WO2016002874A1 - ポリエステル、ポリウレタン、エラストマー、ポリエステルの製造方法およびポリウレタンの製造方法 - Google Patents

ポリエステル、ポリウレタン、エラストマー、ポリエステルの製造方法およびポリウレタンの製造方法 Download PDF

Info

Publication number
WO2016002874A1
WO2016002874A1 PCT/JP2015/069104 JP2015069104W WO2016002874A1 WO 2016002874 A1 WO2016002874 A1 WO 2016002874A1 JP 2015069104 W JP2015069104 W JP 2015069104W WO 2016002874 A1 WO2016002874 A1 WO 2016002874A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyester
formula
polyurethane
repeating unit
Prior art date
Application number
PCT/JP2015/069104
Other languages
English (en)
French (fr)
Inventor
林 武夫
佐藤 英之
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to US15/321,577 priority Critical patent/US10584198B2/en
Priority to CN201580033478.7A priority patent/CN106459394B/zh
Priority to JP2016531440A priority patent/JP6665778B2/ja
Priority to EP15815174.6A priority patent/EP3165551A4/en
Priority to KR1020167036218A priority patent/KR20170026379A/ko
Publication of WO2016002874A1 publication Critical patent/WO2016002874A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4244Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups
    • C08G18/4247Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids
    • C08G18/425Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups derived from polyols containing at least one ether group and polycarboxylic acids the polyols containing one or two ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/42Polycondensates having carboxylic or carbonic ester groups in the main chain
    • C08G18/4244Polycondensates having carboxylic or carbonic ester groups in the main chain containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6637Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/664Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a novel polyester, and more specifically, raw materials for forming polyurethane, polyester elastomer, polyamide elastomer and the like excellent in hydrolysis resistance and heat resistance (particularly heat aging resistance), paints,
  • the present invention relates to novel polyesters that can be used as polymer modifiers, polymer plasticizers, and the like.
  • polyesters whose molecular ends are hydroxyl groups have been used in the fields of paints, adhesives, polyurethanes and the like.
  • polyesters include ethylene glycol, diethylene glycol, propylene glycol, neopentyl glycol, 1,4-butanediol, 3-methyl-1,5-pentanediol, 1,6-hexanediol, trimethylolpropane, glycerin and the like.
  • Polyesters obtained from polyhydric alcohols and polybasic acids or anhydrides or ester derivatives thereof are known.
  • polyesters having a hydroxyl group at the molecular end obtained by esterifying an aliphatic dicarboxylic acid such as adipic acid with a dihydric or trihydric polyhydric alcohol are bifunctional or higher isocyanate compounds. It can be made into a polyurethane by reacting with, and is used in a wide range of applications such as elastomers, paints, adhesives, coating agents, and foams.
  • a polyester having a carboxyl group at the molecular end can be made into a polyester polyamide having excellent heat resistance by reacting with a bifunctional or higher isocyanate compound.
  • an aromatic dicarboxylic acid such as phthalic anhydride, isophthalic acid and terephthalic acid as a polybasic acid is used in combination with an aliphatic dicarboxylic acid such as adipic acid, and esterified with a dihydric or trivalent or higher polyhydric alcohol.
  • the resulting polyester is widely used in the fields of polyurethane, paints and adhesives.
  • polyurethane using polyester as a polyol component has a drawback that it is susceptible to hydrolysis.
  • polyurethane using polyether is superior in hydrolysis resistance compared to polyurethane using polyester, but has poor weather resistance and inferior mechanical properties, oil resistance, and solvent resistance. And its use is limited.
  • the polyurethane using the polycarbonate excellent in hydrolysis resistance has improved the above-mentioned drawbacks, it has insufficient cold resistance and is extremely expensive, and therefore, industrial use is limited.
  • Patent Document 1 Polyurethanes using neopentyl glycol as the conventional polyester-based polyurethanes having relatively good hydrolysis resistance, or 2-butyl-2-ethyl-1,3-propanediol (Patent Document 1), 2, A polyurethane using 4-dialkyl-1,5-pentanediol (Patent Document 2) or the like is known.
  • Patent Document 5 describes polyester as a raw material for polyurethane.
  • Example 4 of Patent Document 5 includes 3,3′-oxybis (2-ethyl-2-butyl-1-propanol (3,3′-oxybis (2-ethyl-2-butyl-1) -propanol) and terephthalic acid are reacted in equimolar ratios, and it is described that they are stable against thermal degradation, and that such polyesters are useful as polyurethane extenders. Are listed.
  • Patent Document 6 and Patent Document 7 disclose a continuous production method of a polyester resin containing aromatic dicarboxylic acid and aliphatic diol as main constituent components.
  • JP-A-60-229918 Japanese Patent No. 3589779 JP-A-60-26018 JP-A-5-320302 U.S. Pat. No. 3,287,419 JP 09-235365 A JP 09-235359 A
  • Patent Document 5 describes a polyester obtained by reacting 3,3′-oxybis (2-ethyl-2-butyl-1-propanol) with terephthalic acid in an equimolar ratio.
  • the terminal hydroxyl group of the obtained polyester is usually 50%.
  • the polyesters described in Patent Documents 6 and 7 have a structure different from that of the polyester disclosed in the present invention, and there is no description about the physical properties of polyurethane using the obtained polyester as a raw material.
  • An object of the present invention is to provide a polyester which is a raw material for polyurethane having excellent hydrolysis resistance, heat resistance, and particularly heat aging resistance. Furthermore, it is providing the manufacturing method of a polyurethane, an elastomer, polyester, and the manufacturing method of a polyurethane using the said polyester.
  • the present inventors have found that polyurethane (heat-resistant) having excellent hydrolysis resistance, heat resistance, in particular, heat aging resistance can be obtained by using a polyester having a specific structural unit.
  • the present inventors have found that a plastic polyurethane) can be obtained and have reached the present invention.
  • the present invention is as follows.
  • R 1 , R 2 , R 3 and R 4 each independently represents an aliphatic hydrocarbon group having 1 to 6 carbon atoms, and A is selected from an aliphatic group, an alicyclic group, and an aromatic group. Divalent group.
  • ⁇ 3> The polyester according to ⁇ 1> or ⁇ 2>, wherein the repeating unit represented by the formula [I] contains 20 mol% or more of all repeating units.
  • ⁇ 4> The polyester according to any one of ⁇ 1> to ⁇ 3>, wherein the combination of R 1 and R 2 of the repeating unit represented by formula [I] is different from the combination of R 3 and R 4 .
  • ⁇ 5> The polyester according to any one of ⁇ 1> to ⁇ 4>, which has a number average molecular weight of 400 to 10,000.
  • ⁇ 6> The polyester according to any one of ⁇ 1> to ⁇ 5>, wherein the glass transition temperature measured with a differential scanning calorimeter is 30 ° C. or lower.
  • ⁇ 7> The polyester according to any one of ⁇ 1> to ⁇ 6>, wherein the repeating unit represented by the formula [I] is contained in an amount of 50 mol% or more in all repeating units.
  • ⁇ 17> A process for producing a polyester comprising reacting a diol containing at least one diol represented by the following formula [III] with a dicarboxylic acid in a molar ratio of 1.2 to 3.0: 1. (However, R 1 , R 2 , R 3 and R 4 each independently represents an aliphatic hydrocarbon group having 1 to 6 carbon atoms.)
  • R 1 , R 2 , R 3 and R 4 each independently represents an aliphatic hydrocarbon group having 1 to 6 carbon atoms.
  • a method for producing a polyurethane comprising reacting the polyester according to any one of ⁇ 1> to ⁇ 14> with a polyisocyanate.
  • Polyurethane excellent in hydrolysis resistance and heat resistance can be obtained by the polyester of the present invention, and the industrial significance of the present invention is great.
  • the present invention is described in detail below.
  • “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • “Me” means a methyl group.
  • the polyester of the present invention is characterized by containing one or more repeating units represented by the above formula [I], and can obtain a polyurethane excellent in hydrolysis resistance and heat resistance (particularly heat aging resistance). it can.
  • the weather resistance is improved by its stability, and further, the quaternary Since the hydrolysis resistance is improved by the hydrophobic property of carbon, it is considered that the weather resistance and heat resistance (particularly, heat aging resistance) when polyurethane was made could be improved.
  • the polyester of the present invention is excellent in hydrolysis resistance and heat resistance (particularly, heat aging resistance) when it contains at least 20 mol% of all the repeating units represented by the above formula [I].
  • one or more repeating units represented by the formula [I] are contained in an amount of 50 mol% or more of all repeating units, and one or more repeating units represented by the formula [I] are preferably contained.
  • it can be appropriately adjusted so as to exhibit the desired performance.
  • R 1 , R 2 , R 3 and R 4 in the above formula [I] are each independently an aliphatic hydrocarbon group having 1 to 6 carbon atoms, such as a methyl group, an ethyl group, an n-propyl group, 1- Methylethyl group (isopropyl group), n-butyl group, 1-methylpropyl group, 2-methylpropyl group, 1,1-dimethylethyl group (tert-butyl group), n-pentyl group, 1-methylbutyl group, 2 -Methylbutyl group, 3-methylbutyl group, 1-ethylpropyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, 2,2-dimethylpropyl group (neopentyl group), n-hexyl group, 1- Methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 4-methylpentyl group, 1,1
  • methyl group, ethyl group, n-propyl group, 1-methylethyl group (isopropyl group), n-butyl group, 1-methylpropyl group, 2-methylpropyl group, n-pentyl group, 1-methylbutyl group, 2 -Methylbutyl group, 3-methylbutyl group, 1-ethylpropyl group and n-hexyl group are preferable, and methyl group, ethyl group, n-propyl group, n-butyl group, n-pentyl group and n-hexyl group are more preferable. .
  • R 1 and R 2 are methyl groups
  • R 3 and R 4 are each independently a methyl group, an ethyl group, an n-propyl group, an n-butyl group, an n-pentyl group
  • a repeating unit which is a group selected from n-hexyl groups is preferable.
  • R 1 and R 2 are a repeating unit which is a methyl group
  • R 3 is a methyl group or an ethyl group
  • R 4 is selected from a methyl group, an ethyl group, an n-propyl group and an n-butyl group. It is a repeating unit that is a group.
  • R 1 and R 2 and the combination of R 3 and R 4 in the repeating unit represented by the formula [I] may be different.
  • polyurethanes using such polyesters are preferred because the weather resistance and heat aging resistance tend to be further improved.
  • R 1 and R 2 in the formula [I] are methyl groups, and at least one of R 3 and R 4 is a group other than a methyl group.
  • R 1 to R 4 are all methyl groups.
  • R 1 and R 2 are methyl groups, R 3 is an ethyl group, and R 4 is an n-butyl group.
  • R 1 and R 2 are methyl groups, and R 3 and R 4 are ethyl groups.
  • R 1 to R 3 are all methyl groups, and R 4 is an n-propyl group.
  • polyester of this invention can manufacture using diol represented by following formula [II] as a raw material. More specifically, a polyester having a repeating unit represented by the formula [I] can be obtained by reacting a diol represented by the formula [II] with a dicarboxylic acid component to form an ester.
  • R 1 , R 2 , R 3 and R 4 each independently represents an aliphatic hydrocarbon group having 1 to 6 carbon atoms.
  • R 1, R 2, R 3 and R 4 have the same meanings as R 1, R 2, R 3 and R 4 in the formula [I], the preferable range is also the same.
  • the manufacturing method of a diol compound is not limited, For example, it can obtain by carrying out the hydrogenation reduction of the acetal of following formula [III].
  • R 1 , R 2 , R 3 and R 4 each independently represents an aliphatic hydrocarbon group having 1 to 6 carbon atoms.
  • R 1, R 2, R 3 and R 4 have the same meanings as R 1, R 2, R 3 and R 4 in the formula [I], the preferable range is also the same.
  • the acetal of the formula [III] is obtained by acetalization of 2,2-disubstituted-3-hydroxypropanal and 2,2-disubstituted-1,3-propanediol as in the following formula [IV]. be able to. (However, R 1 , R 2 , R 3 and R 4 each independently represents an aliphatic hydrocarbon group having 1 to 6 carbon atoms.)
  • a diol having the repeating unit of the formula [I] is obtained by appropriately adding a diol other than the diol of the formula [II] as a diol component to the diol of the formula [II] and esterifying with a dicarboxylic acid component. Can be obtained.
  • diol components other than the diol of the said formula [II] used with the polyester of this invention All the diol components which can be used as a raw material of polyester can be used according to a required characteristic.
  • diol components other than the diol of the above formula [II] include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 1,3-butanediol, 2-methyl-1,3-propanediol.
  • a in the above formula [I] is a dicarboxylic acid component residue, which is a divalent group selected from an aliphatic group, an alicyclic group, and an aromatic group, and is 60 mol% or more (preferably 80 mol% or more) of A. More preferably 90 mol% or more) is preferably an aliphatic group or an alicyclic group, and 60 mol% or more (preferably 80 mol% or more, more preferably 90 mol% or more) of A is an aliphatic group. Further preferred.
  • the aliphatic group may be a linear aliphatic group or a branched aliphatic group, but a linear aliphatic group is preferred.
  • Adopting an aliphatic group is preferable because the Tg of the resulting polyester can be further lowered.
  • A preferably has 3 to 10 carbon atoms. There is no restriction
  • Examples of A include methylene group, dimethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, 2-methyltrimethylene group, heptamethylene group, 1-methylhexamethylene group, octamethylene group, nonamethylene Group, aliphatic group such as decamethylene group, dimethyloctamethylene group, undecamethylene group, 1,3-cyclohexylene group, 1,4-cyclohexylene group, 2,6-decahydronaphthylene group, bicyclo [2.2 .1] Alicyclic groups such as heptylene, tricyclodecylene, pentacyclododecacylen, p-phenylene, m-phenylene, 2-methyl-1,4-phenylene, 2,6-tetrahydro And aromatic groups such as naphthylene group and 2,6-naphthnaphthylene group. These groups may be used alone or in combination of two or more.
  • one or more selected from a tetramethylene group, an octamethylene group, a decamethylene group, an o-phenylene group, a p-phenylene group, an m-phenylene group and a 2,6-naphthylene group are preferable.
  • the repeating unit in which A in the formula [I] is a divalent aliphatic group is 10 mol% or more in the repeating unit represented by the formula [I], and A is a divalent aromatic.
  • the aspect which has the repeating unit which is group is less than 90 mol% in the repeating unit represented by Formula [I] is illustrated.
  • an aliphatic group is preferably used in an amount of 90 mol% or more in all repeating units, and among them, 90 mol% or more in all repeating units is one or more selected from a tetramethylene group, an octamethylene group and a decamethylene group.
  • a tetramethylene group is particularly preferable.
  • the polyester of this invention may contain a small amount of the structural unit represented by following formula [V] to such an extent that the characteristic of this invention is not impaired.
  • the repeating unit represented by the formula [V] is contained, for example, it is preferably contained in the range of 0.1 to 5 mol% of all repeating units.
  • n is an integer of 1 or more
  • B is a trivalent or higher group selected from an aliphatic group, an alicyclic group, and an aromatic group.
  • B is a trivalent or higher group selected from an aliphatic group, an alicyclic group, and an aromatic group.
  • All groups which can be used as polyester can be used according to a required characteristic.
  • trifunctional or higher functional polyol that generates the structure of the formula [V] include glycerin, trimethylolethane, trimethylolpropane, ditrimethylolpropane, pentaerythritol, and dipentaerythritol.
  • the polyester of the present invention may contain a small amount of a repeating unit represented by the following formula [VI] to the extent that the characteristics of the present invention are not impaired.
  • the repeating unit represented by the formula [VI] is contained, for example, it is preferably contained in the range of 0.1 to 5 mol% of all repeating units.
  • N in the formula [VI] represents an integer of 1 or more
  • C in the formula [VI] is a trivalent or higher group selected from an aliphatic group, an alicyclic group and an aromatic group.
  • the type of C in the above formula [VI] is not particularly limited, and any group that can be used as a polyester can be used depending on the required properties.
  • tri- or higher functional polycarboxylic acids that produce the structure of formula [VI] include 1,2,3-propanetricarboxylic acid, 1,2,3,4-butanetetracarboxylic acid, 1,2,4 -Cyclohexanetricarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, trimellitic acid, pyromellitic acid and the like.
  • the polyester of the present invention may contain a repeating unit represented by the following formula [VII] to the extent that the characteristics of the present invention are not impaired.
  • the repeating unit represented by the formula [VII] is contained, for example, it is preferably contained in the range of 0.1 to 20 mol% of all repeating units.
  • D in the above formula [VII] is a divalent group selected from an aliphatic group, an alicyclic group, and an aromatic group. There is no restriction
  • Examples of D include methylene group, dimethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, 2-methyltrimethylene group, heptamethylene group, 1-methylhexamethylene group, octamethylene group, nonamethylene Group, aliphatic group such as decamethylene group, dimethyloctamethylene group and undecamethylene group, 1,3-cyclohexylene group, 1,4-cyclohexylene group, 2,6-decahydronaphthylene group, bicyclo [2.2.
  • Alicyclic groups such as heptylene group, tricyclodecylene group and pentacyclododecacylen group, p-phenylene group, m-phenylene group, 2-methyl-1,4-phenylene group, 2,6-tetrahydronaphthyl And aromatic groups such as a len group and a 2,6-naphthalylene group.
  • the terminal of the polyester of the present invention needs to have a hydroxyl group at 70% or more, or a carboxyl group at 70% or more. Moreover, it is preferable that the terminal of the polyester has a hydroxyl group at 90% or more or a carboxyl group at 90% or more, and the terminal of the polyester has a hydroxyl group at 95% or more or a carboxyl group at 95% or more. Further preferred. Further, it is more preferable that the terminal of the polyester has a hydroxyl group within the above range.
  • the diol component and the dicarboxylic acid component in excess.
  • the diol component: dicarboxylic acid component can be used in a molar ratio of 1.2 to 3.0: 1, and further 1.2 to 2.0: 1.
  • a step of removing the diol component may be included in the later stage of the reaction.
  • Example 4 of Patent Document 5 when a diol component and a dicarboxylic acid component are reacted in equimolar amounts to obtain a polyester having a desired molecular weight, the terminal hydroxyl group of the obtained polyester is: Usually 50% and well below 70%. Further, if the diol component and the dicarboxylic acid component are reacted in equimolar amounts to obtain a polyester having a terminal hydroxyl group of 70% or more, it is considered that only the dicarboxylic acid is distilled off during the synthesis. However, in order to carry out such a method, it is necessary to have a certain difference between the boiling points of the diol component and the dicarboxylic acid component.
  • an equimolar diol component is used as a raw material. It is presumed that it is difficult to obtain a polyester having a terminal hydroxyl group content of 70% or more using a dicarboxylic acid component. On the other hand, as a method for obtaining a polyester having a carboxyl group at 70% or more of the terminals, it is preferable to react the diol component and the dicarboxylic acid component in excess of the carboxylic acid component.
  • the diol component: dicarboxylic acid component can be in a molar ratio of 1: 1.2 to 3.0, and more preferably 1: 1.2 to 2.0.
  • the number average molecular weight of the polyester of the present invention is not particularly limited, but the lower limit is preferably 400 or more, more preferably 600 or more, and still more preferably 800 or more. As an upper limit, it is 10,000 or less, More preferably, it is 5000 or less, More preferably, it is 3000 or less, More preferably, it is 2000 or less.
  • the number average molecular weight in the present invention is a value measured by the method described in Examples described later unless otherwise specified.
  • the polyester of the present invention preferably has a glass transition temperature measured by a differential scanning calorimeter of 30 ° C. or less, more preferably ⁇ 20 ° C. or less, still more preferably ⁇ 28 ° C. or less, and ⁇ 35 ° C. or less. Is more preferable, and -40 ° C. or lower is even more preferable. With such a range, a polyurethane excellent in flexibility and mechanical properties can be obtained.
  • the lower limit value of the glass transition temperature of the polyester of the present invention is not particularly defined, but can be, for example, ⁇ 80 ° C. or higher.
  • the polyester portion constitutes a soft segment, but if the Tg of the polyester constituting the soft segment portion is low, there is a merit that it can be used as an elastomer at a wide use temperature. is there. That is, if the Tg of the polyester is higher than the temperature at which the elastomer is actually used, the polyester portion becomes difficult to function as a soft segment, but the polyester of the present invention is used as an elastomer in a wide temperature range because of its low Tg. be able to.
  • the polyester of the present invention preferably has no melting exothermic peak temperature (melting point) measured with a differential scanning calorimeter (crystallization is not confirmed). Since the polyester of the present invention can be liquid at room temperature (for example, 25 ° C.), it is preferably used for various applications. In particular, when used industrially, polyester that is liquid at room temperature is useful.
  • the method for producing the polyester of the present invention is not particularly limited, and conventionally known methods can be applied. In general, it can be produced by polycondensing monomers as raw materials. Examples thereof include a melt polymerization method such as a transesterification method and a direct esterification method, or a solution polymerization method. Transesterification catalysts, esterification catalysts, etherification inhibitors, polymerization catalysts used for polymerization, various stabilizers such as heat stabilizers, light stabilizers, polymerization regulators, etc., if necessary, conventionally known ones may be used. I can do it.
  • transesterification catalyst examples include compounds such as manganese, cobalt, zinc, titanium, and calcium
  • esterification catalyst examples include compounds such as manganese, cobalt, zinc, titanium, and calcium
  • polycondensation catalyst examples include compounds such as germanium, antimony, tin, and titanium.
  • dicarboxylic acid components such as dicarboxylic acid esters, dicarboxylic acid chlorides, active acyl derivatives, and dinitriles can be used as the raw material for the dicarboxylic acid component in addition to the dicarboxylic acid.
  • Examples of the method for producing a polyester having a terminal hydroxyl group include a method in which a diol component is excessively used and reacted with a dicarboxylic acid component by a direct esterification method or a transesterification method. For example, it can be produced by charging the diol component in an amount of 1.1 to 2 times the dicarboxylic acid component and reacting.
  • a method for producing a polyester having a carboxyl group at the end for example, a method in which a dicarboxylic acid component is excessively used with respect to a diol component and reacted by a direct esterification method is exemplified. For example, it can be produced by charging the dicarboxylic acid component 1.1 to 2 times the diol component and reacting.
  • the polyester having a hydroxyl group at the terminal of the present invention is useful as a raw material for producing polyurethane. That is, when a polyurethane is produced by reacting a hydroxyl-terminated polymer, polyisocyanate and, if necessary, a chain extender, by using the polyester of the present invention as at least a part of the hydroxyl-terminated polymer, A polyurethane having a constitutional unit in the main chain in which each hydrogen atom in the hydroxyl group located is removed is produced. Further, it is desirable that the polyester of the present invention is 20% by weight or more, more preferably 50% by weight or more of the polymer having a terminal hydroxyl group.
  • polyesters such as polytetramethylene adipate, polyethylene adipate, polyneopentylene adipate, polyhexamethylene adipate, polycaprolactone diol, 1,9-nonanediol, or 1,6-hexanediol as the polyester having a hydroxyl group at the end.
  • polycarbonates such as polyalkylene carbonate as the alkylene glycol component
  • polyethers such as polyethylene glycol and polypropylene glycol can be used.
  • polyester and polyisocyanate react it is preferable to make the said polyester and polyisocyanate react to make a prepolymer, and to make the said prepolymer and a chain extender react. Also preferred is a method in which the polyester, polyisocyanate and chain extender are mixed together and then reacted. More specifically, for example, a polyester having a terminal hydroxyl group and a low molecular compound (chain extender) having two or more active hydrogen atoms as necessary are uniformly mixed and preheated to about 60 ° C.
  • Polyurethane in which the molar ratio of the number of active hydrogen atoms and isocyanate groups in these mixtures is 0.95 to 1: 1.05 is added, and a continuous polymerization apparatus having a twin screw while stirring for a short time with a rotary mixer.
  • Polyurethane can be produced by continuously supplying and reacting. Polyurethane can also be produced by reacting a polyester having a terminal hydroxyl group with a polyisocyanate in advance to produce a prepolymer having a terminal isocyanate group and then reacting with a chain extender.
  • reaction are usually carried out in the absence of a solvent, but may be carried out using a solvent.
  • solvents include dimethylformamide, diethylformamide, dimethylacetamide, dimethylsulfoxide, tetrahydrofuran, methyl isobutyl ketone, and dioxane. , Cyclohexanone, benzene, toluene, and ethyl cellosolve.
  • a compound containing only one active hydrogen that reacts with an isocyanate group for example, a monohydric alcohol such as ethyl alcohol or propyl alcohol, and diethylamine or di-n-propyl Secondary amines such as amines can be used as end terminators.
  • a monohydric alcohol such as ethyl alcohol or propyl alcohol
  • diethylamine or di-n-propyl Secondary amines such as amines
  • a stabilizer such as a heat stabilizer (for example, an antioxidant) and a light stabilizer to the polyurethane.
  • a plasticizer an inorganic filler, a lubricant, a colorant, silicon oil, a foaming agent, a flame retardant, and the like may be added.
  • polyisocyanates examples include aromatic diisocyanates such as 4,4 ′ ′-diphenylmethane diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, xylylene diisocyanate, 1,5-naphthalene diisocyanate, isophorone diisocyanate, Alicyclic diisocyanates such as dicyclohexylmethane diisocyanate, hydrogenated xylylene diisocyanate, norbornene diisocyanate, aliphatic diisocyanates such as hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and the like, and these polyisocyanates can be used alone, Or you may use 2 or more types together. Of these, 4,4'-diphenylmethane diisocyanate is preferred.
  • Polyisocyanate means a compound having two or more isocyanate groups.
  • a low molecular compound such as diol or diamine having two or more active hydrogen atoms can be used.
  • the chain extender include diols having 2 to 10 carbon atoms such as ethylene glycol, propylene glycol, 1,4-butanediol and 1,6-hexanediol, and 2 to 2 carbon atoms such as bropyrenediamine and isophoronediamine. 10 diamines may be mentioned, and these may be used alone or in combination of two or more. When a chain extender having two active hydrogen atoms such as diol and diamine is used, polyurethane can be easily produced.
  • the amount of chain extender used is not particularly limited, but is preferably 0.1 to 20 times (molar ratio) with respect to polyester. Furthermore, if necessary, monovalent low molecular alcohols such as methanol and ethanol, monovalent low molecular amines such as methylamine and ethylamine, and the like may be used as the modifier.
  • the weight average molecular weight of the polyurethane of the present invention is not particularly limited, but is preferably 10,000 to 500,000.
  • the number average molecular weight is not particularly limited, but is preferably 10,000 to 100,000.
  • the obtained polyurethane can be subjected to a molding process immediately after polymerization. If unreacted polyisocyanate is present in the polyurethane in an amount of 0.2% by weight or more depending on the polymerization conditions, aging is carried out at 60 to 80 ° C. for 4 to 30 hours as necessary to complete the reaction, and then molding is performed. Can be attached.
  • a poor polyurethane solvent for example, an aliphatic saturated hydrocarbon having 6 to 10 carbon atoms such as hexane, heptane, octane, nonane or decane, or methanol, ethanol or the like is added and mixed. Then, polyurethane can be coagulated and separated, filtered and dried, and then subjected to molding.
  • the polyurethane of the present invention includes a repeating unit represented by the formula [I].
  • the repeating unit represented by the formula [I] has the same meaning as the repeating unit represented by the formula [I], and the preferred range is also the same.
  • the polyurethane of the present invention may further contain a repeating unit represented by the formula [II] and other repeating units.
  • diols or diamines having two or more active hydrogen atoms can be used as chain extenders.
  • a urea bond is formed by reaction with an isocyanate group, and the molecular weight can be extended. Therefore, the polyurethane of the present invention may have a urea bond.
  • polyurethane of the present invention it is possible to form a crosslinked structure by the reaction of a urea bond and an isocyanate group, and to further increase the molecular weight.
  • the polyurethane of the present invention only one type of repeating unit represented by the formula [I] may be included, or two or more types may be included.
  • a polyurethane containing a repeating unit represented by the following formula [X] is exemplified.
  • R 5 is a divalent hydrocarbon group, and R 6 includes a repeating unit represented by the formula [I].
  • R 5 is a substituted or unsubstituted benzene ring, a substituted or unsubstituted cyclohexane ring, a substituted or unsubstituted straight-chain alkylene group having 1 to 10 carbon atoms, and a group consisting of a combination thereof. Examples of the group include an alkyl group, and a methyl group or an ethyl group is preferable.
  • R 5 is preferably a group represented by the following, alone or in combination thereof. In the above, Me represents a methyl group, and n represents an integer of 2 to 12.
  • R 5 is particularly preferably a group represented by the following.
  • R 6 substantially consists only of the repeating unit represented by the formula [I]. “Substantially” means, for example, that 90% by weight or more, and more than 95% by weight of the constituent components of R 6 are the repeating unit represented by the formula [I].
  • the repeating unit represented by the formula [X] is 90% by weight or more of all repeating units contained in the polyurethane.
  • the polyurethane of the present invention preferably further contains a repeating unit represented by the formula [XX] in addition to the repeating unit represented by the formula [X].
  • R 5 is a divalent hydrocarbon group, and R 6 includes a repeating unit represented by the formula [I].
  • R 5 has the same meaning as R 5 in the formula [X]
  • the preferred range is also the same.
  • R 6 has the same meaning as R 6 in formula [X] or [XX], and the preferred range is also the same.
  • “Substantially” means, for example, that 90% by weight or more, and more than 95% by weight of the constituent components of R 6 are the repeating unit represented by the formula [I]. In this embodiment, it is preferable that the repeating unit represented by the above formula [X] or [XX] occupies 90% by weight or more of all repeating units contained in the polyurethane. Such a structure is obtained when the above-mentioned diamines are used as the chain extender.
  • the polyurethane of the present invention can be molded by various methods, and examples of the molding method include an extrusion molding method, an injection molding method, a calendar molding method, and a blow molding method.
  • the polyester of the present invention is excellent in hydrolysis resistance and gives a product having excellent hydrolysis resistance when used as a raw material for producing polyurethane, polyamide elastomer, polyester elastomer and the like. Moreover, the polyester obtained by this invention is applicable also to other various uses.
  • the polyurethane of the present invention retains excellent properties such as flexibility, heat resistance (especially heat aging resistance), mechanical properties and the like, and is particularly excellent in hydrolysis resistance.
  • Polyurethane elastomers, paints, adhesives, coatings It can be used for agents, foams, binders, elastic fibers, synthetic leather, artificial leather, sealing materials, waterproofing materials, flooring materials and the like.
  • the polyester of the present invention can be converted into polyester acrylate or polyester methacrylate by reacting acrylate or methacrylate with the terminal hydroxyl group by a conventionally known method, respectively. Moreover, after making a polyisocyanate react with a terminal hydroxyl group, it can be set as polyester urethane acrylate or polyester urethane methacrylate by making the acrylate or methacrylate which has a hydroxyl group react, respectively.
  • These acrylates and methacrylates can be suitably used for paints, adhesives, printing inks, coating materials, sealing materials and optical materials.
  • polyester properties such as polyester were measured by the following method.
  • the hydroxyl value and acid value of the polyester were measured according to JIS K 1557, and the number average molecular weight (Mn) was calculated from the hydroxyl value and acid value according to the following formula. .
  • Mn KOH molecular weight ⁇ 2 / ⁇ [Hydroxyl value (mgKOH / g)] + [Acid value (mgKOH / g)] ⁇ ⁇ 10 ⁇ 3 Moreover, the ratio of the terminal hydroxyl group was calculated by (measured value of hydroxyl value) / (measured value of hydroxyl value + measured value of acid value) ⁇ 100 (unit:%).
  • Tg glass transition temperature
  • Tm melting point
  • polyurethane was measured by the following method.
  • the molecular weight of polyurethane is N, N′-dimethylformamide using a GPC apparatus (model: pump: Shodex DS-4, column: Shodex GPC KD-806M ⁇ 2 + KD-802 + KD-G) manufactured by Showa Denko KK was measured with a RI detector (model: Shodex RI-101).
  • the number average molecular weight (Mn) and the weight average molecular weight (Mw) were determined using polyethylene oxide as a standard substance.
  • the tensile test (tensile fracture stress and tensile fracture strain) of polyurethane uses a material test system (model: 5566 type) manufactured by Instron, and conforms to JIS K 7162. And measured at 23 ° C. and 50% RH.
  • Color tone The color tone of polyurethane is measured by a transmission method using a colorimetric color difference meter (model: ZE-2000) manufactured by Nippon Denshoku Industries Co., Ltd. according to JIS K 7105.
  • the b * value (CIELAB) showed a yellow coloring degree.
  • Hydrolysis resistance A polyurethane test piece was immersed in ion-exchanged water at 100 ° C.
  • a white precipitate was obtained by dropping 15.5 g of 28% aqueous ammonia with stirring into 505 g of an aqueous zirconium oxynitrate solution having a concentration of 25% by mass in terms of zirconium oxide (ZrO 2 ). This was filtered, washed with ion-exchanged water, and then dried at 110 ° C. for 10 hours to obtain hydrous zirconium oxide. This is stored in a magnetic crucible, and subjected to a baking treatment at 400 ° C. for 3 hours in the air using an electric furnace, and then pulverized in an agate mortar and expressed as powdered zirconium oxide (hereinafter referred to as “carrier A”).
  • carrier A powdered zirconium oxide
  • the BET specific surface area of the carrier A (measured by the nitrogen adsorption method; the same applies hereinafter) was 102.7 m 2 / g.
  • a catalyst 2.0 mass% palladium-supported zirconium oxide catalyst
  • Example 2 A polyester was obtained in the same manner as in Example 1 except that the target molecular weight was changed. Table 1 shows the properties and physical properties of the obtained polyester.
  • Example 3 A polyester was obtained in the same manner as in Example 1 except that sebacic acid (manufactured by Ito Oil Co., Ltd.) was used as a raw material for the dicarboxylic acid component constituent unit. Table 1 shows the properties and physical properties of the obtained polyester.
  • Example 4 A polyester was obtained in the same manner as in Example 1 except that terephthalic acid (manufactured by Mizushima Aroma Co., Ltd.) and adipic acid (manufactured by Rhodia Co., Ltd.) were used at a molar ratio of 1/1 as a raw material for the dicarboxylic acid component constituent unit. Table 1 shows the properties and physical properties of the obtained polyester.
  • Example 5 Dimethyl 2,6-naphthalenedicarboxylate (Mitsubishi Gas Co., Ltd.) in a 1.6 L internal volume reactor equipped with a stirring blade, packed tower rectification tower, total condenser, cold trap, thermometer, heating device and nitrogen gas introduction pipe (Chemical Co., Ltd.) 293.1 g (1.1 mol) and 3,3′-oxybis (2,2-dimethylpropan-1-ol) (formula [IV]) 411.0 g (2.
  • Example 6 Except that 2-ethyl-2-((3-hydroxy-2,2-dimethylpropoxy) methyl) hexan-1-ol (formula [V]) obtained in Reference Example 2 was used as a raw material for the diol component structural unit Polyester (2) was obtained in the same manner as in Example 1. Table 1 shows the properties and physical properties of the obtained polyester.
  • Example 7 Except that 2-ethyl-2-((3-hydroxy-2,2-dimethylpropoxy) methyl) butan-1-ol (formula [VI]) obtained in Reference Example 3 was used as a raw material for the diol component structural unit Polyester) was obtained in the same manner as in Example 1. Table 1 shows the properties and physical properties of the obtained polyester.
  • Example 8 Except that 2-((3-hydroxy-2,2-dimethylpropoxy) methyl) -2-methylpentan-1-ol (formula [VII]) obtained in Reference Example 4 was used as a raw material for the diol component structural unit. A polyester was obtained in the same manner as in Example 1. Table 1 shows the properties and physical properties of the obtained polyester.
  • Example 1 A polyester (3) was obtained in the same manner as in Example 1 except that diethylene glycol (a reagent manufactured by Wako Pure Chemical Industries, Ltd.) was used as a raw material for the diol component structural unit. Table 1 shows the properties and physical properties of the obtained polyester.
  • diethylene glycol a reagent manufactured by Wako Pure Chemical Industries, Ltd.
  • the ratio of the hydroxyl group of the terminal group calculated from (measured value of hydroxyl value) / (measured value of hydroxyl value + measured value of acid value) ⁇ 100 was 99.2% or more. .
  • Example 10 A polyurethane was produced in the same manner as in Example 9 except that the polyester (2) obtained in Example 6 was used instead of the polyester (1). The evaluation results of the obtained polyurethane are shown in Table 2.
  • the polyurethane obtained from the polyester of the present invention has a high retention rate of tensile fracture stress and tensile fracture strain in the hydrolysis resistance test, and is less colored in the heat aging resistance test. Excellent aging properties.
  • the comparison between Example 9 and Example 10 shows that the combination of R 1 and R 2 and the combination of R 3 and R 4 of the repeating unit represented by the formula [I] are different and more excellent. It has been found that weather resistance and heat aging resistance can be achieved.
  • the polyester of the present invention gives a product having excellent hydrolysis resistance, heat resistance (particularly heat aging resistance) and the like when used as a raw material for producing polyurethane, polyamide elastomer, polyester elastomer and the like.
  • it can be used as a polymer modifier, a polymer plasticizer, and the like in addition to constituent materials such as paints, adhesives, pressure-sensitive adhesives, inks, coating materials, and sealing materials.
  • the polyurethane of the present invention has excellent properties such as flexibility, heat resistance (particularly heat aging resistance), mechanical properties and the like, and is particularly excellent in hydrolysis resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 耐加水分解性、耐熱老化性に優れたポリウレタンの原料となるポリエステルを提供する。さらに、前記ポリエステルを用いた、ポリウレタン、エラストマー、ポリエステルの製造方法およびポリウレタンの製造方法を提供する。 下記式[I]で表される1種以上の繰返し単位を有し、末端の70%以上に水酸基を有するかあるいは末端の70%以上にカルボキシル基を有することを特徴とするポリエステル(ただし、R1、R2、R3およびR4 はそれぞれ独立に炭素数1~6の脂肪族炭化水素基を表し、Aは脂肪族基、脂環族基、および芳香族基から選ばれる2価基である。)。

Description

ポリエステル、ポリウレタン、エラストマー、ポリエステルの製造方法およびポリウレタンの製造方法
 本発明は新規なポリエステルに関するものであり、さらに詳しくは、耐加水分解性や耐熱性(特に、耐熱老化性)に優れたポリウレタン、ポリエステルエラストマーやポリアミドエラストマーなどを形成するための原料や、塗料、接着剤、粘着剤、インキ、被覆材、封止材などの構成材料の他、高分子改質剤、高分子可塑剤などとして使用することができる新規なポリエステルに関するものである。
 従来より塗料、接着剤、ポリウレタン等の分野において分子末端が水酸基であるポリエステルが使用されている。
 このようなポリエステルとしては、エチレングリコール、ジエチレングリコール、プロピレングリコール、ネオペンチルグリコール、1,4-ブタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、トリメチロールプロパン、グリセリン等の多価アルコールと多塩基酸またはその無水物あるいはそのエステル誘導体から得られるポリエステルが知られている。
 これらのポリエステルの中でも、アジピン酸等の脂肪族ジカルボン酸と2価あるいは3価以上の多価アルコールとをエステル化反応させて得られる分子末端が水酸基であるポリエステルは、2官能性以上のイソシアネート化合物と反応させることによりポリウレタンとすることができ、エラストマー、塗料、接着剤、コーティング剤、およびフォーム等の広い用途に用いられている。
 さらに、分子末端がカルボキシル基であるポリエステルも2官能性以上のイソシアネート化合物と反応させることにより、耐熱性に優れるポリエステルポリアミドとすることができる。
 また、多塩基酸として無水フタル酸、イソフタル酸およびテレフタル酸等の芳香族ジカルボン酸をアジピン酸等の脂肪族ジカルボン酸と併用し、2価あるいは3価以上の多価アルコールとエステル化反応させて得られるポリエステルはポリウレタン,塗料や接着剤等の分野で広く用いられている。
  しかしながら、ポリオール成分としてポリエステルを使用したポリウレタン等は、加水分解を受け易いという欠点がある。
 一方、ポリエーテルを使用したポリウレタンは、ポリエステルを使用したポリウレタンに比較して、耐加水分解性は優れているものの、耐候性が悪く、力学的特性、耐油性、耐溶剤性の点でも劣っており、その使用が限定されている。また、耐加水分解性に優れたポリカーボネートを使用したポリウレタンは、上記欠点が改善されているものの、耐寒性が不十分であり、また極めて高価であることから、工業的使用は制限される。
 したがって、柔軟性、耐熱性(特に、耐熱老化性)、機械物性等のすぐれた特性を保持すると共に、特に耐加水分解性の優れたポリウレタンを与えることのできるポリエステルが望まれていた。
 従来のポリエステル系ポリウレタンで耐加水分解性が比較的良好なポリウレタンとして、ネオペンチルグリコールを使用したポリウレタン、あるいは、2-ブチル-2-エチル-1,3-プロパンジオール(特許文献1) 、2,4-ジアルキル-1,5-ペンタンジオール(特許文献2)などを使用したポリウレタンが知られている。
 また、メチル基の側鎖を1個有する分岐鎖ジカルボン酸単位を含有するポリエステルをポリウレタンの原料として用いることにより加水分解性の向上が試みられている。例えば、3-メチルペンタン二酸を含有するジカルボン酸(特許文献3)、2-メチルオクタン二酸(特許文献4)などを使用したポリエステルを原料として使用したポリウレタンが提案されている。
 これらのポリウレタンは、従来のポリウレタンに比べて耐加水分解性は向上してはいるもののまだ不十分であった。
 一方、特許文献5には、ポリウレタンの原料としてのポリエステルが記載されている。具体的には、特許文献5の実施例4には、3,3’-オキシビス(2-エチル-2-ブチル-1-プロパノール(3,3'-oxybis(2-ethyl-2-butyl-1-propanol)とテレフタル酸を、等モル比で反応させてなるポリエステルは熱劣化に対して安定性を示すことが記載されている。さらに、かかるポリエステルが、ポリウレタンの延長剤に有用であることが記載されている。
 また、特許文献6および特許文献7には、芳香族ジカルボン酸と脂肪族ジオールとを主な構成成分とするポリエステル樹脂の連続製造法が開示されている。
特開昭60-229918号公報 特許第3589779号公報 特開昭60-26018号公報 特開平5-320302号公報 米国特許第3,287,419号公報 特開平09-235365号公報 特開平09-235359号公報
 上述の通り、特許文献5には、3,3’-オキシビス(2-エチル-2-ブチル-1-プロパノールとテレフタル酸を、等モル比で反応させてなるポリエステルが記載されている。しかしながら、特許文献5に記載のように、ジオール成分とジカルボン酸成分を等モルで反応させると、得られるポリエステルの末端水酸基は、通常、50%となる。また、特許文献5には、末端水酸基を70%以上とする手段についても記載も示唆もない。
 一方、特許文献6、7に記載のポリエステルは、本発明で開示するポリエステルとは構造が違っており、また、得られたポリエステルを原料に用いたポリウレタンの物性については何ら記載が無い。
 本発明の目的は、耐加水分解性、耐熱性、特に、耐熱老化性に優れたポリウレタンの原料となるポリエステルを提供することにある。さらに、前記ポリエステルを用いた、ポリウレタン、エラストマー、ポリエステルの製造方法、および、ポリウレタンの製造方法を提供することにある。
 本発明者らは、上記目的を達成する為に鋭意検討した結果、特定の構成単位を有するポリエステルを使用することにより、耐加水分解性、耐熱性、特に、耐熱老化性に優れたポリウレタン(熱可塑性ポリウレタン)が得られることを見出し、本発明に至ったものである。
 すなわち、本発明は以下の通りである。
<1>式[I]で表される1種以上の繰返し単位を有し、末端の70%以上に水酸基を有するかあるいは末端の70%以上にカルボキシル基を有することを特徴とするポリエステル。
Figure JPOXMLDOC01-appb-C000004
(ただし、R1、R2、R3およびR4は、それぞれ独立に炭素数1~6の脂肪族炭化水素基を表し、Aは脂肪族基、脂環族基、および芳香族基から選ばれる2価基である。)
<2>末端の90%以上に水酸基を有するかあるいは末端の90%以上にカルボキシル基を有する<1>記載のポリエステル。
<3>式[I]で表される繰返し単位を全繰り返し単位中20mol%以上含む<1>または<2>記載のポリエステル。
<4>式[I]で表される繰返し単位のR1及びR2の組合せとR3及びR4の組合せが異なる組み合わせである<1>~<3>のいずれか一つに記載のポリエステル。
<5>数平均分子量が400~10000である、<1>~<4>のいずれか一つに記載のポリエステル。
<6>示差走査熱量計で測定されるガラス転移温度が30℃以下である、<1>~<5>のいずれか一つに記載のポリエステル。
<7>式[I]で表される繰返し単位を全繰り返し単位中50mol%以上含む<1>~<6>のいずれか一つに記載のポリエステル。
<8>式[I]中のAが2価の脂肪族基である繰返し単位を式[I]で表される繰返し単位中10mol%以上、かつAが2価の芳香族基である繰返し単位を式[I]で表される繰返し単位中90mol%未満で有する、<1>~<7>のいずれか一つに記載のポリエステル。
<9>式[I]中のAが2価の脂肪族基である繰返し単位を式[I]で表される繰返し単位中90mol%以上有する、<1>~<7>のいずれか一つに記載のポリエステル。
<10>式[I]中のAが、それぞれ独立に、テトラメチレン基、オクタメチレン基およびデカメチレン基から選ばれる<9>に記載のポリエステル。
<11>末端の90%以上に水酸基を有する、<1>~<10>のいずれか一つに記載のポリエステル。
<12>式[I]中のR1及びR2がメチル基である<1>~<11>のいずれか一つに記載のポリエステル。
<13>式[I]中のR3及びR4がメチル基である<12>記載のポリエステル。
<14>式[I]で表される繰返し単位のR3とR4の少なくともいずれかがメチル基以外の基である<12>記載のポリエステル。
<15><1>~<14>のいずれか一つに記載のポリエステルを原料として得られるポリウレタン。
<16><15>記載のポリウレタンを含むエラストマー。
<17>下記式[III]で表される1種以上のジオールを含むジオールとジカルボン酸をモル比1.2~3.0:1で反応させることを特徴とするポリエステルの製造方法。
Figure JPOXMLDOC01-appb-C000005
(ただし、R1、R2、R3およびR4はそれぞれ独立に炭素数1~6の脂肪族炭化水素基を表す。)
<18><1>乃至<14>のいずれか一つ記載のポリエステルとポリイソシアネートを反応させることを含む、ポリウレタンの製造方法。
<19>前記ポリエステルとポリイソシアネートを反応させてプレポリマーとし、前記プレポリマーと鎖延長剤とを反応させる、<18>記載のポリウレタンの製造方法。
<20>下記式[I]で表される繰り返し単位を含む、ポリウレタン。
Figure JPOXMLDOC01-appb-C000006
(ただし、R1、R2、R3およびR4は、それぞれ独立に炭素数1~6の脂肪族炭化水素基を表し、Aは脂肪族基、脂環族基、および芳香族基から選ばれる2価基である。)
<21>下記式[X]で表される繰り返し単位を含む、<20>記載のポリウレタン。
Figure JPOXMLDOC01-appb-C000007
(ただし、R5は2価の炭化水素基であり、R6は式[I]で表される繰り返し単位を含む。)
<22>さらに、式[XX]で表される繰り返し単位を含む、<20>記載のポリウレタン。
Figure JPOXMLDOC01-appb-C000008
(ただし、R5は2価の炭化水素基であり、R6は式[I]で表される繰り返し単位を含む。)
 本発明のポリエステルにより、耐加水分解性、耐熱性(特に、耐熱老化性)に優れたポリウレタンが得られ、本発明の工業的意義が大きい。
 以下に本発明を詳細に説明する。
 尚、本願明細書において「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。本願明細書において、「Me」はメチル基を意味する。
 本発明のポリエステルは、上記式[I]で表される繰り返し単位を1種以上含むことに特徴があり、耐加水分解性、耐熱性(特に、耐熱老化性)に優れたポリウレタンを得ることができる。
 このメカニズムは推定であるが、式[I]で表される繰り返し単位は、ジオール由来の部分に、2つの4級炭素が存在するため、その安定性によって耐候性が向上し、さらに、4級炭素の疎水性によって耐加水分解性が向上することから、ポリウレタンにした際の耐候性および耐熱性(特に、耐熱老化性)を向上させることができたと考えられる。
 本発明のポリエステルは、上記式[I]で表される1種以上の繰り返し単位を全繰り返し単位中20mol%以上含むことが、耐加水分解性、耐熱性(特に、耐熱老化性)に優れたポリウレタンを得るためには好ましく、式[I]で表される1種以上の繰り返し単位を全繰り返し単位中50mol%以上含むことがより好ましく、式[I]で表される1種以上の繰り返し単位を全繰り返し単位中80mol%以上含む構成とすることもでき、特には、式[I]で表される1種以上の繰り返し単位を全繰り返し単位中90mol%以上含む構成とすることもできる。
 また、式[I]で表される1種以上の繰り返し単位と他の繰り返し単位を含むポリエステルでは、式[I]で表される繰り返し単位が本来有する4級炭素自体の安定性に基づく各種性能を発揮し、さらに、他の繰り返し単位を配合することによって、所望の性能を発揮するように適宜調整できる。
 上記式[I]のR1、R2、R3およびR4はそれぞれ独立に炭素数1~6の脂肪族炭化水素基であり、例えば、メチル基、エチル基、n-プロピル基、1-メチルエチル基(イソプロピル基)、n-ブチル基、1-メチルプロピル基、2-メチルプロピル基、1,1-ジメチルエチル基(tert-ブチル基)、n-ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-エチルプロピル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基(ネオペンチル基)、n-ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、4-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、1,3-ジメチルブチル基、2,2-ジメチルブチル基、2,3-ジメチルブチル基、3,3-ジメチルブチル基、1-エチルブチル基、2-エチルブチル基、1,1,2-トリメチルプロピル基、1,2,2-トリメチルプロピル基、1-エチル-1-メチルプロピル基、及び1-エチル-2-メチルプロピル基が挙げられる。
 中でもメチル基、エチル基、n-プロピル基、1-メチルエチル基(イソプロピル基)、n-ブチル基、1-メチルプロピル基、2-メチルプロピル基、n-ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-エチルプロピル基、n-ヘキシル基が好ましく、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基がより好ましい。
 また、R1及びR2がメチル基である繰り返し単位がより好ましく、R3およびR4が、それぞれ独立に、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、又はn-ヘキシル基から選ばれた基である繰り返し単位が好ましい。さらに好ましくは、R1及びR2がメチル基である繰り返し単位であり、R3がメチル基またはエチル基であり、R4がメチル基、エチル基、n-プロピル基およびn-ブチル基から選ばれた基である繰り返し単位である。
 式[I]で表される繰り返し単位のR1及びR2の組合せとR3及びR4の組合せが異なる組合せであってもよい。
 異なる組み合わせとすることにより、かかるポリエステルを用いてなるポリウレタンは、耐候性や耐熱老化性がより向上する傾向にあり好ましい。
 本発明では例えば、式[I]中のR1及びR2がメチル基であり、R3とR4の少なくともいずれかがメチル基以外の基である態様が挙げられる。
 本発明では特に、以下の実施形態が好ましい例として挙げられる。
 本発明の式[I]の第1の実施形態は、R1~R4が、いずれもメチル基である。
 本発明の式[I]の第2の実施形態は、R1およびR2がメチル基であり、R3がエチル基であり、R4がn-ブチル基である。
 本発明の式[I]の第3の実施形態は、R1およびR2がメチル基であり、R3およびR4がエチル基である。
 本発明の式[I]の第4の実施形態は、R1~R3がいずれもメチル基であり、R4がn-プロピル基である。
 本発明のポリエステルの製造方法は限定されないが、例えば、下記式[II]で表されるジオールを原料として用いて製造することができる。より具体的には、式[II]で表されるジオール等と、ジカルボン酸成分を反応させて、エステルを形成し、式[I]で表される繰返し単位を有するポリエステルを得ることができる。
Figure JPOXMLDOC01-appb-C000009
(ただし、R1、R2、R3およびR4はそれぞれ独立に炭素数1~6の脂肪族炭化水素基を表す。)
 R1、R2、R3およびR4は、式[I]におけるR1、R2、R3およびR4と同義であり、好ましい範囲も同様である。
 ジオール化合物の製造方法は限定されないが、例えば、下記式[III]のアセタールを水素化還元することによって得ることができる。
Figure JPOXMLDOC01-appb-C000010
(ただし、R1、R2、R3およびR4はそれぞれ独立に炭素数1~6の脂肪族炭化水素基を表す。)
 R1、R2、R3およびR4は、式[I]におけるR1、R2、R3およびR4と同義であり、好ましい範囲も同様である。
 なお、式[III]のアセタールは、下記式[IV]のように、2,2-ジ置換-3-ヒドロキシプロパナールと2,2-ジ置換-1,3-プロパンジオールのアセタール化により得ることができる。
Figure JPOXMLDOC01-appb-C000011
(ただし、R1、R2、R3およびR4はそれぞれ独立に炭素数1~6の脂肪族炭化水素基を表す。)
 本発明のポリエステルでは、上記式[II]のジオールに、上記式[II]のジオール以外のジオールをジオール成分として適宜加え、ジカルボン酸成分とエステル化させ、式[I]の繰返し単位を有するポリエステルを得ることができる。
 本発明のポリエステルで用いられる上記式[II]のジオール以外のジオール成分の種類には特に制限はなく、必要な特性に応じてポリエステルの原料として使用できるすべてのジオール成分を用いることができる。
 上記式[II]のジオール以外のジオール成分の例としては、エチレングリコール、1,2-プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、2-メチル-1,3-プロパンジオール、1,3-ペンタンジオール、2,4-ペンタンジオール、2-メチル-1,3-ブタンジオール、ネオペンチルグリコール、1,3-ヘキサンジオール、3-メチル-1,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,5-ヘキサンジオール、2-エチル-1,5-ペンタンジオール、2-プロピル-1,5-ペンタンジオール、2,2-ジエチル-1,3-プロパンジオール、2-メチル-2-プロピル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、2-メチル-1,2-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、2,5-ヘキサンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、ジエチレングリコール、トリエチレングリコール、メタキシリレングリコール、パラキシリレングリコール、ポリエチレングリコール、ポリプロピレングリコール、およびポリブチレングリコールなどの脂肪族ジオール類;1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,3-ビス(ヒドロキシメチル)シクロヘキサン、1,4-ビス(ヒドロキシメチル)シクロヘキサン、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,2-デカヒドロナフタレンジメタノール、1,3-デカヒドロナフタレンジメタノール、1,4-デカヒドロナフタレンジメタノール、1,5-デカヒドロナフタレンジメタノール、1,6-デカヒドロナフタレンジメタノール、2,7-デカヒドロナフタレンジメタノール、テトラリンジメタノール、ノルボルナンジメタノール、トリシクロデカンジメタノール、5-メチロール-5-エチル-2-(1,1-ジメチル-2-ヒドロキシエチル)-1,3-ジオキサン、ペンタシクロドデカンジメタノール、および3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカンなどの脂環族ジオール類;4,4’-(1-メチルエチリデン)ビスフェノール、メチレンビスフェノール(ビスフェノールF)、4,4’-シクロヘキシリデンビスフェノール(ビスフェノールZ)、4,4’-スルホニルビスフェノール(ビスフェノールS)などのビスフェノール類のアルキレンオキシド付加物;ヒドロキノン、レゾルシン、4,4’―ジヒドロキシビフェニル、4,4’―ジヒドロキシジフェニルエーテル、4,4’―ジヒドロキシジフェニルベンゾフェノンなどの芳香族ジヒドロキシ化合物のアルキレンオキシド付加物などが挙げられる。
 上記式[I]のAはジカルボン酸成分の残基で、脂肪族基、脂環族基、および芳香族基から選ばれる2価基であり、Aの60mol%以上(好ましくは80mol%以上、さらに好ましくは90mol%以上)が、脂肪族基または脂環族基であることが好ましく、Aの60mol%以上(好ましくは80mol%以上、さらに好ましくは90mol%以上)が脂肪族基であることがさらに好ましい。脂肪族基は直鎖脂肪族基であっても、分岐脂肪族基であってもよいが、直鎖脂肪族基が好ましい。脂肪族基を採用することにより、得られるポリエステルのTgをより低くでき好ましい。Aが有する炭素原子数は、3~10が好ましい。
 Aは、その種類には特に制限はなく、必要な特性に応じてポリエステルとして使用できるすべての基を用いることができる。Aの例としては、メチレン基、ジメチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、2-メチルトリメチレン基、ヘプタメチレン基、1-メチルヘキサメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ジメチルオクタメチレン基、ウンデカメチレン基、などの脂肪族基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基、2,6-デカヒドロナフチレン基、ビシクロ[2.2.1]ヘプチレン基、トリシクロデシレン基、ペンタシクロドデカシレン基などの脂環族基、p-フェニレン基、m-フェニレン基、2-メチル-1,4-フェニレン基、2,6-テトラヒドロナフチレン基、2,6-ナフナフチレン基などの芳香族基などが挙げられる。これらの基は1種でもよいし、また2種以上を含んでもよい。
 以上のようなAの中では、テトラメチレン基、オクタメチレン基、デカメチレン基、o-フェニレン基、p-フェニレン基、m-フェニレン基および2,6-ナフチレン基から選ばれた1種以上が好ましい。
 本発明の好ましい実施形態として、式[I]中のAが2価の脂肪族基である繰返し単位を式[I]で表される繰返し単位中10mol%以上、かつAが2価の芳香族基である繰返し単位を式[I]で表される繰返し単位中90mol%未満で有する態様が例示される。
 また、Aの中では、脂肪族基を全繰り返し単位中90mol%以上用いることが好ましく、中でも全繰り返し単位中90mol%以上が、テトラメチレン基、オクタメチレン基およびデカメチレン基から選ばれた1種以上が好ましく、テトラメチレン基が特に好ましい。
 また、本発明のポリエステルには、本発明の特性を損なわない程度で下記式[V]で表される構成単位を少量含有させても良い。式[V]で表される繰り返し単位を含有させる場合、例えば、全繰り返し単位の0.1~5mol%の範囲で含有させることが好ましい。
Figure JPOXMLDOC01-appb-C000012
 上記式[V]中のnは1以上の整数をあり、Bは脂肪族基、脂環族基および芳香族基から選ばれる3価以上の基である。
 上記式[V]中のBはその種類には特に制限はなく、必要な特性に応じてポリエステルとして使用できるすべての基を用いることができる。式[V]の構造を生成する3官能性以上のポリオールの例としては、グリセリン、トリメチロールエタン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトールおよびジペンタエリスリトールなどが挙げられる。
 また、本発明のポリエステルには、本発明の特性を損なわない程度で下記式[VI]で表される繰り返し単位を少量含有させても良い。式[VI]で表される繰り返し単位を含有させる場合、例えば、全繰り返し単位の0.1~5mol%の範囲で含有させることが好ましい。
Figure JPOXMLDOC01-appb-C000013
 上記式[VI]中のnは1以上の整数をあらわし、上記式[VI]のCは脂肪族基、脂環族基および芳香族基から選ばれる3価以上の基である。
 上記式[VI]中のCはその種類には特に制限はなく、必要な特性に応じてポリエステルとして使用できるすべての基を用いることができる。式[VI]の構造を生成する3官能性以上のポリカルボン酸の例としては、1,2,3-プロパントリカルボン酸、1,2,3,4-ブタンテトラカルボン酸、1,2,4-シクロヘキサントリカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、トリメリット酸、ピロメリット酸などが挙げられる。
 また、本発明のポリエステルには、本発明の特性を損なわない程度で下記式[VII]で表される繰り返し単位を含有させても良い。式[VII]で表される繰り返し単位を含有させる場合、例えば、全繰り返し単位の0.1~20mol%の範囲で含有させることが好ましい。
Figure JPOXMLDOC01-appb-C000014
 上記式[VII]のDは脂肪族基、脂環族基、および芳香族基から選ばれる2価基である。
 上記式[VII]のDはその種類には特に制限はなく、必要な特性に応じてポリエステルとして使用できるすべての基を用いることができる。Dの例としては、メチレン基、ジメチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、2-メチルトリメチレン基、ヘプタメチレン基、1-メチルヘキサメチレン基、オクタメチレン基、ノナメチレン基、デカメチレン基、ジメチルオクタメチレン基およびウンデカメチレン基などの脂肪族基、1,3-シクロヘキシレン基、1,4-シクロヘキシレン基、2,6-デカヒドロナフチレン基、ビシクロ[2.2.1]ヘプチレン基、トリシクロデシレン基およびペンタシクロドデカシレン基などの脂環族基、p-フェニレン基、m-フェニレン基、2-メチル-1,4-フェニレン基、2,6-テトラヒドロナフチレン基および2,6-ナフナフチレン基などの芳香族基などが挙げられる。
 本発明のポリエステルの末端は70%以上に水酸基を有するかあるいは70%以上にカルボキシル基を有することが必要である。
 また、ポリエステルの末端は90%以上に水酸基を有するかあるいは90%以上にカルボキシル基を有することが好ましく、ポリエステルの末端は95%以上に水酸基を有するかあるいは95%以上にカルボキシル基を有することがさらに好ましい。また、ポリエステルの末端は、水酸基が上記範囲であることが一層好ましい。
 このような末端の70%以上に水酸基を有するポリエステルを得る方法としては、ジオール成分とジカルボン酸成分を反応させる際に、ジオール成分を過剰にして反応させることが好ましい。例えば、ジオール成分:ジカルボン酸成分を、モル比で、1.2~3.0:1、さらには、1.2~2.0:1とすることができる。このように、ジオール成分を過剰にして反応させることにより、初期の反応速度を速くでき好ましい。ジオール成分を過剰にして反応させた場合、反応後期で、ジオール成分を除去する工程を含んでいてもよい。一方、上述の特許文献5の実施例4のように、ジオール成分とジカルボン酸成分を、当モル量で反応させて所望の分子量を有するポリエステルを得ようとすると、得られるポリエステルの末端水酸基は、通常、50%であり、70%をはるかに下回る。
 また、ジオール成分とジカルボン酸成分を等モルで反応させて、末端水酸基が70%以上のポリエステルを得ようとすれば、合成途中で、ジカルボン酸のみを留去させることが考えられる。しかしながら、このような方法を行うには、ジオール成分とジカルボン酸成分の沸点にある程度差が必要であり、本発明で用いるような、沸点の低いジオールを用いる場合、原料として、等モルのジオール成分とジカルボン酸成分を用いて、末端水酸基量が70%以上のポリエステルを得ることは困難であると推測される。
 一方、末端の70%以上にカルボキシル基を有するポリエステルを得る方法としては、ジオール成分とジカルボン酸成分を反応させる際に、カルボン酸成分を過剰にして反応させることが好ましい。例えば、ジオール成分:ジカルボン酸成分を、モル比で、1:1.2~3.0、さらには、1:1.2~2.0とすることができる。
 ポリウレタンの原料として使用する場合には、イソシアネートと反応してウレタンとなる水酸基を末端に有することが必要である。また、ポリエステルポリアミドの原料とする場合には、イソシアネートと反応してアミドとなるカルボキシル基を末端に有することが必要である。
 本発明のポリエステルの数平均分子量は特に限定されないが、下限値としては、好ましくは400以上であり、より好ましくは600以上であり、さらに好ましくは、800以上である。上限値としては、10000以下であり、より好ましくは5000以下であり、さらに好ましくは、3000以下、一層好ましくは2000以下である。本発明における数平均分子量は、特に述べない限り、後述する実施例に記載の方法で測定された値とする。
 また、本発明のポリエステルは示差走査熱量計で測定されるガラス転移温度が30℃以下であることが好ましく、-20℃以下であるとより好ましく、-28℃以下がさらに好ましく、-35℃以下が一層好ましく、-40℃以下がより一層好ましい。このような範囲とすると、柔軟性、機械物性により優れたポリウレタンを得ることができる。本発明のポリエステルのガラス転移温度の下限値は特に定めるものではないが、例えば、-80℃以上とすることができる。
 また、本発明のポリエステルを用いてポリウレタンエラストマーを製造する場合、ポリエステル部分がソフトセグメントを構成するが、かかるソフトセグメント部分を構成するポリエステルのTgが低いと、幅広い使用温度でエラストマーとして使用できるメリットがある。すなわち、ポリエステルのTgがエラストマーを実際に使用する際の温度よりも高いと、ポリエステル部分はソフトセグメントとして機能しにくくなるが、本発明のポリエステルは、Tgが低いため、幅広い温度範囲でエラストマーとして用いることができる。
 また、本発明のポリエステルは示差走査熱量計で測定される融解発熱ピーク温度(融点)が観察されない(結晶化が確認されない)ことが好ましい。
 本発明のポリエステルは、常温(例えば、25℃)で液体とできるため、各種用途に好ましく用いられる。特に、工業的に使用する場合には、常温で液体のポリエステルは有益である。
 本発明のポリエステルを製造する方法に特に制限はなく、従来公知の方法を適用することが出来る。一般的には原料であるモノマーを重縮合することにより製造できる。例えばエステル交換法、直接エステル化法等の溶融重合法または溶液重合法を挙げることが出来る。エステル交換触媒、エステル化触媒、エーテル化防止剤、また重合に用いる重合触媒、熱安定剤、光安定剤等の各種安定剤、重合調整剤等も必要に応じて従来既知のものを用いることが出来る。
 エステル交換触媒として、マンガン、コバルト、亜鉛、チタン、カルシウム等の化合物、またエステル化触媒として、マンガン、コバルト、亜鉛、チタン、カルシウム等の化合物等が例示される。重縮合触媒としてはゲルマニウム、アンチモン、スズ、チタン等の化合物が例示される。その他従来公知の添加剤を加えても良い。また、製造方法によっては、原料としてジカルボン酸成分には、ジカルボン酸の他にジカルボン酸エステル、ジカルボン酸塩化物、活性アシル誘導体、ジニトリルなどのジカルボン酸誘導体を用いることもできる。
 末端が水酸基のポリエステルを製造する方法としては、例えば、直接エステル化法あるいはエステル交換法によりジオール成分をジカルボン酸成分に対して過剰に使用して反応させて製造する方法などが挙げられる。例えば、ジオール成分をジカルボン酸成分に対して1.1~2倍モル仕込んで反応させることで製造できる。
 また、末端がカルボキシル基のポリエステルを製造する方法としては、例えば、直接エステル化法によりジカルボン酸成分をジオール成分に対して過剰に使用して反応させて製造する方法などが挙げられる。例えば、ジカルボン酸成分をジオール成分に対して1.1~2倍モル仕込んで反応させることで製造できる。
 本発明の末端に水酸基を有するポリエステルは、ポリウレタンの製造原料として有用である。すなわち、末端が水酸基のポリマー、ポリイソシアネート及び必要に応じて鎖延長剤を反応させてポリウレタンを製造する際に、末端が水酸基のポリマーの少なくとも一部に本発明ポリエステルを使用することにより、末端に位置する水酸基中のそれぞれ1個の水素原子を除いた形の構成単位を主鎖中に含むポリウレタンが製造される。また、本発明のポリエステルは末端が水酸基のポリマーの20重量%以上、より好ましくは50重量%以上であることが望ましい。
 本発明のポリエステルと併用できる末端が水酸基のポリマーとしては、通常のポリウレタンの製造に使用できるものが使用できる。例えば、末端が水酸基のポリエステルとしてポリテトラメチレンアジペート、ポリエチレンアジペート、ポリネオペンチレンアジペート、ポリヘキサメチレンアジペート、ポリカプロラクトンジオール等の公知のポリエステル、1,9-ノナンジオールまたは1,6-ヘキサンジオールをアルキレングリコール成分とするポリアルキレンカーボネート等の公知のポリカーボネート、ポリエチレングリコール、ポリプロピレングリコール等の公知のポリエーテル等が挙げられる。
 本発明のポリウレタンを製造する方法に特に制限はなく、従来公知の方法を適用することができる。本発明では、上記ポリエステルとポリイソシアネートを反応させてプレポリマーとし、前記プレポリマーと鎖延長剤とを反応させることが好ましい。また、上記ポリエステルと、ポリイソシアネート及び鎖延長剤を一括に混合した後、反応させる方法も好ましい。
 より具体的には、例えば、末端が水酸基のポリエステルと必要に応じて2個以上の活性水素原子を有する低分子化合物(鎖延長剤)等とを均一に混合して、約60℃に予熱した後、これら混合物中の活性水素原子数とイソシアネート基のモル比が0.95~1:1.05になる量のポリイソシアネートを加え、回転ミキサーで短時間かき混ぜながら二軸スクリューを有する連続重合装置に供給し、連続的に反応させることによりポリウレタンを製造することができる。また、末端が水酸基のポリエステルとポリイソシアネートとを予め反応させ、末端イソシアネート基のプレポリマーを製造し、その後、鎖延長剤を反応させることにより、ポリウレタンを製造することもできる。
 これらの製造に於いては三級アミンや錫、チタンなどの有機金属塩等に代表される公知の重合触媒を用いる事も可能である。
 また、これらの反応は、通常、無溶媒で行われるが、溶媒を用いておこなってもよく、好ましい溶剤として、例えば、ジメチルホルムアミド、ジエチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、テトラヒドロフラン、メチルイソブチルケトン、ジオキサン、シクロヘキサノン、ベンゼン、トルエン、およびエチルセルソルブ等がある。
 本発明のポリウレタンエラストマー(ポリウレタンを含むエラストマー)を製造するにあたり、イソシアネート基に反応する活性水素を一つだけ含有する化合物、例えばエチルアルコール、プロピルアルコール等の一価アルコール、及びジエチルアミン、ジn-プロピルアミン等の二級アミン等を末端停止剤として使用することができる。
 ポリウレタンには、熱安定剤(例えば酸化防止剤) や光安定剤などの安定剤を添加することが望ましい。また、可塑剤、無機充填剤、滑剤、着色剤、シリコンオイル、発泡剤、難燃剤等を添加しても良い。
 ポリイソシアネートとしては、例えば、4,4 ’-ジフェニルメタンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、キシリレンジイソシアネート、1,5-ナフタレンジイソシアネート等の芳香族ジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、水添キシリレンジイソシアネート、ノルボルネンジイソシアネート等の脂環式ジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネートなどの脂肪族ジイソシアネート等をあげることができ、これらのポリイソシアネートは単独で用いても、または2種以上を併用してもよい。これらの中でも4,4 ’-ジフェニルメタンジイソシアネートが好ましい。なお、ポリイソシアネートとは、イソシアネート基を2つ以上有する化合物をいう。
 鎖延長剤は、2個以上の活性水素原子を有するジオールまたはジアミン等の低分子化合物を用いることができる。鎖延長剤としては、例えば、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオールなどの炭素数2~10のジオール類、ブロピレンジアミン、イソホロンジアミン等の炭素数2~10のジアミン類などが挙げられ、単独で使用しても、また2種以上を併用してもよい。鎖延長剤としてジオール、ジアミン類等の活性水素原子を2個有するものを用いると、ポリウレタンを製造し易い。
 鎖延長剤の使用量は、特には限定されないが、ポリエステルに対して、好ましくは、0.1~20倍(モル比)である。さらに、必要により、メタノール、エタノール等の一価の低分子アルコール、メチルアミン、エチルアミン等の一価の低分子アミン等を変性剤として用いてもよい。
 本発明のポリウレタンの重量平均分子量は特に限定されないが、好ましくは、10,000~500,000である。数平均分子量は、特に限定されないが、好ましくは、10,000~100,000である。
 重合反応を無溶媒で行った場合、得られたポリウレタンは、重合後、直ちに成形加工に付すことができる。重合条件により、前記ポリウレタン中に未反応のポリイソシアネートが0.2重量%以上存在する場合は、必要により60~80℃で4~30時間の熟成を行い、反応を完結させた後、成形加工に付すことができる。
 重合反応を溶媒中で行った場合、ポリウレタンの貧溶媒、例えば、ヘキサン、ヘプタン、オクタン、ノナン、デカン等の炭素数6~10の脂肪族飽和炭化水素、または、メタノール、エタノール等を添加混合してポリウレタンを凝集析出させ、ろ過分離し、乾燥した後、成形加工に付すことができる。
 本発明のポリウレタンは、式[I]で表される繰り返し単位を含む。式[I]で表される繰り返し単位は、上記式[I]で表される繰り返し単位と同義であり、好ましい範囲も同様である。本発明のポリウレタンは、さらに、式[II]で表される繰り返し単位や他の繰り返し単位を含んでいてもよい。加えて、鎖延長剤として2個以上の活性水素原子を有するジオールまたはジアミン類を使用することもできる。特にジアミン類を鎖延長剤に用いた場合、イソシアネート基との反応により、ウレア結合を形成し、分子量を延長させることができる。従って本発明のポリウレタンは、ウレア結合を有する場合もある。さらに、ウレア結合とイソシアネート基の反応により、架橋構造を形成し、さらに高分子化することも可能である。
 尚、本発明のポリウレタンにおいて、式[I]で表される繰り返し単位は、1種のみ含まれていても良いし、2種以上含まれていても良い。
 本発明のポリウレタンの好ましい実施形態として、下記式[X]で表される繰り返し単位を含むポリウレタンが例示される。
Figure JPOXMLDOC01-appb-C000015
(ただし、R5は2価の炭化水素基であり、R6は式[I]で表される繰り返し単位を含む。)
 R5は、置換または無置換のベンゼン環、置換または無置換のシクロヘキサン環、置換または無置換の炭素数1~10の直鎖アルキレン基、ならびに、これらの組み合わせからなる基が例示される、置換基としては、アルキル基が例示され、メチル基またはエチル基が好ましい。
 R5は、さらには、下記で表される基を単独もしくはこれらの組み合わせからなる基とすることが好ましい。
Figure JPOXMLDOC01-appb-C000016
 上記において、Meはメチル基であり、nは2~12の整数を表す。
 R5は、特に下記で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000017
 本実施形態では、R6は、実質的に、式[I]で表される繰り返し単位のみからなることが好ましい。実質的にとは、例えば、R6の構成成分の90重量%以上が、さらには、95重量%以上が、式[I]で表される繰り返し単位であることをいう。
 本実施形態では、上記式[X]で表される繰り返し単位がポリウレタンに含まれる全繰り返し単位の90重量%以上であることが好ましい。
 本発明のポリウレタンは、式[X]で表される繰り返し単位に加え、さらに、式[XX]で表される繰り返し単位を含むことも好ましい。
Figure JPOXMLDOC01-appb-C000018
(ただし、R5は2価の炭化水素基であり、R6は式[I]で表される繰り返し単位を含む。)
 R5は上記式[X]におけるR5と同義であり、好ましい範囲も同様である。
 R6は、式[X]または式[XX]における、R6と同義であり、好ましい範囲も同義である。
 本実施形態では、R6は、実質的に、式[I]で表される繰り返し単位のみからなることが好ましい。実質的にとは、例えば、R6の構成成分の90重量%以上が、さらには、95重量%以上が、式[I]で表される繰り返し単位であることをいう。
 本実施形態では、上記式[X]または式[XX]で表される繰り返し単位がポリウレタンに含まれる全繰り返し単位の90重量%以上を占めることが好ましい。
 このような構造は、鎖延長剤に上述のジアミン類等を用いた場合に得られる。
 本発明のポリウレタンは、種々の方法で成形加工することができ、成形加工法としては、例えば、押し出し成形法、射出成形法、カレンダー成形法、ブロー成形法などがあげられる。
 本発明のポリエステルは、耐加水分解性に優れ、ポリウレタンおよびポリアミドエラストマーやポリエステルエラストマー等の製造原料として使用した場合、優れた耐加水分解性等を有する製品を与える。また、本発明によって得られるポリエステルは、その他の種々の用途にも適用できる。
 本発明のポリウレタンは、柔軟性、耐熱性(特に、耐熱老化性)、機械物性等のすぐれた特性を保持すると共に、特に耐加水分解性の優れており、ポリウレタンエラストマー、塗料、接着剤、コーティング剤、フォーム、バインダー、弾性繊維、合成皮革、人工皮革、シーリング材、防水材、床材等に利用することができる。
 本発明のポリエステルは、従来知られた方法により末端水酸基にアクリレートまたはメタクリレートを反応させてそれぞれポリエステルアクリレートまたはポリエステルメタクリレートとすることができる。また、末端水酸基にポリイソシアネートを反応させた後、水酸基を有するアクリレートまたはメタクリレートを反応させることによりそれぞれポリエステルウレタンアクリレートまたはポリエステルウレタンメタクリレートとすることができる。これらのアクリレート、メタクリレートは塗料、接着剤、印刷インキ、コーティング材料、封止材料および光学材料等に好適に利用することができる。
 以下に実施例を示すが本発明は以下の実施例に限定されるものではない。ポリエステルの性状等の測定は以下の方法によった。
(1)水酸基価、酸価および数平均分子量
 ポリエステルの水酸基価および酸価は、JIS K 1557に準拠して測定し、数平均分子量(Mn)はこの水酸基価および酸価から下記式に従って算出した。
 Mn=KOHの分子量×2/
       {[水酸基価(mgKOH/g)]+[酸価(mgKOH/g)]}×10-3
 また、末端水酸基の割合は、(水酸基価の測定値)/(水酸基価の測定値+酸価の測定値)×100(単位:%)で算出した。
(2)ガラス転移温度及び融点
 ポリエステルのガラス転移温度(Tg)及び融点(Tm)は、株式会社島津製作所製、示差走査熱量計(型式:DSC/TA-60WS)を使用し、試料約10mgをアルミニウム製非密封容器に入れ、窒素ガス(30ml/min)気流中昇温速度10℃/minで測定した。
 また、ポリウレタンの物性等の測定は以下の方法によった。
(1)分子量
 ポリウレタンの分子量は昭和電工株式会社製GPC装置(型式:ポンプ:Shodex DS-4,カラム:Shodex GPC KD-806M×2+KD-802+KD-G)を用いて、N,N’-ジメチルホルムアミドを溶媒としてRI検出器(型式:Shodex RI-101)で測定した。ポリエチレンオキシドを標準物質として数平均分子量(Mn)および重量平均分子量(Mw)を求めた。
(2)引張物性
 ポリウレタンの引張試験(引張破壊応力および引張破壊ひずみ)は、インストロン社製、材料試験システム(型式:5566型)を使用し、JIS K 7162に準拠し、試験片は5A型を使用し、23℃、50%RHで測定した。
(3)色調
 ポリウレタンの色調は、日本電色工業株式会社製、測色色差計(型式:ZE-2000)を使用し、JIS K 7105に準拠し、厚さ1mmの板を透過法にて測定し、b*値(CIELAB)で黄色の着色度を示した。
(4)耐加水分解性
 ポリウレタンの試験片をイオン交換水中、100℃、200時間浸漬した後、50℃で24時間減圧乾燥し、黄色度(色調)および引張物性(引張破壊応力保持率および引張破壊ひずみ保持率)を測定した。
(5)耐熱老化性
 ポリウレタンの試験片を、株式会社東洋精機製作所製ギヤー式熱老化試験機(型式:GO-01)を用いて、JIS K 7212に準拠し、120℃、285時間処理した後、黄色度(色調)を測定した。
(原料ジオールの合成)
<参考例1>
3,3’-オキシビス(2,2-ジメチルプロパン-1-オール)(式[VIII])の合成
Figure JPOXMLDOC01-appb-C000019
 (1)2-(5,5-ジメチル-1,3-ジオキサン-2-イル)-2-メチル-プロパン-1-オールの調製(アセタール化)
 2,2-ジメチル-3-ヒドロキシ-プロピオンアルデヒド(ヒドロキシピバルアルデヒド、三菱瓦斯化学株式会社製、純度99.8%)131.3gと、2,2-ジメチル-1,3-プロパンジオール(ネオペンチルグリコール、東京化成工業株式会社製試薬)136.0gと、ベンゼン705gと、粒状ナフィオン(商品名「NR-50」、シグマアルドリッチ社製)3.0gと、を2リットルの丸底フラスコに収容し、常圧下で生成する水をベンゼンと共沸させながらディーン・スターク・トラップを用いて系外へ抜き出して、水の留出が止まるまで反応させた。これを濾過したのちに濃縮及び冷却することにより再結晶させて、2-(5,5-ジメチル-1,3-ジオキサン-2-イル)-2-メチル-プロパン-1-オールの結晶を得た。
(2)触媒担体の調製
 金属成分の担体として用いた酸化ジルコニウムを下記の方法で調製した。
 酸化ジルコニウム(ZrO2)換算で25質量%の濃度のオキシ硝酸ジルコニウム水溶液505gに、撹拌しながら28%アンモニア水15.5gを滴下することにより白色沈殿物を得た。これを濾過し、イオン交換水で洗浄した後に、110℃、10時間乾燥して含水酸化ジルコニウムを得た。これを磁製坩堝に収容し、電気炉を用いて空気中で400℃、3時間の焼成処理を行った後、メノウ乳鉢で粉砕して粉末状酸化ジルコニウム(以下、「担体A」と表記する。)を得た。担体AのBET比表面積(窒素吸着法により測定。以下同様。)は102.7m2/gであった。
(3)触媒の調製
 50gの担体Aに0.66質量%塩化パラジウム-0.44質量%塩化ナトリウム水溶液を添加し、担体上に金属成分を吸着させた。そこにホルムアルデヒド-水酸化ナトリウム水溶液を注加して吸着した金属成分を瞬時に還元した。その後、イオン交換水により触媒を洗浄し、乾燥することにより2.0質量%パラジウム担持酸化ジルコニウム触媒(以下、「A触媒」と表記する。)を調製した。
(4) 2-(5,5-ジメチル-1,3-ジオキサン-2-イル)-2-メチル-プロパン-1-オールの水素化還元
 500mLのSUS製反応器内に、A触媒6.00g、2-(5,5-ジメチル-1,3-ジオキサン-2-イル)-2-メチル-プロパン-1-オール24.0g、及び1,4-ジオキサン240gを収容し、反応器内を窒素ガスで置換した。その後、反応器内に水素ガスを8.5MPa充填し、反応温度である230℃へ昇温して、反応器内圧を13MPaに維持しつつ5時間反応させた。その後に冷却して反応器の内容物を回収した。得られた反応液を濾過して触媒を分離した後に再結晶して3,3’-オキシビス(2,2-ジメチルプロパン-1-オール)を得た。得られた生成物をNMR分析することで、構造を確認した。
Figure JPOXMLDOC01-appb-C000020
 繰り返し反応を行うことにより、実施例での必要量を確保した。
<参考例2>
2-エチル-2-((3-ヒドロキシ-2,2-ジメチルプロポキシ)メチル)ヘキサン-1-オール(式[IX])の合成
Figure JPOXMLDOC01-appb-C000021
 2,2-ジメチル-3-ヒドロキシプロパナール(ヒドロキシピバルアルデヒド、三菱瓦斯化学株式会社製、純度99.8%)73.6g、2-ブチル-2-エチル-1,3-プロパンジオール(東京化成工業株式会社製試薬)111.8g、ベンゼン705gと粒状ナフィオン(商品名「NR-50」、シグマアルドリッチ社製)3.0gとを2Lの丸底フラスコに入れ、常圧下で生成する水をベンゼンと共沸させながら、ディーン・スターク装置を用いて系外に抜き出して水の留出が止まるまで反応させた。ろ過、濃縮後、減圧蒸留することにより、2-(5-ブチル-5-エチル-1,3-ジオキサン-2-イル)-2-メチルプロパン-1-オールを得た。
 500mLのSUS製反応器内に、参考例1のA触媒6.0g、2-(5-ブチル-5-エチル-1,3-ジオキサン-2-イル)-2-メチルプロパン-1-オール24.0g、及び1,4-ジオキサン240gを入れ、反応器内を窒素ガスで置換した。その後、反応器内に水素ガスを8.5MPa充填し、反応温度である230℃へ昇温して、反応器内圧を13MPaに維持しつつ5時間反応させた。その後に冷却して反応器の内容物をろ過して触媒を分離した後に、減圧蒸留精製することにより、目的物を得た。得られた生成物をNMR分析することで、構造を確認した。
Figure JPOXMLDOC01-appb-C000022
 繰り返し反応を行うことにより、実施例での必要量を確保した。
<参考例3>
2-エチル-2-((3-ヒドロキシ-2,2-ジメチルプロポキシ)メチル)ブタン-1-オール(式[X])の合成
Figure JPOXMLDOC01-appb-C000023
 2,2-ジメチル-1,3-プロパンジオールに代えて2,2-ジエチル-1,3-プロパンジオール(東京化成工業株式会社製試薬)を用いた以外は参考例1と同様にしてアセタール化反応、精製を行い、2-(5,5-ジエチル-1,3-ジオキサン-2-イル)-2-メチル-プロパン-1-オールの結晶を得た。
 2-(5-ブチル-5-エチル-1,3-ジオキサン-2-イル)-2-メチルプロパン-1-オールに代えて2-(5,5-ジエチル-1,3-ジオキサン-2-イル)-2-メチル-プロパン-1-オール用いた以外は参考例2と同様に水素化還元反応、精製を行い、目的物を得た。生成物をNMR分析することで、構造を確認した。
Figure JPOXMLDOC01-appb-C000024
 繰り返し反応を行うことにより、実施例での必要量を確保した。
<参考例4>
2-((3-ヒドロキシ-2,2-ジメチルプロポキシ)メチル)-2-メチルペンタン-1-オール(式[XI])の合成
Figure JPOXMLDOC01-appb-C000025
 2-ブチル-2-エチル-1,3-プロパンジオールに代えて2-メチル-2-プロピル-1,3-プロパンジオール(東京化成工業株式会社製試薬)用いた以外は参考例2と同様にアセタール化合物の合成および水素化還元反応、精製を行い、目的物を得た。生成物をNMR分析することで、構造を確認した。
Figure JPOXMLDOC01-appb-C000026
 繰り返し反応を行うことにより、実施例での必要量を確保した。
(ポリエステルの合成)
<実施例1>
 攪拌翼、充填塔式精留塔、全縮器、コールドトラップ、温度計、加熱装置および窒素ガス導入管を備えた内容積1.6Lの反応缶にアジピン酸(ローディア社製)233.8g(1.6mol)および参考例1で得た3,3’-オキシビス(2,2-ジメチルプロパン-1-オール)(式[IV])481.0g(2.53mol)、チタン(IV)テトラブトキシドモノマー(和光純薬工業株式会社製試薬)11mg(0.03mmol)を仕込み、窒素置換後、常圧、窒素雰囲気下で徐々に温度を上げながら190℃~210℃で4時間エステル化反応を行った。所定量の水を留去した後、減圧を開始し、ジオール成分を系外に抜き出しつつ、最終的に240℃、1.2kPaまで2時間で昇温と減圧を徐々に行った。留出液量より分子量を判断し、目標分子量となった時点で反応を終了し、ポリエステル(1)を得た。得られたポリエステルの性状、物性を表1に示す。
<実施例2>
 目標分子量を変えた以外は実施例1と同様な方法でポリエステルを得た。得られたポリエステルの性状、物性を表1に示す。
<実施例3>
 ジカルボン酸成分構成単位の原料としてセバシン酸(伊藤製油株式会社製)を使用した以外は実施例1と同様な方法でポリエステルを得た。得られたポリエステルの性状、物性を表1に示す。
<実施例4>
 ジカルボン酸成分構成単位の原料としてテレフタル酸(水島アロマ株式会社製)とアジピン酸(ローディア社製)をモル比1/1で使用した以外は実施例1と同様な方法でポリエステルを得た。得られたポリエステルの性状、物性を表1に示す。
<実施例5>
 攪拌翼、充填塔式精留塔、全縮器、コールドトラップ、温度計、加熱装置および窒素ガス導入管を備えた内容積1.6Lの反応缶に2,6-ナフタレンジカルボン酸ジメチル(三菱瓦斯化学株式会社製)293.1g(1.1mol)および参考例1で得た3,3’-オキシビス(2,2-ジメチルプロパン-1-オール)(式[IV])411.0g(2.16mol)、酢酸マンガン(II)4水和物(和光純薬工業株式会社製)59mg(0.24mmol)を仕込み、窒素置換後、窒素雰囲気下で徐々に温度を上げながら190℃~210℃で6時間エステル交換反応を行った。所定量のメタノールを留去した後、減圧を開始し、ジオール成分を系外に抜き出しつつ、最終的に240℃、3.5kPaまで2時間で昇温と減圧を徐々に行った。留出液量より分子量を判断し、目標分子量となった時点で反応を終了し、ポリエステルを得た。得られたポリエステルの性状、物性を表1に示す。
<実施例6>
 ジオール成分構成単位の原料として参考例2で得た2-エチル-2-((3-ヒドロキシ-2,2-ジメチルプロポキシ)メチル)ヘキサン-1-オール(式[V])を使用した以外は実施例1 と同様な方法でポリエステル(2)を得た。得られたポリエステルの性状、物性を表1に示す。
<実施例7>
 ジオール成分構成単位の原料として参考例3で得た2-エチル-2-((3-ヒドロキシ-2,2-ジメチルプロポキシ)メチル)ブタン-1-オール(式[VI])を使用した以外は実施例1 と同様な方法でポリエステル)を得た。得られたポリエステルの性状、物性を表1に示す。
<実施例8>
 ジオール成分構成単位の原料として参考例4で得た2-((3-ヒドロキシ-2,2-ジメチルプロポキシ)メチル)-2-メチルペンタン-1-オール(式[VII])を使用した以外は実施例1 と同様な方法でポリエステルを得た。得られたポリエステルの性状、物性を表1に示す。
<比較例1>
 ジオール成分構成単位の原料としてジエチレングリコール(和光純薬工業株式会社製試薬)を使用した以外は実施例1 と同様な方法でポリエステル(3)を得た。得られたポリエステルの性状、物性を表1に示す。
Figure JPOXMLDOC01-appb-T000027
 上述のとおり、(水酸基価の測定値)/(水酸基価の測定値+酸価の測定値)×100から算出される末端基が水酸基の割合は、99.2%以上であることが分かった。
(ポリウレタンの合成)
<実施例9>
 攪拌翼、窒素ガス導入管を備えた500mlフラスコに実施例1で得られたポリエステル(1)142.4gを仕込み、80℃、減圧下で2時間、水分を除いた後、4,4’-ジイソシアン酸メチレンジフェニル(別名4,4 ’-ジフェニルメタンジイソシアネート)57.6gを添加し2時間、反応を行い、プレポリマーを作製した。その後、鎖延長剤として1,4-ブタンジオール10.1gを添加し、粘度が上がったところで数分後に取り出した。得られた生成物約200gをブラベンダー社製ミキサー(商品名:プラスチコーダラボステーション)に仕込み、160℃、30rpmで10分間混練した。得られたポリウレタンを、有限会社東邦プレス製作所製油圧式成形機を使用してプレス成形を行い、シート状とし、その後切削加工を行い、試験片を作製した。得られた試験片の評価結果を表2に示す。
<実施例10>
 ポリエステル(1)の代わりに実施例6で得られたポリエステル(2)を用いた以外は実施例9と同様な方法でポリウレタンを作製した。得られたポリウレタンの評価結果を表2に示す。
<比較例2>
 ポリエステル(1)の代わりに比較例1で得られたポリエステル(3)を用いた以外は実施例9と同様な方法でポリウレタンを作製した。得られたポリウレタンの評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000028
 本発明のポリエステルから得られるポリウレタンは、耐加水分解性試験における引張破壊応力および引張破壊ひずみの保持率が高く、かつ耐熱老化性試験における着色が小さく、比較例に比べ、耐加水分解性、耐熱老化性が優れている。
 特に、実施例9と実施例10の比較から、式[I]で表される繰り返し単位のR1及びR2の組合せとR3及びR4の組合せが異なる組合せであることにより、より優れた耐候性および耐熱老化性を達成できることが分かった。
 本発明のポリエステルは、ポリウレタンやポリアミドエラストマー、ポリエステルエラストマー等の製造原料として使用した場合、優れた耐加水分解性、耐熱性(特に、耐熱老化性)等を有する製品を与える。その他、塗料、接着剤、粘着剤、インキ、被覆材、封止材などの構成材料の他、高分子改質剤、高分子可塑剤などとして使用することができる。また、本発明のポリウレタンは、柔軟性、耐熱性(特に、耐熱老化性)、機械物性等のすぐれた特性を保持すると共に、特に耐加水分解性が優れており、ポリウレタンエラストマー、塗料、接着剤、コーティング剤、フォーム、バインダー、弾性繊維、合成皮革、人工皮革、シーリング材、防水材、床材等に利用することができる。

Claims (20)

  1.  式[I]で表される1種以上の繰返し単位を有し、末端の70%以上に水酸基を有するかあるいは末端の70%以上にカルボキシル基を有することを特徴とするポリエステル。
    Figure JPOXMLDOC01-appb-C000001
    (ただし、R1、R2、R3およびR4は、それぞれ独立に炭素数1~6の脂肪族炭化水素基を表し、Aは脂肪族基、脂環族基、および芳香族基から選ばれる2価基である。)
  2.  末端の90%以上に水酸基を有するかあるいは末端の90%以上にカルボキシル基を有する請求項1記載のポリエステル。
  3.  式[I]で表される繰返し単位を全繰り返し単位中20mol%以上含む請求項1または2記載のポリエステル。
  4.  式[I]で表される繰返し単位のR1及びR2の組合せとR3及びR4の組合せが異なる組み合わせである請求項1~3のいずれか1項に記載のポリエステル。
  5.  数平均分子量が400~10000である、請求項1~4のいずれか1項に記載のポリエステル。
  6.  示差走査熱量計で測定されるガラス転移温度が30℃以下である、請求項1~5のいずれか1項に記載のポリエステル。
  7.  式[I]で表される繰返し単位を全繰り返し単位中50mol%以上含む請求項1~6のいずれか1項に記載のポリエステル。
  8.  式[I]中のAが2価の脂肪族基である繰返し単位を式[I]で表される繰返し単位中10mol%以上、かつAが2価の芳香族基である繰返し単位を式[I]で表される繰返し単位中90mol%未満で有する、請求項1~7のいずれか1項に記載のポリエステル。
  9.  式[I]中のAが2価の脂肪族基である繰返し単位を式[I]で表される繰返し単位中90mol%以上有する、請求項1~7のいずれか1項に記載のポリエステル。
  10.  式[I]中のAが、それぞれ独立に、テトラメチレン基、オクタメチレン基およびデカメチレン基から選ばれる請求項9に記載のポリエステル。
  11.  末端の90%以上に水酸基を有する、請求項1~10のいずれか1項に記載のポリエステル。
  12.  式[I]中のR1及びR2がメチル基である請求項1~11のいずれか1項に記載のポリエステル。
  13.  式[I]中のR3及びR4がメチル基である請求項12記載のポリエステル。
  14.  式[I]で表される繰返し単位のR3とR4の少なくともいずれかがメチル基以外の基である請求項12記載のポリエステル。
  15.  請求項1~14のいずれか1項に記載のポリエステルを原料として得られるポリウレタン。
  16.  請求項15記載のポリウレタンを含むエラストマー。
  17.  下記式[III]で表される1種以上のジオールを含むジオールとジカルボン酸をモル比1.2~3.0:1で反応させることを特徴とするポリエステルの製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (ただし、R1、R2、R3およびR4はそれぞれ独立に炭素数1~6の脂肪族炭化水素基を表す。)
  18.  請求項1乃至14のいずれか1項記載のポリエステルとポリイソシアネートを反応させることを含む、ポリウレタンの製造方法。
  19.  前記ポリエステルとポリイソシアネートを反応させてプレポリマーとし、該プレポリマーと鎖延長剤とを反応させる、請求項18記載のポリウレタンの製造方法。
  20.  下記式[I]で表される繰り返し単位を含む、ポリウレタン。
    Figure JPOXMLDOC01-appb-C000003
    (ただし、R1、R2、R3およびR4は、それぞれ独立に炭素数1~6の脂肪族炭化水素基を表し、Aは脂肪族基、脂環族基、および芳香族基から選ばれる2価基である。)
PCT/JP2015/069104 2014-07-02 2015-07-02 ポリエステル、ポリウレタン、エラストマー、ポリエステルの製造方法およびポリウレタンの製造方法 WO2016002874A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/321,577 US10584198B2 (en) 2014-07-02 2015-07-02 Polyesters, polyurethanes, elastomers, processes for manufacturing polyesters and processes for manufacturing polyurethanes
CN201580033478.7A CN106459394B (zh) 2014-07-02 2015-07-02 聚酯、聚氨酯、弹性体、聚酯的制造方法和聚氨酯的制造方法
JP2016531440A JP6665778B2 (ja) 2014-07-02 2015-07-02 ポリエステル、ポリウレタン、エラストマー、ポリエステルの製造方法およびポリウレタンの製造方法
EP15815174.6A EP3165551A4 (en) 2014-07-02 2015-07-02 Polyester, polyurethane, elastomer, method for producing polyester, and method for producing polyurethane
KR1020167036218A KR20170026379A (ko) 2014-07-02 2015-07-02 폴리에스테르, 폴리우레탄, 엘라스토머, 폴리에스테르의 제조 방법 및 폴리우레탄의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-136692 2014-07-02
JP2014136692 2014-07-02

Publications (1)

Publication Number Publication Date
WO2016002874A1 true WO2016002874A1 (ja) 2016-01-07

Family

ID=55019401

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069104 WO2016002874A1 (ja) 2014-07-02 2015-07-02 ポリエステル、ポリウレタン、エラストマー、ポリエステルの製造方法およびポリウレタンの製造方法

Country Status (6)

Country Link
US (1) US10584198B2 (ja)
EP (1) EP3165551A4 (ja)
JP (1) JP6665778B2 (ja)
KR (1) KR20170026379A (ja)
CN (1) CN106459394B (ja)
WO (1) WO2016002874A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183496A1 (ja) * 2016-04-22 2017-10-26 昭和電工株式会社 硬化性組成物、該組成物を用いる硬化膜およびオーバーコート膜

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3287419A (en) * 1962-08-16 1966-11-22 Eastman Kodak Co 3, 3'-oxybis
JPS52132094A (en) * 1976-04-28 1977-11-05 Toyobo Co Ltd Polyester ether polyols
JPH09235365A (ja) * 1996-02-27 1997-09-09 Nippon Ester Co Ltd 粉体塗料用ポリエステル樹脂の連続製造法
JPH09235359A (ja) * 1996-02-27 1997-09-09 Nippon Ester Co Ltd 粉体塗料用ポリエステル樹脂の連続製造法
JPH10204376A (ja) * 1997-01-21 1998-08-04 Nippon Ester Co Ltd 粉体塗料用ポリエステル樹脂及び組成物
WO2014104341A1 (ja) * 2012-12-28 2014-07-03 三菱瓦斯化学株式会社 ポリエーテルジオール及びその製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1183196B (de) * 1958-01-09 1964-12-10 E. I. Du Pont De Nemours And Company, Wilmington, Del. (V. St. A.) Verfahren zur Herstellung kautschukelastischer Textilfaden
JPS6026018A (ja) 1983-07-21 1985-02-08 Kuraray Co Ltd 優れた耐加水分解性を有するポリウレタンの製造法
JPS60229918A (ja) 1984-04-28 1985-11-15 Chisso Corp ポリウレタン樹脂および該樹脂用ポリエステルポリオ−ル
US5102979A (en) * 1989-06-22 1992-04-07 Mitsubishi Kasei Corporation Polyester and process for producing the same
JP3217160B2 (ja) 1992-03-23 2001-10-09 株式会社クラレ ポリウレタン、その製造方法およびポリウレタン繊維
JP3589779B2 (ja) 1996-03-21 2004-11-17 協和醗酵工業株式会社 ポリエステルポリオール
US6576702B2 (en) * 2000-07-20 2003-06-10 Noveon Ip Holdings Corp. Plasticized waterborne polyurethane dispersions and manufacturing process

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3287419A (en) * 1962-08-16 1966-11-22 Eastman Kodak Co 3, 3'-oxybis
JPS52132094A (en) * 1976-04-28 1977-11-05 Toyobo Co Ltd Polyester ether polyols
JPH09235365A (ja) * 1996-02-27 1997-09-09 Nippon Ester Co Ltd 粉体塗料用ポリエステル樹脂の連続製造法
JPH09235359A (ja) * 1996-02-27 1997-09-09 Nippon Ester Co Ltd 粉体塗料用ポリエステル樹脂の連続製造法
JPH10204376A (ja) * 1997-01-21 1998-08-04 Nippon Ester Co Ltd 粉体塗料用ポリエステル樹脂及び組成物
WO2014104341A1 (ja) * 2012-12-28 2014-07-03 三菱瓦斯化学株式会社 ポリエーテルジオール及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BELLO, ANTONIO ET AL.: "Thermotropic liquid crystal polyestersderived from 4,4'- biphenyldicarboxylic acid and oxyalkylenespa", MACROMOLECULAR SYMPOSIA, vol. 84, 1994, pages 297 - 306, XP055249618 *
See also references of EP3165551A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183496A1 (ja) * 2016-04-22 2017-10-26 昭和電工株式会社 硬化性組成物、該組成物を用いる硬化膜およびオーバーコート膜
KR20180126028A (ko) * 2016-04-22 2018-11-26 쇼와 덴코 가부시키가이샤 경화성 조성물, 해당 조성물을 사용하는 경화막 및 오버코팅막
CN109071955A (zh) * 2016-04-22 2018-12-21 昭和电工株式会社 固化性组合物、使用该组合物的固化膜及外涂膜
JPWO2017183496A1 (ja) * 2016-04-22 2019-02-21 昭和電工株式会社 硬化性組成物、該組成物を用いる硬化膜およびオーバーコート膜
KR102112436B1 (ko) 2016-04-22 2020-05-18 쇼와 덴코 가부시키가이샤 경화성 조성물, 해당 조성물을 사용하는 경화막 및 오버코팅막

Also Published As

Publication number Publication date
JPWO2016002874A1 (ja) 2017-04-27
CN106459394A (zh) 2017-02-22
EP3165551A4 (en) 2018-01-24
US10584198B2 (en) 2020-03-10
EP3165551A1 (en) 2017-05-10
JP6665778B2 (ja) 2020-03-13
US20170210842A1 (en) 2017-07-27
CN106459394B (zh) 2019-07-09
KR20170026379A (ko) 2017-03-08

Similar Documents

Publication Publication Date Title
EP3026074B1 (en) Highly heat-resistant and highly transparent polycarbonate ester, and preparation method therefor
KR100568492B1 (ko) 코폴리카보네이트 디올 및 이로부터 수득한 열가소성폴리우레탄
JP6252070B2 (ja) ポリカーボネートジオール
KR102544387B1 (ko) 투명 경질 열가소성 폴리우레탄의 제조 방법
JP2022505672A (ja) 重合性組成物並びにコポリカーボネートエステル及びそれを製造する方法
CN104745061A (zh) 含有碳酸酯化合物的聚碳酸酯二醇
JP2009051887A (ja) 反応制御が容易なポリカーボネートジオール
JP2009051888A (ja) 反応の制御が容易なポリカーボネートジオール
JP6591723B2 (ja) ポリカーボネートジオール組成物及びその製造方法
JP6665778B2 (ja) ポリエステル、ポリウレタン、エラストマー、ポリエステルの製造方法およびポリウレタンの製造方法
JP6443053B2 (ja) ポリエーテル
JP6658521B2 (ja) ポリカーボネート、ポリウレタン、エラストマー、ポリカーボネートの製造方法およびポリウレタンの製造方法
WO2009123287A1 (ja) 熱可塑性ポリエステルエラストマーの製造方法及びその原料ポリカーボネートオリゴマー組成物
JPH10292037A (ja) ポリカーボネート
JP2017186553A (ja) ポリカーボネートジオール、ポリウレタン及びその製造方法
JP2017222625A (ja) ジオール化合物、該ジオール化合物から製造されるポリカーボネート樹脂、ポリカーボネートポリオール樹脂、ポリエステル樹脂、ポリエステルポリオール樹脂及びポリウレタン樹脂
JP2019183081A (ja) ポリエステルジオール、ポリウレタン、ポリウレタンの製造方法
JP2019172940A (ja) ポリカーボネートジオール、ポリウレタンおよびポリウレタンの製造方法
KR101666171B1 (ko) 폴리카보네이트 폴리올 및 이의 제조 방법
JP2021528538A (ja) 透明な硬質熱可塑性ポリウレタン
JP2022049307A (ja) ポリアルキレングリコール共重合ポリエステル
JP2003160649A (ja) 第3級ヒドロキシル基を有するポリエステル樹脂の製造方法
JP2021004286A (ja) ポリカーボネートポリオール誘導体
JP2008045098A (ja) ポリアルキレンエーテルグリコール及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815174

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015815174

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015815174

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016531440

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15321577

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20167036218

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE