WO2020052662A1 - 一种隔板式发动机油气分离装置 - Google Patents

一种隔板式发动机油气分离装置 Download PDF

Info

Publication number
WO2020052662A1
WO2020052662A1 PCT/CN2019/105743 CN2019105743W WO2020052662A1 WO 2020052662 A1 WO2020052662 A1 WO 2020052662A1 CN 2019105743 W CN2019105743 W CN 2019105743W WO 2020052662 A1 WO2020052662 A1 WO 2020052662A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
oil
separation device
baffle
gas
Prior art date
Application number
PCT/CN2019/105743
Other languages
English (en)
French (fr)
Inventor
朱雄
覃星念
韦福观
赵宁宁
叶双超
余晓强
肖刚
Original Assignee
广西玉柴机器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广西玉柴机器股份有限公司 filed Critical 广西玉柴机器股份有限公司
Publication of WO2020052662A1 publication Critical patent/WO2020052662A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
    • F01M2013/0438Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil with a filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
    • F01M2013/0461Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil with a labyrinth
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M13/00Crankcase ventilating or breathing
    • F01M13/04Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil
    • F01M2013/0488Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil with oil trap in the return conduit to the crankcase
    • F01M2013/0494Crankcase ventilating or breathing having means for purifying air before leaving crankcase, e.g. removing oil with oil trap in the return conduit to the crankcase using check valves

Definitions

  • the invention belongs to the technical field of oil-gas separation, and particularly relates to a diaphragm-type engine oil-gas separation device.
  • blow-by gas The high-temperature gas generated by the engine during operation can penetrate into the crankcase through the gap between the piston group and the cylinder, causing gas leakage.
  • the components of blow-by gas are unburned fuel gas, water vapor, and exhaust gas. Water vapour condenses and dilutes the oil in the engine oil, reducing the performance of the engine oil; sulfur dioxide in the exhaust gas encounters air oxidation to generate sulfuric acid, which accelerates the oxidative deterioration of the engine oil, which will cause corrosion and accelerated wear of engine parts; blow-by gas will also cause the crankcase to Excessive pressure will damage the seal of the crankcase, causing oil leakage and loss; accelerating the aging of the oil and reducing reliability.
  • crankcase ventilation system is required to control blow-by gas.
  • the blow-by gas flows through the crankcase ventilation system, it will carry a large amount of oil and gas, causing oil loss and worsening emissions. Therefore, oil and gas must be separated to reduce oil loss.
  • the traditional cylinder head cover can only perform a single separation, and the effect is not as expected.
  • the Chinese utility model patent “A cylinder head cover” with the publication number of CN205559013U includes a cylinder head cover body, and an oil and gas pre-separation chamber is formed inside the cylinder head cover body.
  • the oil and gas pre-separation chamber is provided with a pre-separation air inlet.
  • a pre-separation gas outlet in the oil-gas pre-separation chamber from the pre-separation air inlet to the pre-separation gas outlet, a plurality of lateral partitions arranged in a vertical direction and a labyrinth space in a horizontal direction are sequentially arranged.
  • a plurality of vertical partitions, a horizontal partition and a vertical partition form a labyrinth-type oil and gas passage that communicates with the pre-separated air inlet and the pre-separated air outlet, and an oil-gas separator is integrated on the outer side wall of the cylinder head cover.
  • the Chinese invention patent application with publication number CN108049937A “Built-in oil and gas separation system in cylinder head cover”
  • a built-in oil and gas separator including: a cover body, a labyrinth cavity and a bottom cover provided on one side of the cover body, the labyrinth One end of the cavity is provided with an air outlet pipe extending to the outside of the cover, and a ventilator socket is opened at the top; the labyrinth cavity is provided with a coarse filter plate, a circuitous rectification structure, a fine filter plate and a partition plate.
  • the oil and gas pre-separation device of the cylinder head cover is provided with a coarse filter orifice plate and a circuitous rectification structure, which can be used for oil and gas separation, but the large oil droplets (oil droplets with a diameter greater than 10um) are Oil droplets (referring to the diameter of oil droplets of 2 to 10um) are easy to mix, and do not have the effect of oil droplet adsorption and diversion, which will cause the diameter of the oil droplets entering the fine filter orifice plate to remain large.
  • the purpose of the present invention is to overcome the shortcomings of the prior art described above, and provide a new baffle-type engine oil-gas separation device that can not only classify ultra-large oil droplets, large oil droplets, and small oil droplets, but also has high separation efficiency and can solve the problem.
  • the problems of oil droplet adsorption and recovery and collision and splash do not require regular maintenance and replacement of the filter element, which can meet the requirements of the National Six Engine.
  • the invention provides a baffle-type engine oil-gas separation device, which includes a pre-separation device and an initial separation device installed in a mounting groove in a cylinder head cover, and the mounting groove is provided with an intake hole for receiving an oil-gas mixture in a crankcase.
  • the cylinder head cover is also provided with an exhaust hole for exhausting the separated exhaust gas.
  • the preliminary separation device is composed of at least two partitions, and the curved channel composed of the partitions has a comparative advantage for separating large oil droplets.
  • the cylinder head cover, the pre-separation device and the preliminary separation device combine to form an oil and gas channel;
  • the pre-separation device includes a first filter orifice plate and a first filter baffle plate, A coarse separation device composed of an oil return chamber and a first oil return pipe below, the coarse separation device is located behind the primary separation device, and is used for accelerating collision of the oil and gas mixture to further separate large oil droplets;
  • a second filter orifice plate and a filter element A fine separation device consisting of a second filter baffle, a second oil return chamber on the bottom plate, and a second oil return pipe below, the fine separation device is located behind the coarse separation device, and is used for mixing oil and gas;
  • the exhaust hole is provided at the rear of the fine separation device, the exhaust hole for discharging gas after separation.
  • the first filter plate in the coarse separation device is provided with a coarse filter hole for accelerating the oil and gas mixture.
  • the first filter baffle is provided with a guide oil drip to the first A filter bar in the oil return chamber.
  • the first filter baffle is provided with a needle-shaped protrusion for increasing the contact area of oil and gas collision, and the needle-shaped protrusion can effectively prevent oil Due to the high-speed collision, the droplets are broken twice to improve the efficiency of oil and gas separation.
  • the first oil return cavity is arranged below the first filter baffle.
  • the first filter baffle is a non-closed opening structure for the flow of the oil and gas mixture.
  • the first oil return pipe is disposed at the bottom of the first oil return cavity.
  • a second filter plate, a filter element and a second filter baffle in the fine separation device are closely arranged on the bottom plate;
  • a secondary acceleration fine filter hole, the second filter baffle is provided with two filter ribs for collisionally separating small oil droplets and guiding the small oil droplets to a second oil return cavity, and the second oil return cavity is provided Behind the second filter baffle, the second filter baffle is a non-closed opening structure, and the second oil return pipe is disposed at the bottom of the second oil return cavity.
  • the pre-separation device further includes a concave baffle.
  • the concave baffle is an open structure to facilitate the formation of oil and gas channels.
  • the concave baffle is also provided for colliding and separating oil droplets and guiding the oil droplets to Three filter ribs of the second oil return cavity; the oil and gas mixture impacts the concave baffle, oil droplets flow into the second oil return cavity through the three filter ribs, and the remaining oil and gas mixture flows through the opening structure of the concave baffle (oil and gas channel) ) Into the exhaust vent.
  • the first oil return pipe and the second oil return pipe are further provided with an umbrella-shaped oil return valve that prevents exhaust gas from recoiling into the pre-separation device, which can effectively prevent the gas oil pre-separation efficiency from being affected by the exhaust gas recoil.
  • the cylinder head cover is also provided with an air outlet pipe for discharging the oil and gas mixture, and the arrangement of the air outlet pipe can introduce the pre-separated oil and gas mixture into other active separation devices.
  • the material of the filter element is any one of non-woven fabric, felt, glass fiber, and synthetic fiber.
  • the distance between the first filter plate and the first filter baffle is 2 to 5 mm, and the diameter of the coarse filter hole can be set to 3 to 6 mm according to the amount of air intake of the air inlet.
  • the number of coarse filter holes is set to 10 to 45, so that the flow rate through the first filter plate is controlled at 5 to 8 m / s, and the oil and gas mixture flowing through the first filter plate is in contact with the first filter baffle within this flow rate range. The effect of separating large oil droplets is good.
  • the pore diameter of the fine filter hole can be set to 2 to 3 mm, and the number of the fine filter holes is set to 8 to 54 to pass through the second filter.
  • the flow rate of the orifice plate is controlled at 15-30 m / s, and the oil and gas mixture flowing through the second filter orifice plate has a good effect of separating small oil droplets by colliding with the second filter baffle within this flow rate range.
  • the baffle-type engine oil and gas separation device can accelerate the oil and gas mixture twice to separate large oil droplets and small oil droplets respectively and flow out through the oil return chamber.
  • the separation efficiency is high; on the adsorption of small oil droplets, the filter element is accelerated due to the secondary acceleration. The impact force will not be blocked by residues, so there is no need to replace the filter element regularly, which can solve the problem of periodic maintenance.
  • the bulkhead engine oil and gas separation device can also preset coarse filter holes and fine filter holes according to the amount of intake air. Specifications (including the size of the pores and the number of filter holes) to ensure the flow rate after the first acceleration and the second acceleration, and improve the efficiency of separating oil droplets by impact.
  • FIG. 1 is a schematic diagram of an internal structure of a cylinder head cover according to an embodiment of the present invention
  • FIG. 2 is a three-dimensional structure diagram of a cylinder head cover mounting groove according to an embodiment of the present invention
  • FIG. 3 is a schematic cross-sectional view of a cylinder head cover mounting groove according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a three-dimensional structure of a pre-separation device according to an embodiment of the present invention.
  • FIG. 5 is a three-dimensional structure diagram of a first filter plate and a first filter baffle according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a three-dimensional structure of a first filter baffle provided with needle-shaped protrusions according to an embodiment of the present invention
  • FIG. 7 is a three-dimensional structure diagram of a second filter plate, a filter element, and a second filter baffle according to an embodiment of the present invention
  • FIG. 8 is a schematic diagram of a three-dimensional structure of a concave baffle according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an initial separation structure of two partitions according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of an initial separation structure of four partitions according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of an air outlet pipe of a cylinder head cover according to an embodiment of the present invention.
  • 100 is a cylinder head cover
  • 101 is a mounting groove
  • 102 is an exhaust hole
  • 103 is an exhaust pipe
  • 200 is a pre-separation device
  • 201 is a bottom plate
  • 204 is a concave baffle
  • 205 is a first filter plate.
  • 206 is the first filter baffle
  • 207 is the first oil return cavity
  • 208 is the first oil return pipe
  • 209 is the second filter plate
  • 210 is the filter element
  • 211 is the second filter baffle
  • 212 is the second oil return cavity.
  • 213 is the second oil return pipe
  • 215 is a coarse filter hole
  • 216 is a filter bar
  • 217 is a fine filter hole
  • 218 is a two filter bar
  • 219 is a three filter bar
  • 220 is a needle-shaped protrusion
  • 300 is In the preliminary separation device, 301 is an air inlet, 302 is a first partition, 303 is a second partition, 304 is a third partition, and 305 is a fourth partition.
  • a baffle-type engine oil-gas separation device is provided in an embodiment of the present invention.
  • the baffle-type engine oil-gas separation device includes a pre-separation device and a preliminary separation device installed in a mounting groove in a cylinder head cover. Part of the oil droplets are separated during the intake phase of the oil and gas mixture. After the oil and gas mixture flows through the preliminary separation device, it enters the pre-separation device. Two accelerated collision separations are performed in the pre-separation device, and the oil drops are discharged through the oil return pipe.
  • FIG. 1 is a cylinder head cover according to an embodiment of the present invention, which is used to provide a pre-separation device and a preliminary separation device. As shown in FIGS.
  • the cylinder head cover 100 is provided with a pre-separation device.
  • the installation groove 101 of the device 200 and the preliminary separation device 300 is also provided with an air inlet hole 301 for receiving the oil and gas mixture in the crankcase of the engine.
  • the preliminary separation device 300 is provided behind the air inlet hole 301 for The oil and gas mixture is initially separated to separate oil droplets with a diameter greater than 10um in the oil and gas mixture.
  • the cylinder head cover 100 is also provided with an exhaust hole 102.
  • the pre-separation device 200 includes a bottom plate 201 arranged in parallel.
  • a coarse separation device consisting of a first filter plate 205 and a first filter baffle 206, a first oil return cavity 207 on the bottom plate 201, and a first oil return pipe 208 at the lower part thereof, said coarse separation device is located in the preliminary separation device Behind 300, it is used to handle large oil droplets in oil-gas mixture (referring to the diameter of oil droplets 2-10um); the second filter plate 209, the filter element 210 and the second filter baffle 211, and the second oil return chamber on the bottom plate 201 212 and its second second oil return pipe 213
  • a separating device the fine separating device is located behind the coarse separating device and is used for processing small oil droplets (referring to the diameter of the oil droplets of 0.1 to 2um) in the oil-gas mixture; the exhaust hole 102 on the cylinder head cover 100 is provided in the fine
  • the rear of the separation device is used to exhaust the exhaust gas after separating oil droplets.
  • the preliminary separation device 300 is composed of a first partition plate 302 and a second partition plate 303, and the first partition plate 302 and the second partition plate 303 are respectively connected to the installation groove 101.
  • the inner walls at both ends are fixed so as to form a curved labyrinth type oil and gas channel.
  • the preliminary separation device 300 is composed of a first partition 302, a second partition 303, and a third partition.
  • the plate 304 and the fourth partition plate 305 are composed of the first partition plate 302, the second partition plate 303, the third partition plate 304, and the fourth partition plate 305, which are respectively staggered with the inner walls of the two ends of the mounting groove 101 so as to form a bend. Labyrinth of oil and gas channels.
  • a first filter plate 205 and a first filter baffle plate 206 in the coarse separation device are arranged in parallel on a bottom plate 201 (refer to FIG. 4), and the first filter plate 205 is provided with The coarse filter 215 is accelerated once for the oil and gas mixture.
  • a filter rib is provided on the first filter baffle 206 for collision separation of large oil droplets (referring to the diameter of the oil droplets of 2 to 10um) and for guiding the large oil droplets to the first oil return cavity 207.
  • the first oil return cavity 207 is disposed below the first filter baffle 206, and the first filter baffle 206 is a non-closed opening structure (easy to form an oil and gas channel), and the first oil return pipe 208 It is set at the bottom of the first oil return chamber 207; the oil and gas mixture flows through the first filter plate 205 and accelerates and collides with the first filter baffle 206, and large oil droplets flow into the first oil return chamber 207 through a filter rib 216 The remaining oil and gas mixture flows out through the opening portion (oil and gas channel) of the first filter baffle plate 206; in another embodiment, as shown in FIG. 6, the first filter baffle plate 206 is provided for increasing oil and gas collision.
  • Needle-shaped protrusions 220 in contact area the needle-shaped protrusions 220 can effectively absorb large oil droplets that collide with the first filter baffle 206 at high speed and guide the oil droplets to the first oil return chamber 207 to prevent large oil Due to the high-speed collision, the droplets are broken twice (the large oil droplets are easy to splash), which improves the oil and gas separation efficiency.
  • the needle boss portion 220 flows into the first oil chamber 207, the remaining hydrocarbon mixture flowing through the first baffle opening portion was filtered (oil passage) 206 outflow.
  • the air intake volume of the air inlet hole 301 is 60 L / min
  • the diameter of the coarse filter hole 215 is set to 3 mm
  • the number of the coarse filter holes 215 is set to 27, and the first The distance between the filter plate 205 and the first filter baffle plate 206 is set to 2 mm, so that the flow velocity through the first filter plate 205 is controlled at about 5 m / s.
  • the oil and gas mixture flowing through the first filter plate 205 is at the flow rate.
  • the air intake volume of the air intake hole 301 is 100 L / min
  • the diameter of the coarse filter hole 215 It is set to 6 mm
  • the number of the coarse filter holes 215 is set to 10
  • the distance between the first filter plate 205 and the first filter baffle plate 206 is set to 3 mm, so that the flow rate through the first filter plate 205 is controlled At about 6 m / s, at this time, the oil and gas mixture flowing through the first filter plate 205 hits the first filter baffle 206 to separate large oil droplets under the setting of the flow velocity and the spacing
  • the air intake volume of the air inlet hole 301 is 150 L / min
  • the diameter of the coarse filter hole 215 is set to 5 mm
  • the number of the coarse filter holes 215 is set to 25, and the first filter hole
  • the distance between the plate 205 and the first filter baffle plate 206 is set
  • the oil and gas mixture flowing through the first filter plate 205 is at the flow rate and distance.
  • the effect of separating large oil droplets with the first filter baffle 206 is good under the setting of.
  • the air intake of the air inlet 301 is 270L / min
  • the diameter of the coarse filter 215 is set to 6 mm
  • the number of the coarse filter holes 215 is set to 20
  • the distance between the first filter plate 205 and the first filter baffle plate 206 is set to 4 mm, so that the flow velocity through the first filter plate 205 is controlled to about 8m / s
  • the oil and gas mixture flowing through the first filter plate 205 hits the first filter baffle 206 to separate large oil droplets under the setting of the flow velocity and spacing;
  • such as The air intake of the air hole 301 is 270 L / min
  • the diameter of the coarse filter hole 215 is set to 3 mm
  • the number of the coarse filter holes 215 is set to 45, the first filter plate 205 and the first filter
  • the second filter plate 209, the filter element 210 and the second filter baffle 211 in the fine separation device are closely arranged on the bottom plate 201;
  • the second filter plate 209 is provided with a fine filter hole 217 for secondary acceleration of the oil and gas mixture.
  • the oil and gas mixture flows through the second filter plate 209, the oil and gas mixture is accelerated twice under the action of the fine filter hole 217 The oil and gas mixture will impact the filter element 210 at a high speed.
  • the lower part of the filter element 210 is an open structure to facilitate the formation of oil and gas channels.
  • the filter element 210 is used to adsorb small oil droplets after the oil and gas mixture is accelerated twice (referring to the diameter of the oil droplets of 0.1).
  • the material of the filter element 210 can be non-woven fabric, felt, glass fiber or synthetic fiber.
  • the filter element 210 has a good effect of absorbing oil droplets, and the surface of the filter element 210 is not affected by the high-speed impact of secondary acceleration. Residues can be accumulated, so regular replacement maintenance can be avoided (the filter is directly used in the prior art for oil and gas separation, although its efficiency is high, but it needs to be replaced and maintained regularly, and its maintenance cost is high); said second
  • the baffle 211 is provided with two filter ribs 218 for colliding and separating small oil droplets and guiding the small oil droplets to the second oil return cavity 212.
  • the lower part of the second filter baffle 211 is a non-closed opening structure (formed by Oil and gas channel) to facilitate the flow of the oil and gas mixture.
  • the opening structure (oil and gas passage) of the second filter baffle 211 enters the next-stage separation device; in one embodiment, if the air intake of the air inlet 301 is 60 L / min, the diameter of the fine filter 217 is set to 2 mm The number of the fine filter holes 217 is set to 18 so that the flow velocity through the second filter plate 209 is controlled at about 18 m / s.
  • the oil and gas mixture flowing through the second filter plate 209 impacts at this flow rate.
  • the filter element 210 after the filter element 210 absorbs small oil droplets, the oil and gas mixture continues to hit the second filter baffle 211 at this flow rate, and a better small oil droplet separation effect can be obtained; in another embodiment, such as the inlet of the air inlet 301
  • the air volume is 60 L / min, and the pore diameter of the fine filter 217 is set to 3 mm.
  • the number of filter holes 217 is set to eight so that the flow velocity through the second filter plate 209 is controlled at about 18 m / s.
  • the air-fuel mixture flowing through the second filter plate 209 impacts the filter element 210 at this flow rate.
  • the air intake volume of the air intake hole 301 is 120L / min
  • the pore diameter of the fine filter holes 217 is set to 2.5 mm
  • the number of the fine filter holes 217 is set to 20 so that the flow velocity through the second filter plate 209 is controlled to about 20 m / s.
  • the oil and gas mixture flowing through the second filter plate 209 impacts the filter element 210 at this flow rate.
  • the filter element 210 absorbs small oil droplets, the oil and gas mixture continues to hit the second filter baffle 211 at this flow rate, and a better small oil droplet separation effect can be obtained.
  • the air intake volume of the air inlet 301 is 180 L / min
  • the diameter of the fine filter holes 217 is set to 2.5 mm
  • the number of the fine filter holes 217 is set to 23, so that The flow velocity through the second filter plate 209 is controlled at about 27 m / s.
  • the oil and gas mixture flowing through the second filter plate 209 is The filter element 210 is impacted at a flow rate.
  • the filter element 210 absorbs small oil droplets
  • the oil and gas mixture continues to hit the second filter baffle 211 at the flow rate, and a better small oil droplet separation effect can be obtained.
  • an air intake hole The air intake of 301 is 260L / min
  • the diameter of the fine filter holes 217 is set to 3mm
  • the number of the fine filter holes 217 is set to 24, so that the flow rate through the second filter plate 209 is controlled to about 27m
  • the oil and gas mixture flowing through the second filter plate 209 impacts the filter element 210 at this flow rate.
  • the filter element 210 absorbs small oil droplets
  • the oil and gas mixture continues to hit the second filter baffle 211 at this flow rate.
  • the air intake volume of the air inlet 301 is 270L / min
  • the diameter of the fine filter holes 217 is set to 2mm
  • the number of the fine filter holes 217 is set It is 54 so that the flow velocity through the second filter plate 209 is controlled at about 30m / s.
  • the oil and gas mixture flowing through the second filter plate 209 impacts the filter element 210 at this flow rate, and the filter element 210 absorbs small oil droplets after the oil and gas The mixture continues to hit the second filter baffle 211 at this flow rate to obtain better small oil droplets. seperate effect.
  • the pre-separation device 200 further includes a concave baffle 204.
  • the concave baffle 204 is an open structure to facilitate the formation of oil and gas channels. As shown in FIGS. 4 and 8, the concave baffle 204
  • the plate 204 is also provided with three filter ribs 219 for colliding and separating oil droplets and guiding them to the second oil return cavity 212; the oil-gas mixture impacts the concave baffle 204, and the oil droplets flow into the second circuit through the three filter ribs 219
  • the oil cavity 212, the remaining oil and gas mixture flows through the opening structure (oil and gas passage) of the concave baffle 204 and enters the exhaust hole 102, and the concave baffle 204 is fixed upward on the bottom plate 201 so that the second separation device 203 flows out
  • the oil-gas mixture directly hits the lower part of the concave baffle 204, and the oil droplets flow into the second oil return cavity 212 through the three filter ribs 219 under the
  • the first oil return pipe 208 and the second oil return pipe 213 are further provided with an umbrella oil return valve (not shown in the figure) to prevent exhaust gas from recoiling into the pre-separation device 200. It can effectively prevent the pre-separation efficiency of oil and gas due to exhaust gas recoil.
  • the exhaust hole 102 is also provided with an air outlet pipe 103 (as shown in FIG. 11) for discharging the oil and gas mixture.
  • the air outlet pipe 103 is provided to guide the pre-separated oil and gas mixture to other active separation devices for oil and gas. Active separation.
  • the baffle-type engine oil-gas separation device can accelerate the oil-gas mixture twice to separate large oil droplets and small oil droplets respectively and return the oil
  • the cavity flows out, and the separation efficiency is high;
  • the specifications of the coarse and fine filter holes can be preset according to the amount of air intake, so as to ensure the flow rate after primary acceleration and secondary acceleration, Improving the efficiency of impact separation of oil droplets can finally meet the national VI emission standards.
  • references to "some embodiments”, “one embodiment”, or “an embodiment” in this specification refer to a particular feature, structure, or property described in connection with the embodiment being included in at least one embodiment .
  • the appearances of the phrases “in various embodiments”, “in some embodiments”, “in one embodiment”, or “in embodiments” and the like in various places throughout the specification do not necessarily refer to the same implementation example.
  • the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments.
  • a particular feature, structure, or property shown or described in connection with one embodiment can be combined, in whole or in part, with a feature, structure, or property of one or more other embodiments without limitation, as long as the combination is not a non- Logical or not working.
  • each element in the drawings of the present application is for illustrative purposes only, and is not drawn to scale.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)

Abstract

一种隔板式发动机油气分离装置,包括安装在气缸盖罩(100)内安装槽的预分离装置(200)和初分离装置(300),安装槽(101)开设有进气孔(301),预分离装置(200)包括第一滤孔板(205)、第一滤挡板(206)、第二滤孔板(209)、滤芯(210)、第二滤挡板(211)、底板(201)、第一回油腔(207)、第一回油管(208)、第二回油腔(212)和第二回油管(213);该隔板式发动机油气分离装置能够对油气混合物进行二次加速,分别分离大油滴和小油滴并通过回油腔流出,分离效率高;在小油滴的吸附上,滤芯由于二次加速的冲击力不会有残留物堵塞,因此无需定期更换滤芯,能够解决定期更换维护问题。

Description

一种隔板式发动机油气分离装置 技术领域
本发明属于油气分离技术领域,具体涉及一种隔板式发动机油气分离装置。
背景技术
发动机在工作时产生的高温燃气会通过活塞组与气缸之间的间隙窜入曲轴箱内,造成窜气。窜气的成分为未燃烧的燃油气、水蒸气和废气等。水蒸气凝结在机油中稀释机油,降低机油的使用性能;废气中的二氧化硫遇到空气氧化生成硫酸,加速机油的氧化变质,会导致发动机零件的腐蚀和加速磨损;窜气还会使曲轴箱的压力过高而破坏曲轴箱的密封,使机油渗漏流失;加速机油的老化,降低可靠性。因此,需要采用曲轴箱通风系统对窜气进行控制。窜气在流经曲轴箱通风系统时,会携带大量的油气,造成机油损耗,同时恶化排放,因此必须对油气进行分离,减小机油损耗。通过在气缸盖罩中集成油气分离器来对发动机排除的油气进行分离,传统的气缸盖罩只能进行单次分离,效果并不能达到预期。
如公开号为CN205559013U的中国实用新型专利“一种气缸盖罩”,包括气缸盖罩本体,气缸盖罩本体内侧形成有油气预分离腔室,该油气预分离腔室设有预分离进气口和预分离出气口,在油气预分离室内从所述预分离进气口到所述预分离出气口依次设有沿垂直方向间隔排列的多个横向隔板和沿水平方向呈迷宫式间隔排列的多个纵向隔板,横向隔板与纵向隔板之间形成连通预分离进气口和预分离出气口的迷宫式的油气通道,并在气缸盖罩外侧壁集成有油气分离 器。通过以上内容可以发现,现有技术中气缸盖罩油气预分离的核心在于横向隔板与纵向隔板之间形成的迷宫式的油气通道,但其单层结构油气分离能力差,无法分离细小油滴。
如公开号为CN108049937A的中国发明专利申请“气缸盖罩内置油气分离系统”,内置油气分离器,包括:盖罩本体以及设置在该盖罩本体一侧的迷宫腔体和底盖,所述迷宫腔体的一端设置有延伸至盖罩外部的出气接管,顶部开设有呼吸器插口;该迷宫腔体内设有粗滤孔板、迂回式整流结构、精滤孔板和隔位板。通过以上内容可以发现,现有技术中气缸盖罩油气预分离装置设有粗滤孔板和迂回式整流结构,其可以用于油气分离,但超大油滴(直径大于10um的油滴)与大油滴(指油滴直径为2~10um)容易混杂,且不具有油滴吸附和导流效果,会导致进入精滤孔板的油滴直径仍然很大,对于处理小油滴(指油滴直径为0.1~2um)有非常大的影响;现有技术所公开的迂回式整流结构无法解决油气混合物在高速碰撞时产生的油滴二次破碎(碰撞飞溅)问题,油滴流经碰撞迂回式整流结构后无法吸附回收,仍会随着油气混合物流向出口,分离效率低下。
发明内容
本发明的目的在于克服上述现有技术的缺陷,提供一种新的隔板式发动机油气分离装置,既能分级分离超大油滴、大油滴和细小油滴,而且分离效率高,还能解决油滴吸附回收以及碰撞飞溅的问题,亦不需要定期维护更换滤芯,能满足国六发动机要求。
本发明的目的是通过以下技术方案实现的:
本发明提供了一种隔板式发动机油气分离装置,包括:安装在气缸盖罩内安装槽的预分离装置和初分离装置,所述安装槽开设有用于接收曲轴箱中油气混合物的进气孔,所述气缸盖罩还设有用于将分离后的废气排出的排气孔,所述初分离装置由至少两个隔板组成,由所述隔板组成的弯曲通道对于分离超大油滴具有较好的效果;所述气缸盖罩、预分离装置和初分离装置组合形成油气通道;所述预分离装置包括平行布置在底板上的第一滤孔板和第一滤挡板、底板上的第一回油腔和其下的第一回油管组成的粗分离装置,所述粗分离装置位于初分离装置后方,用于对油气混合物进行加速碰撞进一步分离大油滴;第二滤孔板、滤芯和第二滤挡板、底板上的第二回油腔和其下的第二回油管组成的细分离装置,所述细分离装置位于粗分离装置后方,用于对油气混合物进行再次加速碰撞进一步分离小油滴,所述排气孔设置在细分离装置后方,所述排气孔用于排出分离后的废气。
所述粗分离装置中的第一滤孔板上设置有用于对油气混合物进行加速的粗滤孔,在一个实施例中,所述第一滤挡板上设置有用于导流油滴到第一回油腔的一滤筋条,在又一个实施例中,所述第一滤挡板上设置有用于增加油气碰撞接触面积的针状凸起部,所述针状凸起部能够有效防止油滴由于高速碰撞造成二次破碎,提高了油气分离效率;所述第一回油腔设置在第一滤挡板的下方,所述第一滤挡板为非封闭的开口结构以便油气混合物的流动,所述第一回油管设置在第一回油腔的底部。
在一个实施例中,所述细分离装置中的第二滤孔板、滤芯和第二滤挡板彼此紧贴地布置在底板上;所述第二滤孔板上设置有用于对油气混合物进行二次加速的细滤孔,所述第二滤挡板上设置有用于碰撞分离小油滴并导流小油滴到 第二回油腔的二滤筋条,所述第二回油腔设置在第二滤挡板后方,所述第二滤挡板为非封闭的开口结构,所述第二回油管设置在第二回油腔的底部。
在一个实施例中,所述预分离装置还包括凹形挡板,所述凹形挡板为开口结构便于形成油气通道,所述凹形挡板还设置有用于碰撞分离油滴并导流到第二回油腔的三滤筋条;油气混合物对凹形挡板进行撞击,油滴通过三滤筋条流入第二回油腔,其余油气混合物流经凹形挡板的开口结构(油气通道)进入排气孔。
在一个实施例中,在所述第一回油管和第二回油管还设有防止废气反冲进入预分离装置的伞形回油阀,可以有效防止因废气反冲而影响油气预分离效率。所述气缸盖罩上还设置有用于排出油气混合物的出气管,所述出气管的设置可以将预分离后的油气混合物导入其它主动分离装置。
在一个实施例中,所述滤芯的材质为无纺布、毛毡、玻璃纤维和合成纤维中的任意一种。
在一个实施例中,第一滤孔板和第一滤挡板的间距为2~5mm,根据进气孔的进气量大小,所述粗滤孔的孔径可以设置为3~6mm,所述粗滤孔的个数设置为10~45个,使通过第一滤孔板的流速控制在5~8m/s,流经第一滤孔板油气混合物在该流速范围内与第一滤挡板撞击分离大油滴的效果好。
在一个实施例中,根据进气孔的进气量大小,所述细滤孔的孔径可以设置为2~3mm,所述细滤孔的个数设置为8~54个,使通过第二滤孔板的流速控制在15~30m/s,流经第二滤孔板油气混合物在该流速范围内与第二滤挡板撞击分离小油滴的效果好。
与现有技术相比,本发明的优点在于:
该隔板式发动机油气分离装置能够对油气混合物进行两次加速,分别分离大油滴和小油滴并通过回油腔流出,分离效率高;在小油滴的吸附上,滤芯由于二次加速的冲击力不会有残留物堵塞,因此无需定期更换滤芯,能够解决定期更换维护问题;此外,该隔板式发动机油气分离装置还可以根据进气量的大小预设粗滤孔与细滤孔的规格(包括孔径大小和滤孔个数),以此保障一次加速和二次加速后的流速,提升撞击分离油滴的效率。
附图说明
以下参照附图对本发明的实施例作进一步说明,其中:
图1为根据本发明一个实施例的气缸盖罩内部结构示意图;
图2为根据本发明一个实施例的气缸盖罩安装槽的三维结构示意图;
图3为根据本发明一个实施例的气缸盖罩安装槽的截面示意图;
图4为根据本发明一个实施例的预分离装置的三维结构示意图;
图5为根据本发明一个实施例的第一滤孔板和第一滤挡板的三维结构示意图;
图6为根据本发明一个实施例的第一滤挡板设有针状凸起部的三维结构示意图;
图7为根据本发明一个实施例的第二滤孔板、滤芯和第二滤挡板的三维结构示意图;
图8为根据本发明一个实施例的凹形挡板的三维结构示意图;
图9为根据本发明一个实施例的两个隔板的初分离结构示意图;
图10为根据本发明一个实施例的四个隔板的初分离结构示意图;
图11为根据本发明一个实施例的气缸盖罩出气管的结构示意图;
图中,100为气缸盖罩,101为安装槽,102为排气孔,103为出气管,200为预分离装置,201为底板,204为凹形挡板,205为第一滤孔板,206为第一滤挡板,207为第一回油腔,208第一回油管,209为第二滤孔板,210为滤芯,211为第二滤挡板,212为第二回油腔,213为第二回油管,215为粗滤孔,216为一滤筋条,217为细滤孔,218为二滤筋条,219为三滤筋条,220为针状凸起部,300为初分离装置,301为进气孔,302为第一隔板,303为第二隔板,304为第三隔板,305为第四隔板。
具体实施方式
为了使本发明的目的,技术方案及优点更加清楚明白,以下结合附图通过具体实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
在本发明的实施例中提供了一种隔板式发动机油气分离装置,该隔板式发动机油气分离装置包括安装在气缸盖罩内安装槽的预分离装置和初分离装置,初分离装置可以在油气混合物进气阶段分离部分油滴,油气混合物流经初分离装置后进入预分离装置,在预分离装置中进行两次加速碰撞分离,并将油滴通过回油管排出。图1为根据本发明一个实施例的气缸盖罩用于提供预分离装置和初分离装置的安装固定位置,如图1、图2和图3所示,该气缸盖罩100设有安装预分离装置200和初分离装置300的安装槽101,所述安装槽101还开设有用于接收发动机曲轴箱中油气混合物的进气孔301,所述初分离装置300设置于进气孔301后方用于将油气混合物进行初步分离,分离油气混合物中直径大于 10um的油滴,所述气缸盖罩100还设有排气孔102;如图4所示,所述的预分离装置200包括平行布置在底板201上的第一滤孔板205和第一滤挡板206、底板201上的第一回油腔207和其下部的第一回油管208组成的粗分离装置,所述粗分离装置位于初分离装置300后方,用于处理油气混合物中的大油滴(指油滴直径为2~10um);第二滤孔板209、滤芯210和第二滤挡板211、底板201上的第二回油腔212和其下部的第二回油管213组成的细分离装置,所述细分离装置位于粗分离装置后方,用于处理油气混合物中的小油滴(指油滴直径为0.1~2um);所述气缸盖罩100上的排气孔102设置在细分离装置后方用于排出分离油滴后的废气。
在一个实施例中,如图9所示,所述初分离装置300由第一隔板302与第二隔板303组成,所述第一隔板302与第二隔板303分别与安装槽101两端的内壁固定,以便形成弯曲的迷宫式油气通道;在又一个实施例中,如图10所示,所述初分离装置300由第一隔板302、第二隔板303组成、第三隔板304和第四隔板305组成,所述第一隔板302、第二隔板303、第三隔板304和第四隔板305分别交错地与安装槽101两端的内壁固定,以便形成弯曲的迷宫式油气通道。
如图5所示,所述粗分离装置中的第一滤孔板205和第一滤挡板206平行布置在底板201上(参考图4),所述第一滤孔板205上设置有用于对油气混合物进行一次加速的粗滤孔215。在一个实施例中,所述第一滤挡板206上设置有用于碰撞分离大油滴(指油滴直径为2~10um)并导流大油滴到第一回油腔207的一滤筋条216,所述第一回油腔207设置在第一滤挡板206的下方,所述第一滤挡板206为非封闭的开口结构(便于形成油气通道),所述第一回油管208设置在第一回油腔207的底部;油气混合物流经第一滤孔板205的加速后与第一 滤挡板206进行撞击,大油滴通过一滤筋条216流入第一回油腔207,其余的油气混合物流经第一滤挡板206的开口部分(油气通道)流出;在又一个实施例中,如图6所示,所述第一滤挡板206上设置有用于增加油气碰撞接触面积的针状凸起部220,所述针状凸起部220能够有效吸附高速碰撞第一滤挡板206的大油滴并将油滴导流到第一回油腔207,防止大油滴由于高速碰撞造成二次破碎(大油滴碰撞容易产生飞溅),提高了油气分离效率,大油滴通过针状凸起部220流入第一回油腔207,其余的油气混合物流经第一滤挡板206的开口部分(油气通道)流出。
在一个实施例中,如进气孔301的进气量为60L/min,所述粗滤孔215的孔径设置为3mm,所述粗滤孔215的个数设置为27个,所述第一滤孔板205和第一滤挡板206的间距设置为2mm,使通过第一滤孔板205的流速控制在约5m/s,此时,流经第一滤孔板205油气混合物在该流速和间距的设置下与第一滤挡板206撞击分离大油滴的效果好;在又一个实施例中,如进气孔301的进气量为100L/min,所述粗滤孔215的孔径设置为6mm,所述粗滤孔215的个数设置为10个,所述第一滤孔板205和第一滤挡板206的间距设置为3mm,使通过第一滤孔板205的流速控制在约6m/s,此时,流经第一滤孔板205油气混合物在该流速和间距的设置下与第一滤挡板206撞击分离大油滴的效果好;在又一个实施例中,如进气孔301的进气量为150L/min,所述粗滤孔215的孔径设置为5mm,所述粗滤孔215的个数设置为25个,所述第一滤孔板205和第一滤挡板206的间距设置为5mm,使通过第一滤孔板205的流速控制在约5m/s,此时,流经第一滤孔板205油气混合物在该流速和间距的设置下与第一滤挡板206撞击分离大油滴的效果好;在又一个实施例中,如进气孔301的进气量为270L/min,所 述粗滤孔215的孔径设置为6mm,所述粗滤孔215的个数设置为20个,所述第一滤孔板205和第一滤挡板206的间距设置为4mm,使通过第一滤孔板205的流速控制在约8m/s,此时,流经第一滤孔板205油气混合物在该流速和间距的设置下与第一滤挡板206撞击分离大油滴的效果好;在又一个实施例中,如进气孔301的进气量为270L/min,所述粗滤孔215的孔径设置为3mm,所述粗滤孔215的个数设置为45个,所述第一滤孔板205和第一滤挡板206的间距设置为4mm,使通过第一滤孔板205的流速控制在约8m/s,此时,流经第一滤孔板205油气混合物在该流速和间距的设置下与第一滤挡板206撞击分离大油滴的效果好。
在一个实施例中,如图4、图7所示,所述细分离装置中的第二滤孔板209、滤芯210和第二滤挡板211彼此紧贴地布置在底板201上;所述第二滤孔板209上设置有用于对油气混合物进行二次加速的细滤孔217,油气混合物流经第二滤孔板209时,在细滤孔217的作用下油气混合物进行了二次加速,油气混合物会对所述滤芯210进行高速冲击,所述滤芯210下部为开口结构便于形成油气通道,所述滤芯210用于吸附油气混合物二次加速后的小油滴(指油滴直径为0.1~2um),其中滤芯210的材质可以为无纺布、毛毡、玻璃纤维或合成纤维,滤芯210采用这些材质吸附油滴效果佳,并且滤芯210在二次加速的高速冲击作用下,其表面不会聚集残留物,因此可以免除定期更换维护(现有技术中直接采用滤棉进行油气分离,其效率虽高,但是需定期更换维护滤棉,其维护成本较高);所述第二滤挡板211上设置有用于碰撞分离小油滴并导流小油滴到第二回油腔212的二滤筋条218,所述第二滤挡板211的下部为非封闭的开口结构(形成油气通道),便于油气混合物的流动,油气混合物流经滤芯210后在第二 滤挡板211的撞击作用下,小油滴通过二滤筋条218流入第二回油腔,其余油气混合物通过第二滤挡板211的开口结构(油气通道)进入下一级分离装置;在一个实施例中,如进气孔301的进气量为60L/min,所述细滤孔217的孔径设置为2mm,所述细滤孔217的个数设置为18个,使通过第二滤孔板209的流速控制在约18m/s,此时,流经第二滤孔板209油气混合物在该流速下冲击滤芯210,滤芯210吸附小油滴后油气混合物在该流速下继续撞击第二滤挡板211,可以获得较好的小油滴分离效果;在又一个实施例中,如进气孔301的进气量为60L/min,所述细滤孔217的孔径设置为3mm,所述细滤孔217的个数设置为8个,使通过第二滤孔板209的流速控制在约18m/s,此时,流经第二滤孔板209油气混合物在该流速下冲击滤芯210,滤芯210吸附小油滴后油气混合物在该流速下继续撞击第二滤挡板211,可以获得较好的小油滴分离效果;在又一个实施例中,如进气孔301的进气量为120L/min,所述细滤孔217的孔径设置为2.5mm,所述细滤孔217的个数设置为20个,使通过第二滤孔板209的流速控制在约20m/s,此时,流经第二滤孔板209油气混合物在该流速下冲击滤芯210,滤芯210吸附小油滴后油气混合物在该流速下继续撞击第二滤挡板211,可以获得较好的小油滴分离效果;在又一个实施例中,如进气孔301的进气量为180L/min,所述细滤孔217的孔径设置为2.5mm,所述细滤孔217的个数设置为23个,使通过第二滤孔板209的流速控制在约27m/s,此时,流经第二滤孔板209油气混合物在该流速下冲击滤芯210,滤芯210吸附小油滴后油气混合物在该流速下继续撞击第二滤挡板211,可以获得较好的小油滴分离效果;在又一个实施例中,如进气孔301的进气量为260L/min,所述细滤孔217的孔径设置为3mm,所述细滤孔217的个数设置为24个,使通过第二滤孔板209的流速控制在约27m/s, 此时,流经第二滤孔板209油气混合物在该流速下冲击滤芯210,滤芯210吸附小油滴后油气混合物在该流速下继续撞击第二滤挡板211,可以获得较好的小油滴分离效果;在又一个实施例中,如进气孔301的进气量为270L/min,所述细滤孔217的孔径设置为2mm,所述细滤孔217的个数设置为54个,使通过第二滤孔板209的流速控制在约30m/s,此时,流经第二滤孔板209油气混合物在该流速下冲击滤芯210,滤芯210吸附小油滴后油气混合物在该流速下继续撞击第二滤挡板211,可以获得较好的小油滴分离效果。
在一个实施例中,所述的预分离装置200还包括凹形挡板204,所述凹形挡板204为开口结构便于形成油气通道,如图4、图8所示,所述凹形挡板204还设置有用于碰撞分离油滴并导流到第二回油腔212的三滤筋条219;油气混合物对凹形挡板204进行撞击,油滴通过三滤筋条219流入第二回油腔212,其余油气混合物流经凹形挡板204的开口结构(油气通道)进入排气孔102,所述凹形挡板204开口向上的固定在底板201上,以便第二分离装置203流出的油气混合物直接撞击凹形挡板204下部,油滴在重力作用下通过三滤筋条219流入第二回油腔212。
在一个实施例中,继续参考图4,在所述第一回油管208和第二回油管213还设有防止废气反冲进入预分离装置200的伞形回油阀(图中未示出),可以有效防止因废气反冲而影响油气预分离效率。所述排气孔102上还设置有用于排出油气混合物的出气管103(如图11所示),所述出气管103的设置可以将预分离后的油气混合物导入其它主动分离装置,以便进行油气主动分离。
从上述实施例可以看出,与现有技术相比,根据本发明实施例的隔板式发动机油气分离装置能够对油气混合物进行两次加速,分别分离大油滴和小油滴 并通过回油腔流出,分离效率高;还可以根据进气量的大小预设粗滤孔与细滤孔的规格(包括孔径大小和滤孔个数),以此保障一次加速和二次加速后的流速,提升撞击分离油滴的效率,最终能满足国六排放的标准。
本说明书中针对“一些实施例”、“一个实施例”、或“实施例”等的参考指代的是结合所述实施例所描述的特定特征、结构、或性质包括在至少一个实施例中。因此,短语“在各个实施例中”、“在一些实施例中”、“在一个实施例中”、或“在实施例中”等在整个说明书中各地方的出现并非必须指代相同的实施例。此外,特定特征、结构、或性质可以在一个或多个实施例中以任何合适方式组合。因此,结合一个实施例中所示出或描述的特定特征、结构或性质可以整体地或部分地与一个或多个其他实施例的特征、结构、或性质无限制地组合,只要该组合不是非逻辑性的或不能工作。另外,本申请附图中的各个元素仅仅为了示意说明,并非按比例绘制。
由此描述了本发明的至少一个实施例的几个方面,可以理解,对本领域技术人员来说容易地进行各种改变、修改和改进。这种改变、修改和改进意于在本发明的精神和范围内。

Claims (9)

  1. 一种隔板式发动机油气分离装置,包括:设置在气缸盖罩内安装槽的预分离装置和初分离装置,所述安装槽开设有进气孔,所述初分离装置由至少两个隔板组成,所述气缸盖罩还设有排气孔,所述气缸盖罩、预分离装置和初分离装置组合形成油气通道,其特征在于,所述预分离装置包括:
    平行布置在底板上的第一滤孔板和第一滤挡板、底板上的第一回油腔和其下的第一回油管组成的粗分离装置,所述粗分离装置位于初分离装置后方,第二滤孔板、滤芯和第二滤挡板、底板上的第二回油腔和其下的第二回油管组成的细分离装置,所述细分离装置位于粗分离装置后方,所述排气孔设置在细分离装置后方。
  2. 如权利要求1所述的隔板式发动机油气分离装置,其特征在于:所述粗分离装置中的第一滤孔板上设置有粗滤孔,所述第一滤挡板上设置有一滤筋条或针状凸起部,所述第一回油腔设置在第一滤挡板的下方,所述第一滤挡板为非封闭的开口结构,所述第一回油管设置在第一回油腔的底部。
  3. 如权利要求1所述的隔板式发动机油气分离装置,其特征在于:所述细分离装置中的第二滤孔板、滤芯和第二滤挡板彼此紧贴地布置在底板上;所述第二滤孔板上设置有细滤孔,所述第二滤挡板上设置有二滤筋条,所述第二回油腔设置在第二滤挡板后方,所述第二滤挡板为非封闭的开口结构,所述第二回油管设置在第二回油腔的底部。
  4. 如权利要求1所述的隔板式发动机油气分离装置,其特征在于:所述预分离装置还包括凹形挡板,所述凹形挡板还设置有三滤筋条。
  5. 如权利要求1所述的隔板式发动机油气分离装置,其特征在于:所述滤芯的材质为无纺布、毛毡、玻璃纤维或合成纤维中的任意一种。
  6. 如权利要求1所述的隔板式发动机油气分离装置,其特征在于:在所 述第一回油管和第二回油管还设有防止废气反冲进入预分离装置的伞形回油阀。
  7. 如权利要求1所述的隔板式发动机油气分离装置,其特征在于:所述排气孔上还设置有用于排出油气混合物的出气管。
  8. 如权利要求2所述的隔板式发动机油气分离装置,其特征在于:第一滤孔板和第一滤挡板的间距为2~5mm,所述粗滤孔的孔径为3~6mm,所述粗滤孔的个数为10~45个。
  9. 如权利要求3所述的隔板式发动机油气分离装置,其特征在于:所述细滤孔的孔径为2~3mm,所述细滤孔的个数为8~54个。
PCT/CN2019/105743 2018-09-14 2019-09-12 一种隔板式发动机油气分离装置 WO2020052662A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811075099.6 2018-09-14
CN201811075099.6A CN109236418A (zh) 2018-09-14 2018-09-14 一种隔板式发动机油气分离装置

Publications (1)

Publication Number Publication Date
WO2020052662A1 true WO2020052662A1 (zh) 2020-03-19

Family

ID=65058457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105743 WO2020052662A1 (zh) 2018-09-14 2019-09-12 一种隔板式发动机油气分离装置

Country Status (2)

Country Link
CN (1) CN109236418A (zh)
WO (1) WO2020052662A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109236418A (zh) * 2018-09-14 2019-01-18 广西玉柴机器股份有限公司 一种隔板式发动机油气分离装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201635800U (zh) * 2010-01-29 2010-11-17 奇瑞汽车股份有限公司 一种发动机油气分离装置
CN202914159U (zh) * 2012-11-12 2013-05-01 李斯特技术中心(上海)有限公司 一种发动机油气分离器
JP2013133779A (ja) * 2011-12-27 2013-07-08 Sanoh Industrial Co Ltd ブローバイガス還流装置
WO2013179829A1 (ja) * 2012-06-01 2013-12-05 株式会社マーレ フィルターシステムズ 内燃機関のオイルセパレータ
CN203394609U (zh) * 2013-07-03 2014-01-15 广西玉柴机器股份有限公司 曲轴箱通风装置
JP2016098711A (ja) * 2014-11-20 2016-05-30 いすゞ自動車株式会社 内燃機関
CN106321192A (zh) * 2016-11-17 2017-01-11 江西昌河汽车有限责任公司 集成式油气分离器
CN107084016A (zh) * 2017-06-28 2017-08-22 安徽江淮汽车集团股份有限公司 一种发动机窜气排出组件
CN107893686A (zh) * 2017-12-18 2018-04-10 潍柴动力股份有限公司 一种发动机的油气预分离结构
CN109139187A (zh) * 2018-09-14 2019-01-04 广西玉柴机器股份有限公司 一种隔板油驱式发动机油气分离装置
CN109236418A (zh) * 2018-09-14 2019-01-18 广西玉柴机器股份有限公司 一种隔板式发动机油气分离装置
CN209385207U (zh) * 2018-09-14 2019-09-13 广西玉柴机器股份有限公司 一种隔板式发动机油气分离装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203009005U (zh) * 2013-01-06 2013-06-19 美嘉帕拉斯特汽车零部件(上海)有限公司 一种用于油气分离功能回油口的单向阀
CN104100332B (zh) * 2014-08-04 2016-05-11 安徽江淮汽车股份有限公司 发动机缸盖护罩及曲轴箱通风系统
CN205714339U (zh) * 2016-04-26 2016-11-23 东风汽车公司 一种油气分离器
JP6650865B2 (ja) * 2016-12-16 2020-02-19 株式会社クボタ エンジン用ヘッドカバー
CN207686788U (zh) * 2017-12-18 2018-08-03 江西腾勒动力有限公司 发动机油气分离结构

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201635800U (zh) * 2010-01-29 2010-11-17 奇瑞汽车股份有限公司 一种发动机油气分离装置
JP2013133779A (ja) * 2011-12-27 2013-07-08 Sanoh Industrial Co Ltd ブローバイガス還流装置
WO2013179829A1 (ja) * 2012-06-01 2013-12-05 株式会社マーレ フィルターシステムズ 内燃機関のオイルセパレータ
CN202914159U (zh) * 2012-11-12 2013-05-01 李斯特技术中心(上海)有限公司 一种发动机油气分离器
CN203394609U (zh) * 2013-07-03 2014-01-15 广西玉柴机器股份有限公司 曲轴箱通风装置
JP2016098711A (ja) * 2014-11-20 2016-05-30 いすゞ自動車株式会社 内燃機関
CN106321192A (zh) * 2016-11-17 2017-01-11 江西昌河汽车有限责任公司 集成式油气分离器
CN107084016A (zh) * 2017-06-28 2017-08-22 安徽江淮汽车集团股份有限公司 一种发动机窜气排出组件
CN107893686A (zh) * 2017-12-18 2018-04-10 潍柴动力股份有限公司 一种发动机的油气预分离结构
CN109139187A (zh) * 2018-09-14 2019-01-04 广西玉柴机器股份有限公司 一种隔板油驱式发动机油气分离装置
CN109236418A (zh) * 2018-09-14 2019-01-18 广西玉柴机器股份有限公司 一种隔板式发动机油气分离装置
CN209385207U (zh) * 2018-09-14 2019-09-13 广西玉柴机器股份有限公司 一种隔板式发动机油气分离装置

Also Published As

Publication number Publication date
CN109236418A (zh) 2019-01-18

Similar Documents

Publication Publication Date Title
WO2020052657A1 (zh) 一种滤网式发动机油气分离装置
WO2020052661A1 (zh) 一种隔板式自适应调压发动机油气分离装置
WO2020052662A1 (zh) 一种隔板式发动机油气分离装置
CN109595055A (zh) 一种具有树状板式自适应通风系统的天然气发动机
WO2020052660A1 (zh) 一种滤板式发动机油气分离装置
CN209244633U (zh) 一种滤网式自适应调压发动机油气分离装置
WO2020052658A1 (zh) 一种滤板式自适应调压发动机油气分离装置
CN109236413A (zh) 一种树状板油驱式自适应调压发动机油气分离装置
CN209385207U (zh) 一种隔板式发动机油气分离装置
CN209385206U (zh) 一种滤网式发动机油气分离装置
WO2020052655A1 (zh) 一种滤网式自适应调压发动机油气分离装置
CN109139186A (zh) 一种滤网油驱式自适应调压发动机油气分离装置
CN109113831A (zh) 一种滤网气驱式自适应调压发动机油气分离装置
CN109139188A (zh) 一种滤板气驱式自适应调压发动机油气分离装置
CN109113832A (zh) 一种树状板气驱式自适应调压发动机油气分离装置
CN109098817A (zh) 一种滤板油驱式自适应调压发动机油气分离装置
CN209244636U (zh) 一种隔板式自适应调压发动机油气分离装置
CN209586466U (zh) 一种隔板气驱式发动机油气分离装置
CN209671041U (zh) 一种滤板气驱式自适应调压发动机油气分离装置
CN109209560A (zh) 一种滤网气驱式发动机油气分离装置
CN209671043U (zh) 一种隔板油驱式自适应调压发动机油气分离装置
CN109505679A (zh) 一种具有隔板式自适应通风系统的天然气发动机
CN109236415A (zh) 一种树状板式自适应调压发动机油气分离装置
CN109236417A (zh) 一种隔板气驱式发动机油气分离装置
CN209244635U (zh) 一种滤板式发动机油气分离装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19858800

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19858800

Country of ref document: EP

Kind code of ref document: A1