WO2016001551A1 - Oligo-lambda-carraghénanes, compositions cosmétique, dermatologique et pharmaceutique les contenant, et leurs utilisations - Google Patents

Oligo-lambda-carraghénanes, compositions cosmétique, dermatologique et pharmaceutique les contenant, et leurs utilisations Download PDF

Info

Publication number
WO2016001551A1
WO2016001551A1 PCT/FR2015/051755 FR2015051755W WO2016001551A1 WO 2016001551 A1 WO2016001551 A1 WO 2016001551A1 FR 2015051755 W FR2015051755 W FR 2015051755W WO 2016001551 A1 WO2016001551 A1 WO 2016001551A1
Authority
WO
WIPO (PCT)
Prior art keywords
oligo
carrageenans
mixture
carrageenan
degree
Prior art date
Application number
PCT/FR2015/051755
Other languages
English (en)
Inventor
Frédéric LE SOURD
Murielle JAM
Sabine Genicot
Philippe Potin
Bernard Kloareg
Original Assignee
Centre National De La Recherche Scientiifique - Cnrs -
Université Pierre et Marie Curie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National De La Recherche Scientiifique - Cnrs -, Université Pierre et Marie Curie filed Critical Centre National De La Recherche Scientiifique - Cnrs -
Publication of WO2016001551A1 publication Critical patent/WO2016001551A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0003General processes for their isolation or fractionation, e.g. purification or extraction from biomass
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/731Carrageenans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/02Algae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0036Galactans; Derivatives thereof
    • C08B37/0042Carragenan or carragen, i.e. D-galactose and 3,6-anhydro-D-galactose, both partially sulfated, e.g. from red algae Chondrus crispus or Gigantia stellata; kappa-Carragenan; iota-Carragenan; lambda-Carragenan; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01162Lambda-carrageenase (3.2.1.162)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present invention relates to a mixture of oligo-lambda- carrageenans, as well as a process for preparing a mixture of oligo- ⁇ -carrageenans, to a pharmaceutical, dermatological or cosmetic composition containing it.
  • the present invention also relates to a mixture of oligo-A-carrageenans for its application as a medicament, as well as for a cosmetic use.
  • the present invention finds application in the medical, dermatological and cosmetic fields.
  • references in brackets ([]) refer to the list of references at the end of the text.
  • ⁇ -carrageenans are sulfated D-galactans constituting the matrix of the cell walls of certain red algae. They consist of carrabiose subunits comprising two sulphated galactoses linked by a ⁇ (1 -4) bond. These carrabioses are linked together by a (1 -3) bonds.
  • oligosaccharide fractions with different degrees of polymerization, some of which mediate cellular transduction signals during bacterial infection. These oligosaccharide fractions could be involved in the elicitation of defense reactions in plants.
  • the chemical hydrolysis processes do not make it possible to preserve the natural sulphatation profile, which alters the potential for biological activity of the molecules generated.
  • the Applicant has developed, according to an elaborated research process, an innovative enzymatic hydrolysis process, combining the advantages of being finely controllable, allowing the generation of products of size and chemical structure also controlled, of improved quality thanks to a state of preserved sulfation.
  • This innovative process finally gives the opportunity to take advantage of a reservoir of natural biodiversity to isolate bioactive molecules, using a process that is more environmentally friendly.
  • a first subject of the invention relates to a mixture of oligo- ⁇ -carrageenans having a weight percentage of oligo- ⁇ -carrageenans having a degree of polymerization equal to 8 inclusive of 50 to 60% by weight. total of the mixture.
  • the invention relates to a mixture comprising from 50 to 60% by weight of oligo-A-carrageenans having a degree of polymerization equal to 8, relative to the total weight of the mixture.
  • oligo-A-carrageenan means an oligosaccharide derived from the hydrolysis of ⁇ -carrageenan.
  • ⁇ -carrageenan can be extracted from marine red algae, especially rhodophycees. These sea red algae may belong to the orders of Gigartinales, Ahnfeltiales, and in particular the species Chondrus crispus and Gigartina sp., Mazzaella sp., Chondracanthus sp. It may be more particularly Gigartina skottsbergii.
  • the ⁇ -carrageenan can have a molecular weight ranging from 200 kDa to 700 kDa, especially around 500 kDa.
  • the term "degree of polymerization equal to X" means a number of monomeric units constituting the oligo-A-carrageenan chain, equal to X.
  • an oligo-A-carrageenan having a degree of polymerization equal to 2 has a molecular mass equal to about 580 Da
  • an oligo-A-carrageenan having a degree of polymerization equal to 8 has a molecular weight equal to about 2320 Da.
  • a disaccharide unit of oligo-A-carrageenan comprising an osidic bond, has the following chemical formula:
  • the degree of polymerization can be measured by any method known to those skilled in the art. It may be, for example, an analysis by polyacrylamide gel electrophoresis, for example the C-PAGE (capillary polyacrylamide gel electrophoresis) technique, or a size exclusion chromatography analysis, or a combination of two or more of these methods.
  • polyacrylamide gel electrophoresis for example the C-PAGE (capillary polyacrylamide gel electrophoresis) technique, or a size exclusion chromatography analysis, or a combination of two or more of these methods.
  • the term "mixture” means any product consisting of oligo-A-carrageenans having different degrees of polymerization.
  • the degree of polymerization of the oligo-A-carrageenans of the mixture may be in particular from 2 to 20.
  • the mixture may for example comprise oligo-A-carrageenans whose degree of polymerization is from 2 to 20.
  • the molecular weight of this mixture may go from 580 to 5800 Da.
  • the mixture of oligo-A-carrageenans may have a weight percentage of oligo-A-carrageenans having a degree of polymerization equal to 8 inclusive of 52 to 58%, or 54 to 56%, for example of 55%, based on the total weight of the mixture.
  • the oligo-A-carrageenan mixture may have a weight percentage of oligo-A-carrageenans having a degree of polymerization of between 2 (DP2) and 7 (DP7) of less than 1%, for example less than 0.90%, or less than 0.80%.
  • the mixture of the invention may further comprise from 20 to 25% by weight of oligo-A-carrageenans having a degree of polymerization of 9 to 12, relative to the total weight of the mixture.
  • the mixture of the invention may further comprise from 20 to 25% by weight of oligo-A-carrageenans having a degree of polymerization which may be equal to 9 and / or 10, and / or 1 1 , and / or 12. It may be for example 21 to 24%, or 22 to 23% by weight of oligo-A-carrageenans having a degree of polymerization of 9 to 12, for example about 22 %, based on the total weight of the mixture.
  • the mixture of the invention may further comprise from 20 to 25% by weight of oligo-A-carrageenans having a degree of polymerization ranging from 13 to 16, relative to the total weight of the mixture.
  • the mixture of the invention may further comprise from 20 to 25% by weight of oligo-A-carrageenans having a degree of polymerization which may be equal to 13 and / or 14, and / or 15, and / or 16.11 may be for example 21 to 24%, or 22 to 23% by weight of oligo-A-carrageenans having a degree of polymerization of 13 to 16, for example about 23%, relative to total weight of the mixture.
  • the oligo-A-carrageenan mixture of the invention has a biological activity.
  • the oligo-A-carrageenan mixture of the invention has an activity involved in tissue repair and healing, including a biological activity on two factors essential to tissue repair: the reaction inflammatory and cell migration.
  • the oligo-A-carrageenan mixture of the invention can stimulate the inflammatory reaction and cell migration.
  • the mixture of the invention stimulates, in macrophages, the secretion of the pro-inflammatory cytokine TNF-alpha ("Tumor Necrosis factor alpha").
  • the term "inflammatory reaction” is intended to mean any homeostatic process involved in limiting the extension of tissue lesions, destruction of the causative agent and activation of the tissue repair process.
  • an inflammatory phase involves macrophage cells that have a primary role in the wound debridement phase. It also prepares the second phase of healing itself, involving the migration of epithelial cells for the regeneration of damaged tissues.
  • the mixture of the invention therefore has applications in human and animal health.
  • another object of the invention relates to a mixture of oligo- ⁇ -carrageenans of the invention as a medicament.
  • the invention relates to the use of a mixture of oligo-A-carrageenans of the invention, as a medicament, and to a medicament comprising a mixture of oligo-A-carrageenans of the invention.
  • the drug of the invention or the mixture may be for patients affected by a condition in which immunostimulation and / or angiogenesis is desired or is beneficial.
  • the drug or mixture may be for patients affected by a condition or condition for which tissue repair and / or skin healing is desired and / or necessary. It may be, for example, any condition requiring tissue repair, such as, for example, a condition following an injury, or a state following a surgical procedure, for example a graft. Alternatively, it can be a cardiovascular disease.
  • Another subject of the invention relates to the mixture of oligo-A-carrageenans of the invention, for its application as a medicament for tissue repair and / or healing.
  • it is the use of an oligo-A-carrageenan mixture of the invention in the preparation of a medicament for tissue repair and / or healing.
  • Another subject of the invention relates to a pharmaceutical, dermatological or cosmetic composition, comprising a mixture of oligo-A-carrageenans of the invention.
  • a pharmaceutical composition of the invention may further comprise a pharmaceutically acceptable carrier. It may in particular be an excipient allowing the controlled release of the active ingredient (s), such as Compritol® 888 ATO (Glyceryl dibehenate EP, Glyceryl behenate NF / Ch.P), or allowing an improvement in the solubility and bioavailability, such as Capryol TM 90 (propylene glycol monocaprylate (type II) NF), veterinary, such as for example Geleol TM Mono and Diglycerides NF (Glycerol monostearate 40-55 (type I) EP, Mono and diglycerides NF , Glyceryl stearate (USA FDA IIG)), nutraceutical, such as Biogapress Vegetal BM297ATO (Glyceryl dipalmitostearate E471 / GRAS), or topical solubilizers / skin penetration promoters horn eg Capryol TM 90 (Propylene glycol mono
  • the drug or pharmaceutical composition of the invention may be in a form intended for the oral, percutaneous route. He / she can be in the form of a syrup, an injectable solution or an oral solution. He / she may be in the form of a powder, granules, a spray, a cream, a lotion or eye drops, this list not being limiting.
  • the drug or pharmaceutical composition of the invention may comprise a mixed concentration of between 1 and 5 mg / kg body weight per day, for example between 2 and 4 mg / kg, for example 1, or 2, or 3, or 4, or 5 mg / kg.
  • Another subject of the invention relates to the cosmetic use of an oligo-A-carrageenan mixture of the invention, for improving the appearance of the skin and / or the appearance of a skin. scar.
  • Such a cosmetic use means a non-therapeutic use, only aesthetic.
  • a cosmetic use is understood by healthy users, to improve the appearance of healthy skin or to improve the appearance of a scar. This may for example be a state of the skin following an aesthetic surgery operation.
  • the invention refers to a cosmetic composition comprising the mixture of oligo-A-carrageenans of the invention.
  • the cosmetic composition according to the invention may comprise one or more cosmetically acceptable carriers.
  • cosmetically acceptable carrier is intended to mean any cosmetic support known to those skilled in the art, it may be, for example, any cosmetic support that may be cited in the INCI (International Nomenclature of Cosmetic Ingredients) dictionary published by the PCPC (Personal Care Products Council).
  • the cosmetic composition may, for example, be in any form known to those skilled in the art. It may be, for example of a form selected from an oil-in-water emulsion, water-in-oil, a multiple emulsion, a microemulsion, a solid emulsion, an aqueous gel or hydro -alcoholic, a cream, a milk, an ointment, an oil, a balm, an ointment, a gel, a mask, a powder, a soaked support, for example a transdermal patch, a solution, an aqueous or hydroalcoholic lotion , a spray, a suspension and / or a wax, a two-phase serum, for example comprising an oily fraction and an aqueous fraction.
  • a form selected from an oil-in-water emulsion, water-in-oil, a multiple emulsion, a microemulsion, a solid emulsion, an aqueous gel or hydro -alcoholic
  • the composition may be in any form known to those skilled in the field of cosmetics and dermatology, without any particular pharmaceutical restriction.
  • the composition according to the present invention may be, for example a composition for the care of the face, of the body, for example compositions for the face and / or the body.
  • composition of the invention may be obtained by any suitable method known to those skilled in the art for the manufacture of a cosmetic and / or dermatological composition. It may be, for example a simple mixture. It may also be, for example, a method comprising a step of incorporating an internal phase into an external phase by means of an emulsifier, for example a rotor-stator type turbine.
  • the oligo-A-carrageenan mixture of the invention may be prepared according to any method known to those skilled in the art.
  • Another subject of the invention relates to a process for preparing the oligo-A-carrageenan mixture of the invention, comprising the steps of:
  • the "preparation of A-carrageenans” can be obtained by any method known to those skilled in the art. It may be for example a basic hot extraction of ⁇ -carrageenans from a red alga, this allowing to obtain an extraction bath, followed by a filtration step / concentration by isoprapanol allowing to obtain a gel, then a step of passage / drying.
  • the ⁇ -carrageenan preparation may comprise oligo-A-carrageenans whose degree of polymerization is between 1000 and 5000, for example between 1500 and 4500, or between 2000 and 4000, or between 2500 and 3500, and in particular an average degree of polymerization of about 3000 (average molecular weight 500 kDalton).
  • ⁇ -carrageenase within the meaning of the present invention, any enzyme for hydrolyzing ⁇ -carrageenan.
  • it can be any enzyme that breaks the sacrificial bonds without damaging the monomers.
  • It can be a recombinant enzyme or an enzyme obtained by extraction from P. carrageenovora bacterial cells.
  • the production and purification of the enzyme can be carried out according to any method known to those skilled in the art, for example by means of the method of Guibet et al. (Guibet et al (2007), Biochem J., 404: 105-114, ([2])).
  • Guibet et al. Guibet et al.
  • it may be an enzyme naturally secreted by the marine bacterium P. carrageenovora, bacterial strain referenced to "American Type Culture Collection" (ATCC) under the number 43555. It may be act of the enzyme described in FR2873387 ([1]).
  • the hydrolysis can be carried out for a time ranging from about 18 hours to about 30 hours or more, at a temperature of about 30 ° C, or under equivalent thermodynamic conditions.
  • the time is from 19h to 22h at 30 ° C.
  • the hydrolysis time is about 20 hours, in order to obtain an optimal enrichment of oligo-A-carrageenans.
  • the concentration of enzymes in the medium is not limiting.
  • the concentration may be at least 4 g / ml ⁇ -carrageenase, for example 5 ⁇ g / ml, or 6 ⁇ g / ml, or 7 g / ml ⁇ -carrageenase.
  • oligo- ⁇ -carrageenans At the end of the hydrolysis phase, a fraction of oligo- ⁇ -carrageenans is obtained, in which the oligo- ⁇ -carrageenan molecules have a degree of polymerization ranging from 2 to 20. This fraction may especially contain between 52 and 54% by weight of oligo- ⁇ -carrageenans with a degree of polymerization equal to 8, relative to the total weight of the fraction.
  • the isolation of the oligo-A-carrageenan mixture of the invention can be carried out by any separation method known to those skilled in the art. This may be, for example, a preparative chromatographic method, such as size exclusion chromatography or anion exchange chromatography and / or ultrafiltration membrane techniques.
  • step b) may be preceded by a step of isolating an oligo-A-carrageenan fraction having a weight percentage of oligo-A-carrageenans. having a degree of polymerization ranging from 8 to 16 of between 70 and 85% relative to the total weight of the mixture.
  • Another subject of the invention is a mixture of oligo-A-carrageenans obtainable by the implementation of the process as defined above.
  • This mixture has the technical characteristics of the mixture as defined above.
  • FIG. 1 represents a C-PAGE gel analysis of the kinetics of hydrolysis of ⁇ -carrageenan by ⁇ -carrageenase. It shows the migration of oligo-A-carrageenans and identifies in particular DP2, DP4, DP6 and DP8 for hydrolysis times (minutes) of 0, 15, 30,
  • FIG. 2 represents a preparative size exclusion chromatography analysis of the oligo-A-carrageenans obtained by enzymatic hydrolysis of ⁇ -carrageenan by ⁇ -carrageenase, with the elution peaks of the oligosaccharides in terms of refractive index (mV) in elution time in minutes.
  • Panel A complete chromatogram showing, in particular, the elution peaks for DP16-8, DP6 and DP4.
  • panel B ordinate enlargement of the chromatogram visualized on panel A; rectangle DP16-8 and rectangle DP6 of panel A indicate the fractions retained to isolate oligosaccharides of DP8 to 16 and DP6 respectively.
  • FIG. 3 represents a qualitative gel filtration analysis of purified oligo-A-carrageenan fractions in refractive index (mV) relative to the elution time in minutes.
  • Panel A Purified DP6.
  • Panel B Mixture with a majority of DP8.
  • FIG. 4 represents a microscopic observation of untreated (left panel) and monocytes THP-1 monocytes after treatment with PMA (200 nM) for their macrophage differentiation (right panel). Arrows indicate cytoplasmic extensions (x200 magnification, 30-hour observation +/- PMA treatment).
  • FIG. 5 represents a microscopic observation of the morphology of untreated macrophages THP-1 (panel A) and macrophages THP-1 after 24 hours of treatment with the DP8 mixture of oligo-A-carrageenans (panel B, 0.7 g / l).
  • Figure 6 shows a linear regression of logarithm of absorbance (ordinates) versus logarithm of TNF-alpha concentration (abscissa).
  • FIG. 7 represents a study of the effect of the oligo-A-carrageenans DP8 and DP6 on the secretion of TNF-alpha by macrophages THP-1, expressed by the concentration of TNF-alpha in pg / ml for a sample comprising from left to right: the control (ct1 corresponding to the cells incubated without addition of oligo-A-carrageenan) alone; control + LPS; DP6; DP6 + LPS; DP8; the DP8 + LPS.
  • the treatments are carried out at a concentration of 0.35 g / l.
  • LPS is used at 0.1 ⁇ g / ml.
  • FIG. 8 represents an effect of increasing doses of oligo-A-carrageenan "DP8" on the secretion of TNF-alpha by THP-1 macrophages (the TNF-alpha concentrations are indicated in FIG. g / 1).
  • the DP8 concentrations are (from left to right): 0 g / l, 0.175 g / l, 0.35 g / l and 0.7 g / l.
  • FIG. 9 is a graphical representation of the results obtained for wound healing treated by the oligo-A-carrageenans in a DP8 mixture at the final concentration of 0.7 g / l in the cell culture medium.
  • oligo-A DP8
  • control physiological saline
  • Panel A results obtained for the three independent experiments; * P ⁇ 0.05; ** P ⁇ 0.01; *** P ⁇ 0.001 (statistical test used: "one-way ANOVA” or "one-way repeated measures ANOVA” followed by the Bonferroni t-test). The closing percentage of the scratch is given according to the incubation time (in hours), at 12h, 18h, 24h, 48h and 72h.
  • Panel B Average of 3 experiments at 48h time ( *** p ⁇ 0.001) (statistical test used: t-test), in percentage of closure of the scratch for the DP8 mixture (black stick) and for control in physiological saline ( white stick).
  • ⁇ -carrageenan is a polysaccharide used in the composition of the wall of certain marine red algae.
  • the ⁇ -carrageenan used is extracted from the seaweed Gigartina skottsbergii (Danisco-DuPont).
  • ⁇ -Carrageenase is naturally secreted by the marine bacterium
  • P. carrageenovora bacterial strain referenced to the "American Type Culture Collection” (ATCC) under the number 43555.
  • the production and purification of the enzyme are carried out according to a simplified adaptation of the protocol published by M. Guibet et al. In 2007 [Guibet et al (2007), ([2]).
  • the bacterial strain is cultured in 5 liters of the following culture medium adapted from Weigl and Yaphe (1966), Canadian J.
  • the culture is incubated for 48 hours at 20 ° C. with stirring.
  • the enzyme secreted in the culture supernatant is then purified by tangential ultrafiltration on a Pellicon system (Millipore, 30 kDa), then by fractional precipitation with ammonium sulphate (30% final) and finally dialysis of the fractions against a phosphate buffer. mM of pH equal to 7.4.
  • This protocol makes it possible to obtain a sufficiently purified and stable enzyme for several months at 4 ° C.
  • a digestion kinetics is previously established in order to define the experimental conditions conducive to an enrichment in oligo- ⁇ -carrageenans of a size scale ranging from the smallest degree of polymerization (DP) to the DP. means (about DP20).
  • the substrate is prepared by dissolving the ⁇ -carrageenan at 0.5% in a 25 mM phosphate buffer, 100 mM NaCl, pH 7. Hydrolysis is carried out on one milliliter of this substrate by adding the enzyme to the concentration of 5 g. / ml.
  • the reaction is regularly stirred manually, especially in the first hours of the hydrolysis during which the low hydrolyzed substrate makes the reaction mixture viscous.
  • the reaction is conducted for 24 hours with regular sampling of the reaction medium. For each sample, the reaction is stopped by heating in a water bath at 95 ° C for 10 minutes.
  • the conditions used are 20 hours of incubation with stirring, at 30 ° C., with 5 g / ml of ⁇ -carrageenase. Two hundred and fifty milliliters of substrate are thus hydrolysed, ie 1.25 grams of ⁇ -carrageenan.
  • Purification of the oligosaccharides is carried out by ultrafiltration of the hydrolyzate on a filtration threshold membrane set at 30 kDa (Amicon cell, Millipore).
  • the filtrate is dialyzed against distilled water and then concentrated approximately 50 times by heating / evaporation under vacuum until a volume of 6 ml is obtained. This concentrate is then filtered through a 0.45 ⁇ membrane in order to eliminate any trace of salt precipitate in preparation for the next purification step.
  • the oligo-A-carrageenans contained in the concentrate obtained in the preceding step are separated by preparative size exclusion chromatography on two exclusion threshold columns set at 30 kDa ("
  • Hiload TM 26/60 Superdex TM 30 Prep Grade, GE Healthcare are series-connected and Gilson-branded. Detection is done with a differential refractometer ("Spectra System RI-50"). The elution is carried out in a 100 mM ammonium carbonate buffer in 10 ml fractions with a "Gilson 215 liquid handler" collector.
  • the fractions corresponding to the oligosaccharides of interest are grouped so as to isolate the oligosaccharides from DP4 and DP6, whereas the DPs from 8 to 16 are grouped together.
  • the oligosaccharides in solution are then lyophilized.
  • a second analysis of the fractions purified in the previous step is carried out by size exclusion chromatography by injecting a 0.4% solution in mQ water on a "Dionex Ultimate® 3000" apparatus and a Superdex TM 10 peptide column. / 300. The separation is carried out in 60 minutes under eluent lithium nitrate (LiNO3) at 100 mM.
  • LiNO3 eluent lithium nitrate
  • the lyophilized oligosaccharide fractions corresponding to DP 8 to 16, on the one hand, and corresponding to DP6, on the other hand are solubilized in phosphate buffered saline (PBS) for immunostimulation tests, and in physiological saline for wound healing tests.
  • PBS phosphate buffered saline
  • the cells are THP-1 monocytes isolated from the blood of a one-year-old child with acute monocytic leukemia [Tsuchia S. et al., Int J Cancer 26: 171-176 (1980), ( [4])]. They are cultured in the RPMI 1640 + Glutamax® (Life Technologies) culture medium supplemented with 10% fetal calf serum (s-RPMI), at 37 ° C. under an atmosphere enriched with 5% CO 2. The cells have a round morphology and grow in suspension with cluster formation ( Figure 4, panel left). Inoculation is at 1 .10 5 cells / ml and the culture is diluted when the cell concentration reaches 1 .10 6 cells / ml. 2.2 / Obtaining macrophages
  • Macrophages are obtained by differentiation of THP-1 monocytes with phorbol 12-myristate 13-acetate [PMA, Tsuchia S. et al., Cancer Res 42: 1530-1536 (1982), ([5])].
  • the monocytes are washed and taken up to 1 ⁇ 10 6 cells / ml in RPMI 1640 + Glutamax® non-supplemented serum culture medium to which 200nM PMA (Sigma Aldrich) is added.
  • the cells are then rapidly transferred into 12-well cell culture plates in which the treatments with the compounds will be carried out.
  • Each well (3.8 cm 2 ) is inoculated with 1 ml of the cell suspension (1 ⁇ 10 6 cells) and the cells are incubated for 24 to 48 hours at 37 ° C. under 5% CO 2 .
  • the majority of the cells adhere to the bottom of the culture wells and the cells adopt a morphology of macrophage type, which is observable in FIG. 4 (right panel).
  • the differentiation medium is removed and the cells washed in 1 ml of PBS and then 1 ml of s-RPMI to remove PMA as well as non-adherent cells.
  • the cells adhered to the bottom of the wells are taken up in 1 ml of s-RPMI medium for the treatments.
  • the cells are treated for a period of 24 hours with oligo- ⁇ -carrageenans, at concentrations of 0.70 g / l, 0.35 g / l and 0.175 g / l.
  • the negative control corresponds to the cells incubated without addition of compound.
  • Six wells are used for each concentration tested. At the end of this step, for each concentration tested, 3 wells are used in order to continue the incubation of the cells in the presence of bacterial lipopolysaccharide at the concentration of 0.1 g / ml (Escherichia coli LPS Serotype 01 1 1 : B4, ref L2630 Sigma Aldrich) for 6 hours (Takashiba et al 1999, Infect. & Immun.
  • TNF-alpha The secretion of TNF-alpha is measured in the macrophage culture supernatant by an enzyme-linked immunosorbent assay (ELISA).
  • ELISA enzyme-linked immunosorbent assay
  • This test is performed in 96-well plates. Briefly, the bottom of the wells is coated with a first antibody specifically recognizing TNF-alpha. This antibody will make it possible to capture and isolate the TNF-alpha present in the culture supernatant. A second biotinylated antibody is then added to detect the previously captured TNF-alpha molecules. This antibody is then specifically detected by the addition of streptavidin coupled to a peroxidase enzyme (HRP).
  • HRP peroxidase enzyme
  • the chromogenic reaction is stopped by the addition of sulfuric acid and the reading is carried out at a wavelength of 450 nm with an automatic correction at 540 nm.
  • detection antibody (ref BAF210, R & D Systems): 50 ng / ml in Tris 0.1% NaCl 0.1% BSA buffer Tween20 (TBST-BSA); 100 ⁇ per well; incubation for 2 hours at room temperature
  • Streptavidin-HRP (ref 43-4323, 1, 25 mg / ml, Invitrogen): 1: 20000 use in TBST-BSA; 100 ⁇ per well; incubation for 20 minutes at room temperature.
  • Chromogenic substrate 3,3 ', 5,5'-Tetramethylbenzidine (TMB) (code T5525, Sigma): dissolution at 0.1 mg / ml in a 0.05 M phosphate-citrate buffer; 100 ⁇ per well; incubation 20-30 minutes at room temperature
  • the cells used are HaCAT, a human line of immortalized keratinocytes. They are grown in DMEM supplemented with glutamine and 10% fetal calf serum. For the wound healing test, the cells are seeded in 96-well plates so as to obtain a monolayer. At confluence, the cells are treated for 24 hours with the oligosaccharides. Saline is used as a reference control. 3.2 / Measurement of cell migration
  • the panel B chromatogram indicates that the DP8 oligosaccharide is the molecule predominantly represented in the analyzed mixture.
  • the lower resolution of this analysis does not make it possible to clearly visualize the presence of the oligosaccharides of DP14 and DP16.
  • the hydrolysis protocol has not been optimized for the production of these oligosaccharides in particular but for a mixture, the yields are low.
  • DP8 nomenclature is used to designate the oligosaccharide mixture containing predominantly DP8.
  • the monocytes in culture are observable in the form of round cells suspended in the culture medium, with the formation of clusters (FIG. 4, left).
  • PMA treatment at a concentration of 200 nM rapidly causes the cells to adhere to the bottom of the culture well.
  • the cells become more granular and adopt a more elongated shape with cytoplasmic extensions ( Figure 4, right). These Morphological characters indicate, for this cell type, a differentiation of monocytes into macrophages.
  • the cells are observed after 24 hours of treatment with oligo-A-carrageenans, before secondary treatment with LPS (FIG. 5).
  • TNF-alpha concentrations between 15.6 and 2000 ⁇ g / ml is used to define the proportionality equation between the absorbance measurements performed at the end of the ELISA assay and the TNF-alpha concentrations. Linear regression is obtained by performing a logarithmic transformation of the values ( Figure 6).
  • oligo-A-carrageenans The immunomodulatory potential of oligo-A-carrageenans is evaluated by studying their effect on the secretion of cytokine TNF-alpha by macrophages.
  • the effects of the oligosaccharide DP6 and of the DP8 mixture are compared, which is illustrated in FIG.
  • oligo-A-carrageenans of DP6 causes a slight stimulation of the secretion of TNF-alpha. This effect is much more marked (x10) when the macrophages are incubated in the presence of oligo-A-carrageenans DP8 mixture. This indicates a direct effect of the length of the oligosaccharide chain on the observed biological activity.
  • LPS does not induce more secretion of TNF-alpha than treatment with LPS alone. This suggests that the observed levels of TNF-alpha secretion after LPS stimulation are saturating and are not increased by co-treatment with a second cytokine secretion stimulator.
  • A-carrageenans involve the same signaling pathways as LPS.
  • oligo-A-carrageenans are able to activate an inflammatory response in macrophages by stimulating the secretion of TNF-alpha.
  • the strong difference in stimulation induced by the DP8 mixture compared to that induced by the oligo-A-carrageenan DP6 illustrates, for this type of compound, the importance of the length of the oligosaccharide chain and reinforces the arguments for a close relationship between biological activity of oligosaccharides and their degree of polymerization. 5 / Effect of oliqo-A-carraqhenanes on cell migration (test of
  • oligo-A-carrageenans derived from A-carrageenan a polysaccharide extracted from the red macro-alga Gigartina skottsbergii and present in many red algae, exhibit an immunomodulatory activity on an animal model cell study in vitro , a human monocytic line.
  • oligo-A-carrageenans are obtained by an innovative process for the enzymatic hydrolysis of polysaccharides by the ⁇ -carrageenase of the marine bacterium Pseudolteromonas carrageenovora, an enzyme which has been characterized in its recombinant form.
  • the enzyme is used in its native form, that is to say, purified from its bacterial strain which expresses it naturally. For the first time, we show that this enzyme can be used to produce biologically active oligo-A-carrageenans in humans.
  • the immunomodulatory effect of the oligosaccharides demonstrated here concerns the stimulation of the monocyte differentiating characters into macrophages, essential players in the immunity and the inflammatory response, as well as the stimulation of the secretion of the proinflammatory cytokine TNF-alpha by these cells.
  • the compounds are active on macrophages by stimulating their pro-inflammatory properties, in particular by increasing the secretion of the cytokine TNF-alpha. They are also able to stimulate the migration of keratinocytes in a context of repair of a mechanically damaged cell mat. These two aspects are very important steps in tissue repair and healing processes following loss of tissue integrity. In fact they involve macrophages from the first stages of the inflammatory reaction to "purify” the wound (debridement step) and, in a second step, the epithelial cells (including keratinocytes) that will proliferate and migrate in order to repair damaged tissue at the wound site.
  • oligo-A-carrageenans are of interest for application in the field of immunostimulation in the broad sense.
  • angiogenesis is a powerful and physiological process that is the natural way in which an organism responds to the lack of blood supply to a vital organ by producing parallel blood vessels to overcome ischemia.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Materials Engineering (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • General Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Sustainable Development (AREA)
  • Birds (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Botany (AREA)
  • Medical Informatics (AREA)
  • Mycology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Medicinal Preparation (AREA)

Abstract

La présente invention se rapporte à un mélange d'oligo-A- carraghénanes, caractérisé en ce qu'il possède un pourcentage en poids d'oligo-A-carraghénanes ayant un degré de polymérisation égal à 8 compris entre 50 et 60% par rapport au poids total du mélange. La présente invention se rapporte également à un procédé de préparation d'un mélange d'oligo-A-carraghénanes, comprenant les étapes de : a) hydrolyse d'une préparation d'oligo-A-carraghénanes ayant un degré de polymérisation moyen de 3000 au moyen d'une A- carraghénase, b) isolation d'un mélange d'oligo-A-carraghénanes présentant un pourcentage en poids d'oligo-A-carraghénanes ayant un degré de polymérisation égal à 8 compris entre 50 et 60% par rapport au poids total du mélange. L'invention se rapporte en outre à une composition pharmaceutique, dermatologique ou cosmétique, comprenant le mélange d'oligo-A-carraghénanes, ainsi qu'au mélange d'oligo-A-carraghénanes pour son application comme médicament pour la réparation tissulaire et/ou la cicatrisation, et à une utilisation cosmétique d'un mélange d'oligo-A- carraghénanes pour l'amélioration de l'aspect de la peau et/ou l'amélioration de l'aspect d'une cicatrice.

Description

OLIGO-LAMBDA-CARRAGHÉNANES, COMPOSITIONS COSMÉTIQUE, DERMATOLOGIQUE ET PHARMACEUTIQUE LES CONTENANT, ET
LEURS UTILISATIONS DESCRIPTION
Domaine technique
La présente invention se rapporte à un mélange d'oligo-lambda- carraghénanes, ainsi qu'à un procédé de préparation d'un mélange d'oligo- λ-carraghénanes, à une composition pharmaceutique, dermatologique ou cosmétique le contenant. La présente invention se rapporte également à un mélange d'oligo-A-carraghénanes pour son application comme médicament, ainsi que pour une utilisation cosmétique.
La présente invention trouve son application dans les domaines médicaux, dermatologiques et cosmétiques.
Dans la description ci-dessous, les références entre crochets ([ ]) renvoient à la liste des références présentée à la fin du texte.
Etat de la technique
Les λ-carraghénanes sont des D-galactanes sulfatés constituants de la matrice des parois cellulaires de certaines algues rouges. Ils sont constitués de sous-unités carrabioses comprenant deux galactoses sulfatés liés par une liaison β(1 -4). Ces carrabioses sont liés entre eux par des liaisons a(1 -3).
Dans le cas des algues rouges, l'infection par un agent pathogène comme la bactérie P. carrageenovora se traduit par une dégradation ou une hydrolyse des λ-carraghénanes pariétaux par l'enzyme bactérienne λ- carraghénase apportée par la bactérie.
L'hydrolyse des carraghénanes pariétaux des algues rouges génère des fractions oligosaccharidiques présentant différents degrés de polymérisation, dont certains interviennent comme médiateurs de signaux de transduction cellulaires lors d'une infection bactérienne. Ces fractions oligosaccharidiques pourraient être impliquées dans l'élicitation de réactions de défense chez les plantes.
L'intérêt de ce type d'oligosaccharides sulfatés extraits des algues est largement reconnu, notamment pour des applications en santé.
Toutefois, les procédés d'hydrolyse chimiques conventionnels ne permettent pas de préserver le large potentiel bioactif que possèdent les polysaccharides d'algues marines et tout particulièrement leurs produits d'hydrolyse en préservant la complexité structurale naturelle et initiale des oligosaccharides générés.
Par exemple, les procédés d'hydrolyse chimique ne permettent pas de préserver le profil de sulfatation naturel, ce qui altère le potentiel d'activité biologique des molécules générées.
D'autres méthodes consistent à sulfater des oligosaccharides afin de les fonctionnaliser. Ce procédé chimique ne permet pas, sinon difficilement, de maîtriser finement un état de sulfatation propice à une activité biologique précise.
Ces difficultés techniques touchant aux procédés de préparation connus ont pour conséquence qu'il est ardu de tirer profit d'une biodiversité pourtant riche, et d'exploiter ce potentiel en générant un large éventail de molécules naturelles, accentuant ainsi les chances d'identifier des nouvelles molécules bioactives.
Récemment une forme recombinante de l'enzyme λ-carraghénase a été produite (FR2873387, ([1])). Toutefois, elle n'a pas été décrite comme permettant l'obtention de fractions oligosaccharidiques bioactives.
Il existe donc un réel besoin d'obtenir des fractions oligosaccharidiques présentant une activité biologique intéressante, en particulier au moyen d'un procédé permettant de contrôler les caractéristiques des fractions obtenus, tout en étant adapté à une production à l'échelle industrielle de ces fractions oligosaccharidiques. Description de l'invention
La Demanderesse a mis au point, aux termes d'un processus de recherche élaboré, un procédé d'hydrolyse enzymatique innovant, combinant les avantages d'être finement contrôlable, de permettre la génération de produits de taille et de structure chimique également contrôlés, de qualité améliorée notamment grâce à un état de sulfatation préservé. Ce procédé innovant donne donc enfin la possibilité de tirer profit d'un réservoir de biodiversité naturelle afin d'isoler des molécules bioactives, au moyen d'un procédé qui plus est respectueux de l'environnement.
La Demanderesse a ainsi réussi, dans le cadre de ses recherches, à générer des fractions d'oligosaccharides bioactifs, pour des applications innovantes.
Un premier objet de l'invention se rapporte à un mélange d'oligo-λ- carraghénanes, possédant un pourcentage en poids d'oligo-λ- carraghénanes ayant un degré de polymérisation égal à 8 compris de 50 à 60% par rapport au poids total du mélange.
En d'autres termes, l'invention se rapporte à un mélange comprenant de 50 à 60% en poids d'oligo-A-carraghénanes ayant un degré de polymérisation égal à 8, par rapport au poids total du mélange.
On entend par « oligo-A-carraghénane », au sens de la présente invention, un oligosaccharide issu de l'hydrolyse du λ-carraghénane. Le λ- carraghénane peut-être extrait à partir d'algues rouges marines, plus particulièrement les rhodophycees. Ces algues rouges marines peuvent appartenir aux ordres des Gigartinales, Ahnfeltiales, et notamment les espèces Chondrus crispus et Gigartina sp., Mazzaella sp., Chondracanthus sp. Il peut s'agir plus particulièrement de Gigartina skottsbergii. Le λ-carraghénane peut avoir un poids moléculaire allant de 200 kDa à 700 kDa, notamment aux environs de 500 kDa.
On entend par « degré de polymérisation égal à X », au sens de la présente invention, un nombre d'unités monomères constitutives de la chaîne d'oligo-A-carraghénane, égal à X. La masse moléculaire d'une unité disaccharidique d'oligo-A-carraghénane, c'est-à-dire deux monomères glucidiques liés par une liaison osidique, étant d'environ 580 Da, un degré de polymérisation X correspond à une masse moléculaire de l'oligo-A- carraghénane d'environ X x 290 Da. A titre d'exemple, un oligo-A- carraghénane ayant un degré de polymérisation égal à 2 possède une masse moléculaire égale à environ 580 Da, un oligo-A-carraghénane ayant un degré de polymérisation égal à 8 possède une masse moléculaire égale à environ 2320 Da.
A titre d'exemple, une unité disaccharidique d'oligo-A-carraghénane, comprenant une liaison osidique, possède la formule chimique suivante :
Figure imgf000006_0001
Le degré de polymérisation peut être mesuré par toute méthode connue de l'homme du métier. Il peut s'agir par exemple d'une analyse par électrophorèse en gel de polyacrylamide, par exemple la technique C- PAGE (capillary polyacrylamide gel electrophoresis), ou d'une analyse par chromatographie d'exclusion de taille, ou une association de deux ou plusieurs de ces méthodes.
On entend par « mélange », au sens de la présente invention, tout produit constitué d'oligo-A-carraghénanes ayant différents degrés de polymérisation. Les degrés de polymérisation des oligo-A-carraghénanes du mélange peuvent être notamment de 2 à 20. Le mélange peut par exemple comprendre des oligo-A-carraghénanes dont le degré de polymérisation est de 2 à 20. La masse moléculaire de ce mélange peut aller de 580 à 5800 Da. Par exemple, le mélange d'oligo-A-carraghénanes peut posséder un pourcentage en poids d'oligo-A-carraghénanes ayant un degré de polymérisation égal à 8 compris de 52 à 58%, ou de 54 à 56%, par exemple de 55%, par rapport au poids total du mélange.
Par exemple, le mélange d'oligo-A-carraghénanes peut posséder un pourcentage en poids d'oligo-A-carraghénanes ayant un degré de polymérisation compris entre 2 (DP2) et 7 (DP7) inférieur à 1 %, par exemple inférieur à 0,90%, ou inférieur à 0,80%.
Le mélange de l'invention peut comprendre en outre de 20 à 25% en poids d'oligo-A-carraghénanes ayant un degré de polymérisation de 9 à 12, par rapport au poids total du mélange. En d'autres termes, le mélange de l'invention peut comprendre en outre de 20 à 25% en poids d'oligo-A- carraghénanes ayant un degré de polymérisation pouvant être égal à 9 et/ou 10, et/ou 1 1 , et/ou 12. Il peut s'agir par exemple de 21 à 24%, ou de 22 à 23% en poids d'oligo-A-carraghénanes ayant un degré de polymérisation de 9 à 12, par exemple d'environ 22%, par rapport au poids total du mélange.
Le mélange de l'invention peut comprendre en outre de 20 à 25% en poids d'oligo-A-carraghénanes ayant un degré de polymérisation allant de 13 à 16, par rapport au poids total du mélange. En d'autres termes, le mélange de l'invention peut comprendre en outre de 20 à 25% en poids d'oligo-A-carraghénanes ayant un degré de polymérisation pouvant être égal à 13 et/ou 14, et/ou 15, et/ou 16.11 peut s'agir par exemple de 21 à 24%, ou de 22 à 23% en poids d'oligo-A-carraghénanes ayant un degré de polymérisation de 13 à 16, par exemple environ 23%, par rapport au poids total du mélange.
Avantageusement, le mélange d'oligo-A-carraghénanes de l'invention possède une activité biologique.
De manière particulièrement avantageuse, le mélange d'oligo-A- carraghénanes de l'invention possède une activité impliquée dans la réparation tissulaire et la cicatrisation, notamment une activité biologique sur deux facteurs essentiels à la réparation tissulaire : la réaction inflammatoire et la migration cellulaire. En particulier, le mélange d'oligo-A- carraghénanes de l'invention peut stimuler la réaction inflammatoire et la migration cellulaire. Avantageusement, le mélange de l'invention stimule, chez les macrophages, la sécrétion de la cytokine pro-inflammatoire TNF- alpha (« Tumor Necrosis factor alpha »).
On entend par « réaction inflammatoire », au sens de la présente invention, tout processus homéostatique impliqué dans la limitation de l'extension des lésions tissulaires, destruction de l'agent causal et activation du processus de réparation tissulaire. Une phase inflammatoire implique notamment des cellules macrophages qui ont un rôle primordial dans la phase de détersion de la plaie. Elle prépare également la seconde phase de cicatrisation proprement dite, impliquant la migration des cellules épithéliales pour la régénération des tissus endommagés.
Le mélange de l'invention trouve donc des applications en santé humaine et animale.
Ainsi, un autre objet de l'invention se rapporte à un mélange d'oligo- λ-carraghénanes de l'invention, comme médicament. En d'autres termes, l'invention se rapporte à l'utilisation d'un mélange d'oligo-A-carraghénanes de l'invention, comme médicament, ainsi qu'à un médicament comprenant un mélange d'oligo-A-carraghénanes de l'invention.
Le médicament de l'invention ou le mélange peut être destiné à des patients affectés par une pathologie dans laquelle une immunostimulation et/ou une angiogenèse est souhaitée ou est bénéfique.
Le médicament ou le mélange peut être destiné à des patients affectés par une pathologie ou un état pour lesquels une réparation tissulaire et/ou une cicatrisation de la peau est souhaitée et/ou nécessaire. Il peut s'agir par exemple de tout état nécessitant une réparation tissulaire, comme par exemple un état suivant une blessure, ou un état suivant un acte chirurgical, par exemple une greffe. Alternativement, il peut s'agir d'une maladie cardiovasculaire.
Ainsi, un autre objet de l'invention se rapporte au mélange d'oligo-A- carraghénanes de l'invention, pour son application comme médicament pour la réparation tissulaire et/ou la cicatrisation. En d'autres termes, il s'agit de l'utilisation d'un mélange d'oligo-A-carraghénanes de l'invention dans la préparation d'un médicament destiné à la réparation tissulaire et/ou la cicatrisation.
Un autre objet de l'invention se rapporte à une composition pharmaceutique, dermatologique ou cosmétique, comprenant un mélange d'oligo-A-carraghénanes de l'invention.
Une composition pharmaceutique de l'invention peut comprendre en outre un véhicule pharmaceutiquement acceptable. Il peut s'agir notamment d'un excipient permettant la libération contrôlée du ou des principes actifs, comme par exemple le Compritol® 888 ATO (Glyceryl dibehenate EP, Glyceryl behenate NF/Ch.P), ou permettant une amélioration de la solubilité et de la biodisponibilité, comme par exemple le Capryol™ 90 (Propylene glycol monocaprylate (type II) NF), vétérinaire, comme par exemple le Geleol™ Mono and Diglycerides NF (Glycerol monostearate 40-55 (type I) EP, Mono and diglycerides NF, Glyceryl stéarate (USA FDA IIG)), nutraceutique, comme par exemple le Biogapress Végétal BM297ATO (Glyceryl dipalmitostearate E471/GRAS), ou des Solubilisants topiques/promoteurs de pénétration cutanée corne par exemple le Capryol™ 90 (Propylene glycol monocaprylate (type II) NF), un émulsifiant comme le Plurol® Diisostearique (Triglycerol diisostearate EP/NF), cette liste n'étant pas limitative.
Le médicament ou la composition pharmaceutique de l'invention peuvent être sous une forme destinée à la voie orale, percutanée. Il/elle peut se présenter sous la forme d'un sirop, d'une solution injectable ou d'une solution orale. Il/elle peut se présenter sous forme d'une poudre, de granules, d'un spray, d'une crème, d'une lotion ou d'un collyre, cette liste n'étant pas limitative.
Le médicament ou la composition pharmaceutique de l'invention peut comprendre une concentration en mélange comprise entre 1 et 5 mg/kg corporel et par jour, par exemple entre 2 et 4 mg/kg, par exemple 1 , ou 2, ou 3, ou 4, ou 5 mg/kg. Un autre objet de l'invention se rapporte à l'utilisation cosmétique d'un mélange d'oligo-A-carraghénanes de l'invention, pour l'amélioration de l'aspect de la peau et/ou l'aspect d'une cicatrice. Une telle utilisation cosmétique s'entend d'une utilisation non thérapeutique, uniquement esthétique. En d'autres termes, une utilisation cosmétique s'entend par des utilisateurs sains, pour améliorer l'aspect d'une peau saine ou pour améliorer l'aspect d'une cicatrice. Il peut s'agir par exemple d'un état de la peau suivant une opération de chirurgie esthétique.
A ce titre, l'invention s'entend d'une composition cosmétique comprenant le mélange d'oligo-A-carraghénanes de l'invention.
La composition cosmétique selon l'invention peut comprendre un ou plusieurs supports cosmétiquement acceptable(s). Dans la présente, par « support cosmétiquement acceptable» on entend tout support cosmétique connu de l'homme du métier, il peut s'agir par exemple de tout support cosmétique pouvant être cité dans le dictionnaire INCI (International Nomenclature of Cosmetic Ingrédients) publié par le PCPC (Personal Care Products Council).
Selon l'invention, la composition cosmétique peut, par exemple, se présenter sous toute forme connue de l'homme du métier. Il peut s'agir, par exemple d'une forme choisie parmi une émulsion huile-dans-l'eau, eau-dans-l'huile, une émulsion multiple, une microémulsion, d'une émulsion solide, un gel aqueux ou hydro-alcoolique, une crème, un lait, une pommade, une huile, un baume, un onguent, un gel, d'un masque, une poudre, un support imbibé, par exemple un patch transdermique, une solution, une lotion aqueuse ou hydroalcoolique, un spray, une suspension et/ou une cire, un sérum biphasé, par exemple comprenant une fraction huileuse et une fraction aqueuse.
Selon l'invention, la composition peut être sous toute forme connue de l'homme du métier dans les domaines de la cosmétique et de la dermatologie, sans aucune restriction galénique particulière. La composition selon la présente invention peut être, par exemple une composition pour le soin du visage, du corps, par exemple des compositions pour le visage et/ou le corps.
La composition de l'invention peut être obtenue par tout procédé approprié connu de l'homme du métier pour la fabrication d'une composition cosmétique et/ou dermatologique. Il peut s'agir, par exemple d'un simple mélange. Il peut s'agir également, par exemple, d'un procédé comprenant une étape d'incorporation d'une phase interne dans une phase externe au moyen d'un émulseur, par exemple d'une turbine de type rotor- stator.
Le mélange d'oligo-A-carraghénanes de l'invention peut être préparé selon toute méthode connue de l'homme du métier.
Un autre objet de l'invention se rapporte à un procédé de préparation du mélange d'oligo-A-carraghénanes de l'invention, comprenant les étapes de :
a) hydrolyse d'une préparation de λ-carraghénanes ayant un degré de polymérisation moyen de 3000 au moyen d'une A- carraghénase,
b) isolation d'un mélange d'oligo-A-carraghénanes présentant un pourcentage en poids d'oligo-A-carraghénanes ayant un degré de polymérisation égal à 8 compris entre 50 et 60% par rapport au poids total du mélange.
Au sens de la présente invention, la « préparation de A- carraghénanes » peut être obtenue par toute méthode connue de l'homme du métier. Il peut s'agir par exemple d'une extraction basique à chaud de λ-carraghénanes à partir d'une algue rouge, ceci permettant l'obtention d'un bain d'extraction, suivie d'une étape de filtration/concentration par isoprapanol permettant l'obtention d'un gel, puis d'une étape de passage/séchage. La préparation de λ-carraghénanes peut comprendre des oligo-A-carraghénanes dont le degré de polymérisation est compris entre 1000 et 5000, par exemple entre 1500 et 4500, ou entre 2000 et 4000, ou entre 2500 et 3500, et notamment un degré de polymérisation moyen d'environ 3000 (poids moléculaire moyen de 500 kDalton).
On entend par « λ-carraghénase », au sens de la présente invention, toute enzyme permettant d'hydrolyser le λ-carraghénane. En d'autres termes, il peut s'agir de toute enzyme permettant de rompre les liaisons osidiques sans endommager les monomères. Il peut s'agir d'une enzyme recombinante ou d'une enzyme obtenue par extraction à partir des cellules bactériennes P. carrageenovora. La production et la purification de l'enzyme peuvent être effectuées selon toute méthode connue de l'homme du métier, par exemple au moyen de la méthode de Guibet et al. (Guibet et al (2007), Biochem. J., 404: 105-1 14, ([2])). Dans le cas d'une enzyme recombinante, il peut s'agir d'une enzyme naturellement sécrétée par la bactérie marine P. carrageenovora, souche bactérienne référencée à Γ »American Type Culture Collection » (ATCC) sous le numéro 43555. Il peut s'agir de l'enzyme décrite dans le document FR2873387 ([1]).
L'hydrolyse peut être réalisée pendant un temps allant d'environ 18 heures à environ 30 heures ou plus, à une température d'environ 30°C, ou dans des conditions thermodynamiques équivalentes. Préférentiellement, le temps est d'environ 19h à 22h à 30°C. Avantageusement, le temps d'hydrolyse est d'environ 20 heures, afin d'obtenir un enrichissement en oligo-A-carraghénanes optimal.
Avantageusement, la concentration d'enzymes dans le milieu n'est pas limitante. La concentration peut être d'au moins 4 g/ml de λ- carraghénase, par exemple de 5 pg/ml, ou 6 pg/ml, ou 7 g/ml de λ- carraghénase.
A l'issue de la phase d'hydrolyse, une fraction d'oligo-λ- carraghénanes est obtenue, dans laquelle les molécules d'oligo-λ- carraghénanes présentent un degré de polymérisation allant de 2 à 20. Cette fraction peut notamment contenir entre 52 et 54 % en poids d'oligo- λ-carraghénanes de degré de polymérisation égal à 8, par rapport au poids total de la fraction. L'isolation du mélange d'oligo-A-carraghénanes de l'invention peut être réalisée par toute méthode de séparation connue de l'homme du métier. Il peut s'agir par exemple d'une méthode chromatographique préparative, comme la chromatographie par exclusion de taille ou encore de techniques de chromatographie d'échanges d'anions et/ou de l'ultrafiltration sur membranes.
Dans un mode de réalisation du procédé de l'invention, l'étape b) peut être précédée d'une étape d'isolation d'une fraction d'oligo-A- carraghénanes présentant un pourcentage en poids d'oligo-A- carraghénanes ayant un degré de polymérisation allant de 8 à 16 compris entre 70 et 85% par rapport au poids total du mélange.
Enfin, un autre objet de l'invention est un mélange d'oligo-A- carraghénanes susceptible d'être obtenu par la mise en œuvre du procédé tel que défini ci-dessus. Ce mélange possède les caractéristiques techniques du mélange tel que défini ci-avant.
D'autres avantages pourront encore apparaître à l'homme du métier à la lecture des exemples ci-dessous, illustrés par les figures annexées, donnés à titre illustratif.
Brève description des figures
La figure 1 représente une analyse en gel C-PAGE de la cinétique d'hydrolyse du λ-carraghénane par la λ-carraghénase. Elle montre la migration des oligo-A-carraghénanes et identifie notamment les DP2, DP4, DP6 et DP8 pour des temps d'hydrolyse (minutes) de 0, 15, 30,
60, 120, 320, 1 170 et 1410.
La figure 2 représente une analyse par chromatographie d'exclusion de taille préparative des oligo-A-carraghénanes obtenus par hydrolyse enzymatique du λ-carraghénane par la λ-carraghénase, avec les pics d'élution des oligosaccharides en index de réfraction (mV) en fonction du temps d'élution en minutes. Panel A : chromatogramme complet montrant notamment les pics d'élution pour les DP16-8, DP6 et DP4. Panel B : élargissement en ordonnées du chromatogramme visualisé sur le panel A ; le rectangle DP16-8 et le rectange DP6 du panel A indiquent les fractions retenues pour isoler les oligosaccharides de DP8 à 16 et DP6 respectivement.
- La figure 3 représente une analyse qualitative en gel filtration des fractions d'oligo-A-carraghénanes purifiées en Index de réfraction (mV) par rapport au temps d'élution en minutes. Panel A : DP6 purifié. Panel B : mélange présentant une majorité de DP8.
La figure 4 représente une observation microscopique des monocytes THP-1 non traitées (panel de gauche) et de monocytes après traitement au PMA (200 nM) pour leur différenciation en macrophages (panel de droite). Les flèches indiquent les extensions cytoplasmiques (grossissement x200, observation à 30 heures +/- traitement au PMA).
La figure 5 représente une observation microscopique de la morphologie de macrophages THP-1 non traités (panel A) et des macrophages THP-1 après 24 heures de traitement avec le mélange DP8 d'oligo-A-carraghénanes (panel B ; 0,7g/l).
La figure 6 représente une régression linéaire du logarithme de l'absorbance (ordonnées) en fonction du logarithme de la concentration de TNF-alpha (abscisses).
La figure 7 représente une étude de l'effet des oligo-A- carraghénanes DP8 et DP6 sur la sécrétion de TNF-alpha par les macrophages THP-1 , exprimée par la concentration de TNF-alpha en pg/ml pour une échantillon comprenant, de gauche à droite : le contrôle (ctl correspondant aux cellules incubées sans ajout d'oligo-A-carraghénane) seul ; le contrôle + LPS ; les DP6 ; les DP6 + LPS ; les DP8 ; les DP8 + LPS. Les traitements sont effectués à la concentration de 0,35 g/l. Le LPS est utilisé à 0,1 pg/ml.
La figure 8 représente un effet de doses croissantes d'oligo-A- carraghénanes « DP8 » sur la sécrétion de TNF-alpha par les macrophages THP-1 (les concentrations de TNF-alpha sont indiquées en g/1). Les concentrations en DP8 sont les suivantes (de gauche à droite) : 0 g/1, 0,175 g/l, 0,35 g/l et 0,7 g/l.
La figure 9 est une représentation graphique des résultats obtenus pour la migration des kératinocytes (« wound healing ») traités par les oligo-A-carraghénanes en mélange DP8 à la concentration finale de 0,7 g/l dans le milieu de culture des cellules [oligo-A(DP8)] ou par le contrôle (sérum physiologique). Panel A : résultats obtenus pour les trois expériences indépendantes ; *P < 0.05 ; ** P < 0.01 ; ***P < 0.001 (test statistique utilisé : "one-way ANOVA" ou "one-way repeated measures ANOVA" suivi du test t de Bonferroni). Le pourcentage de fermeture de la griffure est donné en fonction du temps d'incubation (en heures), à 12h, 18h, 24h, 48h et 72h. Panel B : Moyenne des 3 expériences au temps 48h (***p < 0.001 ) (test statistique utilisé : test t), en pourcentage de fermeture de la griffure pour le mélange DP8 (bâtonnet noir) et pour le contrôle en sérum physiologique (bâtonnet blanc).
EXEMPLES Exemple 1 : MATERIEL ET MÉTHODES
1/ Préparation des oliqo-A-carraqhénanes
A-carraqhénane
Le λ-carraghénane est un polysaccharide entrant dans la composition de la paroi de certaines algues rouges marines. Le λ-carraghénane utilisé est extrait de l'algue Gigartina skottsbergii (Danisco-DuPont).
Production et purification de l'enzyme λ-carraqhénase de Pseudoalteromonas carrageenovora
La λ-carraghénase est naturellement sécrétée par la bactérie marine
P. carrageenovora, souche bactérienne référencée à l'« American Type Culture Collection » (ATCC) sous le numéro 43555. La production et la purification de l'enzyme sont effectuées selon une adaptation simplifiée du protocole publié par M. Guibet et collaborateurs en 2007 [Guibet et al (2007), ([2]).
Brièvement, la souche bactérienne est cultivée dans 5 litres du milieu de culture suivant adapté de Weigl et Yaphe (1966), Canadian J.
Microbiol., 12(5): 939-947 ([3]) :
- NaCI 2,5 %
- MgSO4, 7H2O 0,5 %
- CaCI2, 2H2O 0,01 %
- KCI 0,1 %
- NaNO3 0,2 %
- Extrait acide de caséine (Difco) 0,25 %
- Extrait de levure (Difco) 0,1 %
- λ - carraghénane 0,2 %
A ce milieu sont ajoutés stérilement 0,003 % final de FeSO4, H2O et
60 ml/1 de tampon phosphate (Na2HPO4, 0,2 M) pour atteindre un pH final de 7.
La culture est incubée 48 heures à 20°C sous agitation.
L'enzyme sécrétée dans le surnageant de culture est alors purifiée par ultrafiltration tangentielle sur un système Pellicon (Millipore, 30 kDa), puis par précipitation fractionnée au sulfate d'ammonium (30 % final) et enfin dialyse des fractions contre un tampon phosphate 20 mM de pH égal à 7,4.
Ce protocole permet l'obtention d'une enzyme suffisamment purifiée et stable plusieurs mois à 4°C.
Hydrolyse enzymatique du A-carraghénane
Une cinétique de digestion est préalablement établie afin de définir les conditions expérimentales propices à un enrichissement en oligo-λ- carraghénanes d'une échelle de taille s'étalant des degrés de polymérisation (DP) les plus petits (« oligos limites ») aux DP moyens (env. DP20). Le substrat est préparé par dissolution du λ-carraghénane à 0,5 % dans un tampon phosphate 25 mM, NaCI 100mM, pH 7. Une hydrolyse est effectuée sur un millilitre de ce substrat par ajout de l'enzyme à la concentration de 5 g/ml. La réaction est régulièrement agitée manuellement, notamment dans les premières heures de l'hydrolyse pendant lesquelles le substrat peu hydrolysé rend le mélange réactionnel visqueux. La réaction est menée pendant 24 heures avec échantillonnages réguliers du milieu réactionnel. Pour chaque échantillon, la réaction est stoppée par chauffage au bain marie à 95°C pendant 10 minutes.
L'analyse des échantillons et ainsi de la cinétique d'hydrolyse du λ- carraghénane se fait par électrophorèse sur gel de polyacrylamide (« Carbohydrate-PAGE ») et révélation des oligosaccharides libérés au nitrate d'argent.
Pour l'hydrolyse à plus grande échelle, les conditions retenues sont 20 heures d'incubation sous agitation, à 30°C, avec 5 g/ml de λ- carraghénase. Deux cent cinquante millilitres de substrat sont ainsi hydrolysés, soit 1 ,25 grammes de λ-carraghénane.
Purification et analyse des oliqo-A-carraqhénanes
La purification des oligosaccharides est effectuée par ultrafiltration de l'hydrolysat sur membrane de seuil de filtration fixé à 30 kDa (cellule Amicon, Millipore).
Le filtrat est dialysé contre l'eau distillée puis concentré environ 50 fois par chauffage / évaporation sous vide jusqu'à l'obtention d'un volume de 6 ml. Ce concentré est ensuite filtré à travers une membrane à 0,45 μιτι afin d'éliminer toute trace de précipité salin en préparation de l'étape de purification suivante.
Les oligo-A-carraghénanes contenus dans le concentré obtenu à l'étape précédente sont séparés par chromatographie d'exclusion de taille préparative sur deux colonnes de seuil d'exclusion fixé à 30 kDa («
Hiload™ 26/60 Superdex™ 30 prep grade », GE Healthcare) montées en série et couplées à un appareillage de marque Gilson. La détection se fait avec un réfractomètre différentiel (« Spectra System RI-50 »). L'élution est effectuée dans un tampon de carbonate d'ammonium à 100 mM par fractions de 10 ml avec un collecteur « Gilson 215 liquid handler ».
Les fractions correspondant aux oligosaccharides d'intérêt sont regroupées de façon à isoler les oligosaccharides de DP4 et de DP6, alors que les DP de 8 à 16 sont regroupés. Les oligosaccharides en solution sont alors lyophilisés.
Une deuxième analyse des fractions purifiées à l'étape précédente est effectuée par chromatographique d'exclusion de taille en injectant une solution à 0,4% dans l'eau mQ sur un appareillage « Dionex Ultimate® 3000 » et une colonne Superdex™ peptide 10/300. La séparation s'effectue en 60 minutes sous éluant nitrate de lithium (LiNO3) à 100 mM.
Pour les tests cellulaires, les fractions oligosaccharidiques lyophilisées correspondant aux DP 8 à 16, d'une part, et correspondant au DP6, d'autre part, sont solubilisées, dans du tampon phosphate salin (PBS) pour les tests d'immunostimulation, et dans du sérum physiologique pour les tests de « wound healing ».
21 Mesure de l'activité immunostimulante in vitro sur cellules: mesure de la sécrétion de TNF-alpha par les macrophages
2.1 / Culture cellulaire
Les cellules sont les monocytes THP-1 isolés à partir du sang d'un enfant âgé d'un an atteint d'une leucémie monocytaire aigue [Tsuchia S. et al ., Int J Cancer 26 : 171 -176 (1980), ([4])]. Elles sont cultivées dans le milieu de culture RPMI 1640 + Glutamax® (Life technologies) supplémenté avec 10% de sérum de veau fœtal (s-RPMI), à 37°C sous une atmosphère enrichie à 5% de CO2. Les cellules présentent une morphologie ronde et croissent en suspension avec formation de grappes (figure 4, panel de gauche). L'ensemencement se fait à 1 .105 cellules/ml et la culture est diluée lorsque que la concentration cellulaire atteint 1 .106 cellules/ml. 2.2/ Obtention des macrophages
Les macrophages sont obtenus par différenciation des monocytes THP-1 avec le phorbol 12-myristate 13-acetate [PMA, Tsuchia S. et al., Cancer Res 42 : 1530-1536 (1982), ([5])]. Les monocytes sont lavés et repris à 1 .106 cellules/ml dans le milieu de culture RPMI 1640 + Glutamax® non supplémenté en sérum auquel est ajouté 200nM de PMA (Sigma Aldrich). Les cellules sont alors rapidement transférées dans des plaques de culture cellulaires 12 puits dans lesquels seront effectués les traitements par les composés. Chaque puits (3,8 cm2) est ensemencé par 1 ml de la suspension cellulaire (1 .106 cellules) et les cellules sont incubées pendant 24 à 48 heures à 37°C sous 5% de CO2. A l'issue de cette période de différenciation, la majorité des cellules adhère au fond des puits de culture et les cellules adoptent une morphologie de type macrophage, ce qui est observable sur la figure 4 (panel de droite).
2.3/ Traitement des macrophages
Le milieu de différenciation est éliminé et les cellules lavées dans 1 ml de PBS puis 1 ml de s-RPMI afin d'éliminer le PMA ainsi que les cellules non adhérentes.
Les cellules adhérées au fond des puits sont reprises dans 1 ml de milieu s-RPMI pour les traitements.
Les cellules sont traitées pour une durée de 24 heures par les oligo- λ-carraghénanes, aux concentrations de 0,70 g/l, 0,35 g/l et 0,175 g/l. Le témoin négatif correspond aux cellules incubées sans ajout de composé. Six puits sont utilisés pour chaque concentration testée. A l'issue de cette étape, pour chaque concentration testée, 3 puits sont utilisés afin de poursuivre l'incubation des cellules en présence de lipopolysaccharide bactérien à la concentration de 0,1 g/ml (LPS d'Escherichia coli sérotype 01 1 1 :B4, réf. L2630 Sigma Aldrich) pendant 6 heures (Takashiba et al 1999, Infect. & Immun. 67: 5573-8, ([6])). Le LPS est reconnu pour stimuler la sécrétion de TNF-alpha chez ces cellules (Wright et al 1990, Science 249: 1431 , ([7])). Ainsi, chaque condition est testée en triplicata indépendants.
2.4/ Mesure du relarqaqe de TNF-alpha par les macrophages : test ELISA
La mesure de la sécrétion de TNF-alpha se fait dans le surnageant de culture des macrophages par un dosage en ELISA (« enzyme-linked immunosorbent assay »). Ce test est effectué en plaques 96 puits. Brièvement, le fond des puits est enrobé d'un premier anticorps reconnaissant spécifiquement le TNF-alpha. Cet anticorps va permettre de capturer et d'isoler le TNF-alpha présent dans le surnageant de culture. Un deuxième anticorps biotinylé est ensuite ajouté afin de détecter les molécules de TNF-alpha préalablement capturées. Cet anticorps est alors spécifiquement détecté par l'ajout de la streptavidine couplée à une enzyme peroxydase (HRP). L'ajout d'un substrat chromogénique de la peroxydase permet alors de mesurer en spectrophotométrie la quantité de TNF-alpha initiale présente dans le surnageant testé. Ce calcul se fait par établissement, en parallèle des tests, d'une courbe étalon de concentrations de TNF-alpha recombinant allant de 0 à 2000 pg/ml. La régression linéaire est obtenue en passant les valeurs de concentration de TNF-alpha et d'absorbance correspondantes en échelle Iog10 (figure 6).
La réaction chromogénique est stoppée par l'ajout d'acide sulfurique et la lecture est effectuée à une longueur d'onde de 450nm avec une correction automatique à 540nm.
Chaque surnageant de culture à l'issue de l'étape précédente a fait l'objet de deux tests ELISA indépendants. Ainsi, pour chaque condition de traitement nous avons obtenu six valeurs d'absorbance.
Matériel, produits, tampons, temps d'incubation, concentrations d'utilisation des différents réactifs et références :
- anticorps de capture (réf. MAB610, R&D Systems) : 2 pg/ml dans le PBS ; 100 μΙ par puits ; incubation sur la nuit à température ambiante - TNF-alpha recombinant (réf. 210-TA, R&D Systems) : dilution dans TBST-BSA ; 100 μΙ de chaque dilution dans les puits de la gamme étalon ; incubation 2 heures à température ambiante
- Surnageants de culture : 100 μΙ par puits ; incubation 2 heures à température ambiante
- anticorps de détection (réf. BAF210, R&D Systems) : 50 ng/ml dans le tampon Tris NaCI 0,1 % BSA 0,05% Tween20 (TBST-BSA) ; 100 μΙ par puits ; incubation 2 heures à température ambiante
- Streptavidine-HRP (réf. 43-4323, 1 ,25 mg/ml, Invitrogen) : utilisation au 1 :20000è dans le TBST-BSA ; 100 μΙ par puits ; incubation de 20 minutes à température ambiante.
- Substrat chromogénique : 3,3',5,5'-Tetramethylbenzidine (TMB) (réf. T5525, Sigma) : dissolution à 0,1 mg/ml dans un tampon phosphate-citrate 0,05 M ; 100 μΙ par puits ; incubation 20-30 mintues à température ambiante
- Acide sulfurique : 0,5 M ; 100 μΙ par puits
- Lecteur de microplaques : Safire2, TECAN Ltd
3/ Mesure de l'effet sur la migration cellulaire : test du « wound healinq »
Ces expériences ont été effectuées sous prestation auprès de la plateforme ImPACcell du réseau Biogenouest à Rennes.
3.1/ Cellules et traitement par les composés
Les cellules utilisées sont des HaCAT, lignée humaine de kératinocytes immortalisés. Elles sont cultivées dans le milieu DMEM supplémenté par de la glutamine et 10% de sérum de veau fœtal. Pour le test de « wound healing », les cellules sont ensemencées dans des plaques 96 puits de manière à obtenir une monocouche. A confluence, les cellules sont traitées 24 heures avec les oligosaccharides. Le sérum physiologique est utilisé comme contrôle de référence. 3.2/ Mesure de la migration cellulaire
Après 24 heures de traitement des cellules par les composés, une griffure est faite sur le tapis cellulaire en utilisant un cône de pipette de 200 μΙ stérile. Le milieu de culture n'est pas changé après la griffure, les cellules sont donc toujours en présence des composés pendant le suivi de la migration cellulaire qui s'étale sur 4 jours.
La migration cellulaire est observée en « time lapse » avec un vidéomicroscope en contraste de phase (Microscope inversé automatique de marque Zeiss et de type « Axiovert 200M »). Le système de mesure est équipé d'une chambre thermostatée régulant la température et l'atmosphère enrichi en CO2 afin de maintenir les cellules en conditions physiologiques. Les coordonnées x, y et z de la griffure sont enregistrées pour chaque puits. Ainsi, au moment de la griffure puis à intervalles de temps réguliers, 6 photos (grossissement x10) de la griffure sont faites à la même position pour chaque puits. Ces acquisitions sont automatisées par l'utilisation du logiciel « Axioimager » (Zeiss). Ce protocole d'acquisition d'image permet une bonne représentativité pour déterminer l'ampleur de la migration cellulaire aux abords de la griffure. Pour quantifier la migration cellulaire, les images sont analysées grâce au logiciel « Simple PCI » (Hamamatsu) qui permet de mesurer la superficie de la griffure. À chaque temps d'acquisition, cette superficie est soustraite à la superficie de la griffure des contrôles au temps zéro et est exprimée en pourcentage de fermeture de la griffure.
Les résultats représentent la moyenne calculée pour un total de 4 griffures pour le composé à tester et 8 griffures pour le contrôle. Trois expériences indépendantes ont été menées, et pour chacune l'analyse statistique des résultats a été faite en utilisant un test « One-Way ANOVA » suivi d'un « test t de Bonferroni ». Exemple 2 : RÉSULTATS
1/ Préparation, analyses et purification des oliqo-A-carraqhénanes 1 .1 / Analyse de la cinétique d'hydrolyse du A-carraghénane
L'objectif de ce travail étant d'étudier le potentiel bioactif des oligo-λ- carraghénanes, nous avons recherché le temps d'hydrolyse par l'enzyme permettant un enrichissement en oligosaccharides de DP < 20, tout en visant l'obtention d'un mélange homogène. L'analyse sur gel C-PAGE des échantillons d'hydrolysats prélevés à intervalles réguliers montre qu'une hydrolyse d'environ 20 heures (figure 1 , 1 170 minutes) permet ce type d'enrichissement et qu'une incubation prolongée ne l'améliore pas (figure 1 , 1410 minutes). Si on prolonge l'incubation, on observe en revanche un enrichissement rapide en oligosaccharides de faible DP (DP dits « limites »), à savoir les DP6, 4 et en dans une moindre quantité, DP2.
Ainsi, par cette approche préliminaire, nous avons choisi un temps d'incubation de 20 heures pour la préparation des oligo-A-carraghénanes.
1 .21 Purification par chromatoqraphie d'exclusion de taille préparative Le chromatogramme permet de faire une première analyse visuelle du profil du mélange d'oligo-A-carraghénanes purifiés. On retrouve ici l'enrichissement en oligosaccharides de DP6 et 4 (figure 2, panel A, rectangles rouge et noir respectivement). Les oligosaccharides de DP8 et supérieurs sont produits en faibles quantités (figure 2, panel A, rectangle bleu). On peut néanmoins distinguer les pics d'élutions des DP8 à 16 en effectuant un grossissement de l'échelle de l'axe des ordonnées (figure 2, panel B, rectangle bleu). On constate de plus que dans ce cas, le DP8 est majoritaire. Ainsi les fractions correspondant respectivement au pic d'élution du DP6 (rectangle rouge) d'une part, et aux pics d'élution des DP8 à 16 (rectangle bleu) d'autre part, sont rassemblées puis lyophilisées pour les étapes suivantes. 1 .21 Analyse par chromatoqraphie d'exclusion de taille
Les produits lyophilisés issus de l'étape de purification des fractions d'oligo-A-carraghénane par chromatographie d'exclusion de taille (figure 2) ont été analysés une seconde fois avec une approche analytique plus rapide afin de vérifier leur pureté. Les résultats de cette analyse sont exposés à la figure 3.
Le chromatogramme visualisé sur le panel A montre que les fractions retenues pour purifier l'oligosaccharide de DP6 ne contiennent effectivement que cette molécule.
Le chromatogramme du panel B indique que l'oligosaccharide de DP8 est la molécule majoritairement représentée dans le mélange analysé. En revanche, la résolution moindre de cette analyse ne permet pas de visualiser clairement la présence des oligosaccharides de DP14 et DP16.
Les produits de lyophilisation sont pesés afin de calculer le rendement de purification des oligosaccharides d'intérêt. Ainsi, à partir de 1 ,25 gramme de λ-carraghénane initial, nous avons produit et purifié :
- 90 mg de DP6, soit un rendement de 7,2%
- 24 mg de mélange contenant majoritairement du DP8, soit un rendement de 1 ,9%
Le protocole d'hydrolyse n'ayant pas été optimisé pour la production de ces oligosaccharides en particulier mais pour un mélange, les rendements sont faibles.
Par souci de simplification, la nomenclature DP8 est utilisée pour désigner le mélange oligosaccharidique contenant majoritairement du DP8.
21 Observation microscopique de la morphologie des cellules THP-1 2.1 / Effet du traitement des monocvtes au PMA pour leur différenciation en macrophages
Les monocytes en culture sont observables sous formes de cellules rondes en suspension dans le milieu de culture, avec formation de grappes (figure 4, gauche). Le traitement au PMA à une concentration de 200 nM entraîne rapidement l'adhérence des cellules au fond du puits de culture.
Les cellules deviennent plus granuleuses et adoptent une forme plus allongée avec des extensions cytoplasmiques (figure 4, droite). Ces caractères morphologiques indiquent, pour ce type cellulaire, une différenciation des monocytes en macrophages.
2.2/ Effet du traitement par les oligo-A-carraghénanes sur la morphologie des macrophages
Les cellules sont observées après 24 heures de traitement avec les oligo-A-carraghénanes, avant traitement secondaire au LPS (figure 5).
En comparaison avec les macrophages non traités (figure 5, gauche), on remarque une accentuation des caractères morphologiques caractéristiques des macrophages, notamment une proportion plus grande de cellules allongées avec extensions cytoplasmiques (figure 5, droite). Ces observations suggèrent ainsi que les oligo-A-carraghénanes induisent le phénotype macrophagique des cellules. 3/ Test ELISA : courbe étalon de TNF-alpha
Une gamme de concentrations de TNF-alpha comprises entre 15,6 et 2000 pg/ml est utilisée afin de définir l'équation de proportionnalité entre les mesures d'absorbance effectuées à l'issue du dosage ELISA et les concentrations de TNF-alpha. La régression linéaire est obtenue en effectuant une transformation logarithmique des valeurs (figure 6).
4/ Effet des oliqo-A-carraqhénanes sur la sécrétion de TNF-alpha par les macrophages
Le potentiel immunomodulateur des oligo-A-carraghénanes est évalué en étudiant leur effet sur la sécrétion de la cytokine TNF-alpha par les macrophages. Ainsi les effets de l'oligosaccharide DP6 et du mélange DP8 sont comparés, ce qui est illustré sur la figure 7.
Alors que des concentrations très discrètes de TNF-alpha sont détectables dans les surnageants de culture des macrophages non traités, un traitement au LPS induit une très forte augmentation de la sécrétion de TNF-alpha à des niveaux supérieurs à 2000 pg/ml de surnageant de culture. Ces contrôles internes à l'expérience montrent que nous pouvons utiliser cette approche expérimentale afin étudier l'effet de composés sur la sécrétion de TNF-alpha par les macrophages.
On constate qu'un traitement aux oligo-A-carraghénanes de DP6 entraîne une légère stimulation de la sécrétion de TNF-alpha. Cet effet est beaucoup plus marqué (x10) lorsque les macrophages sont incubés en présence d'oligo-A-carraghénanes en mélange DP8. Ceci indique un effet direct de la longueur de la chaîne oligosaccharidique sur l'activité biologique observée.
Un traitement simultané des macrophages avec le mélange DP8 et le
LPS n'induit pas plus de sécrétion de TNF-alpha qu'un traitement au LPS seul. Cela suggère que les niveaux observés de sécrétion de TNF-alpha après stimulation au LPS sont saturants et ne sont pas augmentables par un co-traitement avec un deuxième stimulant de la sécrétion de la cytokine.
Afin de prouver la spécificité de la stimulation, nous avons testé l'effet de doses croissantes d'oligo-A-carraghénanes en mélange DP8. Les résultats obtenus sont représentés sur la figure 8.
Ces résultats confirment que les oligo-A-carraghénanes stimulent la sécrétion de TNF-alpha chez les macrophages, et ce, de façon proportionnelle à la dose de composé utilisée pour effectuer les traitements. Nous n'observons pas non plus dans cette expérience une sécrétion accrue de TNF-alpha lors d'un traitement simultané par les oligo-A-carraghénanes et par le LPS. Ainsi, les résultats obtenus n'indiquent pas si la stimulation de la sécrétion de TNF-alpha par les oligo-
A-carraghénanes met en jeu les mêmes voies de signalisation que le LPS.
Ces premiers résultats indiquent que les oligo-A-carraghénanes sont capables d'activer une réponse de type inflammatoire chez les macrophages par la stimulation de la sécrétion de TNF-alpha. La forte différence de stimulation induite par le mélange DP8 par rapport à celle qui est induite par l'oligo-A-carraghénane DP6 illustre bien, pour ce type de composé, l'importance de la longueur de la chaîne oligosaccharidique et renforce les arguments en faveur d'une relation étroite entre activité biologique des oligosaccharides et leur degré de polymérisation. 5/ Effet des oliqo-A-carraqhénanes sur la migration cellulaire (test du
« wound healinq »)
Trois expériences indépendantes ont été menées afin d'étudier l'effet des oligo-A-carraghénanes sur la migration des kératinocytes. Les résultats sont représentés à la figure 9.
L'analyse des résultats montre un effet activateur du mélange DP8 d'oligo-A-carraghénanes sur la migration des kératinocytes. L'effet activateur de ce mélange est reproductible et a été confirmé dans chacune des expériences réalisées (figure 9, panel A).
La moyenne de ces 3 expériences, réalisées chacune en quadruplicate, montre ainsi une augmentation significative de la migration cellulaire induite par le mélange DP8 d'oligo-A-carraghénanes après 48h d'incubation des kératinocytes (figure 9, panel B).
En comparaison, des expériences identiques ont été menées en incubant les kératinocytes avec la fraction DP6 d'oligo-A-carraghénanes (données non montrées).
Ces résultats ont été obtenus pour des concentrations en DP6 du même ordre de grandeur que celles utilisées pour le mélange DP8. Alors que dans la première expérience le composé DP6 montre un effet inverse à celui observé pour le mélange DP8, c'est-à-dire inhibiteur de la migration cellulaire, cet effet n'est pas reproductible pour les deux expériences suivantes. Ainsi, le composé DP6 ne semble pas avoir d'effet sur la migration des kératinocytes.
Ce résultat appuie donc les résultats obtenus lors de l'étude de l'immunomodulation et met une nouvelle fois l'accent sur l'existence d'un lien direct entre la longueur de la chaîne oligosaccharidique des oligo-A- carraghénanes et l'activité biologique de ceux-ci. CONCLUSION
Il est montré ici que des oligo-A-carraghénanes dérivés du A- carraghénane, un polysaccharide extrait de la macro-algue rouge Gigartina skottsbergii et présent dans de nombreuses algues rouges, présentent une activité immunomodulatrice sur un modèle cellulaire animal d'étude in vitro, une lignée monocytaire humaine.
Ces oligo-A-carraghénanes sont obtenus par un processus innovant d'hydrolyse enzymatique des polysaccharides par la λ-carraghénase de la bactérie marine Pseudolteromonas carrageenovora, enzyme qui a été caractérisée sous sa forme recombinante. L'enzyme est utilisée sous sa forme native, c'est-à-dire purifiée à partir de sa souche bactérienne qui l'exprime naturellement. Pour la première fois, nous montrons que cette enzyme peut être utilisée pour produire des oligo-A-carraghénanes biologiquement actifs chez l'humain.
L'effet immunomodulateur des oligosaccharides démontré ici concerne la stimulation des caractères de différenciation des monocytes en macrophages, acteurs essentiels de l'immunité et de la réponse inflammatoire, ainsi que la stimulation de la sécrétion de la cytokine proinflammatoire TNF-alpha par ces cellules.
Ces résultats sont le reflet d'une réponse extracellulaire des macrophages dans un contexte d'enclenchement du processus immunitaire et inflammatoire.
Il est également démontré que les oligo-A-carraghénanes générés sont capables de stimuler la migration des kératinocytes dans un contexte de réparation d'un tapis cellulaire.
Il est montré que l'action spécifique d'un mélange d'oligosaccharides contenant majoritairement un oligo-A-carraghénane de DP8 en comparaison avec un oligo-A-carraghénane isolé de DP6. Ceci suggère une relation très étroite entre la structure des composés et leurs activités biologiques respectives. Le procédé d'hydrolyse enzymatique de la présente invention permet donc le contrôle fin de la taille et de la nature des produits oligosaccharidiques générés.
Il est ici démontré que les composés sont actifs sur des macrophages en stimulant leurs caractères pro-inflammatoires notamment par l'augmentation de la sécrétion de la cytokine TNF-alpha. Ils sont également capables de stimuler la migration de kératinocytes dans un contexte de réparation d'un tapis cellulaire endommagé mécaniquement. Ces deux aspects constituent des étapes très importantes dans les processus de réparation tissulaire et de cicatrisation suite à une perte de l'intégrité d'un tissu. En effet ils font intervenir les macrophages dès les premières étapes de la réaction inflammatoire afin d' « épurer » la plaie (étape de détersion) et, dans un second temps, les cellules épithéliales (notamment les kératinocytes) qui vont proliférer et migrer afin de réparer les tissus endommagés au niveau de la plaie.
Il faut par ailleurs noter que l'inflammation régule de nombreuses autres fonctions biologiques, dont les dérèglements sont à la base de nombreux désordres pathologiques. Ainsi, les oligo-A-carraghénanes présentent un intérêt d'application dans le domaine de l'immunostimulation au sens large.
La migration cellulaire est également un élément important dans l'angiogenèse qui, outre son rôle dans la réparation tissulaire, représente une cible thérapeutique de choix pour le traitement des maladies cardiovasculaires. En effet, l'angiogenèse est un processus puissant et physiologique qui est la façon naturelle par laquelle un organisme répond au manque d'irrigation sanguine d'un organe vital en produisant des vaisseaux sanguins parallèles afin de surmonter l'ischémie. RÉFÉRENCES
1 . FR 2 873 387.
2. Guibet et al (2007), Biochem. J., 404: 105-1 14.
5 3. Weigl et Yaphe (1966), Canadian J. Microbiol., 12(5): 939-947.
4. Tsuchia S. et al., Int J Cancer 26 : 171 -176 (1980).
5. PMA, Tsuchia S. et al., Cancer Res 42 : 1530-1536 (1982).
6. Takashiba et al 1999, Infect. & Immun. 67: 5573-8.
7. Wright et al 1990, Science 249: 1431 .
10

Claims

REVENDICATIONS
1 . Mélange d'oligo-A-carraghénanes, caractérisé en ce qu'il possède un pourcentage en poids d'oligo-A-carraghénanes ayant un degré de polymérisation égal à 8 compris entre 50 et 60% par rapport au poids total du mélange.
2. Mélange selon la revendication 1 , comprenant en outre un pourcentage en poids d'oligo-A-carraghénanes ayant un degré de polymérisation 9 à 12 compris entre 20 et 25% par rapport au poids total du mélange.
3. Mélange selon la revendication 1 ou 2, comprenant en outre un pourcentage en poids d'oligo-A-carraghénanes ayant un degré de polymérisation allant de 13 à 16 compris entre 20 et 25% par rapport au poids total du mélange.
4. Procédé de préparation d'un mélange d'oligo-A-carraghénanes, comprenant les étapes de :
a) hydrolyse d'une préparation d'oligo-A-carraghénanes ayant un degré de polymérisation moyen de 3000 au moyen d'une A- carraghénase,
b) isolation d'un mélange d'oligo-A-carraghénanes présentant un pourcentage en poids d'oligo-A-carraghénanes ayant un degré de polymérisation égal à 8 compris entre 50 et 60% par rapport au poids total du mélange.
5. Procédé selon la revendication 4, dans lequel l'étape b) est précédée d'une étape d'isolation d'une fraction d'oligo-A-carraghénanes présentant un pourcentage en poids d'oligo-A-carraghénanes ayant un degré de polymérisation allant de 8 à 16 compris entre 70 et 85% par rapport au poids total du mélange.
6. Mélange d'oligo-A-carraghénanes susceptible d'être obtenu par la mise en œuvre du procédé tel que défini dans la revendication 4 ou 5.
7. Composition pharmaceutique, dermatologique ou cosmétique, comprenant un mélange d'oligo-A-carraghénanes tel que défini dans les revendications 1 à 3 ou 6.
8. Mélange d'oligo-A-carraghénanes tel que défini dans les revendications 1 à 3 ou 6, comme médicament.
9. Mélange d'oligo-A-carraghénanes tel que défini dans les revendications 1 à 3 ou 6, pour son application comme médicament pour la réparation tissulaire et/ou la cicatrisation.
10. Utilisation cosmétique d'un mélange d'oligo-A-carraghénanes tel que défini dans les revendications 1 à 3 ou 6, pour l'amélioration de l'aspect de la peau et/ou l'amélioration de l'aspect d'une cicatrice.
PCT/FR2015/051755 2014-07-01 2015-06-29 Oligo-lambda-carraghénanes, compositions cosmétique, dermatologique et pharmaceutique les contenant, et leurs utilisations WO2016001551A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1456260A FR3023292A1 (fr) 2014-07-01 2014-07-01 Oligo-lambda-carraghenanes, compositions cosmetique, dermatologique et pharmaceutique les contenant, et leurs utilisations
FR1456260 2014-07-01

Publications (1)

Publication Number Publication Date
WO2016001551A1 true WO2016001551A1 (fr) 2016-01-07

Family

ID=52102743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/051755 WO2016001551A1 (fr) 2014-07-01 2015-06-29 Oligo-lambda-carraghénanes, compositions cosmétique, dermatologique et pharmaceutique les contenant, et leurs utilisations

Country Status (2)

Country Link
FR (1) FR3023292A1 (fr)
WO (1) WO2016001551A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3072877A1 (fr) * 2017-10-26 2019-05-03 Lessonia Utilisation cosmetique d’un melange d’oligo-carraghenanes pour prevenir ou traiter les signes du vieillissement de l’epiderme
US11173108B2 (en) 2017-09-15 2021-11-16 Amorepacific Corporation Skin whitening composition comprising cultured product of pseudoalteromonas peptidolytica or extract thereof
US11185494B2 (en) 2017-09-27 2021-11-30 Amorepacific Corporation Skin whitening composition comprising culture of pseudoalteromonas carrageenovora or extract thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999039718A1 (fr) * 1998-02-03 1999-08-12 Laboratoires Goemar S.A. Medicament pour le traitement des dereglements de l'apoptose contenant des oligosaccharides
JP2002302448A (ja) * 2001-04-02 2002-10-18 Shiseido Co Ltd 皮膚外用剤
US20050239742A1 (en) * 2004-04-08 2005-10-27 Vivus, Inc. Carrageenan-based formulations and associated methods of use
FR2873387A1 (fr) 2004-07-23 2006-01-27 Goemar Sa Sa Lab Gene isole codant pour la lambda-carraghenase et la lambda-carraghenase recombinante obtenue a l'aide de ce gene
US20090286756A1 (en) * 2008-05-15 2009-11-19 Consejo Nacional De Investigaciones Cientificas Tecnicas (Conicet) Pharmaceutical compositions for use in the treatment of wounds
CN103290079A (zh) * 2012-02-29 2013-09-11 宁波大学 一种λ-卡拉胶寡糖的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999039718A1 (fr) * 1998-02-03 1999-08-12 Laboratoires Goemar S.A. Medicament pour le traitement des dereglements de l'apoptose contenant des oligosaccharides
JP2002302448A (ja) * 2001-04-02 2002-10-18 Shiseido Co Ltd 皮膚外用剤
US20050239742A1 (en) * 2004-04-08 2005-10-27 Vivus, Inc. Carrageenan-based formulations and associated methods of use
FR2873387A1 (fr) 2004-07-23 2006-01-27 Goemar Sa Sa Lab Gene isole codant pour la lambda-carraghenase et la lambda-carraghenase recombinante obtenue a l'aide de ce gene
US20090286756A1 (en) * 2008-05-15 2009-11-19 Consejo Nacional De Investigaciones Cientificas Tecnicas (Conicet) Pharmaceutical compositions for use in the treatment of wounds
CN103290079A (zh) * 2012-02-29 2013-09-11 宁波大学 一种λ-卡拉胶寡糖的制备方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
GUIBET ET AL., BIOCHEM. J., vol. 404, 2007, pages 105 - 114
GUIBET M ET AL: "Complete assignment of <1>H and <13>C NMR spectra of Gigartina skottsbergii lambda-carrageenan using carrabiose oligosaccharides prepared by enzymatic hydrolysis", CARBOHYDRATE RESEARCH, PERGAMON, GB, vol. 341, no. 11, 14 August 2006 (2006-08-14), pages 1859 - 1869, XP025010509, ISSN: 0008-6215, [retrieved on 20060814], DOI: 10.1016/J.CARRES.2006.04.018 *
M. GUIBET ET AL.: "Degradation of lambda-carrageenan by Pseudoalteromonas carrageenovora lambda-carrageenase: a new family of glycoside hydrolases unrelated to kappa- and iota-carrageenases", BIOCHEMICAL JOURNAL, vol. 404, 2 February 2007 (2007-02-02), pages 105 - 114, XP002736694 *
TAKASHIBA ET AL., INFECT. & IMMUN., vol. 67, 1999, pages 5573 - 8
TSUCHIA S. ET AL., CANCER RES, vol. 42, 1982, pages 1530 - 1536
TSUCHIA S. ET AL., INT J CANCER, vol. 26, 1980, pages 171 - 176
WEIGL; YAPHE, CANADIAN J. MICROBIOL., vol. 12, no. 5, 1966, pages 939 - 947
WRIGHT ET AL., SCIENCE, vol. 249, 1990, pages 1431

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11173108B2 (en) 2017-09-15 2021-11-16 Amorepacific Corporation Skin whitening composition comprising cultured product of pseudoalteromonas peptidolytica or extract thereof
US11185494B2 (en) 2017-09-27 2021-11-30 Amorepacific Corporation Skin whitening composition comprising culture of pseudoalteromonas carrageenovora or extract thereof
FR3072877A1 (fr) * 2017-10-26 2019-05-03 Lessonia Utilisation cosmetique d’un melange d’oligo-carraghenanes pour prevenir ou traiter les signes du vieillissement de l’epiderme

Also Published As

Publication number Publication date
FR3023292A1 (fr) 2016-01-08

Similar Documents

Publication Publication Date Title
Pangestuti et al. Biological activities of carrageenan
EP2911680B1 (fr) Utilisation d&#39;un extrait de lin provenant de l&#39;hydrolyse des protéines de lin, en tant qu&#39;agent actif antimicrobien
Prybylski et al. Bioactive polysaccharides from microalgae
EP2919797B1 (fr) Composition de polysaccharide sulfaté
WO2013004953A2 (fr) Composition cosmetique comprenant un melange de miels
FR2978161A1 (fr) Preparation et utilisation de cellules meristematiques appartenant aux genres dendrobium, phalaenopsis, anisellia, polyrrhiza, vanilla, cattleya et vanda, a teneur elevee en phenylpropanoides, polysaccharides hydrosolubles et extensines
WO2016001551A1 (fr) Oligo-lambda-carraghénanes, compositions cosmétique, dermatologique et pharmaceutique les contenant, et leurs utilisations
Yao et al. Skin health promoting effects of natural polysaccharides and their potential application in the cosmetic industry
WO2020126653A1 (fr) Extrait de bois de rosier
EP3592434B1 (fr) Utilisation cosmétique d&#39;un extrait d&#39;agave tequilana pour améliorer la croissance du cheveu
WO2019122777A1 (fr) Composition cosmétique comprenant un extrait de caesalpinia spinosa, un extrait de kappaphycus alvarezii, et un hydrolysat de fèves de theobroma cacao l
WO2015177457A1 (fr) Oligo-porphyranes, procédé et médicament
FR2941864A1 (fr) Substance active pour la protection de fgf-2
KR101467162B1 (ko) 혈류 개선과 여드름 치료를 위한 카복시 발생 물질을 포함하는 편백 발효 기초 조성물 및 이를 제조하는 방법
FR2975906A1 (fr) Compositions a visee cosmetique d&#39;exopolysaccharides issus de bacteries marines
EP3134101A1 (fr) Utilisation de cellules vegetales de bougainvillier pour l&#39;encapsulation d&#39;ingredients actifs
FR3018448A1 (fr) Principe actif obtenu a partir de l&#39;algue hypnea musciformis et utilisations cosmetiques
Angone et al. Plant therapy in Africa: Immunostimulatory activity of cell wall polysaccharides
WO2021123699A1 (fr) Composition cosmétique comprenant un extrait de levure debaryomyces nepalensis
EP4312972A1 (fr) Composition cosmetique comprenant au moins un extrait de bouleau et au moins un extrait de bourgeon de hetre
EP4185312A1 (fr) Extrait de fleurs de bombax costatum riche en polysaccharides
FR3072877A1 (fr) Utilisation cosmetique d’un melange d’oligo-carraghenanes pour prevenir ou traiter les signes du vieillissement de l’epiderme
FR2996138A1 (fr) Composition dermocosmetique stimulant la production de peptides anti-microbiens
FR2999929A1 (fr) Compositions cosmetiques comprenant un exopolysaccharide issu d&#39;une bacterie epibionte d&#39;eponges marines
FR3036960A1 (fr) Principe actif cosmetique issu de graines de parkia biglobosa, compositions cosmetiques et procede de traitement cosmetique de la peau

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15736573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15736573

Country of ref document: EP

Kind code of ref document: A1