WO2015194301A1 - 車両の制御装置 - Google Patents
車両の制御装置 Download PDFInfo
- Publication number
- WO2015194301A1 WO2015194301A1 PCT/JP2015/064406 JP2015064406W WO2015194301A1 WO 2015194301 A1 WO2015194301 A1 WO 2015194301A1 JP 2015064406 W JP2015064406 W JP 2015064406W WO 2015194301 A1 WO2015194301 A1 WO 2015194301A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- relay
- pressure
- oil passage
- circuit
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
- B60R16/023—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for transmission of signals between vehicle parts or subsystems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R16/00—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for
- B60R16/02—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements
- B60R16/03—Electric or fluid circuits specially adapted for vehicles and not otherwise provided for; Arrangement of elements of electric or fluid circuits specially adapted for vehicles and not otherwise provided for electric constitutive elements for supply of electrical power to vehicle subsystems or for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H57/00—General details of gearing
- F16H57/04—Features relating to lubrication or cooling or heating
- F16H57/0434—Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
- F16H57/0436—Pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H59/00—Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
- F16H59/68—Inputs being a function of gearing status
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16H—GEARING
- F16H61/00—Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
- F16H61/12—Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
Definitions
- the present invention relates to a vehicle control apparatus, and relates to a monitoring technique for an electronic control apparatus.
- Patent Document 1 a technique described in Patent Document 1 is known as a technique for monitoring whether or not an electronic control device is operating normally.
- microcomputer abnormalities are detected by a plurality of electronic control devices monitoring each other.
- Recent vehicles are equipped with a plurality of electronic control devices that control a plurality of actuators. These exchange information with each other and enable control of the entire vehicle while grasping the control state of each other. Since each electronic control unit individually performs arithmetic processing, it is necessary to share common information that can be recognized by each electronic control unit. Therefore, a communication line (for example, a CAN communication line) for transmitting and receiving signals is installed, and information of each electronic control device is output according to a predetermined rule, whereby information is shared by each electronic control device. At this time, as described in Patent Document 1, even if an abnormality of the electronic control device is detected, if the output of the signal to the communication line cannot be stopped, another electronic control device may receive an erroneous signal. was there.
- a communication line for example, a CAN communication line
- the present invention has been made paying attention to the above problems, and an object thereof is to provide a vehicle control device that can reduce the influence of other electronic control devices due to information transmission from an electronic control device in which an abnormality has occurred. To do.
- a first electronic control device including an arithmetic circuit and a signal transmission / reception circuit, and a power source for supplying power to the first electronic control device And an ignition switch provided between the arithmetic circuit and the power source, a relay provided between the ignition switch and the arithmetic circuit, and connected to the signal transmitting / receiving circuit, without passing through the relay
- a second electronic control unit connected to the power source and connected to a wiring for transmitting a signal to the relay, the second electronic control unit is normal or abnormal signal output from the signal transmitting and receiving circuit
- a cutoff signal for cutting off the relay is output, and when the arithmetic circuit detects that the relay is cut off, A command to stop signal output is output, and the signal transmission / reception circuit detects that the relay has been cut off, or outputs a signal when receiving a command to stop signal output from the arithmetic circuit. It was decided to stop.
- the signal transmission / reception circuit detects that the relay is turned off and stops outputting the signal, the signal output from the signal transmission / reception circuit cannot be stopped by a command from the calculation circuit because the calculation circuit fails. However, the signal output can be stopped. Thereby, the influence which another electronic control apparatus receives can be reduced. Even if the signal transmission / reception circuit fails and the relay cannot be detected, the arithmetic circuit stops signal transmission to the signal transmission / reception circuit. it can.
- FIG. 1 is a skeleton diagram showing a configuration of an automatic transmission that achieves FR type 7 forward speed 1 reverse speed according to Embodiment 1;
- FIG. FIG. 3 is a circuit diagram illustrating a hydraulic circuit of the control valve unit according to the first embodiment. It is a figure which shows the fastening operation
- FIG. 1 is a skeleton diagram showing the configuration of an automatic transmission that achieves the first FR forward 7-speed reverse rotation of Example 1, and the overall system diagram showing the control configuration of the automatic transmission.
- the automatic transmission according to the first embodiment is connected to the engine Eg via a torque converter TC to which a lockup clutch LUC is attached.
- the rotation output from the engine Eg rotationally drives the pump impeller and the oil pump OP of the torque converter TC.
- the oil stirred by the rotation of the pump impeller is transmitted to the turbine runner through the stator, and drives the input shaft Input.
- a control valve unit CVU that performs hydraulic control of the fastening element, and a motor controller (hereinafter, MCU) 30 that controls a pump motor for driving an electric oil pump (not shown) are provided.
- the ECU 10, the ATCU 20, and the MCU 30 are connected via a CAN communication line or the like, and share sensor information and control information with each other by communication.
- the ECU 10 is connected to an APO sensor 1 that detects the driver's accelerator pedal operation amount and an engine speed sensor 2 that detects the engine speed.
- the ECU 10 controls the fuel injection amount and the throttle opening based on the engine speed and the accelerator pedal operation amount, and controls the engine output speed and the engine torque.
- the ATCU 20 includes a first turbine rotation speed sensor 3 that detects the rotation speed of the first carrier PC1 described later, a second turbine rotation speed sensor 4 that detects the rotation speed of the first ring gear R1, and the rotation speed of the output shaft Output. Is connected to an output shaft speed sensor 5 and an inhibitor switch 6 for detecting the shift lever operating state of the driver.
- the shift lever is an engine brake in which an engine brake acts in addition to P, R, N, and D. A range position and a normal forward travel range position where the engine brake does not act are provided.
- the optimum command shift stage is selected from the shift map of the seventh forward speed stage, which will be described later, based on the vehicle speed Vsp and the accelerator pedal opening APO when normal.
- the control valve unit CVU is provided with a shift control unit that outputs a control command for achieving the command shift speed.
- the MCU 30 is provided with a motor control unit 30a (see FIG. 5) that controls the operating state of the pump motor in accordance with the operation of the ignition switch.
- the motor control unit 30a receives an engine stop signal such as an idle stop from another controller or the like, the motor control unit 30a drives a pump motor and supplies a line pressure from the electric oil pump. This is because when the idling stop control is performed, the operation of the oil pump OP is also stopped when the engine is stopped, so that a fastening pressure for achieving the gear position cannot be obtained.
- the first planetary gear set GS1 and the second planetary gear set GS2 are arranged in this order from the input shaft Input side to the axial output shaft Output side.
- a plurality of clutches C1, C2, C3 and brakes B1, B2, B3, B4 are arranged as friction engagement elements.
- a plurality of one-way clutches F1 and F2 are arranged.
- the first planetary gear G1 is a single pinion type planetary gear having a first sun gear S1, a first ring gear R1, and a first carrier PC1 that supports a first pinion P1 meshing with both gears S1, R1.
- the second planetary gear G2 is a single pinion type planetary gear having a second sun gear S2, a second ring gear R2, and a second carrier PC2 that supports a second pinion P2 meshing with both gears S2 and R2.
- the third planetary gear G3 is a single pinion planetary gear having a third sun gear S3, a third ring gear R3, and a third carrier PC3 that supports a third pinion P3 that meshes with both gears S3 and R3.
- the fourth planetary gear G4 is a single pinion planetary gear having a fourth sun gear S4, a fourth ring gear R4, and a fourth carrier PC4 that supports a fourth pinion P4 that meshes with both gears S4 and R4.
- the input shaft Input is connected to the second ring gear R2 and inputs the rotational driving force from the engine Eg via the torque converter TC or the like.
- the output shaft Output is connected to the third carrier PC3 and transmits the output rotational driving force to the drive wheels via a final gear or the like not shown.
- the first connecting member M1 is a member that integrally connects the first ring gear R1, the second carrier PC2, and the fourth ring gear R4.
- the second connecting member M2 is a member that integrally connects the third ring gear R3 and the fourth carrier PC4.
- the third connecting member M3 is a member that integrally connects the first sun gear S1 and the second sun gear S2.
- the first planetary gear set GS1 is configured by connecting a first planetary gear G1 and a second planetary gear G2 by a first connecting member M1 and a third connecting member M3, and is composed of four rotating elements.
- the second planetary gear set GS2 includes a third planetary gear G3 and a fourth planetary gear G4 connected by a second connecting member M2 and configured by five rotating elements.
- the first planetary gear set GS1 has a torque input path that is input from the input shaft Input to the second ring gear R2.
- the torque input to the first planetary gear set GS1 is output from the first connecting member M1 to the second planetary gear set GS2.
- the second planetary gear set GS2 has a torque input path that is input from the input shaft Input to the second connecting member M2, and a torque input path that is input from the first connecting member M1 to the fourth ring gear R4.
- the torque input to the second planetary gear set GS2 is output from the third carrier PC3 to the output shaft Output.
- the input clutch C1 is a clutch that selectively connects and disconnects the input shaft Input and the second connecting member M2.
- the direct clutch C2 is a clutch that selectively connects and disconnects the fourth sun gear S4 and the fourth carrier PC4.
- H & LR clutch C3 is a clutch that selectively connects and disconnects third sun gear S3 and fourth sun gear S4.
- a second one-way clutch F2 is arranged between the third sun gear S3 and the fourth sun gear.
- the front brake B1 is a brake that selectively stops the rotation of the first carrier PC1.
- the first one-way clutch F1 is disposed in parallel with the front brake B1.
- the low brake B2 is a brake that selectively stops the rotation of the third sun gear S3.
- the 2346 brake B3 is a brake that selectively stops the rotation of the third connecting member M3 (the first sun gear S1 and the second sun gear S2).
- Reverse brake B4 is a brake that selectively stops the rotation of the fourth carrier PC4.
- FIG. 2 is a circuit diagram showing a hydraulic circuit of the control valve unit CVU.
- the circuit configuration will be described below.
- an oil pump OP or an electric oil pump serving as a hydraulic source driven by the engine and an oil path for supplying the line pressure PL are switched in conjunction with the driver's shift lever operation.
- a manual valve MV and a pilot valve PV for reducing the line pressure to a predetermined constant pressure are provided.
- a first pressure regulating valve CV1 for regulating the engagement pressure of the low brake B2, a second pressure regulating valve CV2 for regulating the engagement pressure of the input clutch C1, a third pressure regulating valve CV3 for regulating the engagement pressure of the front brake B1, A fourth pressure regulating valve CV4 for regulating the engagement pressure of the H & RL clutch C3, a fifth pressure regulating valve CV5 for regulating the engagement pressure of the 2346 brake B3, and a sixth pressure regulating valve CV6 for regulating the engagement pressure of the direct clutch C2 are provided. Yes.
- first switching valve SV1 which switches the low brake B2 or the input clutch C1 to the state where only one of the supply oil passages is in communication
- the supply oil passage for the D range pressure and R range pressure for the direct clutch C2 A second switching valve SV2 that switches to a state that only communicates, and a third switching valve SV3 that switches the hydraulic pressure supplied to the reverse brake B4 between the hydraulic pressure supplied from the sixth pressure regulating valve CV6 and the hydraulic pressure supplied from the R range pressure.
- the 4th switching valve SV4 which switches the hydraulic pressure output from 6th pressure regulation valve CV6 between the oil path 123 and the oil path 122 is provided.
- a first solenoid valve SOL1 that outputs a pressure regulating signal to the first pressure regulating valve CV1, and a second solenoid valve SOL2 that outputs a pressure regulating signal to the second pressure regulating valve CV2;
- the third solenoid valve SOL3 that outputs a pressure regulation signal to the third pressure regulation valve CV3, the fourth solenoid valve SOL4 that outputs the pressure regulation signal to the fourth pressure regulation valve CV4, and the pressure regulation to the fifth pressure regulation valve CV5
- a fifth solenoid valve SOL5 that outputs a signal, a sixth solenoid valve SOL6 that outputs a pressure regulating signal to the sixth pressure regulating valve CV6, and a second signal that outputs a switching signal to the first switching valve SV1 and the third switching valve SV3.
- 7 solenoid valve SOL7 is provided.
- Each of the solenoid valves SOL2, SOL5, SOL6 is a three-way proportional solenoid valve having three ports, the first port is supplied with pilot pressure described later, the second port is connected to a drain oil passage, Each port is connected to a pressure receiving portion of a pressure regulating valve or a switching valve.
- the solenoid valves SOL1, SOL3, and SOL4 are two-way proportional solenoid valves having two ports, and the solenoid valve SOL7 is a three-way on / off solenoid valve having three ports.
- the first solenoid valve SOL1, the third solenoid valve SOL3, and the seventh solenoid valve SOL7 are normally closed (closed when not energized).
- the second solenoid valve SOL2, the fourth solenoid valve SOL4, the fifth solenoid valve SOL5, and the sixth solenoid valve SOL6 are of a normally open type (open state when not energized).
- the discharge pressure of the oil pump OP driven by the engine is adjusted to the line pressure and then supplied to the oil passage 101 and the oil passage 102.
- the oil passage 101 includes an oil passage 101a connected to a manual valve MV that operates in conjunction with the driver's shift lever operation, an oil passage 101b that supplies the original pressure of the fastening pressure of the front brake B1, and an H & LR clutch C3.
- An oil passage 101c for supplying the original pressure of the fastening pressure is connected.
- the manual valve MV is connected to an oil passage 105 and an oil passage 106 that supplies an R range pressure selected during reverse travel, and switches between the oil passage 105 and the oil passage 106 in accordance with a shift lever operation.
- oil passage 105 there are an oil passage 105a that supplies the original pressure of the engagement pressure of the low brake B2, an oil passage 105b that supplies the original pressure of the engagement pressure of the input clutch C1, and an original pressure of the engagement pressure of the 2346 brake B3.
- An oil passage 105c for supplying, an oil passage 105d for supplying the original pressure of the engagement pressure of the direct clutch C2, and an oil passage 105e for supplying a switching pressure of a second switching valve SV2 described later are connected.
- an oil passage 106a that supplies the switching pressure of the second switching valve SV2, an oil passage 106b that supplies the original pressure of the engagement pressure of the direct clutch C2, and an oil passage that supplies the engagement pressure of the reverse brake B4 106c is connected.
- An oil passage 103 for supplying pilot pressure is connected to the oil passage 102 via a pilot valve PV.
- the oil passage 103 has an oil passage 103a for supplying pilot pressure to the first solenoid valve SOL1, an oil passage 103b for supplying pilot pressure to the second solenoid valve SOL2, and an oil for supplying pilot pressure to the third solenoid valve SOL3.
- an oil passage 103g for supplying a pilot pressure to the seventh solenoid valve SOL7.
- the first pressure regulating valve CV1 has a first port connected to the oil passage 105a, a second port connected to the drain circuit, and a third port connected to the oil passage 115a connected to the first switching valve SV1. And a fourth port to which the signal pressure of the first solenoid valve SOL1 is supplied, a fifth port to which an oil passage fed back from the oil passage 115a as a counter pressure of this signal pressure is connected, and a fourth port.
- a spring acting opposite to the hydraulic pressure is provided.
- the first switching valve SV1 moves upward, the oil passage 105a communicates with the oil passage 115a, while when moved downward, the oil passage 115a communicates with the drain.
- the second pressure regulating valve CV2 to the sixth pressure regulating valve CV6 have the same configurations as the first port to the fifth port and the spring, and the description thereof will be omitted.
- the first switching valve SV1 includes a first port connected to the oil passage 115a, a second port connected to the drain circuit, a third port connected to the oil passage 115b, and a first port connected to the drain circuit. 4 ports, a fifth port connected to an oil passage 150a for supplying hydraulic pressure to the low brake B2, a sixth port connected to an oil passage 150b for supplying hydraulic pressure to the input clutch C1, and a seventh solenoid valve SOL7 A seventh port connected to the oil passage 140b that supplies the signal pressure and a spring that acts opposite to the hydraulic pressure supplied to the seventh port are provided.
- a seventh solenoid valve SOL7 A seventh port connected to the oil passage 140b that supplies the signal pressure and a spring that acts opposite to the hydraulic pressure supplied to the seventh port are provided.
- the second switching valve SV2 has a first port connected to the oil passage 105d for supplying the D range pressure, a second port connected to the oil passage 106d for supplying the R range pressure, and the sixth pressure regulating valve CV6.
- a third port connected to an oil passage 120 for supplying hydraulic pressure, a fourth port connected to an oil passage 105e for supplying D range pressure, and an oil passage 106a for supplying an R range pressure as a counter pressure of the fourth port.
- a spring acting opposite to the hydraulic pressure supplied to the fourth port In FIG. 2, when the second switching valve SV2 moves to the right, the oil passage 106b communicates with the oil passage 120, while when moved to the left, the oil passage 105d communicates with the oil passage 120.
- the third switching valve SV3 includes a first port connected to an oil passage 122 that supplies hydraulic pressure from the fourth switching valve SV4, a second port connected to an oil passage 106c that supplies R range pressure, and reverse.
- the third port connected to the oil passage 130 for supplying hydraulic pressure to the brake B4, the fourth port connected to the oil passage 140a for supplying the signal pressure of the seventh solenoid valve SOL7, and the fourth port d4 are supplied.
- a spring is provided to act against the hydraulic pressure. In FIG. 2, when the third switching valve SV3 moves to the right, the oil passage 106c and the oil passage 130 are communicated, and when moved to the left, the oil passage 122 and the oil passage 130 are communicated.
- the fourth switching valve SV4 has a first port connected to the oil passage 121 for supplying hydraulic pressure from the sixth pressure regulating valve CV6, a second port and a third port connected to the drain circuit, and an R range pressure.
- the fourth port to be supplied, the fifth port to which the D-range pressure is supplied, the spring acting opposite to the fourth port, the seventh port connected to the oil passage 122, and the oil passage 123 are connected.
- An eighth port is provided.
- FIG. 2 when the fourth switching valve SV4 moves to the right, the oil passage 121 and the oil passage 123 communicate with each other and the oil passage 122 and the drain circuit communicate with each other.
- the fourth switching valve SV4 moves to the left, the oil passage 121 and the oil passage The oil passage 123 and the drain circuit are in communication with each other.
- FIG. 3 is a diagram showing a fastening operation table for forward 7-speed reverse 1-speed in the gear transmission for an automatic transmission according to the first embodiment
- FIG. 4 is a diagram showing an operation table of solenoid valves SOL1 to SOL7 at each gear stage. .
- the clutches C1, C2, C3 and brakes B1, B2, B3, B4 are in a normal state, as shown in the engagement operation table of FIG. ) And release pressure (no mark).
- the front brake B1 and the H & LR clutch C3 are released, only the low brake B2 is engaged, and torque is transmitted by the first one-way clutch F1 and the second one-way clutch F2.
- the first to third solenoid valves SOL1 to SOL3 and the sixth and seventh solenoid valves SOL6 and SOL7 are turned on, and the others are turned off.
- the fastening pressure is supplied to the fastening elements.
- the third speed is obtained by engaging the 2346 brake B3, the low brake B2, and the direct clutch C2.
- the rotation input from the input shaft Input to the second ring gear R2 is decelerated by the second planetary gear G2.
- This decelerated rotation is output from the first connecting member M1 to the fourth ring gear R4.
- the direct clutch C2 is engaged, the fourth planetary gear G4 rotates together.
- the low brake B2 is engaged, the rotation input to the third ring gear R3 via the second connecting member M2 from the fourth carrier PC4 that rotates integrally with the fourth ring gear R4 is the third planetary gear G3. And output from the third carrier PC3.
- the fourth planetary gear G4 is involved in torque transmission but not in deceleration.
- the solenoid valve operation table of FIG. 4 turn on the first, second, fourth, fifth and seventh solenoid valves SOL1, SOL2, SOL4, SOL5, SOL7 and turn off the others.
- the fastening pressure is supplied to the desired fastening element.
- the fourth speed is obtained by engaging the 2346 brake B3, the direct clutch C2, and the H & LR clutch C3.
- the rotation input from the input shaft Input to the second ring gear R2 is decelerated only by the second planetary gear G2.
- This decelerated rotation is output from the first connecting member M1 to the fourth ring gear R4.
- the direct clutch C2 and the H & LR clutch C3 are engaged, the second planetary gear set GS2 rotates integrally. Therefore, the rotation input to the fourth ring gear R4 is output from the third carrier PC3 as it is.
- the solenoid valve operation table of FIG. 4 by turning on the second and fifth solenoid valves SOL2 and SOL5 and turning off the other, the fastening pressure is supplied to a desired fastening element.
- the fifth speed is obtained by engaging the input clutch C1, the direct clutch C2, and the H & LR clutch C3.
- the rotation of the input shaft Input is input to the second connecting member M2.
- the direct clutch C2 and the H & LR clutch C3 are engaged, the third planetary gear G3 rotates integrally. Therefore, the rotation of the input shaft Input is output from the third carrier PC3 as it is.
- the solenoid valve operation table of FIG. 4 by turning off all the solenoid valves SOL1 to SOL7, a fastening pressure is supplied to a desired fastening element.
- the sixth speed is obtained by engaging the input clutch C1, the H & LR clutch C3, and the 2346 brake B3.
- the rotation of the input shaft Input is input to the second ring gear and also to the second connecting member M2.
- the 2346 brake B3 is engaged, the rotation decelerated by the second planetary gear G2 is output from the first connecting member M1 to the fourth ring gear R4.
- the second planetary gear set GS2 outputs the rotation defined by the rotation of the fourth ring gear R4 and the rotation of the second connecting member M4 from the third carrier PC3.
- the fifth and sixth solenoid valves SOL5 and SOL6 are turned on, and the other solenoid valves SOL1, SOL2, SOL3, SOL4, and SOL7 are turned off.
- the fastening pressure is supplied to the fastening elements.
- the seventh speed is obtained by engaging the input clutch C1, the H & LR clutch C3, and the front brake B1 (first one-way clutch F1).
- the seventh speed since the input clutch C1 is engaged, the rotation of the input shaft Input is input to the second ring gear and also to the second connecting member M2.
- the front brake B1 since the front brake B1 is engaged, the rotation decelerated by the first planetary gear set GS1 is output from the first connecting member M1 to the fourth ring gear R4.
- the second planetary gear set GS2 outputs the rotation defined by the rotation of the fourth ring gear R4 and the rotation of the second connecting member M4 from the third carrier PC3.
- the third and sixth solenoid valves SOL3 and SOL6 are turned on, and the other solenoid valves SOL1, SOL2, SOL4, SOL5, and SOL7 are turned off.
- the fastening pressure is supplied to the fastening elements.
- the reverse speed is obtained by engaging the H & LR clutch C3, the front brake B1, and the reverse brake B4.
- the solenoid valve operation table of FIG. 4 turn on the second, third and sixth solenoid valves SOL2, SOL3, SOL6 and turn off the other solenoid valves SOL1, SOL4, SOL5, SOL7.
- the seventh solenoid SOL7 is turned on at the initial stage of R range switching and turned off after completion of the fastening.
- FIG. 5 is a schematic diagram illustrating the relationship between the ATCU and the MCU according to the first embodiment.
- the ATCU 20 includes a power supply circuit unit 20a connected to the battery power supply Vbat, a microcomputer 20b that performs various shift control processes, and a CAN controller 20c that transmits and receives necessary information to and from the CAN communication line.
- the wiring 21 that connects the battery power supply Vbat and the power supply circuit unit 20a has a branch wiring 22.
- the branch wiring 22 is connected to the microcomputer 20b.
- the branch wiring 22 includes a first internal wiring 22a connected to the microcomputer 20b in the ATCU 20, and a second internal wiring 22b branched from the first internal wiring 22a and connected to the CAN controller 20c.
- the MCU 30 includes a motor control unit 30a, a monitoring unit 30b that monitors an abnormality of the ATCU 20, and a CAN controller 30c that transmits and receives necessary information to and from the CAN communication line.
- a relay ON / OFF signal line 25 that outputs a connection / disconnection signal of the relay 23 is connected to the monitoring unit 30b.
- the monitoring unit 30b monitors the ATCU 20 via the CAN controller 30c, and outputs an ON signal to the relay 23 if normal. On the other hand, if it is abnormal, an OFF signal is output to the relay 23.
- a recent vehicle is equipped with a plurality of controllers for controlling a plurality of actuators. These exchange information with each other and enable control of the entire vehicle while grasping the control state of each other. Since each controller individually performs arithmetic processing, it is necessary to share common information that can be recognized by each controller. Therefore, the information is shared by the controllers by using the CAN communication line and outputting the information of each controller according to a predetermined rule.
- ATCU20 outputs information related to automatic transmission to CAN communication line.
- the ATCU 20 inputs information from a number of sensors and the like and performs shift control and the like according to the running state of the vehicle, etc., the microcomputer 20b has a lot of calculation processing and takes time for initialization and the like.
- the MCU 30 specializes in controlling the operating state of the pump motor, and therefore requires less time for initialization and the like than the ATCU 20. Therefore, a configuration is adopted in which the abnormality of the ATCU 20 is monitored by the MCU 30 which is another control unit, and the operation of the CAN controller 20c of the ATCU 20 can be stopped when the abnormality of the ATCU 20 occurs.
- the relay 23 is provided in the branch wiring 22 of the ignition switch IGN that is wired in advance for starting the microcomputer 20b, and the relay 23 ON / OFF signal is provided by providing the second internal wiring 22b that branches from the first internal wiring 22a. Is supplied to the CAN controller 20c.
- the relay 23 is added to the branch wiring 22, it is not necessary to change the design of the connector itself. If only the wiring inside the microcomputer 20b is changed, the design change of the connector itself is not necessary.
- the CAN controller 20c when it is confirmed that the ignition switch IGN is OFF, the communication by the CAN communication line may be cut off.
- FIG. 6 is a flowchart showing the CAN communication stop control process at the time of abnormality according to the first embodiment. This flowchart is started immediately after the normal activation of the microcomputer 20b of the ATCU 20. At this time, the MCU 30 is completely activated, and the CAN controller 20c of the ATCU 20 can transmit and receive information related to abnormality diagnosis from the CAN controller 30c of the MCU 30 even before the start of normal communication.
- step S1 the MCU 30 selects question data in order from the questions prepared in advance, and transmits them to the ATCU 20 from the CAN controller 30c.
- step S2 the ATCU 20 receives the question data transmitted from the MCU 30, performs a predetermined calculation using the data, and calculates answer data for the question data.
- step S3 the ATCU 20 transmits the calculated answer data from the CAN controller 20c to the MCU 30.
- step S4 the MCU 30 receives the answer data transmitted from the ATCU 20, and checks whether the answer data is correct.
- Steps S1 to S4 are abnormality diagnosis processing.
- step S5 if the answer data is correct in the MCU 30, this control flow is terminated, and the abnormality diagnosis is continued by repeating the transmission of the question data to the ATCU 20 again.
- step S6 the MCU 30 outputs an OFF signal to the relay 23 and shuts off the relay 23.
- step S7 the CAN controller 20c of the ATCU 20 detects that the relay 23 is cut off, specifically that the ignition switch signal is turned OFF, and the CAN controller 20c of the ATCU 20 stops the CAN communication.
- the ignition switch signal is connected to the CAN communication valid / invalid terminal of the CAN driver IC in the CAN controller 20c. As a result, when the ignition switch IGN is turned OFF, the CAN communication stops.
- step S8 the microcomputer 20b of the ATCU 20 detects that the relay 23 is cut off, and stops the transmission / reception processing of the CAN communication signal of the microcomputer 20b itself. Further, the microcomputer 20b of the ATCU 20 detects that the relay 23 has been cut off, transmits a signal for turning off the internal power to the power supply circuit unit 20a, and the power of the ATCU 20 is turned off. In this way, the power of the ATCU 20 is turned off with the interruption of the relay 23, and the microcomputer 20b is also stopped. Therefore, if the CAN controller 20c malfunctions, an error occurs in the CAN communication transmission signal. Even when the CAN controller 20c does not stop even if the terminal 23 is shut off, the CAN communication can be stopped reliably.
- ATCU20 If the abnormality is detected in ATCU20 by the above process, ATCU20 is turned off. At this time, the driver is notified of the abnormality of ATCU20. Note that when the power of the ATCU 20 is turned off, all the solenoid valves cannot be energized, and the automatic transmission achieves the fifth speed (see FIG. 4), so that the minimum vehicle movement can be achieved.
- ATCU20 (first electronic control unit) having a microcomputer 20b (arithmetic circuit) and a CAN controller 20c (signal transmission / reception circuit), a battery power supply Vbat (power supply) for supplying power to the ATCU20, and a microcomputer 20b Ignition switch IGN provided between battery power supply Vbat, relay 23 provided between ignition switch IGN and microcomputer 20b, connected to CAN controller 20c, and connected to battery power supply Vbat without relay 23 MCU30 (second electronic control unit) connected to relay ON / OFF signal line 25 (wiring) that transmits a signal to relay 23, and MCU30 has a normal signal output from CAN controller 20c If it is determined that the relay 23 is disconnected, the microcomputer 20b outputs a disconnection signal for disconnecting the relay 23.
- the microcomputer 20b When the microcomputer 20b detects that the relay 23 is disconnected, the microcomputer 20b notifies the CAN controller 20c.
- the CAN controller 20c detects that the relay 23 has been cut off, or stops receiving the signal when receiving a command to stop outputting the signal from the microcomputer 20b. . Therefore, since the CAN controller 20c detects that the relay 23 is turned OFF and stops outputting the signal, the microcomputer 20b fails and the signal output from the CAN controller 20c cannot be stopped by a command from the microcomputer 20b. Even if it exists, the output of the signal can be stopped. Thereby, the influence which another electronic control apparatus receives can be reduced. Even if the CAN controller 20c fails and the relay 23 cannot be detected, the microcomputer 20b stops sending signals to the CAN controller 20c. You can stop.
- the ATCU 20 has a power supply circuit unit 20a (power supply circuit) as an internal power supply.
- the power supply circuit unit 20a is connected to the battery power supply Vbat without passing through the ignition switch IGN and the relay 23, and the internal power supply from the microcomputer 20b.
- the microcomputer 20b detects that the relay 23 is turned off and outputs a signal for turning off the power supply circuit unit 20a, even if the signal output to the CAN controller 20c cannot be stopped, the CAN controller Even if 20c cannot stop the signal output, the signal output from ATCU 20 can be forcibly stopped by turning off the power of ATCU 20.
- ATCU20 is an automatic transmission controller (transmission control device) that controls an automatic transmission, and MUC30 controls a pump motor for driving an electric oil pump that supplies oil to the automatic transmission. It is a motor controller.
- MCU30 When there is an abnormality in the ATCU 20, it is necessary to detect the abnormal state at an early stage and stop the signal output.
- MCU30 with limited functions can start MCU30 earlier than ATCU20. Therefore, the influence on other controllers can be suppressed by detecting an abnormal state at an early stage, turning OFF the relay 23, and stopping the output of the signal.
- the monitoring apparatus is configured by combining the ATCU 20 and the MCU 30, but the present invention may be achieved by combining other controllers.
- the CAN communication line has been described. However, other communication methods can be applied in the same manner.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Transmission Device (AREA)
Abstract
Description
次に、自動変速機の構成について説明する。入力軸Input側から軸方向出力軸Output側に向けて、第1遊星ギヤセットGS1,第2遊星ギヤセットGS2の順に配置されている。また、摩擦締結要素として複数のクラッチC1,C2,C3及びブレーキB1,B2,B3,B4が配置されている。また、複数のワンウェイクラッチF1,F2が配置されている。
図2はコントロールバルブユニットCVUの油圧回路を表す回路図である。以下、回路構成について説明する。実施例1の油圧回路には、エンジンにより駆動された油圧源としてのオイルポンプOP(もしくは電動オイルポンプ)と、運転者のシフトレバー操作と連動して、ライン圧PLを供給する油路を切り換えるマニュアルバルブMVと、ライン圧を所定の一定圧に減圧するパイロットバルブPVが設けられている。
エンジンにより駆動されるオイルポンプOPの吐出圧は、ライン圧に調圧された後、油路101及び油路102に供給される。油路101には、運転者のシフトレバー操作に連動して作動するマニュアルバルブMVと接続された油路101aと、フロントブレーキB1の締結圧の元圧を供給する油路101bと、H&LRクラッチC3の締結圧の元圧を供給する油路101cが接続されている。
[変速作用]
図3は実施例1の自動変速機用歯車変速装置での前進7速後退1速の締結作動表を示す図、図4は各変速段におけるソレノイドバルブSOL1~SOL7の作動表を表す図である。各クラッチC1,C2,C3及び各ブレーキB1,B2,B3,B4には、正常時には図3の締結作動表に示すように、前進7速後退1速の各変速段にて締結圧(○印)や解放圧(無印)が供給される。
1速は、エンジンブレーキ作用時(エンジンブレーキレンジ位置選択中)とエンジンブレーキ非作用時(通常前進走行レンジ位置選択中)とで異なる締結要素が作用する。エンジンブレーキ作用時は、図3の(○)に示すように、フロントブレーキB1とローブレーキB2とH&LRクラッチC3との締結により得られる。尚、フロントブレーキB1に並列に設けられた第1ワンウェイクラッチF1と、H&LRクラッチC3と並列に設けられた第2ワンウェイクラッチF2もトルク伝達に関与する。エンジンブレーキ非作用時は、フロントブレーキB1とH&LRクラッチC3は解放され、ローブレーキB2のみが締結され、第1ワンウェイクラッチF1と第2ワンウェイクラッチF2によりトルク伝達される。
このとき、図4のソレノイドバルブ作動表に示すように、第1~第3ソレノイドバルブSOL1~SOL3及び第6及び第7ソレノイドバルブSOL6,SOL7をオンとし、それ以外をオフとすることで、所望の締結要素に締結圧が供給される。
2速は、エンジンブレーキ作用時(エンジンブレーキレンジ位置選択中)とエンジンブレーキ非作用時(通常前進走行レンジ位置選択中)とで異なる締結要素が締結する。エンジンブレーキ作用時は、図3の(○)に示すように、ローブレーキB2と2346ブレーキB3とH&LRクラッチC3との締結により得られる。尚、H&LRクラッチC3と並列に設けられた第2ワンウェイクラッチF2もトルク伝達に関与する。エンジンブレーキ非作動時は、H&LRクラッチC3は解放され、ローブレーキB2と2346ブレーキB3が締結され、第2ワンウェイクラッチF2によりトルク伝達される。
このとき、図4のソレノイドバルブ作動表に示すように、第1,第2,第5~第7ソレノイドバルブSOL1,SOL2,SOL5,SOL6,SOL7をオンとし、それ以外をオフとすることで、所望の締結要素に締結圧が供給される。
3速は、図3に示すように、2346ブレーキB3とローブレーキB2とダイレクトクラッチC2との締結により得られる。
この3速では、2346ブレーキB3が締結されているため、入力軸Inputから第2リングギヤR2に入力された回転は、第2遊星ギアG2により減速される。この減速された回転が第1連結メンバM1から第4リングギヤR4に出力される。また、ダイレクトクラッチC2が締結されているため、第4遊星ギアG4は一体となって回転する。また、ローブレーキB2が締結されているため、第4リングギヤR4と一体に回転する第4キャリヤPC4から第2連結メンバM2を介して第3リングギヤR3に入力された回転は、第3遊星ギアG3により減速され、第3キャリヤPC3から出力される。このように第4遊星ギアG4はトルク伝達に関与するが減速作用には関与しない。
このとき、図4のソレノイドバルブ作動表に示すように、第1,第2,第4,5及び第7ソレノイドバルブSOL1,SOL2,SOL4,SOL5,SOL7をオンとし、それ以外をオフとすることで、所望の締結要素に締結圧が供給される。
4速は、図3に示すように、2346ブレーキB3とダイレクトクラッチC2とH&LRクラッチC3との締結により得られる。
この4速では、2346ブレーキB3が締結されているため、入力軸Inputから第2リングギヤR2に入力された回転は、第2遊星ギアG2のみにより減速される。この減速された回転が第1連結メンバM1から第4リングギヤR4に出力される。また、ダイレクトクラッチC2及びH&LRクラッチC3が締結されているため、第2遊星ギヤセットGS2は一体で回転する。よって、第4リングギヤR4に入力された回転は、そのまま第3キャリヤPC3から出力される。
このとき、図4のソレノイドバルブ作動表に示すように、第2及び第5ソレノイドバルブSOL2,SOL5をオンとし、それ以外をオフとすることで、所望の締結要素に締結圧が供給される。
5速は、図3に示すように、インプットクラッチC1とダイレクトクラッチC2とH&LRクラッチC3との締結により得られる。
この5速では、インプットクラッチC1が締結されているため、入力軸Inputの回転は第2連結メンバM2に入力される。また、ダイレクトクラッチC2及びH&LRクラッチC3が締結されているため、第3遊星ギアG3は一体で回転する。よって、入力軸Inputの回転は、そのまま第3キャリヤPC3から出力される。
このとき、図4のソレノイドバルブ作動表に示すように、全てのソレノイドバルブSOL1~SOL7をオフとすることで、所望の締結要素に締結圧が供給される。
6速は、図3に示すように、インプットクラッチC1とH&LRクラッチC3と2346ブレーキB3の締結により得られる。
この6速では、インプットクラッチC1が締結されているため、入力軸Inputの回転は第2リングギヤに入力されると共に、第2連結メンバM2に入力される。また、2346ブレーキB3が締結されているため、第2遊星ギアG2により減速された回転が第1連結メンバM1から第4リングギヤR4に出力される。また、H&LRクラッチC3が締結されているため、第2遊星ギヤセットGS2は、第4リングギヤR4の回転と、第2連結メンバM4の回転によって規定される回転を第3キャリヤPC3から出力する。
このとき、図4のソレノイドバルブ作動表に示すように、第5及び第6ソレノイドバルブSOL5,SOL6をオンとし、他のソレノイドバルブSOL1,SOL2,SOL3,SOL4,SOL7をオフとすることで、所望の締結要素に締結圧が供給される。
7速は、図3に示すように、インプットクラッチC1とH&LRクラッチC3とフロントブレーキB1(第1ワンウェイクラッチF1)の締結により得られる。
この7速では、インプットクラッチC1が締結されているため、入力軸Inputの回転は第2リングギヤに入力されると共に、第2連結メンバM2に入力される。また、フロントブレーキB1が締結されているため、第1遊星ギヤセットGS1により減速された回転が第1連結メンバM1から第4リングギヤR4に出力される。また、H&LRクラッチC3が締結されているため、第2遊星ギヤセットGS2は、第4リングギヤR4の回転と、第2連結メンバM4の回転によって規定される回転を第3キャリヤPC3から出力する。
このとき、図4のソレノイドバルブ作動表に示すように、第3及び第6ソレノイドバルブSOL3,SOL6をオンとし、他のソレノイドバルブSOL1,SOL2,SOL4,SOL5,SOL7をオフとすることで、所望の締結要素に締結圧が供給される。
後退速は、図3に示すように、H&LRクラッチC3とフロントブレーキB1とリバースブレーキB4の締結により得られる。
このとき、図4のソレノイドバルブ作動表に示すように、第2,第3及び第6ソレノイドバルブSOL2,SOL3,SOL6をオンとし、他のソレノイドバルブSOL1,SOL4,SOL5,SOL7をオフとすることで、所望の締結要素に締結圧が供給される。尚、第7ソレノイドSOL7についてはRレンジ切り換え初期はオンとし、締結完了後にオフとする。
次に、ATCU20とMCU30との関係について説明する。図5は実施例1のATCUとMCUとの関係を表す概略図である。ATCU20は、バッテリ電源Vbatと接続された電源回路部20aと、各種変速制御処理等を行うマイコン20bと、CAN通信線との間で必要な情報の送受信を行うCANコントローラ20cとを有する。バッテリ電源Vbatと電源回路部20aとを接続する配線21は分岐配線22を有する。分岐配線22はマイコン20bと接続されている。分岐配線22上には、イグニッションスイッチIGNと、イグニッションスイッチIGNと直列に配置されたリレー23とを有する。また、分岐配線22は、ATCU20内においてマイコン20bと接続する第1内部配線22aと、第1内部配線22aから分岐してCANコントローラ20cと接続する第2内部配線22bとを有する。
図6は実施例1の異常時CAN通信停止制御処理を表すフローチャートである。このフローチャートは、ATCU20のマイコン20bの通常起動直後に開始されるものである。この時点でMCU30は完全に起動しており、ATCU20のCANコントローラ20cも通常の通信開始前であってもMCU30のCANコントローラ30cから異常診断に関わる情報については送受信可能である。
ステップS2では、ATCU20において、MCU30から送信された質問データを受信し、そのデータを使用して所定の演算を実施し、質問データに対する回答データを演算する。
ステップS3では、ATCU20において、演算された回答データをCANコントローラ20cからMCU30に送信する。
ステップS5では、MCU30において、回答データが正解の場合は本制御フローを終了し、再度ATCU20への質問データの送信を繰り返すことで異常診断を継続する。
ステップS6では、MCU30において、リレー23に対してOFF信号を出力し、リレー23を遮断する。
(1)マイコン20b(演算回路)とCANコントローラ20c(信号送受信回路)とを備えたATCU20(第1の電子制御装置)と、ATCU20に電力を供給するバッテリ電源Vbat(電源)と、マイコン20bとバッテリ電源Vbatとの間に設けられたイグニッションスイッチIGNと、イグニッションスイッチIGNとマイコン20bの間に設けられると共に、CANコントローラ20cと接続されたリレー23と、リレー23を介さずにバッテリ電源Vbatと接続され、リレー23に信号を送信するリレーON・OFF信号線25(配線)が接続されたMCU30(第2の電子制御装置)と、を備え、MCU30は、CANコントローラ20cから出力された信号が正常か異常かを判定すると共に、異常であると判定した場合、リレー23を遮断する遮断信号を出力し、マイコン20bは、リレー23が遮断されたことを検知するとCANコントローラ20cに信号の出力を停止する指令を出力し、CANコントローラ20cは、リレー23が遮断されたことを検知、もしくは、マイコン20bからの信号の出力を停止する指令を受信したときは信号の出力を停止する。
よって、CANコントローラ20cはリレー23がOFFになったことを検知して信号の出力を停止するため、マイコン20bが故障してマイコン20bからの指令によってCANコントローラ20cの信号出力の停止ができない場合であっても信号の出力を停止できる。これにより、他の電子制御装置が受ける影響を低減できる。また、CANコントローラ20cが故障してリレー23がOFFになったことを検知できない場合であっても、マイコン20bはCANコントローラ20cに信号の送信を停止するため、CANコントローラ20cからの信号の出力を停止できる。
マイコン20bは、リレー23がOFFになったことを検知し、電源回路部20aをOFFする信号を出力するため、CANコントローラ20cへ信号の出力を停止できない場合であっても、更には、CANコントローラ20cが信号の出力を停止できない場合であっても、ATCU20の電源をOFFすることで強制的にATCU20からの信号の出力を停止できる。
ATCU20に異常がある場合には、早期に異常状態を検知して信号の出力を停止する必要がある。ATCU20に比べて、機能が限定されたMCU30は、ATCU20よりも早くMCU30を起動することができる。よって、早期に異常状態を検知してリレー23をOFFし、信号の出力を停止することで、他のコントローラへの影響を抑制できる。
Claims (3)
- 演算回路と信号送受信回路とを備えた第1の電子制御装置と、
前記第1の電子制御装置に電力を供給する電源と、
前記演算回路と前記電源との間に設けられたイグニッションスイッチと、
前記イグニッションスイッチと前記演算回路の間に設けられると共に、前記信号送受信回路と接続されたリレーと、
前記リレーを介さずに前記電源と接続され、リレーに信号を送信する配線が接続された第2の電子制御装置と、
を備え、
前記第2の電子制御装置は、前記信号送受信回路から出力された信号が正常か異常かを判定すると共に、異常であると判定した場合、前記リレーを遮断する遮断信号を出力し、前記演算回路は、前記リレーが遮断されたことを検知すると前記信号送受信回路に信号の出力を停止する指令を出力し、前記信号送受信回路は、前記リレーが遮断されたことを検知、もしくは、前記演算回路からの信号の出力を停止する指令を受信したときは信号の出力を停止する、車両の制御装置。 - 請求項1に記載の車両の制御装置において、
前記第1の電子制御回路は、内部電源としての電源回路を有し、
前記電源回路は、前記イグニッションスイッチ及び前記リレーを介さずに電源と接続し、前記演算回路からの内部電源をオフする信号を受信すると内部電源をオフする、車両の制御装置。 - 請求項1または2に記載の車両の制御装置において、
前記第1の電源制御装置は、変速機を制御する変速機制御装置であり、
前記第2の電子制御装置は、前記変速機へオイルを供給する電動オイルポンプのポンプ制御装置である、車両の制御装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020167033848A KR101851489B1 (ko) | 2014-06-18 | 2015-05-20 | 차량의 제어 장치 |
CN201580032425.3A CN106660496B (zh) | 2014-06-18 | 2015-05-20 | 车辆的控制装置 |
JP2016529185A JP6212637B2 (ja) | 2014-06-18 | 2015-05-20 | 車両の制御装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-124851 | 2014-06-18 | ||
JP2014124851 | 2014-06-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015194301A1 true WO2015194301A1 (ja) | 2015-12-23 |
Family
ID=54935295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/064406 WO2015194301A1 (ja) | 2014-06-18 | 2015-05-20 | 車両の制御装置 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6212637B2 (ja) |
KR (1) | KR101851489B1 (ja) |
CN (1) | CN106660496B (ja) |
WO (1) | WO2015194301A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115817181A (zh) * | 2022-12-20 | 2023-03-21 | 羿动新能源科技有限公司 | 一种基于车辆挡位切换的动力电池高压下电方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108594787A (zh) * | 2018-03-22 | 2018-09-28 | 常熟共兴合创智能科技合伙企业(有限合伙) | 汽车远程监控模式下的通信切断方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006315620A (ja) * | 2005-05-16 | 2006-11-24 | Advics:Kk | 車載電子制御装置のリレー駆動回路 |
JP2008137472A (ja) * | 2006-12-01 | 2008-06-19 | Hitachi Ltd | 車両負荷制御装置 |
JP2013238259A (ja) * | 2012-05-11 | 2013-11-28 | Toyota Motor Corp | 車両用電子制御装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102803796B (zh) * | 2010-05-17 | 2015-09-30 | 爱信艾达株式会社 | 自动变速器的控制装置 |
CN103287357B (zh) * | 2012-02-28 | 2015-12-23 | 富士通天株式会社 | 车辆控制装置、车辆控制系统以及车辆控制方法 |
JP5743996B2 (ja) * | 2012-11-06 | 2015-07-01 | ジヤトコ株式会社 | 自動変速機の異常判定装置および異常判定方法 |
-
2015
- 2015-05-20 CN CN201580032425.3A patent/CN106660496B/zh active Active
- 2015-05-20 JP JP2016529185A patent/JP6212637B2/ja active Active
- 2015-05-20 WO PCT/JP2015/064406 patent/WO2015194301A1/ja active Application Filing
- 2015-05-20 KR KR1020167033848A patent/KR101851489B1/ko active IP Right Grant
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006315620A (ja) * | 2005-05-16 | 2006-11-24 | Advics:Kk | 車載電子制御装置のリレー駆動回路 |
JP2008137472A (ja) * | 2006-12-01 | 2008-06-19 | Hitachi Ltd | 車両負荷制御装置 |
JP2013238259A (ja) * | 2012-05-11 | 2013-11-28 | Toyota Motor Corp | 車両用電子制御装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115817181A (zh) * | 2022-12-20 | 2023-03-21 | 羿动新能源科技有限公司 | 一种基于车辆挡位切换的动力电池高压下电方法 |
Also Published As
Publication number | Publication date |
---|---|
KR101851489B1 (ko) | 2018-04-23 |
JP6212637B2 (ja) | 2017-10-11 |
KR20170005048A (ko) | 2017-01-11 |
CN106660496B (zh) | 2019-02-12 |
JPWO2015194301A1 (ja) | 2017-04-20 |
CN106660496A (zh) | 2017-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1770314B1 (en) | Automatic transmission | |
US7402123B2 (en) | Automatic transmission control method and system having fail-safe function | |
US8100804B2 (en) | Hydraulic control system and method for automatic transmission for a vehicle | |
US7749122B2 (en) | Automatic transmission | |
JP3965386B2 (ja) | 自動変速機の変速制御装置 | |
KR101714047B1 (ko) | 자동 변속기의 제어 장치 및 그 학습 방법 | |
US6929584B2 (en) | Hydraulic pressure control apparatus and method for vehicular automatic transmission | |
JP6212637B2 (ja) | 車両の制御装置 | |
JP6492298B2 (ja) | 車両の制御装置 | |
US20110239803A1 (en) | Hydraulic control system for automatic transmission and control system for automatic transmission | |
JP4358248B2 (ja) | 自動変速機 | |
JP4350694B2 (ja) | 自動変速装置の制御装置 | |
JP4398967B2 (ja) | 自動変速装置の制御装置 | |
JP4499053B2 (ja) | 自動変速装置の制御装置 | |
JP2003301939A (ja) | 自動変速機の制御装置 | |
JP4965700B2 (ja) | 自動変速装置の制御装置 | |
JP4663566B2 (ja) | 自動変速装置の制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15809939 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016529185 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20167033848 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15809939 Country of ref document: EP Kind code of ref document: A1 |