 2 as aluminum by fluorescent X-ray measurement).
  • washing with running water, pure water washing and drying are performed.
  • Table 3 shows the surface treatment agent composition used as the treatment bath and the pH of the treatment bath.
  • pH described in Table 3 is a numerical value at 25 ° C., and nitric acid and aqueous ammonia were used to adjust the pH of the treatment bath.
  • Test Example 42 and Test Example 43 shown in Table 3 remove precipitates generated in the simulated treatment bath used in Test Example 4 or Test Example 16 (Table 2), respectively, and the precipitates are removed. The following tests were carried out using the above treatment bath as it was.
  • This Test Example 42 and Test Example 43 are for confirming the surface treatment ability in the treatment bath after precipitation removal of tin ions eluted from the tin-plated steel material, and verifying the treatment ability when the surface treatment is continuously performed. Is to do.
  • This test piece was subjected to a hot water retort treatment at 120 ° C. for 30 minutes, and then immersed in water, and pulled up from the water just before the measurement.
  • a tensile tester was used to peel in a 180 degree direction at a tensile speed of 5 mm / min to perform a peel test, and the adhesive strength was measured. The results are shown in the “Adhesiveness” column of Table 3, respectively.
  • the evaluation is that the maximum tensile strength when the test piece is peeled off by a tensile tester (Minebea, LST-200N-S100, load cell LTTU-200N) is 1N / 15 mm or better, 3N / 15 mm or better is excellent, 5N / 15 mm or more was particularly excellent.
  • a tensile tester Minebea, LST-200N-S100, load cell LTTU-200N
  • test plate prepared by the method described in “Preparation of test plate” is coated with an epoxy phenol paint so that the coating thickness after baking and drying is 70 mg / dm 2, and then baked at 200 ° C. for 20 minutes. It was. Next, the test plate was cut into 70 mm square, and the cut surface was protected with a 3 mm width tape, and then 3 mm overhang processing was performed with an Erichsen tester (manufactured by Coating Tester Co., Ltd.).
  • the overhang produced by the overhanging process was performed by using potassium dihydrogen phosphate KH 2 PO 4 of 4.5 g / L, sodium hydrogen phosphate Na 2 HPO 4 ⁇ 12H 2 O of 12 g / L, and L-cysteine hydrochloride. It was immersed in a model solution composed of an aqueous solution containing a monohydrate at a concentration of 2 g / L, and subjected to retort treatment at 115 ° C. for 60 minutes in a sealed container to evaluate resistance to sulfur blackening. The evaluation was performed by visually observing the change in appearance. The case where there was no significant change was marked as ⁇ , and the case where there was a significant change was marked as x. The results are shown in the “blackening resistance” column of Table 3, respectively.
  • the test plate prepared by the method described in “Preparation of test plate” is cut into 70 mm square, and then heated in an oven at 200 ° C. for 1 hour, and the degree of color change of the test plate before and after heating is measured by a color difference meter (Konica Minolta Sensing).
  • the yellowing resistance was evaluated by examining using a commercial name, CM-2500d).
  • the evaluation is based on the color difference before and after heating in the test plate (reference test example 1) by the chromate treatment, which will be described later, to calculate the difference between the color difference before and after heating in the test plate to be evaluated and the color difference as the reference.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

 錫めっき鋼材に対する電解表面処理において、処理浴中の錫イオンの除去性に優れることにより耐食性や耐黄変性に優れた皮膜を形成させる、アルミニウムを皮膜形成成分とした表面処理剤組成物を提供すること。 本発明の表面処理剤組成物は、錫又は錫系合金めっき鋼材を電解表面処理する際に使用され、アルミニウムイオン、フッ素イオン及びポリカルボン酸を含む錫めっき鋼材用表面処理剤組成物である。この表面処理剤組成物を使用することにより、錫めっき鋼材から溶出した錫イオンが処理浴中で沈殿除去される。

Description

錫めっき鋼材用表面処理剤組成物及び表面処理された錫めっき鋼材
 本発明は、錫めっき鋼材用表面処理剤組成物に関し、さらに詳しくは、錫めっき鋼材を電解表面処理する際に使用されることにより、その鋼材に耐黒変性を付与することのできる錫めっき鋼材用表面処理剤組成物に関する。
 鋼材やめっき鋼材に対して耐食性を付与しながら塗膜等の有機皮膜との密着性を向上させる処理として、従来からクロメート処理が知られている。クロメート処理は、その優れた耐食性と有機皮膜への密着性から、家電製品、建材、車両、航空機、容器等の分野で広く使用されている。
 例えば、錫又は錫系合金めっき鋼材の用途として飲料缶等の金属容器があるが、その金属容器に対する表面処理として、錫又は錫系合金めっき鋼材を重クロム酸ソーダの水溶液中で陰極電解処理するクロメート処理が行われている。この場合、クロメート処理された面は、有機樹脂コーティングに対する優れた密着性を発現するので、金属容器の表面に塗膜やラミネート等のバリア層を形成させる上で極めて有用である。
 しかしながら、クロメート処理に使用される6価クロムは、毒性があり、環境に対する負荷が大きい。最終製品には6価クロムが残存しない処理が行われており製品の使用に当たっての問題はないが、近年、6価クロムをはじめとして、クロムを含む化合物全体の使用を削減・撤廃しようとする動向がある。また、クロメート処理を行うことによって生じる排水、排気処理、廃棄処理等に多額の費用を必要とすることから、近年では、錫又は錫系合金めっき鋼材に対して施されていたクロメート処理を省略しようとする動きがある。そこで、クロメート処理の代替となるノンクロムの表面処理の開発が要求されている。
 鋼材におけるノンクロム系表面処理として、例えば特許文献1には、ジルコニウム又はチタンを含有する処理液を使用した浸漬処理が提案されている。この場合、鋼材の表面には、ジルコニウム又はチタンの酸化物からなる皮膜が形成される。しかしながら、ジルコニウム又はチタンを含有する処理液への浸漬処理により表面処理された鋼材は、形成された皮膜の耐食性が劣るとともに、従来、金属容器に利用されてきた電解クロム酸処理に比較して、皮膜析出が遅いために、著しく生産性が劣るという問題を有していた。このため、浸漬処理に代わる高速処理プロセスとして、陰極電解を利用したジルコニウム及び/又はチタン処理も提案されている(例えば、特許文献2及び3を参照)。
 また、皮膜形成成分としてアルミニウムを含有する処理液を使用して、鋼材の表面に、耐食性を有する酸化アルミニウムの皮膜を陰極電解処理により形成させた表面処理金属板も提案されている(例えば、特許文献4を参照)。
国際公開2002/103080号パンフレット 特開2004-190121号公報 特開2005-97712号公報 特開2006-348360号公報
 ところで、上記陰極電解を利用して処理液に含まれる金属成分の皮膜を錫めっき鋼材の表面に形成させる場合、処理中に、被処理基材である錫めっき鋼材から錫イオンが溶出することに伴って、処理浴に錫イオンが含まれるようになる。すると、形成される皮膜の中に処理浴中の錫イオンが取り込まれ、また、皮膜表面に付着してしまい、容器となった被処理基材の内部に収容された飲食品物に含まれる硫黄分が皮膜中の錫イオンと反応したり、形成された皮膜のわずかな欠陥から皮膜の内部に侵入した酸素が皮膜中の錫イオンを酸化したりすることにより、形成された皮膜に黒変や黄変といった外観異常が発生する。このため、処理中に、処理浴のpHを上昇させて錫イオンを処理浴から取り除く必要があるが、処理浴のpHを上昇させると皮膜の形成成分であるジルコニウム、チタン、又はアルミニウムも一緒に沈殿してしまうので、被処理基材から処理浴中に溶出した錫イオンを効率良く除去することができないという問題を生じる。
 本発明は、以上の状況に鑑みてなされたものであり、錫めっき鋼材に対する電解表面処理において、処理浴中の錫イオンの除去性に優れることにより耐黒変性や耐黄変性に優れた皮膜を形成させる、アルミニウムを皮膜形成成分とした表面処理剤組成物を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、皮膜形成成分としてアルミニウムイオンを含有し、さらにポリカルボン酸を含有する表面処理剤組成物を使用して錫めっき鋼材の表面処理を行うと、このポリカルボン酸が錫イオンと選択的に反応してこれを沈殿させ、処理浴中の錫イオンの濃度を皮膜の特性に悪影響を与えない程度に維持できることを見出し、本発明を完成するに至った。
 本発明は、錫又は錫系合金めっき鋼材を電解表面処理する際に使用され、アルミニウムイオン、フッ素イオン及びポリカルボン酸を含む錫めっき鋼材用表面処理剤組成物である。
 上記ポリカルボン酸は、アクリル酸、メタクリル酸、マレイン酸、イタコン酸から選択されるモノマーを構成単位とするホモポリマー、又はこれらのモノマーの少なくとも1種を構成単位として含むコポリマーであることが好ましい。
 また、上記アルミニウムイオンのモル濃度[Al]に対する上記ポリカルボン酸に含まれるカルボキシル基のモル濃度[C基]の比[C基]/[Al]は、0.005~2.0であることが好ましい。
 また、上記アルミニウムイオンのモル濃度[Al]に対する前記フッ素イオンのモル濃度[F]の比[F]/[Al]は、1~4であることが好ましい。
 また、上記アルミニウムイオンの質量濃度は、100ppm~10,000ppmであることが好ましい。
 また、上記錫めっき鋼材用表面処理液の25℃におけるpHは、1~5であることが好ましい。
 また、上記錫めっき鋼材用表面処理液に含まれる錫イオンの質量濃度は、500ppm以下であることが好ましい。
 本発明は、上記錫めっき鋼材用表面処理剤組成物により表面処理された錫めっき鋼材である。
 本発明によれば、錫めっき鋼材に対する電解表面処理において、処理浴中の錫イオンの除去性に優れることにより耐黒変性や耐黄変性に優れた皮膜を形成させる、アルミニウムを皮膜形成成分とした表面処理剤組成物が提供される。
 以下、本発明の錫めっき鋼材用表面処理剤組成物の一実施形態について説明する。本発明の錫めっき鋼材用の表面処理剤組成物(以下、単に「表面処理剤組成物」とも呼ぶ。)は、錫又は錫系合金めっき鋼材を電解表面処理する際に使用され、アルミニウムイオン、フッ素イオン及びポリカルボン酸を含む。
 表面処理剤組成物の処理対象である錫又は錫系合金めっき鋼材(以下、これらをまとめて「錫めっき鋼材」と呼ぶこともある。)は、表面に錫又は錫系合金めっきが施された鋼材である。なお、鋼材の表面に形成される錫又は錫系めっきの量は特に限定されない。また、錫系合金めっき鋼材の作製に使用される錫系合金としては、錫-ケイ素合金、錫-銀合金、錫-インジウム合金、錫-銅合金、錫-アルミニウム合金、錫-ゲルマニウム合金等が例示されるが特に限定されない。
 被処理対象である錫めっき鋼材は、表面処理剤組成物に浸漬されて電解表面処理を受ける。電解表面処理の際、錫めっき鋼材は、表面処理剤組成物が収容された処理浴中に浸漬され、負電荷を印加されて陰極(カソード)となる。一方、表面処理剤組成物の浴中には、処理される錫めっき鋼材の対向電極として正電荷の印加される陽極(アノード)が設けられる。そして、これら陽極-陰極間に電圧が印加されることにより電気分解反応が生じ、被処理対象である陰極側では、その周囲に存在する液のpHが上昇する。すると、当業者によく知られているように、表面処理剤組成物に含まれる後述のアルミニウムイオン又はアルミニウム錯体が溶解状態を維持することができなくなり、アルミニウム化合物の皮膜となって、被処理対象の表面に析出する。この析出した皮膜が、被処理対象に耐黒変性を付与する。陽極-陰極間に印加される電気量としては、特に限定されないが、1~10A/dmの電流密度で通電時間0.15秒+停止時間0.50秒を1サイクルとした場合に、1~24サイクルであることが好ましく例示され、1~10サイクルであることがより好ましく例示される。電解表面処理後に、水洗、純水洗は温水あるいは熱水で行ってもよく、用途によっては皮膜中の過剰なフッ素を少なくすることにより、皮膜の特性をさらに向上させてもよい。また、水洗に使用する水は、アルカリ側にpHを調整しても良い。pH調整に使用する化学種は限定されない。
 表面処理剤組成物は、好ましくは水溶液であるが、各種成分を溶解させるためにアルコールやケトン等の水性溶剤を含んでもよい。次に、表面処理剤組成物に含まれる各成分について説明する。
[アルミニウムイオン]
 表面処理剤組成物は、アルミニウムイオンを含む。このアルミニウムイオンは、上記のように、電解表面処理の際の皮膜形成成分となり、表面処理剤組成物中で、後述する硝酸イオン、フッ素イオン、硫酸イオン、各種配位子等の成分との化合物(錯体)としても存在している(以下、アルミニウムイオン及びこれらの化合物(錯体)を総称して「アルミニウムイオン」と呼ぶ)。電解表面処理を経ることにより、このアルミニウムイオンは、錫めっき鋼材の表面に酸化アルミニウム又は水酸化アルミニウムを主成分とする組成物として析出し、皮膜を形成させる。この皮膜が錫めっき鋼材に耐黒変性を付与する。
 表面処理剤組成物におけるアルミニウムイオンの含有量は、100ppm~10,000ppmであることが好ましい。表面処理剤組成物におけるアルミニウムイオンの含有量が、100ppm以上であることにより、十分な耐黒変性を有する皮膜を錫めっき鋼材の表面に形成させることができるので好ましく、10,000ppm以下であることにより、表面処理剤組成物におけるアルミニウムイオンの良好な溶解性を維持することができ、均一な皮膜を錫めっき鋼材の表面に形成させることができる。表面処理剤組成物におけるアルミニウムイオンの含有量は、アルミニウムの金属換算で、1000ppm~5000ppmであることがより好ましく、1500ppm~3000ppmであることが最も好ましい。
 アルミニウムイオン源としては、アルミン酸ナトリウム等のアルミン酸塩、フルオロアルミニウム酸ナトリウム等のフルオロアルミニウム、水酸化アルミニウム、フッ化アルミニウム、酸化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、珪酸アルミニウム、硫酸アルミニウムカリウム、リン酸二水素アルミニウム、乳酸アルミニウム等が挙げられる。これらのアルミニウムイオン源は、1種又は2種以上を組み合わせて使用することができる。アルミニウムイオン源としては、硝酸アルミニウムが好ましい。
[フッ素イオン]
 表面処理剤組成物は、フッ素イオンを含む。フッ素イオンは、皮膜形成成分であるアルミニウムイオンに配位してこれを可溶化し、表面処理剤組成物に十分な量のアルミニウムイオンを含有させるとともに、表面処理剤組成物を均一な溶液とすることで形成される皮膜の均一性を向上させるのに寄与する。
 フッ素イオン源としては、フッ化水素酸、フッ化ナトリウム、フッ化アンモニウム、フッ化水素アンモニウム、フッ化水素ナトリウム(HF・NaF)、フッ化カリウム等の各種フッ化物の塩の他、アルミニウムイオン源として上述したフルオロアルミニウム、フッ化アルミニウム等であってもよい。これらのフッ素イオン源は、1種又は2種以上を組み合わせて使用することができる。フッ素イオン源としては、フッ化ナトリウム及び/又はフッ化アンモニウムが好ましい。
 既に述べたように、フッ素イオンは、錯形成によりアルミニウムイオンを可溶化することで表面処理剤組成物を均一化し、錫めっき鋼材の表面に形成させる皮膜の均一性を向上させる。このような観点からは、表面処理剤組成物に含まれるアルミニウムイオンのモル濃度[Al]に対するフッ素イオンのモル濃度[F]の比である[F]/[Al]が1~4であることが好ましい。[F]/[Al]が、1以上であることにより、表面処理剤組成物においてアルミニウムイオンが十分に可溶化されて錫めっき鋼材の表面に形成される皮膜の均一性が向上するので好ましく、4以下であることにより、フッ素イオンによる錫めっき鋼材へのエッチングが過剰となるのを抑制でき、十分な耐黒変性を備えた皮膜を錫めっき鋼材の表面に形成できる。[F]/[Al]は、1.5~3.0であることがより好ましく、1.9~2.6であることが最も好ましい。なお、アルミニウムイオンの濃度及びフッ素イオンの濃度は、それぞれ金属換算のアルミニウムの質量濃度及びフッ素換算の質量濃度である。そして、アルミニウムイオンに対するフッ素のモル比[F]/[Al]は、これらの質量濃度(ppm)から、アルミニウムイオン、フッ素のモル濃度(mmol/L)を求めた上で算出される。アルミニウムイオンの濃度はICP(誘導結合プラズマ発光分析装置)により、フッ素イオンの濃度はイオンクロマトグラフにより測定できる。
[ポリカルボン酸]
表面処理剤組成物は、ポリカルボン酸を含む。上述のように、電解表面処理が行われる際に、被処理物である錫めっき鋼材から錫イオンが処理浴に溶出するが、この錫イオンが錫めっき鋼材の表面に形成される皮膜に取り込まれると、この皮膜の耐黒変性や耐黄変性が低下することにつながる。本発明者らは、これらの問題を解決するために検討を重ねた結果、ポリカルボン酸を表面処理剤組成物に添加すると、このポリカルボン酸が、処理浴中に溶出した錫イオンを捕捉して沈殿させることにより、処理浴中の錫イオンの濃度を皮膜の特性に影響を与えない500ppm以下に、より好ましくは300ppm未満に、特に好ましくは50ppm未満に抑制する一方で、アルミニウムイオン等の皮膜形成成分を殆ど捕捉せず、皮膜の形成に影響を与えないことを見出した。本発明はこのような知見に基づいて完成されたものであり、本発明の表面処理剤組成物は、ポリカルボン酸を含有する。ポリカルボン酸を用いて処理浴から錫イオンを除去する場合、処理浴のpHを上昇させる必要がないので、処理浴に含まれるアルミニウムイオン等の皮膜形成成分を殆ど沈殿させることなく、錫イオンを選択的に除去することができるので、安定して処理浴を維持することが可能となり、長期連続生産性の向上にも寄与する。また、錫めっき鋼材から錫イオンに加えて鋼材由来の鉄イオンが溶出することがあり、その場合、溶出した鉄イオンも錫イオンと同様に皮膜の耐黒変性や耐黄変性を低下させる要因となる。ポリカルボン酸は、こうした鉄イオンも選択的に除去することができる。
 また、ポリカルボン酸は、アルミニウムイオンに対するキレート作用を有する。そのため、ポリカルボン酸は、上述のフッ素イオンと同様に、表面処理剤組成物中で皮膜形成成分であるアルミニウムイオンの溶解を助ける。さらに、アルミニウムイオンは、ポリカルボン酸のような有機物とキレートを形成することにより、電解表面処理におけるpHの上昇による錫めっき鋼材表面への析出速度を緩やかなものとする。これにより、錫めっき鋼材の表面における局所的な析出過剰による粗大物の析出が抑制され、錫めっき鋼材の表面に均一で緻密な皮膜が形成される。また、アルミニウムイオンは、ポリカルボン酸のような有機物とキレートを形成することにより、処理浴のpH変動に伴う析出挙動の変化が小さくなるので、連続生産における処理浴のpH管理が容易になる。
 ポリカルボン酸としては、ポリマーであることが好ましい。このようなポリマーとしては、アクリル酸、メタクリル酸、マレイン酸、イタコン酸から選択されるモノマーを構成単位とするホモポリマー、又はこれらのモノマーの少なくとも1種を構成単位として含むコポリマーを好ましく例示できる。ポリカルボン酸としては、ポリイタコン酸及び/又はポリアクリル酸が好ましい。
 ポリカルボン酸として上記コポリマーを使用する場合、上記の各モノマーの2種以上を共重合させたものを使用してもよいし、上記の各モノマーの1種以上とその他のモノマーとを共重合させたものを使用してもよい。このような「その他のモノマー」としては、N-ビニルピロリドン、N-ビニルカルバゾール、N-ビニルオキサゾリン、N-ビニル-1,2,4-トリアゾール、N-ビニルカルバゾール、N-ビニルフタルイミド、N-ビニルコハク酸イミド、N-ビニルイミダゾール、ビニルスルホン酸、2-スルホエチル(メタ)アクリレート、ビニルスルホン酸等のビニル化合物;メチルビニルケトン、フェニルビニルケトン、ジビニルケトン等のビニルケトン類;(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、N,N-ジブチル(メタ)アクリルアミド、N,N-ジオクチル(メタ)アクリルアミド、N-モノブチル(メタ)アクリルアミド、N-モノオクチル(メタ)アクリルアミド、N-イソプロピルアクリルアミド、アクリロイルモルホリン、N,N-ジメチルアミノプロピルアクリルアミド、ジアセトンアクリルアミド、N-2-ヒドロキシエチルアクリルアミド、2-アクリルアミド-2-メチルスルホン酸等のアクリルアミド系モノマー;メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチルアクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリルメタクリレート、フェニルアクリレート、イソボルニル(メタ)アクリレート、シクロヘキシルメタクリレート、tert-ブチルシクロヘキシル(メタ)アクリレート、ジシクロペンタジエニル(メタ)アクリレート、ジヒドロジシクロペンタジエニル(メタ)アクリレート、N,N-ジメチルアミノエチルアクリレート、2-メタクリロイロキシエチルコハク酸、エチレングリコールジメタクリレート、グリセリンジメタクリレート、メトキシトリエチレングリコール-2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、メトキシポリエチレングリコールメタクリレート、メトキシポリエチレングリコールジメタクリレート等の(メタ)アクリレートエステルモノマー類;アクリロニトリル、メタクリロニトリル等の重合性ニトリル類;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、n-ブチルビニルエーテル、イソブチルビニルエーテル、tert-ブチルビニルエーテル等のアルキルビニルエーテル類;スチレン、α-メチルスチレン、tert-ブチルスチレン、パラクロロスチレン、ビニルナフタレン、p-スチレンスルホン酸等の重合性芳香族化合物;酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、トリメチル酢酸ビニル、カプロン酸ビニル、カプリル酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル等のビニルエステル類;ブタジエン、イソプレン等の共役ジエン類;エチレン、プロピレン、1-ブテン、イソブチレン、3-メチル-1-ブテン等のオレフィン類;塩化アリル、フタル酸ジアリル、アリルアルコール、アリルスルホン酸等のアリル化合物等を例示することができる。これら「その他のモノマー」は、1種又は2種以上を組み合わせて使用することができる。
 上記のように、ポリカルボン酸は、アルミニウムイオンに対するキレート効果を有することにより、アルミニウムイオンの溶解を助け、錫めっき鋼材の表面に均一な皮膜を形成させ、連続生産における表面処理の管理を容易にするといった効果を奏する。そして、このようなキレート効果は、ポリカルボン酸に含まれるカルボキシル基によってもたらされる。このような観点からは、表面処理剤組成物に含まれるアルミニウムイオンのモル濃度[Al]に対するポリカルボン酸に含まれるカルボキシル基のモル濃度[C基]の比[C基]/[Al]が所定の範囲であることが好ましい。このような[C基]/[Al]としては、0.005~2.0であることが好ましく例示され、0.01~1.0であることがより好ましく例示され、0.02~0.5であることが最も好ましく例示される。なお、アルミニウムイオンの濃度は、金属換算のアルミニウムの質量濃度である。そして、アルミニウムイオンに対するポリカルボン酸に含まれるカルボキシル基のモル比[C基]/[Al]は、これらの質量濃度(ppm)から、アルミニウムイオン、及びポリカルボン酸に含まれるカルボキシル基のモル濃度(mmol/L)を求めた上で算出される。
[その他の成分]
 表面処理剤組成物には、上記のアルミニウムイオン、フッ素イオン及びポリカルボン酸に加えて、種々の要求特性を良好なものとするために、さらにその他の成分を添加してもよい。このような成分としては、抗菌剤、界面活性剤、キレート剤、防錆剤等を例示することができる。
 抗菌剤としては、エタノール、イソプロパノール等のアルコール類;ポリヘキサメチレンビグアニジン塩酸塩等のグアニジン基含有化合物;2-(4-チアゾリル)ベンズイミダゾール、メチル-2-ベンズイミダゾールカルバメート等のベンズイミダゾール系化合物;N-(トリクロロメチルチオ)テトラヒドロフタルイミド、N-(フルオロクロロメチルチオ)フタルイミド等のフタルイミド系化合物;p-クロロ-m-キシレノール、p-クロロ-m-クレゾール等のフェノール系化合物;2,4,5,6-テトラクロロイソフタロニトリル、1,2-ジブロモ-2,4-ジシアノブタン等のニトリル系化合物;(2-ピリジルチオ-1-オキシド)ナトリウム、ビス(2-ピリジルチオ-1-オキシド)亜鉛等のピリジン系化合物;2-メチル-4-イソチアゾリン-3-オン、5-クロロ-2-メチル-4-イソチアゾリン-3-オン等のイソチアゾロン系化合物;塩化ベンザルコニウム、塩化ベンゼトニウム等の4級アンモニウム塩類;安息香酸、p-オキシ安息香酸エチル、ソルビン酸、ソルビン酸カリウム、デヒドロ酢酸ナトリウム、プロピオン酸ナトリウム等を例示することができる。これらの抗菌剤は、1種又は2種以上を組み合わせて使用することができる。表面処理剤組成物における抗菌剤の濃度としては、要求される特性に応じて適宜設定すればよいが、例えば、50~10,000ppmであることが挙げられる。
 界面活性剤としては、特に限定されず、公知のノニオン系界面活性剤、カチオン系界面活性剤、及び/又はアニオン系界面活性剤を使用することができる。これらの界面活性剤は、1種又は2種以上を組み合わせて使用することができる。表面処理剤組成物における界面活性剤の濃度としては、要求される特性に応じて適宜設定すればよいが、例えば、50~10,000ppmであることが挙げられる。
 キレート剤は、上記のフッ素イオンやポリカルボン酸のように、アルミニウムイオンの安定した溶解状態を保つために添加される。また、キレート剤は、処理浴に混入した不純物の捕捉剤としても作用する。キレート剤としては、特に限定されず、クエン酸、グルコン酸、マロン酸、コハク酸、酒石酸、ホスホン酸、エチレンジアミン四酢酸等を例示することができる。これらのキレート剤は、1種又は2種以上を組み合わせて使用することができる。表面処理剤組成物におけるキレート剤の濃度としては、要求される特性に応じて適宜設定すればよいが、例えば、50~10,000ppmであることが挙げられる。
 防錆剤としては、特に限定されず、タンニン酸、イミダゾール類、トリアジン類、グアニン類、ヒドラジン類、ビグアニド、シランカップリング剤、コロイダルシリカ、アミン類、フェノール樹脂を含むフェノール系水溶性有機化合物等を例示することができる。これらの防錆剤は、1種又は2種以上を組み合わせて使用することができる。表面処理剤組成物における防錆剤の濃度としては、要求される特性に応じて適宜設定すればよいが、例えば、10~10,000ppmであることが挙げられる。
[表面処理剤組成物の調製]
 表面処理剤組成物は、上記の各成分を水に溶解させ、均一に撹拌することにより調製される。上記の各成分を溶解させる水としては、特に限定されず、水道水、井戸水、工業用水、イオン交換水等を例示することができる。また、この水には、上記の各成分の溶解を助けるために、公知の水系溶剤を添加することもできる。このような水系溶剤としては、メタノール、エタノール、イソプロパノール、メチルエチルケトン等が挙げられる。
 既に説明したように、表面処理剤組成物は、処理対象を電解表面処理する際に電気分解される。このため、表面処理剤組成物は、一定の電気伝導度を有することが必要であり、一例として、20℃における電気伝導度が10~60mS/cmであることを好ましく例示できる。表面処理剤組成物がこのような電気伝導度を有することにより、電解表面処理を効率と電気使用量のバランスが良好となり、電解表面処理のスピードアップや使用電気量の削減が可能になる。
 表面処理剤組成物の電気伝導度を調節する方法としては、表面処理剤組成物に塩を添加する方法が挙げられる。このような塩としては、硝酸ナトリウム、硫酸ナトリウム、硝酸アンモニウム、硫酸アンモニウム、硝酸リチウム等が例示されるが特に限定されない。添加される塩の量は、特に限定されず、表面処理剤組成物の電気伝導度が所望の数値となるように適宜調節して決定すればよい。
 また、表面処理剤組成物の25℃におけるpHは、1~5であることが好ましい。表面処理剤のpHが1以上であることにより、基材である錫めっき鋼材が過剰にエッチングされるのが抑制され、基材の表面に良好な特性を有する皮膜を形成させることができる。また、表面処理剤のpHが5以下であることにより、アルミニウムイオンの溶解性が維持され、良好な特性を有する皮膜を形成させるのに十分な量のアルミニウムイオンを表面処理剤に含有させることができる。表面処理剤組成物のpHは、2.5~3.6であることがより好ましい。
 表面処理剤組成物のpHを調節するには、酸性又は塩基性の化合物を表面処理剤に添加すればよい。このような化合物としては、塩酸、硫酸、硝酸、水酸化ナトリウム、アンモニア水、トリエタノールアミンやジメチルエタノールアミン等のアミノアルコール類、水酸化カリウム等が挙げられるが特に限定されない。添加されるこれらの化合物の量は、特に限定されず、表面処理剤組成物のpHが所望の数値となるように適宜調節して決定すればよい。
 以上の通り、本発明の表面処理剤組成物を使用して錫めっき鋼材を電解表面処理すると、錫めっき鋼材から溶出した錫イオンが処理浴から沈殿除去される。そのため、処理浴における錫イオンの質量濃度が500ppm以下に抑制され、錫めっき鋼材の表面に形成された皮膜は、耐黒変性に優れ、また、経時による黄変の抑制されたものとなる。
 なお、上記錫めっき鋼材用表面処理剤組成物により表面処理された錫めっき鋼材もまた、本発明の一つである。この錫めっき鋼材は、既に述べたように、表面にアルミニウム化合物の皮膜が形成されており、良好な耐黒変性及び耐黄変性を備えるものである。
 以下、実施例を示すことにより、本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。
[表面処理剤組成物]
 アルミニウムイオン、ポリカルボン酸及びフッ素の濃度が、それぞれ表1に示す質量濃度(ppm)の水溶液となるように、ポリイタコン酸(磐田化学工業株式会社製、商品名PIA-728、分子量約3000)、ポリアクリル酸(日本触媒株式会社製、商品名アクアリックHL-415、分子量10,000)、硝酸アルミニウムAl(NO・9HO、及びフッ化ナトリウムNaFを水道水に配合し、溶解させ、実施例1~16及び比較例1~4のpH未調整の表面処理剤組成物を調製した。なお、ポリイタコン酸及びポリアクリル酸はポリカルボン酸として使用し、実施例11を除く各実施例及び各比較例ではポリカルボン酸としてポリイタコン酸を使用し、実施例11のみポリカルボン酸としてポリアクリル酸を使用した。つまり、実施例11の表面処理剤組成物は、ポリイタコン酸の代わりにポリアクリル酸をポリカルボン酸として使用したことを除いて、実施例1の表面処理剤組成物と同じである。
 また、硝酸アルミニウム及びフッ化ナトリウムは、それぞれアルミニウムイオン源及びフッ素源として使用し、表1に示すアルミニウムの濃度及びフッ素の濃度は、それぞれ金属換算のアルミニウムの質量濃度及びフッ素換算の質量濃度である。さらに、上記各成分の質量濃度(ppm)から、アルミニウムイオン、フッ素、及びポリカルボン酸に含まれるカルボキシル基のモル濃度(mmol/L)、アルミニウムイオンに対するフッ素のモル比[F]/[Al]、並びにアルミニウムイオンに対するポリカルボン酸に含まれるカルボキシル基のモル比[C基]/[Al]を算出し、表1に示した。なお、ポリカルボン酸に含まれるカルボキシル基の濃度は、例えばポリイタコン酸の場合には、ポリイタコン酸の質量濃度(ppm)/(構成単位であるイタコン酸の分子量の2分の1)により算出できる。

Figure JPOXMLDOC01-appb-T000001
 
[錫イオン除去性の評価]
 pHを2.5に調整した実施例1~16及び比較例1~4の各表面処理剤組成物80mLを内径45mmの容器にそれぞれ採取し、錫イオンが表2に記載の質量濃度になるように硫酸錫(II)を添加して模擬的な処理浴を作製した。硫酸錫を添加したのは、表面処理の際に錫めっき鋼材から錫イオンが処理浴に溶出した状態を再現するためである。その後、各処理浴を表2に記載のpHに調整した後に6時間静置し、処理浴の底部に生成した沈殿物のかさ高さを測定した。なお、生成した沈殿物は、処理浴に含まれていた錫イオンを由来とするものである。評価は、沈殿物のかさ高さが0.5mm以上であるものを錫イオン除去可能(○)とし、沈殿物のかさ高さが0.5mm以下のものを錫イオン除去不可能とした。結果を表2に示す。なお、表2に示したpHは25℃におけるものであり、pHの調整には硝酸及びアンモニア水を使用した。
[残存錫イオン濃度測定]
 上記で沈殿の生成した処理浴の液の上澄み液を採取し、ろ紙で沈殿を取り除いて溶液に固形物がないことを目視で確認した後、pH変動がないように硝酸もしくはアンモニア水で調整しながら測定可能な濃度範囲内になるようにイオン交換水で希釈し、誘導結合プラズマ発光分析装置(島津製作所製、ICPE-9000)により錫イオン濃度を測定した。得られた結果から、希釈率に基づいて、上澄み液中に残存する錫イオン濃度(ppm)を算出した。評価は、上澄み濃度が300ppm以上500ppm以下のものを好ましいとし、50ppm以上300ppm未満のものをより好ましいとし、50ppm未満のものを最も好ましいとする。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、ポリカルボン酸を必須成分として含む本発明の表面処理剤組成物は、良好な錫イオン除去性を備えることから、錫めっき鋼材の表面処理中に錫イオンが処理浴に溶出したとしても、溶出した錫イオンが処理浴中から沈殿除去され、錫めっき鋼材の表面に形成される皮膜に錫イオンが取り込まれるのを抑制できることが理解される。なお、ポリカルボン酸を含有する比較例1及び2の表面処理剤組成物においても、良好な錫イオン除去性を示すが(比較試験例1及び2)、後述の試験結果の通り、これらの表面処理剤組成物は、本発明の必須成分であるアルミニウムイオン又はフッ素を含まないので、皮膜の形成性能の点で問題を生じることになる。
 また、全ての試験例の上澄み濃度が500ppm未満の範囲にあり、実施例1、2、13、14、17、18では上澄み濃度が50ppm未満であった。
[試験板の作製]
 低炭素冷延鋼板(板厚0.225mm)を、アルカリ脱脂剤(日本ペイント株式会社製、サーフクリーナー322N8)の3%水溶液を用いて、70℃で15秒間浸漬処理して脱脂した。脱脂後の鋼板を、水道水で30秒間スプレー処理を行って水洗した後、酸洗処理剤(硫酸の5%水溶液)を用いて、70℃で5秒間浸漬処理して酸洗した。その後、水道水で30秒間スプレー処理を行って水洗した後、公知のフェロスタン浴を用いて、下記の条件にて鋼板の表面にめっき厚2.8g/mの錫めっき層を形成させて、水洗後リフロー処理を施して、錫めっき鋼板を作製した。
 (めっき条件)
 温度:40℃
 撹拌:適宜
 電流密度:10A/dm
 陽極材料:市販の99.999%金属錫
 処理時間:通電時間1秒停止時間0.50秒を1サイクルとして、サイクル数5~15回
 リフロー:得られた錫めっき鋼板を誘導加熱により錫の融点以上まで加熱後イオン交換水をかけて急冷
 得られた錫めっき鋼板を、所定のpHに調整した実施例1~16及び比較例1~4の各表面処理剤組成物からなる処理浴中(浴温45℃)に浸漬し、処理浴を撹拌しながら、極間距離17mmの位置に配置した酸化イリジウム被覆チタン板を陽極として、陰極電解(電解条件:4A/dmの電流密度で通電時間0.15秒+停止時間0.50秒を1サイクルとし、皮膜量が蛍光X線測定でアルミニウムとして5~10mg/mとなるように、サイクル数を1~7サイクルで調節)し、その後すぐに、流水による水洗、純水洗及び乾燥の後処理を行った。水洗、純水洗は温水あるいは熱水で行ってもよく、用途によっては皮膜中の過剰なフッ素を少なくすることにより、皮膜の特性をさらに向上させてもよい。処理浴として使用した表面処理剤組成物と、処理浴のpHを表3にそれぞれ示す。なお、表3に記載したpHは25℃における数値であり、処理浴のpHの調整には硝酸及びアンモニア水を使用した。また、表3に記載した試験例42および試験例43はそれぞれ、上記試験例4もしくは試験例16(表2)で使用した模擬的な処理浴において生成した沈殿を取り除き、沈殿が除去された後の処理浴をそのまま使用して下記の各試験を実施したものである。この試験例42および試験例43は、錫めっき鋼材から溶出した錫イオンを沈殿除去した後の処理浴における表面処理能力を確認するものであり、表面処理を連続して行う際の処理能力を検証するためのものである。
[皮膜量の測定]
 上記「試験板の作製」に記載した方法で作製した試験板のそれぞれについて、形成された皮膜を乾燥した後に、蛍光X線装置(株式会社島津製作所製、XRF-1500)を使用して皮膜中のアルミニウム量を測定し、炭素・水素/水分分析装置(LECO社製、RC612)を使用して皮膜中の炭素量(C量)を測定した。その結果を表3の「皮膜量」欄にそれぞれ示す。
[皮膜外観の評価]
 上記「試験板の作製」に記載した方法で作製した試験板のそれぞれについて、形成された皮膜表面へのスラッジ状の異物付着の有無を調べることにより、皮膜の均一性を評価した。なお、このような異物の付着は、処理浴が白濁している(すなわち、均一な溶液になっていない)場合に、特に観察されるものである。評価は、皮膜表面に異物付着が観察されたものを○とし、皮膜表面に異物付着が観察されたもの又は試験板に皮膜が形成されなかったものを×とした。その結果を表3の「皮膜外観」欄にそれぞれ示す。
[皮膜付着性]
 上記「試験板の作製」に記載した方法で陰極電解(電解条件4A/dm)を行った際、錫めっき鋼板の表面に、アルミニウムとして5mg/mの皮膜が付着するのに必要なサイクル数を測定した。その結果を表3の「付着性」欄にそれぞれ示す。なお、評価は、必要な処理サイクル数が、1~10サイクルであれば、生産性が良好と判断し、特に1~6サイクルはより好ましく、さらに3サイクル未満であれば最もこの好ましいと考えられる。5mg/mの皮膜が付着するのに10サイクル以上必要としたもの(皮膜が形成されなかたものも含む。)は生産性が良好ではないと考え、「>10」と記載した。
[接着性評価]
 上記「試験板の作製」に記載した方法で作製した試験板のそれぞれについて、試験板を230℃に加熱した状態で、ラミネートロールを介してポリエステルフィルム(帝人デュポンフィルム株式会社製、テフレックスFT-20、厚さ20μm)を熱圧着し、その後直ちに水冷することでポリエステル被覆試験板とした。得られたポリエステル被覆試験板のそれぞれについて、試験板を15mm幅で70mm長さに短冊状に切断し、短冊の先端から30mm位置に測定反対面側から素地に達する切り込み傷を入れた。この試験片を120℃30分の熱水レトルト処理を行った後、一旦水中に浸漬し、測定直前に水中から引き上げた。予め入れた傷を起点として折り曲げを繰り返すことにより金属片のみを破断し、樹脂フィルムだけでつながっている部分を作った後、この部分を内面側となるようにして180度方向に折り曲げた後、引張試験機を用いて引張速度5mm/分で180度方向に引き剥がして剥離試験を行い、接着強度を測定した。その結果を表3の「接着性」欄にそれぞれ示す。評価は、引張試験機(Minebea社製、LST-200N-S100、ロードセルLTTU-200N)により試験片を剥離した際の最大引張強度が、1N/15mm以上を良好、3N/15mm以上を優良、5N/15mm以上のものを特に優良とした。
[耐硫化黒変性評価]
 上記「試験板の作製」に記載した方法で作製した試験板に、焼付け乾燥後の塗膜厚が70mg/dmとなるようにエポキシフェノール系塗料を塗装後、200℃20分間の焼付けを行った。次いで試験板を70mm角に切断した後、切断面を3mm幅テープで保護し、その後エリクセン試験機(コーティングテスター株式会社製)により3mmの張り出し加工を行った。次いで、張り出し加工により生じた張り出し部を、リン酸二水素カリウムKHPOを4.5g/L、リン酸水素ナトリウムNaHPO・12HOを12g/L、及びL-システイン塩酸塩一水和物を2g/Lの濃度で含む水溶液からなるモデル液中に浸漬し、密封容器中で115℃60分のレトルト処理を行って耐硫化黒変性を評価した。評価は、外観の変化を目視で判定することにより行い、著しい変化の無かったものを○とし、著しい変化のあったものを×とした。その結果を表3の「耐黒変性」欄にそれぞれ示す。
[耐黄変性評価]
 上記「試験板の作製」に記載した方法で作製した試験板を70mm角に切断した後、200℃のオーブンで1時間加熱し、加熱前後における試験板の変色の程度を色差計(コニカミノルタセンシング株式会社製、商品名CM-2500d)を用いて調べることにより、耐黄変性を評価した。評価は、後述するクロメート処理による試験板(参考試験例1)における加熱前後の色差を基準として、評価対象となる試験板における加熱前後の色差と上記基準となる色差との差を算出し、この差が、1.9以下であるものを○とし、1.9を超え3未満のものを○とし、3以上であるものを×とした。その結果を表3の「耐黄変性」欄にそれぞれ示す。なお、色差は、(ΔL+Δa+Δb0.5で算出される。
[参考試験例1及び2]
 市販のクロメート処理(311処理)ブリキ板(Sn量2.8g/m)に対して上記の各評価を行い、その結果を表3に参考試験例1として示す。また、未処理の錫めっき鋼板(上記「試験板の作製」に記載した錫めっき処理のみを施した鋼板)に対して上記の各評価を行い、その結果を表3に参考試験例2として示す。
[電気伝導度]
 実施例1~16及び比較例1~4の表面処理剤組成物について、それぞれ25℃におけるpHを3.5に調整した後の電気伝導度を測定した。その結果を表4に示す。なお、pHの調整には硝酸及びアンモニア水を使用した。
Figure JPOXMLDOC01-appb-T000003
 
*1 PIAはポリイタコン酸を意味し、PAAはポリアクリル酸を意味する。
*2 付着性欄に記載した数値は、試験板に所定の厚さの皮膜を形成させるのに要した陰極電解の処理サイクル数であり、小さいほど良好であることを意味する。なお、この数値が「>10」で示されたものには、陰極電解によって有効な皮膜が形成されなかったものも含まれる。
*3 試験例42、43は、上記試験例4、16における試験後の処理浴から沈殿を除去した後、その処理浴を使用して試験を行った結果である。
*4 比較試験例9は、上記比較試験例3における試験後の処理浴を使用して試験を行った結果である。なお、上記比較試験例3における試験後の処理浴では沈殿が生じなかったため、沈殿除去操作は行っていない。
Figure JPOXMLDOC01-appb-T000004
 
 表3に示すように、本発明の表面処理剤組成物を使用して錫めっき鋼板(鋼材)に電解表面処理を行うことにより、耐黒変性及び耐黄変性に優れた皮膜が錫めっき鋼板の表面に形成されることが理解される。そして、表3を参照すると、本発明の表面処理剤を使用して形成された皮膜は、従来使用されてきたクロメート処理により形成された皮膜と同等以上の特性を備えることが理解される。このことから、本発明の表面処理剤組成物は、錫めっき鋼材に対する電解表面処理においてきわめて有効であることが示された。

Claims (8)

  1.  錫又は錫系合金めっき鋼材を電解表面処理する際に使用され、アルミニウムイオン、フッ素イオン及びポリカルボン酸を含む錫めっき鋼材用表面処理剤組成物。
  2.  前記ポリカルボン酸が、アクリル酸、メタクリル酸、マレイン酸、イタコン酸から選択されるモノマーを構成単位とするホモポリマー、又はこれらのモノマーの少なくとも1種を構成単位として含むコポリマーである請求項1記載の錫めっき鋼材用表面処理剤組成物。
  3.  前記アルミニウムイオンのモル濃度[Al]に対する前記ポリカルボン酸に含まれるカルボキシル基のモル濃度[C基]の比[C基]/[Al]が、0.005~2.0である請求項1又は2記載の錫めっき鋼材用表面処理剤組成物。
  4.  前記アルミニウムイオンのモル濃度[Al]に対する前記フッ素イオンのモル濃度[F]の比[F]/[Al]が1~4である請求項1~3のいずれか1項記載の錫めっき鋼材用表面処理剤組成物。
  5.  前記アルミニウムイオンの質量濃度が100ppm~10,000ppmである請求項1~4のいずれか1項記載の錫めっき鋼材用表面処理剤組成物。
  6.  25℃におけるpHが1~5である請求項1~5のいずれか1項記載の錫めっき鋼材用表面処理剤組成物。
  7.  錫イオンを含有し、前記錫イオンの質量濃度が500ppm以下である請求項1~6のいずれか1項記載の錫めっき鋼材用表面処理剤組成物。
  8.  請求項1~7のいずれか1項記載の錫めっき鋼材用表面処理剤組成物により表面処理された錫めっき鋼材。
PCT/JP2012/057348 2011-03-25 2012-03-22 錫めっき鋼材用表面処理剤組成物及び表面処理された錫めっき鋼材 WO2012133111A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/006,843 US20140377581A1 (en) 2011-03-25 2012-03-22 Surface treatment agent composition for tin-plated steel, and tin-plated steel subjected to surface treatment
CN201280014674.6A CN103620092B (zh) 2011-03-25 2012-03-22 镀锡钢材用表面处理剂组合物以及表面处理过的镀锡钢材
EP12762849.3A EP2690201A4 (en) 2011-03-25 2012-03-22 SURFACE TREATMENT AGENT COMPOSITION FOR STAINLESS STEEL, AND STAINLESS STEEL SUBJECT TO SURFACE TREATMENT
JP2013507460A JP5894576B2 (ja) 2011-03-25 2012-03-22 錫めっき鋼材用表面処理剤組成物及び表面処理された錫めっき鋼材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-067962 2011-03-25
JP2011067962 2011-03-25

Publications (1)

Publication Number Publication Date
WO2012133111A1 true WO2012133111A1 (ja) 2012-10-04

Family

ID=46930839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057348 WO2012133111A1 (ja) 2011-03-25 2012-03-22 錫めっき鋼材用表面処理剤組成物及び表面処理された錫めっき鋼材

Country Status (5)

Country Link
US (1) US20140377581A1 (ja)
EP (1) EP2690201A4 (ja)
JP (1) JP5894576B2 (ja)
CN (1) CN103620092B (ja)
WO (1) WO2012133111A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064186A1 (ja) * 2013-10-31 2015-05-07 東洋鋼鈑株式会社 表面処理鋼板の製造方法、表面処理鋼板、および有機樹脂被覆金属容器
WO2016002886A1 (ja) * 2014-07-02 2016-01-07 東洋鋼鈑株式会社 表面処理基材の製造方法
US10927469B2 (en) * 2018-10-25 2021-02-23 Uacj Corporation Production method of aluminum using hydrate

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105506604A (zh) * 2015-12-31 2016-04-20 芜湖奕辰模具科技有限公司 一种镀锡钢板表面处理用处理液
CN105506597A (zh) * 2015-12-31 2016-04-20 芜湖奕辰模具科技有限公司 一种镀锡钢板表面处理用处理液的制备方法
JP7137586B2 (ja) * 2018-02-05 2022-09-14 富士フイルム株式会社 処理液、及び、処理方法
JP2022059731A (ja) * 2020-10-02 2022-04-14 メルテックス株式会社 バレルめっき用スズめっき液

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158341A (en) * 1978-06-05 1979-12-14 Nippon Packaging Kk Surface treatment of tin plated steel plate and can
WO2002103080A1 (fr) 2001-06-15 2002-12-27 Nihon Parkerizing Co., Ltd. Solution traitante pour traitement de surface de metal et procede de traitement de surface
JP2004190121A (ja) 2002-12-13 2004-07-08 Nippon Parkerizing Co Ltd 金属の表面処理用処理液及び表面処理方法
JP2005097712A (ja) 2002-11-25 2005-04-14 Toyo Seikan Kaisha Ltd 表面処理金属材料及びその表面処理方法、並びに樹脂被覆金属材料、金属缶、缶蓋
JP2006348360A (ja) 2005-06-17 2006-12-28 Toyo Seikan Kaisha Ltd 表面処理金属板及びその表面処理方法、並びに樹脂被覆金属板、缶及び缶蓋
JP2008179839A (ja) * 2007-01-23 2008-08-07 Jfe Steel Kk 表面処理金属板ならびに樹脂被覆金属板、金属缶および缶蓋
JP2008297595A (ja) * 2007-05-31 2008-12-11 Nippon Paint Co Ltd 缶用下地処理方法
JP2010013728A (ja) * 2008-06-05 2010-01-21 Nippon Steel Corp 有機皮膜性能に優れた容器用鋼板およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001284461B2 (en) * 2000-09-07 2006-06-01 Nippon Steel Corporation Hexavalent chromium-free surface-treating agent for Sn- or Al-based coated steel sheet, and surface treated steel sheet
US20080057336A1 (en) * 2004-06-22 2008-03-06 Toyo Seikan Kaisha, Ltd Surface-Treated Metal Materials, Method of Treating the Surfaces Thereof, Resin-Coated Metal Materials, Cans and Can Lids
DE102005027633A1 (de) * 2005-06-14 2006-12-21 Basf Ag Verfahren zum Herstellen von lackierten, flächenförmigen, metallischen Formkörpern
JP5240489B2 (ja) * 2007-05-31 2013-07-17 東洋製罐グループホールディングス株式会社 樹脂被覆アルミニウム合金板及びそれを用いた成形体

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158341A (en) * 1978-06-05 1979-12-14 Nippon Packaging Kk Surface treatment of tin plated steel plate and can
WO2002103080A1 (fr) 2001-06-15 2002-12-27 Nihon Parkerizing Co., Ltd. Solution traitante pour traitement de surface de metal et procede de traitement de surface
JP2005097712A (ja) 2002-11-25 2005-04-14 Toyo Seikan Kaisha Ltd 表面処理金属材料及びその表面処理方法、並びに樹脂被覆金属材料、金属缶、缶蓋
JP2004190121A (ja) 2002-12-13 2004-07-08 Nippon Parkerizing Co Ltd 金属の表面処理用処理液及び表面処理方法
JP2006348360A (ja) 2005-06-17 2006-12-28 Toyo Seikan Kaisha Ltd 表面処理金属板及びその表面処理方法、並びに樹脂被覆金属板、缶及び缶蓋
JP2008179839A (ja) * 2007-01-23 2008-08-07 Jfe Steel Kk 表面処理金属板ならびに樹脂被覆金属板、金属缶および缶蓋
JP2008297595A (ja) * 2007-05-31 2008-12-11 Nippon Paint Co Ltd 缶用下地処理方法
JP2010013728A (ja) * 2008-06-05 2010-01-21 Nippon Steel Corp 有機皮膜性能に優れた容器用鋼板およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2690201A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015064186A1 (ja) * 2013-10-31 2015-05-07 東洋鋼鈑株式会社 表面処理鋼板の製造方法、表面処理鋼板、および有機樹脂被覆金属容器
JP2015086439A (ja) * 2013-10-31 2015-05-07 東洋鋼鈑株式会社 表面処理鋼板の製造方法、表面処理鋼板、および有機樹脂被覆金属容器
EP3064616A4 (en) * 2013-10-31 2017-07-05 Toyo Kohan Co., Ltd. Method for producing surface-treated steel sheet, surface-treated steel sheet, and metallic container coated with organic resin
US10309028B2 (en) 2013-10-31 2019-06-04 Toyo Kohan Co., Ltd. Method for producing surface-treated steel sheet, surface-treated steel sheet, and organic resin coated metal container
WO2016002886A1 (ja) * 2014-07-02 2016-01-07 東洋鋼鈑株式会社 表面処理基材の製造方法
JP2016014172A (ja) * 2014-07-02 2016-01-28 東洋鋼鈑株式会社 表面処理基材の製造方法
US10927469B2 (en) * 2018-10-25 2021-02-23 Uacj Corporation Production method of aluminum using hydrate

Also Published As

Publication number Publication date
JPWO2012133111A1 (ja) 2014-07-28
US20140377581A1 (en) 2014-12-25
EP2690201A4 (en) 2014-09-10
CN103620092A (zh) 2014-03-05
CN103620092B (zh) 2016-06-22
JP5894576B2 (ja) 2016-03-30
EP2690201A1 (en) 2014-01-29

Similar Documents

Publication Publication Date Title
JP5894576B2 (ja) 錫めっき鋼材用表面処理剤組成物及び表面処理された錫めっき鋼材
JP6804464B2 (ja) ニッケルを用いないで金属表面をリン酸塩処理するための方法
JP4205939B2 (ja) 金属の表面処理方法
JP5446057B2 (ja) 化成処理用亜鉛系めっき鋼板およびその製造方法、並びに化成処理鋼板
WO2012036199A1 (ja) 容器用鋼板およびその製造方法
JPWO2010004651A1 (ja) 鉄鋼材料の塗装下地用化成処理液および処理方法
JP2008202149A (ja) 金属の表面処理用処理液及び表面処理方法
KR20070103492A (ko) 표면처리 금속재료
WO2009139480A1 (ja) 錫めっき鋼板の製造方法および錫めっき鋼板ならびに化成処理液
WO2018042980A1 (ja) 表面処理鋼板、有機樹脂被覆鋼板、及びこれらを用いた容器
JP2011504550A (ja) 金属構造部材特に鉄構造部材のジルコニウムリン酸塩処理
US11124884B2 (en) Composition for reducing the removal of material by pickling in the pickling of metal surfaces that contain galvanized and/or ungalvanized steel
JP5827792B2 (ja) 化成処理鉄系材料
JP6594678B2 (ja) 表面処理剤、表面処理方法及び表面処理済み金属材料
JP6622206B2 (ja) 金属表面を被覆する方法、前記方法により被覆された基材およびその使用
JP4492254B2 (ja) 耐食性及び耐黒変性に優れたリン酸塩処理亜鉛めっき鋼板
WO2008054016A1 (fr) Feuillet d'acier galvanisé traité aux phosphates et son procédé de production
JP2011127141A (ja) 電着塗装用表面処理金属材料、および化成処理方法
JP4935099B2 (ja) 金属めっき材
JPS62278297A (ja) 金属表面処理鋼板のクロメ−ト処理方法
JP4635638B2 (ja) 耐食性及び耐黒変性に優れたリン酸塩処理電気亜鉛めっき鋼板
JP6964406B2 (ja) 酸化膜除去剤、酸化膜除去方法、表面処理方法及び酸化膜を除去した金属材料の製造方法
US11124880B2 (en) Method for nickel-free phosphating metal surfaces
CN115698381A (zh) 水性酸浸组合物及其用途
EP4165229A1 (en) Aqueous pickling compositions and their use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12762849

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013507460

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301005312

Country of ref document: TH

REEP Request for entry into the european phase

Ref document number: 2012762849

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012762849

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14006843

Country of ref document: US