WO2016002192A1 - 反射材用樹脂組成物およびそれを含む反射板 - Google Patents

反射材用樹脂組成物およびそれを含む反射板 Download PDF

Info

Publication number
WO2016002192A1
WO2016002192A1 PCT/JP2015/003259 JP2015003259W WO2016002192A1 WO 2016002192 A1 WO2016002192 A1 WO 2016002192A1 JP 2015003259 W JP2015003259 W JP 2015003259W WO 2016002192 A1 WO2016002192 A1 WO 2016002192A1
Authority
WO
WIPO (PCT)
Prior art keywords
component unit
group
resin composition
resin
mass
Prior art date
Application number
PCT/JP2015/003259
Other languages
English (en)
French (fr)
Inventor
薫 大清水
英人 小笠原
洋樹 江端
隆司 濱
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to US15/321,448 priority Critical patent/US20170210883A1/en
Priority to EP15814487.3A priority patent/EP3163332B1/en
Priority to JP2016531105A priority patent/JP6492078B2/ja
Priority to CN201580033642.4A priority patent/CN106461824B/zh
Priority to KR1020167034707A priority patent/KR101831097B1/ko
Publication of WO2016002192A1 publication Critical patent/WO2016002192A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/105Esters; Ether-esters of monocarboxylic acids with phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • C08K5/134Phenols containing ester groups
    • C08K5/1345Carboxylic esters of phenolcarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/10Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide

Definitions

  • the present invention relates to a resin composition for a reflector and a reflector including the same.
  • Light sources such as light-emitting diodes (LEDs) and organic ELs are widely used for lighting and display backlights by taking advantage of their low power and long life.
  • reflectors are used in various aspects.
  • the LED package can be mainly composed of a housing part composed of a substrate and a reflector integrally formed therewith, an LED disposed inside the housing, and a transparent sealing member for sealing the LED.
  • a step of obtaining a housing part made of a reflecting plate molded on a substrate; a step of arranging the LED in the housing part and electrically connecting the LED and the substrate; and sealing the LED with a sealing agent It can be manufactured through a process of stopping.
  • heating is performed at a temperature of 100 to 200 ° C. in order to thermally cure the sealant. Therefore, the reflector is required to maintain the reflectance even under such heating.
  • the LED package is exposed to a high temperature of 250 ° C. or higher. Therefore, the reflector is required to maintain the reflectance even under such heating. . Furthermore, it is required that the reflectance can be maintained even when exposed to heat or light generated from the LED in a use environment.
  • PA9T containing a diamine unit containing 1,9-nonanediamine as a main component PA10T containing a diamine unit containing 1,10-decanediamine as a main component are used. Etc. are being studied.
  • resin compositions containing PA9T or PA10T, titanium oxide, a reinforcing material, a light stabilizer, an antioxidant, and a release agent are disclosed (Patent Documents 1 and 2).
  • Patent Document 3 a resin composition for a reflector that can be suitably used as a reflector for an LED or the like.
  • a resin composition for a reflector including a specific polyester, a light stabilizer and / or an antioxidant has been proposed (Patent Document 3).
  • Patent Documents 1 and 2 cannot sufficiently suppress discoloration when exposed to heat or light. There wasn't. Therefore, there is a demand for less discoloration and less decrease in reflectance even when exposed to heat received during manufacture or mounting of an LED package, or heat or light received from a light source in a use environment.
  • reflectors used in LEDs and the like are required to further improve whiteness and reflectivity.
  • the present invention has been made in view of the above circumstances, has high reflectivity, and is exposed to heat such as LED package manufacturing process and reflow soldering process during mounting, and heat and light generated from a light source in a use environment.
  • it aims at providing the resin composition for reflectors which can obtain a reflecting plate with little fall of a reflectance.
  • a thermoplastic resin comprising at least one of a polyester resin (A1) and a polyamide resin (A2) having a melting point (Tm) or glass transition temperature (Tg) measured by a differential scanning calorimeter (DSC) of 250 ° C. or higher. 45 to 80% by mass of (A), 17 to 54.99% by mass of white pigment (B), and 0.01 to 3% by mass of at least one compound (C) represented by the following general formula (1) % (However, the sum of (A), (B) and (C) is 100% by mass).
  • the organic group X of the compound (C) is a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cyclohexyl group, or a substituted or unsubstituted group having 6 to 20 carbon atoms.
  • An alkyl group, the cyclohexyl group, and the substituent that the aryl group has are an alkyl group having 1 to 12 carbon atoms, an aryl group having 6 to 12 carbon atoms, a hydroxy group, a methoxy group, and
  • dialcohol component unit (a12) includes 30 to 100 mol% of a cyclohexanedimethanol component unit and 0 to 70 mol% of the aliphatic dialcohol component unit.
  • the resin composition for reflectors includes 30 to 100 mol% of a cyclohexanedimethanol component unit and 0 to 70 mol% of the aliphatic dialcohol component unit.
  • the organic group X of the compound (C) is methyl, ethyl, n-propyl, n-octyl, n-tetradecyl, n-hexadecyl, 2,4-di-t-butylphenyl.
  • the reflector according to [10] which is a reflector for a light-emitting diode element.
  • the resin composition for a reflector of the present invention has high reflectivity and not only heat received in the LED package manufacturing process or reflow soldering process when mounting the LED package, but also heat generated from the LED element under the usage environment. Even when exposed to light or light, it is possible to provide a reflector that can maintain a high degree of whiteness with little discoloration and less decrease in reflectance.
  • polyester resins such as PCT and semi-aromatic polyamide resins such as PA9T and PA10T have a high melting point and good heat resistance
  • the melting temperature for obtaining a resin composition (such as pellets) or a molded product is low. Need to be high. Therefore, the residence time in the molding machine tends to be long, and the resin tends to deteriorate. Further, the obtained molded product tended to be unable to sufficiently suppress the decomposition reaction of the resin when exposed to heat or light for a long time.
  • the present inventors can obtain a molded product with little discoloration and high reflectance by adding a predetermined amount of the compound (C) to the high melting point polyester resin (A1) or the polyamide resin (A2). And it discovered that the fall of the reflectance after shaping
  • the compound (C) can satisfactorily capture radicals generated when kneading to obtain a resin composition (such as pellets) or a molded product, and can suppress the decomposition reaction of the resin. Thereby, it is considered that a molded article with little discoloration and high reflectance can be obtained. Furthermore, the compound (C) can capture radicals generated when the resin is exposed to heat or light for a long time in the molded article, and can absorb ultraviolet light well. Thereby, it is considered that the decomposition reaction of the resin due to light or heat can be suppressed, and the decrease in the reflectance of the molded product can be reduced.
  • compound (C) since compound (C) has a phenyl ester structure, it is easily compatible with resins such as PCT and PA9T having a phenyl ester structure derived from terephthalic acid. Accordingly, when melt kneaded at a high temperature, the compound (C) is easily dispersed uniformly in the resin, so that it is difficult to volatilize even if it has a low molecular weight, and the decomposition reaction of the resin can be suppressed even with a small addition amount. Thereby, discoloration of a molded product can be suppressed uniformly and a decrease in reflectance can be suppressed.
  • resins such as PCT and PA9T having a phenyl ester structure derived from terephthalic acid. Accordingly, when melt kneaded at a high temperature, the compound (C) is easily dispersed uniformly in the resin, so that it is difficult to volatilize even if it has a low molecular weight, and the de
  • the addition amount of the compound (C) can be reduced, the discoloration of the molded product due to the discoloration of the compound (C) itself, which becomes a problem when the addition amount of the compound (C) is increased, can be suppressed. The decrease can also be suppressed.
  • the present invention has been made based on such findings.
  • the resin composition for a reflective material of the present invention comprises a thermoplastic resin (A) comprising at least one of a polyester resin (A1) and a polyamide resin (A2), a white pigment (B), a compound ( C).
  • thermoplastic resin (A) contained in the resin composition for a reflective material of the present invention comprises at least one of a polyester resin (A1) and a polyamide resin (A2).
  • polyester resin (A1) includes at least a dicarboxylic acid component unit (a11) including a component unit derived from an aromatic dicarboxylic acid and a dialcohol component unit (a12) including a component unit derived from a dialcohol having an alicyclic skeleton. It is preferable.
  • the dicarboxylic acid component unit (a11) constituting the polyester resin (A1) preferably contains 30 to 100 mol% of terephthalic acid component units and 0 to 70 mol% of aromatic dicarboxylic acid component units other than terephthalic acid.
  • the total amount of each dicarboxylic acid component unit in the dicarboxylic acid component unit (a11) is 100 mol%.
  • the ratio of the terephthalic acid component unit contained in the dicarboxylic acid component unit (a11) is more preferably 40 to 100 mol%, and further preferably 60 to 100 mol%.
  • the proportion of the aromatic dicarboxylic acid component unit other than terephthalic acid contained in the dicarboxylic acid component unit (a11) is more preferably 0 to 60 mol%, further preferably 0 to 40 mol%.
  • the terephthalic acid component unit may be a component unit derived from terephthalic acid or a terephthalic acid ester.
  • the terephthalic acid ester is preferably an alkyl ester of 1 to 4 carbon atoms of terephthalic acid, and examples thereof include dimethyl terephthalate.
  • Preferred examples of the aromatic dicarboxylic acid component unit other than terephthalic acid include component units derived from isophthalic acid, 2-methylterephthalic acid, naphthalenedicarboxylic acid and combinations thereof, and esters of the aromatic dicarboxylic acid (preferably Component units derived from an aromatic dicarboxylic acid alkyl ester having 1 to 4 carbon atoms).
  • the dicarboxylic acid component unit (a11) may further contain a small amount of an aliphatic dicarboxylic acid component unit or a polyvalent carboxylic acid component unit together with the above structural unit.
  • the total ratio of the aliphatic dicarboxylic acid component unit and the polyvalent carboxylic acid component unit contained in the dicarboxylic acid component unit (a11) can be, for example, 10 mol% or less.
  • the number of carbon atoms in the aliphatic dicarboxylic acid component unit is not particularly limited, but is preferably 4 to 20, and more preferably 6 to 12.
  • the aliphatic dicarboxylic acid component unit include a component unit derived from an aliphatic dicarboxylic acid such as adipic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, and the like.
  • it may be a component unit derived from adipic acid.
  • the polyvalent carboxylic acid component unit include component units derived from tribasic acids and polybasic acids such as trimellitic acid and pyromellitic acid.
  • the dialcohol component unit (a12) constituting the polyester resin (A1) preferably contains an alicyclic dialcohol component unit.
  • the alicyclic dialcohol preferably contains a component unit derived from dialcohol having an alicyclic hydrocarbon skeleton having 4 to 20 carbon atoms.
  • Examples of the dialcohol having an alicyclic hydrocarbon skeleton include 1,3-cyclopentanediol, 1,3-cyclopentanedimethanol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 1,4-cyclohexane. Included are alicyclic dialcohols such as heptanediol and 1,4-cycloheptanedimethanol.
  • a component unit derived from a dialcohol having a cyclohexane skeleton is preferable, and a component unit derived from cyclohexanedimethanol is more preferable.
  • the alicyclic dialcohol has isomers such as a cis / trans structure, but the trans structure is preferred from the viewpoint of heat resistance. Accordingly, the cis / trans ratio is preferably 50/50 to 0/100, and more preferably 40/60 to 0/100.
  • the dialcohol component unit (a12) may further contain an aliphatic dialcohol component unit in addition to the alicyclic dialcohol component unit in order to enhance the melt fluidity of the resin.
  • the aliphatic dialcohol include ethylene glycol, trimethylene glycol, propylene glycol, tetramethylene glycol, neopentyl glycol, hexamethylene glycol, dodecamethylene glycol and the like.
  • the dialcohol component unit (a12) constituting the polyester resin (A1) comprises 30 to 100 mol% of an alicyclic dialcohol component unit (preferably a dialcohol component unit having a cyclohexane skeleton) and an aliphatic dialcohol component unit. It is preferably contained in an amount of 0 to 70 mol%. The total amount of each dialcohol component unit in the dialcohol component unit (a12) is 100 mol%.
  • the ratio of the alicyclic dialcohol component unit (dialcohol component unit having a cyclohexane skeleton) in the dialcohol component unit (a12) is preferably 50 to 100 mol%, more preferably 60 to 100 mol%. .
  • the proportion of the aliphatic dialcohol component unit in the dialcohol component unit (a12) is preferably 0 to 50 mol%, more preferably 0 to 40 mol%.
  • the dialcohol component unit (a12) may further contain a small amount of an aromatic dialcohol component unit together with the above structural unit.
  • aromatic dialcohol include aromatic diols such as bisphenol, hydroquinone, and 2,2-bis (4- ⁇ -hydroxyethoxyphenyl) propane.
  • Polyamide resin (A2) The polyamide resin (A2) preferably includes at least a dicarboxylic acid component unit (a21) including a component unit derived from an aromatic dicarboxylic acid and a diamine component unit (a22) including a component unit derived from an aliphatic diamine.
  • the dicarboxylic acid component unit (a21) constituting the polyamide resin (A2) preferably contains 40 to 100 mol% of terephthalic acid component units and 0 to 60 mol% of aromatic dicarboxylic acid component units other than terephthalic acid.
  • the total amount of each dicarboxylic acid component unit in the dicarboxylic acid component unit (a21) is 100 mol%.
  • the ratio of the terephthalic acid component unit in the dicarboxylic acid component unit (a21) is more preferably 60 to 100 mol%, and further preferably 75 to 100 mol%.
  • the ratio of the aromatic dicarboxylic acid component unit other than terephthalic acid in the dicarboxylic acid component unit (a21) is more preferably 0 to 40 mol%, and further preferably 0 to 25 mol%.
  • the terephthalic acid component unit may be a component unit derived from terephthalic acid or a terephthalic acid ester (alkyl ester of terephthalic acid having 1 to 4 carbon atoms) as described above.
  • Preferred examples of the aromatic dicarboxylic acid component unit other than terephthalic acid include component units derived from isophthalic acid, 2-methylterephthalic acid, naphthalenedicarboxylic acid and combinations thereof, and the aromatic dicarboxylic acid, as described above. Component units derived from these esters (preferably alkyl esters of aromatic dicarboxylic acids having 1 to 4 carbon atoms).
  • the dicarboxylic acid component unit (a21) may further contain a small amount of an aliphatic dicarboxylic acid component unit or a polyvalent carboxylic acid component unit together with the above structural unit.
  • the total ratio of the aliphatic dicarboxylic acid component unit and the polyvalent carboxylic acid component unit contained in the dicarboxylic acid component unit (a21) can be, for example, 10 mol% or less. Examples of the aliphatic dicarboxylic acid component unit and the polyvalent carboxylic acid component unit include those described above.
  • the diamine component unit (a22) constituting the polyamide resin (A2) preferably contains an aliphatic diamine component unit.
  • the aliphatic diamine component unit is preferably a component unit derived from an aliphatic diamine having 4 to 18 carbon atoms.
  • Examples of the aliphatic diamine having 4 to 18 carbon atoms include 1,6-hexanediamine, 1,7-heptanediamine, 1,8-octanediamine, 1,9-nonanediamine, 1,10-decanediamine, Linear aliphatic diamines such as 1,11-undecanediamine and 1,12-dodecanediamine; 2-methyl-1,5-pentanediamine, 3-methyl-1,5-pentanediamine, 2,2,4-trimethyl-1,6-hexanediamine, 2,4,4-trimethyl-1,6-hexane Examples thereof include units derived from branched aliphatic diamines such as diamine, 2-methyl-1,8-octanediamine, 5-methyl-1,9-nonanediamine, and the like. More than species can be included. Among these, 1,9-nonanediamine and / or 2-methyl-1,8-octanediamine are preferable because a resin composition having further excellent heat resistance can be obtained.
  • the proportion of the component unit derived from the aliphatic diamine having 4 to 18 carbon atoms in the diamine component unit (a22) is preferably 50 to 100 mol%, more preferably 60 to 100 mol%, and 75 to More preferably, it is 100 mol%. Let the total amount of each diamine component unit in a diamine component unit (a22) be 100 mol%.
  • aliphatic diamine component unit contains both 1,9-nonanediamine unit and 2-methyl-1,8-octanediamine unit, 1,9-nonanediamine unit and 2-methyl-1,8-octanediamine unit
  • the molar ratio of 1,9-nonanediamine unit / 2-methyl-1,8-octanediamine unit is preferably in the range of 95/5 to 50/50, more preferably in the range of 85/15 to 55/45. preferable.
  • the diamine component unit (a22) may further contain a small amount of an alicyclic diamine component unit or an aromatic diamine component unit in addition to the aliphatic diamine component unit.
  • the alicyclic diamine component unit include component units derived from cyclohexanediamine, methylcyclohexanediamine, and isophoronediamine.
  • aromatic diamine component units include p-phenylenediamine, m-phenylenediamine, xylylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenylsulfone, 4,4′-diaminodiphenyl ether, and the like. Contains derived component units.
  • the melting point (Tm) or glass transition temperature (Tg) of the thermoplastic resin (A) measured by a differential scanning calorimeter (DSC) is 250 ° C. or higher.
  • the preferable lower limit of the melting point (Tm) or the glass transition temperature (Tg) is 270 ° C., more preferably 280 ° C.
  • the upper limit temperature is not limited in principle, but a melting point or glass transition temperature of 350 ° C. or lower is preferable because decomposition of the thermoplastic resin (A) is suppressed during melt molding.
  • the melting point of the polyester resin (A1) can be measured by a differential scanning calorimeter (DSC) according to JIS-K7121. Specifically, X-DSC7000 (manufactured by SII) is prepared as a measuring device. In this apparatus, a pan for DSC measurement in which a sample of the polyester resin (A1) was sealed was set, heated to 320 ° C. at a heating rate of 10 ° C./min in a nitrogen atmosphere, and held at that temperature for 5 minutes. The temperature is decreased to 30 ° C. by measuring the temperature decrease at 10 ° C./min. The temperature at the top of the endothermic peak at the time of temperature rise is defined as the “melting point”.
  • DSC differential scanning calorimeter
  • the melting point of the polyamide resin (A2) can be measured by the same method as described above except that the temperature is raised to 350 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere.
  • the intrinsic viscosity [ ⁇ ] of the thermoplastic resin (A) is preferably 0.3 to 1.2 dl / g. When the intrinsic viscosity is in such a range, the fluidity at the time of molding of the resin composition for a reflector is excellent.
  • the intrinsic viscosity of the thermoplastic resin (A) can be adjusted by adjusting the molecular weight of the thermoplastic resin (A). For example, as a method for adjusting the molecular weight of the polyester resin (A1), a known method such as the progress of the polycondensation reaction, an appropriate amount of a monofunctional carboxylic acid, a monofunctional alcohol, or the like can be employed.
  • the intrinsic viscosity of the polyester resin (A1) can be measured by the following procedure.
  • the polyester resin (A1) is dissolved in a 50/50 mass% mixed solvent of phenol and tetrachloroethane to obtain a sample solution.
  • the flow down time of the obtained sample solution is measured under the condition of 25 ° C. ⁇ 0.05 ° C. using an Ubbelohde viscometer, and the intrinsic viscosity [ ⁇ ] is calculated by applying the following equation.
  • the polyester resin (A1) can be obtained, for example, by blending a molecular weight regulator or the like in the reaction system and reacting the dicarboxylic acid component unit (a11) with the dialcohol component unit (a12). As described above, the intrinsic viscosity of the polyester resin (A1) can be adjusted by blending a molecular weight modifier in the reaction system.
  • the molecular weight modifier can be a monocarboxylic acid or a monoalcohol.
  • the monocarboxylic acid include aliphatic monocarboxylic acids having 2 to 30 carbon atoms, aromatic monocarboxylic acids and alicyclic monocarboxylic acids.
  • the aromatic monocarboxylic acid and the alicyclic monocarboxylic acid may have a substituent in the cyclic structure portion.
  • Examples of aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecylic acid, myristic acid, palmitic acid, stearic acid, oleic acid and linoleic acid. included.
  • Examples of aromatic monocarboxylic acids include benzoic acid, toluic acid, naphthalene carboxylic acid, methyl naphthalene carboxylic acid, and phenyl acetic acid.
  • Examples of alicyclic monocarboxylic acids include cyclohexane carboxylic acid. It is.
  • the addition amount of the molecular weight modifier is 0 to 0.07 mol with respect to 1 mol of the total amount of the dicarboxylic acid component unit (a11) when the dicarboxylic acid component unit (a11) and the dialcohol component unit (a12) are reacted. , Preferably 0 to 0.05 mol.
  • the intrinsic viscosity [ ⁇ ] of the polyamide resin (A2) can be measured in the same manner as described above except that the mixed solvent is concentrated sulfuric acid and is measured at 30 ° C.
  • the content ratio of the thermoplastic resin (A) in the resin composition for a reflector of the present invention is 45 to 80% by mass with respect to the total of the thermoplastic resin (A), the white pigment (B) and the compound (C). It is preferably 45 to 70% by mass, more preferably 50 to 60% by mass.
  • the content ratio of the thermoplastic resin (A) is not less than a certain level, it is easy to obtain a resin composition for a reflector having excellent heat resistance that can withstand a reflow soldering process without impairing moldability.
  • the thermoplastic resin (A) includes both the polyester resin (A1) and the polyamide resin (A2)
  • the content of the thermoplastic resin (A) is the content of the polyester resin (A1) and the polyamide resin (A2).
  • the white pigment (B) contained in the resin composition for a reflective material of the present invention may be any material that can whiten the resin composition and improve the light reflection function.
  • the white pigment (B) preferably has a refractive index of 2.0 or more.
  • the upper limit value of the refractive index of the white pigment (B) can be, for example, 4.0.
  • Specific examples include titanium oxide, zinc oxide, zinc sulfide, white lead, zinc sulfate, barium sulfate, calcium carbonate, and alumina oxide. These white pigments (B) may be used individually by 1 type, and may use 2 or more types together. Of these, titanium oxide is preferred because of its high reflectivity and concealment.
  • the titanium oxide is preferably a rutile type.
  • the average particle diameter of titanium oxide is preferably 0.1 to 0.5 ⁇ m, more preferably 0.15 to 0.3 ⁇ m.
  • the white pigment (B) may be treated with a silane coupling agent or a titanium coupling agent.
  • the white pigment (B) may be surface-treated with a silane compound such as vinyltriethoxysilane, 2-aminopropyltriethoxysilane, or 2-glycidoxypropyltriethoxysilane.
  • the white pigment (B) preferably has a small aspect ratio, that is, close to a spherical shape, in order to make the reflectance uniform.
  • the content ratio of the white pigment (B) in the resin composition for a reflector is 17 to 54.99% by mass with respect to the total of the thermoplastic resin (A), the white pigment (B), and the compound (C), preferably It is 20 to 50% by mass, more preferably 20 to 40% by mass.
  • the content ratio of the white pigment (B) is 17% by mass or more, sufficient whiteness is easily obtained and the reflectance of the molded product is easily increased. If the content ratio of the white pigment (B) is 54.99% by mass or less, the moldability is hardly impaired.
  • the content ratio of the white pigment (B) to the thermoplastic resin (A) can be, for example, 30 to 90% by mass, preferably 60 to 80% by mass.
  • the compound (C) contained in the resin composition for a reflector of the present invention may be a compound having one or more structures represented by the following formula (A) in the molecule.
  • the number of structures represented by the formula (A) per molecule can be, for example, 1 to 4, but is preferably 1. That is, the compound (C) is preferably a compound represented by the general formula (1).
  • X in the general formula (1) represents an organic group.
  • the organic group X represents a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cyclohexyl group, or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms; preferably a carbon atom A substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 20 carbon atoms;
  • Examples of the substituted or unsubstituted alkyl group having 1 to 20 carbon atoms include methyl group, ethyl group, n-propyl group, n-octyl group, n-tetradecyl group, n-hexadecyl group and the like.
  • Examples of the substituted or unsubstituted aryl group having 6 to 20 carbon atoms include 2,4-di-t-butylphenyl group, 2,4-di-t-pentylphenyl group and the like.
  • the substituent that the alkyl group, cyclohexyl group, and aryl group represented by the organic group X can have is an alkyl group having 1 to 12 carbon atoms such as a methyl group or an ethyl group; It is preferably a group selected from the group consisting of 12 aryl groups; hydroxy group; methoxy group; and oxadiazole group.
  • the molecular weight of the compound (C) is preferably 200 to 2000, and more preferably 200 to 1000.
  • the molecular weight of the compound (C) is in the above range, the volatilization at the time of melting is small, it is easy to mix well with other components, and the fluidity of the resin composition is not easily impaired.
  • Compound (C) may have a radical scavenging action.
  • radicals generated by heat or light received during the production or molding of the resin composition or under the usage environment of the molded product are captured, and the thermoplastic resin (A) is decomposed during the production or molding.
  • the decomposition of the thermoplastic resin (A) in the molded product by heat or light can be suppressed.
  • the compound (C) can have an ultraviolet absorbing action. Thereby, decomposition
  • the oxycarbonyl group is directly bonded to the benzene ring.
  • the compound (C) can have good radical scavenging properties.
  • the content ratio of the compound (C) in the resin composition for a reflector is 0.01 to 3% by mass, preferably 0 with respect to the total of the thermoplastic resin (A), the white pigment (B), and the compound (C). 0.05 to 1.5 mass%, more preferably 0.1 to 1.1 mass%.
  • the content ratio of the compound (C) is 0.01% by mass or more, it is easy to obtain sufficient whiteness by suppressing deterioration of the resin in the molded product due to heat and light, and it is easy to reduce a decrease in reflectance.
  • the content ratio of the compound (C) is 3% by mass or less, it is possible to reduce a decrease in reflectance of the molded product due to coloring or deterioration of hue due to the decomposition product of the compound (C).
  • the content ratio of the compound (C) to the thermoplastic resin (A) may be 0.25 to 2.0% by mass, preferably 0.27 to 1.0% by mass.
  • the content ratio of the compound (C) is a certain level or more, the decomposition reaction of the thermoplastic resin (A) in the molded article when receiving heat or light for a long time can be preferably suppressed.
  • the content ratio of the compound (C) is below a certain level, the decrease in the reflectance of the molded product due to coloring or hue deterioration caused by the decomposition product of the compound (C) can be reduced.
  • the reflective resin composition of the present invention may further contain a reinforcing material (D) as necessary.
  • the shape of the reinforcing material (D) is spherical, fibrous, or plate-like, and is preferably fibrous because it is easy to impart good strength and toughness to the molded product.
  • fibrous reinforcements include glass fiber, wollastonite, potassium titanate whisker, calcium carbonate whisker, aluminum borate whisker, magnesium sulfate whisker, sepiolite, zonotlite, zinc oxide whisker, milled fiber, cut fiber, etc. It is. One of these may be used alone, or two or more may be used in combination. Among these, at least one selected from the group consisting of wollastonite, glass fiber, and potassium titanate whisker is preferable because the average fiber diameter is relatively small and the surface smoothness of the molded product is easy to increase. Wollastonite Or glass fiber is more preferable. Wollastonite is preferable in terms of high light shielding effect, and glass fiber is preferable in terms of high mechanical strength.
  • the average fiber length (l) of the fibrous reinforcing material in the resin composition for a reflector is usually 5 mm or less, preferably 300 ⁇ m or less, more preferably 100 ⁇ m or less, and preferably 50 ⁇ m or less. Further preferred.
  • the average fiber length (l) is not more than a certain value, the fibrous reinforcing material is not easily broken at the time of molding or the like, and the fibrous reinforcing material is easily finely dispersed in the resin. Therefore, it is easy to suppress the thermal stress of the resin by reducing the extra stress that the resin receives during molding. Moreover, it is easy to improve the surface smoothness of the obtained molding.
  • the lower limit value of the average fiber length (l) is not particularly limited, but is preferably 2 ⁇ m, more preferably 8 ⁇ m. By setting the average fiber length (l) to 2 ⁇ m or more, good strength can be imparted to the molded product.
  • the average fiber diameter (d) of the fibrous reinforcement in the resin composition for a reflector is less than a certain value from the viewpoint of facilitating fine dispersion of the fibrous reinforcement during molding and improving the surface smoothness of the molded article. Specifically, it is preferably 0.05 to 30 ⁇ m, and more preferably 2 to 6 ⁇ m. By setting the average fiber diameter (d) to a certain value or more, it is easy to suppress the fibrous reinforcing material from being broken during molding. By setting the average fiber diameter (d) to a certain value or more, high surface smoothness is imparted to the molded product, and high reflectance is easily obtained.
  • the average fiber length (l) and the average fiber diameter (d) of the fibrous reinforcing material in the resin composition for a reflector can be measured by the following method. 1) After the resin composition for a reflector is dissolved in a hexafluoroisopropanol / chloroform solution (0.1 / 0.9% by volume), a filtrate obtained by filtration is collected. 2) Arbitrary 100 fibrous reinforcements of the obtained filtrate are observed with a scanning electron microscope (SEM) (magnification: 50 times), and each fiber length and fiber diameter are measured.
  • the average value of the fiber length can be the average fiber length (l); the average value of the fiber diameter can be the average fiber diameter (d).
  • the aspect ratio (l / d) obtained by dividing the average fiber length (l) of the fibrous reinforcement by the average fiber diameter (d) is preferably 2 to 20, and more preferably 7 to 12. preferable. When the aspect ratio is above a certain level, it is easy to impart a certain level of strength and rigidity to the molded product.
  • the content of the reinforcing material (D) in the resin composition for a reflective material is 5 to 50% by mass, preferably 5%, based on the total of the thermoplastic resin (A), the white pigment (B), and the compound (C). It can be ⁇ 40% by weight.
  • the content ratio of the reinforcing material (D) is 5% by mass or more, the heat resistance of the resin composition is increased, and the surface of the molded product is easily smoothed.
  • the moldability of a resin composition is hard to be impaired as the content rate of a reinforcing material (D) is 50 mass% or less.
  • the resin composition for a reflective material of the present invention is an optional component, for example, an antioxidant (amines, sulfurs, phosphorus, etc.), a light stabilizer, depending on the application, within the range not impairing the effects of the present invention.
  • an antioxidant amines, sulfurs, phosphorus, etc.
  • a light stabilizer depending on the application, within the range not impairing the effects of the present invention.
  • polystyrene resin Benzotriazoles, triazines, benzophenones, hindered amines, ogizanides, etc.
  • heat stabilizers lactone compounds, vitamin Es, hydroquinones, copper halides, iodine compounds, etc.
  • other polymers polyolefins, Olefin copolymer such as ethylene / propylene copolymer, ethylene / 1-butene copolymer, olefin copolymer such as propylene / 1-butene copolymer, polystyrene, polyamide, polycarbonate, polyacetal, polysulfone, polyphenylene oxide , Fluorine resin, silicone resin, LCP, etc.), flame retardant (bromine, chlorine, Emissions-based, antimony-based, inorganic, etc.) fluorescent whitening agent, a plasticizer, a thickener, an antistatic agent, a release agent, pigment, nucleating agent, it may include such various
  • the selection of the additive may be important.
  • the other component used in combination includes a catalyst or the like, it is preferable to avoid a compound containing a component or element that becomes a catalyst poison in the additive.
  • Additives that should be avoided include, for example, compounds containing sulfur and the like.
  • the resin composition for a reflective material of the present invention can have good moldability. Specifically, the flow length when the resin composition for a reflector is injection molded under the following conditions is preferably 30 mm or more, and more preferably 31 mm or more.
  • the content ratio of the white pigment (B) and the reinforcing material (D) is preferably set to a certain value or less.
  • the resin composition for reflectors of the present invention is a method in which the above components are mixed by a known method such as a Henschel mixer, a V blender, a ribbon blender, a tumbler blender, or the like. Further, it can be produced by a method of granulation or pulverization after melt-kneading with a single screw extruder, a multi-screw extruder, a kneader, a Banbury mixer or the like.
  • the resin composition for a reflector of the present invention may be preferably a compound such as a pellet obtained by mixing the above components with a single screw extruder or a multi-screw extruder, then melt-kneading, granulating or pulverizing.
  • the compound is preferably used as a molding material.
  • the melt kneading is preferably performed at a temperature 5 to 30 ° C. higher than the melting point of the polyester resin (A1) or the polyamide resin (A2).
  • the preferable lower limit of the melt kneading temperature can be 255 ° C, preferably 275 ° C, more preferably 295 ° C, and the preferable upper limit can be 360 ° C, more preferably 340 ° C.
  • Reflector of the present invention can be a molded product obtained by molding the resin composition for a reflector of the present invention.
  • the reflectance of light having a wavelength of 450 nm is preferably 90% or more and 94% or more from the viewpoint of allowing the molded product to function well as a reflector. It is more preferable.
  • the reflectance can be measured using CM3500d manufactured by Konica Minolta.
  • the thickness of the molded product at the time of measurement can be 0.5 mm.
  • the molded product of the resin composition for a reflective material of the present invention preferably has little decrease in reflectance even when it receives heat or light.
  • the reflectance of light having a wavelength of 450 nm measured after heating at 150 ° C. for 500 hours of the molded product is, for example, 90% or more in the case of the polyester resin (A1), and the polyamide resin (A2) In this case, it may be 70% or more, for example.
  • the reflectance of light having a wavelength of 450 nm measured after irradiation of ultraviolet rays at 16 mW / cm 2 for 500 hours of the molded product is, for example, 82% or more in the case of the polyester resin (A1), and in the case of the polyamide resin (A2).
  • the thickness of the molded product at the time of measurement can be 0.5 mm.
  • the compound (C) is preferably contained in a certain amount or more.
  • the reflector of the present invention can be a casing or a housing having at least a light reflecting surface.
  • the surface that reflects light may be a flat surface, a curved surface, or a spherical surface.
  • the reflecting plate may be a molded product having a light reflecting surface in a box shape or box shape, funnel shape, bowl shape, parabolic shape, columnar shape, conical shape, honeycomb shape, or the like.
  • the reflector of the present invention is used as a reflector for various light sources such as organic EL and light emitting diodes (LEDs). Especially, it is preferable to be used as a reflecting plate of a light emitting diode (LED), and more preferable to be used as a reflecting plate of a light emitting diode (LED) corresponding to surface mounting.
  • LEDs organic EL and light emitting diodes
  • the reflecting plate of the present invention is obtained by subjecting the resin composition for a reflecting material of the present invention to a desired shape by injection molding, in particular, metal insert molding such as hoop molding, melt molding, extrusion molding, inflation molding, and blow molding. It can be obtained by shaping into a shape.
  • the reflector of the present invention is obtained by molding a resin composition for a reflector containing the compound (C). Since the compound (C) can well capture radicals generated at high temperatures during the production or molding of the resin composition, it is easy to suppress the decomposition reaction of the thermoplastic resin (A) due to heat. Thereby, there can be obtained a molded product with little discoloration and high reflectance.
  • An LED package provided with the reflector of the present invention includes, for example, a housing part formed on a substrate and having a space for mounting an LED, the LED mounted in the space, and a transparent seal for sealing the LED. And a stop member.
  • a step of forming a reflecting plate on a substrate to obtain a housing portion 2) a step of disposing the LED in the housing portion and electrically connecting the LED and the substrate; 3) It can be manufactured through a process of sealing the LED with a sealant.
  • heating is performed at a temperature of 100 to 200 ° C. in order to thermally cure the sealant.
  • the LED package is exposed to a high temperature of 250 ° C. or higher.
  • the reflecting plate obtained from the resin composition for a reflecting material of the present invention contains the compound (C), it is exposed to high-temperature heat in the above process, or visible light or ultraviolet light generated from the LED under the use environment. Even when receiving light or heat for a long time, the compound (C) can capture radicals well. In addition, since the compound (C) can absorb ultraviolet light and the like, the amount of ultraviolet light received by the resin can be reduced. By these, the decomposition reaction of the thermoplastic resin (A) due to light or heat in the molded product can be suppressed, the discoloration is small, and a high reflectance can be maintained.
  • the reflector of the present invention can be used for various applications, for example, as a reflector for various electric and electronic parts, indoor lighting, outdoor lighting, automobile lighting, and the like.
  • the intrinsic viscosity [ ⁇ ] of the obtained polyester resin (A1) was 0.6 dl / g, and the melting point was 290 ° C.
  • the intrinsic viscosity [ ⁇ ] and the melting point were measured by the following methods.
  • the obtained polyester resin (A1) was dissolved in a 50/50 mass% mixed solvent of phenol and tetrachloroethane to obtain a sample solution.
  • the flow down time of the obtained sample solution was measured under the condition of 25 ° C. ⁇ 0.05 ° C. using an Ubbelohde viscometer, and the intrinsic viscosity [ ⁇ ] was calculated by applying the following equation.
  • the melting point of the polyester resin (A1) was measured according to JIS-K7121.
  • An X-DSC7000 manufactured by SII was prepared as a measuring device.
  • a DSC measurement pan in which a sample of the polyester resin (A1) was sealed was set therein, heated to 320 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere, and held at that temperature for 5 minutes.
  • the temperature was decreased to 30 ° C. by measuring the temperature decrease at 10 ° C./min.
  • the temperature at the peak top of the endothermic peak at the time of temperature rise was defined as “melting point”.
  • the reaction was continued for 1 hour as it was, and then discharged from the spray nozzle installed at the bottom of the autoclave to extract the low condensate.
  • the obtained low condensate was cooled to room temperature, pulverized to a particle size of 1.5 mm or less with a pulverizer, and dried at 110 ° C. for 24 hours.
  • the obtained low condensate had a water content of 4100 ppm and an intrinsic viscosity [ ⁇ ] of 0.13 dl / g.
  • this low condensate was put into a shelf type solid phase polymerization apparatus, and after nitrogen substitution, the temperature was raised to 180 ° C. over about 1 hour and 30 minutes. Then, after reacting for 1 hour and 30 minutes, the temperature was lowered to room temperature.
  • the intrinsic viscosity [ ⁇ ] of the obtained polyamide was 0.17 dl / g.
  • the intrinsic viscosity [ ⁇ ] of the obtained polyamide resin (A2) was 0.91 dl / g, and the melting point was 306 ° C.
  • the intrinsic viscosity [ ⁇ ] of the polyamide resin (A2) was measured in the same manner as described above except that it was measured in concentrated sulfuric acid at 30 ° C.
  • the melting point of the polyamide resin (A2) was measured by the same method as described above except that the temperature was raised to 350 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere.
  • D-1 Wollastonite, average fiber length (l) 50 ⁇ m, average fiber diameter (d) 4.5 ⁇ m, aspect ratio (l / d) 11 (NYGLOS 4W manufactured by Sakai Kogyo Co., Ltd.)
  • D-2 Glass fiber, average fiber length (l) 3 mm, profile ratio 4 [7 ⁇ m ⁇ 28 ⁇ m] (Nittobo Co., Ltd. CSG 3PA-830, silane compound treated product)
  • the average fiber length (l) and average fiber diameter (d) of wollastonite (D-1) and glass fiber (D-2) as raw materials were measured by the following methods.
  • the average fiber length and the average fiber diameter of the reinforcing material (D) in the obtained pellet-shaped resin composition for a reflector were measured by the following method. 1) The obtained resin composition for a reflector was dissolved in a hexafluoroisopropanol / chloroform solution (0.1 / 0.9% by volume), and a filtrate was collected. 2) Arbitrary 100 reinforcing materials (D) out of the obtained filtrate were observed with a scanning electron microscope (S-4800 manufactured by Hitachi, Ltd.) at a magnification of 50 times, and each fiber length and fiber diameter were observed. Was measured. And the average value of the measured fiber length was made into "average fiber length”; the average value of the measured fiber diameter was made into "average fiber diameter". As a result, the average fiber length in the resin composition for reflectors obtained in Example 1 was 23 ⁇ m, and the average fiber diameter was 2.9 ⁇ m.
  • Examples 2, 3, 5 to 9 and Comparative Examples 1 to 3 A pellet-shaped resin composition was obtained in the same manner as in Example 1 except that the composition shown in Table 1 or 2 was changed.
  • Example 4 and Comparative Example 4 A pellet-shaped resin composition was obtained in the same manner as in Example 1 except that the cylinder temperature was changed to 320 ° C. and the composition shown in Table 1 or 2 was changed.
  • ⁇ Reflectance> (Initial reflectance)
  • the obtained pellet-shaped resin composition was injection-molded under the following molding conditions using the following molding machine to prepare a test piece having a length of 30 mm, a width of 30 mm, and a thickness of 0.5 mm.
  • the reflectance of the wavelength region of 360 nm to 740 nm was determined for the obtained test piece using Minolta CM3500d.
  • the reflectance at 450 nm was used as a representative value, and was used as the initial reflectance.
  • Molding machine SE50DU, manufactured by Sumitomo Heavy Industries, Ltd. Cylinder temperature: melting point (Tm) + 10 ° C. Mold temperature: 150 ° C
  • the test piece whose initial reflectance was measured was left in an oven at 150 ° C. for 500 hours. Then, the reflectance of the obtained sample piece was measured by the same method as the initial reflectance, and was defined as the reflectance after heating.
  • the obtained resin composition was injection molded under the following conditions using a bar flow mold having a width of 10 mm and a thickness of 0.5 mm, and the flow length (mm) of the resin in the mold was measured.
  • Injection molding machine Sodick Plustec, Tupar TR40S3A Injection set pressure: 2000 kg / cm 2 Cylinder setting temperature: Melting point (Tm) + 10 ° C Mold temperature: 30 °C
  • the resin compositions of Examples 1 to 9 containing the compound (C) have higher reflection than the resin compositions of Comparative Examples 1 and 3 to 4 containing no compound (C). It can be seen that there is little reduction in reflectance after heating or after light irradiation. This captures radicals generated when the compound (C) receives heat at the time of production or molding of the pellet-shaped resin composition, heat or light after molding, and the polyester resin (A1) or This is considered to be because the decomposition reaction of the polyamide resin (A2) can be suppressed.
  • the resin compositions of Examples 1 to 3 in which the content ratio of the compound (C) is not more than a certain value are those in Comparative Example 2 in which the content ratio of the compound (C) is too large. It can be seen that the reflectance after the reflow test, after heating and after ultraviolet irradiation is higher than that of the resin composition. That is, since the compound (C) has high compatibility with the polyester resin (A1) when melted, the volatilization is reduced even at a low molecular weight, and the compound (C) is uniformly dispersed even with a small addition amount. It is shown that the discoloration of) can be suppressed.
  • the compound (C) not only captures radicals generated during high-temperature kneading, but also transesterifies the compound (C) with the polyester resin (A1) to produce a polyester resin (A1 It is also considered that the molecular ends are sealed to suppress resin degradation.
  • Example 5 From the comparison between Example 4 and Example 5, the resin composition of Example 5 containing the polyester resin (A1) has a higher reflectance after heating than the resin composition of Example 4 containing the polyamide resin (A2). I understand that. It is considered that the resin composition of Example 4 could not sufficiently suppress the discoloration derived from the amide group of the polyamide resin (A2).
  • Example 1 containing an appropriate amount of the reinforcing material (D) is the same as the resin composition or reinforcing material (D) of Example 7 not containing the reinforcing material (D). It is shown that there is less decrease in reflectance after heating and after ultraviolet irradiation than the resin composition of Example 8 containing relatively much.
  • Example 9 From the comparison between Example 9 and Comparative Example 3, the resin composition of Example 9 is sufficiently suppressed in the resin composition of Comparative Example 3 not only in the initial reflectance but also in the reflectance after heating. Is shown. This shows that the compound (C) can highly suppress discoloration of the polyester resin (A1) even with a small addition amount.
  • the resin composition for a reflective material of the present invention is reflective even if it is exposed to heat or light received from a light source in an environment of use or a reflow soldering process when mounting an LED package, for example. It is possible to provide a reflector with a low rate reduction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Led Device Packages (AREA)

Abstract

 本発明の目的は、反射率が高く、かつLEDパッケージの製造工程やLEDパッケージの実装時のリフローはんだ工程などで受ける熱や、使用環境下で光源から受ける熱や光に曝されても、反射率の低下が少ない反射板を得るための樹脂組成物を提供することである。本発明の反射材用樹脂組成物は、示差走査熱量計(DSC)で測定した融点(Tm)もしくはガラス転移温度(Tg)が250℃以上である、ポリエステル樹脂(A1)とポリアミド樹脂(A2)の少なくとも一方からなる熱可塑性樹脂(A)を45~80質量%と、白色顔料(B)を17~54.99質量%と、下記一般式(1)で表される化合物(C)の少なくとも一種を0.01~3質量%とを含む(ただし、(A)、(B)および(C)の合計は100質量%である)。

Description

反射材用樹脂組成物およびそれを含む反射板
 本発明は、反射材用樹脂組成物およびそれを含む反射板に関する。
 発光ダイオード(LED)や有機ELなどの光源は、低電力や高寿命などの特長を活かして、照明やディスプレイのバックライトなどに幅広く使用されている。それらの光源からの光を効率的に利用するために、反射板が種々の局面で利用されている。
 例えば、LEDパッケージは、基板とそれに一体的に成形された反射板とからなるハウジング部と、ハウジング内部に配置されたLEDと、LEDを封止する透明な封止部材とで主に構成されうる。このようなLEDパッケージは、基板上に成形された反射板からなるハウジング部を得る工程;ハウジング部内にLEDを配置し、LEDと基板とを電気的に接続する工程;LEDを封止剤で封止する工程を経て製造されうる。封止工程では、封止剤を熱硬化させるために100~200℃の温度で加熱することから、そのような加熱下においても反射板は、反射率を維持できることが求められる。さらに、LEDパッケージをプリント基板に実装する際のリフローはんだ工程では、LEDパッケージが250℃以上もの高温に曝されることから、そのような加熱下においても反射板は反射率を維持できることが求められる。さらに、使用環境下において、LEDから発生する熱や光に曝されても、反射率を維持できることが求められる。
 このような反射板用の材料としては、半芳香族ポリアミドとして、1,9-ノナンジアミンを主成分とするジアミン単位を含むPA9Tや、1,10-デカンジアミンを主成分とするジアミン単位を含むPA10Tなどを用いることが検討されている。例えば、PA9TまたはPA10T、酸化チタン、強化材、光安定剤、酸化防止剤および離型剤を含む樹脂組成物が開示されている(特許文献1および2)。また、LEDなどの反射板として好適に使用できる反射板用樹脂組成物として、特定のポリエステル、光安定剤および/または酸化防止剤を含む反射板用樹脂組成物が提案されている(特許文献3)。
特開2004-75994号公報 特開2013-67786号公報 特開2013-127067号公報
 しかしながら、特許文献1および2に示されるような半芳香族ポリアミド樹脂や耐熱性ポリエステル樹脂を含む組成物から得られる成形物は、熱や光に曝されたときの変色を十分に抑制できるものではなかった。そのため、LEDパッケージの製造時や実装時に受ける熱や、使用環境下で光源から受ける熱や光に曝されても、変色などが少なく、反射率の低下が少ないことが求められている。
 さらに、LEDの高輝度化に伴い、LEDなどに用いられる反射板には、さらなる白色度の向上と反射率の向上とが求められている。
 本発明は上記事情に鑑みてなされたものであり、反射率が高く、かつLEDパッケージの製造工程や実装時のリフローはんだ工程などの熱や、使用環境下で光源から生じる熱や光に曝されても、反射率の低下が少ない反射板を得ることができる反射材用樹脂組成物を提供することを目的とする。
 [1] 示差走査熱量計(DSC)で測定した融点(Tm)もしくはガラス転移温度(Tg)が250℃以上である、ポリエステル樹脂(A1)とポリアミド樹脂(A2)の少なくとも一方からなる熱可塑性樹脂(A)を45~80質量%と、白色顔料(B)を17~54.99質量%と、下記一般式(1)で表される化合物(C)の少なくとも一種を0.01~3質量%とを含む(ただし、(A)、(B)および(C)の合計は100質量%である)、反射材用樹脂組成物。
Figure JPOXMLDOC01-appb-C000001
(一般式(1)のXは、有機基を示す)
 [2] 前記化合物(C)の有機基Xが、炭素原子数1~20の置換または未置換のアルキル基、置換または未置換のシクロヘキシル基、あるいは炭素原子数6~20の置換または未置換のアリール基であり、前記アルキル基、前記シクロヘキシル基、および前記アリール基が有する置換基は、炭素原子数1~12のアルキル基、炭素原子数6~12のアリール基、ヒドロキシ基、メトキシ基、およびオキサジアゾール基からなる群より選ばれる、[1]に記載の反射材用樹脂組成物。
 [3] 前記ポリエステル樹脂(A1)が、テレフタル酸から誘導されるジカルボン酸成分単位30~100モル%と、テレフタル酸以外の芳香族ジカルボン酸成分単位0~70モル%とを含むジカルボン酸成分単位(a11)と、炭素原子数4~20の脂環族ジアルコール成分単位および/または脂肪族ジアルコール成分単位を含むジアルコール成分単位(a12)とを含む、[1]または[2]に記載の反射材用樹脂組成物。
 [4] 前記脂環族ジアルコール成分単位が、シクロヘキサン骨格を有する、[3]に記載の反射材用樹脂組成物。
 [5] 前記ジアルコール成分単位(a12)が、シクロヘキサンジメタノール成分単位30~100モル%と、前記脂肪族ジアルコール成分単位0~70モル%とを含む、[3]または[4]に記載の反射材用樹脂組成物。
 [6] 前記ポリアミド樹脂(A2)が、テレフタル酸から誘導されるジカルボン酸成分単位を40~100モル%と、テレフタル酸以外の芳香族ジカルボン酸成分単位0~60モル%とを含むジカルボン酸成分単位(a21)と、炭素原子数4~18の脂肪族ジアミン成分単位50~100モル%を含むジアミン成分単位(a22)とを含む、[1]または[2]に記載の反射材用樹脂組成物。
 [7] 前記脂肪族ジアミン成分単位が、1,9-ノナンジアミン単位と2-メチル-1,8-オクタンジアミン単位の少なくとも一方である、[6]に記載の反射材用樹脂組成物。
 [8] 前記化合物(C)の有機基Xが、メチル基、エチル基、n-プロピル基、n-オクチル基、n-テトラデシル基、n-ヘキサデシル基、2,4-ジ-t-ブチルフェニル基、および2,4-ジ-t-ペンチルフェニル基からなる群より選ばれる基である、[1]~[7]のいずれかに記載の反射材用樹脂組成物。
 [9] 前記(A)、(B)および(C)の合計100質量%に対して、強化材(D)を5~50質量%さらに含む、[1]~[8]のいずれかに記載の反射材用樹脂組成物。
 [10] [1]~[9]のいずれかに記載の反射材用樹脂組成物を成形して得られる、反射板。
 [11] 発光ダイオード素子用の反射板である、[10]に記載の反射板。
 本発明の反射材用樹脂組成物は、反射率が高く、かつLEDパッケージの製造工程やLEDパッケージの実装時のリフローはんだ工程などで受ける熱だけでなく、使用環境下でLED素子から発生する熱や光に曝されても、変色が少なく高い白色度を維持でき、反射率の低下が少ない反射板を提供しうる。
 PCTなどのポリエステル樹脂やPA9TやPA10Tなどの半芳香族ポリアミド樹脂は、高い融点を有し、良好な耐熱性を有する一方で;樹脂組成物(ペレットなど)や成形物を得るための溶融温度を高くする必要がある。そのため、成形機中での滞留時間が長くなりやすく、樹脂が劣化しやすい傾向があった。また、得られる成形物は、熱や光などを長時間受けたときの樹脂の分解反応を十分には抑制できない傾向があった。
 これに対して本発明者らは、高融点のポリエステル樹脂(A1)やポリアミド樹脂(A2)に所定量の化合物(C)を添加することで、変色が少なく反射率の高い成形物が得られ、かつ成形後の反射率の低下が少ないこと(特に成形後の反射率の低下を少なくしうること)を見出した。
 この理由は必ずしも明らかではないが、以下のように考えられる。即ち、化合物(C)は、樹脂組成物(ペレットなど)や成形物を得るための混練を行う際に発生するラジカルを良好に捕捉し、樹脂の分解反応を抑制しうる。それにより、変色が少なく、反射率の高い成形物が得られると考えられる。さらに、化合物(C)は、成形物中で樹脂が熱や光に長時間曝されたときに生じるラジカルを捕捉し、かつ紫外光を良好に吸収しうる。それにより、光や熱による樹脂の分解反応を抑制でき、成形物の反射率の低下を少なくしうると考えられる。
 特に、化合物(C)はフェニルエステル構造を有するため、テレフタル酸由来のフェニルエステル構造を有するPCTやPA9Tなどの樹脂と良好に相溶しやすい。従って、高温で溶融混錬すると、当該樹脂中に化合物(C)が均一に分散しやすいので、低分子量であっても揮発しにくく、かつ少ない添加量でも樹脂の分解反応を抑制できる。それにより、成形物の変色を均一に抑制でき、反射率の低下を抑制しうる。また、化合物(C)の添加量を少なくできるので、化合物(C)の添加量を多くしたときに問題となる化合物(C)自体の変色による成形物の変色も抑制でき、それによる反射率の低下も抑制しうる。本発明はこのような知見に基づいてなされたものである。
 1.反射材用樹脂組成物
 本発明の反射材用樹脂組成物は、ポリエステル樹脂(A1)とポリアミド樹脂(A2)の少なくとも一方からなる熱可塑性樹脂(A)と、白色顔料(B)と、化合物(C)とを含む。
 1-1.熱可塑性樹脂(A)
 本発明の反射材用樹脂組成物に含まれる熱可塑性樹脂(A)は、ポリエステル樹脂(A1)とポリアミド樹脂(A2)の少なくとも一方からなる。
 1-1-1.ポリエステル樹脂(A1)
 ポリエステル樹脂(A1)は、少なくとも芳香族ジカルボン酸由来の成分単位を含むジカルボン酸成分単位(a11)と、脂環骨格を有するジアルコール由来の成分単位を含むジアルコール成分単位(a12)とを含むことが好ましい。
 ポリエステル樹脂(A1)を構成するジカルボン酸成分単位(a11)は、テレフタル酸成分単位30~100モル%と、テレフタル酸以外の芳香族ジカルボン酸成分単位0~70モル%とを含むことが好ましい。ジカルボン酸成分単位(a11)中の各ジカルボン酸成分単位の合計量を100モル%とする。
 ジカルボン酸成分単位(a11)に含まれるテレフタル酸成分単位の割合は、より好ましくは40~100モル%であり、さらに好ましくは60~100モル%でありうる。テレフタル酸成分単位の含有割合が一定以上であると、ポリエステル樹脂(A1)の耐熱性を高めやすい。ジカルボン酸成分単位(a11)に含まれるテレフタル酸以外の芳香族ジカルボン酸成分単位の割合は、より好ましくは0~60モル%であり、さらに好ましくは0~40モル%でありうる。
 テレフタル酸成分単位は、テレフタル酸、またはテレフタル酸エステルから誘導される成分単位でありうる。テレフタル酸エステルは、好ましくはテレフタル酸の炭素数1~4のアルキルエステルであり、その例にはジメチルテレフタレートなどが含まれる。
 テレフタル酸以外の芳香族ジカルボン酸成分単位の好ましい例には、イソフタル酸、2-メチルテレフタル酸、ナフタレンジカルボン酸およびこれらの組み合わせから誘導される成分単位、ならびに当該芳香族ジカルボン酸のエステル(好ましくは芳香族ジカルボン酸の炭素数1~4のアルキルエステル)から誘導される成分単位が含まれる。
 ジカルボン酸成分単位(a11)は、上記構成単位とともに、少量の脂肪族ジカルボン酸成分単位や多価カルボン酸成分単位をさらに含んでもよい。ジカルボン酸成分単位(a11)に含まれる脂肪族ジカルボン酸成分単位と多価カルボン酸成分単位の合計割合は、例えば10モル%以下としうる。
 脂肪族ジカルボン酸成分単位の炭素原子数は、特に制限されないが、4~20であることが好ましく、6~12であることがより好ましい。脂肪族ジカルボン酸成分単位の例には、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ウンデカンジカルボン酸、ドデカンジカルボン酸などの脂肪族ジカルボン酸から誘導される成分単位が挙げられ、好ましくはアジピン酸から誘導される成分単位でありうる。多価カルボン酸成分単位の例には、トリメリット酸およびピロメリット酸等のような三塩基酸および多塩基酸から誘導される成分単位を挙げることができる。
 ポリエステル樹脂(A1)を構成するジアルコール成分単位(a12)は、脂環族ジアルコール成分単位を含むことが好ましい。脂環族ジアルコールは、炭素数4~20の脂環式炭化水素骨格を有するジアルコール由来の成分単位を含むことが好ましい。脂環式炭化水素骨格を有するジアルコールとしては、1,3-シクロペンタンジオール、1,3-シクロペンタンジメタノール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、1,4-シクロヘプタンジオール、1,4-シクロヘプタンジメタノールなどの脂環族ジアルコールが含まれる。なかでも、耐熱性や吸水性、入手容易性などの観点から、シクロヘキサン骨格を有するジアルコール由来の成分単位が好ましく、シクロヘキサンジメタノール由来の成分単位がさらに好ましい。
 脂環族ジアルコールには、シス/トランス構造などの異性体が存在するが、耐熱性の観点ではトランス構造のほうが好ましい。したがって、シス/トランス比は、好ましくは50/50~0/100であり、さらに好ましくは40/60~0/100である。
 ジアルコール成分単位(a12)は、脂環族ジアルコール成分単位のほかに、樹脂の溶融流動性を高めるためなどから、脂肪族ジアルコール成分単位をさらに含んでもよい。脂肪族ジアルコールの例には、エチレングリコール、トリメチレングリコール、プロピレングリコール、テトラメチレングリコール、ネオペンチルグリコール、ヘキサメチレングリコール、ドデカメチレングリコールなどが含まれる。
 ポリエステル樹脂(A1)を構成するジアルコール成分単位(a12)は、脂環族ジアルコール成分単位(好ましくはシクロヘキサン骨格を有するジアルコール成分単位)を30~100モル%、脂肪族ジアルコール成分単位を0~70モル%含むことが好ましい。ジアルコール成分単位(a12)中の各ジアルコール成分単位の合計量を100モル%とする。
 ジアルコール成分単位(a12)における脂環族ジアルコール成分単位(シクロヘキサン骨格を有するジアルコール成分単位)の割合は、好ましくは50~100モル%であり、さらに好ましくは60~100モル%でありうる。ジアルコール成分単位(a12)における脂肪族ジアルコール成分単位の割合は、好ましくは0~50モル%であり、より好ましくは0~40モル%でありうる。
 ジアルコール成分単位(a12)は、上記構成単位とともに、少量の芳香族ジアルコール成分単位をさらに含んでもよい。芳香族ジアルコールの例には、ビスフェノール、ハイドロキノン、2,2-ビス(4-β-ヒドロキシエトキシフェニル)プロパン類などの芳香族ジオールなどが含まれる。
 1-1-2.ポリアミド樹脂(A2)
 ポリアミド樹脂(A2)は、少なくとも芳香族ジカルボン酸由来の成分単位を含むジカルボン酸成分単位(a21)と、脂肪族ジアミン由来の成分単位を含むジアミン成分単位(a22)とを含むことが好ましい。
 ポリアミド樹脂(A2)を構成するジカルボン酸成分単位(a21)は、テレフタル酸成分単位40~100モル%と、テレフタル酸以外の芳香族ジカルボン酸成分単位0~60モル%とを含むことが好ましい。ジカルボン酸成分単位(a21)中の各ジカルボン酸成分単位の合計量を100モル%とする。
 ジカルボン酸成分単位(a21)におけるテレフタル酸成分単位の割合は、より好ましくは60~100モル%であり、さらに好ましくは75~100モル%でありうる。テレフタル酸成分単位の含有割合が一定以上であると、ポリアミド樹脂(A2)の耐熱性を高めやすい。ジカルボン酸成分単位(a21)におけるテレフタル酸以外の芳香族ジカルボン酸成分単位の割合は、より好ましくは0~40モル%であり、さらに好ましくは0~25モル%でありうる。
 テレフタル酸成分単位は、前述と同様に、テレフタル酸、またはテレフタル酸エステル(テレフタル酸の炭素数1~4のアルキルエステル)から誘導される成分単位でありうる。
 テレフタル酸以外の芳香族ジカルボン酸成分単位の好ましい例には、前述と同様に、イソフタル酸、2-メチルテレフタル酸、ナフタレンジカルボン酸およびこれらの組み合わせから誘導される成分単位、ならびに当該芳香族ジカルボン酸のエステル(好ましくは芳香族ジカルボン酸の炭素数1~4のアルキルエステル)から誘導される成分単位が含まれる。
 ジカルボン酸成分単位(a21)は、上記構成単位とともに、少量の脂肪族ジカルボン酸成分単位や多価カルボン酸成分単位をさらに含んでもよい。ジカルボン酸成分単位(a21)に含まれる脂肪族ジカルボン酸成分単位と多価カルボン酸成分単位の合計割合は、例えば10モル%以下としうる。脂肪族ジカルボン酸成分単位と多価カルボン酸成分単位の例には、前述と同様のものが挙げられる。
 ポリアミド樹脂(A2)を構成するジアミン成分単位(a22)は、脂肪族ジアミン成分単位を含むことが好ましい。脂肪族ジアミン成分単位は、炭素原子数4~18の脂肪族ジアミン由来の成分単位であることが好ましい。炭素原子数4~18の脂肪族ジアミンの例には、1,6-ヘキサンジアミン、1,7-ヘプタンジアミン、1,8-オクタンジアミン、1,9-ノナンジアミン、1,10-デカンジアミン、1,11-ウンデカンジアミン、1,12-ドデカンジアミン等の直鎖状脂肪族ジアミン;
 2-メチル-1,5-ペンタンジアミン、3-メチル-1,5-ペンタンジアミン、2,2,4-トリメチル-1,6-ヘキサンジアミン、2,4,4-トリメチル-1,6-ヘキサンジアミン、2-メチル-1,8-オクタンジアミン、5-メチル-1,9-ノナンジアミン等の分岐鎖状脂肪族ジアミンなどから誘導される単位を挙げることができ、これらのうちの1種または2種以上を含むことができる。これらのなかでも、耐熱性に一層優れる樹脂組成物が得られることから、1,9-ノナンジアミンおよび/または2-メチル-1,8-オクタンジアミンが好ましい。
 ジアミン成分単位(a22)における炭素原子数4~18の脂肪族ジアミン由来の成分単位の割合は、50~100モル%であることが好ましく、60~100モル%であることがより好ましく、75~100モル%であることがさらに好ましい。ジアミン成分単位(a22)中の各ジアミン成分単位の合計量を100モル%とする。
 脂肪族ジアミン成分単位が、1,9-ノナンジアミン単位と2-メチル-1,8-オクタンジアミン単位の両方を含む場合は、1,9-ノナンジアミン単位と2-メチル-1,8-オクタンジアミン単位のモル比は、1,9-ノナンジアミン単位/2-メチル-1,8-オクタンジアミン単位=95/5~50/50の範囲にあることが好ましく、85/15~55/45の範囲がより好ましい。
 ジアミン成分単位(a22)は、脂肪族ジアミン成分単位のほかに、少量の脂環式ジアミン成分単位や芳香族ジアミン成分単位をさらに含んでいてもよい。脂環式ジアミン成分単位の例には、シクロヘキサンジアミン、メチルシクロヘキサンジアミン、イソホロンジアミンから誘導される成分単位が含まれる。芳香族ジアミン成分単位の例には、p-フェニレンジアミン、m-フェニレンジアミン、キシリレンジアミン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルエーテルなどから誘導される成分単位が含まれる。
 1-1-3.物性
 熱可塑性樹脂(A)の、示差走査熱量計(DSC)で測定される融点(Tm)もしくはガラス転移温度(Tg)は250℃以上である。融点(Tm)もしくはガラス転移温度(Tg)の好ましい下限値は、270℃であり、より好ましくは280℃である。一方、融点(Tm)もしくはガラス転移温度(Tg)の好ましい上限値としては350℃を例示でき、さらに好ましくは335℃である。前記融点やガラス転移温度が250℃以上であると、リフローはんだ工程での反射板(樹脂組成物の成形物)の変色や変形などが抑制される。上限温度は原則的には制限されないが、融点もしくはガラス転移温度が350℃以下であると、溶融成形に際して熱可塑性樹脂(A)の分解が抑制されるため好ましい。
 ポリエステル樹脂(A1)の融点は、示差走査熱量計(DSC)により、JIS-K7121に準拠して測定されうる。具体的には、測定装置としてX-DSC7000(SII社製)を準備する。この装置に、ポリエステル樹脂(A1)の試料を封入したDSC測定用パンをセットし、窒素雰囲気下で昇温速度10℃/分で320℃まで昇温し、その温度で5分間保持した後、10℃/分の降温測定で30℃まで降温する。そして、昇温時の吸熱ピークのピークトップの温度を「融点」とする。
 ポリアミド樹脂(A2)の融点は、窒素雰囲気下で昇温速度10℃/分で350℃まで昇温する以外は、前述と同様の方法で測定されうる。
 熱可塑性樹脂(A)の極限粘度[η]は0.3~1.2dl/gであることが好ましい。極限粘度がこのような範囲にある場合、反射材用樹脂組成物の成形時の流動性が優れる。熱可塑性樹脂(A)の極限粘度は、熱可塑性樹脂(A)の分子量を調整するなどして調整されうる。例えば、ポリエステル樹脂(A1)の分子量の調整方法は、重縮合反応の進行度合いや単官能のカルボン酸や単官能のアルコールなどを適量加える等の公知の方法を採用することができる。
 ポリエステル樹脂(A1)の極限粘度は、以下の手順で測定することができる。
 ポリエステル樹脂(A1)をフェノールとテトラクロロエタンの50/50質量%の混合溶媒に溶解させて試料溶液とする。得られた試料溶液の流下秒数を、ウベローデ粘度計を用いて25℃±0.05℃の条件下で測定し、下記式に当てはめて極限粘度[η]を算出する。
 [η]=ηSP/[C(1+kηSP)]
 [η]:極限粘度(dl/g)
 ηSP:比粘度
 C:試料濃度(g/dl)
 t:試料溶液の流下秒数(秒)
 t0:溶媒の流下秒数(秒)
 k:定数(溶液濃度の異なるサンプル(3点以上)の比粘度を測定し、横軸に溶液濃度、縦軸にηsp/Cをプロットして求めた傾き)
 ηSP=(t-t0)/t0
 ポリエステル樹脂(A1)は、例えば反応系内に分子量調整剤等を配合して、ジカルボン酸成分単位(a11)とジアルコール成分単位(a12)とを反応させて得ることができる。上述のように、反応系内に分子量調整剤を配合することで、ポリエステル樹脂(A1)の極限粘度を調整しうる。
 分子量調整剤は、モノカルボン酸やモノアルコールでありうる。モノカルボン酸の例には、炭素原子数2~30の脂肪族モノカルボン酸、芳香族モノカルボン酸および脂環族モノカルボン酸が含まれる。なお、芳香族モノカルボン酸および脂環族モノカルボン酸は、環状構造部分に置換基を有していてもよい。脂肪族モノカルボン酸の例には、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデシル酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイン酸およびリノ-ル酸などが含まれる。また、芳香族モノカルボン酸の例には、安息香酸、トルイル酸、ナフタレンカルボン酸、メチルナフタレンカルボン酸およびフェニル酢酸などが含まれ、脂環族モノカルボン酸の例には、シクロヘキサンカルボン酸が含まれる。
 分子量調整剤の添加量は、ジカルボン酸成分単位(a11)とジアルコール成分単位(a12)とを反応させる際のジカルボン酸成分単位(a11)の合計量1モルに対して0~0.07モル、好ましくは0~0.05モルとしうる。
 ポリアミド樹脂(A2)の極限粘度[η]は、前述の混合溶媒を濃硫酸とし、かつ30℃で測定する以外は前述と同様にして測定されうる。
 本発明の反射材用樹脂組成物における熱可塑性樹脂(A)の含有割合は、熱可塑性樹脂(A)、白色顔料(B)および化合物(C)の合計に対して45~80質量%であることが好ましく、45~70質量%であることがより好ましく、50~60質量%であることがさらに好ましい。熱可塑性樹脂(A)の含有割合が一定以上であると、成形性を損なうことなく、リフローはんだ工程などに耐えうる耐熱性に優れた反射材用樹脂組成物が得られやすい。熱可塑性樹脂(A)が、ポリエステル樹脂(A1)とポリアミド樹脂(A2)の両方を含む場合、熱可塑性樹脂(A)の含有割合は、ポリエステル樹脂(A1)とポリアミド樹脂(A2)の含有割合の合計を意味する。
 1-2.白色顔料(B)
 本発明の反射材用樹脂組成物に含まれる白色顔料(B)は、樹脂組成物を白色化し、光反射機能を向上できるものであればよい。具体的には、白色顔料(B)は、屈折率が2.0以上であることが好ましい。白色顔料(B)の屈折率の上限値は、例えば4.0でありうる。具体的には、酸化チタン、酸化亜鉛、硫化亜鉛、鉛白、硫酸亜鉛、硫酸バリウム、炭酸カルシウム、酸化アルミナなどが挙げられる。これらの白色顔料(B)は、一種を単独で用いてもよいし、二種以上を併用してもよい。なかでも、成形物の反射率や隠蔽性などが高いなどから、酸化チタンが好ましい。
 酸化チタンは、ルチル型が好ましい。酸化チタンの平均粒子径は、0.1~0.5μmであることが好ましく、より好ましくは0.15~0.3μmである。
 白色顔料(B)は、シランカップリング剤あるいはチタンカップリング剤などで処理されたものでもありうる。例えば、白色顔料(B)は、ビニルトリエトキシシラン、2-アミノプロピルトリエトキシシラン、2-グリシドキシプロピルトリエトキシシランなどのシラン系化合物で表面処理されていてもよい。
 白色顔料(B)は、反射率を均一化させるためなどから、アスペクト比の小さい、すなわち球状に近いものが好ましい。
 反射材用樹脂組成物における白色顔料(B)の含有割合は、熱可塑性樹脂(A)、白色顔料(B)、および化合物(C)の合計に対して17~54.99質量%、好ましくは20~50質量%、より好ましくは20~40質量%である。白色顔料(B)の含有割合が17質量%以上であると、十分な白色度が得られやすく、かつ成形物の反射率を高めやすい。白色顔料(B)の含有割合が54.99質量%以下であると、成形性が損なわれにくい。
 白色顔料(B)の熱可塑性樹脂(A)に対する含有割合は、例えば30~90質量%、好ましくは60~80質量%としうる。
 1-3.化合物(C)
 本発明の反射材用樹脂組成物に含まれる化合物(C)は、分子内に下記式(A)で表される構造を1以上有する化合物でありうる。
Figure JPOXMLDOC01-appb-C000002
 1分子あたりの式(A)で表される構造の数は、例えば1~4でありうるが、好ましくは1である。即ち、化合物(C)は、一般式(1)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000003
 一般式(1)のXは、有機基を示す。有機基Xは、炭素原子数1~20の置換または未置換のアルキル基、置換または未置換のシクロヘキシル基、あるいは炭素原子数6~20の置換または未置換のアリール基を示し;好ましくは炭素原子数1~20の置換または未置換のアルキル基、あるいは炭素原子数6~20の置換または未置換のアリール基を示す。
 炭素原子数1~20の置換または未置換のアルキル基の例には、メチル基、エチル基、n-プロピル基、n-オクチル基、n-テトラデシル基、n-ヘキサデシル基などが含まれる。炭素原子数6~20の置換または未置換のアリール基の例には、2,4-ジ-t-ブチルフェニル基、2,4-ジ-t-ペンチルフェニル基などが含まれる。
 有機基Xで表されるアルキル基、シクロヘキシル基、およびアリール基が有しうる置換基は、メチル基、エチル基などの炭素原子数1~12のアルキル基;フェニル基などの炭素原子数6~12のアリール基;ヒドロキシ基;メトキシ基;およびオキサジアゾール基からなる群より選ばれる基であることが好ましい。
 化合物(C)の分子量は、200~2000であることが好ましく、200~1000であることがより好ましい。化合物(C)の分子量が上記範囲にあると、溶融時の揮発が少なく、且つ他の成分と良好に混合しやすく、樹脂組成物の流動性も損なわれにくい。
 化合物(C)は、ラジカル捕捉作用を有しうる。それにより、樹脂組成物の製造時や成形時、成形物の使用環境下などで受ける熱や光で発生するラジカルを捕捉し、当該製造時や成形時の熱可塑性樹脂(A)の熱分解や、熱や光による成形物中の熱可塑性樹脂(A)の分解を抑制しうる。また、化合物(C)は、紫外線吸収作用を有しうる。それにより、成形物中の熱可塑性樹脂(A)の光による分解を抑制しうる。これらの結果、変色が少なく、反射率の高い成形物が得られ、かつ反射率の低下を少なくしうる。
 特に化合物(C)は、一般式(1)で示されるようにオキシカルボニル基がベンゼン環に直接結合している。それにより、化合物(C)は良好なラジカル捕捉性を有しうる。
 反射材用樹脂組成物における化合物(C)の含有割合は、熱可塑性樹脂(A)、白色顔料(B)、および化合物(C)の合計に対して0.01~3質量%、好ましくは0.05~1.5質量%、より好ましくは0.1~1.1質量%である。化合物(C)の含有割合が0.01質量%以上であると、熱や光による成形物中の樹脂の劣化を抑制して十分な白色度が得られやすく、反射率の低下を低減しやすい。化合物(C)の含有割合が3質量%以下であると、化合物(C)の分解物に起因する着色や色相悪化による成形物の反射率の低下を少なくしうる。
 化合物(C)の熱可塑性樹脂(A)に対する含有割合は、0.25~2.0質量%、好ましくは0.27~1.0質量%でありうる。化合物(C)の含有割合が一定以上であると、熱や光を長時間受けたときの成形物中の熱可塑性樹脂(A)の分解反応を好ましく抑制しうる。化合物(C)の含有割合が一定以下であると、化合物(C)の分解物に起因する着色や色相悪化による成形物の反射率の低下を少なくしうる。
 1-4.強化材(D)
 本発明の反射材用樹脂組成物は、必要に応じて強化材(D)をさらに含んでもよい。強化材(D)の形状は、球状、繊維状、または板状などあり、成形物に良好な強度や靱性を付与しやすいことなどから、好ましくは繊維状である。
 繊維状強化材の例には、ガラス繊維、ワラストナイト、チタン酸カリウムウィスカー、炭酸カルシウムウィスカー、ホウ酸アルミニウムウィスカー、硫酸マグネシウムウィスカー、セピオライト、ゾノトライト、酸化亜鉛ウィスカー、ミルドファイバー、カットファイバーなどが含まれる。これらのうちの1種を単独で用いても、2種以上を併用してもよい。なかでも、平均繊維径が比較的小さく、成形物の表面平滑性を高めやすいことなどから、ワラストナイト、ガラス繊維およびチタン酸カリウムウィスカーからなる群から選ばれる少なくとも1種が好ましく、ワラストナイトまたはガラス繊維がより好ましい。光遮蔽効果が高い点ではワラストナイトが好ましく、機械強度が高い点ではガラス繊維が好ましい。
 反射材用樹脂組成物中の繊維状強化材の平均繊維長(l)は、通常5mm以下であり、300μm以下であることが好ましく、100μm以下であることがより好ましく、50μm以下であることがさらに好ましい。当該平均繊維長(l)が一定以下であると、繊維状強化材が成形時などに折れにくいだけでなく、繊維状強化材が樹脂中に微分散しやすい。そのため、成形時などに樹脂が受ける余分な応力を少なくし、樹脂の熱分解を抑制しやすい。また、得られる成形物の表面平滑性を高めやすい。当該平均繊維長(l)の下限値は、特に制限はないが、好ましくは2μmであり、より好ましくは8μmでありうる。平均繊維長(l)を2μm以上とすることで、成形物に良好な強度を付与しうる。
 反射材用樹脂組成物中の繊維状強化材の平均繊維径(d)は、成形時などに繊維状強化材を微分散させやすくし、かつ成形物の表面平滑性を高める観点から、一定以下であることが好ましく、具体的には0.05~30μmであることが好ましく、2~6μmであることがより好ましい。平均繊維径(d)を一定以上とすることで、成形時などに繊維状強化材が折れるのを抑制しやすい。平均繊維径(d)を一定以上とすることで、成形物に高い表面平滑性を付与し、高い反射率が得られやすい。
 反射材用樹脂組成物(例えばペレットなどのコンパウンド)中の繊維状強化材の平均繊維長(l)および平均繊維径(d)は、以下の方法で測定されうる。
 1)反射材用樹脂組成物をヘキサフルオロイソプロパノール/クロロホルム溶液(0.1/0.9体積%)に溶解させた後、濾過して得られる濾過物を採取する。
 2)得られた濾過物のうち任意の100本の繊維状強化材を走査型電子顕微鏡(SEM)(倍率:50倍)で観察し、それぞれの繊維長および繊維径を計測する。繊維長の平均値を平均繊維長(l)とし;繊維径の平均値を平均繊維径(d)としうる。
 繊維状強化材の平均繊維長(l)を平均繊維径(d)で除して得られるアスペクト比(l/d)は、2~20であることが好ましく、7~12であることがより好ましい。アスペクト比が一定以上であると、成形物に一定以上の強度や剛性を付与しやすい。
 反射材用樹脂組成物における強化材(D)の含有割合は、熱可塑性樹脂(A)、白色顔料(B)、および化合物(C)の合計に対して、5~50質量%、好ましくは5~40質量%でありうる。強化材(D)の含有割合が5質量%以上であると、樹脂組成物の耐熱性を高め、成形物の表面を平滑にしやすい。強化材(D)の含有割合が50質量%以下であると、樹脂組成物の成形性が損なわれにくい。
 1-5.その他の成分(E)
 本発明の反射材用樹脂組成物は、本発明の効果を損なわない範囲で、用途に応じて、任意の成分、例えば、酸化防止剤(アミン類、イオウ類、リン類等)、光安定剤(ベンゾトリアゾール類、トリアジン類、ベンゾフェノン類、ヒンダードアミン類、オギザニリド類等)、耐熱安定剤(ラクトン化合物、ビタミンE類、ハイドロキノン類、ハロゲン化銅、ヨウ素化合物等)、他の重合体(ポリオレフィン類、エチレン・プロピレン共重合体、エチレン・1-ブテン共重合体等のオレフィン共重合体、プロピレン・1-ブテン共重合体等のオレフィン共重合体、ポリスチレン、ポリアミド、ポリカーボネート、ポリアセタール、ポリスルフォン、ポリフェニレンオキシド、フッ素樹脂、シリコーン樹脂、LCP等)、難燃剤(臭素系、塩素系、リン系、アンチモン系、無機系等)蛍光増白剤、可塑剤、増粘剤、帯電防止剤、離型剤、顔料、結晶核剤、種々公知の配合剤などを含んでもよい。
 本発明の反射材用樹脂組成物を他の成分と組み合わせて使用する場合、前記添加剤の選択が重要になる場合がある。例えば、組合せ使用する他の成分が触媒などを含む場合、前記添加剤に触媒毒になる成分や元素が含まれている化合物は避けることが好ましい。避けた方が好ましい添加剤としては、例えば、硫黄などを含む化合物等が挙げられる。
 1-6.物性
 本発明の反射材用樹脂組成物は、良好な成形性を有しうる。具体的には、反射材用樹脂組成物を下記条件で射出成形したときの流動長が、30mm以上であることが好ましく、31mm以上であることがより好ましい。
 射出成形装置:(株)ソディック プラステック、ツパールTR40S3A
 射出設定圧力:2000kg・cm
 シリンダー設定温度:融点+10℃
 金型温度:30℃
 本発明の反射材用樹脂組成物の流動性を高めるためには、例えば白色顔料(B)や強化材(D)の含有割合を一定以下とすることが好ましい。
 2.反射材用樹脂組成物の製造方法
 本発明の反射材用樹脂組成物は、上記の各成分を、公知の方法、例えばヘンシェルミキサー、Vブレンダー、リボンブレンダー、タンブラーブレンダーなどで混合する方法、あるいは混合後さらに一軸押出機、多軸押出機、ニーダー、バンバリーミキサーなどで溶融混練後、造粒あるいは粉砕する方法により製造することができる。
 本発明の反射材用樹脂組成物は、好ましくは上記各成分を一軸押出機や多軸押出機などで混合後、溶融混練し、造粒あるいは粉砕して得られるペレットなどのコンパウンドでありうる。コンパウンドは、成形用材料として好ましく用いられる。溶融混練は、ポリエステル樹脂(A1)やポリアミド樹脂(A2)の融点より5~30℃高い温度で行うことが好ましい。溶融混練温度の好ましい下限値は、255℃、好ましくは275℃、より好ましくは295℃とすることができ、好ましい上限値は、360℃、より好ましくは340℃とすることができる。
 3.反射板
 本発明の反射板は、本発明の反射材用樹脂組成物を成形して得られる成形物でありうる。
 本発明の反射材用樹脂組成物の成形物は、反射板として良好に機能させる観点から、成形物の、波長450nmの光の反射率が90%以上であることが好ましく、94%以上であることがより好ましい。反射率は、コニカミノルタ社製CM3500dを用いて測定することができる。測定時の成形物の厚みは、0.5mmとしうる。
 本発明の反射材用樹脂組成物の成形物は、熱や光を受けても反射率の低下が少ないことが好ましい。具体的には、当該成形物の、150℃で500時間加熱後に測定される波長450nmの光の反射率は、ポリエステル樹脂(A1)の場合は、例えば90%以上であり、ポリアミド樹脂(A2)の場合は、例えば70%以上でありうる。当該成形物の、紫外線を16mW/cmで500時間照射後に測定される波長450nmの光の反射率は、ポリエステル樹脂(A1)の場合は例えば82%以上であり、ポリアミド樹脂(A2)の場合は例えば70%以上でありうる。測定時の成形物の厚みは、0.5mmとしうる。反射率を維持するためには、前述の化合物(C)を一定量以上含有させることが好ましい。
 本発明の反射板は、少なくとも光を反射させる面を有するケーシングやハウジングなどでありうる。光を反射させる面は、平面、曲面または球面でありうる。例えば、反射板は、箱状または函状、漏斗状、お椀形状、パラボラ形状、円柱状、円錐状、ハニカム状などの形状の光反射面を有する成形物でありうる。
 本発明の反射板は、有機ELや発光ダイオード(LED)などの各種光源の反射板として用いられる。なかでも、発光ダイオード(LED)の反射板として用いられることが好ましく、表面実装に対応した発光ダイオード(LED)の反射板として用いられることがより好ましい。
 本発明の反射板は、本発明の反射材用樹脂組成物を、射出成形、特にフープ成形等の金属のインサート成形、溶融成形、押出し成形、インフレーション成形、ブロー成形等の加熱成形により、所望の形状に賦形することによって得ることができる。
 本発明の反射板は、化合物(C)を含む反射材用樹脂組成物を成形して得られる。化合物(C)は、樹脂組成物の製造時や成形時の高温下で発生するラジカルを良好に捕捉しうるため、熱による熱可塑性樹脂(A)の分解反応を抑制しやすい。それにより、変色が少なく、反射率の高い成形物を得ることができる。
 本発明の反射板を備えたLEDパッケージは、例えば基板上に成形された、LEDを搭載するための空間を有するハウジング部と、当該空間に搭載されたLEDと、LEDを封止する透明な封止部材とを有しうる。このようなLEDパッケージは、1)基板上に反射板を成形してハウジング部を得る工程と;2)ハウジング部内にLEDを配置し、LEDと基板とを電気的に接続する工程と;3)LEDを封止剤で封止する工程とを経て製造されうる。封止工程では、封止剤を熱硬化させるために100~200℃の温度で加熱する。さらに、LEDパッケージをプリント基板に実装する際のリフローはんだ工程では、LEDパッケージが250℃以上もの高温に曝される。
 本発明の反射材用樹脂組成物から得られる反射板は、化合物(C)を含むことから、上記工程で高温の熱に曝されたり、使用環境下でLEDから発生する可視光や紫外光などの光や熱を長時間受けたりしても、化合物(C)が良好にラジカルを捕捉しうる。また、化合物(C)は、紫外光などを吸収しうることから、樹脂が受ける紫外光の量を少なくしうる。これらにより、成形物中の光や熱による熱可塑性樹脂(A)の分解反応を抑制し、変色が少なく、高い反射率を維持しうる。
 本発明の反射板は、種々の用途に用いることができ、例えば各種電気電子部品、室内照明、屋外照明、自動車照明などの反射板として用いることができる。
 以下において、実施例を参照して本発明を説明する。実施例によって、本発明の範囲は限定して解釈されない。
 1.材料の調製
 <ポリエステル樹脂(A1)>
 ジメチルテレフタレートl06.2質量部と、1,4-シクロヘキサンジメタノール(シス/トランス比:30/70)(東京化成工業社製)94.6質量部とを混合した。当該混合物に、テトラブチルチタネート0.0037質量部を加え、150℃から300℃まで3時間30分かけて昇温し、エステル交換反応をさせた。
 前記エステル交換反応終了時に、1,4-シクロヘキサンジメタノールに溶解した酢酸マグネシウム・四水塩0.066質量部を加え、引き続きテトラブチルチタネート0.1027質量部を導入して重縮合反応を行った。重縮合反応は常圧から1Torrまで85分かけて徐々に減圧し、同時に所定の重合温度300℃まで昇温した。温度と圧力を保持したまま撹拌を続け、所定の撹拌トルクに到達した時点で反応を終了させた。その後、得られた重合体を取り出し、260℃、1Torr以下で3時間固相重合させてポリエステル樹脂(A1)を得た。
 得られたポリエステル樹脂(A1)の極限粘度[η]は0.6dl/gであり、融点は290℃であった。極限粘度[η]と融点は、以下の方法で測定した。
 (極限粘度)
 得られたポリエステル樹脂(A1)を、フェノールとテトラクロロエタンの50/50質量%の混合溶媒に溶解して試料溶液とした。得られた試料溶液の流下秒数を、ウベローデ粘度計を用いて25℃±0.05℃の条件下で測定し、下記式に当てはめて極限粘度[η]を算出した。
 [η]=ηSP/[C(1+kηSP)]
 [η]:極限粘度(dl/g)
 ηSP:比粘度
 C:試料濃度(g/dl)
 t:試料溶液の流下秒数(秒)
 t0:溶媒の流下秒数(秒)
 k:定数(溶液濃度の異なるサンプル(3点以上)の比粘度を測定し、横軸に溶液濃度、縦軸にηsp/Cをプロットして求めた傾き)
 ηSP=(t-t0)/t0
 (融点)
 ポリエステル樹脂(A1)の融点の測定は、JIS-K7121に準じて行った。測定装置としてX-DSC7000(SII社製)を準備した。これに、ポリエステル樹脂(A1)の試料を封入したDSC測定用パンをセットし、窒素雰囲気下で、昇温速度10℃/分で、320℃まで昇温し、その温度で5分間保持した後、10℃/分の降温測定で30℃まで降温させた。そして、昇温時の吸熱ピークのピークトップの温度を「融点」とした。
 <ポリアミド樹脂(A2)>
 テレフタル酸23.9質量部、1,9-ノナンジアミン20.4質量部、2-メチル-1,8-オクタンジアミン3.6質量部、安息香酸0.3質量部、次亜リン酸ナトリウム-水和物0.3質量部および蒸留水をオートクレーブに入れ、窒素置換した。得られた混合物を加熱して、190℃から攪拌を開始し、3時間かけて内部温度を250℃まで昇温させた。このとき、オートクレーブの内圧を3.03MPaまで昇圧させた。このまま1時間反応を続けた後、オートクレーブ下部に設置したスプレーノズルから大気放出して低縮合物を抜き出した。得られた低縮合物を室温まで冷却した後、粉砕機で1.5mm以下の粒径まで粉砕し、110℃で24時間乾燥させた。得られた低縮合物の水分量は4100ppm、極限粘度[η]は0.13dl/gであった。
 次に、この低縮合物を棚段式固相重合装置に投入し、窒素置換後、約1時間30分かけて180℃まで昇温した。その後、1時間30分間反応させた後、室温まで降温した。得られたポリアミドの極限粘度[η]は0.17dl/gであった。その後、得られたポリアミドを、スクリュー径30mm、L/D=36の二軸押出機に投入し、バレル設定温度330℃、スクリュー回転数200rpm、5Kg/hの樹脂供給速度で溶融重合させて、ポリアミド樹脂(A2)を得た。
 得られたポリアミド樹脂(A2)の極限粘度[η]は0.91dl/gであり、融点は306℃であった。ポリアミド樹脂(A2)の極限粘度[η]は、濃硫酸中、30℃で測定した以外は前述と同様にして測定した。ポリアミド樹脂(A2)の融点は、窒素雰囲気下で昇温速度10℃/分で350℃まで昇温した以外は前述と同様の方法で測定した。
 <白色顔料(B)>
 酸化チタン(粉末状、平均粒径*b0.21μm)
 *b:酸化チタンの平均粒径は、透過型電子顕微鏡写真をもとに画像回折装置(ルーゼックスIIIU)にて画像解析して求めた。
 <化合物(C)>
 C-1:KEMISORB114(ケミプロ化成(株)、下記式で表される化合物)
Figure JPOXMLDOC01-appb-C000004
 C-2:KEMISORB113(ケミプロ化成(株)、下記式で表される化合物)
Figure JPOXMLDOC01-appb-C000005
 <比較用化合物>
 R-1:Irganox1010(BASF)ペンタエリトリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオナート]
 <強化材(D)>
 D-1:ワラストナイト、平均繊維長(l)50μm、平均繊維径(d)4.5μm、アスペクト比(l/d)11(巴工業(株)社製NYGLOS 4W)
 D-2:ガラス繊維、平均繊維長(l)3mm、異形比4[7μm×28μm](日東紡績(株)製CSG 3PA-830、シラン化合物処理品)
 原料としてのワラストナイト(D-1)およびガラス繊維(D-2)の平均繊維長(l)および平均繊維径(d)は、以下の方法で測定した。即ち、走査型電子顕微鏡(SEM)(倍率:50倍)を介して、100本のワラストナイトまたはガラス繊維の繊維長、繊維径を測定した。そして、繊維長の平均値を平均繊維長(l)とし、繊維径の平均値を平均繊維径(d)とした。アスペクト比=平均繊維長/平均繊維径(l/d)とした。
 2.反射材用樹脂組成物の作製
 [実施例1]
 ポリエステル樹脂(A1)として上記合成したポリエステル樹脂54.85質量部、白色顔料(B)として上記酸化チタン35質量部、化合物(C)として化合物(C-1)0.15質量部、強化材(D)として上記ワラストナイト(D-1)10質量部とをタンブラーブレンダーを用いて混合した。得られた混合物を、二軸押出機((株)日本製鋼所製 TEX30α)にてシリンダー温度300℃で原料を溶融混錬した後、ストランド状に押出した。押出物を水槽で冷却後、ペレタイザーでストランドを引き取り、カットして、ペレット状の反射材用樹脂組成物を得た。コンパウンド性は良好であることを確認できた。
 さらに、得られたペレット状の反射材用樹脂組成物における強化材(D)の平均繊維長・平均繊維径を、以下の方法で測定した。
 1)得られた反射材用樹脂組成物を、ヘキサフルオロイソプロパノール/クロロホルム溶液(0.1/0.9体積%)に溶解させて、濾過物を採取した。
 2)得られた濾過物のうち任意の100本の強化材(D)を、走査型電子顕微鏡(日立社製S-4800)にて50倍の倍率で観察し、それぞれの繊維長と繊維径を計測した。そして、計測された繊維長の平均値を「平均繊維長」とし;計測された繊維径の平均値を「平均繊維径」とした。
 その結果、実施例1で得られた反射材用樹脂組成物中の平均繊維長は23μmであり、平均繊維径は2.9μmであった。
 [実施例2、3、5~9および比較例1~3]
 表1または2に示される組成に変更した以外は実施例1と同様にしてペレット状の樹脂組成物を得た。
 [実施例4および比較例4]
 シリンダー温度を320℃に変更し、かつ表1または2に示される組成に変更した以外は実施例1と同様にしてペレット状の樹脂組成物を得た。
 各実施例および各比較例で得られた樹脂組成物の、各種反射率および流動性を、以下の方法で評価した。
 <反射率>
 (初期反射率)
 得られたペレット状の樹脂組成物を、下記の成形機を用いて、下記の成形条件で射出成形して、長さ30mm、幅30mm、厚さ0.5mmの試験片を調製した。得られた試験片を、ミノルタ(株)CM3500dを用いて、波長領域360nm~740nmの反射率を求めた。450nmの反射率を代表値として初期反射率とした。
 成形機: 住友重機械工業(株)社製、SE50DU
 シリンダー温度:融点(Tm)+10℃、
 金型温度:150℃
 (リフロー試験後の反射率)
 初期反射率を測定した試料片を、170℃のオーブンに2時間放置した。次いで、この試料片を、エアーリフローはんだ装置(エイテックテクトロン(株)製AIS-20-82-C)を用いて、試料片の表面温度が260℃となり、かつ20秒保持する温度プロファイルの熱処理(リフローはんだ工程と同様の熱処理)を施した。この試料片を徐冷後、初期反射率と同様の方法で反射率を測定し、リフロー試験後の反射率とした。
 (加熱後の反射率)
 初期反射率を測定した試験片を、150℃のオーブンに500時間放置した。その後、得られた試料片の反射率を、初期反射率と同様の方法で測定し、加熱後の反射率とした。
 (紫外線照射後の反射率)
 初期反射率を測定した試験片を、下記の紫外線照射装置に500時間放置した。その後、得られた試料片の反射率を、初期反射率と同様の方法で測定し、紫外線照射後の反射率とした。
 紫外線照射装置:ダイプラ・ウィンテス(株) スーパーウィンミニ
 出力:16mW/cm
 <流動性>
 得られた樹脂組成物を、幅10mm、厚み0.5mmのバーフロー金型を用いて、以下の条件で射出成形し、金型内の樹脂の流動長(mm)を測定した。
 射出成形機:(株)ソディック プラステック、ツパールTR40S3A
 射出設定圧力:2000kg/cm
 シリンダー設定温度:融点(Tm)+10℃
 金型温度:30℃
 実施例1~9の評価結果を表1に示し;比較例1~4の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1および2に示されるように、化合物(C)を含む実施例1~9の樹脂組成物は、化合物(C)を含まない比較例1および3~4の樹脂組成物よりも、高い反射率を有し、かつ加熱後または光照射後の反射率の低下が少ないことがわかる。これは、化合物(C)が、該ペレット状の樹脂組成物の製造時または成形時の熱や成形後の熱や光などを受けたときに発生するラジカルを捕捉し、ポリエステル樹脂(A1)やポリアミド樹脂(A2)の分解反応を抑制しうるためであると考えられる。
 実施例1~3および比較例2の対比から、化合物(C)の含有割合が一定以下である実施例1~3の樹脂組成物は、化合物(C)の含有割合が多過ぎる比較例2の樹脂組成物よりも初期、リフロー試験後、加熱後および紫外線照射後の反射率が高いことがわかる。つまり、化合物(C)は、溶融時のポリエステル樹脂(A1)との相溶性が高いため、低分子量であっても揮発が低減され、かつ少ない添加量でも均一に分散するため、ポリエステル樹脂(A1)の変色を抑制できることが示される。変色を抑制できる機構は明らかではないが、化合物(C)が高温混練時に発生するラジカルを捕捉するだけでなく、化合物(C)とポリエステル樹脂(A1)とのエステル交換反応により、ポリエステル樹脂(A1)の分子末端を封止し、樹脂劣化を抑制することにもよると考えられる。
 実施例4と実施例5の対比から、ポリエステル樹脂(A1)を含む実施例5の樹脂組成物は、ポリアミド樹脂(A2)を含む実施例4の樹脂組成物よりも加熱後の反射率が高いことがわかる。実施例4の樹脂組成物は、ポリアミド樹脂(A2)のアミド基由来の変色を十分には抑制できなかったためと考えられる。
 実施例1、7及び8の対比から、強化材(D)を適量含む実施例1の樹脂組成物は、強化材(D)を含まない実施例7の樹脂組成物や強化材(D)を比較的多く含む実施例8の樹脂組成物よりも、加熱後や紫外線照射後の反射率の低下がより少ないことが示される。
 実施例9と比較例3との対比から、実施例9の樹脂組成物は、比較例3の樹脂組成物は、初期の反射率だけでなく、加熱後の反射率の低下も十分に抑制されることが示される。このことから、化合物(C)は、少ない添加量であってもポリエステル樹脂(A1)の変色を高度に抑制できることが示される。
 本出願は、2014年6月30日出願の特願2014-134749に基づく優先権を主張する。当該出願明細書に記載された内容は、すべて本願明細書に援用される。
 本発明の反射材用樹脂組成物は、例えばLEDパッケージの製造工程やLEDパッケージの実装時のリフローはんだ工程などで受ける熱や、使用環境下で光源から受ける熱や光に曝されても、反射率の低下が少ない反射板を提供することができる。

Claims (11)

  1.  示差走査熱量計(DSC)で測定した融点(Tm)もしくはガラス転移温度(Tg)が250℃以上である、ポリエステル樹脂(A1)とポリアミド樹脂(A2)の少なくとも一方からなる熱可塑性樹脂(A)を45~80質量%と、
     白色顔料(B)を17~54.99質量%と、
     下記一般式(1)で表される化合物(C)の少なくとも一種を0.01~3質量%とを含む(ただし、(A)、(B)、および(C)の合計は100質量%である)、反射材用樹脂組成物。
    Figure JPOXMLDOC01-appb-C000006
    (一般式(1)のXは、有機基を示す)
  2.  前記化合物(C)の有機基Xが、炭素原子数1~20の置換または未置換のアルキル基、置換または未置換のシクロヘキシル基、あるいは炭素原子数6~20の置換または未置換のアリール基であり、
     前記アルキル基、前記シクロヘキシル基、および前記アリール基が有する置換基は、炭素原子数1~12のアルキル基、炭素原子数6~12のアリール基、ヒドロキシ基、メトキシ基、およびオキサジアゾール基からなる群より選ばれる、請求項1に記載の反射材用樹脂組成物。
  3.  前記ポリエステル樹脂(A1)が、
     テレフタル酸から誘導されるジカルボン酸成分単位30~100モル%と、テレフタル酸以外の芳香族ジカルボン酸成分単位0~70モル%とを含むジカルボン酸成分単位(a11)と、
     炭素原子数4~20の脂環族ジアルコール成分単位および/または脂肪族ジアルコール成分単位を含むジアルコール成分単位(a12)と、を含む、請求項1または2に記載の反射材用樹脂組成物。
  4.  前記脂環族ジアルコール成分単位が、シクロヘキサン骨格を有する、請求項3に記載の反射材用樹脂組成物。
  5.  前記ジアルコール成分単位(a12)が、シクロヘキサンジメタノール成分単位30~100モル%と、前記脂肪族ジアルコール成分単位0~70モル%とを含む、請求項3または4に記載の反射材用樹脂組成物。
  6.  前記ポリアミド樹脂(A2)が、
     テレフタル酸から誘導されるジカルボン酸成分単位を40~100モル%と、テレフタル酸以外の芳香族ジカルボン酸成分単位0~60モル%とを含むジカルボン酸成分単位(a21)と、
     炭素原子数4~18の脂肪族ジアミン成分単位50~100モル%を含むジアミン成分単位(a22)とを含む、請求項1または2に記載の反射材用樹脂組成物。
  7.  前記脂肪族ジアミン成分単位が、1,9-ノナンジアミン単位と2-メチル-1,8-オクタンジアミン単位の少なくとも一方である、請求項6に記載の反射材用樹脂組成物。
  8.  前記化合物(C)の有機基Xが、メチル基、エチル基、n-プロピル基、n-オクチル基、n-テトラデシル基、n-ヘキサデシル基、2,4-ジ-t-ブチルフェニル基、および2,4-ジ-t-ペンチルフェニル基からなる群より選ばれる基である、請求項1~7のいずれか一項に記載の反射材用樹脂組成物。
  9.  前記(A)、(B)および(C)の合計100質量%に対して、
     強化材(D)を5~50質量%さらに含む、請求項1~8のいずれか一項に記載の反射材用樹脂組成物。
  10.  請求項1~9のいずれか一項に記載の反射材用樹脂組成物を成形して得られる、反射板。
  11.  発光ダイオード素子用の反射板である、請求項10に記載の反射板。
PCT/JP2015/003259 2014-06-30 2015-06-29 反射材用樹脂組成物およびそれを含む反射板 WO2016002192A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/321,448 US20170210883A1 (en) 2014-06-30 2015-06-29 Resin composition for reflective material, and reflective panel including same
EP15814487.3A EP3163332B1 (en) 2014-06-30 2015-06-29 Resin composition for reflective material, and reflective panel including same
JP2016531105A JP6492078B2 (ja) 2014-06-30 2015-06-29 反射材用樹脂組成物およびそれを含む反射板
CN201580033642.4A CN106461824B (zh) 2014-06-30 2015-06-29 反射材料用树脂组合物及包含其的反射板
KR1020167034707A KR101831097B1 (ko) 2014-06-30 2015-06-29 반사재용 수지 조성물 및 그것을 포함하는 반사판

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014134749 2014-06-30
JP2014-134749 2014-06-30

Publications (1)

Publication Number Publication Date
WO2016002192A1 true WO2016002192A1 (ja) 2016-01-07

Family

ID=55018769

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/003259 WO2016002192A1 (ja) 2014-06-30 2015-06-29 反射材用樹脂組成物およびそれを含む反射板

Country Status (7)

Country Link
US (1) US20170210883A1 (ja)
EP (1) EP3163332B1 (ja)
JP (1) JP6492078B2 (ja)
KR (1) KR101831097B1 (ja)
CN (1) CN106461824B (ja)
TW (1) TWI658093B (ja)
WO (1) WO2016002192A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018160654A (ja) * 2016-07-19 2018-10-11 パナソニックIpマネジメント株式会社 光反射体、ベース体、発光装置及びベース体の製造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170210879A1 (en) * 2014-06-30 2017-07-27 Mitsui Chemicals, Inc. Polyester resin composition for reflective materials and reflection plate containing same
WO2021014756A1 (ja) * 2019-07-23 2021-01-28 住友電工ファインポリマー株式会社 光学素子ホルダー及び光学部品
CN110938196A (zh) * 2019-12-18 2020-03-31 中国纺织科学研究院有限公司 一种低熔点聚酯及其制备方法
CN114656781B (zh) * 2022-03-17 2023-08-22 珠海万通特种工程塑料有限公司 一种灰色半芳香聚酰胺模塑材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4355080A (en) * 1981-03-02 1982-10-19 Eastman Kodak Company Polyester-acrylic composite sheet having improved weatherability
JP2004317818A (ja) * 2003-04-16 2004-11-11 Mitsui Chemicals Inc 反射体、それを用いた照明装置および表示装置
WO2007069760A1 (ja) * 2005-12-14 2007-06-21 Sumitomo Chemical Company, Limited ポリオレフィン樹脂組成物、それからなる成形品、およびポリオレフィン樹脂組成物の製造方法
JP2009507990A (ja) * 2005-09-14 2009-02-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリ(シクロヘキサンジメタノールテレフタレート)組成物を含む発光ダイオードアセンブリハウジング
JP2013067786A (ja) * 2011-09-08 2013-04-18 Unitika Ltd ポリアミド樹脂組成物およびそれからなる成形体
WO2013111808A1 (ja) * 2012-01-27 2013-08-01 出光ライオンコンポジット株式会社 難燃性樹脂組成物、成形体、積層構造体、反射板、および、照明装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3206431A (en) * 1964-09-15 1965-09-14 Shell Oil Co Thermoplastic polymers containing 3,5-dialkyl-4-hydroxybenzoic acid esters as u.v. stabilizers
JP2004075994A (ja) 2002-06-21 2004-03-11 Kuraray Co Ltd ポリアミド組成物
JP4650174B2 (ja) 2005-09-07 2011-03-16 株式会社アドヴィックス 車両のトラクション制御装置、及び車両のトラクション制御方法
CN103717673B (zh) * 2011-08-01 2016-03-23 三井化学株式会社 反射材用热塑性树脂组合物、反射板及发光二极管元件
CN110527258A (zh) 2011-12-16 2019-12-03 索维特殊聚合物有限责任公司 耐热和光的聚合物组合物
US20170210879A1 (en) * 2014-06-30 2017-07-27 Mitsui Chemicals, Inc. Polyester resin composition for reflective materials and reflection plate containing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4355080A (en) * 1981-03-02 1982-10-19 Eastman Kodak Company Polyester-acrylic composite sheet having improved weatherability
JP2004317818A (ja) * 2003-04-16 2004-11-11 Mitsui Chemicals Inc 反射体、それを用いた照明装置および表示装置
JP2009507990A (ja) * 2005-09-14 2009-02-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ポリ(シクロヘキサンジメタノールテレフタレート)組成物を含む発光ダイオードアセンブリハウジング
WO2007069760A1 (ja) * 2005-12-14 2007-06-21 Sumitomo Chemical Company, Limited ポリオレフィン樹脂組成物、それからなる成形品、およびポリオレフィン樹脂組成物の製造方法
JP2013067786A (ja) * 2011-09-08 2013-04-18 Unitika Ltd ポリアミド樹脂組成物およびそれからなる成形体
WO2013111808A1 (ja) * 2012-01-27 2013-08-01 出光ライオンコンポジット株式会社 難燃性樹脂組成物、成形体、積層構造体、反射板、および、照明装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018160654A (ja) * 2016-07-19 2018-10-11 パナソニックIpマネジメント株式会社 光反射体、ベース体、発光装置及びベース体の製造方法
JP7065381B2 (ja) 2016-07-19 2022-05-12 パナソニックIpマネジメント株式会社 光反射体、ベース体、発光装置及びベース体の製造方法

Also Published As

Publication number Publication date
CN106461824B (zh) 2019-08-20
US20170210883A1 (en) 2017-07-27
EP3163332A4 (en) 2018-01-17
CN106461824A (zh) 2017-02-22
KR20170009899A (ko) 2017-01-25
KR101831097B1 (ko) 2018-02-21
JP6492078B2 (ja) 2019-03-27
TWI658093B (zh) 2019-05-01
JPWO2016002192A1 (ja) 2017-04-27
EP3163332A1 (en) 2017-05-03
EP3163332B1 (en) 2019-03-06
TW201602225A (zh) 2016-01-16

Similar Documents

Publication Publication Date Title
JP6492078B2 (ja) 反射材用樹脂組成物およびそれを含む反射板
JP6048833B2 (ja) 表面実装型led用反射板に使用するポリエステル樹脂組成物
KR101566063B1 (ko) 표면광택도, 반사성, 내황변성 및 성형성이 우수한 열가소성 수지 조성물
KR101566062B1 (ko) 발광장치 리플렉터용 폴리에스테르 수지 조성물 및 이를 이용한 성형품
JP5915948B2 (ja) ポリエステル樹脂、及びそれを使用した表面実装型led反射板用ポリエステル樹脂組成物
WO2015199062A1 (ja) 樹脂組成物およびその成形体
WO2016002193A1 (ja) 反射材用ポリエステル樹脂組成物およびそれを含む反射板
JP6042271B2 (ja) 反射材用ポリエステル樹脂組成物および反射板
JP2017071728A (ja) ポリエステル樹脂組成物、反射板の製造方法および発光ダイオード(led)素子の製造方法
JP2020019914A (ja) 反射材用ポリエステル樹脂組成物および反射材
WO2013125454A1 (ja) 表面実装型led反射板用ポリエステル樹脂
JP2014065842A (ja) ポリフェニレンスルフィド樹脂組成物および成形品
JP2019127545A (ja) 反射材用ポリエステル樹脂組成物および反射材
JP2016183320A (ja) 光線反射用樹脂組成物および成形体
JP2018159034A (ja) 反射材用ポリエステル樹脂組成物及びそれを含む反射材
JP2019142986A (ja) 反射材用ポリエステル樹脂組成物および反射材
JP2019143097A (ja) 反射材用ポリエステル樹脂組成物および反射材
JP2019167399A (ja) 反射材用ポリエステル樹脂の製造方法
KR101762484B1 (ko) 고온 광안정성이 우수한 열가소성 수지 조성물
JP2021155616A (ja) 反射材用樹脂組成物および反射材
JP2021172783A (ja) 成形方法および反射材
JP2019112501A (ja) 反射材用ポリエステル樹脂組成物および反射材
JP2020158628A (ja) 樹脂組成物
JP2014132053A (ja) Led光反射体成形用ポリエステル樹脂組成物およびled光反射体光反射体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814487

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531105

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167034707

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015814487

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015814487

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15321448

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE