WO2015199003A1 - 太陽光発電モジュールおよび太陽光発電パネル - Google Patents

太陽光発電モジュールおよび太陽光発電パネル Download PDF

Info

Publication number
WO2015199003A1
WO2015199003A1 PCT/JP2015/067817 JP2015067817W WO2015199003A1 WO 2015199003 A1 WO2015199003 A1 WO 2015199003A1 JP 2015067817 W JP2015067817 W JP 2015067817W WO 2015199003 A1 WO2015199003 A1 WO 2015199003A1
Authority
WO
WIPO (PCT)
Prior art keywords
power generation
optical axis
side wall
light
generation module
Prior art date
Application number
PCT/JP2015/067817
Other languages
English (en)
French (fr)
Inventor
充 稲垣
永井 陽一
斉藤 健司
岩崎 孝
塁 三上
根本 智裕
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to US15/320,709 priority Critical patent/US20170149377A1/en
Priority to MA39563A priority patent/MA39563B1/fr
Priority to JP2016529558A priority patent/JP6525005B2/ja
Priority to CN201580033363.8A priority patent/CN106664054B/zh
Publication of WO2015199003A1 publication Critical patent/WO2015199003A1/ja
Priority to US17/141,917 priority patent/US11894804B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/10Supporting structures directly fixed to the ground
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/30Supporting structures being movable or adjustable, e.g. for angle adjustment
    • H02S20/32Supporting structures being movable or adjustable, e.g. for angle adjustment specially adapted for solar tracking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S30/00Structural details of PV modules other than those related to light conversion
    • H02S30/10Frame structures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a photovoltaic power generation module, and more particularly, to a photovoltaic power generation module that generates power according to the amount of received light when a power generation element provided in a housing receives sunlight.
  • Patent Literature 1 International Publication No. 2013/150031 discloses the following technology. That is, the concentrating solar power generation device described in Patent Document 1 includes a lens and a power generation element in a casing, and adjusts the distance between the lens and the power generation element by flowing gas into the casing.
  • Patent Document 2 discloses the following technique. That is, in the concentrating solar power generation device described in Patent Document 2, a device for confirming the optical axis of incident light is attached.
  • Patent Document 3 Japanese Patent No. 495745 discloses the following technique. That is, the concentrating solar power generation unit described in Patent Document 3 includes a translucent protective plate that condenses a condensing lens that condenses sunlight and protects the top surface of the concentrating solar power generation unit.
  • the solar cell mounting board which mounts the elongate frame used as the basic structure of a solar power generation unit, and a plurality of solar cells. Further, the long frame is provided with a vent hole at the end in the longitudinal direction, and generates an air flow inside the long frame.
  • Patent Document 4 Japanese Patent Laid-Open No. 2008-4661 discloses the following technique. That is, the concentrating solar power generation device described in Patent Document 4 is surrounded by a bottom member, a peripheral member, and an upper member, a space is formed inside, and the upper member is inclined so as to face the sun.
  • the case is used.
  • the upper member of the case is provided with a plurality of Fresnel lenses for condensing sunlight, and a plurality of solar cells for receiving and generating light respectively collected by the Fresnel lens inside the case Provide a cell.
  • the peripheral member of the case at least two openings are provided on the opposing surfaces, and the two openings on each surface are located above the Fresnel lens side and a solar cell. Arranged below the cell side.
  • an object of the present invention is to realize a configuration that can further increase the power generation efficiency of a photovoltaic power generation module.
  • the solar power generation module of the present invention includes a power generation element that receives light to generate power, a light condensing unit provided with a lens that condenses sunlight, a bottom part where the power generation element is disposed, and an outer frame of the bottom part And a closed housing having a side wall that supports the light collecting unit, and the lens includes a glass substrate and a silicone resin or an acrylic resin provided on the glass substrate.
  • the side walls are formed using PET (Polyethylene terephthalate) or PBT (Polybutylene terephthalate).
  • the photovoltaic power generation module of the present invention includes a power generation element that receives light to generate power, a light collecting unit provided with a lens that collects sunlight, a bottom part on which the power generation element is disposed, and a bottom part of the bottom part.
  • a closed casing having an outer frame and supporting the light collecting unit, and an optical axis of incident light that is integrally formed with the side wall and the resin and incident on the photovoltaic power generation module
  • the lens includes a glass substrate and a silicone resin or an acrylic resin provided on the glass substrate, and the side wall includes PET (Polyethylene terephthalate) or PBT (PBT). It is formed using Polybutylene (Tephthalate).
  • the photovoltaic power generation panel of the present invention is a photovoltaic power generation apparatus comprising a saucer-like panel housing partitioned into a plurality of compartments by a frame member, and a plurality of photovoltaic power generation modules attached to the compartments.
  • the solar power generation module includes a power generation element that receives light to generate power, a light collecting unit provided with a lens that collects sunlight, a bottom part on which the power generation element is disposed, and an outside of the bottom part.
  • a closed housing having a side wall that supports the light collecting unit, and the lens includes a glass substrate and a silicone resin or an acrylic resin provided on the glass substrate.
  • the sidewall is formed using PET (Polyethylene terephthalate) or PBT (Polybutylene terephthalate). That.
  • FIG. 1 is a perspective view showing an appearance of the photovoltaic power generation apparatus according to the first embodiment.
  • FIG. 2 is a perspective view showing the configuration of the gantry shown in FIG.
  • FIG. 3 is a perspective view showing an appearance of the photovoltaic power generation module according to the first embodiment.
  • FIG. 4 is a plan view of the photovoltaic power generation module according to the first embodiment.
  • FIG. 5 is a cross-sectional view showing a cross section taken along line VV in FIG.
  • FIG. 6 is a cross-sectional view of a photovoltaic power generation module for explaining the problem.
  • FIG. 7 is a graph showing the relationship between the distance between the Fresnel lens and the power generation element, the temperature, and the power generation amount.
  • FIG. 8 is a cross-sectional view illustrating a configuration of a modification of the photovoltaic power generation module according to the first embodiment.
  • FIG. 9 is a perspective view illustrating a configuration of a housing in the photovoltaic power generation module according to the second embodiment.
  • FIG. 10 is a perspective view showing the configuration of the optical axis confirmation unit shown in FIG.
  • FIG. 11 is a diagram illustrating a state in which the bottom surface of the optical axis confirmation unit is viewed from the direction of the arrow A illustrated in FIG.
  • FIG. 12 is a perspective view showing the configuration (Modification 1) of the optical axis confirmation unit shown in FIG.
  • FIG. 13 is a perspective view showing the configuration (Modification 2) of the optical axis confirmation section shown in FIG.
  • FIG. 14 is a diagram illustrating a state in which the bottom surface of the optical axis confirmation unit is viewed from the direction of the arrow B illustrated in FIG.
  • the gist of the embodiment of the present invention includes at least those listed below.
  • a photovoltaic power generation module includes a power generation element that generates light by receiving light, a light collecting unit provided with a lens that collects sunlight, and a bottom part where the power generation element is disposed. And a closed housing having a side wall that forms an outer frame of the bottom portion and supports the light collecting portion, and the lens is provided on the glass substrate and the glass substrate. Silicone resin or acrylic resin is included, and the side wall is formed using PET (Polyethylene terephthalate) or PBT (Polybutyl terephthalate).
  • the amount of change in the focal length of the lens accompanying a change in temperature and the amount of change in the distance between the lens and the power generation element due to the expansion or contraction of the side wall accompanying a change in temperature can be made closer.
  • a decrease in power generation efficiency of the photovoltaic module can be effectively suppressed.
  • the strength required for the side wall can be ensured.
  • the side wall is formed using a material having anisotropy of thermal expansion coefficient, and the direction in which the thermal expansion coefficient is large is It is formed along the optical axis direction.
  • a photovoltaic power generation module viewed from another viewpoint includes a power generation element that generates light by receiving light, a light collecting unit provided with a lens that collects sunlight, and the power generation
  • a closed housing having a bottom portion on which an element is disposed, and a side wall that forms an outer frame of the bottom portion and supports the light collecting portion; and the sunlight is integrally formed with the side wall and resin.
  • An optical axis confirmation unit for confirming an optical axis of incident light incident on the power generation module, and the lens includes a glass substrate and a silicone resin or an acrylic resin provided on the glass substrate, The side wall is formed using PET (Polyethylene terephthalate) or PBT (Polybutylene terephthalate).
  • the amount of change in the focal length of the lens accompanying a change in temperature and the amount of change in the distance between the lens and the power generation element due to the expansion or contraction of the side wall accompanying a change in temperature can be made closer.
  • a decrease in power generation efficiency of the photovoltaic module can be effectively suppressed.
  • the strength required for the side wall can be ensured.
  • high assembly accuracy for ensuring the accuracy of the optical axis is not required. Therefore, a more excellent photovoltaic power generation module can be provided.
  • the optical axis confirmation unit includes an upper surface and a bottom surface, and the incident light is transmitted to the inner space of the optical axis confirmation unit on the upper surface.
  • An intake hole for guiding is formed, and a plurality of viewing holes for confirming the optical axis of the incident light guided to the internal space are formed on the bottom surface.
  • the optical axis confirmation unit includes an upper surface, a bottom surface, and an intermediate surface provided between the upper surface and the bottom surface, Is formed with an intake hole for guiding the incident light to the internal space of the optical axis confirmation unit, and light incident on the intermediate surface at a predetermined angle passes through the intermediate surface. A through-hole that can reach is formed.
  • the optical axis confirmation unit includes an upper surface and a bottom surface, and the incident light is transmitted to the inner space of the optical axis confirmation unit on the upper surface.
  • An intake hole for guiding is formed, and the bottom surface is formed using a light-transmitting material.
  • the casing is fixed to a frame member, and the optical axis confirmation unit
  • the housing is provided on a surface other than the surface facing the frame member in a state of being fixed to the frame member.
  • the photovoltaic power generation panel includes a saucer-like panel housing partitioned into a plurality of sections by a frame member, and a plurality of photovoltaic modules mounted in the sections.
  • the solar power generation module includes a power generation element that receives light to generate power, a light collecting unit provided with a lens that condenses sunlight, and the power generation element.
  • a closed housing having a bottom and a side wall that forms an outer frame of the bottom and supports the light collecting portion, and the lens is provided on the glass substrate and the glass substrate.
  • the side wall is made of PET (Polyethylene terephthalate) or PBT (Polybutyl terephthalate). ) Using a formed.
  • the amount of change in the focal length of the lens accompanying a change in temperature and the amount of change in the distance between the lens and the power generation element due to the expansion or contraction of the side wall accompanying a change in temperature can be made closer.
  • a decrease in power generation efficiency of the photovoltaic module can be effectively suppressed.
  • the strength required for the side wall can be ensured.
  • FIG. 1 is a perspective view showing an appearance of the photovoltaic power generation apparatus according to the first embodiment.
  • FIG. 2 is a perspective view showing the configuration of the gantry shown in FIG.
  • the solar power generation device 100 includes a plurality of solar power generation modules 1 and a gantry 2.
  • the gantry 2 includes a frame member F1, a solar azimuth meter C1 (not shown), and a drive unit M1 (not shown).
  • Solar compass C1 includes a sensor for detecting the position of the sun.
  • the plurality of photovoltaic modules 1 are fixed to the frame member F1 in an aligned state.
  • the drive unit M1 recognizes the position of the sun based on the signal output from the solar azimuth meter C1, and, for example, the frame so that the light receiving surface of the photovoltaic module 1 faces the sun from sunrise to sunset.
  • the direction of the member F1 is changed.
  • the frame member F1 of the gantry 2 is configured, for example, such that a plurality of columns are arranged in parallel or substantially in parallel with each other.
  • One or a plurality of photovoltaic power generation modules 1 is inserted into each accommodating portion E1 of a rectangular parallelepiped (provided that there is no top surface and a bottom surface) formed by the frame member F1.
  • the accommodating part E1 shown in FIG. 2 is a rectangular parallelepiped, this accommodating part E1 may be a cube.
  • the panel housing (entire frame) 12 having a plurality of accommodating portions E1 has a tray-like shape partitioned into a plurality of compartments (accommodating portions) by the frame member F1.
  • the side wall of the photovoltaic power generation module which will be described later is made of resin, even such a photovoltaic power generation module exhibits sufficient mechanical strength when mounted on the panel housing 12.
  • FIG. 3 is a perspective view showing an appearance of the photovoltaic power generation module according to the first embodiment.
  • FIG. 4 is a plan view of the photovoltaic power generation module according to the first embodiment.
  • the photovoltaic power generation module 1 includes a casing 21 having a rectangular parallelepiped or cubic shape.
  • the housing 21 includes a light collecting unit 22 corresponding to the upper surface of the housing 21, a bottom 23 corresponding to the bottom surface of the housing 21, a side wall 24, and a flange 27.
  • the condensing part 22 is formed using glass, for example, and includes a plurality of Fresnel lenses (lenses) 22f.
  • the Fresnel lens 22f is arranged in a square lattice, for example. Specifically, each Fresnel lens 22f is arranged, for example, such that the distance between the centers of adjacent Fresnel lenses 22f is the same W1.
  • the Fresnel lens 22f includes, for example, a glass substrate and a silicone resin or an acrylic resin formed on the glass substrate.
  • the bottom 23 is formed using aluminum having a thickness of 1 mm, for example.
  • the side wall 24 connects the light collecting unit 22 and the bottom 23. More specifically, the light collecting portion 22 closes the upper end portion of the side wall 24, and the lower end portion of the side wall 24 is received by the bottom portion 23.
  • the side wall 24 is formed using resin such as PET (Polyethylene terephthalate) or PBT (Polybutylene terephthalate).
  • the side wall 24 is preferably formed of a resin having a high coefficient of thermal expansion.
  • PET and PBT Polyethylene terephthalate
  • PBT Polybutylene terephthalate
  • the side wall 24 is formed using, for example, a material having anisotropy of thermal expansion coefficient, and is formed so that the direction of the high thermal expansion coefficient is along the optical axis direction of the Fresnel lens 22f.
  • the flange 27 is provided, for example, on a surface of the four surfaces of the side wall 24 that faces the frame member F1 in a state where the housing 21 is inserted into the housing portion E1 formed by the frame member F1.
  • the flange 27 is provided in the part by the side of the condensing part 22 along the longitudinal direction of the said surface.
  • the flange 27 is integrally formed with the side wall 24 by injection molding using a resin such as PET or PBT.
  • the flange 27 comes into contact with the upper surface of the frame member F1 in a state where the casing 21 is inserted into the housing portion E1 formed by the frame member F1. In such a state, the casing 21 is fixed to the frame member F ⁇ b> 1 by inserting a bolt (not shown) into the mounting hole 28 formed in the flange 27, for example.
  • the housing 21 is not limited to the structure in which the housing 21 is fixed to the frame member F1 by inserting a bolt into the mounting hole 28, and the housing 21 may be fixed to the frame member F1 by other methods.
  • FIG. 5 is a cross-sectional view showing a cross section taken along line VV in FIG.
  • solar power generation module 1 further includes a plurality of power generation elements 30 and a plurality of FPCs (Flexible Printed Circuits) 31 in addition to housing 21.
  • the power generating element 30 and the FPC 31 are accommodated in the housing 21.
  • the plurality of FPCs 31 are arranged in parallel or substantially parallel to each other at the bottom 23, and a plurality of power generation elements 30 are mounted on each FPC 31.
  • Each power generating element 30 is provided at a position corresponding to each Fresnel lens 22f, receives sunlight collected by the corresponding Fresnel lens 22f, and generates electric power according to the amount of received light.
  • Each power generating element 30 is formed, for example, as a cell by a small power generating element including a compound multi-junction semiconductor, specifically, a small power generating element including, for example, a III-V group compound semiconductor.
  • the solar power generation module 1 includes the power generation element 30 that generates light by receiving light, and the closed casing 21 that houses the power generation element 30.
  • the casing 21 forms a condensing unit 22 provided with a lens (Fresnel lens 22f) for condensing sunlight, a bottom 23 on which the power generation element 30 is disposed, and an outer frame of the bottom 23, and the condensing unit And a side wall 24 that supports 22.
  • FIG. 6 is a cross-sectional view of a photovoltaic power generation module for explaining the problem.
  • the solar power generation device 100 may be used in a place with a large temperature difference, and the focal length of the Fresnel lens 22f may change due to a change in the refractive index of light due to a change in temperature. As described above, since the focal length of the Fresnel lens 22f changes, sunlight cannot be efficiently collected on the power generation element 30, and the power generation efficiency of the solar power generation apparatus 100 may be reduced. .
  • the focal length f of the Fresnel lens 22f in an environment where the temperature is 10 ° C. is 100 mm, and the power generation efficiency of the solar power generation apparatus 100 is 30%.
  • the focal length f of the Fresnel lens 22f is 105 mm, and the power generation efficiency of the solar power generation device 100 is reduced to 26%.
  • the side wall 24 is formed of resin, so that the side wall 24 expands or contracts as the temperature changes. Specifically, even when the temperature rises and the focal length f of the Fresnel lens 22f becomes longer, the distance L between the Fresnel lens 22f and the power generation element 30 becomes longer due to the expansion of the side wall 24.
  • FIG. 7 is a graph showing the relationship between the distance between the Fresnel lens and the power generation element, the temperature, and the power generation amount.
  • the horizontal axis indicates the distance L between the Fresnel lens 22 f and the power generation element 30, and the vertical axis indicates the amount of power generated by the solar power generation module 1.
  • graphs G1 to G4 show the distance L between the Fresnel lens 22f and the power generation element 30 and the power generation amount of the solar power generation module 1 under the environment of air temperatures of 5 ° C., 25 ° C., 45 ° C. and 65 ° C. Each relationship is shown.
  • the side wall 24 of the photovoltaic power generation module 1 according to the first embodiment is formed using PBT.
  • the side wall of the photovoltaic power generation module which is a comparative example is formed using aluminum.
  • the thermal expansion coefficient of PBT is “190 ⁇ 10E-6” (mm / K)
  • the thermal expansion coefficient of aluminum is “24 ⁇ 10E-6” (mm / K).
  • the power generation amount of the solar power generation module 1 designed so that the distance L between the Fresnel lens 22f and the power generation element 30 is 92 mm at 25 ° C. is “1.00”.
  • the side wall 24 in the photovoltaic power generation module 1 which concerns on 1st Embodiment is 0.35 mm or substantially 0.00. Shrink 35mm. 92mm ⁇ ⁇ 20 ° C ⁇ 190 ⁇ 10E-6 ⁇ 0.35mm (1)
  • the distance L between the Fresnel lens 22f and the power generation element 30 is 91.65 mm or substantially 91.65 mm as shown in the following formula (2).
  • 92mm-0.35mm 91.65mm (2)
  • the distance L between the Fresnel lens 22f and the power generation element 30 is 91.96 mm or substantially 91.96 mm as shown in the following formula (4).
  • 92mm ⁇ 0.04mm 91.96mm (4)
  • the distance L between the Fresnel lens 22f and the power generation element 30 is 91.65 mm, and the distance L is 91.96 mm.
  • the relative power generation amount exceeds “0.99”. That is, there is no significant difference between the power generation efficiency of the photovoltaic power generation module 1 according to the first embodiment and the power generation efficiency of the photovoltaic power generation module that is the comparative example.
  • the side wall 24 in the photovoltaic power generation module 1 according to the first embodiment is equal to 0. 0 as shown in the following equation (5). Expands to 70 mm or approximately 0.70 mm. 92mm ⁇ ⁇ 40 ° C ⁇ 190 ⁇ 10E-6 ⁇ 0.70mm (5)
  • the aluminum side wall 24 expands by 0.08 mm or substantially 0.08 mm as shown in the following formula (7).
  • 92mm + 0.08mm 92.08mm (8)
  • the photovoltaic power generation module 1 in the environment where the temperature is 65 ° C., the distance L between the Fresnel lens 22f and the power generation element 30 is 92.70 mm, and the distance L is 92.08 mm. Compare with some cases. That is, the relative power generation amount when the distance L is 92.70 mm is “0.90” or substantially “0.90”, while the relative power generation amount when the distance L is 92.08 mm. A typical power generation amount is “0.85” or substantially “0.85”. Thus, compared with the photovoltaic power generation module that is the comparative example, the photovoltaic power generation module 1 according to the first embodiment can suppress a decrease in power generation efficiency.
  • FIG. 8 is a cross-sectional view illustrating a configuration of a modification of the photovoltaic power generation module according to the first embodiment.
  • the solar power generation module 1 may further include a ball lens (secondary condensing unit) 32.
  • the ball lens 32 is provided between the Fresnel lens 22 f and the power generation element 30.
  • the ball lens 32 and the power generation element 30 are mounted on each FPC 31 in a state of being covered with, for example, a light transmissive resin member 33.
  • the Fresnel lens 22f collects sunlight and collects the collected sunlight on the corresponding ball lens 32.
  • the ball lens 32 condenses the sunlight collected by the Fresnel lens 22 f onto the power generation element 30.
  • the focal length of the Fresnel lens 22f changes, and the distance L between the Fresnel lens 22f and the power generation element 30 is increased. Even if it does not match the focal distance, the sunlight can be largely refracted by the ball lens 32 and the sunlight can be condensed on the power generation element 30. That is, the expansion or contraction of the side wall 24 only suppresses the decrease in power generation efficiency of the solar power generation device 100 even when the distance L between the Fresnel lens 22f and the power generation element 30 does not match the focal length f of the Fresnel lens 22f. Can do.
  • the solar power generation module 1 may include, for example, a reflector provided between the Fresnel lens 22 f and the power generation element 30 instead of the ball lens 32.
  • the reflecting plate or the like can receive the light collected by the Fresnel lens 22 f and collect the received light on the power generation element 30.
  • the concentrating solar power generation device described in Patent Document 1 requires a separate device such as a device that allows gas to flow into the housing and a device that controls the pressure of the gas. It was. Furthermore, in order to prevent leakage of gas flowing into the housing, it is necessary to make the inside of the housing a sealed space, or it is necessary to form the housing from a material that can withstand the gas pressure. There was a problem that design freedom was low.
  • the photovoltaic power generation module 1 includes a power generation element 30 and a casing 21 in which the power generation element 30 is accommodated.
  • the casing 21 includes a light collecting portion 22 provided with a Fresnel lens 22f, a bottom portion 23 where the power generation element 30 is disposed, and a side wall 24 connecting the light collecting portion 22 and the bottom portion 23. It is made of resin.
  • a device that allows gas to flow into the housing and a device that controls the pressure of the gas are not required separately, so that the cost is low. Can be suppressed.
  • the Fresnel lens 22f includes a glass substrate and a silicone resin or an acrylic resin provided on the glass substrate.
  • the side wall 24 is formed using PET or PBT.
  • the amount of change in the focal length f of the Fresnel lens 22f due to changes in temperature and the amount of change in the distance L between the Fresnel lens 22f and the power generation element 30 due to expansion or contraction of the side wall 24 due to changes in temperature. Therefore, a decrease in power generation efficiency of the solar power generation module 1 can be effectively suppressed. Further, the strength necessary for the side wall 24 can be ensured.
  • the side wall 24 is formed using a material having anisotropy of the thermal expansion coefficient, and the direction in which the thermal expansion coefficient is large is the Fresnel lens 22f. It is formed along the optical axis direction.
  • the solar power generation module 1 further includes a ball lens 32 provided between the Fresnel lens 22f and the power generation element 30.
  • the ball lens 32 receives the light collected by the Fresnel lens 22 f and focuses the received light on the power generation element 30.
  • FIG. 9 is a perspective view illustrating a configuration of a housing in the photovoltaic power generation module according to the second embodiment.
  • the condensing part 22, the electric power generation element 30, and FPC31 are not illustrated.
  • differences from the solar power generation module 1 according to the first embodiment described above will be mainly described.
  • the housing 21 of the photovoltaic power generation module 1 is further compared to the housing 21 according to the first embodiment described above, and the incident light incident on the photovoltaic power generation module 1.
  • An optical axis confirmation unit 40 for confirming the axis is provided.
  • the worker uses incident light incident on each photovoltaic power generation module 1 using the optical axis confirmation unit 40 provided for each photovoltaic power generation module 1.
  • Check the optical axis Specifically, the operator adjusts the orientation of each photovoltaic power generation module 1 so that the optical axis of the incident light is perpendicular or substantially perpendicular to the light collecting unit 22 of each photovoltaic power generation module 1.
  • Each solar power generation module 1 is attached to the gantry 2 one by one.
  • the optical axis confirmation unit 40 is integrally formed with the side wall 24 and the flange 27 by, for example, injection molding using a resin such as PET or PBT. Of the four surfaces of the side wall 24, the optical axis confirmation unit 40 is provided on a surface other than the surface facing the frame member F1 in a state where the housing 21 is fixed to the frame member F1.
  • the optical axis confirmation unit 40 is provided on the surface of the side wall 24 where the flange 27 is not provided.
  • the optical axis confirmation unit 40 may be provided on at least one of the plurality of surfaces.
  • FIG. 10 is a perspective view showing the configuration of the optical axis confirmation unit shown in FIG. 9, and FIG. 11 is a diagram showing a state where the bottom surface of the optical axis confirmation unit is viewed from the direction of arrow A shown in FIG.
  • the optical axis confirmation unit 40 is, for example, a rectangular parallelepiped housing, and includes an upper surface 41 and a bottom surface 42 provided on the far side in the traveling direction of incident light with respect to the upper surface 41. Side surface 43.
  • the top surface 41 and the bottom surface 42 are provided in parallel or substantially parallel to the surface of the light collecting unit 22 of the housing 21.
  • An intake hole 44 for guiding incident light to the internal space of the optical axis confirmation unit 40 formed by the upper surface 41, the bottom surface 42, and the side surface 43 is formed at the center or substantially the center of the upper surface 41.
  • a plurality of viewing holes 45 for confirming the optical axis of the incident light guided to the internal space of the optical axis confirmation unit 40 are formed on the bottom surface 42.
  • the incident light guided to the internal space of the optical axis confirmation unit 40 passes through one of the plurality of visual recognition holes 45 and is guided to the outside of the optical axis confirmation unit 40, for example.
  • the operator can confirm the optical axis of the incident light to the solar power generation module 1 by viewing the bottom surface 42 from the direction of the arrow A shown in FIG. For example, when the operator visually observes the bottom surface 42 and confirms that the viewing hole 45 located at the center or substantially the center of the plurality of viewing holes 45 is shining, that is, the incident light is in the viewing hole. 45, it is determined that the optical axis of the incident light to the photovoltaic module 1 is perpendicular or substantially perpendicular to the surface of the light collecting unit 22 of the photovoltaic module 1 be able to.
  • the worker confirms that the visual recognition holes 45 other than the visual recognition holes 45 located at the center or substantially the center of the bottom surface 42 of the plurality of visual recognition holes 45 are lit, or that no visual recognition holes 45 are lit.
  • the optical axis of the incident light on the photovoltaic module 1 is not perpendicular or substantially perpendicular to the surface of the light collecting unit 22 of the photovoltaic module 1.
  • FIG. 12 is a perspective view showing the configuration (Modification 1) of the optical axis confirmation unit shown in FIG.
  • the optical axis confirmation unit 40 according to Modification 1 has an upper surface 41, a bottom surface 42, and a side surface 43, similar to the optical axis confirmation unit 40 illustrated in FIG. 10. Except for the contents described below, the optical axis confirmation unit 40 according to Modification 1 and the optical axis confirmation unit 40 shown in FIG. 10 have the same configuration.
  • the optical axis confirmation unit 40 according to Modification 1 is provided in the internal space of the optical axis confirmation unit 40 and has an intermediate surface 46 positioned between the upper surface 41 and the bottom surface 42.
  • the intermediate surface 46 is parallel or substantially parallel to the upper surface 41 and the bottom surface 42, and a passage hole 47 is formed at the center or substantially the center of the intermediate surface 46.
  • the incident light When the incident light is incident on the upper surface 41 at a predetermined angle, the incident light can pass through the passage hole 47 and reach the bottom surface 42. Specifically, when incident light is incident on the top surface 41 perpendicularly or substantially perpendicularly, the incident light passes through the passage hole 47 and reaches the bottom surface 42. On the other hand, when incident light is incident on the top surface 41 at an angle other than perpendicular or substantially perpendicular, the incident light cannot pass through the passage hole 47 and does not reach the bottom surface 42.
  • the visual recognition hole 45 is not formed on the bottom surface 42.
  • a viewing window 48 for confirming whether incident light has reached the bottom surface 42 is formed on the side surface 43 closer to the bottom surface 42 than the intermediate surface 46. ing. The operator confirms whether or not the incident light guided to the internal space of the optical axis confirmation unit 40 has reached the bottom surface 42 by viewing the inside of the optical axis confirmation unit 40 from the viewing window 48. Can do.
  • the optical axis of the incident light on the solar power generation module 1 is relative to the surface of the light collecting unit 22 of the solar power generation module 1. It can be determined that the vertical or substantially vertical.
  • the optical axis of the incident light on the solar power generation module 1 is relative to the surface of the light collecting unit 22 of the solar power generation module 1. Therefore, it can be determined that it is not vertical or substantially vertical.
  • FIG. 13 is a perspective view showing the configuration (Modification 2) of the optical axis confirmation unit shown in FIG. 9, and FIG. 14 shows a state where the bottom surface of the optical axis confirmation unit is viewed from the direction of arrow B shown in FIG. FIG.
  • the optical axis confirmation unit 40 according to the modified example 2 has an upper surface 41, a bottom surface 42, and a side surface 43, similarly to the optical axis confirmation unit 40 illustrated in FIG. 10. Except for the contents described below, the optical axis confirmation unit 40 according to Modification 2 and the optical axis confirmation unit 40 shown in FIG. 10 have the same configuration.
  • the bottom surface 42 is formed using a light-transmitting material. For example, by performing insert molding so as to embed the bottom surface 42, the optical axis confirmation unit 40 can be manufactured easily and at low cost. Further, the viewing hole 45 is not formed in the bottom surface 42.
  • the bottom face 42 is formed using the material which has a light transmittance, an operator visually observes the bottom face 42 from the direction of the arrow B shown in FIG. It is possible to confirm at which position on the bottom surface 42 the incident light guided to has reached.
  • the operator confirms which position of the bottom surface 42 the incident light guided to the internal space of the optical axis confirmation unit 40 in this way, so that the incident light to the photovoltaic module 1 is The optical axis can be confirmed.
  • a mark M representing the center or the approximate center of the bottom face 42 is attached to the bottom face 42, and the operator uses the mark M to check the optical axis confirmation unit 40. It can be confirmed whether or not the incident light guided to the internal space has reached the center or substantially the center of the bottom surface 42.
  • the optical axis of the incident light to the solar power generation module 1 is the concentration of the solar power generation module 1. It can be determined to be perpendicular or substantially perpendicular to the surface of the optical part 22.
  • the optical axis of the incident light to the photovoltaic module 1 is the photovoltaic module. It can be determined that it is not perpendicular or substantially perpendicular to the surface of one light collecting portion 22.
  • the photovoltaic power generation module 1 includes a power generation element 30 and a casing 21 in which the power generation element 30 is accommodated. Furthermore, the solar power generation module 1 includes an optical axis confirmation unit 40 that is formed integrally with the side wall 24 of the housing 21 and that confirms the optical axis of incident light incident on the solar power generation module 1.
  • the side wall 24 and the optical axis confirmation unit 40 are integrally formed using resin.
  • the side wall 24 and the optical axis confirmation unit 40 can be manufactured relatively easily and at low cost.
  • the optical axis confirmation unit 40 includes an upper surface 41 and a bottom surface 42.
  • an intake hole 44 for guiding incident light to the internal space of the optical axis confirmation unit 40 is formed on the upper surface 41.
  • the bottom surface 42 is formed with a plurality of visual holes 45 for confirming the optical axis of the incident light guided to the internal space.
  • the side wall 24 and the optical axis confirmation part 40 can be formed with the same material, for example, by performing injection molding, the side wall 24 and the optical axis confirmation part 40 can be manufactured relatively easily and at low cost. Can do.
  • the optical axis confirmation unit 40 includes an upper surface 41, a bottom surface 42, and an intermediate surface 46 provided between the upper surface 41 and the bottom surface 42.
  • an intake hole 44 for guiding incident light to the internal space of the optical axis confirmation unit 40 is formed on the upper surface 41.
  • the intermediate surface 46 is formed with a passage hole 47 through which light incident at a predetermined angle with respect to the upper surface 41 can pass and reach the bottom surface 42.
  • the side wall 24 and the optical axis confirmation part 40 can be formed with the same material, for example, by performing injection molding, the side wall 24 and the optical axis confirmation part 40 can be manufactured relatively easily and at low cost. Can do.
  • the optical axis confirmation unit 40 includes an upper surface 41 and a bottom surface 42.
  • an intake hole 44 for guiding incident light to the internal space of the optical axis confirmation unit 40 is formed on the upper surface 41.
  • the bottom surface 42 is formed using a light transmissive material.
  • the photovoltaic power generation module 1 provided with the optical axis confirmation part 40 can be produced at low cost.
  • the casing 21 is fixed to the frame member F1.
  • the optical axis confirmation part 40 is provided in surfaces other than the surface which faces the frame member F1 in the state in which the housing
  • a power generation element A housing that houses the power generation element, The housing is A light collecting unit provided with a lens; A bottom where the power generating element is disposed; A side wall connecting the light collecting part and the bottom part, The side wall is made of resin, The lens is a Fresnel lens, and the power generation element is provided at a position corresponding to the Fresnel lens, A photovoltaic power generation module, wherein a distance between the Fresnel lens and the power generation element changes due to expansion and contraction of the side wall.
  • a power generation element A photovoltaic power generation module comprising a housing in which the power generation element is housed, further, It is formed integrally with the side wall of the housing, and includes an optical axis confirmation unit for confirming the optical axis of incident light incident on the photovoltaic power generation module,
  • the optical axis confirmation unit guides the incident light to its internal space,
  • the photovoltaic module which can confirm the advancing direction of the said incident light guide
  • Photovoltaic power generation module 2 Base 12 Panel housing 21 Housing 22 Condensing part 22f Fresnel lens (lens) 23 Bottom 24 Side wall 27 Flange 28 Mounting hole 30 Power generation element 31 FPC 32 Ball lens 33 Resin member 40 Optical axis confirmation unit 41 Upper surface 42 Bottom surface 43 Side surface 44 Intake hole 45 Viewing hole 46 Intermediate surface 47 Passing hole 48 Viewing window 100 Solar power generation device C1 Solar direction meter E1 Housing portion F1 Frame member M1 Drive Part

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 この太陽光発電モジュールは、発電素子と、太陽光を集光するレンズが設けられた集光部、発電素子が配置される底部、および、底部の外枠を成し、集光部を支持する側壁、を有する閉鎖された筐体と、を備え、レンズは、ガラス基板と、ガラス基板上に設けられているシリコーン樹脂またはアクリル樹脂とを含み、側壁は、PET(Polyethylene terephthalate)またはPBT(Polybutylene Terephthalate)を用いて形成されている。

Description

太陽光発電モジュールおよび太陽光発電パネル
 本発明は、太陽光発電モジュールに関し、特に、筐体内に設けられた発電素子が太陽光を受けて、受光量に応じた電力を発生する太陽光発電モジュールに関する。
 従来、太陽光を集光して電力に変換する太陽光発電モジュールが開発されている。たとえば、特許文献1(国際公開第2013/150031号)には、以下のような技術が開示されている。すなわち、特許文献1に記載の集光型太陽光発電装置は、筐体内にレンズおよび発電素子を備え、当該筐体内にガスを流入させてレンズと発電素子との間の距離を調整する。
 また、たとえば、特許文献2(米国特許第8592738号明細書)には、以下のような技術が開示されている。
 すなわち、特許文献2に記載の集光型太陽発電装置では、入射する光の光軸を確認するための装置が取り付けられている。
 次に、たとえば、特許文献3(特許第4953745号公報)には、以下のような技術が開示されている。すなわち、特許文献3に記載の集光型太陽光発電ユニットは、太陽光を集光する集光レンズが接合され集光型太陽光発電ユニットの天面を保護する透光性保護板、集光型太陽光発電ユニットの基本構造体となる長尺状フレーム、複数の太陽電池を実装する太陽電池実装板を備える。また、長尺状フレームは、長手方向の端部に通気孔を備え、長尺状フレーム内部に気流を発生させる。
 また、たとえば、特許文献4(特開2008-4661号公報)には、以下のような技術が開示されている。すなわち、特許文献4に記載の集光型太陽発電装置は、底部材と周囲部材と上部材とで囲われ、内部には空間が形成され、かつ、上部材を太陽に対向させるように傾斜させて用いるケースを備えている。このケースの上部材には太陽光を集光するための複数のフレネルレンズを備えさせ、上記ケースの内部には上記フレネルレンズにより夫々集光された光を夫々受光して発電する複数の太陽電池セルを備えさせる。また、上記ケースの周囲部材においては、相対向する面に少なくとも夫々2つずつの開口部を配設し、しかも各面における上記二つの開口部は、上記フレネルレンズ側寄りの上方と、太陽電池セル側寄りの下方に配置する。
国際公開第2013/150031号 米国特許第8592738号明細書 特許第4953745号公報 特開2008-4661号公報 特開平7-274742号公報
 上記のような従来技術の根底にある共通かつ究極の課題は、屋外の厳しい環境下において常に、集光した太陽光を、光軸上の正確な位置で発電素子に照射することである。しかしながら、厳しい環境下で常に、正確な照射を実現することは困難であり、結果的に、十分な発電効率が得られていない。
 かかる課題に鑑み、本発明は、太陽光発電モジュールの発電効率を、さらに高め得る構成を実現することを目的とする。
 本発明の太陽光発電モジュールは、光を受けて発電する発電素子と、太陽光を集光するレンズが設けられた集光部、前記発電素子が配置される底部、および、前記底部の外枠を成し、前記集光部を支持する側壁、を有する閉鎖された筐体と、を備え、前記レンズは、ガラス基板と、前記ガラス基板上に設けられているシリコーン樹脂またはアクリル樹脂とを含み、前記側壁は、PET(Polyethylene terephthalate)またはPBT(Polybutylene Terephthalate)を用いて形成されている。
 また、本発明の太陽光発電モジュールは、光を受けて発電する発電素子と、太陽光を集光するレンズが設けられた集光部、前記発電素子が配置される底部、および、前記底部の外枠を成し、前記集光部を支持する側壁、を有する閉鎖された筐体と、前記側壁と樹脂で一体的に形成され、前記太陽光発電モジュールへ入射する入射光の光軸を確認するための光軸確認部と、を備え、前記レンズは、ガラス基板と、前記ガラス基板上に設けられているシリコーン樹脂またはアクリル樹脂とを含み、前記側壁は、PET(Polyethylene terephthalate)またはPBT(Polybutylene Terephthalate)を用いて形成されている。
 一方、本発明の太陽光発電パネルは、フレーム部材によって複数の区画に仕切られた受け皿状のパネル筐体と、前記区画に装着された複数の太陽光発電モジュールと、を備える太陽光発電装置であって、前記太陽光発電モジュールは、光を受けて発電する発電素子と、太陽光を集光するレンズが設けられた集光部、前記発電素子が配置される底部、および、前記底部の外枠を成し、前記集光部を支持する側壁、を有する閉鎖された筐体と、を備え、前記レンズは、ガラス基板と、前記ガラス基板上に設けられているシリコーン樹脂またはアクリル樹脂とを含み、前記側壁は、PET(Polyethylene terephthalate)またはPBT(Polybutylene Terephthalate)を用いて形成されている。
 本発明によれば、太陽光発電モジュールの発電効率を、さらに高め得る構成を実現することができる。
図1は、第1の実施の形態に係る太陽光発電装置の外観を示す斜視図である。 図2は、図1に示す架台の構成を示す斜視図である。 図3は、第1の実施の形態に係る太陽光発電モジュールの外観を示す斜視図である。 図4は、第1の実施の形態に係る太陽光発電モジュールの平面図である。 図5は、図4におけるV-V線に沿う断面を示す断面図である。 図6は、課題を説明するための太陽光発電モジュールの断面図である。 図7は、フレネルレンズおよび発電素子の距離と、温度と、発電量との関係を示すグラフである。 図8は、第1の実施の形態に係る太陽光発電モジュールの変形例の構成を示す断面図である。 図9は、第2の実施の形態に係る太陽光発電モジュールにおける筐体の構成を示す斜視図である。 図10は、図9に示す光軸確認部の構成を示す斜視図である。 図11は、図10に示す矢印Aの方向から光軸確認部の底面を目視した状態を示す図である。 図12は、図9に示す光軸確認部の構成(変形例1)を示す斜視図である。 図13は、図9に示す光軸確認部の構成(変形例2)を示す斜視図である。 図14は、図13に示す矢印Bの方向から光軸確認部の底面を目視した状態を示す図である。
 [実施形態の要旨]
 本発明の実施形態の要旨としては、少なくとも以下に列記するものが含まれる。
 (1)本発明の実施の形態に係る太陽光発電モジュールは、光を受けて発電する発電素子と、太陽光を集光するレンズが設けられた集光部、前記発電素子が配置される底部、および、前記底部の外枠を成し、前記集光部を支持する側壁、を有する閉鎖された筐体と、を備え、前記レンズは、ガラス基板と、前記ガラス基板上に設けられているシリコーン樹脂またはアクリル樹脂とを含み、前記側壁は、PET(Polyethylene terephthalate)またはPBT(Polybutylene Terephthalate)を用いて形成されている。
 このような構成により、気温の変化に伴うレンズの焦点距離の変化量と、気温の変化に伴う側壁の膨張または収縮によるレンズと発電素子との距離の変化量とを近づけることができるため、太陽光発電モジュールの発電効率の低下を効果的に抑制することができる。また、側壁として必要な強度を確保することができる。
 (2)また、(1)の太陽光発電モジュールにおいて、たとえば、前記側壁は、熱膨張率の異方性を有する材料を用いて形成されており、前記熱膨張率の大きい方向が前記レンズの光軸方向に沿うように形成されている。
 このような構成により、気温の変化に伴うレンズと発電素子との距離の変化量がより大きくなるため、気温の変化に伴うレンズの焦点距離の変化量に対して、レンズと発電素子との距離の変化量が追随する可能性を高めることができる。
 (3)他の観点から見た本発明の実施の形態に係る太陽光発電モジュールは、光を受けて発電する発電素子と、太陽光を集光するレンズが設けられた集光部、前記発電素子が配置される底部、および、前記底部の外枠を成し、前記集光部を支持する側壁、を有する閉鎖された筐体と、前記側壁と樹脂で一体的に形成され、前記太陽光発電モジュールへ入射する入射光の光軸を確認するための光軸確認部と、を備え、前記レンズは、ガラス基板と、前記ガラス基板上に設けられているシリコーン樹脂またはアクリル樹脂とを含み、前記側壁は、PET(Polyethylene terephthalate)またはPBT(Polybutylene Terephthalate)を用いて形成されている。
 このような構成により、気温の変化に伴うレンズの焦点距離の変化量と、気温の変化に伴う側壁の膨張または収縮によるレンズと発電素子との距離の変化量とを近づけることができるため、太陽光発電モジュールの発電効率の低下を効果的に抑制することができる。また、側壁として必要な強度を確保することができる。
 また、入射光の光軸を確認するための新たな部材を別途用いる必要がないため、低コストを実現することができる。また、光軸の精度を確保するための高い組み付け精度が要求されることもない。従って、より優れた太陽光発電モジュールを提供することができる。
 (4)また、(3)の太陽光発電モジュールにおいて、たとえば、前記光軸確認部は、上面と、底面とを含み、前記上面には、前記入射光を前記光軸確認部の内部空間へ導くための取入穴が形成され、前記底面には、前記内部空間へ導かれた前記入射光の光軸を確認するための複数の視認穴が形成されている。
 このような構成により、複数の視認穴の中から光が透過している視認穴を特定することで、入射光の光軸を容易に確認することができる。また、側壁と光軸確認部とを同じ材料で形成することができるため、たとえば射出成型を行うことで、これら側壁および光軸確認部を比較的容易に低コストで作製することができる。
 (5)また、(3)の太陽光発電モジュールにおいて、たとえば、前記光軸確認部は、上面と、底面と、前記上面と前記底面との間に設けられた中間面とを含み、前記上面には、前記入射光を前記光軸確認部の内部空間へ導くための取入穴が形成され、前記中間面には、前記上面に対して所定の角度で入射した光が通過して前記底面に到達可能な通過穴が形成されている。
 このような構成により、光軸確認部の底面に光が到達しているか否かを確認することで、太陽光発電モジュールの上面に対して入射光が所定の角度で入射しているか否かを容易に確認することができる。また、側壁と光軸確認部とを同じ材料で形成することができるため、たとえば射出成型を行うことで、これら側壁および光軸確認部を比較的容易に低コストで作製することができる。
 (6)また、(3)の太陽光発電モジュールにおいて、たとえば、前記光軸確認部は、上面と、底面とを含み、前記上面には、前記入射光を前記光軸確認部の内部空間へ導くための取入穴が形成され、前記底面は、光透過性を有する材料を用いて形成されている。
 このような構成により、たとえば底面側から光軸確認部を目視することで、底面のいずれの位置に光が到達しているのかを確認することができるため、入射光の光軸を容易に確認することができる。また、多くの穴を形成するための加工などを必要としないため、光軸確認部を備える太陽光発電モジュールを低コストで作製することができる。
 (7)また、(3)~(6)のいずれかの太陽光発電モジュールにおいて、たとえば、前記筐体は、フレーム部材に固定され、前記光軸確認部は、前記側壁の面のうち、自己の前記筐体が前記フレーム部材に固定された状態において前記フレーム部材に対向する面以外の面に設けられている。
 このような構成により、フレーム部材に筐体を固定する際における光軸確認部の存在を考慮する必要がなくなり、比較的低コストで単純な構成により光軸確認部を備える太陽光発電モジュールを実現することができる。
 (8)また、本発明の実施の形態に係る太陽光発電パネルは、フレーム部材によって複数の区画に仕切られた受け皿状のパネル筐体と、前記区画に装着された複数の太陽光発電モジュールと、を備える太陽光発電装置であって、前記太陽光発電モジュールは、光を受けて発電する発電素子と、太陽光を集光するレンズが設けられた集光部、前記発電素子が配置される底部、および、前記底部の外枠を成し、前記集光部を支持する側壁、を有する閉鎖された筐体と、を備え、前記レンズは、ガラス基板と、前記ガラス基板上に設けられているシリコーン樹脂またはアクリル樹脂とを含み、前記側壁は、PET(Polyethylene terephthalate)またはPBT(Polybutylene Terephthalate)を用いて形成されている。
 このような構成により、気温の変化に伴うレンズの焦点距離の変化量と、気温の変化に伴う側壁の膨張または収縮によるレンズと発電素子との距離の変化量とを近づけることができるため、太陽光発電モジュールの発電効率の低下を効果的に抑制することができる。また、側壁として必要な強度を確保することができる。
 また、樹脂製の側壁を有する太陽光発電モジュールであっても、パネル筐体への装着により、十分な機械的強度を発揮する。
 [実施形態の詳細]
 以下、本発明の実施の形態について図面を用いて説明する。
 なお、各図中同一または相当部分には同一符号を付している。また、以下に記載する実施の形態の少なくとも一部を任意に組み合わせてもよい。
(第1の実施の形態)
[太陽光発電装置の構成]
 図1は、第1の実施の形態に係る太陽光発電装置の外観を示す斜視図である。また、図2は、図1に示す架台の構成を示す斜視図である。
 図1を参照して、太陽光発電装置100は、複数の太陽光発電モジュール1と、架台2とを備える。架台2は、フレーム部材F1と、図示しない太陽方位計C1と、図示しない駆動部M1とを含む。太陽方位計C1は、太陽の位置を検知するためのセンサを含む。複数の太陽光発電モジュール1は、並べられた状態でフレーム部材F1に固定される。
 駆動部M1は、太陽方位計C1から出力される信号に基づいて太陽の位置を認識し、たとえば日の出から日没までの間、太陽光発電モジュール1の受光面が太陽と正対するように、フレーム部材F1の向きを変化させる。
 図2を参照して、架台2のフレーム部材F1は、たとえば、複数の柱が互いに平行または略平行に並べられるように構成されている。フレーム部材F1により形成される直方体(但し、上面なし、底面あり。)の各収容部E1に、1または複数の太陽光発電モジュール1が挿入される。なお、図2に示す収容部E1は直方体であるが、この収容部E1は立方体などであってもよい。
 複数の収容部E1を有するパネル筐体(フレーム全体)12は、フレーム部材F1によって複数の区画(収容部)に仕切られた受け皿状の形態となっている。なお、後述する太陽光発電モジュールの側壁は樹脂製であるが、このような太陽光発電モジュールであっても、パネル筐体12への装着により、十分な機械的強度を発揮する。
[太陽光発電モジュールの構成]
 図3は、第1の実施の形態に係る太陽光発電モジュールの外観を示す斜視図である。また、図4は、第1の実施の形態に係る太陽光発電モジュールの平面図である。
 図3および図4を参照して、太陽光発電モジュール1は、直方体または立方体の形状を有する筐体21を備える。筐体21は、筐体21の上面に相当する集光部22と、筐体21の底面に相当する底部23と、側壁24と、フランジ27とを有する。集光部22は、たとえばガラスを用いて形成され、複数のフレネルレンズ(レンズ)22fを含む。
 集光部22において、フレネルレンズ22fは、たとえば正方格子状に配置されている。具体的には、各フレネルレンズ22fは、たとえば互いに隣接するフレネルレンズ22fの中心同士の距離が同じW1となるように配置されている。また、フレネルレンズ22fは、たとえば、ガラス基板と、当該ガラス基板に成膜されたシリコーン樹脂またはアクリル樹脂とを含む。
 底部23は、たとえば厚さ1mmのアルミニウムを用いて形成されている。側壁24は、集光部22および底部23を接続する。より詳細には、集光部22は、側壁24の上端部を塞いでおり、側壁24の下端部は、底部23に受けられている。
 側壁24は、PET(Polyethylene terephthalate)またはPBT(Polybutylene Terephthalate)などの樹脂を用いて形成されている。なお、側壁24は熱膨張率の大きい樹脂で形成されている方が好ましく、たとえばPETとPBTとを比較すると、PBTを用いて形成されている方が好ましい。
 また、側壁24は、たとえば、熱膨張率の異方性を有する材料を用いて形成されており、熱膨張率の大きい方向がフレネルレンズ22fの光軸方向に沿うように形成されている。
 フランジ27は、たとえば、側壁24の4つの面のうち筐体21がフレーム部材F1により形成される収容部E1に挿入された状態において当該フレーム部材F1と対向する面に設けられている。より詳細には、フランジ27は、当該面の長手方向に沿った集光部22側の部分に設けられている。フランジ27は、たとえばPETまたはPBTなどの樹脂が用いられた射出成型により、側壁24と一体成型される。
 フランジ27は、自己の筐体21がフレーム部材F1により形成される収容部E1に挿入された状態において、当該フレーム部材F1の上面に接触する。そして、このような状態において、たとえばフランジ27に形成された取付穴28に図示しないボルトが挿入されることにより、筐体21がフレーム部材F1に固定される。
 なお、取付穴28にボルトが挿入されることにより筐体21がフレーム部材F1に固定される構成に限らず、他の方法で筐体21がフレーム部材F1に固定されてもよい。
 図5は、図4におけるV-V線に沿う断面を示す断面図である。
 図5を参照して、太陽光発電モジュール1は、筐体21に加えて、さらに、複数の発電素子30と、複数のFPC(フレキシブルプリント基板:Flexible Printed Circuits)31とを備える。発電素子30およびFPC31は、筐体21の内部に収容される。
 複数のFPC31は、底部23において互いに平行または略平行に並んで配置されており、各FPC31に複数の発電素子30が実装されている。
 各発電素子30は、各フレネルレンズ22fに対応する位置に設けられており、対応のフレネルレンズ22fによって集光された太陽光を受けて、受光量に応じた電力を発生する。また、各発電素子30は、たとえば、セルとして、化合物多接合型半導体を含む小型の発電素子、具体的には、たとえばIII-V族化合物半導体を含む小型の発電素子により形成されている。
 以上のように、太陽光発電モジュール1は、光を受けて発電する発電素子30と、発電素子30を収容する閉鎖された筐体21とを備えている。筐体21は、太陽光を集光するレンズ(フレネルレンズ22f)が設けられた集光部22、発電素子30が配置される底部23、および、底部23の外枠を成し、集光部22を支持する側壁24を有する。
[課題の説明]
 図6は、課題を説明するための太陽光発電モジュールの断面図である。
 太陽光発電装置100は、気温の高低差の大きい場所などで使用されることがあり、気温の変化によって光の屈折率などが変化してフレネルレンズ22fの焦点距離が変化することがある。そして、このように、フレネルレンズ22fの焦点距離が変化することにより、発電素子30に効率良く太陽光を集光することができず、太陽光発電装置100の発電効率が低下する可能性がある。
 たとえば、図6を参照して、気温が10℃の環境下におけるフレネルレンズ22fの焦点距離fが100mmであって、太陽光発電装置100の発電効率が30%であるとする。このような太陽光発電装置100を気温70℃の環境下で使用すると、たとえば、フレネルレンズ22fの焦点距離fは105mmとなり、太陽光発電装置100の発電効率は26%まで低下する。
 これに対して、本実施の第1の形態に係る太陽光発電モジュール1では、側壁24が樹脂により形成されていることにより、気温の変化に伴って側壁24が膨張または収縮する。具体的には、気温が上昇してフレネルレンズ22fの焦点距離fが長くなる場合であっても、側壁24が膨張することにより、フレネルレンズ22fと発電素子30との距離Lも長くなる。
 その結果、発電素子30に集光される太陽光の光量が大幅に低下することを防ぎ、太陽光発電装置100の発電効率の低下を抑制することができる。
[第1の実施の形態に係る太陽光発電モジュールと比較例との比較]
 図7は、フレネルレンズおよび発電素子の距離と、温度と、発電量との関係を示すグラフである。図7において、横軸は、フレネルレンズ22fと発電素子30との距離Lを示し、縦軸は、太陽光発電モジュール1による発電量を示す。
 また、図7において、グラフG1~G4は、気温5℃、25℃、45℃および65℃の環境下における、フレネルレンズ22fおよび発電素子30の距離Lと、太陽光発電モジュール1の発電量との関係をそれぞれ示す。
 ここでは、第1の実施の形態に係る太陽光発電モジュール1の側壁24が、PBTを用いて形成されていることとする。また、比較例である太陽光発電モジュールの側壁がアルミニウムを用いて形成されていることとする。また、PBTの熱膨張率は「190×10E-6」(mm/K)であり、アルミニウムの熱膨張率は「24×10E-6」(mm/K)であるとする。
 たとえば、図7におけるグラフG2に示すように、25℃においてフレネルレンズ22fと発電素子30との距離Lが92mmとなるように設計されている太陽光発電モジュール1の発電量を「1.00」とする。
 そして、気温が25℃から5℃に下がった場合、第1の実施の形態に係る太陽光発電モジュール1における側壁24は、以下の式(1)に示すように、0.35mmまたは略0.35mm収縮する。
92mm×Δ20℃×190×10E-6≒0.35mm  ・・・(1)
 すなわち、この場合、フレネルレンズ22fと発電素子30との距離Lは、以下の式(2)に示すように、91.65mmまたは略91.65mmとなる。
92mm-0.35mm=91.65mm  ・・・(2)
 また、比較例である太陽光発電モジュールにおける側壁24では、以下の式(3)に示すように、0.04mmまたは略0.04mm収縮する。
92mm×Δ20℃×24×10E-6≒0.04mm  ・・・(3)
 すなわち、この場合、フレネルレンズ22fと発電素子30との距離Lは、以下の式(4)に示すように、91.96mmまたは略91.96mmとなる。
92mm-0.04mm=91.96mm  ・・・(4)
 このとき、図7におけるグラフG1に示すように、気温が5℃の環境下において、フレネルレンズ22fと発電素子30との距離Lが91.65mmである場合と、距離Lが91.96mmである場合とを比較すると、いずれも相対的な発電量は「0.99」を超えている。すなわち、第1の実施の形態に係る太陽光発電モジュール1の発電効率と、比較例である太陽光発電モジュールの発電効率との間に大きな差は生じない。
 一方、気温が25℃から65℃に上がった場合について同様に比較すると、第1の実施の形態に係る太陽光発電モジュール1における側壁24は、以下の式(5)に示すように、0.70mmまたは略0.70mm膨張する。
92mm×Δ40℃×190×10E-6≒0.70mm  ・・・(5)
 すなわち、この場合、フレネルレンズ22fと発電素子30との距離Lは、以下の式(6)に示すように、92.70mmまたは略92.70mmとなる。
92mm+0.70mm=92.70mm  ・・・(6)
 また、アルミニウムの側壁24では、以下の式(7)に示すように、0.08mmまたは略0.08mm膨張する。
92mm×Δ40℃×24×10E-6≒0.08mm   ・・・(7)
すなわち、この場合、フレネルレンズ22fと発電素子30との距離Lは、以下の式(8)に示すように、92.08mmまたは略92.08mmとなる。
92mm+0.08mm=92.08mm  ・・・(8)
 このとき、図7におけるグラフG4に示すように、気温が65℃の環境下において、フレネルレンズ22fと発電素子30との距離Lが92.70mmである場合と、当該距離Lが92.08mmである場合とを比較する。すなわち、当該距離Lが92.70mmである場合の相対的な発電量は「0.90」または略「0.90」であるのに対して、当該距離Lが92.08mmである場合の相対的な発電量は「0.85」または略「0.85」となる。このように、比較例である太陽光発電モジュールと比べて、第1の実施の形態に係る太陽光発電モジュール1の方が、発電効率の低下を抑制することができる。
[変形例]
 図8は、第1の実施の形態に係る太陽光発電モジュールの変形例の構成を示す断面図である。
 図8を参照して、太陽光発電モジュール1は、さらに、ボールレンズ(二次集光部)32を備えていてもよい。ボールレンズ32は、フレネルレンズ22fと発電素子30との間に設けられている。また、ボールレンズ32および発電素子30は、たとえば光透過性を有する樹脂部材33に覆われた状態で、各FPC31に実装されている。
 フレネルレンズ22fは、太陽光を集光し、集光した太陽光を対応のボールレンズ32へ集光させる。そして、ボールレンズ32は、フレネルレンズ22fによって集光された太陽光を、発電素子30へ集光させる。
 このように、フレネルレンズ22fと発電素子30との間にボールレンズ32が設けられていることにより、たとえば、フレネルレンズ22fの焦点距離が変化して、フレネルレンズ22fと発電素子30との距離Lが当該焦点距離と合わない場合であっても、ボールレンズ32において太陽光を大きく屈折させて当該太陽光を発電素子30に集光させることができる。すなわち、側壁24の膨張または収縮だけでは、フレネルレンズ22fと発電素子30との距離Lがフレネルレンズ22fの焦点距離fに合わない場合でも、太陽光発電装置100の発電効率の低下を抑制することができる。
 なお、太陽光発電モジュール1は、たとえば、ボールレンズ32の代わりに、フレネルレンズ22fと発電素子30との間に設けられた反射板などを備えてもよい。このような構成の場合、当該反射板などが、フレネルレンズ22fにより集光された光を受けて、受けた当該光を発電素子30へ集光させることができる。
 ところで、特許文献1に記載の集光型太陽光発電装置では、筐体内にガスを流入させる機器および当該ガスの圧力を制御する機器などが別途必要であり、多くのコストがかかるという問題があった。さらに、筐体内に流入されたガスの漏れを防ぐために当該筐体内を密閉された空間にする必要があったり、当該筐体をガスの圧力に耐えることのできる材料で形成する必要があったりするなど、設計の自由度が低いという問題があった。
 これに対して、第1の実施の形態に係る太陽光発電モジュール1は、発電素子30と、発電素子30が収容される筐体21とを備える。また、筐体21は、フレネルレンズ22fが設けられた集光部22と、発電素子30が配置された底部23と、集光部22および底部23を接続する側壁24とを含み、側壁24は樹脂で形成されている。
 このような構成により、気温の変化に伴ってフレネルレンズ22fの焦点距離fが変化する場合、樹脂で形成されている側壁24もまた気温の変化に伴って膨張または収縮して、フレネルレンズ22fと発電素子30との距離Lが変化する。このため、フレネルレンズ22fの焦点距離fが変化したとしても、発電素子30に集光される太陽光の光量が大幅に低下することを防ぎ、太陽光発電モジュール1の発電効率の低下を抑制することができる。従って、より優れた太陽光発電モジュールを提供することができる。
 また、たとえば、特許文献1に記載の集光型太陽光発電装置と比較して、筐体内にガスを流入させる機器および当該ガスの圧力を制御する機器などを別途必要としないため、コストを低く抑えることができる。さらに、特許文献1に記載の集光型太陽光発電装置と比較して、筐体内を密閉された空間にしたり、筐体をガスの圧力に耐えることのできる材料で形成したりする必要がないため、設計の自由度を高めることができる。
 また、第1の実施の形態に係る太陽光発電モジュール1では、フレネルレンズ22fは、ガラス基板と、当該ガラス基板上に設けられているシリコーン樹脂またはアクリル樹脂とを含む。また、側壁24は、PETまたはPBTを用いて形成されている。
 このような構成により、気温の変化に伴うフレネルレンズ22fの焦点距離fの変化量と、気温の変化に伴う側壁24の膨張または収縮によるフレネルレンズ22fと発電素子30との距離Lの変化量とを近づけることができるため、太陽光発電モジュール1の発電効率の低下を効果的に抑制することができる。また、側壁24として必要な強度を確保することができる。
 また、第1の実施の形態に係る太陽光発電モジュール1では、側壁24は、熱膨張率の異方性を有する材料を用いて形成されており、熱膨張率の大きい方向がフレネルレンズ22fの光軸方向に沿うように形成されている。
 このような構成により、気温の変化に伴うフレネルレンズ22fと発電素子30との距離Lの変化量がより大きくなるため、気温の変化に伴うフレネルレンズ22fの焦点距離fの変化量に対して、フレネルレンズ22fと発電素子30との距離Lの変化量が追随する可能性を高めることができる。
 また、第1の実施の形態に係る太陽光発電モジュール1は、さらに、フレネルレンズ22fと発電素子30との間に設けられたボールレンズ32を備える。また、ボールレンズ32は、フレネルレンズ22fにより集光された光を受けて、受けた当該光を発電素子30へ集光させる。
 このような構成により、たとえば、フレネルレンズ22fの焦点距離fが変化して、フレネルレンズ22fと発電素子30との距離Lが当該焦点距離fに合わなくなった場合でも、ボールレンズ32において太陽光を大きく屈折させて当該太陽光を発電素子30に集光させることができる。すなわち、側壁24の膨張または収縮だけでは、フレネルレンズ22fと発電素子30との距離Lをフレネルレンズ22fの焦点距離fに合わせることができない場合でも、太陽光発電装置100の発電効率の低下を抑制することができる。このため、筐体21のサイズ調整または側壁24の材料の選択などの設計の自由度を高めることができる。
 次に、他の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
(第2の実施の形態)
[太陽光発電モジュールの構成]
 図9は、第2の実施の形態に係る太陽光発電モジュールにおける筐体の構成を示す斜視図である。なお、図9では、集光部22、発電素子30およびFPC31を図示していない。ここでは、上述した第1の実施の形態に係る太陽光発電モジュール1と異なる点について主に説明する。
 図9を参照して、太陽光発電モジュール1の筐体21は、上述した第1の実施の形態に係る筐体21と比較して、さらに、太陽光発電モジュール1へ入射する入射光の光軸を確認するための光軸確認部40を備える。
 たとえば、架台2に太陽光発電モジュール1を取り付ける際、作業者は、各太陽光発電モジュール1にそれぞれ設けられている光軸確認部40を用いて、各太陽光発電モジュール1へ入射する入射光の光軸を確認する。具体的には、作業者は、各太陽光発電モジュール1の集光部22に対して入射光の光軸が垂直または略垂直となるように、各太陽光発電モジュール1の向きを調整して、各太陽光発電モジュール1を1つずつ架台2に取り付ける。
 光軸確認部40は、たとえば、PETまたはPBTなどの樹脂が用いられた射出成型により、側壁24およびフランジ27と一体成型される。光軸確認部40は、側壁24の4つの面のうち、自己の筐体21がフレーム部材F1に固定された状態において当該フレーム部材F1に対向する面以外の面に設けられている。
 すなわち、光軸確認部40は、側壁24の面のうちフランジ27が設けられていない面に設けられている。なお、側壁24の面のうちフランジ27が設けられていない面が複数ある場合、光軸確認部40は、これら複数の面のうちの少なくとも1つの面に設けられていればよい。
[光軸確認部の構成]
 図10は、図9に示す光軸確認部の構成を示す斜視図であり、図11は、図10に示す矢印Aの方向から光軸確認部の底面を目視した状態を示す図である。
 図10および図11を参照して、光軸確認部40は、たとえば直方体の筐体であって、上面41と、上面41よりも入射光の進行方向の奥側に設けられた底面42と、側面43とを有する。上面41および底面42は、筐体21の集光部22の面と平行または略平行に設けられている。
 上面41の中心または略中心には、入射光を、上面41と底面42と側面43とにより形成される光軸確認部40の内部空間へ導くための取入穴44が形成されている。
 底面42には、光軸確認部40の内部空間へ導かれた入射光の光軸を確認するための複数の視認穴45が形成されている。光軸確認部40の内部空間へ導かれた入射光は、たとえば、これら複数の視認穴45のうちのいずれかの視認穴45を通過して、光軸確認部40の外部へ導かれる。
 そして、作業者が、図10に示す矢印Aの方向から底面42を目視することにより、太陽光発電モジュール1への入射光の光軸を確認することができる。たとえば、作業者は、底面42を目視して、複数の視認穴45のうち底面42の中心または略中心に位置する視認穴45が光っていることを確認した場合、すなわち入射光が当該視認穴45を通過していることを確認した場合、太陽光発電モジュール1への入射光の光軸が当該太陽光発電モジュール1の集光部22の面に対して垂直または略垂直であると判断することができる。
 一方、作業者は、複数の視認穴45のうち底面42の中心または略中心に位置する視認穴45以外の視認穴45が光っていること、または、いずれの視認穴45も光っていないことを確認した場合、太陽光発電モジュール1への入射光の光軸が当該太陽光発電モジュール1の集光部22の面に対して垂直または略垂直ではないと判断することができる。
[光軸確認部の構成(変形例1)]
 図12は、図9に示す光軸確認部の構成(変形例1)を示す斜視図である。
 図12を参照して、変形例1に係る光軸確認部40は、図10に示す光軸確認部40と同様に、上面41と、底面42と、側面43とを有する。以下で説明する内容以外は、変形例1に係る光軸確認部40と、図10に示す光軸確認部40とは同様の構成である。
 変形例1に係る光軸確認部40は、当該光軸確認部40の内部空間に設けられ、上面41と底面42との間に位置する中間面46を有する。この中間面46は、上面41および底面42と平行または略平行であり、中間面46の中心または略中心には通過穴47が形成されている。
 そして、入射光が上面41に対して所定の角度で入射した場合、当該入射光が通過穴47を通過して底面42に到達することができる。具体的には、入射光が上面41に対して垂直または略垂直に入射した場合、当該入射光が通過穴47を通過して底面42に到達する。一方、入射光が上面41に対して垂直または略垂直以外の角度で入射した場合、当該入射光は通過穴47を通過することができず、底面42に到達しない。
 また、変形例1に係る光軸確認部40では、底面42に視認穴45が形成されていない。さらに、変形例1に係る光軸確認部40では、中間面46よりも底面42側における側面43に、底面42に入射光が到達しているか否かを確認するための視認窓48が形成されている。作業者は、この視認窓48から光軸確認部40の内部を目視することにより、光軸確認部40の内部空間に導かれた入射光が底面42に到達しているか否かを確認することができる。
 すなわち、作業者は、底面42に入射光が到達していることを確認した場合、太陽光発電モジュール1への入射光の光軸が当該太陽光発電モジュール1の集光部22の面に対して垂直または略垂直であると判断することができる。一方、作業者は、底面42に入射光が到達していないことを確認した場合、太陽光発電モジュール1への入射光の光軸が当該太陽光発電モジュール1の集光部22の面に対して垂直または略垂直ではないと判断することができる。
[光軸確認部の構成(変形例2)]
 図13は、図9に示す光軸確認部の構成(変形例2)を示す斜視図であり、図14は、図13に示す矢印Bの方向から光軸確認部の底面を目視した状態を示す図である。
 図13および図14を参照して、変形例2に係る光軸確認部40は、図10に示す光軸確認部40と同様に、上面41と、底面42と、側面43とを有する。以下で説明する内容以外は、変形例2に係る光軸確認部40と、図10に示す光軸確認部40とは同様の構成である。
 変形例2に係る光軸確認部40では、底面42は、光透過性を有する材料を用いて形成されている。たとえば、底面42を埋め込むようにインサート成形することにより、容易かつ低コストで光軸確認部40を作製することができる。また、底面42には、視認穴45は形成されていない。
 そして、底面42が光透過性を有する材料を用いて形成されていることにより、作業者が、図13に示す矢印Bの方向から底面42を目視することで、光軸確認部40の内部空間に導かれた入射光が底面42のいずれの位置に到達したかを確認することができる。
 そして、作業者は、このように光軸確認部40の内部空間に導かれた入射光が底面42のいずれの位置に到達したかを確認することで、太陽光発電モジュール1への入射光の光軸を確認することができる。なお、たとえば、底面42には、図14に示すように、底面42の中心または略中心を表す印Mが付されており、作業者は、当該印Mを用いて、光軸確認部40の内部空間に導かれた入射光が底面42の中心または略中心に到達しているか否かを確認することができる。
 すなわち、作業者は、底面42に付された印Mの中心または略中心が光っていることを確認した場合、太陽光発電モジュール1への入射光の光軸が当該太陽光発電モジュール1の集光部22の面に対して垂直または略垂直であると判断することができる。一方、作業者は、底面42に付された印Mの中心または略中心以外の場所が光っていることを確認した場合、太陽光発電モジュール1への入射光の光軸が当該太陽光発電モジュール1の集光部22の面に対して垂直または略垂直ではないと判断することができる。
 その他の構成は上述した第1の実施の形態に係る太陽光発電装置100と同様であるため、ここでは詳細な説明を繰り返さない。
 ところで、特許文献2に記載の集光型太陽発電装置では、入射する光の光軸を確認するための新たな部材を別途用いる必要があるため、多くのコストがかかるという問題があった。また、光軸の精度を確保するために、光軸確認のための装置の組み付け時において高い組み付け精度が要求されるという問題があった。
 これに対して、第2の実施の形態に係る太陽光発電モジュール1は、発電素子30と、発電素子30が収容される筐体21とを備える。さらに、太陽光発電モジュール1は、筐体21の側壁24と一体的に形成され、自己の太陽光発電モジュール1へ入射する入射光の光軸を確認するための光軸確認部40を備える。
 このような構成により、入射光の光軸を確認するための新たな部材を別途用いる必要がないため、低コストを実現することができる。また、光軸の精度を確保するための高い組み付け精度が要求されることもない。従って、より優れた太陽光発電モジュールを提供することができる。
 また、第2の実施の形態に係る太陽光発電モジュール1では、側壁24および光軸確認部40は、樹脂を用いて一体的に形成されている。
 このような構成により、たとえば射出成型を行うことで、側壁24および光軸確認部40を比較的容易に低コストで作製することができる。
 また、第2の実施の形態に係る太陽光発電モジュール1では、光軸確認部40は、上面41と、底面42とを含む。また、上面41には、入射光を光軸確認部40の内部空間へ導くための取入穴44が形成されている。また、底面42には、当該内部空間へ導かれた入射光の光軸を確認するための複数の視認穴45が形成されている。
 このような構成により、複数の視認穴45の中から光が透過している視認穴45を特定することで、入射光の光軸を容易に確認することができる。また、側壁24と光軸確認部40とを同じ材料で形成することができるため、たとえば射出成型を行うことで、これら
側壁24および光軸確認部40を比較的容易に低コストで作製することができる。
 また、第2の実施の形態に係る太陽光発電モジュール1では、光軸確認部40は、上面41と、底面42と、上面41と底面42との間に設けられた中間面46とを含む。また、上面41には、入射光を光軸確認部40の内部空間へ導くための取入穴44が形成されている。また、中間面46には、上面41に対して所定の角度で入射した光が通過して底面42に到達可能な通過穴47が形成されている。
 このような構成により、光軸確認部40の底面42に光が到達しているか否かを確認することで、太陽光発電モジュール1の上面41に対して入射光が所定の角度で入射しているか否かを容易に確認することができる。また、側壁24と光軸確認部40とを同じ材料で形成することができるため、たとえば射出成型を行うことで、これら側壁24および光軸確認部40を比較的容易に低コストで作製することができる。
 また、第2の実施の形態に係る太陽光発電モジュール1では、光軸確認部40は、上面41と、底面42とを含む。また、上面41には、入射光を光軸確認部40の内部空間へ導くための取入穴44が形成されている。また、底面42は、光透過性を有する材料を用いて形成されている。
 このような構成により、たとえば底面42側から光軸確認部40を目視することで、底面42のいずれの位置に光が到達しているのかを確認することができるため、入射光の光軸を容易に確認することができる。また、多くの穴を形成するための加工などを必要としないため、光軸確認部40を備える太陽光発電モジュール1を低コストで作製することができる。
 また、第2の実施の形態に係る太陽光発電モジュール1では、筐体21は、フレーム部材F1に固定される。また、光軸確認部40は、側壁24の面のうち、自己の筐体21がフレーム部材F1に固定された状態においてフレーム部材F1に対向する面以外の面に設けられている。
 このような構成により、フレーム部材F1に筐体21を固定する際における光軸確認部40の存在を考慮する必要がなくなり、比較的低コストで単純な構成により、光軸確認部を備える太陽光発電モジュールを実現することができる。
 なお、以上の説明は、以下に付記する特徴を含む。
[付記1]
 発電素子と、
 前記発電素子が収容される筐体とを備え、
 前記筐体は、
 レンズが設けられた集光部と、
 前記発電素子が配置された底部と、
 前記集光部および前記底部を接続する側壁とを含み、
 前記側壁は樹脂で形成されており、
 前記レンズは、フレネルレンズであり、前記発電素子は、前記フレネルレンズに対応する位置に設けられ、
 前記側壁の伸縮により前記フレネルレンズと前記発電素子との距離が変化する、太陽光発電モジュール。
[付記2]
 発電素子と、
 前記発電素子が収容される筐体とを備える太陽光発電モジュールであって、
 さらに、
 前記筐体の側壁と一体的に形成され、前記太陽光発電モジュールへ入射する入射光の光軸を確認するための光軸確認部を備え、
 前記光軸確認部は、前記入射光を自己の内部空間へ導き、
 前記内部空間に導かれた前記入射光の進行方向が、前記光軸確認部の外部から確認可能である、太陽光発電モジュール。
 <補記>
 なお、開示された実施の形態(実施例)はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
 1,1A,1B 太陽光発電モジュール
 2 架台
 12 パネル筐体
 21 筐体
 22 集光部
 22f フレネルレンズ(レンズ)
 23 底部
 24 側壁
 27 フランジ
 28 取付穴
 30 発電素子
 31 FPC
 32 ボールレンズ
 33 樹脂部材
 40 光軸確認部
 41 上面
 42 底面
 43 側面
 44 取入穴
 45 視認穴
 46 中間面
 47 通過穴
 48 視認窓
 100 太陽光発電装置
 C1 太陽方位計
 E1 収容部
 F1 フレーム部材
 M1 駆動部

Claims (8)

  1.  光を受けて発電する発電素子と、
     太陽光を集光するレンズが設けられた集光部、前記発電素子が配置される底部、および、前記底部の外枠を成し、前記集光部を支持する側壁、を有する閉鎖された筐体と、を備え、
     前記レンズは、ガラス基板と、前記ガラス基板上に設けられているシリコーン樹脂またはアクリル樹脂とを含み、
     前記側壁は、PET(Polyethylene terephthalate)またはPBT(Polybutylene Terephthalate)を用いて形成されている、太陽光発電モジュール。
  2.  前記側壁は、熱膨張率の異方性を有する材料を用いて形成されており、前記熱膨張率の大きい方向が前記レンズの光軸方向に沿うように形成されている、請求項1に記載の太陽光発電モジュール。
  3.  光を受けて発電する発電素子と、
     太陽光を集光するレンズが設けられた集光部、前記発電素子が配置される底部、および、前記底部の外枠を成し、前記集光部を支持する側壁、を有する閉鎖された筐体と、
     前記側壁と樹脂で一体的に形成され、前記太陽光発電モジュールへ入射する入射光の光軸を確認するための光軸確認部と、を備え、
     前記レンズは、ガラス基板と、前記ガラス基板上に設けられているシリコーン樹脂またはアクリル樹脂とを含み、
     前記側壁は、PET(Polyethylene terephthalate)またはPBT(Polybutylene Terephthalate)を用いて形成されている、太陽光発電モジュール。
  4.  前記光軸確認部は、
     上面と、
     底面とを含み、
     前記上面には、前記入射光を前記光軸確認部の内部空間へ導くための取入穴が形成され、
     前記底面には、前記内部空間へ導かれた前記入射光の光軸を確認するための複数の視認穴が形成されている、請求項3に記載の太陽光発電モジュール。
  5.  前記光軸確認部は、
     上面と、
     底面と、
     前記上面と前記底面との間に設けられた中間面とを含み、
     前記上面には、前記入射光を前記光軸確認部の内部空間へ導くための取入穴が形成され、
     前記中間面には、前記上面に対して所定の角度で入射した光が通過して前記底面に到達可能な通過穴が形成されている、請求項3に記載の太陽光発電モジュール。
  6.  前記光軸確認部は、
     上面と、
     底面とを含み、
     前記上面には、前記入射光を前記光軸確認部の内部空間へ導くための取入穴が形成され、
     前記底面は、光透過性を有する材料を用いて形成されている、請求項3に記載の太陽光発電モジュール。
  7.  前記筐体は、フレーム部材に固定され、
     前記光軸確認部は、前記側壁の面のうち、自己の前記筐体が前記フレーム部材に固定された状態において前記フレーム部材に対向する面以外の面に設けられている、請求項3から請求項6のいずれか1項に記載の太陽光発電モジュール。
  8.  フレーム部材によって複数の区画に仕切られた受け皿状のパネル筐体と、
     前記区画に装着された複数の太陽光発電モジュールと、
     を備える太陽光発電装置であって、前記太陽光発電モジュールは、
     光を受けて発電する発電素子と、
     太陽光を集光するレンズが設けられた集光部、前記発電素子が配置される底部、および、前記底部の外枠を成し、前記集光部を支持する側壁、を有する閉鎖された筐体と、を備え、
     前記レンズは、ガラス基板と、前記ガラス基板上に設けられているシリコーン樹脂またはアクリル樹脂とを含み、
     前記側壁は、PET(Polyethylene terephthalate)またはPBT(Polybutylene Terephthalate)を用いて形成されている、太陽光発電パネル。
PCT/JP2015/067817 2014-06-27 2015-06-22 太陽光発電モジュールおよび太陽光発電パネル WO2015199003A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/320,709 US20170149377A1 (en) 2014-06-27 2015-06-22 Photovoltaic module and photovoltaic panel
MA39563A MA39563B1 (fr) 2014-06-27 2015-06-22 Module photovoltaïque et panneau photovoltaïque
JP2016529558A JP6525005B2 (ja) 2014-06-27 2015-06-22 太陽光発電モジュールおよび太陽光発電パネル
CN201580033363.8A CN106664054B (zh) 2014-06-27 2015-06-22 光伏模块和光伏面板
US17/141,917 US11894804B2 (en) 2014-06-27 2021-01-05 Photovoltaic module, photovoltaic panel, and production method for photovoltaic module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-132501 2014-06-27
JP2014132501 2014-06-27
JP2014182362 2014-09-08
JP2014-182362 2014-09-08

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/320,709 A-371-Of-International US20170149377A1 (en) 2014-06-27 2015-06-22 Photovoltaic module and photovoltaic panel
US17/141,917 Continuation-In-Part US11894804B2 (en) 2014-06-27 2021-01-05 Photovoltaic module, photovoltaic panel, and production method for photovoltaic module

Publications (1)

Publication Number Publication Date
WO2015199003A1 true WO2015199003A1 (ja) 2015-12-30

Family

ID=54938087

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2015/067817 WO2015199003A1 (ja) 2014-06-27 2015-06-22 太陽光発電モジュールおよび太陽光発電パネル
PCT/JP2015/067821 WO2015199004A1 (ja) 2014-06-27 2015-06-22 太陽光発電モジュールおよび太陽光発電パネル

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067821 WO2015199004A1 (ja) 2014-06-27 2015-06-22 太陽光発電モジュールおよび太陽光発電パネル

Country Status (4)

Country Link
US (2) US20170149377A1 (ja)
JP (3) JP6525005B2 (ja)
CN (2) CN106664054B (ja)
WO (2) WO2015199003A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11201255B2 (en) * 2017-08-07 2021-12-14 Sumitomo Electric Industries, Ltd. Concentrator photovoltaic module, concentrator photovoltaic panel, and concentrator photovoltaic apparatus

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106664054B (zh) 2014-06-27 2019-05-21 住友电气工业株式会社 光伏模块和光伏面板
US11894804B2 (en) 2014-06-27 2024-02-06 Sumitomo Electric Industries, Ltd. Photovoltaic module, photovoltaic panel, and production method for photovoltaic module
USD783521S1 (en) * 2014-12-19 2017-04-11 Jln Solar, Inc. Solar panel mount
AU2018315807A1 (en) * 2017-08-07 2020-01-30 Sumitomo Electric Industries, Ltd. Concentrator photovoltaic module, concentrator photovoltaic panel, concentrator photovoltaic device, and method for manufacturing concentrator photovoltaic module
AU2019255075A1 (en) * 2018-04-18 2020-11-12 Sumitomo Electric Industries, Ltd. Pressure test method for solar power generation device housing unit
TWI691161B (zh) * 2018-07-24 2020-04-11 茂迪股份有限公司 太陽能電池模組及其組裝方法
JP7141311B2 (ja) * 2018-11-02 2022-09-22 株式会社カネカ 太陽電池ユニット、建築物、カバー
JP7471003B2 (ja) 2022-03-23 2024-04-19 喬國能源科技股▲ふん▼有限公司 太陽光発電パネル
CN115051641B (zh) * 2022-08-16 2022-10-25 山西省安装集团股份有限公司 一种太阳能电池组件及制造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207079A (ja) * 2012-03-28 2013-10-07 Sumitomo Electric Ind Ltd 集光型太陽光発電パネル及び集光型太陽光発電装置
US8592738B1 (en) * 2010-07-01 2013-11-26 Suncore Photovoltaics, Inc. Alignment device for use with a solar tracking photovoltaic array

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3092078B2 (ja) 1992-11-19 2000-09-25 株式会社平井技研 太陽電池利用屋根装置
AU669399B2 (en) 1992-11-19 1996-06-06 Hirai Engineering Corporation Roof system utilizing a solar cell
JPH07274742A (ja) 1994-04-13 1995-10-24 Toshio Yamamura 虫忌避性を有する農業用被覆資材とその製造方法
JP3583871B2 (ja) * 1996-08-23 2004-11-04 積水化学工業株式会社 光発電−集熱ハイブリッドパネル、並びに該光発電−集熱ハイブリッドパネルを備える屋根パネル、屋根ユニット、ソーラシステム及びソーラシステム建物
JP3827380B2 (ja) 1996-11-22 2006-09-27 アルアピア株式会社 換気機能を有する横葺屋根装置
JPH10231600A (ja) 1997-02-18 1998-09-02 Daiwa House Ind Co Ltd 建築物への太陽電池取付構造
US6057505A (en) * 1997-11-21 2000-05-02 Ortabasi; Ugur Space concentrator for advanced solar cells
CN1185637C (zh) * 2000-10-17 2005-01-19 松下电器产业株式会社 透镜组、光学头和使用它们的光可记录型播放器
US6399874B1 (en) 2001-01-11 2002-06-04 Charles Dennehy, Jr. Solar energy module and fresnel lens for use in same
JP2002289900A (ja) * 2001-03-23 2002-10-04 Canon Inc 集光型太陽電池モジュール及び集光型太陽光発電システム
US6559371B2 (en) * 2001-06-27 2003-05-06 Pinnacle West Capital Corp. High-concentration photovoltaic assembly for a utility-scale power generation system
JP2004063497A (ja) * 2002-07-24 2004-02-26 Hitachi Chem Co Ltd 太陽電池用樹脂製水上フロート
US20040170109A1 (en) 2003-02-28 2004-09-02 Matsushita Electric Industrial Co., Ltd. Optical pickup
JP4841156B2 (ja) * 2005-03-31 2011-12-21 三洋電機株式会社 太陽電池モジュール
US8063300B2 (en) 2005-05-26 2011-11-22 Solfocus, Inc. Concentrator solar photovoltaic array with compact tailored imaging power units
US8237044B2 (en) * 2005-06-07 2012-08-07 Sharp Kabushiki Kaisha Concentrating solar power generation unit, concentrating solar power generation apparatus, concetrating lens, concentrating lens structure, and method of manufacturing concentrating lens structure
JP4732015B2 (ja) * 2005-06-07 2011-07-27 シャープ株式会社 集光型太陽光発電ユニットおよび集光型太陽光発電装置
DE102006007472B4 (de) * 2006-02-17 2018-03-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Photovoltaisches Konzentratormodul mit Multifunktionsrahmen
JP2008004661A (ja) 2006-06-21 2008-01-10 Daido Steel Co Ltd 集光型太陽発電装置
JP4953745B2 (ja) 2006-09-26 2012-06-13 シャープ株式会社 集光型太陽光発電ユニットおよび集光型太陽光発電装置
JP5128808B2 (ja) * 2006-12-06 2013-01-23 スリーエム イノベイティブ プロパティズ カンパニー フレネルレンズ
US7855336B2 (en) * 2007-10-30 2010-12-21 Opel, Inc. Concentrated solar photovoltaic module with protective light shielding
MX2010010579A (es) * 2008-04-04 2010-11-05 Bayer Materialscience Ag Modulo solar fotovoltaico.
AU2009246842A1 (en) * 2008-05-16 2009-11-19 Emcore Corporation Concentrating photovoltaic solar panel
US20120325289A1 (en) * 2011-06-24 2012-12-27 Deck Christopher J High concentrator photovoltaic solar module
JP5814725B2 (ja) * 2011-10-03 2015-11-17 住友電気工業株式会社 集光型太陽光発電モジュール及び集光型太陽光発電パネル
FR2988909B1 (fr) 2012-04-03 2014-12-12 Soitec Solar Gmbh Module photovoltaique a concentration a hauteur reglable
FR2993042B1 (fr) * 2012-07-09 2014-08-22 Commissariat Energie Atomique Dispositif de regulation du niveau d'humidite dans un module solaire a concentration et module solaire comportant au moins un tel dispositif
JP6007741B2 (ja) 2012-11-14 2016-10-12 住友電気工業株式会社 集光型太陽光発電モジュール及び集光型太陽光発電パネル
CN106664054B (zh) 2014-06-27 2019-05-21 住友电气工业株式会社 光伏模块和光伏面板

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8592738B1 (en) * 2010-07-01 2013-11-26 Suncore Photovoltaics, Inc. Alignment device for use with a solar tracking photovoltaic array
JP2013207079A (ja) * 2012-03-28 2013-10-07 Sumitomo Electric Ind Ltd 集光型太陽光発電パネル及び集光型太陽光発電装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11201255B2 (en) * 2017-08-07 2021-12-14 Sumitomo Electric Industries, Ltd. Concentrator photovoltaic module, concentrator photovoltaic panel, and concentrator photovoltaic apparatus
AU2018315806B2 (en) * 2017-08-07 2022-10-06 Sumitomo Electric Industries, Ltd. Concentrator photovoltaic module, concentrator photovoltaic panel, and concentrator photovoltaic apparatus

Also Published As

Publication number Publication date
US10879837B2 (en) 2020-12-29
US20170133980A1 (en) 2017-05-11
JP2018137996A (ja) 2018-08-30
JP6610709B2 (ja) 2019-11-27
JP6525005B2 (ja) 2019-06-05
CN106664054B (zh) 2019-05-21
JPWO2015199004A1 (ja) 2017-04-20
US20170149377A1 (en) 2017-05-25
JPWO2015199003A1 (ja) 2017-04-20
CN106664054A (zh) 2017-05-10
JP6354843B2 (ja) 2018-07-11
CN106664055B (zh) 2019-12-17
WO2015199004A1 (ja) 2015-12-30
CN106664055A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
WO2015199003A1 (ja) 太陽光発電モジュールおよび太陽光発電パネル
CN105051454B (zh) 光板、具有改善界面的光学组件及具有改善的制造容差的光板
US8853530B2 (en) Concentrator photovoltaic unit and apparatus
TWI744244B (zh) 聚光型太陽光發電單元、聚光型太陽光發電模組、聚光型太陽光發電面板及聚光型太陽光發電裝置
JP2013505577A (ja) 軸外し型密閉太陽光集光装置
JP6424737B2 (ja) 集光型太陽光発電モジュール、集光型太陽光発電パネル、及び集光型太陽光発電装置
US20130240037A1 (en) Solar cell module and solar generator
TW201715744A (zh) 聚光型太陽光發電單元、聚光型太陽光發電模組、聚光型太陽光發電面板及聚光型太陽光發電裝置
US10389295B2 (en) Enclosure for concentrator photovoltaic device and concentrator photovoltaic device using same
KR101781265B1 (ko) 적층형 태양광 발전시스템
KR100933661B1 (ko) 태양위치 추적센서 및 추적방법
US11894804B2 (en) Photovoltaic module, photovoltaic panel, and production method for photovoltaic module
JP6225785B2 (ja) 集光型太陽光発電モジュール
KR20120096183A (ko) 태양전지 모듈 및 그 제조방법과 이를 이용한 태양광 발전장치
KR101357200B1 (ko) 박형 집광형 태양전지모듈
JP2013191730A (ja) 集光モジュール用一次レンズ及び集光型太陽光発電ユニット
KR101327211B1 (ko) 고집광형 태양전지모듈
US9343605B2 (en) Photovoltaic equipment
JP2016178258A (ja) 光学素子および太陽電池モジュール
JP2016039360A (ja) 集光型太陽光発電モジュール
KR20190072719A (ko) 집광형 태양광 탱크타입 모듈
KR20130117161A (ko) 태양광 발전장치
JP2015050449A (ja) 集光型太陽光発電モジュール用レシーバ
JP2014170861A (ja) 集光型太陽光発電モジュール用レシーバ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811328

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529558

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15320709

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 39563

Country of ref document: MA

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15811328

Country of ref document: EP

Kind code of ref document: A1