WO2015194751A1 - 내연기관용 세퍼레이터 - Google Patents

내연기관용 세퍼레이터 Download PDF

Info

Publication number
WO2015194751A1
WO2015194751A1 PCT/KR2015/003816 KR2015003816W WO2015194751A1 WO 2015194751 A1 WO2015194751 A1 WO 2015194751A1 KR 2015003816 W KR2015003816 W KR 2015003816W WO 2015194751 A1 WO2015194751 A1 WO 2015194751A1
Authority
WO
WIPO (PCT)
Prior art keywords
blow
gas
collision
engine oil
inlet
Prior art date
Application number
PCT/KR2015/003816
Other languages
English (en)
French (fr)
Inventor
오광호
박철효
이재성
Original Assignee
인지컨트롤스주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인지컨트롤스주식회사 filed Critical 인지컨트롤스주식회사
Priority to CN201580032731.7A priority Critical patent/CN106661979B/zh
Publication of WO2015194751A1 publication Critical patent/WO2015194751A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D45/00Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces
    • B01D45/04Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia
    • B01D45/08Separating dispersed particles from gases or vapours by gravity, inertia, or centrifugal forces by utilising inertia by impingement against baffle separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/08Separating lubricant from air or fuel-air mixture before entry into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/06Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding lubricant vapours

Definitions

  • the present invention relates to a separator for an internal combustion engine, and more particularly, to a separator for an internal combustion engine that can effectively separate the evaporation engine oil from the blow-by gas generated by the stroke of the internal combustion engine.
  • the separator of the prior art is integrally provided in the head cover (HC) of the internal combustion engine as shown in Figure 1 for separating the blow-by gas flowing into the inlet (52) by the baffle (54) to primarily separate the evaporation engine oil
  • the duct 10 and the centrifuge 60 for separating the evaporation engine oil secondly while rotating the blow-by gas passing through the duct 10 through the circular flow path 62, and the blow as the inner diameter expands toward the discharge side.
  • the blow-by gas introduced into the inlet is discharged to the discharge hole 82 through the damping chamber 80 while sequentially moving the centrifuge 60 and the cyclone 70 to separate the evaporation engine oil. It is a configuration discharged to the oil hole 72 provided in the cyclone (70).
  • the separator of the prior art adjusts the blow-by gas to the set pressure through the regulator 90, but there is a disadvantage in that the manufacturing cost is increased due to the complicated configuration and cumbersome manufacturing.
  • the separator of the prior art is that as soon as the oil ball 72 to which the separated evaporation engine oil is re-extracted is provided only in the cyclone 70, the evaporation engine oil separated from the baffle 54 or the centrifuge 60 is separated. Since the path to be discharged to the oil hole 72 along the bottom surface is not discharged, the oil re-dispersion efficiency is very low.
  • the present invention has been researched and developed to overcome the various disadvantages of the prior art as described above, the blow blow gas flowing into the duct by separating the evaporation engine oil primarily by the flow-directed induction action collide with the blow blow gas It is an object of the present invention to provide a separator for an internal combustion engine that can effectively separate and recover an evaporation engine oil from blow-by gas by separating the evaporation engine oil secondly by the action.
  • the present invention for achieving the above object is a separator for an internal combustion engine for separating the evaporation engine oil from the blow-by gas generated by the stroke of the internal combustion engine,
  • a duct installed in the head cover of the internal combustion engine and having an inlet through which blow-by gas is introduced and an outlet through which blow-by gas is discharged;
  • a flow guide means for inducing the flow of blow-by gas flowing into the inlet of the duct to separate the evaporation engine oil from the blow-by gas;
  • a collision separation means installed on the downstream side of the flow guide means for separating the evaporation engine oil from the blow-by gas by collision with the blow-by gas;
  • the inlet is formed on the bottom surface of one side of the duct to guide the blow-by gas flows upward,
  • the flow guide means includes a flow guide member provided at the edge of the inlet, the flow guide member has a curved guide portion formed to be curved to flow the blow-by gas flowing upward through the inlet around the horizontal axis It features.
  • the collision separation means includes a collision separation casing having a plurality of inlet nozzles on one surface,
  • a collision separation chamber is formed inside the collision separation casing by a plurality of walls, and the collision separation chamber is configured to separate the evaporation engine oil by the collision of blow-by gas.
  • the collision separation chamber is formed to be partitioned into a collision space and a separation space in the collision separation casing, the collision space and the separation space is characterized in that the communication through the communication opening.
  • the collision separation casing includes a first wall formed in a vertical direction, a second wall connected in a horizontal direction with respect to the first wall, a third wall connected in a vertical direction with respect to the second wall, and connected in a horizontal direction with respect to the third wall. Having a fourth wall and a fifth wall connected in a direction perpendicular to the fourth wall,
  • the first wall has a plurality of inflow nozzles through which blow-by gas is introduced
  • the second wall has a structure that closes an upper end of the first wall and an upper end of the third wall
  • the third wall is the first wall. It is spaced at a predetermined interval with respect to the one wall, a communication opening is formed in the lower portion of the third wall to pass through the blow-by gas through the horizontal direction, the fourth wall penetrates in a vertical direction to discharge the blow-by gas A flow opening for blow-by gas is formed, and an oil-flow opening for flowing out the evaporation engine oil separated from the blow-by gas through a horizontal direction is formed in the lower portion of the fifth wall.
  • the outlet for the blow-by gas has a vertical passage formed in a vertical direction and an inclined passage formed to be inclined with respect to the vertical passage, and one inclined surface of the inclined passage is disposed to face the upper end of the vertical passage.
  • a plurality of ribs and a plurality of grooves are continuously formed in the third wall, and the plurality of ribs and the plurality of grooves extend in the vertical direction.
  • the nozzle hole of the inlet nozzle is formed so that the inner diameter gradually decreases along the flow direction of the blow-by gas, and the inlet nozzle protrudes toward the circulating induction means.
  • the impact separation casing is formed in the same as the duct or is manufactured separately for the duct is characterized in that bonded to the duct.
  • the collision separation casing is characterized in that a part of the first wall is coupled to the head cover of the internal combustion engine, and the lower end of the first wall is joined to the bottom surface of the duct.
  • the flow-through blow-by gas collides with the baffle plate to separate the evaporation engine oil secondly.
  • the evaporation engine oil can be separated from the blow-by gas very efficiently through a very simple structure in which the blow-by gas flowing upwardly by the curved guide portion of the flow-guiding member flows around the horizontal axis. .
  • a negative pressure is easily generated in the collision separation chamber by a plurality of inlet nozzles, and the blow-by gas flows into the collision separation chamber of the collision separation casing at high speed so that the collision action of the blow-by gas is improved.
  • the engine oil can be separated very efficiently.
  • the blow-by gas flows into the collision space of the collision separation chamber at high speed through the inflow nozzles, so that the evaporation engine oil can be separated very efficiently from the blow-by gas.
  • the separation space the evaporation engine oil and the blow-by gas can be separated very effectively by the difference in their specific gravity.
  • the present invention has the advantage that the collision action of the blow-by gas is increased by the structure in which the walls of the collision separation casing are formed in the vertical direction and the horizontal direction, so that the evaporation engine oil can be more reliably separated from the blow-by gas.
  • the evaporation engine oil partially contained in the blow-by gas is the inclined surface of the inclined passage. After colliding directly with the lower part of the separation space after being collected through the oil outlet can be discharged, there is an advantage that the separation efficiency of the evaporation engine oil is further improved.
  • the blow-by gas introduced at high speed through the inlet nozzle by the ribs and the grooves of the third wall directly collides with the ribs and the grooves of the third wall, thereby separating the evaporation engine oil by the collision of the blow-by gas.
  • the evaporation engine oil is collected and flows down vertically through a plurality of grooves, so that the efficiency of the evaporation engine oil collection is greatly increased.
  • the inflow nozzle extends the length of the nozzle hole through the structure protruding upstream of the duct, that is, toward the circulating induction means, so that the inflow velocity of the blow-by gas can be induced at a higher speed.
  • the collision separation casing is manufactured separately for the duct and is joined to the head cover and the duct, the collision separation casing can be easily manufactured and the manufacturing cost can be greatly reduced. There is an advantage that can be greatly increased.
  • FIG. 1 is a view showing a separator for an internal combustion engine according to the prior art.
  • FIG. 2 is a side cross-sectional view showing a separator for an internal combustion engine according to an embodiment of the present invention.
  • FIG. 3 is an enlarged view of a portion A of FIG. 2.
  • FIG. 4 is a cross-sectional view taken along line B-B of FIG. 2.
  • FIG. 5 is a partial cutaway perspective view illustrating a separator for an internal combustion engine according to an embodiment of the present invention.
  • FIG. 6 is an enlarged view of a portion C of FIG. 5.
  • FIG. 7 illustrates a modified embodiment of FIG. 3.
  • FIG. 8 is a cross-sectional view taken along the line D-D of FIG. 7.
  • duct 200 flow guide means
  • flow guide member 215 curved guide portion
  • FIGS. 2 to 6 are diagrams illustrating a separator for an internal combustion engine according to an embodiment of the present invention.
  • the separator for the internal combustion engine according to the present invention, the duct 100 provided in the head cover (HC) of the internal combustion engine, and induces the flow of blow-by gas in the duct 100 to evaporate the engine in the blow-by gas
  • the duct 100 is provided in the head cover HC of the internal combustion engine and has a tubular structure for transporting blow-by gas.
  • the duct 100 may be integrally formed with the head cover HC or may be manufactured and assembled separately from the head cover HC.
  • the duct 100 has an inlet 110 through which the blow-by gas generated by the stroke of the internal combustion engine is introduced on one side thereof, and an outlet 120 through which the blow-by gas is discharged is formed on the other side thereof.
  • the inlet 110 is formed on one side of the bottom surface of the duct 100, and the blow-by gas is guided upwardly through the inlet 110.
  • An oil drain 150 is formed at a bottom surface adjacent to the outlet 120 of the duct 100, and the oil drain 150 is separated from the blow-by gas while passing through the flow-inducing means 200 and the collision separating means 300.
  • the flow guide means 200 guides the blow-by gas flowing into the inlet 110 of the duct 100 to flow around the horizontal axis (see arrows RC in FIGS. 2 and 5). As a result, the evaporation engine oil contained in the blow-by gas can be separated primarily by the centrifugal force.
  • the circulating induction means 200 includes a circulating conducting member 210 installed at one side edge of the inlet 110.
  • the flow guide member 210 is extended upward from one side edge of the inlet 110, the curved guide portion 215 is formed on the top of the flow guide member 210.
  • the curved guide portion 215 is formed to be curved to flow the blow-by gas flowing upward through the inlet 110 of the duct 100 around the horizontal axis.
  • the curved guide portion 215 is formed in a size corresponding to the area of the inlet 110, the blow-by gas flowing upward through the inlet 110 is the flow along the inner circumferential surface of the curved guide portion 215 ( ⁇ ) can be made stable.
  • the present invention induces a very stable flow of blow-by gas by the curved guide portion 215 of the flow guide member 210, so that the separation efficiency of the evaporation engine oil is greatly increased and the flow guide structure is very simple. There is an advantage that can significantly reduce the manufacturing cost.
  • Collision separation means 300 is installed on the downstream side of the flow guide means 210 is configured to separate the evaporation engine oil from the blow-by gas by the collision with the blow-by gas flow back by the flow guide means (210).
  • the collision separation means 300 includes a collision separation casing 310 having a plurality of inlet nozzles 320 on one surface, the evaporation engine by the collision of blow-by gas inside the collision separation casing 310 A collision separation chamber 330 in which oil is separated is formed.
  • the collision separation casing 310 has a plurality of inlet nozzles 320 on one surface thereof, and nozzle holes 321 are formed in each inlet nozzle 320.
  • each nozzle hole 321 is formed so that the inner diameter gradually decreases along the flow direction of the blow-by gas, so that the blow-by gas is very high into the collision separation chamber 330 of the collision separation casing 310 through the negative pressure generation. It can be introduced into, and through this there is a collision action of the blow-by gas in the collision separation chamber 300 has the advantage that the separation efficiency of the evaporation engine oil can be improved.
  • the inlet nozzle 320 is formed to protrude upstream of the duct 100, that is, toward the circulating induction means 200, and by extending the length of the nozzle hole 321, the inflow velocity of the blow-by gas is further increased. Can be induced.
  • the blow-by gas introduced at high speed by the inflow nozzle 320 may further increase the collision effect in the collision separation chamber 330, thereby greatly improving the separation efficiency of the evaporation engine oil.
  • the collision separation casing 310 may be formed in the same body in the duct 100 or separately manufactured for the duct 100 may be firmly bonded to the duct 100 and the head cover (HC).
  • the collision separation casing 310 includes a first wall 311 formed in a vertical direction, a second wall 312 connected in a horizontal direction with respect to the first wall 311, and a second wall 312.
  • the third wall 313 connected in a direction perpendicular to the third wall, the fourth wall 314 connected in the horizontal direction with respect to the third wall 313, and the fifth wall connected in a vertical direction with respect to the fourth wall 314.
  • the collision separation chamber 330 is formed by the first wall 311, the second wall 312, the third wall 313, the fourth wall 314, and the fifth wall 315.
  • the plurality of inflow nozzles 320 described above are formed in the first wall 311 to penetrate in the horizontal direction.
  • the second wall 312 is provided to close the upper end of the first wall 311 and the upper end of the third wall 313.
  • the third wall 313 is spaced horizontally with respect to the first wall 311, the communication opening 316 is formed in the lower portion of the third wall 313, the blow-by gas through the communication opening 316 Can pass.
  • the blow-by gas introduced through the inlet nozzle 320 directly collides with the third wall 313, thereby causing the blow-by gas to collide. Separation of the evaporation engine oil can be made smoothly.
  • the fourth wall 314 is connected to extend in the horizontal direction in the middle of the third wall 313, the outlet wall for blow-by gas 317 penetrated in the vertical direction is formed in the fourth wall 314.
  • the blow-by gas outlet 317 is composed of a plurality of through-hole structures vertically penetrated from the fourth wall 314, so that the blow-by gas from which the evaporation engine oil is separated is compared with the evaporation engine oil. Since the specific gravity is light, it can be smoothly flowed out in the vertical direction through the outlet for the blow-by gas 317.
  • An oil outlet 318 penetrated in the horizontal direction is formed at the lower end of the fifth wall 315, and thus the evaporation engine separated by the oil outlet 318 is provided at the lower end of the fifth wall 315. Due to the difference in specific gravity with the bigas, the separation may be more smooth, and the oil may flow out to the oil drain 150 very smoothly through the oil outlet 318.
  • the walls 311, 312, 313, 314, and 314 of the collision separation casing 310 are formed in the vertical direction and the horizontal direction to evaporate by the collision of the blow-by gas in the collision separation chamber 330.
  • the separation effect of the engine oil is increased, the evaporation engine oil can be more reliably separated from the blow-by gas.
  • the collision separation chamber 330 is formed to be partitioned into a collision space 331 and a separation space 332 in the collision separation casing 310, and the collision space 331 and the separation space 332 are communication openings 316. Is configured to communicate via).
  • the partition structure of the collision space 331 and the separation space 332 of the collision separation chamber 330 will be described in more detail.
  • the first wall 311, the second wall 312, and the third wall 313 are described.
  • the collision space 331 is formed, and the separation space 332 is formed by the third wall 313, the fourth wall 314, and the fifth wall 315.
  • the collision separation chamber 330 is partitioned into a collision space 331 and a separation space 332 by the third wall 313, and the collision space 331 and the separation space 332 communicate the communication opening 316.
  • the separation space 332 is provided with a blow-by-gas outlet 317 at an upper side thereof (ie, the fourth wall 314) and at an lower side thereof (ie, a lower end of the fifth wall 315).
  • An outlet opening 318 is provided. Accordingly, the blow-by gas collided in the collision space 331 passes through the communication opening 316, so that the blow-by gas and the evaporation engine oil are effectively separated by the specific gravity difference in the separation space 332.
  • the blowby gas having a low specific gravity is discharged through the outlet for the blow-by gas 317 (see arrow G in FIG. 3), and at the same time, the evaporation engine oil having a heavy gravity is the outlet for oil. Discharge through 318 (see arrow O in FIG. 3) makes the separation very effective.
  • the collision separation chamber 330 is divided into a collision space 331 and the separation space 332, the blow-by gas is the collision space 331 of the collision separation chamber 330 through the inlet nozzles 320
  • Evaporation engine oil can be very effectively separated from the blow-by gas by flowing into the blow-by gas, and the flow-opening opening 317 for the blow-by gas provided on the upper side and the oil-opening opening 318 provided on the lower side in the separating space 332.
  • the collision separation casing 310 may be made of a structure that is separately manufactured and bonded to the duct 100, a portion of the first wall 311 is to be coupled to the head cover (HC) of the internal combustion engine Can be.
  • An assembly rib 390 is formed to protrude downward from one side of the head cover HC, and a part of the first wall 311 may be coupled to the assembly rib 390.
  • a coupling protrusion 351 is formed at one surface of the first wall 311, that is, a portion of the head cover HC facing the assembly rib 390, and correspondingly, the coupling groove 352 is formed in the assembly rib 390. Is formed. Accordingly, the first protrusion 311 is firmly attached to the assembly rib 390 of the head cover HC by fitting the coupling protrusion 351 of the first wall 311 into the coupling groove 352 of the assembly rib 390. Can be combined.
  • the lower end of the first wall 311 may be firmly bonded to the bottom of the duct 100 through welding (FJ).
  • the present invention has a structure in which the first wall 311 of the collision separation casing 310 is joined to the head cover HC and the duct 100, thereby facilitating the manufacturing and greatly reducing the manufacturing cost.
  • blow-by gas is returned to the collision separation casing 310 of the collision separation means 300 while being circulated to the downstream side in the duct 100.
  • the gas has a very strong collision in the second wall 312 and the third wall 313 so that the evaporation engine oil can be very effective in blow-by gas, the separated evaporation engine oil is a collision separation chamber 330
  • the oil is discharged to the oil drain 150 via the oil outlet 318 of the fifth wall 315 by riding on the bottom surface of the bottom surface of the fifth wall 315.
  • blow-by gas from which the evaporation engine oil is separated is discharged to the outlet 120 of the duct 100 through the outlet opening 317 for the blow-by gas of the fourth wall 314.
  • the blow-by gas outlet 317 of the separation space 332 has a vertical passage 317a formed in a vertical direction and an inclined passage 317b formed to be inclined with respect to the vertical passage 317a. Is made of.
  • One inclined surface 317c of the inclined passage 317b is disposed to face the upper end of the vertical passage 317a.
  • a plurality of ribs 313a and a plurality of grooves 313b are continuously formed in the third wall 313 of the collision space 331, and the plurality of ribs 313a are formed.
  • the plurality of grooves 313b extend in the vertical direction.
  • the blow-by gas introduced at a high speed through the inlet nozzle 320 of the first wall 311 directly collides with the ribs 313a and the grooves 313b of the third wall 313, thereby causing the blow-by gas to collide. Since the separation of the evaporation engine oil is more smoothly performed, the evaporation engine oil is collected and flows down vertically through the plurality of grooves 313b, so that the efficiency of collecting the evaporation engine oil is greatly increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)

Abstract

본 발명은 내연기관의 행정에 의해 발생하는 블로바이가스에서 증발엔진오일을 매우 효과적으로 분리할 수 있는 내연기관용 세퍼레이터에 관한 것이다. 본 발명에 의한 내연기관용 세퍼레이터는 내연기관의 헤드커버에 설치되고, 블로바이가스가 유입되는 유입구 및 블로바이가스가 배출되는 배출구를 가진 덕트; 상기 덕트의 유입구로 유입되는 블로바이가스의 회류를 유도하여 블로바이가스에서 증발엔진오일을 분리하는 회류유도수단; 상기 회류유도수단의 하류 측에 설치되어, 블로바이가스와의 충돌에 의해 블로바이가스에서 증발엔진오일을 분리하는 충돌분리수단; 및 상기 덕트의 배출구에 인접한 저면에 마련되어, 블로바이가스에서 분리된 증발엔진오일을 배출하는 오일 드레인;을 포함한다.

Description

내연기관용 세퍼레이터
본 발명은 내연기관용 세퍼레이터에 관한 것으로, 보다 상세하게는 내연기관의 행정에 의해 발생하는 블로바이가스에서 증발엔진오일을 매우 효과적으로 분리할 수 있는 내연기관용 세퍼레이터에 관한 것이다.
일반적으로 차량의 엔진과 같은 내연기관은 폭발행정시 유입공기와 연료 및 약간의 엔진오일 등이 실린더의 내부에서 함께 폭발한다. 이때, 실린더는 유입공기와 불완전 연소된 연료 및 증발된 약간의 증발엔진오일이 혼합된 블로바이가스가 생성된다. 이러한 블로바이가스는 대부분 배기메니폴더를 통해 외부로 배출된다. 하지만, 일부의 블로바이가스는 배기메니폴더로 배출되지 못하고 실린더 상부의 헤드커버로 유입된다. 따라서, 내연기관은 헤드커버로 유입되는 블로바이가스에서 증발된 엔진오일을 회수하는 동시에 블로바이가스를 실린더로 재공급하기 위해 세퍼레이터가 설치된다.
본 발명에 선행된 세퍼레이터로는 본 발명의 출원인에 의해 출원된 대한민국 등록특허 제10-1054035호 내연기관용 세퍼레이터가 개시된 바 있다.
선행기술의 세퍼레이터는 도 1에 도시된 바와 같이 내연기관의 헤드커버(HC)에 일체적으로 마련되어 유입구(52)로 유입되는 블로바이가스를 배플(54)에 의해 증발엔진오일을 1차로 분리하는 덕트(10)와, 덕트(10)를 경유한 블로바이가스를 원형유로(62)를 통해 회전시키면서 증발엔진오일을 2차로 분리하는 원심분리기(60)와, 배출측으로 갈수록 내경이 확장됨에 따라 블로바이가스를 와류시키면서 증발엔진오일을 3차로 분리하는 사이클론(70)과, 블로바이가스의 압력을 댐핑하면서 배출공(82)을 갖는 댐핑챔버(80) 및 블로바이가스를 설정된 압력으로 조절하는 레귤레이터(90)로 구성된다.
이러한 선행기술의 세퍼레이터는 유입구로 유입된 블로바이가스가 원심분리기(60) 및 사이클론(70)을 순차적으로 이동하면서 댐핑챔버(80)를 통해 배출공(82)으로 배출되면서 증발엔진오일이 분리되어 사이클론(70)에 마련된 오일공(72)으로 배출되는 구성이다.
하지만, 선행기술의 세퍼레이터는 블로바이가스를 와류시키는 사이클론(70)에 의해 내부의 압력차가 증가함에 따라 오일공(72)으로 재배출되는 증발엔진오일이 사이클론(70)의 압력에 의해 원활하게 배출되지 못하므로 오일의 재배출 효율이 저하된다.
이에 따라, 선행기술의 세퍼레이터는 레귤레이터(90)를 통해 블로바이가스를 설정된 압력으로 조절하고 있으나, 구성이 복잡하고 제작이 번거로워서 제조원가가 상승하는 단점이 있었다.
더욱이, 선행기술의 세퍼레이터는 분리된 증발엔진오일이 재배출되는 오일공(72)이 사이클론(70)에만 마련됨에 따라 배플(54)이나 원심분리기(60)에서 분리된 증발엔진오일이 분리된 즉시 배출되지 못하고 바닥면을 따라 오일공(72)까지 이동하여야 하는 경로가 길어지므로 오일의 재배출 효율이 매우 낮아지는 단점이 있었다.
본 발명은 상기와 같은 종래기술의 여러단점을 극복하기 위하여 연구개발된 것으로, 덕트 내로 유입되는 블로바이가스를 회류유도작용에 의해 1차적으로 증발엔진오일을 분리한 후에 회류되는 블로바이가스를 충돌작용에 의해 2차적으로 증발엔진오일을 분리함으로써 블로바이가스에서 증발엔진오일을 매우 효과적으로 분리하여 회수할 수 있는 내연기관용 세퍼레이터를 제공하는 데 그 목적이 있다.
상기와 같은 목적을 달성하기 위한 본 발명은 내연기관의 행정에 의해 발생하는 블로바이가스에서 증발엔진오일을 분리하는 내연기관용 세퍼레이터로서,
내연기관의 헤드커버에 설치되고, 블로바이가스가 유입되는 유입구 및 블로바이가스가 배출되는 배출구를 가진 덕트;
상기 덕트의 유입구로 유입되는 블로바이가스의 회류를 유도하여 블로바이가스에서 증발엔진오일을 분리하는 회류유도수단;
상기 회류유도수단의 하류 측에 설치되어, 블로바이가스와의 충돌에 의해 블로바이가스에서 증발엔진오일을 분리하는 충돌분리수단; 및
상기 덕트의 배출구에 인접한 저면에 마련되어, 블로바이가스에서 분리된 증발엔진오일을 배출하는 오일 드레인;을 포함한다.
상기 유입구는 덕트의 일측 저면에 형성되어 상기 블로바이가스가 상향으로 유입되도록 가이드하고,
상기 회류유도수단은 상기 유입구의 가장자리에 설치된 회류유도부재를 포함하며, 상기 회류유도부재는 상기 유입구를 통해 상향으로 유입되는 블로바이가스를 수평축선 둘레로 회류시키도록 곡면지게 형성된 곡면 가이드부를 가지는 것을 특징으로 한다.
상기 충돌분리수단은 일면에 복수의 유입노즐을 가진 충돌분리케이싱을 포함하고,
상기 충돌분리케이싱의 내부에는 복수의 벽체에 의해 충돌분리챔버가 형성되며, 상기 충돌분리챔버는 블로바이가스의 충돌에 의해 증발엔진오일이 분리되도록 구성되는 것을 특징으로 한다.
상기 충돌분리챔버는 충돌분리케이싱 내에서 충돌공간과 분리공간으로 구획되게 형성되고, 상기 충돌공간 및 분리공간은 소통개구를 통해 소통하는 것을 특징으로 한다.
상기 충돌분리케이싱은 수직방향으로 형성된 제1벽체와, 제1벽체에 대해 수평방향으로 연결된 제2벽체와, 제2벽체에 대해 수직방향으로 연결된 제3벽체과, 제3벽체에 대해 수평방향으로 연결된 제4벽체와, 제4벽체에 대해 수직방향으로 연결된 제5벽체를 가지고,
상기 제1벽체는 블로바이가스가 유입되는 복수의 유입노즐을 가지며, 상기 제2벽체는 상기 제1벽체의 상단과 제3벽체의 상단을 폐쇄하는 구조로 마련되고, 상기 제3벽체는 상기 제1벽체에 대해 일정간격으로 이격되고, 상기 제3벽체의 하부에는 수평방향으로 관통되어 블로바이가스를 통과시키는 소통개구가 형성되며, 상기 제4벽체에는 수직방향으로 관통되어 블로바이가스를 유출하는 블로바이가스용 유출개구가 형성되고, 상기 제5벽체의 하부에는 수평방향으로 관통되어 블로바이가스에서 분리된 증발엔진오일을 유출하는 오일용 유출개구가 형성되는 것을 특징으로 한다.
상기 블로바이가스용 유출개구는 수직방향으로 형성된 수직통로와, 상기 수직통로에 대해 경사지게 형성된 경사통로로 이루어지고, 경사통로의 일측 경사면은 수직통로의 상단에 면하게 배치되는 것을 특징으로 한다.
상기 제3벽체에는 복수의 리브 및 복수의 홈이 연속되게 형성되고, 복수의 리브 및 복수의 홈은 수직방향으로 길게 연장되는 것을 특징으로 한다.
상기 유입노즐의 노즐공은 블로바이가스의 흐름방향을 따라 그 내경이 점차 감소하도록 형성되고, 상기 유입노즐은 회류유도수단을 향해 돌출되는 것을 특징으로 한다.
상기 충돌분리케이싱은 상기 덕트에 동일체로 형성되거나 상기 덕트에 대해 별도로 제조되어 상기 덕트에 접합되는 것을 특징으로 한다.
특히, 충돌분리케이싱은 상기 제1벽체의 일부는 상기 내연기관의 헤드커버에 결합되고, 상기 제1벽체의 하단이 덕트의 저면에 접합되는 것을 특징으로 한다.
본 발명에 의하면, 덕트 내로 유입되는 블로바이가스를 회류가이드부재에 의해 회류시켜 1차적으로 증발엔진오일을 분리한 후에 회류되는 블로바이가스를 배플플레이트와 충돌시켜 2차적으로 증발엔진오일을 분리함으로써 블로바이가스에서 증발엔진오일을 매우 효과적으로 분리하여 회수할 수 있는 장점이 있다.
본 발명에 의하면, 회류유도부재의 곡면 가이드부에 의해 상향으로 유입되는 블로바이가스를 수평축선 둘레로 회류시키는 매우 단순한 구조를 통해 블로바이가스에서 증발엔진오일가 매우 효율적으로 분리될 수 있는 장점이 있다.
본 발명은 복수의 유입노즐에 의해 충돌분리챔버 내에 부압이 매우 용이하게 발생하고, 이를 통해 충돌분리케이싱의 충돌분리챔버 내로 블로바이가스가 고속으로 유입되어 블로바이가스의 충돌작용이 향상됨에 따라 증발엔진오일이 매우 효율적으로 분리될 수 있다.
본 발명은, 충돌분리챔버가 충돌공간과 분리공간으로 구획된 구조를 통해 블로바이가스가 유입노즐들을 통해 충돌분리챔버의 충돌공간으로 고속으로 유입되어 블로바이가스에서 증발엔진오일이 매우 효과적으로 분리될 수 있고, 또한 분리공간에서 증발엔진오일과 블로바이가스가 그 비중 차이로 매우 효과적으로 분리될 수 있다.
본 발명은 충돌분리케이싱의 벽체들이 수직방향 및 수평방향으로 형성된 구조에 의해, 블로바이가스의 충돌작용이 높아져 블로바이가스에서 증발엔진오일을 보다 확실하게 분리할 수 있는 장점이 있다.
본 발명은, 블로바이가스용 유출개구의 경사통로에 의해, 분리공간에서 블로바이가스용 유출개구를 통해 블로바이가스가 배출될 때, 블로바이가스 내에 일부 포함된 증발엔진오일은 경사통로의 경사면과 직접적으로 충돌한 후에 분리공간의 하부로 수거된 이후에 오일용 유출개구를 통해 배출될 수 있으므로, 증발엔진오일의 분리효율이 더욱 향상되는 장점이 있다.
본 발명은 제3벽체의 리브 및 홈에 의해, 유입노즐을 통해 고속으로 유입된 블로바이가스는 제3벽체의 리브 및 홈과 직접적으로 충돌함으로써 블로바이가스의 충돌에 의한 증발엔진오일의 분리가 더욱 원활하게 이루어질 뿐만 아니라 복수의 홈을 통해 증발엔진오일이 포집되어 수직하방으로 흘러내리므로 증발엔진오일의 포집효율이 대폭 높아지는 장점이 있다.
본 발명은 유입노즐이 덕트의 상류, 즉 회류유도수단을 향해 돌출된 구조를 통해 노즐공의 길이를 연장함으로써 블로바이가스의 유입속도를 더욱 고속으로 유도할 수 있고, 이를 통해 블로바이가스가 충돌분리챔버 내에서의 충돌작용을 더욱 높여 증발엔진오일의 분리효율을 매우 향상시킬 수 있다.
본 발명은 충돌분리케이싱이 덕트에 대해 별도로 제조되어 헤드커버 및 덕트에 대해 접합되는 구조로 이루어짐에 따라 그 제조를 용이하게 함과 더불어 제조단가를 대폭 낮출 수 있고, 더불어 충돌분리케이싱의 밀봉성을 대폭 높일 수 있는 장점이 있다.
도 1은 종래기술에 따른 내연기관용 세퍼레이터를 도시한 도면이다.
도 2는 본 발명의 일 실시예에 따른 내연기관용 세퍼레이터를 도시한 측단면도이다.
도 3은 도 2의 화살표 A부분을 확대한 도면이다.
도 4는 도 2의 B-B선을 따라 도시한 단면도이다.
도 5는 본 발명의 일 실시예에 따른 내연기관용 세퍼레이터를 도시한 부분절개 사시도이다.
도 6은 도 5의 화살표 C부분을 확대한 도면이다.
도 7은 도 3에 대한 변형실시예를 도시한 도면이다.
도 8은 도 7의 D-D선을 따라 도시한 단면도이다.
<도면 주요 부호의 설명>
100: 덕트 200: 회류유도수단
210: 회류유도부재 215: 곡선가이드부
300: 충돌분리수단 310: 충돌분리케이싱
320: 유입노즐 330: 충돌분리챔버
이하, 본 발명의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명한다. 참고로, 본 발명을 설명하는 데 참조하는 도면에 도시된 구성요소의 크기, 선의 두께 등은 이해의 편의상 다소 과장되게 표현되어 있을 수 있다. 또, 본 발명의 설명에 사용되는 용어들은 본 발명에서의 기능을 고려하여 정의한 것이므로 사용자, 운용자 의도, 관례 등에 따라 달라질 수 있다. 따라서, 이 용어에 대한 정의는 본 명세서의 전반에 걸친 내용을 토대로 내리는 것이 마땅하겠다.
도 2 내지 도 6은 본 발명의 일 실시예에 따른 내연기관용 세퍼레이터를 도시한 도면이다.
도시된 바와 같이, 본 발명에 의한 내연기관용 세퍼레이터는, 내연기관의 헤드커버(HC)에 마련된 덕트(100)와, 덕트(100) 내에서 블로바이가스의 회류를 유도하여 블로바이가스에서 증발엔진오일을 분리하는 회류유도수단(200)과, 덕트(100) 내에서 블로바이가스와의 충돌에 의해 블로바이가스에서 증발엔진오일을 분리하는 충돌분리수단(300)을 포함한다.
덕트(100)는 도 2에 도시된 바와 같이, 내연기관의 헤드커버(HC)에 마련되어 블로바이가스를 이송하는 관체형 구조로 이루어진다. 이러한 덕트(100)는 헤드커버(HC)에 일체로 형성되거나 헤드커버(HC)와 별도로 제조되어 조립될 수도 있다.
덕트(100)는 그 일측에 내연기관의 행정에 의해 발생한 블로바이가스가 유입되는 유입구(110)가 형성되고, 그 타측에 블로바이가스가 배출되는 배출구(120)가 형성된다.
유입구(110)는 덕트(100)의 일측 저면에 형성되고, 이에 블로바이가스는 유입구(110)를 통해 상향으로 유입되도록 가이드된다.
덕트(100)의 배출구(120)에 인접한 저면에는 오일 드레인(150)이 형성되고, 오일 드레인(150)은 회류유도수단(200)과 충돌분리수단(300)을 거치면서 블로바이가스에서 분리된 증발엔진오일을 집유하는 오일 트랩(151)과, 오일 트랩(151)에 집유된 증발엔진오일을 배출하는 오일 배출구(152)를 가진다.
회류유도수단(200)은 덕트(100)의 유입구(110)로 유입되는 블로바이가스가 수평축선 둘레로 회류(도 2 및 도 5의 화살표 RC 참조)하도록 유도하고, 이렇게 블로바이가스가 회류함에 의해 블로바이가스 내에 함유된 증발엔진오일이 그 원심력에 의해 1차로 분리될 수 있다.
바람직하게는, 회류유도수단(200)은 유입구(110)의 일측 가장자리에 설치된 회류도부재(210)를 포함한다.
회류유도부재(210)는 유입구(110)의 일측 가장자리에서 상향으로 연장되고, 회류유도부재(210)의 상부에 곡면 가이드부(215)가 형성된다. 이러한 곡면 가이드부(215)는 덕트(100)의 유입구(110)를 통해 상향으로 유입되는 블로바이가스를 수평축선 둘레로 회류시키도록 곡면지게 형성된다. 그리고, 곡면 가이드부(215)는 유입구(110)의 면적에 대응하는 사이즈로 형성되고, 이에 유입구(110)를 통해 상향으로 유입되는 블로바이가스는 곡면 가이드부(215)의 내주면을 따라 그 회류(回流)가 안정되게 이루어질 수 있다.
이와 같이, 본 발명은 회류유도부재(210)의 곡면 가이드부(215)에 의해 블로바이가스의 회류를 매우 안정되게 유도하여 증발엔진오일의 분리효율이 대폭 높아질 뿐만 아니라 그 회류유도구조가 매우 단순하여 제조단가를 대폭 절감할 수 있는 장점이 있다.
충돌분리수단(300)은 회류유도수단(210)의 하류 측에 설치되어 회류유도수단(210)에 의해 회류되는 블로바이가스와의 충돌에 의해 블로바이가스에서 증발엔진오일을 분리하도록 구성된다.
바람직하게는, 충돌분리수단(300)은 일면에 복수의 유입노즐(320)을 가진 충돌분리케이싱(310)을 포함하고, 충돌분리케이싱(310)의 내부에는 블로바이가스의 충돌에 의해 증발엔진오일이 분리되는 충돌분리챔버(330)가 형성된다.
충돌분리케이싱(310)은 그 일면에 복수의 유입노즐(320)을 가지고, 각 유입노즐(320)에는 노즐공(321)이 형성된다. 그리고, 각 노즐공(321)은 블로바이가스의 흐름방향을 따라 그 내경이 점차 감소하도록 형성됨으로써 그 부압발생을 통해 충돌분리케이싱(310)의 충돌분리챔버(330) 내로 블로바이가스가 매우 고속으로 유입될 수 있고, 이를 통해 충돌분리챔버(300) 내에서 블로바이가스의 충돌작용이 높아져 증발엔진오일의 분리효율이 향상될 수 있는 장점이 있다.
특히, 유입노즐(320)은 덕트(100)의 상류, 즉 회류유도수단(200)을 향해 돌출되게 형성되고, 이에 노즐공(321)의 길이를 연장함으로써 블로바이가스의 유입속도를 더욱 고속으로 유도할 수 있다. 이러한 유입노즐(320)에 의해 고속으로 유입되는 블로바이가스는 충돌분리챔버(330) 내에서의 충돌작용을 더욱 높여 증발엔진오일의 분리효율을 매우 향상시킬 수 있다.
한편, 충돌분리케이싱(310)은 덕트(100)에 동일체로 형성되거나 덕트(100)에 대해 별도로 제조되어 덕트(100) 및 헤드커버(HC)에 견고하게 접합될 수도 있다.
일 실시형태에 따르면, 충돌분리케이싱(310)은 수직방향으로 형성된 제1벽체(311)와, 제1벽체(311)에 대해 수평방향으로 연결된 제2벽체(312)와, 제2벽체(312)에 대해 수직방향으로 연결된 제3벽체(313)와, 제3벽체(313)에 대해 수평방향으로 연결된 제4벽체(314)와, 제4벽체(314)에 대해 수직방향으로 연결된 제5벽체(315)을 가진다.
그리고, 제1벽체(311), 제2벽체(312), 제3벽체(313), 제4벽체(314), 제5벽체(315)에 의해 충돌분리챔버(330)가 형성된다.
제1벽체(311)에는 상술한 복수의 유입노즐(320)이 수평방향으로 관통되게 형성된다.
제2벽체(312)은 제1벽체(311)의 상단과 제3벽체(313)의 상단을 폐쇄하는 구조로 마련된다.
제3벽체(313)은 제1벽체(311)에 대해 수평방향으로 이격되고, 제3벽체(313)의 하부에는 소통개구(316)가 형성되며, 이러한 소통개구(316)를 통해 블로바이가스가 통과할 수 있다. 또한, 제3벽체(313)는 수직방향으로 직립된 구조로 이루어짐에 따라 유입노즐(320)을 통해 유입된 블로바이가스는 제3벽체(313)와 직접적으로 충돌함으로써 블로바이가스의 충돌에 의한 증발엔진오일의 분리가 원활하게 이루어질 수 있다.
제4벽체(314)는 제3벽체(313)의 중간부분에서 수평방향으로 연장되게 연결되고, 제4벽체(314)에는 수직방향으로 관통된 블로바이가스용 유출개구(317)가 형성된다. 이러한 블로바이가스용 유출개구(317)는 제4벽체(314)에서 수직방향으로 관통된 복수의 관통홀 구조로 이루어지고, 이를 통해 증발엔진오일이 분리된 블로바이가스는 증발엔진오일에 비해 그 비중이 가벼우므로 블로바이가스용 유출개구(317)를 통해 수직방향으로 원활하게 유출될 수 있다.
제5벽체(315)의 하단에는 수평방향으로 관통된 오일용 유출개구(318)가 형성되고, 이렇게 제5벽체(315)의 하단에 오일용 유출개구(318)가 마련됨에 따라 분리된 증발엔진은 블로바이가스와의 비중 차이에 의해 그 분리가 더욱 원활해짐과 더불어 오일용 유출개구(318)를 통과하여 오일 드레인(150)을 향해 매우 원활하게 유출될 수 있다.
이와 같이, 충돌분리케이싱(310)의 벽체(311, 312, 313, 314, 314)들이 수직방향 및 수평방향으로 형성된 구조에 의해, 충돌분리챔버(330) 내에서 블로바이가스의 충돌에 의한 증발엔진오일의 분리작용이 높아져 블로바이가스에서 증발엔진오일을 보다 확실하게 분리할 수 있는 장점이 있다.
그리고, 충돌분리챔버(330)는 충돌분리케이싱(310) 내에서 충돌공간(331)과 분리공간(332)으로 구획되게 형성되고, 충돌공간(331) 및 분리공간(332)은 소통개구(316)를 통해 소통하도록 구성된다.
이러한 충돌분리챔버(330)의 충돌공간(331) 및 분리공간(332)에 대한 구획구성을 보다 구체적으로 설명하면, 제1벽체(311), 제2벽체(312) 및 제3벽체(313)에 의해 충돌공간(331)이 형성되고, 제3벽체(313), 제4벽체(314) 및 제5벽체(315)에 의해 분리공간(332)이 형성된다. 특히 제3벽체(313)에 의해 충돌분리챔버(330)는 충돌공간(331)과 분리공간(332)으로 구획되고, 이러한 충돌공간(331)과 분리공간(332)은 소통개구(316)를 통해 서로 소통한다. 그리고, 분리공간(332)은 그 상측(즉, 제4벽체(314))에 블로바이가스용 유출개구(317)가 마련됨과 더불어 그 하측(즉, 제5벽체(315)의 하단)에 오일용 유출개구(318)가 마련된다. 이에, 충돌공간(331) 내에서 충돌한 블로바이가스가 소통개구(316)를 통과하여 분리공간(332)에서 블로바이가스와 증발엔진오일이 그 비중차이에 의해 효과적으로 분리된다. 특히, 도 3에 도시된 바와 같이 비중이 가벼운 블로바이가스는 블로바이가스용 유출개구(317)를 통해 배출(도 3의 화살표 G 참조)되고, 이와 동시에 비중이 무거운 증발엔진오일은 오일용 유출개구(318)를 통해 배출(도 3의 화살표 O 참조)됨으로써 그 분리가 매우 효과적으로 이루어진다.
이와 같이, 충돌분리챔버(330)는 충돌공간(331)과 분리공간(332)으로 구획된 구조에 의해, 블로바이가스는 유입노즐(320)들을 통해 충돌분리챔버(330)의 충돌공간(331)으로 고속으로 유입되어 블로바이가스에서 증발엔진오일이 매우 효과적으로 분리될 수 있고, 또한 분리공간(332) 내에서 상측에 마련된 블로바이가스용 유출개구(317)과 하측에 마련된 오일용 유출개구(318)에 의해 블로바이가스와 증발엔진오일의 비중차이를 통한 분리작용을 더욱 효과적으로 수행할 수 있는 장점이 있다.
일 실시예에 따르면, 충돌분리케이싱(310)이 덕트(100)에 대해 별도로 제조되어 접합되는 구조로 이루어질 수 있고, 제1벽체(311)의 일부는 내연기관의 헤드커버(HC)에 결합될 수 있다. 헤드커버(HC)의 일측에는 조립리브(390)가 하향으로 돌출되게 형성되고, 이러한 조립리브(390)에 제1벽체(311)의 일부가 결합될 수 있다.
또한, 제1벽체(311)의 일면 즉, 헤드커버(HC)의 조립리브(390)에 향하는 부분에는 결합돌기(351)가 형성되고, 이에 대응하여 조립리브(390)에는 결합홈(352)이 형성된다. 이에, 제1벽체(311)의 결합돌기(351)가 조립리브(390)의 결합홈(352)에 끼움결합됨으로써 제1벽체(311)가 헤드커버(HC)의 조립리브(390)에 견고하게 결합될 수 있다.
그리고, 제1벽체(311)의 하단은 덕트(100)의 저면에 용접(FJ) 등을 통해 매우 견고하게 접합될 수 있다.
이와 같이, 본 발명은 충돌분리케이싱(310)의 제1벽체(311)이 헤드커버(HC) 및 덕트(100)에 접합되는 구조로 이루어짐에 따라 그 제조를 용이하게 함과 더불어 제조단가를 대폭 낮출 수 있고, 더불어 충돌분리케이싱의 밀봉성을 대폭 높일 수 있는 장점이 있다.
이상과 같이 구성된 본 발명에 의한 내연기관용 세퍼레이터의 작동을 다음과 같이 상세히 설명한다.
도 2에 도시된 바와 같이, 덕트(100)의 유입구(110)를 통해 블로바이가스가 덕트(100) 내로 상향으로 유입되면, 회류유도수단(200)의 회류유도부재(210)의 곡면 가이드부(215)에 의해 블로바이가스는 수평축선 둘레 회류되고, 이러한 블로바이가스의 회류작용에 의해 블로바이가스 내에 함유된 증발엔진오일은 그 원심력에 의해 1차적으로 분리된다.
그리고, 블로바이가스는 덕트(100) 내에서 하류 측으로 회류되면서 충돌분리수단(300)의 충돌분리케이싱(310)으로 이송된다.
충돌분리케이싱(310)의 제1벽체(311)에서 복수의 유입노즐(320)을 거치면서 고속으로 충돌분리케이싱(310)의 충돌분리챔버(330)로 유입되고, 이렇게 고속으로 유입된 블로바이가스는 제2벽체(312) 및 제3벽체(313)에서 매우 강한 충돌이 이루어져 블로바이가스에서 증발엔진오일이 매우 효과적을 분리될 수 있으며, 이렇게 분리된 증발엔진오일은 충돌분리챔버(330)의 바닥면을 타고 제5벽체(315)의 오일용 유출개구(318)를 거쳐 오일 드레인(150)으로 유출된다.
이와 동시에 증발엔진오일이 분리된 블로바이가스는 제4벽체(314)의 블로바이가스용 유출개구(317)를 거쳐 덕트(100)의 배출구(120)로 배출된다.
도 7 및 도 8은 본 발명의 다른 실시예를 도시한 도면이다.
도 7에 도시된 바와 같이, 분리공간(332)의 블로바이가스용 유출개구(317)는 수직방향으로 형성된 수직통로(317a)와, 이러한 수직통로(317a)에 대해 경사지게 형성된 경사통로(317b)로 이루어진다. 그리고, 경사통로(317b)의 일측 경사면(317c)은 수직통로(317a)의 상단에 면하게 배치된다.
이에, 분리공간(332)에서 블로바이가스용 유출개구(317)를 통해 블로바이가스가 배출될 때(도 7의 화살표 G 참조), 블로바이가스 내에 일부 포함된 증발엔진오일은 경사통로(317b)의 경사면(317c)과 직접적으로 충돌한 후에 분리공간(332)의 하부로 수거된 이후에 오일용 유출개구(318)를 통해 배출될 수 있으므로, 증발엔진오일의 분리효율이 더욱 향상되는 장점이 있다.
그리고, 도 7 및 도 8에 도시된 바와 같이, 충돌공간(331)의 제3벽체(313)에는 복수의 리브(313a) 및 복수의 홈(313b)이 연속되게 형성되고, 복수의 리브(313a) 및 복수의 홈(313b)은 수직방향으로 길게 연장된 구조로 이루어진다.
제1벽체(311)의 유입노즐(320)을 통해 고속으로 유입된 블로바이가스는 제3벽체(313)의 리브(313a) 및 홈(313b)과 직접적으로 충돌함으로써 블로바이가스의 충돌에 의한 증발엔진오일의 분리가 더욱 원활하게 이루어질 뿐만 아니라 복수의 홈(313b)을 통해 증발엔진오일이 포집되어 수직하방으로 흘러내리므로 증발엔진오일의 포집효율이 대폭 높아지는 장점이 있다.
이상, 본 발명의 구체적인 실시예를 설명하였으나, 본 발명은 이 명세서에 개시된 실시예 및 첨부된 도면에 의하여 한정되지 않으며 본 발명의 기술적 사상을 벗어나지 않는 범위 이내에서 당업자에 의하여 다양하게 변형될 수 있다.

Claims (4)

  1. 내연기관의 행정에 의해 발생하는 블로바이가스에서 증발엔진오일을 분리하는 내연기관용 세퍼레이터로서,
    내연기관의 헤드커버에 설치되고, 블로바이가스가 유입되는 유입구 및 블로바이가스가 배출되는 배출구를 가진 덕트;
    상기 덕트의 유입구로 유입되는 블로바이가스의 회류를 유도하여 블로바이가스에서 증발엔진오일을 분리하는 회류유도수단;
    상기 회류유도수단의 하류 측에 설치되어, 블로바이가스와의 충돌에 의해 블로바이가스에서 증발엔진오일을 분리하는 충돌분리수단; 및
    상기 덕트의 배출구에 인접한 저면에 마련되어, 블로바이가스에서 분리된 증발엔진오일을 배출하는 오일 드레인;을 포함하는 것을 특징으로 하는 내연기관용 세퍼레이터.
  2. 청구항 1에 있어서,
    상기 유입구는 덕트의 일측 저면에 형성되어 상기 블로바이가스가 상향으로 유입되도록 가이드하고,
    상기 회류유도수단은 상기 유입구의 가장자리에 설치된 회류유도부재를 포함하며, 상기 회류유도부재는 상기 유입구를 통해 상향으로 유입되는 블로바이가스를 수평축선 둘레로 회류시키도록 곡면지게 형성된 곡면 가이드부를 가지는 것을 특징으로 하는 내연기관용 세퍼레이터.
  3. 청구항 1에 있어서,
    상기 충돌분리수단은 일면에 복수의 유입노즐을 가진 충돌분리케이싱을 포함하고,
    상기 충돌분리케이싱의 내부에는 복수의 벽체에 의해 충돌분리챔버가 형성되며, 상기 충돌분리챔버는 블로바이가스의 충돌에 의해 증발엔진오일이 분리되도록 구성되는 것을 특징으로 하는 내연기관용 세퍼레이터.
  4. 청구항 3에 있어서,
    상기 유입노즐의 노즐공은 블로바이가스의 흐름방향을 따라 그 내경이 점차 감소하도록 형성되고, 상기 유입노즐은 회류유도수단을 향해 돌출되는 것을 특징으로 하는 내연기관용 세퍼레이터.
PCT/KR2015/003816 2014-06-17 2015-04-16 내연기관용 세퍼레이터 WO2015194751A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580032731.7A CN106661979B (zh) 2014-06-17 2015-04-16 内燃机用分离器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140073733A KR101544727B1 (ko) 2014-06-17 2014-06-17 내연기관용 세퍼레이터
KR10-2014-0073733 2014-06-17

Publications (1)

Publication Number Publication Date
WO2015194751A1 true WO2015194751A1 (ko) 2015-12-23

Family

ID=54061130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003816 WO2015194751A1 (ko) 2014-06-17 2015-04-16 내연기관용 세퍼레이터

Country Status (3)

Country Link
KR (1) KR101544727B1 (ko)
CN (1) CN106661979B (ko)
WO (1) WO2015194751A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106837470B (zh) * 2015-12-04 2019-07-05 认知控管株式会社 内燃机用分离器
KR102000629B1 (ko) 2017-11-07 2019-07-16 인지컨트롤스 주식회사 필터 기능을 갖는 내연기관의 벤틸레이션 압력조절 밸브장치
JP7343580B2 (ja) * 2019-06-12 2023-09-12 株式会社クボタ ブローバイガス還流装置
KR102305638B1 (ko) 2019-12-30 2021-09-28 인지컨트롤스 주식회사 내연기관의 벤틸레이션 압력조절 밸브장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023824A (ja) * 2003-07-01 2005-01-27 Uchihama Kasei Kk オイルミスト捕集装置
KR20090052031A (ko) * 2007-11-20 2009-05-25 주식회사 엘지화학 오일 분리기
JP2011157927A (ja) * 2010-02-03 2011-08-18 Toyota Boshoku Corp オイルセパレータ
JP2014051958A (ja) * 2012-09-10 2014-03-20 Toyota Boshoku Corp オイルミストセパレータ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101014532B1 (ko) * 2008-07-25 2011-02-14 기아자동차주식회사 블로우바이 가스의 오일 분리장치
JP5954333B2 (ja) * 2011-10-11 2016-07-20 トヨタ紡織株式会社 オイルミストセパレータ
JP5895816B2 (ja) * 2012-10-31 2016-03-30 トヨタ紡織株式会社 オイルミストセパレータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005023824A (ja) * 2003-07-01 2005-01-27 Uchihama Kasei Kk オイルミスト捕集装置
KR20090052031A (ko) * 2007-11-20 2009-05-25 주식회사 엘지화학 오일 분리기
JP2011157927A (ja) * 2010-02-03 2011-08-18 Toyota Boshoku Corp オイルセパレータ
JP2014051958A (ja) * 2012-09-10 2014-03-20 Toyota Boshoku Corp オイルミストセパレータ

Also Published As

Publication number Publication date
CN106661979A (zh) 2017-05-10
CN106661979B (zh) 2019-07-05
KR101544727B1 (ko) 2015-08-17

Similar Documents

Publication Publication Date Title
WO2015194751A1 (ko) 내연기관용 세퍼레이터
CN205714339U (zh) 一种油气分离器
CN202914159U (zh) 一种发动机油气分离器
KR101720557B1 (ko) 내연기관용 세퍼레이터
US9598991B2 (en) Oil separator
JP4510108B2 (ja) ブローバイガス用オイルセパレータ
JP2009121281A (ja) 内燃機関のオイルセパレータ
JP2008121478A (ja) 内燃機関のブローバイ流路構造
KR20100123323A (ko) 내연기관용 세퍼레이터
KR101251498B1 (ko) 사이클론 타입의 오일 세퍼레이터
US9938869B2 (en) Internal charge air feed from rocker cover integrated intake runners
KR101317516B1 (ko) 내연기관용 엔진오일 세퍼레이터
KR101335763B1 (ko) 내연기관용 세퍼레이터
JP2002276328A (ja) ブローバイガスの気液分離装置
JP2010084574A (ja) サイクロン式オイルセパレータ
JP5994362B2 (ja) エンジンのオイル分離装置
CN109139186A (zh) 一种滤网油驱式自适应调压发动机油气分离装置
JP2004211652A (ja) 空気冷却器付き内燃機関の空気ダクト構造
WO2020052662A1 (zh) 一种隔板式发动机油气分离装置
JP5017490B1 (ja) サイクロン式オイルセパレータ
JP2012112267A (ja) オイルセパレータ
JP2009221858A (ja) ブローバイガス用オイルセパレータ
JP5997513B2 (ja) オイルセパレータ
JP5979080B2 (ja) 内燃機関のブローバイガス処理装置
CN109505679A (zh) 一种具有隔板式自适应通风系统的天然气发动机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809762

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15809762

Country of ref document: EP

Kind code of ref document: A1