WO2015194199A1 - アルキル-n-アセチルグルコサミニドの製造方法 - Google Patents

アルキル-n-アセチルグルコサミニドの製造方法 Download PDF

Info

Publication number
WO2015194199A1
WO2015194199A1 PCT/JP2015/050865 JP2015050865W WO2015194199A1 WO 2015194199 A1 WO2015194199 A1 WO 2015194199A1 JP 2015050865 W JP2015050865 W JP 2015050865W WO 2015194199 A1 WO2015194199 A1 WO 2015194199A1
Authority
WO
WIPO (PCT)
Prior art keywords
acetylglucosamine
alkyl
acetylglucosaminide
chitin
mixture
Prior art date
Application number
PCT/JP2015/050865
Other languages
English (en)
French (fr)
Inventor
幸子 高林
大地 小黒
Original Assignee
長谷川香料株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長谷川香料株式会社 filed Critical 長谷川香料株式会社
Priority to CN201580011258.4A priority Critical patent/CN106068270B/zh
Publication of WO2015194199A1 publication Critical patent/WO2015194199A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives

Definitions

  • the present invention is an alkyl-N represented by the following formula (1) (wherein R represents an alkyl group having 1 to 4 carbon atoms), which is a substance useful for external preparations for skin and growth of intestinal bifidobacteria. -Relates to a process for the production of acetylglucosaminide. More specifically, in a simple and industrially advantageous manner, the following formula (1), in which the content of N-acetylglucosamine as an impurity is low, wherein R represents an alkyl group having 1 to 4 carbon atoms: It relates to a process for obtaining the represented alkyl-N-acetylglucosaminide.
  • N-acetylglucosamine is a monosaccharide in which the hydroxyl group at the 2-position of glucose is substituted with an acetylamino group, and is widely distributed in the animal kingdom. N-acetylglucosamine is considered to have various physiological actions, and is said to have hyaluronic acid production promoting effect, skin moisturizing effect and joint pain improving effect. *
  • Alkyl-N-acetylglucosaminide in which the hydroxyl group at the 1-position of N-acetylglucosamine produced by the present invention is substituted with an alkoxy group is known to be a useful substance having various activities.
  • As its activity for example, the bifidobacteria growth action of intestinal bacteria (Non-patent Document 1), the growth inhibitory effect of H. pylori (Patent Document 1), the hyaluronic acid production promoting effect (Patent Document 2), etc. are known. . *
  • Non-patent Document 3 a method of removing the protecting group or an oxazoline derivative derived from N-acetylglucosamine is condensed with an alcohol in the presence of an acid catalyst.
  • Patent Document 6 A method is also known (Patent Document 6).
  • these methods are not necessarily industrially inexpensively manufactured from the viewpoint of the number of steps and cost.
  • Patent Document 7 a method has also been proposed in which an N-acetylglucosamine oligomer or polymer is used as a raw material and sugar transfer is carried out to an alkyl alcohol by an enzyme such as chitinase.
  • the residual unreacted N-acetylglucosamine is often problematic.
  • unreacted N-acetylglucosamine needs to be reduced as much as possible in order to effectively obtain the activity.
  • coloring since coloring is likely to occur, it is desired to reduce the content as much as possible in order to suppress coloring of the blended product.
  • N-acetylglucosamine Reduction of N-acetylglucosamine can be achieved by a purification method such as silica gel column chromatography, but this is not necessarily an industrially suitable method. Alkyl-N-acetylglucosamine and N-acetylglucosamine are industrially used. At present, an effective means of separating in a possible manner has not yet been developed. *
  • Non-patent Document 4 purification of alkyl-N-acetylglucosaminide using an anion exchange resin has been reported (Non-patent Document 4), but this report is a purification by separation of ⁇ -form and ⁇ -form. There is no mention of separation of N-acetylglucosaminide and N-acetylglucosamine.
  • An object of the present invention is to provide a method for easily and efficiently obtaining an alkyl-N-acetylglucosaminide having a low N-acetylglucosamine content as an impurity at a low cost.
  • the present inventors have described various adsorbents, particularly synthetic adsorbent resins, and ions for a method for separating and purifying alkyl-N-acetylglucosaminide from a mixture of alkyl-N-acetylglucosaminide and N-acetylglucosamine.
  • exchange resins can be used.
  • alkyl-N-acetylglucosamin nor N-acetylglucosamine is a structure that ionizes in aqueous solution.
  • only N-acetylglucosamine is adsorbed when contacted with a strongly basic anion exchange resin.
  • the phenomenon that alkyl-N-acetylglucosaminide does not adsorb was found, and the present invention was completed.
  • Alkyl-N-acetylgluco comprising a step of reducing the content of N-acetylglucosamine by bringing a mixture of alkyl-N-acetylglucosaminide and N-acetylglucosamine into contact with a strongly basic anion exchange resin
  • a method for producing saminide (wherein alkyl represents an alkyl group having 1 to 4 carbon atoms).
  • the mixture of alkyl-N-acetylglucosaminide and N-acetylglucosamine is obtained by reacting N-acetylglucosamine, chitin or chitin oligosaccharide with an alkyl alcohol in the presence of an acid. Process for the production of alkyl-N-acetylglucosaminide.
  • a mixture of alkyl-N-acetylglucosaminide and N-acetylglucosamine is used to transfer chitin or chitin oligosaccharide by an enzyme having N-acetylhexosaminidase activity in a mixed solution of alkyl alcohol and water.
  • the present invention includes a step of bringing a mixture of alkyl-N-acetylglucosaminide and N-acetylglucosamine into contact with a strongly basic anion exchange resin, and includes alkyl-N-acetylglucosaminide and N-acetylglucosamine. Any mixture obtained by any method can be used. Such a mixture of alkyl-N-acetylglucosaminide and N-acetylglucosamine is obtained, for example, by glycosylation of N-acetylglucosamine, chitin or chitin oligosaccharide in alkyl alcohol in the presence of an acid or enzyme. It is done. *
  • N-acetylglucosamine is a monosaccharide in which the hydroxyl group at the 2-position of glucose is substituted with an acetamino group, and is a compound that is readily available on the market.
  • Chitin is a compound in which N-acetylglucosamine is polymerized by ⁇ -1,4 bonds, and covers the surface of many invertebrates such as the arthropod and crustacean exoskeleton, the surface of mollusk shells. It is the main component of cell walls of fungi such as cuticles and mushrooms. Chitin has been suggested to be effective in enhancing immunity and improving hyperlipidemia, and is considered a promising health material. Moreover, it is actually widely distributed as a health material and can be easily obtained in the market. *
  • Chitin oligosaccharides are those obtained by partially hydrolyzing chitin chemically or enzymatically and containing polymers from monosaccharides (N-acetylglucosamine) to dozens of sugars with N-acetylglucosamine as a constituent sugar.
  • Oligosaccharides of various chain lengths. Chitin is expected to have the physiological effects as described above, but has a drawback that it is difficult to use due to poor solubility. Therefore, chitin oligosaccharides that are easily hydrolyzed by chitin are also generally available on the market. Chitin oligosaccharides have good solubility and dispersibility in solvents such as water and lower aliphatic alcohols, and are easy to handle. *
  • N-acetylglucosamine chitin, or chitin oligosaccharide
  • a commercially available product can be used as described above.
  • alkyl alcohol examples include methanol, ethanol, propanol, and butanol. Among these, ethanol is particularly preferable. *
  • p-toluenesulfonic acid When glycosylation is performed using an acid catalyst, p-toluenesulfonic acid, camphorsulfonic acid, acidic ion exchange resin, sulfuric acid, phosphoric acid, boron trifluoride, etc. are used as an acid catalyst in the presence or absence of a solvent.
  • alkyl alcohol is 1 to 1 part by mass with respect to 1 part by mass of N-acetylglucosamine, chitin or chitin oligosaccharide.
  • a mixture of alkyl-N-acetylglucosaminide and N-acetylglucosamine can be obtained by using 100 parts by mass and reacting at 20 to 120 ° C. for 0.5 to 100 hours. In this reaction, it is possible to reduce the residual amount of raw material N-acetylglucosamine by lengthening the reaction time. In this case, the produced alkyl-N-acetylglucosaminide is ⁇ -isomerized by isomerization. Often becomes a mixture of isomer and ⁇ -form. On the other hand, if the reaction is terminated at the initial stage, the ⁇ -isomer can be obtained with relatively high purity, but in this case, unreacted raw materials remain. It is preferable to determine the reaction time while confirming the reaction product. *
  • chitinase When glycosylation is performed using an enzyme, various enzymes having N-acetylhexosaminidase activity such as chitinase can be used as the enzyme.
  • the enzyme to be used those isolated from animals, plants and microorganisms can be used, but commercially available products may be used, such as Yatalase (registered trademark, manufactured by Takara Bio Inc.), Sumiteam (registered trademark) NAH25 (new).
  • the amount of the enzyme to be used is usually 0.001 to 10 parts by mass, preferably 1 to 10 parts by mass with respect to 1 part by mass of chitin or chitin oligosaccharide. May be 0.01 to 0.5 parts by mass.
  • the alkyl alcohol is used in an amount of 1 to 100 parts by weight with respect to 1 part by weight of chitin or chitin oligosaccharide, and the reaction temperature and reaction time are 0 to 80 ° C. depending on the optimum temperature of the enzyme. By reacting for about 1 hour to 5 days, a mixture of alkyl-N-acetylglucosaminide and N-acetylglucosamine can be obtained.
  • the reaction solvent water is suitable, but various organic solvents may be mixed with water. Further, the pH may be adjusted by adding a phosphate buffer or the like.
  • the mixture of alkyl-N-acetylglucosaminide and N-acetylglucosamine obtained as described above is brought into contact with a strongly basic anion exchange resin.
  • a strongly basic anion exchange resin By this step, only N-acetylglucosamine is adsorbed on the strongly basic anion exchange resin.
  • the alkyl-N-acetylglucosaminide is not adsorbed on the strongly basic anion exchange resin and remains dissolved in the solvent.
  • an alkyl-N-acetylglucosaminide solution from which N-acetylglucosamine has been removed or reduced can be obtained.
  • the strong base anion exchange resin that can be used is not particularly limited, but Diaion (registered trademark) SA10A, SA12A, SA11A, NSA100, UBA120, SA20A, PA306S, PA308, PA312, PA316, PA318L, PA408 PA412, PA418, HPA25L (above, manufactured by Mitsubishi Chemical Corporation), Amberlite (registered trademark) IRA-400, IRA-400J, IRA-401, IRA-402, IRA-402BL, IRA-404J, IRA-410, Examples thereof include IRA-410J, IRA-411, IRA-910CT, IRA-900, IRA-900J, IRA-904, IRA-910, IRA-958, IRA-458RF (manufactured by Oregano). *
  • the contact process between the mixture of alkyl-N-acetylglucosaminide and N-acetylglucosamine and the strongly basic anion exchange resin may be either a batch method or a column method, but the column method is more suitable for industrial production scale.
  • a general treatment condition an aqueous solution of a mixture of alkyl-N-acetylglucosaminide and N-acetylglucosamine is used, and the space velocity (SV) is about 0.1 to 20 / hour, preferably 0.5 to 10 / hour.
  • the liquid passing through can be exemplified. *
  • the amount of strong basic anion exchange resin used varies depending on the exchange capacity, treatment method, treatment time, etc., but about 0.18 mmol to 0.25 mmol of N-acetylglucosamine per 1 meq of exchange capacity of the strong basic anion exchange resin. Can be processed. *
  • the strongly basic anion exchange resin after the treatment can be repeatedly regenerated and used by washing by an ordinary method using an acid solution, water, an alkali solution or the like.
  • the ratio of alkyl-N-acetylglucosaminide to N-acetylglucosamine is obtained by treating the mixture of alkyl-N-acetylglucosaminide and N-acetylglucosamine with a strong basic anion exchange resin as described above.
  • the range of about 40 to 60:60 to 40 before the treatment can be set to the range of about 90:10 to 100: 0. *
  • the alkyl-N-acetylglucosaminide solution with a low N-acetylglucosamine content obtained as described above can be used as it is in the form of an aqueous solution, or it can be filtered, evaporated, ethanol extracted, activated carbon. It can also be made into a concentrate through purification steps such as treatment.
  • a diluent such as triglyceride alone or in admixture of two or more.
  • fatty acid monoglyceride fatty acid diglyceride, fatty acid triglyceride, propylene glycol fatty acid ester, sucrose fatty acid ester, polyglycerin fatty acid ester, lecithin, processed starch, sorbitan fatty acid ester, quilla extract, gum arabic, Addition or addition of surfactants or excipients such as tragacanth gum, guar gum, karaya gum, xanthan gum, pectin, alginic acid and its salts, carrageenan, gelatin, casein, dextrin, cyclodextrin, monosaccharides, disaccharides, polyols, etc.
  • it can be made into a powder by drying by employing an appropriate drying means such as spray drying, vacuum drying, freeze drying and the like. *
  • the alkyl-N-acetylglucosaminide obtained by the present invention can be used for various foods, health foods, cosmetics, pharmaceuticals and the like. *
  • HPLC analysis was performed under the following measurement conditions.
  • Example 2 Production of n-butyl-N-acetylglucosaminide
  • N-acetylglucosamine manufactured by Tokyo Chemical Industry Co., Ltd.
  • 1-butanol and p-toluenesulfonic acid 0 .3 g was charged, reacted at 60 ° C. for 8 hours, and then reacted at 100 ° C. for 2 hours.
  • Example 3 Production of ethyl-N-acetyl- ⁇ -glucosaminide A 3 L reaction flask was charged with 1500 g of ion-exchanged water, 4.4 g of sodium acetate, 1.3 g of glacial acetic acid, and 200 g of 99% ethanol. Heated until the temperature reached 50 ° C. Under the same temperature, 10 g (45.2 mmol) of chitin (manufactured by Koyo Chemical Co., Ltd.) and 2.0 g of Denateam (registered trademark) CET-P1 (manufactured by Nagase ChemteX Corp.) were added and stirred at 50 ° C. for 20 hours for reaction. .
  • chitin manufactured by Koyo Chemical Co., Ltd.
  • Denateam (registered trademark) CET-P1 manufactured by Nagase ChemteX Corp.
  • Example 4 Examination of resin The following operations were performed to measure the residual ratio of N-acetylglucosamine at each stage in steps S1 to S3. 0.1 g of commercially available N-acetylglucosamine (manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in 10 g of water, 1.0 g of the resin shown in Table 1 was added, and the mixture was stirred for 30 minutes (S1). Subsequently, 4.0 g of the same resin was further added and stirred for 30 minutes (S2). Further, the resin suspension was left as it was for 16 hours (S3).
  • N-acetylglucosamine manufactured by Tokyo Chemical Industry Co., Ltd.
  • the strongly acidic cation exchange resin and weakly basic anion exchange resin do not adsorb N-acetylglucosamine at all, but both strongly basic anion exchange resins adsorb N-acetylglucosamine.
  • Both strongly basic anion exchange resins adsorb N-acetylglucosamine.
  • strongly basic anion exchange resins Diaion (registered trademark) SA10A (manufactured by Mitsubishi Chemical Corporation) and Diaion (registered trademark) PA306S (manufactured by Mitsubishi Chemical Corporation) were most adsorbed. *
  • Example 5 Examination of resin amount In the same manner as in Example 3, 389 g of an aqueous solution (reference product 1) having an ethyl-N-acetyl- ⁇ -glucosaminide concentration of 2.7% and an N-acetylglucosamine concentration of 2.8% was prepared and used for the following studies. *
  • ion exchange resin Diaion (registered trademark) SA10A OH type (manufactured by Mitsubishi Chemical Corporation) was packed in a column having an inner diameter of 4 cm (inner diameter: 4 cm ⁇ 16 cm as a resin).
  • the amount of strongly basic anion exchange resin used varies depending on the exchange capacity, treatment method, treatment time, etc., but about 0.18 mmol to 0.25 mmol of N-acetylglucosamine per meq of anion exchange tree resin. It was thought that the processing of was sufficiently possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Saccharide Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

 【課題】 不純物としてのN-アセチルグルコサミン含量の少ないアルキル-N-アセチルグルコサミニドを低コストで簡便に、効率よく得る方法を提供すること。 【解決手段】 アルキル-N-アセチルグルコサミニドとN-アセチルグルコサミンの混合物を強塩基性陰イオン交換樹脂と接触させることでN-アセチルグルコサミンの含有量を低減させる工程を含むアルキル-N-アセチルグルコサミニドの製造方法。

Description

アルキル-N-アセチルグルコサミニドの製造方法
本発明は、皮膚外用剤や腸内ビフィズス菌の発育などに有用な物質である下記式(1)(式中、Rは炭素数1~4のアルキル基を示す)で表されるアルキル-N-アセチルグルコサミニドの製造方法に関する。さらに詳しくは、簡便、かつ、工業的に有利な方法で、不純物としてのN-アセチルグルコサミン含量の少ない、下記式(1)(式中、Rは炭素数1~4のアルキル基を示す)で表されるアルキル-N-アセチルグルコサミニドを得る方法に関する。
Figure JPOXMLDOC01-appb-I000001
N-アセチルグルコサミンはグルコースの2位の水酸基がアセチルアミノ基に置換された単糖であり、動物界に広く分布して存在している。N-アセチルグルコサミンは様々な生理作用があると考えられており、ヒアルロン酸産生促進効果、皮膚保湿効果や関節痛を改善する効果などがあるといわれている。 
本発明により製造されるN-アセチルグルコサミンの1位の水酸基をアルコキシ基に置換したアルキル-N-アセチルグルコサミニドは、種々の活性を有する有用な物質であることが知られている。その活性としては、例えば、腸内細菌のビフィズス菌発育作用(非特許文献1)、ピロリ菌の増殖抑制効果(特許文献1)、ヒアルロン酸産生促進効果(特許文献2)などが知られている。 
アルキル-N-アセチルグルコサミニドの製造方法としては、N-アセチルグルコサミンとアルキルアルコールを酸触媒を用いて直接縮合させる方法が知られており、用いる酸触媒としては、プロトン酸や酸性イオン交換樹脂や三フッ化ホウ素ジエチルエーテル錯体などが挙げられる(非特許文献2、特許文献3、特許文献4、特許文献5)。 
また、アセトハロゲン誘導体とアルコール類を縮合させた後、保護基を除いて製造する方法(非特許文献3)やN-アセチルグルコサミンから誘導されるオキサゾリン誘導体を酸触媒の存在下アルコール類を縮合させる方法も知られている(特許文献6)。しかしながら、これらの方法は、工程数やコスト面から、必ずしも工業的に安価に製造し得るものではなかった。 
また、N-アセチルグルコサミンのオリゴマーやポリマーを原料として、キチナーゼなどの酵素によりアルキルアルコールに糖転移する方法も提案されている(特許文献7)。上記のような製造方法においてしばしば未反応のN-アセチルグルコサミンの残存が問題となる場合がある。未反応のN-アセチルグルコサミンは目的とする活性によっては、その活性を効果的に得るためにできるだけ軽減する必要がある。また、着色が起こりやすいため、配合した製品の着色を抑えるためには、極力含有量を低減させることが望まれる。N-アセチルグルコサミンの低減は、シリカゲルカラムクロマトグラフィーなどの精製方法により達成できるが、工業的に必ずしも適した方法とは言えず、アルキル-N-アセチルグルコサミニドとN-アセチルグルコサミンを工業的に可能な方法で分離する有効な手段は、いまだ開発されていないのが現状であった。 
一方、陰イオン交換樹脂を用いる、アルキル-N-アセチルグルコサミニドの精製が報告されている(非特許文献4)が、この報告は、α体とβ体の分離による精製であり、アルキル-N-アセチルグルコサミニドとN-アセチルグルコサミンの分離については何ら言及されていない。
Archives of Biochemistry and Biophysics,54,392,(1955) Methods in Carbohydrate Chemistry,vol.2,p.83,Whistler and Wolform,Eds.,Academic Press,New York,(1963) Chemische Berichte,86,1331,(1953) Journal of Biochemistry,54,109,(1963)
特許第4811953号公報 特許第4589865号公報 特公昭35-15780号公報 US4,152,513 特公昭40-7886号公報 特許第4599505号公報 特開平5-244975号公報
本発明の目的は、不純物としてのN-アセチルグルコサミン含量の少ないアルキル-N-アセチルグルコサミニドを低コストで簡便に、効率よく得る方法を提供することにある。
本発明者らは、アルキル-N-アセチルグルコサミニドとN-アセチルグルコサミンの混合物からアルキル-N-アセチルグルコサミニドを分離精製する方法について、様々な吸着剤、特に合成吸着樹脂、さらにはイオン交換樹脂が使用できないか鋭意研究した。アルキル-N-アセチルグルコサミニドもN-アセチルグルコサミンも水溶液中でイオン化する構造ではないが、意外なことに、強塩基性陰イオン交換樹脂と接触させたところ、N-アセチルグルコサミンのみが吸着し、アルキル-N-アセチルグルコサミニドは吸着しないという現象が見出され、本発明を完成するに至った。 
かくして本発明は、以下のものを提供する。(1)アルキル-N-アセチルグルコサミニドとN-アセチルグルコサミンの混合物を強塩基性陰イオン交換樹脂と接触させることでN-アセチルグルコサミンの含有量を低減させる工程を含むアルキル-N-アセチルグルコサミニドの製造方法(但し、アルキルは炭素数1~4のアルキル基を意味する)。(2)アルキル-N-アセチルグルコサミニドとN-アセチルグルコサミンの混合物が、N-アセチルグルコサミン、キチンまたはキチンオリゴ糖を、酸の存在下アルキルアルコールと反応させたものである(1)に記載のアルキル-N-アセチルグルコサミニドの製造方法。(3)アルキル-N-アセチルグルコサミニドとN-アセチルグルコサミンの混合物が、キチンまたはキチンオリゴ糖を、アルキルアルコールと水の混合溶液中でN-アセチルヘキソサミニダーゼ活性を有する酵素により糖転移反応させたものである(1)に記載のアルキル-N-アセチルグルコサミニドの製造方法。(4)異性体比がβ:α=100:0~90:10であることを特徴とする(3)に記載のアルキル-N-アセチルグルコサミニドの製造方法。
本発明により、不純物としてのN-アセチルグルコサミン含量の少ないアルキル-N-アセチルグルコサミニドを低コストで簡便に、効率よく製造することが可能となる。
以下、本発明の実施の形態について説明する。 
本発明では、アルキル-N-アセチルグルコサミニドとN-アセチルグルコサミンの混合物を強塩基性陰イオン交換樹脂と接触させる工程を含んでいるが、アルキル-N-アセチルグルコサミニドとN-アセチルグルコサミンの混合物は、いかなる方法により得られたものであっても使用することができる。このようなアルキル-N-アセチルグルコサミニドとN-アセチルグルコサミンの混合物は、例えば、N-アセチルグルコサミン、キチンまたはキチンオリゴ糖をアルキルアルコール中で酸もしくは酵素の存在下にグリコシル化することにより得られる。 
N-アセチルグルコサミンはグルコースの2位の水酸基がアセトアミノ基に置換された単糖であり、市場で容易に入手可能な化合物である。 
キチンはN-アセチルグルコサミンがβ-1,4結合により重合した化合物であり、節足動物や甲殻類の外骨格すなわち外皮、軟体動物の殻皮の表面といった多くの無脊椎動物の体表を覆うクチクラや、キノコなど菌類の細胞壁などの主成分である。キチンは免疫強化、高脂血症の改善などに効果が期待できることが示唆されており、有望な健康素材と考えられている。また、実際に健康素材として広く一般に流通しており、市場で容易に入手することができる。 
キチンオリゴ糖は、キチンを化学的または酵素的に部分的に加水分解したものでありN-アセチルグルコサミンを構成糖とする、単糖(N-アセチルグルコサミン)~十数糖までの重合物を含む、多様な鎖長のオリゴ糖である。キチンは前記のような生理作用が期待されるが、溶解性が悪いために利用し難い欠点がある。そこでキチンを加水分解して利用しやすくしたキチンオリゴ糖も市場に一般に流通している。キチンオリゴ糖は、水や低級脂肪族アルコールなどの溶媒への溶解、分散性が良く、取り扱いも容易である。 
本発明で使用することのできるN-アセチルグルコサミン、キチンまたはキチンオリゴ糖は前述の通り、市販品を使用することができる。 
本発明で使用することのできるアルキルアルコールは、メタノール、エタノール、プロパノール、ブタノールなどを例示することができる。この中でも、特にエタノールが好ましい。 
酸触媒を用いてグリコシル化を行う場合は、溶媒の存在下或いは非存在下で、酸触媒としてp-トルエンスルホン酸、カンファースルホン酸、酸性イオン交換樹脂、硫酸、リン酸、三フッ化ホウ素などを、N-アセチルグルコサミン、キチンまたはキチンオリゴ糖1質量部に対し、0.01~0.5質量部、アルキルアルコールを、N-アセチルグルコサミン、キチンまたはキチンオリゴ糖1質量部に対し、1~100質量部使用し、20~120℃において、0.5~100時間反応させることでアルキル-N-アセチルグルコサミニドとN-アセチルグルコサミンの混合物を得ることができる。本反応では、反応の時間を長くすることで、原料のN-アセチルグルコサミン残存量を低減することも可能であるが、その場合、生成するアルキル-N-アセチルグルコサミニドは異性化によりβ体とα体の混合物になる場合が多い。一方、反応を初期段階で終了させれば、β体を比較的純度良く得ることができるが、この場合、未反応原料が残存してしまう。反応生成物を確認しながら、反応時間を決定することが好ましい。 
酵素を用いてグリコシル化を行う場合は、酵素としてキチナーゼなどのN-アセチルヘキソサミニダーゼ活性を有する各種酵素を用いることができる。使用する酵素は、動植物や微生物から単離したものを使用することができるが、市販品を使用しても良く、例えばYatalase(登録商標、タカラバイオ社製)、スミチーム(登録商標)NAH25(新日本化学工業社製)、キチナ-ゼ(シグマ社製)、キチナーゼ(和光純薬社製)、エイコンCHL(洛東化成工業社製)、デナチーム(登録商標)CBB-P1(ナガセケムテックス社製)、デナチーム(登録商標)CET-P1(ナガセケムテックス社製)、Glyko(登録商標、コスモ・バイオ社製)、卵白リゾチーム(キューピー社製)、卵白リゾチームFG(ナガセケムテックス社製)、などが挙げられ、これらの酵素を単独で使用するかまたは、二種以上を併用することもできる。 
使用する酵素の量は、原料であるキチンまたはキチンオリゴ糖の重合度、溶媒、酵素の活性にもよるが、キチンまたはキチンオリゴ糖1質量部に対し、通常0.001~10質量部、好ましくは0.01~0.5質量部を例示することができる。アルキルアルコールの使用量は、キチンまたはキチンオリゴ糖1質量部に対し、1~100質量部使用し、また、反応温度および反応時間としては、酵素の至適温度にもよるが、0~80℃、1時間~5日程度反応させること
でアルキル-N-アセチルグルコサミニドとN-アセチルグルコサミンの混合物を得ることができる。反応溶媒としては、水が好適であるが、水に各種有機溶媒を混合してもよい。また、リン酸バッファー等を添加してpHを調節しても良い。 
前記酵素反応では、アルキル-N-アセチルグルコサミニドのβ体を優先的に与える。より具体的には、用いる基質や反応条件によって異なるものの、生成するアルキル-N-アセチルグルコサミニドの異性体比としてβ:α=100:0~90:10の範囲を例示することができる。 
本発明では、上記のようにして得られた、アルキル-N-アセチルグルコサミニドとN-アセチルグルコサミンの混合物を、強塩基性陰イオン交換樹脂と接触させる。この工程により、強塩基性陰イオン交換樹脂にN-アセチルグルコサミンのみが吸着する。この際、アルキル-N-アセチルグルコサミニドは強塩基性陰イオン交換樹脂に吸着せず、溶媒に溶解したままとなる。このような吸着能の違いを利用することにより、N-アセチルグルコサミンが除去または低減されたアルキル-N-アセチルグルコサミニド溶液を得ることができる。 
使用することのできる強塩基性陰イオン交換樹脂としては、特に制限はないが、ダイヤイオン(登録商標)SA10A、SA12A、SA11A、NSA100、UBA120、SA20A、PA306S、PA308、PA312、PA316、PA318L、PA408、PA412、PA418、HPA25L、(以上、三菱化学社製)、アンバーライト(登録商標)IRA-400、IRA-400J、IRA-401、IRA-402、IRA-402BL、IRA-404J、IRA-410、IRA-410J、IRA-411、IRA-910CT、IRA-900、IRA-900J、IRA-904、IRA-910、IRA-958、IRA-458RF、(以上、オレガノ社製)などが例示される。 
アルキル-N-アセチルグルコサミニドとN-アセチルグルコサミンの混合物と強塩基性陰イオン交換樹脂との接触工程は、バッチ式、カラム式のいずれでも良いが、工業的生産規模ではカラム方式の方が一般的で、処理条件としてはアルキル-N-アセチルグルコサミニドとN-アセチルグルコサミンの混合物の水溶液を空間速度(SV)=0.1~20/時間程度、好ましくは0.5~10/時間での通液を例示することができる。 
使用する強塩基性陰イオン交換樹脂の量は交換容量、処理方法、処理時間などにより異なるが、強塩基性陰イオン交換樹脂の交換容量1meqあたり、N-アセチルグルコサミン0.18mmol~0.25mmol程度の処理が可能である。 
処理後の強塩基性陰イオン交換樹脂は、酸溶液、水、アルカリ溶液などを用いた常法による洗浄により、繰り返し再生して使用することができる。 
アルキル-N-アセチルグルコサミニドとN-アセチルグルコサミンの混合物に対し前記のような、強塩基性陰イオン交換樹脂処理を行うことにより、アルキル-N-アセチルグルコサミニドとN-アセチルグルコサミンの比率として処理前に40~60:60~40程度であったものを90:10~100:0程度の範囲とすることができる。 
以上のように得られた、N-アセチルグルコサミン含有量の少ないアルキル-N-アセチルグルコサミニド溶液は、そのまま水溶液の形態として使用することもできるし、濾過、溶媒の留去、エタノール抽出、活性炭処理などの精製工程を経て濃縮物とすることもできる。さらに、濃縮前もしくは後に、水、エタノール、プロパノール、エチレングリコール、プロピレングリコール、ジプロピレングリコール、1,3-ブタンジオール、グリセリン、ヘキシルグリコール、ベンジルベンゾエート、トリエチルシトレート、ジエチルフタレート、ハーコリン、中鎖脂肪酸トリグリセライドなどの希釈剤を単独でまたは二種以上を混合して加えて製剤化することができる。また、所望により前記濃縮前もしくは後に、脂肪酸モノグリセリド、脂肪酸ジグリセリド、脂肪酸トリグリセリド、プロピレングリコール脂肪酸エステル、ショ糖脂肪酸エステル、ポリグリセリン脂肪酸エステル、レシチン、加工でん粉、ソルビタン脂肪酸エステル、キラヤ抽出物、アラビアガム、トラガントガム、グアーガム、カラヤガム、キサンタンガム、ペクチン、アルギン酸及びその塩類、カラギーナン、ゼラチン、カゼイン、デキストリン、サイクロデキストリン、単糖類、二糖類、ポリオール類などの、界面活性剤や賦形剤を添加、または、添加しないで噴霧乾燥、真空乾燥、凍結乾燥などの適宜な乾燥手段を採用して乾燥することにより粉末状とすることもできる。 
本発明により得られたアルキル-N-アセチルグルコサミニドは、各種の飲食品、健康食品、化粧品、医薬品などに使用することができる。 
次に、実施例を挙げて本発明をさらに具体的に説明する。
以下の実施例において、HPLC分析は下記の測定条件で行った。カラム:Asahipack NH2P-50 4E(昭和電工社製、4.6×250mm)移動相:75%アセトニトリル水溶液流速:0.4mL/分温度:35℃検出:UV210nm(N-アセチル基の吸収)
(実施例1)メチル-N-アセチルグルコサミニドの製造 100mLの反応フラスコにN-アセチルグルコサミン(東京化成工業社製)5.4g、メタノール54.0g及びp-トルエンスルホン酸0.3gを仕込み、加熱還流下8時間反応させた。反応後、HPLC分析の結果、メチル-N-アセチル-α-グルコサミニド、メチル-N-アセチル-β-グルコサミニド、N-アセチルグルコサミンの面積%は、それぞれ、16.3%、32.5%、14.5%であった。 
イオン交換樹脂ダイヤイオン(登録商標)SA10A(OH型)(三菱化学社製)約100g(約200mL,約1.3meq/mL)を内径4cmのカラムに充填した(樹脂として内径4cm×16cm)。上記の反応液をSV(空間速度)=5/時間でカラム上部より通液した。反応液の全てがカラム中の樹脂の上端から樹脂中に流入した後は、樹脂の上端から水を連続的に供給し、カラム下端からの流出が止まらないようにした。カラム下端から流出する溶液を1200mL採取した。得られた溶液を減圧濃縮、減圧乾固したところ、結晶物4.3gを得た。この結晶物をHPLCにて分析した結果、メチル-N-アセチル-α-グルコサミニド、メチル-N-アセチル-β-グルコサミニドの面積%は、それぞれ、30.6%、60.9%であった。また、N-アセチルグルコサミンは検出されなかった。収率76%。 
(実施例2)n-ブチル-N-アセチルグルコサミニドの製造 100mLの反応フラスコにN-アセチルグルコサミン(東京化成工業社製)5.4g、1-ブタノール54.0g及びp-トルエンスルホン酸0.3gを仕込み、60℃で8時間反応させ、次いで100℃で2時間反応させた。反応後、HPLC分析の結果、n-ブチル-N-アセチル-α-グルコサミニド、n-ブチル-N-アセチル-β-グルコサミニド、N-アセチルグルコサミンの面積%は、それぞれ、37.7%、16.9%、8.2%であった。 
イオン交換樹脂ダイヤイオン(登録商標)SA10A(OH型)(三菱化学社製)約100g(約200mL,約1.3meq/mL)を内径4cmのカラムに充填した(樹脂として内径4cm×16cm)。上記の反応液をSV(空間速度)=5/時間でカラム上部より通液した。反応液の全てがカラム中の樹脂の上端から樹脂中に流入した後は、樹脂の上端からエタノールを100mL供給した後、水を連続的に供給し、カラム下端からの流出が止まらないようにした。カラム下端から流出する溶液を1200mL採取した。得られた溶液を減圧濃縮、減圧乾固したところ、結晶物5.9gを得た。この結晶物をHPLCにて分析した結果、n-ブチル-N-アセチル-α-グルコサミニド、n-ブチル-N-アセチル-β-グルコサミニドの面積%は、それぞれ、61.9%、24.8%であった。また、N-アセチルグルコサミンは検出されなかった。収率87%。 
(実施例3)エチル-N-アセチル-β-グルコサミニドの製造 3Lの反応フラスコに、イオン交換水1500g、酢酸ナトリウム4.4g、氷酢酸1.3g及び99%エタノール200gを仕込み、温水浴で内温が50℃になるまで加熱した。同温下、キチン(甲陽ケミカル社製)10g(45.2mmol)及びデナチーム(登録商標)CET-P1(ナガセケムテックス社製)2.0gを添加し、50℃で20時間撹拌し反応させた。反応後、HPLCにて定量(内部標準法)した結果、エチル-N-アセチルグルコサミニドは23%(β体のみ検出)、N-アセチルグルコサミンは26%の収率でそれぞれ生成していた。反応液を、常圧で加熱して、エタノールを蒸留除去した。塔頂温度が80℃でエタノールの留出が始まり、その後塔頂温度が100℃に達するまで蒸留を続けた。 
その後、溶液を放冷し、吸引濾過で不溶物を除去した。得られた濾液から水を減圧下で留去することにより、全量を561.7gにした。これに、イオン交換樹脂ダイヤイオン(登録商標)SK1B(H型)(三菱化学社製)36gを加え、酢酸ナトリウムの中和を行い、樹脂を濾過により取り除いた。この時、得られた濾液(参考品1)をHPLCにて定量(内部標準法)した結果、反応後の結果と比較してエチル-N-アセチルグルコサミニドとN-アセチルグルコサミンの組成比に変化は見られなかった。 
次に、イオン交換樹脂ダイヤイオン(登録商標)SA10A(OH型)(三菱化学社製)83gを加え、室温で1時間攪拌した。上澄みをHPLCで分析し、N-アセチルグルコサミンが低減できていることを確認した後、濾過し、清澄な濾液を得た。ろ液を、ロータリーエバポレーターを用いて濃縮した。 
得られた濃縮残渣に99%エタノール600gを添加して0.5時間攪拌した後、濾過し、不溶物を除去した。濾液の溶媒を減圧下留去した後、減圧乾燥させ、結晶物2.2gを得た(本発明品1)。本発明品1に含有されるエチル-N-アセチル-β-グルコサミニドは2.1g(8.4mmol)であり、N-アセチルグルコサミンは0.1g(0.5mmol)であった。収率20%。 
(実施例4)樹脂の検討 以下の操作を行い、工程S1~S3での各段階でのN-アセチルグルコサミン残存率を測定した。市販のN-アセチルグルコサミン(東京化成工業社製)0.1gを水10gに溶解し、表1に示す樹脂1.0gを加え、30分間撹拌した(S1)。引き続き、同一樹脂4.0gをさらに追加し30分間撹拌した(S2)。さらに、そのまま樹脂懸濁液を16時間静置した(S3)。工程S1~S3の各段階について、上澄中のN-アセチルグルコサミン濃度をHPLCにより測定し、残存率を算出した。使用した樹脂の種類、構造、S1~S3でのN-アセチルグルコサミン残存率を表1に示す。 
Figure JPOXMLDOC01-appb-T000002
表1に示した通り、強酸性陽イオン交換樹脂及び弱塩基性陰イオン交換樹脂はN-アセチルグルコサミンを全く吸着しないが、強塩基性陰イオン交換樹脂はいずれもN-アセチルグルコサミンを吸着することが認められた。強塩基性陰イオン交換樹脂の中では、ダイヤイオン(登録商標)SA10A(三菱化学社製)とダイヤイオン(登録商標)PA306S(三菱化学社製)が最もよく吸着した。 
(実施例5)樹脂量の検討 実施例3と同様の方法により、エチル-N-アセチル-β-グルコサミニド濃度2.7%、N-アセチルグルコサミン濃度2.8%の水溶液(参考品1)389gを調製し、以下の検討に使用した。 
イオン交換樹脂ダイヤイオン(登録商標)SA10A(OH型)(三菱化学社製)約100g(約200mL,約1.3meq/mL)を内径4cmのカラムに充填した(樹脂として内径4cm×16cm)。上記の水溶液をSV(空間速度)=5/時間でカラム上部より通液した。溶出先端がカラム底部に達した後、カラム下端から流出する水溶液を100mLずつ分画し、フラクション1~12を採取した。なお、参考品1がすべてカラム中の樹脂の上端から樹脂中に流入した後は、樹脂の上端から水を連続的に供給し、カラム下端からの流出が止まらないようにした。フラクション1~12についてエチル-N-アセチル-β-グルコサミニドおよびN-アセチルグルコサミンの濃度をHPLCにて測定した。 
フラクション1~6は完全にエチル-N-アセチル-β-グルコサミニドのみの流出であり、N-アセチルグルコサミンの流出はフラクション7から認められた。フラクション8までの累計ではエチル-N-アセチル-β-グルコサミニドの回収率98.0%で、エチル-N-アセチル-β-グルコサミニド:N-アセチルグルコサミン=99.5:0.5であった。 
上記結果から、使用する強塩基性陰イオン交換樹脂の量は交換容量、処理方法、処理時間などにより異なるが、陰イオン交換樹樹脂の1meqあたり、N-アセチルグルコサミン0.18mmol~0.25mmol程度の処理は十分可能であると考えられた。 
(実施例6)製剤化 実施例5で得られたフラクション8までの回収液(エチル-N-アセチル-β-グルコサミニド:N-アセチルグルコサミン=99.5:0.5)約800gにプロピレングリコール30.9gを溶解し、減圧濃縮し、51.5gの濃縮物を得た。濃縮物を90℃にて10分間加熱殺菌後、冷却し、容器に充填し、エチル-N-アセチル-β-グルコサミニド20質量%含有する本発明品2を得た。

Claims (4)

  1. アルキル-N-アセチルグルコサミニドとN-アセチルグルコサミンの混合物を強塩基性陰イオン交換樹脂と接触させることでN-アセチルグルコサミンの含有量を低減させる工程を含むアルキル-N-アセチルグルコサミニドの製造方法(但し、アルキルは炭素数1~4のアルキル基を意味する)。
  2. アルキル-N-アセチルグルコサミニドとN-アセチルグルコサミンの混合物が、N-アセチルグルコサミン、キチンまたはキチンオリゴ糖を、酸の存在下アルキルアルコールと反応させたものである請求項1に記載のアルキル-N-アセチルグルコサミニドの製造方法。
  3. アルキル-N-アセチルグルコサミニドとN-アセチルグルコサミンの混合物が、キチンまたはキチンオリゴ糖を、アルキルアルコールと水の混合溶液中でN-アセチルヘキソサミニダーゼ活性を有する酵素により糖転移反応させたものである請求項1に記載のアルキル-N-アセチルグルコサミニドの製造方法。
  4. 異性体比がβ:α=100:0~90:10であることを特徴とする請求項3記載のアルキル-N-アセチルグルコサミニドの製造方法。
PCT/JP2015/050865 2014-06-18 2015-01-15 アルキル-n-アセチルグルコサミニドの製造方法 WO2015194199A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580011258.4A CN106068270B (zh) 2014-06-18 2015-01-15 烷基-n-乙酰氨基葡萄糖苷的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014125147A JP6095123B2 (ja) 2014-06-18 2014-06-18 アルキル−n−アセチルグルコサミニドの製造方法
JP2014-125147 2014-06-18

Publications (1)

Publication Number Publication Date
WO2015194199A1 true WO2015194199A1 (ja) 2015-12-23

Family

ID=54935200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/050865 WO2015194199A1 (ja) 2014-06-18 2015-01-15 アルキル-n-アセチルグルコサミニドの製造方法

Country Status (3)

Country Link
JP (1) JP6095123B2 (ja)
CN (1) CN106068270B (ja)
WO (1) WO2015194199A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107011395B (zh) * 2017-05-27 2020-01-03 湘潭大学 一类n-乙酰氨基葡萄糖苷类化合物
CN111620916A (zh) * 2020-06-29 2020-09-04 天津科技大学 一种烷基氨基葡萄糖苷的合成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152513A (en) * 1977-06-01 1979-05-01 University Of Delaware Preparation of alkyl glycosides of amino sugars
JPH05244975A (ja) * 1992-03-04 1993-09-24 Kuraray Co Ltd アルキルグリコシドの製造方法
WO2004033474A1 (ja) * 2002-10-09 2004-04-22 Kanebo, Cosmetics Inc. N−アセチルグルコサミン誘導体、及びその用途
WO2008084561A1 (ja) * 2007-01-12 2008-07-17 Shinshu University α-N-アセチルグルコサミニル結合単糖誘導体を含有するピロリ菌増殖抑制剤

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH442345A (de) * 1964-12-04 1967-08-31 Geigy Ag J R Verfahren zur Herstellung von neuen substituierten Malonsäuremonohydraziden
DE69739750D1 (de) * 1996-07-23 2010-03-18 Seikagaku Kogyo Co Ltd Neue laktosamin-oligosaccharide und verfahren zu ihrer herstellung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4152513A (en) * 1977-06-01 1979-05-01 University Of Delaware Preparation of alkyl glycosides of amino sugars
JPH05244975A (ja) * 1992-03-04 1993-09-24 Kuraray Co Ltd アルキルグリコシドの製造方法
WO2004033474A1 (ja) * 2002-10-09 2004-04-22 Kanebo, Cosmetics Inc. N−アセチルグルコサミン誘導体、及びその用途
WO2008084561A1 (ja) * 2007-01-12 2008-07-17 Shinshu University α-N-アセチルグルコサミニル結合単糖誘導体を含有するピロリ菌増殖抑制剤

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HU XIAOSONG ET AL.: "Amide Cis-Trans Isomerization in Aqueous Solutions of Methyl N- Formyl-D-glucosaminides and Methyl N-Acetyl-D- glucosaminides: Chemical Equilibria and Exchange Kinetics", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 132, no. 13, 2010, pages 4641 - 4652, XP055246227, ISSN: 0002-7863 *
NEUBERGER ALBERT ET AL.: "Separation of glycosides on a strongly basic ion-exchange resin: interpretation in terms of acidity", CARBOHYDRATE RESEARCH, vol. 17, no. 1, 1971, pages 89 - 95, XP026975009, ISSN: 0008-6215 *

Also Published As

Publication number Publication date
JP2016003214A (ja) 2016-01-12
CN106068270B (zh) 2018-11-16
JP6095123B2 (ja) 2017-03-15
CN106068270A (zh) 2016-11-02

Similar Documents

Publication Publication Date Title
US7923437B2 (en) Water soluble β-glucan, glucosamine, and N-acetylglucosamine compositions and methods for making the same
US8222232B2 (en) Glucosamine and N-acetylglucosamine compositions and methods of making the same fungal biomass
JP7219319B2 (ja) 還元型グルタチオンの結晶及びその製造方法
EP3821717A1 (en) A method for drying human milk oligosaccharides
JP6095123B2 (ja) アルキル−n−アセチルグルコサミニドの製造方法
JPS61271296A (ja) N−アセチルキトオリゴ糖の製造方法
EP3450462B1 (en) Methods for producing chitin oligomer, n-acetylglucosamine, and 1-o-alkyl-n-acetylglucosamine
JP4209617B2 (ja) キトサンオリゴ糖の製造方法及びキトサンオリゴ糖アルコール体の製造方法
US8580955B2 (en) Purification method and production method for cellobiose
JPH057496A (ja) オリゴ糖の製造方法
JPS6121102A (ja) キトサンオリゴ糖の製造法
JP4672994B2 (ja) キチン分解物の製造方法
JP4632024B2 (ja) 高純度大豆サポニンの製造方法
Putri et al. Isolation of glucosamine hcl from scylla paramamosain and determination by HPLC
JPS6121103A (ja) キトサンオリゴ糖の製造方法
KR100269709B1 (ko) 2-아세틸아미노-4-O-(2-아미노-2-데옥시-β-D-글루코피라노실)-2-데옥시-D- 글루코스 및 그 염의 제조방법
JP2001231592A (ja) マンノースの製造方法
JP4497592B2 (ja) アミノ糖を分岐側鎖に有するシクロデキストリン、その製造法並びにその利用
KR20020012466A (ko) 알긴산을 이용한 천연 다당류인 알긴산 올리고당 및 그의제조방법
JPH06253879A (ja) グルクロン酸結合オリゴ糖の分離方法
KR20040052728A (ko) 갑각류로부터 고순도 글루코사민(Glucosamine) 제조 및잔류염 정제 방법
JPS62118894A (ja) でんぷん糖化液の精製方法
EP3680342A1 (en) Method for producing inositol derivative
JP2690779B2 (ja) L―アスコルビン酸誘導体及びその製造法
JP2004238287A (ja) ニゲロース酢酸エステル、ニゲロース及びニゲリトールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810586

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15810586

Country of ref document: EP

Kind code of ref document: A1