WO2015194137A1 - 位置決定装置、漏洩検知システム、位置決定方法及びコンピュータ読み取り可能記録媒体 - Google Patents

位置決定装置、漏洩検知システム、位置決定方法及びコンピュータ読み取り可能記録媒体 Download PDF

Info

Publication number
WO2015194137A1
WO2015194137A1 PCT/JP2015/002935 JP2015002935W WO2015194137A1 WO 2015194137 A1 WO2015194137 A1 WO 2015194137A1 JP 2015002935 W JP2015002935 W JP 2015002935W WO 2015194137 A1 WO2015194137 A1 WO 2015194137A1
Authority
WO
WIPO (PCT)
Prior art keywords
position determination
vibration
measurement
detection
pipe
Prior art date
Application number
PCT/JP2015/002935
Other languages
English (en)
French (fr)
Inventor
裕文 井上
尚武 高橋
慎 冨永
純一郎 又賀
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to GB1620526.2A priority Critical patent/GB2541149B/en
Priority to JP2016529026A priority patent/JP6652054B2/ja
Priority to US15/315,907 priority patent/US10458878B2/en
Publication of WO2015194137A1 publication Critical patent/WO2015194137A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • G01M3/243Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/032Analysing fluids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/42Detecting the response signal, e.g. electronic circuits specially adapted therefor by frequency filtering or by tuning to resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4409Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison
    • G01N29/4418Processing the detected response signal, e.g. electronic circuits specially adapted therefor by comparison with a model, e.g. best-fit, regression analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/01Indexing codes associated with the measuring variable
    • G01N2291/011Velocity or travel time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/022Liquids

Definitions

  • the present invention relates to a position determination device, a leakage detection system, a position determination method, and a computer-readable recording medium.
  • leakage position When the existence of a leak is clarified in a pipe through which a fluid such as water or gas flows, it is required to specify the position where the fluid leaked (hereinafter, referred to as “leakage position”) with high accuracy. .
  • Patent Document 1 describes a pinhole position specifying method for a tubular body.
  • a pressurized gas is filled in a tubular body, and a sound leaking from the gas is detected by a sound wave detection sensor installed at two points at intervals.
  • the method of patent document 1 knows the position of the pinhole in a tubular body by contrasting the detection sound wave waveform of this sensor.
  • the present invention has been made to solve the above-described problem, and includes a position determination device, a leakage detection system, a position determination method, and a computer-readable recording medium for determining a vibration measurement position for specifying a leakage position.
  • One purpose is to provide.
  • the position determination device is based on the feature amount extraction unit that extracts the feature amount for each of the detected vibrations based on the vibrations of the pipes detected by the plurality of detection units.
  • Measuring position determining means for determining a measuring position by at least two detecting means.
  • the feature amount is extracted for each of the detected vibrations based on the vibrations of the pipes respectively detected by the plurality of detection units, and at least two detection units are based on the feature amounts. Determine the measurement position.
  • the computer-readable recording medium includes a process of extracting feature amounts for each of the detected vibrations based on the vibrations of the pipes detected by the plurality of detection units, and at least based on the feature amounts.
  • a program for executing the process of determining the measurement position by the two detection means is stored non-temporarily.
  • a position determination device it is possible to provide a position determination device, a leakage detection system, a position determination method, and a computer-readable recording medium that determine a vibration measurement position for specifying a leakage position.
  • each component of each device represents a functional unit block.
  • Each component of each device can be realized by any combination of an information processing device 1000 and software as shown in FIG. 15, for example.
  • the information processing apparatus 1000 includes the following configuration as an example.
  • each device can be realized as a dedicated device.
  • Each device can be realized by a combination of a plurality of devices.
  • FIG. 1 is a diagram showing a position determining apparatus according to the first embodiment of the present invention.
  • FIG. 2 is a flowchart showing the operation of the position determination apparatus according to the first embodiment of the present invention.
  • the position determination device 100 includes a feature amount extraction unit 110 and a measurement position determination unit 120.
  • the feature amount extraction unit 110 extracts a feature amount based on the vibration of the pipe detected by the detection unit 101.
  • the measurement position determination unit 120 determines measurement positions by at least two detection units based on the feature amount extracted by the feature amount extraction unit 110.
  • the feature amount extraction unit 110 extracts feature amounts based on the vibration of the pipe detected by the detection unit 101.
  • the detection unit 101 includes two detection units 101-1 and 101-2.
  • the feature quantity extraction unit 110 extracts the feature quantity based on the vibration of the pipe detected by each of the detection unit 101-1 and the detection unit 101-2.
  • the feature quantity extraction unit 110 can use, as the feature quantity, an index that can determine the similarity of the vibration waveforms detected by each of the detection units 101.
  • the feature amount extraction unit 110 can extract, for example, the phase of the vibration of the pipe detected by each of the detection unit 101-1 and the detection unit 101-2 as a feature amount.
  • the feature amount extraction unit 110 preferably extracts feature amounts based on vibrations caused by the same cause detected by each of the detection units 101. Moreover, it is preferable that the vibration for which the feature amount is extracted is vibration generated due to leakage from the fluid pipe (hereinafter sometimes referred to as “leakage vibration”).
  • the measurement position determination unit 120 determines the measurement positions by the two detection units 101 based on the feature values extracted by the feature value extraction unit 110 based on the vibration of the pipe. As an example, the measurement position determination unit 120 detects a position where each feature amount of the detection unit 101 extracted by the feature amount extraction unit 110 satisfies a predetermined condition regarding similarity of vibration waveforms corresponding to the feature amount. It is set as a measurement position by each of the units 101. In this case, the measurement position determination unit 120 detects, for example, two positions that are determined to have high similarity in vibration waveform detected by each of the detection units 101 based on the above-described feature amount. Determine the measurement position by.
  • the predetermined condition is appropriately determined such that vibrations having high waveform similarity satisfy the condition among vibrations at a plurality of points detected by the detection unit 101.
  • the measurement position determination unit 120 includes at least two detection units based on the feature amount extracted based on the vibration of the pipe by the feature amount extraction unit 110 according to an arbitrary condition different from the above-described vibration waveform similarity. You may determine the measurement position by 101, respectively.
  • the measurement position determination part 120 determines the measurement position by the detection part 101 as follows as a more detailed example, respectively. When it is assumed that leakage has occurred in any place of the piping, the above-described feature amounts are respectively converted by the feature amount extraction unit 110 based on the vibrations of the piping detected at a plurality of points on the piping.
  • the vibration of the pipe at a plurality of points of the pipe is obtained by detecting vibration at each point, for example, by moving an arbitrary number of detection units 101 along the pipe.
  • the measurement position determination unit 120 refers to the feature values at a plurality of points of the pipe extracted in this manner, and determines two feature values that are determined to have high similarity in the vibration waveform represented by the feature value. Is identified. Then, two points where the vibration corresponding to the feature amount is detected are determined as measurement positions by the detection unit 101. Note that the measurement position determination unit 120 may determine three or more points that satisfy the predetermined condition relating to the similarity of the vibration waveforms described above as measurement positions by the detection unit 101.
  • the measurement position determination unit 120 sets a position where the difference between the feature amounts of the detection unit 101 extracted by the feature amount extraction unit 110 is equal to or less than a predetermined threshold as a measurement position by each of the detection units 101. For example, when the feature quantity extraction unit 110 extracts the vibration phase of the piping as the feature quantity, the measurement position determination unit 120 detects the position where the phase difference extracted from each detection unit 101 is equal to or less than the threshold value. It can be set as the measurement position by each. This is because the detection unit is installed at a position where the difference between the feature amounts of the detection unit 101 extracted by the feature amount extraction unit 110 is equal to or less than the threshold value, and thus the similarity of the vibration waveform detected by each of the detection units 101 This is because it increases.
  • the measurement position determination unit 120 can set a predetermined point where the vibration of the pipe can be detected as a measurement position by each of the detection units 101. In addition, when the measurement position determination unit 120 determines the measurement position by each of the detection units 101, a predetermined range in which the vibration of the pipe can be detected can be set as the measurement position by each of the detection units 101. Furthermore, the measurement position determination unit 120 can appropriately determine the above-described threshold value based on, for example, the type, diameter, or material of the piping that each of the detection units 101 is a vibration detection target. When the measurement position by each of the detection units 101 is determined by the measurement position determination unit 120, the leakage position from the fluid pipe is specified using the detection unit 101 arranged at the measurement position. Details regarding the specification of the leakage position will be described later.
  • the position determination device 100 acquires a measurement value related to the vibration of the pipe detected by each of the detection units 101 (step S101). Subsequently, the feature quantity extraction unit 110 extracts a feature quantity based on the measurement value related to vibration acquired in step S101 (step S102). Subsequently, the measurement position determination unit 120 determines a measurement position by each of the detection units 101 based on the feature amount acquired in step S102 (step S103). (Example of leak detection system having a position determination device in the present embodiment) Next, the configuration of the leak detection system 10 having the position determination device in the present embodiment will be described.
  • FIG. 3 is a diagram showing a leak detection system according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an example in which a detection unit is installed in a pipe in the leak detection system according to the first embodiment of the present invention.
  • FIG. 5 is a flowchart showing the operation of the leak detection system according to the first embodiment of the present invention.
  • the leak detection system 10 includes a detection unit 101, the position determining device 100 described above, and a leak position specifying unit 102.
  • the detection unit 101 detects vibration of the pipe.
  • the leak position specifying unit 102 specifies the position where the fluid leaked in the pipe based on the vibration of the pipe detected by the two detection units 101 located at the position determined by the position determining device 100.
  • the detection unit 101 is attached to a pipe as shown in FIG. 4, for example.
  • the detection unit 101 detects vibration of the fluid flowing through the pipe or the inside of the pipe.
  • a sensor that measures solid vibration can be used.
  • Applicable sensors include a piezoelectric acceleration sensor, an electrodynamic acceleration sensor, a capacitance acceleration sensor, an optical speed sensor, a dynamic strain sensor, and the like.
  • the detection unit 101 may be another type of sensor such as an acoustic sensor.
  • the measurement value related to the vibration detected by the detection unit 101 is transmitted to the position determination device 100 included in the leak detection system 10 by any communication means.
  • the detection part 101 is installed in the outer wall surface and inner wall surface of piping.
  • the detection unit 101 may be installed on a flange (not shown) installed in the pipe 1 or on the surface or inner surface of an accessory such as a valve plug.
  • the detection unit 101 is attached to a pipe or the like using, for example, a magnet, a dedicated jig, or an adhesive.
  • piping may be embed
  • piping may be installed in the structure.
  • the leak position specifying unit 102 specifies the position where the fluid leaks in the pipe based on the vibration of the pipe detected by the two detection units 101.
  • the detection unit 101 detects vibrations at the positions determined by the position determination device 100, for example.
  • the leak position specifying unit 102 specifies the leak position by an arbitrary method such as a correlation method.
  • the leak position specifying unit 102 calculates the leak position 11 from the following equation (1) from the vibration arrival time difference ⁇ , the vibration propagation speed c, and the distance l between the detection parts.
  • the leakage position l1 represents a distance from one of the two detection units 101.
  • the arrival time difference ⁇ is a difference in time when leakage vibration is detected by each of the two detection units 101.
  • the arrival time difference ⁇ is the arrival time of the leakage signal in one of the two detection units 101 from the arrival time of the leakage signal in the other detection unit 101 different from the one described above. Calculated by subtracting.
  • the arrival time difference ⁇ is calculated using, for example, a cross-correlation function of vibration detected by each of the two detection units 101.
  • the propagation speed c is a speed at which leakage vibration propagates through the pipe.
  • the propagation vibration c is determined by the type and material of the pipe, the soil around the pipe, and the like.
  • the propagation velocity c can be obtained theoretically from information such as the type of piping described above, or can be obtained experimentally.
  • the distance l between the detection units is a distance between the detection unit 101-1 and the detection unit 101-2.
  • the position determination device 100 of the leak detection system 10 acquires a measurement value related to the vibration of the pipe detected by each of the detection units 101 (step S151). Subsequently, the feature quantity extraction unit 110 extracts a feature quantity based on the measurement value related to vibration acquired in step S151 (step S152). Subsequently, the measurement position determination unit 120 determines a measurement position by each of the detection units 101 based on the feature amount acquired in step S152 (step S153). The operation from step S151 to step S153 can be the same as the operation described as step S101 to step S103 in the position determining apparatus 100.
  • the leakage position specifying unit 102 specifies the position where the fluid has leaked in the pipe based on the measurement value related to the vibration of the pipe detected by the detection unit 101 installed at the position determined in step S153. (Step S154).
  • the leak position specifying unit 102 can specify the position where the fluid leaks in the pipe by, for example, the correlation method.
  • the leak detection system 10 specifies a position where a fluid leak has occurred in the pipe by, for example, a correlation method.
  • a correlation method when a position where a fluid leak has occurred in a pipe is specified, for example, an arrival time difference calculated from a cross-correlation function of vibration waveforms detected by each of the two detection units is used.
  • the vibration waveforms detected by the two detection units are the same or similar.
  • the vibration generated when the fluid leaks from the pipe has frequency dispersibility having different propagation characteristics for each frequency even in each form.
  • the vibration generated when the fluid leaks from the pipe collapses in the process in which each vibration propagates through the pipe. Therefore, the further away from the leaked place (ie, the vibration source), the original waveform at the leaked place.
  • the waveform may be different.
  • the position of the leak point is at a point that is biased toward one of the two detection units.
  • the similarity of the vibration waveform detected by each of the two detection units may be lost due to the vibration propagation characteristics in the pipe described above. For example, a plurality of vibrations in a propagation state arrive at the detection unit close to the leakage position.
  • the vibration of the propagation state that is likely to be attenuated does not reach the detection unit far from the leaked part, and only the vibration of the propagation state that is difficult to attenuate may arrive.
  • the determination accuracy of the arrival time difference may be lowered. And as a result of the determination accuracy of the arrival time difference being lowered, there is a case where the accuracy of specifying the position where the fluid leaks in the piping is lowered.
  • the position of the leakage point is equidistant or nearly equidistant from the two detection units, there is often no large difference in the propagation state of vibrations reaching the two detection units. In this case, the similarity of the vibration waveform detected by each of the two detection units is not easily lost. Therefore, when the arrival time difference of the leakage vibration is calculated based on the cross-correlation function of the vibration waveform detected by each of the two detection units, it is compared with the case where the position of the leakage point is at a point biased to one detection unit. In many cases, the determination accuracy of the arrival time difference is high.
  • the piping is compared with the case where the position of the leaking part is at a point biased to one of the detection units. In many cases, the accuracy of specifying the position where the fluid leaks is high.
  • the similarity of the vibration waveform may not be easily lost depending on the vibration propagation characteristics in the pipe. For this reason, it is often the case that the accuracy of specifying the position where the fluid has leaked in the pipe is high by detecting the leakage vibration at two places where the similarity of the vibration waveform is relatively high.
  • the fluid leak occurred in the pipe by specifying the leak position after determining the measurement position by the detector based on the feature value The position can be specified with high accuracy.
  • the position determination device 100 determines the measurement position by the detection unit 101 in the piping based on the feature amount. Therefore, the similarity of leakage vibration detected by the detection unit 101 can be increased.
  • the leak detection system 10 in this embodiment specifies a leak position based on the vibration detected by the detection unit 101. That is, by using the position determination device 100 in the present embodiment, it is possible to determine the measurement position by the detection unit for specifying the leakage position. And the leak position can be specified with high precision by using the leak detection system 10 in this embodiment.
  • the position determination device 100 has, for example, a difference in arrival time of vibration to each detection unit 101, an envelope of a vibration waveform of the pipe, or an amplitude of vibration of the pipe as the feature amount in addition to the vibration phase of the pipe. Can be used.
  • the measurement position determination unit 120 can set the position where the arrival time difference is equal to or less than the threshold as the measurement position. .
  • the measurement position determination unit 120 detects a position where the difference in the shape of the envelope extracted from each detection unit 101 is equal to or less than a threshold value. It can be set as a measurement position by each part 101.
  • the measurement position determination unit 120 detects a position where the difference in amplitude extracted from each detection unit 101 is equal to or less than a threshold value. 101 can be set as each measurement position.
  • the position determination device 100 can determine the measurement position by the detection unit with high accuracy. However, in extracting feature values in the feature quantity extraction unit 110 and measurement positions in the measurement position determination unit 120, information on the entire waveform is required. That is, the amount of data required increases. On the other hand, the amount of data required in the feature amount extraction unit 110 or the measurement position determination unit 120 when using the envelope of the vibration waveform or the vibration amplitude as the feature amount is when using the vibration phase of the pipe as the feature amount. Smaller than the amount of data required.
  • the feature amount used in the position determination device 100 depends on the accuracy required for specifying the leak position, the amount of data that can be transmitted from each of the detection units 101, the power consumption of the position determination device 100 or the detection unit 101, and the like. It is determined appropriately.
  • the position determination device 100 determines the measurement position by the detection unit 101 that detects vibration of the pipe.
  • the position determination device 100 according to the present embodiment can be used to determine the measurement position by the detection unit that detects the vibration of the structure, for example, in order to identify the deterioration position of the structure.
  • FIG. 6 is a diagram showing a position determination device according to the second embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an example in which a detection unit that is a determination target of a measurement position is installed in a pipe in the position determination device according to the second embodiment of the present invention.
  • FIG. 8 is a flowchart showing the operation of the position determination apparatus according to the second embodiment of the present invention.
  • the position determination device 200 includes a feature amount extraction unit 110 and a measurement position determination unit 120.
  • the feature amount extraction unit 110 extracts a feature amount based on the vibration of the pipe detected by each of the detection units 101-1 to 101-n.
  • the measurement position determination unit 120 selects two detection units from the detection units from the detection unit 101-1 to the detection unit 101-n based on the feature amount extracted by the feature amount extraction unit 110.
  • the position determination apparatus 100 is configured so that the measurement position determination unit 120 can detect two detection units from the detection unit 101-1 to the detection unit 101-n based on the feature amount extracted by the feature amount extraction unit 110.
  • the point which selects one detection part differs from the position determination apparatus 100 in 1st Embodiment.
  • the position determination device 100 in the present embodiment selects two detection units from the detection units from the detection unit 101-1 to the detection unit 101-n, which are attached to a pipe or the like in advance, for example. Each measurement position by the detection unit is determined.
  • the position determination device 100 in the second embodiment has the same configuration as the position determination device 100 in the first embodiment.
  • the leak detection system 20 which has the position determination apparatus 200 in this embodiment can be comprised similarly to the leak detection system 10 in 1st Embodiment.
  • the leakage detection system 20 selects, for example, at least two detection units from the detection units from the detection unit 101-1 to the detection unit 101-n, and based on the vibration detected by the selected detection unit. Identify the location where piping leaks occur.
  • the measurement position determination unit 120 selects at least two detection units from the detection units from the detection unit 101-1 to the detection unit 101-n based on the feature amount extracted by the feature amount extraction unit 110. For example, when the measurement position determination unit 120 selects two detection units from the detection units from the detection unit 101-1 to the detection unit 101-n, the combination of the two detection units that minimizes the difference in the feature amount is selected. can do. In addition, the measurement position determination unit 120 can select a set of two detection units having a feature amount difference equal to or less than a threshold among the detection units from the detection unit 101-1 to the detection unit 101-n. The measurement position determination unit 120 may select at least two detection units from the detection units from the detection unit 101-1 to the detection unit 101-n by other methods.
  • the measurement position determination unit 120 minimizes the extracted phase difference among the detection units from the detection unit 101-1 to the detection unit 101-n, for example.
  • a set of two detectors can be selected. By doing in this way, the measurement position determination part 120 determines the measurement position by the at least 2 detection part 101, respectively.
  • the position determination device 200 first acquires a measurement value related to the vibration of the pipe detected by each of the detection units 101 (step S201). Subsequently, the feature quantity extraction unit 110 extracts a feature quantity based on the measurement value related to vibration acquired in step S101 (step S202). The operations of Step S201 and Step S202 can be performed in the same manner as Step S101 and Step S102 in the first embodiment of the present invention. Subsequently, the measurement position determination unit 120 selects two detection units from the detection units from the detection unit 101-1 to the detection unit 101-n based on the feature amount acquired in step S202 (step S203).
  • the measurement position determination unit 120 selects at least two detection units in step S203. A specific example of the operation to be performed will be described.
  • FIG. 7 an example in which leakage occurs from the leakage position 180 of the pipe is assumed.
  • the two detection units close to the leakage position 180 are the detection unit 101-3 and the detection unit 101-4.
  • the distances from the leak position 180 to each of the detection unit 101-3 and the detection unit 101-4 are different.
  • the distance from the leak position 180 to each of the detection unit 101-2 and the detection unit 101-5 is substantially the same. Therefore, in this assumption example, the vibration waveform of the pipe detected by each of the detection unit 101-2 and the detection unit 101-5 is detected by each of the detection unit 101-3 and the detection unit 101-4. It is expected that the similarity is high compared to the vibration waveform of the pipe.
  • the measurement position determination unit 120 sets a combination of the detection unit 101-2 and the detection unit 101-5, which are expected to have high waveform similarity, in order to increase the accuracy of specifying the leakage position of the pipe. It is preferable to select two detection units.
  • the measurement position determination unit 120 determines the difference in feature amount extracted based on the vibration of the pipe detected by each of the detection unit 101-3 and the detection unit 101-4 (hereinafter referred to as “first difference”). ”).
  • the measurement position determining unit 120 for example, a difference in feature amount extracted based on the vibration of the pipe detected by each of the detection unit 101-2 and the detection unit 101-5 (hereinafter referred to as “second difference”). Ask).
  • the measurement position determination unit 120 compares, for example, the first difference and the second difference. In this case, if the second difference is smaller, the measurement position determination unit 120 can select the combination of the detection unit 101-2 and the detection unit 101-5 as two detection units.
  • the leakage position is specified by the leakage detection system 20 including the position determination device 200 in the present embodiment.
  • the leak detection system 20 identifies the position where fluid leakage has occurred in the pipe based on the measurement values relating to the vibration of the pipe detected by the detection unit 101-2 and the detection unit 101-5 selected as described above.
  • the vibration waveform of the pipe detected by each of the detection unit 101-2 and the detection unit 101-5 is similar to the waveform of the vibration of the pipe detected by each of the detection unit 101-3 and the detection unit 101-4.
  • the leakage system 20 including the position determination device 200 in the present embodiment can increase the accuracy of specifying the leakage position 180.
  • the measurement position determination unit 120 detects at least two detection units from the detection units from the detection unit 101-1 to the detection unit 101-n based on the feature amount. select. Thereby, the measurement position determination part 120 determines the measurement position by at least two detection parts. That is, the measurement position determination unit 120 can determine two positions with relatively high vibration waveform similarity as measurement positions by the detection unit. Therefore, the position determination device 200 according to the present embodiment can increase the accuracy of specifying the leakage position of the pipe when, for example, a plurality of detection units are installed in the pipe in advance. (Third embodiment) Subsequently, a third embodiment of the present invention will be described.
  • FIG. 9 is a diagram showing a position determining apparatus according to the third embodiment of the present invention.
  • FIG. 10 is a flowchart showing the operation of the position determination apparatus according to the third embodiment of the present invention.
  • the position determination device 300 includes a signal-to-noise ratio calculation unit 130, a feature amount extraction unit 110, and a measurement position determination unit 120.
  • the signal-to-noise ratio measuring unit 130 calculates each signal-to-noise ratio for the measurement value related to the vibration of the pipe detected by the detecting unit 101.
  • the feature amount extraction unit 110 extracts a feature amount based on the vibration of the pipe detected by the detection unit 101.
  • the measurement position determination unit 120 includes two detection units based on the feature amount extracted by the feature amount extraction unit 110 and the signal-to-noise ratio of the measurement value obtained by each detection unit calculated by the signal-to-noise ratio measurement unit 130. Determine the measurement position.
  • the position determination device 300 according to the present embodiment is different from the position determination device 100 according to the first embodiment of the present invention in that the signal-to-noise ratio calculation unit 130 is included. Moreover, the position determination apparatus 300 in this embodiment is that the measurement position determination part 120 determines the measurement position by two detection parts based on the signal-to-noise ratio of a measurement value. It differs from the position determination apparatus 100 in the form. Regarding other elements, the position determination device 300 in the present embodiment has the same configuration as the position determination device 100 in the first embodiment.
  • the leak detection system which has the position determination apparatus 300 in this embodiment can be comprised similarly to the leak detection system 10 in 1st Embodiment.
  • the signal-to-noise ratio measurement unit 130 calculates each signal-to-noise ratio with respect to the measurement value related to the vibration of the pipe detected by each of the detection units 101.
  • the signal-to-noise ratio can be the ratio of the amplitude of the leakage vibration and the vibration of the pipe when there is no leakage from the pipe.
  • the signal-to-noise ratio can be the ratio of information related to pipe vibration to other noise.
  • the measurement position determination unit 120 includes two detection units based on the feature amount extracted by the feature amount extraction unit 110 and the signal-to-noise ratio of the measured value in each detection unit calculated by the signal-to-noise ratio measurement unit 130. Determine the measurement position. For example, the measurement position determination unit 120 determines a position where the difference between the feature amounts of the detection unit 101 is equal to or less than a predetermined threshold and the signal-to-noise ratio exceeds a predetermined threshold as a measurement position by each of the detection units 101. can do.
  • the threshold value relating to the signal-to-noise ratio includes, for example, characteristics relating to each of the detection units 101, types of pipes (for example, pipe materials and diameters) to be detected by the detection units 101, vibrations in the pipes, and the like. It may be a value theoretically calculated based on information on propagation characteristics, soil around the pipe, and the like. In addition, this threshold value is a measured value of leakage vibration that has occurred in the past in each piping of the detection unit 101 as a vibration detection target or the same type of pipe as the vibration detection target, or a simulation generated in advance for these pipes. It may be a value obtained experimentally based on a measured value of typical leakage vibration.
  • the position determination device 300 acquires a measurement value related to the vibration of the pipe detected by each of the detection units 101 (step S301). This step can be performed in the same manner as step S101 in the first embodiment of the present invention.
  • the signal-to-noise ratio measurement unit 130 calculates each signal-to-noise ratio with respect to the measurement value related to the vibration of the pipe detected by each of the detection units 101 (step S302).
  • the measurement value related to the vibration of the pipe includes an arbitrary value representing the vibration state of the pipe detected by each of the detection units 101, such as the amplitude of vibration.
  • the signal to noise ratio measurement unit 130 calculates the signal to noise ratio as follows, for example. That is, the signal-to-noise ratio measuring unit 130 first sets the measurement values related to the vibration of the pipe including the vibration caused by the leakage of the fluid from the pipe detected by each of the detectors 101 to the characteristic part of the leak.
  • the amplitude of each vibration is calculated as the signal amplitude.
  • the characteristic part of the leakage is, for example, a frequency band that is assumed to generate a vibration with a large amplitude due to the leakage. This frequency band is determined according to the type of piping that each of the detection units 101 is a detection target.
  • the amplitude of the vibration is, for example, a filter process for extracting a frequency band designated in advance according to the type of the pipe, etc., for the measurement value related to the vibration of the pipe detected by each of the detection units 101, It is calculated by obtaining the amplitude of vibration after performing the filtering process.
  • the signal-to-noise ratio measurement unit 130 calculates the amplitude of each vibration as the noise amplitude for the measurement value related to the vibration of the pipe when there is no fluid leakage from the pipe.
  • the signal-to-noise ratio measurement unit 130 calculates the signal-to-noise ratio in the measurement value related to the vibration of the pipe detected by each of the detection units 101 by obtaining the ratio between the signal amplitude and the noise amplitude. .
  • the feature amount extraction unit 110 extracts a feature amount based on the measurement value related to vibration acquired in step S301 (step S303). This step can be performed similarly to step S102 in the first embodiment of the present invention.
  • the measurement position determination unit 120 determines the measurement positions by the two detection units based on the feature amount extracted in step S303 and the signal-to-noise ratio of the measurement value calculated in each detection unit in step S302 ( Step S304).
  • the measurement position determination unit 120 detects a position where the signal-to-noise ratio calculated for each of the detection units 101 exceeds a predetermined threshold among the positions where the difference between the feature amounts of the detection units 101 is equal to or less than the threshold. It can be set as the measurement position by each.
  • the signal-to-noise ratio measurement unit 130 calculates each signal-to-noise ratio for the measurement value related to the vibration of the pipe detected by each of the detection units 101. .
  • the measurement position determination unit 120 determines the measurement positions by the two detection units based on the feature amount extracted in step S303 and the signal-to-noise ratio of the measurement value in each detection unit calculated in step S302.
  • the position determination apparatus 200 can determine the measurement position by the detection part with a high signal-to-noise ratio, ie, a leak signal becomes clear. Therefore, the position determination device 300 in the present embodiment can increase the accuracy of specifying the leakage position of the pipe.
  • the position determination apparatus 300 in this embodiment can operate
  • the position determination device 300 can operate in the reverse order of the operation in step S302 and the operation in step S303.
  • the position determining device 300 can operate in parallel with the operation in step S302 and the operation in step S303.
  • the position determination device 300 in the present embodiment can be combined with the position determination device 200 in the second embodiment of the present invention.
  • the signal-to-noise ratio measuring unit 130 can calculate the respective signal-to-noise ratios for the measurement values related to the vibrations of the pipes detected by the detecting units 101-1 to 101-n. it can.
  • the measurement position determination unit 120 has a feature amount difference smaller than a predetermined threshold among the detection units from the detection unit 101-1 to the detection unit 101-n, and a signal-to-noise ratio is a predetermined value. A set of two detection units exceeding the threshold value can be selected. (Fourth embodiment) Subsequently, a fourth embodiment of the present invention will be described.
  • FIG. 11 is a diagram showing a position determining apparatus according to the fourth embodiment of the present invention.
  • FIG. 12 is a flowchart showing the operation of the position determination apparatus according to the fourth embodiment of the present invention.
  • the position determination device 400 includes a leakage presence / absence determination unit 140, a feature amount extraction unit 110, and a measurement position determination unit 120.
  • the leakage presence / absence determination unit 140 determines whether or not fluid leakage has occurred in the pipe based on the vibration of the pipe detected by the detection unit 101.
  • the position determination device 100 according to the fourth embodiment has the same configuration as the position determination device 100 according to the first embodiment.
  • the leak detection system which has the position determination apparatus 400 in this embodiment can be comprised similarly to the leak detection system 10 in 1st Embodiment.
  • the leakage presence / absence determination unit 140 determines whether or not fluid leakage has occurred in the pipe based on the vibration of the pipe detected by the detection unit 101.
  • the leakage presence / absence determination unit 140 can determine that fluid leakage has occurred in the pipe when the amplitude of vibration of the pipe detected by any of the detection units 101 exceeds a predetermined threshold.
  • the position determination device 400 acquires a measurement value related to the vibration of the pipe detected by each of the detection units 101 (step S401).
  • the operation in step S401 can be the same as that in step S101 in the first embodiment of the present invention.
  • the leakage presence / absence determination unit 140 determines whether or not fluid leakage has occurred in the pipe based on the vibration of the pipe detected by the detection unit 101 (step S402). If it is determined that fluid leakage has occurred in the pipe (step S403), the feature amount extraction unit 110 extracts the feature amount based on the measurement value related to vibration acquired in step S401 (step S404). . Subsequently, the measurement position determination unit 120 determines a measurement position by each of the detection units 101 based on the feature amount acquired in step S404 (step S405). The operations in steps S404 and S405 can be the same as those in steps S102 and S103 in the first embodiment of the present invention. If it is determined in step S403 that no leakage has occurred, the process returns to step S401, and the position determination device 400 again acquires a measurement value related to the vibration of the pipe detected by each of the detection units 101.
  • the position determination device 400 determines whether or not there is leakage from the pipe in the leakage presence / absence determination unit 140, and then extracts the feature amount based on the vibration of the pipe and the two detection units based on the feature amount. Determine the measurement position. That is, in the position determination device 400 according to the present embodiment, an operation that does not determine the measurement position is possible when there is no leakage from the pipe. Therefore, the position determination apparatus 400 in the present embodiment can suppress power consumption associated with execution of processing.
  • position determination device 400 in the present embodiment can be combined with one or both of the position determination device 200 in the second embodiment of the present invention and the position determination device 300 in the third embodiment of the present invention. .
  • the position determination device 400 is configured such that, for example, the measurement position determination unit 120 selects measurement positions by at least two detection units from the detection units from the detection unit 101-1 to the detection unit 101-n. be able to.
  • the position determination apparatus 400 in this embodiment can be set as the structure which has a signal-to-noise ratio measurement part, for example.
  • the position determination device 400 according to the present embodiment includes at least two detections based on the signal-to-noise ratio of the measurement value in each detection unit calculated by the measurement position determination unit 120 by the signal-to-noise ratio measurement unit. It can be set as the structure which determines the measurement position by a part.
  • FIG. 13 is a diagram illustrating an example in which a detection unit is installed in a pipe in the leak detection system according to the fifth embodiment of the present invention.
  • FIG. 14 is a flowchart showing the operation of the position determination apparatus in the fifth embodiment of the present invention.
  • the configuration of the position determining device 500 can be the same as the configuration of the position determining device 100 in the first embodiment of the present invention.
  • the feature amount extraction unit 110 can extract a feature value based on each of the measurement values related to vibration detected at a plurality of positions for at least one detection unit of the two detection units.
  • the measurement position determination unit 120 can determine the measurement position by the detection unit based on the feature amounts related to vibration detected at the plurality of positions extracted by the feature amount extraction unit 110.
  • the leak detection system 50 which has the position determination apparatus 500 in this embodiment can be comprised similarly to the leak detection system 10 in 1st Embodiment.
  • step S501 two detection units that are measurement position determination targets in the position determination apparatus 500 according to the present embodiment are installed in the pipe.
  • the position determination device 100 acquires a measurement value related to the vibration of the pipe detected by each of the detection units 101 (step S502).
  • the feature quantity extraction unit 110 extracts a feature quantity based on the measurement value related to vibration acquired in step S502 (step S503).
  • step S502 and step S503 can be the same as step S101 and step S102 in the first embodiment of the present invention, for example.
  • the measurement position determination unit 120 determines whether or not the difference between the feature values extracted based on the vibration of the pipe detected by each of the two detection units 101 is equal to or less than a predetermined threshold (step S504).
  • the measurement position determination unit 120 specifies the positions of the two detection units 101 installed in step S501 as the measurement positions (step S505). .
  • the two detection units that are measurement position determination targets in the position determination device 500 in the present embodiment change the measurement position. Installed again in the pipe. Then, the position determining device 500 performs the operations after step S502 again. The position determination device 500 can repeat this operation until the difference between the feature values is equal to or less than a predetermined threshold value.
  • the position determination apparatus 500 in this embodiment can specify the measurement positions of the two detection units 101 by other operations.
  • the position determination device 500 extracts a feature value based on vibration detected at a plurality of measurement positions for each of the two detection units 101, and determines the position where the difference in the feature amount is minimized as the two detection units. 101 can be specified as the measurement position.
  • the position determination device 500 is characterized by the feature amount extraction unit 110 based on each of the measurement values related to vibration detected at a plurality of positions for at least one detection unit of the two detection units. The value can be extracted. Then, the measurement position determination unit 120 can determine the measurement position by the detection unit based on the feature amounts related to vibration detected at the plurality of positions extracted by the feature amount extraction unit 110. Therefore, the position determination device 500 determines whether the difference between the feature values obtained from the measurement values of the two detection units 101 installed in the pipe is equal to or less than the threshold value until the difference between the feature values becomes equal to or less than the threshold value. The measurement position by the unit 101 can be changed and repeated. Therefore, by using the position determination device 100 according to the present embodiment, even when there are two detection units 101, it is possible to determine the measurement position by the detection unit that can specify the leakage position with high accuracy.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

 漏洩位置を特定するための振動の計測位置を決定する位置決定装置等を提供する。 位置決定装置100は、複数の検知部によってそれぞれ検出した配管の振動に基づいて、検出したそれぞれの振動に関して特徴量をそれぞれ抽出する特徴量抽出部と、特徴量に基づいて、少なくとも2つの検知部による計測位置を決定する計測位置決定部とを有する。

Description

位置決定装置、漏洩検知システム、位置決定方法及びコンピュータ読み取り可能記録媒体
 この発明は、位置決定装置、漏洩検知システム、位置決定方法及びコンピュータ読み取り可能記録媒体に関する。
 水やガス等の流体が流れる配管において、漏洩の存在が明らかになった場合、流体の漏洩が生じた位置(以下「漏洩位置」とする場合がある)を高精度に特定することが求められる。
 特許文献1には、管状体のピンホール位置特定方法が記載されている。特許文献1に記載の方法は、管状体内に加圧気体を充填し、間隔をあけて2ポイントに設置した音波検出センサで該気体の漏洩音を検出する。そして、特許文献1に記載の方法は、該センサの検出音波波形を対比することにより、管状体中のピンホールの位置を知見する。
特開平4-184133号公報
 特許文献1に記載の方法では、2ポイントに設置したセンサのうち一方に近い場所に漏洩(ピンホール)の位置がある場合に、それぞれのセンサで検出する検出波形の類似性が失われる場合がある。これは、2ポイントに設置したセンサのうち漏洩の位置から遠いセンサで検出した漏洩音の波形は、振動が管状体を伝搬する間に、複数の伝搬モードの重畳や周波数分散性等により、波形の形状が崩れる場合があるためである。そのため、特許文献1に記載の方法では、漏洩位置の特定精度が低下する場合がある。
 本発明は、上記課題を解決するためになされたものであって、漏洩位置を特定するための振動の計測位置を決定する位置決定装置、漏洩検知システム、位置決定方法及びコンピュータ読み取り可能記録媒体を提供することを一つの目的とする。
 本発明の一態様における位置決定装置は、複数の検知手段によってそれぞれ検出した配管の振動に基づいて、検出した振動の各々に関して特徴量をそれぞれ抽出する特徴量抽出手段と、特徴量に基づいて、少なくとも2つの検知手段による計測位置を決定する計測位置決定手段とを有する。
 本発明の一態様における位置決定方法は、複数の検知手段によってそれぞれ検出した配管の振動に基づいて、検出した振動の各々に関して特徴量をそれぞれ抽出し、特徴量に基づいて、少なくとも2つの検知手段による計測位置を決定する。
 本発明の一態様におけるコンピュータ読み取り可能記録媒体は、複数の検知手段によってそれぞれ検出した配管の振動に基づいて、検出した振動の各々に関して特徴量をそれぞれ抽出する処理と、特徴量に基づいて、少なくとも2つの検知手段による計測位置を決定する処理とを実行させるプログラムを非一時的に格納する。
 本発明の一態様における漏洩検知システムは、本発明の一態様における位置決定装置と、位置決定装置により決定した位置にある2つの検知手段で検出した配管の振動に基づいて配管からの流体の漏洩位置を特定する漏洩位置特定手段とを有する。
 本発明によると、漏洩位置を特定するための振動の計測位置を決定する位置決定装置、漏洩検知システム、位置決定方法及びコンピュータ読み取り可能記録媒体を提供することができる。
本発明の第1の実施形態における位置決定装置を示す図である。 本発明の第1の実施形態における位置決定装置の動作を示すフローチャートである。 本発明の第1の実施形態における漏洩検知システムを示す図である。 本発明の第1の実施形態における漏洩検知システムにて検知部を配管に設置した例を示す図である。 本発明の第1の実施形態における漏洩検知システムの動作を示すフローチャートである。 本発明の第2の実施形態における位置決定装置を示す図である。 本発明の第2の実施形態における位置決定装置にて計測位置の決定対象となる検知部を配管に設置した例を示す図である。 本発明の第2の実施形態における位置決定装置の動作を示すフローチャートである。 本発明の第3の実施形態における位置決定装置を示す図である。 本発明の第3の実施形態における位置決定装置の動作を示すフローチャートである。 本発明の第4の実施形態における位置決定装置を示す図である。 本発明の第4の実施形態における位置決定装置の動作を示すフローチャートである。 本発明の第5の実施形態における漏洩検知システムにて検知部を配管に設置した例を示す図である。 本発明の第5の実施形態における位置決定装置の動作を示すフローチャートである。 本発明の各実施形態における位置決定装置等を実現する情報処理装置の構成例を示す図である。
 (第1の実施形態)
 本発明の各実施形態について、添付の図面を参照して説明する。
なお、本発明の各実施形態において、各装置の各構成要素は、機能単位のブロックを示している。各装置の各構成要素は、例えば図15に示すような情報処理装置1000とソフトウェアとの任意の組み合わせにより実現することができる。情報処理装置1000は、一例として、以下のような構成を含む。
  ・CPU(Central Processing Unit)1001
  ・ROM(Read Only Memory)1002
  ・RAM(Ramdom Access Memory)1003
  ・RAM1003にロードされるプログラム1004
  ・プログラム1004を格納する記憶装置1005
  ・記憶媒体1006の読み書きを行うドライブ装置1007
  ・通信ネットワーク1009と接続する通信インターフェース1008
  ・データの入出力を行う入出力インターフェース1010
  ・各構成要素を接続するバス1011
また、各装置の実現方法には様々な変形例がある。例えば、各装置は、専用の装置として実現することができる。また、各装置は、複数の装置の組み合わせにより実現することができる。
 最初に、本発明の第1の実施形態について説明する。図1は、本発明の第1の実施形態における位置決定装置を示す図である。図2は、本発明の第1の実施形態における位置決定装置の動作を示すフローチャートである。
 図1に示す通り、本発明の第1の実施形態における位置決定装置100は、特徴量抽出部110と、計測位置決定部120とを有する。特徴量抽出部110は、検知部101にて検出した配管の振動に基づいて特徴量を抽出する。計測位置決定部120は、特徴量抽出部110で抽出した特徴量に基づいて、少なくとも2つの検知部による計測位置を決定する。
 最初に、本実施形態における位置決定装置100の構成について説明する。
 特徴量抽出部110は、検知部101にて検出した配管の振動に基づいて特徴量をそれぞれ抽出する。図1に示す例では、検知部101は、検知部101-1及び検知部101-2の2つを含む。この場合には、特徴量抽出部110は、検知部101-1及び検知部101-2の各々にて検出した配管の振動に基づいて特徴量を抽出する。特徴量抽出部110は、検知部101の各々によって検知した振動の波形の類似性を判断できる指標を特徴量とすることができる。一例として、特徴量抽出部110は、例えば検知部101-1及び検知部101-2の各々にて検出した配管の振動の位相を特徴量として抽出することができる。なお、特徴量抽出部110は、検知部101の各々にて検知された同一の原因により生じた振動に基づいて特徴量を抽出することが好ましい。また、特徴量を抽出する対象となる振動は、流体の配管からの漏洩に起因して生じる振動(以下「漏洩振動」と呼ぶ場合がある)であることが好ましい。
 計測位置決定部120は、特徴量抽出部110にて配管の振動に基づいて抽出した特徴量に基づいて、2つの検知部101による計測位置をそれぞれ決定する。計測位置決定部120は、一例として、特徴量抽出部110で抽出した検知部101の各々の特徴量が、当該特徴量に対応する振動の波形の類似性に関する所定の条件を満たす位置を、検知部101の各々による計測位置とする。この場合には、計測位置決定部120は、上述した特徴量に基づいて、例えば検知部101の各々によって検知された振動の波形の類似性が高いと判断される2つの位置を、検知部101による計測位置として決定する。つまり、所定の条件は、検知部101によって検出される複数の地点における振動のうち、波形の類似性が高い振動が条件を満たすように適宜定められる。ただし、計測位置決定部120は、特徴量抽出部110にて配管の振動に基づいて抽出した特徴量に基づいて、上述した振動の波形の類似性とは異なる任意の条件によって少なくとも2つの検知部101による計測位置をそれぞれ決定してもよい。
 計測位置決定部120は、より詳細な一例として、次のように検知部101による計測位置をそれぞれ決定する。配管のいずれかの場所で漏洩が生じていることが想定される場合には、配管の複数の地点において検知された配管の振動に基づいて、上述した特徴量がそれぞれ特徴量抽出部110にて抽出される。配管の複数の地点における配管の振動は、例えば、任意の数の検知部101を配管に沿って移動させる等して、各々の地点において振動を検知することで得られる。計測位置決定部120は、このようにして抽出された配管の複数の地点における特徴量を参照して、当該特徴量によって表される振動の波形の類似性が高いと判断される2つの特徴量を特定する。そして、当該特徴量に対応する振動が検知された2つの地点を、検知部101による計測位置として決定する。なお、計測位置決定部120は、上述した振動の波形の類似性に関する所定の条件を満たす3つ以上の地点を、検知部101による計測位置として決定してもよい。
 計測位置決定部120は、一例として、特徴量抽出部110で抽出した検知部101の各々の特徴量の相違が所定の閾値以下である位置を、検知部101の各々による計測位置とする。例えば、特徴量抽出部110が配管の振動の位相を特徴量として抽出した場合、計測位置決定部120は、各々の検知部101から抽出した位相の差が閾値以下である位置を、検知部101の各々による計測位置とすることができる。これは、特徴量抽出部110で抽出した検知部101の各々の特徴量の相違が閾値以下である位置に検知部を設置することで、検知部101の各々によって検出する振動の波形の類似性が高まるからである。また、計測位置決定部120は、検知部101の各々による計測位置を決定する場合に、配管の振動を検知可能な所定の地点を検知部101の各々による計測位置とすることができる。また、計測位置決定部120は、検知部101の各々による計測位置を決定する場合に、配管の振動を検知可能な所定の範囲を検知部101の各々による計測位置とすることができる。更に、計測位置決定部120は、上述した閾値を、例えば検知部101の各々が振動の検知対象とする配管の種類、口径又は材質等に基づいて適宜定めることができる。
 計測位置決定部120によって検知部101の各々による計測位置が決定されると、その計測位置に配置された検知部101を用いて、流体の配管からの漏洩位置の特定が行われる。この漏洩位置の特定に関する詳細は後述する。
 次に、図2を用いて、本実施形態における位置決定装置100の動作について説明する。
 最初に、位置決定装置100は、検知部101の各々によって検知した配管の振動に関する計測値を取得する(ステップS101)。続いて、特徴量抽出部110は、ステップS101にて取得した振動に関する計測値に基づいて、特徴量を抽出する(ステップS102)。続いて、計測位置決定部120は、ステップS102にて取得した特徴量に基づいて、検知部101の各々による計測位置を決定する(ステップS103)。
(本実施形態における位置決定装置を有する漏洩検知システムの例)
 次に、本実施形態における位置決定装置を有する漏洩検知システム10の構成について説明する。図3は、本発明の第1の実施形態における漏洩検知システムを示す図である。図4は、本発明の第1の実施形態における漏洩検知システムにて検知部を配管に設置した例を示す図である。図5は、本発明の第1の実施形態における漏洩検知システムの動作を示すフローチャートである。
 図3に示す通り、本発明の第1の実施形態における漏洩検知システム10は、検知部101と、上述した位置決定装置100と、漏洩位置特定部102とを有する。検知部101は、配管の振動を検出する。漏洩位置特定部102は、位置決定装置100により決定した位置にある2つの検知部101にて検出した配管の振動に基づいて、配管にて流体の漏洩が生じた位置を特定する。なお、漏洩検知システム10において、検知部101は、例えば図4に示すように配管に取付けられる。
 検知部101は、配管又は配管の内部を流れる流体の振動を検出する。検知部101は、例えば固体の振動を計測するセンサを用いることができる。該当するセンサとして、圧電型加速度センサ、動電型加速度センサ、静電容量型加速度センサ、光学式速度センサ、動ひずみセンサ等がある。ただし、検知部101は、音響センサのように、その他の種類のセンサであってもよい。検知部101にて検出された振動に関する計測値は、任意の通信手段により漏洩検知システム10に含まれる位置決定装置100へ送信される。また、検知部101は、配管の外壁面や内壁面に設置される。検知部101は、配管1に設置された図示しないフランジや、弁栓等の付属物表面や内面に設置されてもよい。検知部101は、例えば磁石、専用ジグ、又は接着剤を用いて配管等に取付けられる。なお、配管は、例えば地中に埋設されていてもよい。又は、配管は、構造物に設置されていてもよい。
 漏洩位置特定部102は、2つの検知部101にて検出した配管の振動に基づいて、配管にて流体の漏洩が生じた位置を特定する。この場合において、検知部101は、例えば、それぞれ位置決定装置100で決定された位置にて振動を検出する。位置決定装置100において3つ以上の位置が検知部101による計測位置として決定された場合には、そのうちの2つの位置が適宜選択される。漏洩位置特定部102は、例えば相関法等の任意の手法にて漏洩位置を特定する。漏洩位置特定部102は、相関法を用いると、振動の到達時間差τ、振動の伝搬速度c及び検知部間距離lから、以下の(1)式より漏洩位置l1を算出する。漏洩位置l1は、2つの検知部101のうち一方の検知位置からの距離を表す。
Figure JPOXMLDOC01-appb-I000001
(1)式において、到達時間差τは、漏洩振動が、2つの検知部101の各々にて検出される時刻の差である。具体的には、到達時間差τは、2つの検知部101のうち、上述した一方とは異なる他方における漏洩信号の到達時刻から、2つの検知部101のうち、上述した一方における漏洩信号の到達時刻を差し引くことで算出される。到達時間差τは、例えば2つの検知部101の各々にて検出された振動の相互相関関数を用いて算出される。伝搬速度cは、漏洩振動が配管を伝搬する際の速度である。伝搬振動cは、配管の種類や材質、配管の周囲の土壌等によって決まる。伝搬速度cは、上記の配管の種類などの情報から理論的に求めることもできるし、又は実験的に求めることもできる。検知部間距離lは、本実施形態においては、検知部101-1と検知部101-2との間の距離である。
 次に、図5を用いて、本実施形態における漏洩検知システム10の動作について説明する。
 漏洩検知システム10の位置決定装置100は、検知部101の各々によって検知した配管の振動に関する計測値を取得する(ステップS151)。続いて、特徴量抽出部110は、ステップS151にて取得した振動に関する計測値に基づいて、特徴量を抽出する(ステップS152)。続いて、計測位置決定部120は、ステップS152にて取得した特徴量に基づいて、検知部101の各々による計測位置を決定する(ステップS153)。ステップS151からステップS153までの動作は、上記位置決定装置100にてステップS101からステップS103として説明した動作と同じとすることができる。続いて、漏洩位置特定部102は、ステップS153にて決定した位置に設置された検知部101により検出した配管の振動に関する計測値に基づいて、配管にて流体の漏洩が生じた位置を特定する(ステップS154)。この場合に、漏洩位置特定部102は、例えば相関法により配管にて流体の漏洩が生じた位置を特定することができる。
 続いて、本実施形態において、位置決定装置100にて決定される検知部101による計測位置と、漏洩検知システム10にて特定される漏洩位置との関係について説明する。
 本実施形態において、漏洩検知システム10は、例えば相関法により配管にて流体の漏洩が生じた位置を特定する。相関法では、配管にて流体の漏洩が生じた位置を特定する場合に、例えば2つの検知部の各々にて検出された振動波形の相互相関関数から算出された到達時間差が用いられる。到達時間差を高精度に求めるためには、2つの検知部の各々にて検出された振動の波形が、同一であるか又は類似することが好ましい。
 配管から流体が漏洩する際に生じる振動は、配管の管壁を伝搬する姿態や、流体を伝搬する姿態など、伝搬特性(減衰特性、伝搬速度)の異なる複数の姿態で伝搬する。また、配管から流体が漏洩する際に生じる振動は、各々の姿態においても周波数ごとに伝搬特性が異なる周波数分散性を有する。このような場合には、配管から流体が漏洩する際に生じる振動は、各振動が配管を伝搬する過程で波形が崩れるので、漏洩箇所(すなわち振動源)から離れるほど、漏洩箇所における原波形と異なる波形となる場合がある。
 一例として、漏洩位置を特定する際に、漏洩個所の位置が2つの検知部のうち一方の検知部に偏った地点にある場合を想定する。この場合には、上述した配管における振動伝搬特性から、2つの検知部の各々によって検知される振動波形の類似性が失われる場合がある。例えば、漏洩位置から近い検知部には、複数の伝搬姿態の振動が到達する。これに対し、漏洩個所から遠い検知部には、減衰しやすい伝搬姿態の振動は減衰して到達せず、減衰しにくい伝搬姿態の振動のみが到達する場合が生じうる。この場合において、2つの検知部の各々にて検出された振動波形の相互相関関数に基づいて漏洩振動の到達時間差を算出しようとすると、到達時間差の決定精度が低下する場合がある。そして、到達時間差の決定精度が低下する結果として、配管にて流体の漏洩が生じた位置の特定精度が低下する場合がある。
 一方、例えば漏洩個所の位置が2つの検知部から等距離又はほぼ等距離にある場合では、2つの検知部に到達する振動の伝搬姿態には大きな差が生じない場合が多い。この場合には、2つの検知部の各々にて検知される振動波形の類似性は失われにくい。そのため、2つの検知部の各々にて検出された振動波形の相互相関関数に基づいて漏洩振動の到達時間差を算出すると、漏洩個所の位置が一方の検知部に偏った地点にある場合と比較して、到達時間差の決定精度が高い場合が多い。そして、その結果として、漏洩個所の位置が2つの検知部から等距離又はほぼ等距離にある場合には、漏洩個所の位置が一方の検知部に偏った地点にある場合と比較して、配管にて流体の漏洩が生じた位置の特定精度が高い場合が多い。
 また、漏洩個所の位置が2つの検知部から等距離又はほぼ等距離でない場合でも、配管における振動伝搬特性によっては、振動波形の類似性が失われにくい場合がある。そのため、漏洩振動を、振動波形の類似性が相対的に高い2か所で検知することによっても、配管にて流体の漏洩が生じた位置の特定精度が高い場合が多い。すなわち、配管にて流体の漏洩が生じた位置を特定する場合に、特徴値に基づいて検知部による計測位置を決定してから漏洩位置を特定することで、配管にて流体の漏洩が生じた位置の高い精度で特定することができる。
 以上の通り、本実施形態における位置決定装置100は、特徴量に基づいて配管における検知部101による計測位置を決定する。そのため、検知部101で検知する漏洩振動の類似性を高くすることができる。また、本実施形態における漏洩検知システム10は、当該検知部101にて検知した振動に基づいて漏洩位置を特定する。すなわち、本実施形態における位置決定装置100を用いることにより、漏洩位置を特定するための検知部による計測位置を決定することができる。そして、本実施形態における漏洩検知システム10を用いることにより、漏洩位置を高精度に特定することができる。
 本実施形態においては、変形例が考えられる。一例として、位置決定装置100は、特徴量として、配管の振動の位相の他に、例えば、各々の検知部101への振動の到達時刻差、配管の振動波形の包絡線又は配管の振動の振幅を用いることができる。
 特徴量抽出部110が各々の検知部101への振動の到達時刻差を特徴量として抽出した場合、計測位置決定部120は、到達時刻差が閾値以下である位置を計測位置とすることができる。特徴量抽出部110が配管の振動の包絡線を特徴量として抽出した場合、計測位置決定部120は、各々の検知部101から抽出した包絡線の形状の差が閾値以下である位置を、検知部101の各々による計測位置とすることができる。また、特徴量抽出部110が振動の振幅を特徴量として抽出した場合、計測位置決定部120は、各々の検知部101から抽出した振幅の大きさの差が閾値以下である位置を、検知部101の各々の計測位置とすることができる。
 特徴量として配管の振動の位相を用いる場合、位置決定装置100は、検知部による計測位置を高い精度で決定することができる。しかしながら、特徴量抽出部110における特徴値の抽出や、計測位置決定部120における計測位置の決定において、波形全体の情報が必要となる。すなわち、必要となるデータ量が多くなる。一方、特徴量として振動波形の包絡線や振動の振幅を用いる場合に特徴量抽出部110又は計測位置決定部120にて必要となるデータ量は、特徴量として配管の振動の位相を用いる場合に必要となるデータ量と比較して小さくなる。位置決定装置100にて用いる特徴量は、漏洩位置の特定において必要とされる精度や、検知部101の各々から送信可能なデータ量、位置決定装置100又は検知部101の消費電力等に応じて適宜決定される。
 また、本実施形態において、位置決定装置100は、配管の振動を検知する検知部101による計測位置を決定するとした。しかしながら、本実施形態における位置決定装置100は、例えば、構造物の劣化位置を特定するために、構造物の振動を検知する検知部による計測位置を決定するために用いることができる。
 (第2の実施形態)
 続いて、本発明の第2の実施形態について説明する。図6は、本発明の第2の実施形態における位置決定装置を示す図である。図7は、本発明の第2の実施形態における位置決定装置にて計測位置の決定対象となる検知部を配管に設置した例を示す図である。図8は、本発明の第2の実施形態における位置決定装置の動作を示すフローチャートである。
 図6に示す通り、本発明の第2の実施形態における位置決定装置200は、特徴量抽出部110と、計測位置決定部120とを有する。特徴量抽出部110は、検知部101-1から検知部101-nの各々にて検出した配管の振動に基づいて特徴量を抽出する。計測位置決定部120は、特徴量抽出部110で抽出した特徴量に基づいて、検知部101-1から検知部101-nまでの検知部から2つの検知部を選択する。
 つまり、本実施形態における位置決定装置100は、計測位置決定部120が、特徴量抽出部110で抽出した特徴量に基づいて、検知部101-1から検知部101-nまでの検知部から2つの検知部を選択する点が、第1の実施形態における位置決定装置100と異なる。言い換えると、本実施形態における位置決定装置100は、例えば予め配管等に取付けられた、検知部101-1から検知部101-nまでの検知部から2つの検知部を選択することで、2つの検知部による計測位置をそれぞれ決定する。これ以外の要素については、第2の実施形態における位置決定装置100は、第1の実施形態における位置決定装置100と同様の構成を有している。
 なお、図7に示すように、第1の実施形態における漏洩検知システム10と同様にして、本実施形態における位置決定装置200を有する漏洩検知システム20を構成することができる。この場合において、漏洩検知システム20は、例えば検知部101-1から検知部101-nまでの検知部から少なくとも2つの検知部を選択し、当該選択された検知部にて検知した振動に基づいて、配管の漏洩が生じている位置を特定する。
 計測位置決定部120は、特徴量抽出部110で抽出した特徴量に基づいて、検知部101-1から検知部101-nまでの検知部から少なくとも2つの検知部を選択する。例えば、計測位置決定部120が、検知部101-1から検知部101-nまでの検知部から2つの検知部を選択する場合、特徴量の相違が最小となる2つの検知部の組を選択することができる。また、計測位置決定部120は、検知部101-1から検知部101-nまでの検知部のうち、特徴量の相違が閾値以下である2つの検知部の組を選択することができる。計測位置決定部120は、これ以外の手法によって、検知部101-1から検知部101-nまでの検知部から少なくとも2つの検知部を選択してもよい。そして、特徴量として配管の振動の位相を用いる場合、計測位置決定部120は、例えば検知部101-1から検知部101-nまでの検知部のうち、抽出した位相の差が最小となる2つの検知部の組を選択することができる。このようにすることで、計測位置決定部120は、少なくとも2つの検知部101による計測位置をそれぞれ決定する。
 続いて、図8を用いて、本実施形態における位置決定装置200の動作について説明する。
 位置決定装置200は、最初に、検知部101の各々によって検知した配管の振動に関する計測値を取得する(ステップS201)。続いて、特徴量抽出部110は、ステップS101にて取得した振動に関する計測値に基づいて、特徴量を抽出する(ステップS202)。ステップS201及びステップS202の動作は、本発明の第1の実施形態におけるステップS101及びステップS102と同様に行うことができる。続いて、計測位置決定部120は、ステップS202にて取得した特徴量に基づいて、検知部101-1から検知部101-nまでの検知部から2つの検知部を選択する(ステップS203)。
 続いて、図7に示すように、検知部101-1から検知部101-nが配管に取付けられている場合を想定して、計測位置決定部120がステップS203において少なくとも2つの検知部を選択する動作の具体的な一例を説明する。
 図7において、配管の漏洩位置180から漏洩が発生している例を想定する。この想定において、2つの検知部を選択することを考えると、漏洩位置180から近い2つの検知部は、検知部101-3及び検知部101-4である。しかしながら、図7によると、漏洩位置180から検知部101-3及び検知部101-4の各々までの距離は異なっている。これに対し、漏洩位置180から検知部101-2及び検知部101-5の各々までの距離はほぼ同じである。このことから、この想定例においては、検知部101-2及び検知部101-5の各々により検出された配管の振動の波形は、検知部101-3及び検知部101-4の各々により検出された配管の振動の波形と比較して、類似性が高いと予想される。そして、計測位置決定部120は、配管の漏洩位置の特定精度を高めようとする場合には、波形の類似性が高いことが予想される検知部101-2及び検知部101-5の組を、2つの検知部として選択することが好ましい。
 計測位置決定部120は、この場合に、例えば検知部101-3及び検知部101-4の各々にて検出された配管の振動に基づいて抽出された特徴量の相違(以下「第1の相違」とする)を求める。また、計測位置決定部120は、例えば検知部101-2及び検知部101-5の各々にて検出された配管の振動に基づいて抽出された特徴量の相違(以下「第2の相違」とする)を求める。そして、計測位置決定部120は、例えば第1の相違と第2の相違とを比較する。この場合に、第2の相違の方が小さいとすると、計測位置決定部120は、検知部101-2及び検知部101-5の組を、2つの検知部として選択することが可能となる。
 続いて、上記の一例において、本実施形態における位置決定装置200を含む漏洩検知システム20によって漏洩位置を特定する場合を想定する。漏洩検知システム20は、上記の通り選択された検知部101-2及び検知部101-5により検出した配管の振動に関する計測値に基づいて、配管にて流体の漏洩が生じた位置を特定する。検知部101-2及び検知部101-5の各々により検出した配管の振動の波形は、検知部101-3及び検知部101-4の各々により検出した配管の振動の波形と比較して、類似性が高いと期待される。そのため、本実施形態における位置決定装置200を含む漏洩システム20は、漏洩位置180の特定精度を高めることができる。
 以上の通り、本実施形態における位置決定装置200によると、計測位置決定部120は、特徴量に基づいて、検知部101-1から検知部101-nまでの検知部から少なくとも2つの検知部を選択する。これにより、計測位置決定部120は、少なくとも2つの検知部による計測位置を決定する。すなわち、計測位置決定部120は、振動波形の類似性が相対的に高い2つの位置を検知部による計測位置として決定することができる。したがって、本実施形態における位置決定装置200は、例えば配管に複数の検知部が予め設置されている場合に、配管の漏洩位置の特定精度を高めることができる。
 (第3の実施形態)
 続いて、本発明の第3の実施形態について説明する。図9は、本発明の第3の実施形態における位置決定装置を示す図である。図10は、本発明の第3の実施形態における位置決定装置の動作を示すフローチャートである。
 図9に示す通り、本発明の第2の実施形態における位置決定装置300は、信号対雑音比算出部130と、特徴量抽出部110と、計測位置決定部120とを有する。信号対雑音比測定部130は、検知部101にて検出した配管の振動に関する計測値について、各々の信号対雑音比を算出する。特徴量抽出部110は、検知部101にて検出した配管の振動に基づいて特徴量を抽出する。計測位置決定部120は、特徴量抽出部110で抽出した特徴量と、信号対雑音比測定部130で算出した各々の検知部による計測値の信号対雑音比とに基づいて、2つの検知部による計測位置を決定する。
 つまり、本実施形態における位置決定装置300は、信号対雑音比算出部130を有する点が、本発明の第1の実施形態における位置決定装置100と異なる。また、本実施形態における位置決定装置300は、計測位置決定部120が、計測値の信号対雑音比に基づいて、2つの検知部による計測位置を決定する点が、本発明の第1の実施形態における位置決定装置100と異なる。これ以外の要素については、本実施形態における位置決定装置300は、第1の実施形態における位置決定装置100と同様の構成を有している。
 なお、第1の実施形態における漏洩検知システム10と同様にして、本実施形態における位置決定装置300を有する漏洩検知システムを構成することができる。
 信号対雑音比測定部130は、検知部101の各々にて検出した配管の振動に関する計測値について、各々の信号対雑音比を算出する。この場合において、信号対雑音比は、一例として、漏洩振動と、配管から漏洩が生じていない場合の配管の振動との振幅の比とすることができる。また、別の例として、信号対雑音比は、配管の振動に関する情報とその他のノイズとの比とすることができる。
 計測位置決定部120は、特徴量抽出部110で抽出した特徴量と、信号対雑音比測定部130で算出した各々の検知部における計測値の信号対雑音比とに基づいて、2つの検知部による計測位置を決定する。例えば、計測位置決定部120は、検知部101の各々の特徴量の相違が所定の閾値以下となり、かつ、信号対雑音比が所定の閾値を超える位置を、検知部101の各々による計測位置とすることができる。なお、信号対雑音比に関する閾値は、例えば検知部101の各々に関する特性や、検知部101の各々が振動の検知対象とする配管の種類(例えば、配管の材質や径等)、配管における振動の伝搬特性、配管の周囲の土壌等に関する情報に基づいて理論的に算出される値でもよい。また、この閾値は、検知部101の各々が振動の検知対象とする配管や当該配管と同じ種類の配管において過去に生じた漏洩振動の計測値や、これらの配管に対して予め発生させた擬似的な漏洩振動の計測値等に基づいて実験的に求められる値でもよい。
 続いて、図10を用いて、本実施形態における位置決定装置300の動作について説明する。
 最初に、位置決定装置300は、検知部101の各々によって検知した配管の振動に関する計測値を取得する(ステップS301)。このステップは、本発明の第1の実施形態におけるステップS101と同様に行うことができる。
 続いて、信号対雑音比測定部130は、検知部101の各々によって検知した配管の振動に関する計測値について、各々の信号対雑音比を算出する(ステップS302)。配管の振動に関する計測値は、例えば振動の振幅等、検知部101の各々によって検知した配管の振動の様子を表す任意の値を含む。信号対雑音比測定部130は、信号対雑音比の算出を、例えば以下のように行う。すなわち、信号対雑音比測定部130は、最初に、検知部101の各々によって検知した、配管からの流体の漏洩に起因する振動を含む配管の振動に関する計測値について、漏洩に特徴的な部分に着目し、各々の振動の振幅を信号振幅として算出する。漏洩に特徴的な部分とは、例えば、漏洩に起因して振幅の大きな振動が発生すると想定される周波数帯域等である。この周波数帯域は、検知部101の各々が検知対象とする配管の種類等に応じて定められる。この場合に、振動の振幅は、例えば、検知部101の各々によって検知した配管の振動に関する計測値に対して、配管の種類等に応じて予め指定された周波数帯域を抽出するフィルタ処理を行い、そのフィルタ処理を行った後の振動の振幅を求めることで算出される。次に、信号対雑音比測定部130は、配管からの流体の漏洩がない場合の配管の振動に関する計測値について、各々の振動の振幅を雑音振幅として算出する。次に、信号対雑音比測定部130は、信号振幅と、雑音振幅との各々の比を求めることにより、検知部101の各々によって検知した配管の振動に関する計測値における信号対雑音比を算出する。
 続いて、特徴量抽出部110は、ステップS301にて取得した振動に関する計測値に基づいて、特徴量を抽出する(ステップS303)。このステップは、本発明の第1の実施形態におけるステップS102と同様に行うことができる。
 続いて、計測位置決定部120は、ステップS303で抽出した特徴量及びステップS302で算出した各々の検知部における計測値の信号対雑音比に基づいて、2つの検知部による計測位置を決定する(ステップS304)。計測位置決定部120は、検知部101の各々の特徴量の相違が閾値以下である位置のうち、検知部101の各々について算出した信号対雑音比が所定の閾値を超える位置を、検知部101の各々による計測位置とすることができる。
 以上の通り、本実施形態における位置決定装置300によると、信号対雑音比測定部130は、検知部101の各々にて検出した配管の振動に関する計測値について、各々の信号対雑音比を算出する。計測位置決定部120は、ステップS303で抽出した特徴量及びステップS302で算出した各々の検知部における計測値の信号対雑音比に基づいて、2つの検知部による計測位置を決定する。このようにすることで、位置決定装置200は、信号対雑音比の高い、すなわち、漏洩信号が明確となるような検知部による計測位置を決定することができる。したがって、本実施形態における位置決定装置300は、配管の漏洩位置の特定精度を高めることができる。
 なお、本実施形態における位置決定装置300は、図10に示すフローチャートと異なる順番で動作することができる。例えば、位置決定装置300は、ステップS302の動作と、ステップS303の動作とを、逆の順番で動作することができる。また、位置決定装置300は、ステップS302の動作と、ステップS303の動作とを、並行して動作することができる。
 更に、本実施形態における位置決定装置300は、本発明の第2の実施形態における位置決定装置200と、互いに組み合わせることができる。この場合において、信号対雑音比測定部130は、検知部101-1から検知部101-nまでの各々にて検出した配管の振動に関する計測値について、各々の信号対雑音比を算出することができる。また、計測位置決定部120は、一例として、検知部101-1から検知部101-nまでの検知部のうち、特徴量の相違が所定の閾値より小さく、かつ、信号対雑音比が所定の閾値を超える2つの検知部の組を選択することができる。
 (第4の実施形態)
 続いて、本発明の第4の実施形態について説明する。図11は、本発明の第4の実施形態における位置決定装置を示す図である。図12は、本発明の第4の実施形態における位置決定装置の動作を示すフローチャートである。
 図11に示す通り、本発明の第4の実施形態における位置決定装置400は、漏洩有無判定部140と、特徴量抽出部110と、計測位置決定部120とを有する。漏洩有無判定部140は、検知部101にて検出した配管の振動に基づいて、配管に流体の漏洩が生じているかを判定する。これ以外の要素については、第4の実施形態における位置決定装置100は、第1の実施形態における位置決定装置100と同様の構成を有している。
 なお、第1の実施形態における漏洩検知システム10と同様にして、本実施形態における位置決定装置400を有する漏洩検知システムを構成することができる。
 漏洩有無判定部140は、検知部101にて検出した配管の振動に基づいて、配管に流体の漏洩が生じているかを判定する。漏洩有無判定部140は、検知部101のいずれかにて検出した配管の振動の振幅が、所定の閾値を超えている場合に、配管に流体の漏洩が生じていると判定することができる。
 次に、図12を用いて、本実施形態における位置決定装置400の動作について説明する。
 最初に、位置決定装置400は、検知部101の各々によって検知した配管の振動に関する計測値を取得する(ステップS401)。ステップS401の動作は、本発明の第1の実施形態におけるステップS101と同様とすることができる。
 続いて、漏洩有無判定部140は、検知部101にて検出した配管の振動に基づいて、配管に流体の漏洩が生じているかを判定する(ステップS402)。配管に流体の漏洩が生じていると判定する場合(ステップS403)には、特徴量抽出部110は、ステップS401にて取得した振動に関する計測値に基づいて、特徴量を抽出する(ステップS404)。続いて、計測位置決定部120は、ステップS404にて取得した特徴量に基づいて、検知部101の各々による計測位置を決定する(ステップS405)。ステップS404及びS405の動作は、本発明の第1の実施形態におけるステップS102及びS103と同様とすることができる。なお、ステップS403において、漏洩が生じていないと判断する場合には、ステップS401に戻り、再度、位置決定装置400は、検知部101の各々によって検知した配管の振動に関する計測値を取得する。
 以上の通り、本実施形態における位置決定装置400は、漏洩有無判定部140において配管からの漏洩の有無を判定してから、配管の振動に基づく特徴量の抽出及び特徴量に基づく2つの検知部による計測位置の決定を行う。すなわち、本実施形態における位置決定装置400においては、配管からの漏洩がない場合には、計測位置の決定を行わない動作が可能となる。そのため、本実施形態における位置決定装置400は、処理の実行に伴う消費電力を抑えることができる。
 なお、本実施形態における位置決定装置400は、本発明の第2の実施形態における位置決定装置200及び本発明の第3の実施形態における位置決定装置300の一方又は両方と、互いに組み合わせることができる。
 すなわち、本実施形態における位置決定装置400は、例えば計測位置決定部120が、検知部101-1から検知部101-nまでの検知部から少なくとも2つの検知部による計測位置を選択する構成とすることができる。また、本実施形態における位置決定装置400は、例えば信号対雑音比測定部を有する構成とすることができる。この場合において、本実施形態における位置決定装置400は、計測位置決定部120が、信号対雑音比測定部で算出した各々の検知部における計測値の信号対雑音比に基づいて、少なくとも2つの検知部による計測位置を決定する構成とすることができる。
 (第5の実施形態)
 続いて、本発明の第5の実施形態について説明する。図13は、本発明の第5の実施形態における漏洩検知システムにて検知部を配管に設置した例を示す図である。図14は、本発明の第5の実施形態における位置決定装置の動作を示すフローチャートである。
 本実施形態において、位置決定装置500の構成は、本発明の第1の実施形態における位置決定装置100の構成と同様とすることができる。そして、特徴量抽出部110は、2つの検知部のうち少なくとも1つの検知部について、複数の位置で検知した振動に関する計測値の各々に基づいて特徴値を抽出することができる。また、計測位置決定部120は、特徴量抽出部110で抽出した複数の位置で検知した振動に関する特徴量に基づいて、検知部による計測位置を決定することができる。
 なお、第1の実施形態における漏洩検知システム10と同様にして、本実施形態における位置決定装置500を有する漏洩検知システム50を構成することができる。
 次に、図13及び図14を用いて、本実施形態における位置決定装置500の動作について説明する。
 最初に、本実施形態における位置決定装置500にて計測位置の決定対象となる2つの検知部が配管に設置される(ステップS501)。続いて、位置決定装置100は、検知部101の各々によって検知した配管の振動に関する計測値を取得する(ステップS502)。続いて、特徴量抽出部110は、ステップS502にて取得した振動に関する計測値に基づいて、特徴量を抽出する(ステップS503)。ステップS502及びステップS503の各々の動作は、例えば本発明の第1の実施形態におけるステップS101及びステップS102とそれぞれ同様とすることができる。続いて、計測位置決定部120は、2つの検知部101の各々によって検知した配管の振動に基づいて抽出された特徴値の相違が所定の閾値以下か否かを判定する(ステップS504)。ステップS504において、特徴値の相違が所定の閾値以下である場合には、計測位置決定部120は、ステップS501にて設置された2つの検知部101の位置を計測位置として特定する(ステップS505)。ステップS504において、特徴値の相違が所定の閾値以下でない場合には、ステップS501にて、本実施形態における位置決定装置500にて計測位置の決定対象となる2つの検知部が計測位置を変更して再度配管に設置される。そして、位置決定装置500は、再度ステップS502以降の動作を行う。位置決定装置500は、特徴値の相違が所定の閾値以下になるまでこの動作を繰り返すことができる。
 なお、本実施形態における位置決定装置500は、これ以外の動作によっても2つの検知部101の計測位置を特定することができる。例えば、位置決定装置500は、2つの検知部101の各々に関して、複数の計測位置にて検出した振動に基づいて特徴値を抽出し、特徴量の相違が最小となる位置を、2つの検知部101の計測位置として特定することができる。
 以上の通り、本実施形態における位置決定装置500は、特徴量抽出部110が、2つの検知部のうち少なくとも1つの検知部について、複数の位置で検知した振動に関する計測値の各々に基づいて特徴値を抽出することができる。そして、計測位置決定部120は、特徴量抽出部110で抽出した複数の位置で検知した振動に関する特徴量に基づいて、検知部による計測位置を決定することができる。そのため、位置決定装置500は、配管に設置した2つの検知部101の計測値から求めた特徴値の相違が閾値以下になるかの判定を、特徴値の相違が閾値以下になるまで2つの検知部101による計測位置を変えて繰り返し行うことができる。したがって、本実施形態における位置決定装置100を用いることにより、検知部101が2つである場合にも、漏洩位置を高精度に特定できる検知部による計測位置を決定することができる。
 以上、本発明における各実施形態を説明したが、本発明はその趣旨を逸脱しない限りにおいて以上述べた各実施形態における構成以外の構成を採用することもできる。また、各実施形態における構成は、本発明の趣旨を逸脱しない限りにおいて、互いに組み合わせることが可能である。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。また、各実施形態における構成は、本発明の趣旨を逸脱しない限りにおいて、互いに組み合わせることが可能である。
 この出願は、2014年6月16日に出願された日本出願特願2014-123038を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 10  漏洩検知システム
 100、200、300、400、500  位置決定装置
 101  検知部
 102  漏洩位置特定部
 110  特徴量抽出部
 120  計測位置決定部
 130  信号対雑音比測定部
 140  漏洩有無判定部
 1000  情報処理装置
 1001  CPU
 1002  ROM
 1003  RAM
 1004  プログラム
 1005  記憶装置
 1006  記憶媒体
 1007  ドライブ装置
 1008  通信インターフェース
 1009  通信ネットワーク
 1010  入出力インターフェース
 1011  バス

Claims (10)

  1.  検知手段によって検出された配管の振動に基づいて、検出した前記振動の各々に関して特徴量をそれぞれ抽出する特徴量抽出手段と、
     前記特徴量に基づいて、少なくとも2つの前記検知手段による計測位置を決定する計測位置決定手段とを有する、位置決定装置。
  2.  前記計測位置決定手段は、前記特徴量のそれぞれが、前記特徴量に対応する振動の波形の類似性に関する所定の条件を満たす場合に、前記検知手段が前記振動を検出した位置を前記計測位置とする、請求項1に記載の位置決定装置。
  3.  前記計測位置決定手段は、2つの前記検知手段によって検出された前記振動の各々に関する前記特徴量のそれぞれの相違が所定の閾値以下である場合に、前記2つの前記検知手段が前記振動を検出した位置を前記計測位置とする、請求項1又は2に記載の位置決定装置。
  4.  前記計測位置決定手段は、複数の前記検知手段から少なくとも2つの前記検知手段を特定することで、前記少なくとも2つの前記検知手段による計測位置を決定する、請求項1から3のいずれか一項に記載の位置決定装置。
  5.  前記検知手段によってそれぞれ検出した配管の振動に関する計測値について、各々の信号対雑音比を算出する信号対雑音比測定手段を有し、
     前記計測位置決定手段は、前記特徴量及び前記信号対雑音比測定手段にて算出した各々の前記検知手段による計測値の信号対雑音比に基づいて、少なくとも2つの検知手段による計測位置を決定する、請求項1から4のいずれか一項に記載の位置決定装置。
  6.  配管のからの流体の漏洩有無を判定する漏洩有無判定手段を有し、
     前記漏洩有無判定手段が配管の漏洩があると判定した場合に、前記特徴量抽出手段は特徴量を抽出し、前記計測位置決定手段は少なくとも2つの前記検知手段による計測位置を決定する、請求項1から5のいずれか一項に記載の位置決定装置。
  7.  前記特徴量抽出手段は、少なくとも1つの前記検知手段について、複数の位置で検知した振動に関する計測値の各々に基づいて前記特徴値を抽出し、
     前記計測位置決定手段は、前記特徴量抽出手段によって抽出した前記複数の位置における振動に関する前記特徴量に基づいて、前記検知手段による計測位置を決定する、請求項1から6のいずれか一項に記載の位置決定装置。
  8.  請求項1から7のいずれか一項に記載の位置決定装置と、
     前記位置決定装置により決定した位置にある2つの前記検知手段によって検出した配管の振動に基づいて配管からの流体の漏洩位置を特定する漏洩位置特定手段とを有する、漏洩検知システム。
  9.  検知手段によって検出された配管の振動に基づいて、検出した前記振動の各々に関して特徴量をそれぞれ抽出し、
     前記特徴量に基づいて、少なくとも2つの前記検知手段による計測位置を決定する、位置決定方法。
  10.  コンピュータに、
     検知手段によって検出された配管の振動に基づいて、検出した前記振動の各々に関して特徴量をそれぞれ抽出する処理と、
     前記特徴量に基づいて、少なくとも2つの前記検知手段による計測位置を決定する処理とを実行させるプログラムを格納した、コンピュータ読み取り可能記録媒体。
PCT/JP2015/002935 2014-06-16 2015-06-11 位置決定装置、漏洩検知システム、位置決定方法及びコンピュータ読み取り可能記録媒体 WO2015194137A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB1620526.2A GB2541149B (en) 2014-06-16 2015-06-11 Position determination device, leak detection system, position determination method, and computer-readable recording medium
JP2016529026A JP6652054B2 (ja) 2014-06-16 2015-06-11 位置決定装置、漏洩検知システム、位置決定方法及びコンピュータ読み取り可能記録媒体
US15/315,907 US10458878B2 (en) 2014-06-16 2015-06-11 Position determination device, leak detection system, position determination method, and computer-readable recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014123038 2014-06-16
JP2014-123038 2014-06-16

Publications (1)

Publication Number Publication Date
WO2015194137A1 true WO2015194137A1 (ja) 2015-12-23

Family

ID=54935146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002935 WO2015194137A1 (ja) 2014-06-16 2015-06-11 位置決定装置、漏洩検知システム、位置決定方法及びコンピュータ読み取り可能記録媒体

Country Status (4)

Country Link
US (1) US10458878B2 (ja)
JP (1) JP6652054B2 (ja)
GB (1) GB2541149B (ja)
WO (1) WO2015194137A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020051964A (ja) * 2018-09-28 2020-04-02 株式会社日立製作所 漏水検知システムおよび方法
KR102473194B1 (ko) * 2021-11-16 2022-12-02 (주)예측진단기술 음향방출센서를 이용한 누설 위치 추정장치 및 그 방법

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016152143A1 (ja) * 2015-03-24 2018-01-11 日本電気株式会社 欠陥分析装置、欠陥分析システム、欠陥分析方法およびコンピュータ読み取り可能記録媒体
EP3517184A1 (en) * 2018-01-24 2019-07-31 Marioff Corporation OY Fire sprinkler system
KR102038689B1 (ko) * 2018-06-14 2019-10-30 한국원자력연구원 거리차-주파수 분석을 이용한 배관의 누설 감지장치 및 방법
JP7433717B2 (ja) * 2020-03-27 2024-02-20 矢崎エナジーシステム株式会社 コージェネレーションシステムの設備決定方法、設備決定装置、設備決定プログラム、及び、コンピュータ読取可能な記録媒体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243534A (ja) * 1985-08-21 1987-02-25 Nippon Kokan Kk <Nkk> 音響放出によるパイプラインの漏洩監視方法
JPH03188343A (ja) * 1989-12-19 1991-08-16 Chiyoda Corp 高圧ガス漏洩位置検出方法
US5416724A (en) * 1992-10-09 1995-05-16 Rensselaer Polytechnic Institute Detection of leaks in pipelines
JPH11210999A (ja) * 1998-01-21 1999-08-06 Osaka Gas Co Ltd 相関法による管路系の漏洩位置特定方法
US20030167847A1 (en) * 2000-06-26 2003-09-11 Brown Ian J. Leak detection apparatus and method
JP2005265663A (ja) * 2004-03-19 2005-09-29 Jfe Steel Kk 埋設配管および漏洩位置の特定方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04184133A (ja) 1990-11-19 1992-07-01 Mitsubishi Cable Ind Ltd 管状体のピンホール検出方法
WO2014066764A1 (en) * 2012-10-26 2014-05-01 Mueller International, Llc Detecting leaks in a fluid distribution system
US20150355045A1 (en) * 2013-01-28 2015-12-10 Aquarius Spectrum Ltd. Method and apparatus for detecting leaks in a pipeline network

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243534A (ja) * 1985-08-21 1987-02-25 Nippon Kokan Kk <Nkk> 音響放出によるパイプラインの漏洩監視方法
JPH03188343A (ja) * 1989-12-19 1991-08-16 Chiyoda Corp 高圧ガス漏洩位置検出方法
US5416724A (en) * 1992-10-09 1995-05-16 Rensselaer Polytechnic Institute Detection of leaks in pipelines
JPH11210999A (ja) * 1998-01-21 1999-08-06 Osaka Gas Co Ltd 相関法による管路系の漏洩位置特定方法
US20030167847A1 (en) * 2000-06-26 2003-09-11 Brown Ian J. Leak detection apparatus and method
JP2005265663A (ja) * 2004-03-19 2005-09-29 Jfe Steel Kk 埋設配管および漏洩位置の特定方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020051964A (ja) * 2018-09-28 2020-04-02 株式会社日立製作所 漏水検知システムおよび方法
KR102473194B1 (ko) * 2021-11-16 2022-12-02 (주)예측진단기술 음향방출센서를 이용한 누설 위치 추정장치 및 그 방법

Also Published As

Publication number Publication date
US20170102286A1 (en) 2017-04-13
GB2541149A (en) 2017-02-08
US10458878B2 (en) 2019-10-29
GB201620526D0 (en) 2017-01-18
GB2541149B (en) 2020-07-15
JPWO2015194137A1 (ja) 2017-04-20
JP6652054B2 (ja) 2020-02-19

Similar Documents

Publication Publication Date Title
WO2015194137A1 (ja) 位置決定装置、漏洩検知システム、位置決定方法及びコンピュータ読み取り可能記録媒体
AU2016280629A1 (en) Determination of tuberculation in a fluid distribution system
JP2015210225A (ja) 漏水監視システム、漏水監視方法、漏水監視装置、および漏水監視プログラム
Bakhtawar et al. Review of water leak detection and localization methods through hydrophone technology
WO2016084366A1 (ja) 位置推定装置、位置推定システム、位置推定方法及びコンピュータ読み取り可能記録媒体
JPWO2015141129A1 (ja) 音速算出装置、音速算出方法および音速算出プログラム
JP6981464B2 (ja) 診断コスト出力装置、診断コスト出力方法及びプログラム
WO2017188074A1 (ja) 漏洩箇所分析システム、漏洩箇所分析方法、漏洩箇所分析装置及びコンピュータ読み取り可能な記録媒体
US10119880B2 (en) Leakage position calculation device, leakage position calculation method, computer-readable recording medium, vibration calculation device, and computation device
KR20180110543A (ko) 누출음의 시공간 특성을 이용한 미세누출 탐지 장치 및 이를 이용한 미세누출 탐지 방법
US10156493B2 (en) Position determination device, position determination system, position determination method, and computer-readable recording medium
CN115978462A (zh) 液体管网泄漏监测方法、系统和电子设备
JP6408929B2 (ja) 分析データ作成方法、漏水位置検知装置および漏水位置特定方法
JP6557576B2 (ja) 異常音の発生位置特定方法および異常音の発生位置特定装置
JP6773026B2 (ja) 漏洩検知装置、漏洩検知システム、漏洩検知方法及びコンピュータ読み取り可能記録媒体
WO2015145972A1 (ja) 欠陥分析装置、欠陥分析方法および記憶媒体
JP6349861B2 (ja) 漏洩検知装置、漏洩検知システム、漏洩検知方法及びプログラム
JPWO2016013201A1 (ja) 判定装置、判定方法及びコンピュータ読み取り可能記録媒体
JP7070540B2 (ja) 計測時間特定装置、検知装置、計測時間特定方法及びプログラム
Hawwa et al. Transmission Loss as an Indicator of Multiple Leaks in a Pipeline
JPWO2015146109A1 (ja) 欠陥分析装置、欠陥分析方法および欠陥分析プログラム
Muggleton et al. Detection of buried pipes using a shear wave ground surface vibration technique
JP2018173284A (ja) 分析装置、分析システム、分析方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529026

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 201620526

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20150611

WWE Wipo information: entry into national phase

Ref document number: 15315907

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15809137

Country of ref document: EP

Kind code of ref document: A1