WO2016084366A1 - 位置推定装置、位置推定システム、位置推定方法及びコンピュータ読み取り可能記録媒体 - Google Patents

位置推定装置、位置推定システム、位置推定方法及びコンピュータ読み取り可能記録媒体 Download PDF

Info

Publication number
WO2016084366A1
WO2016084366A1 PCT/JP2015/005840 JP2015005840W WO2016084366A1 WO 2016084366 A1 WO2016084366 A1 WO 2016084366A1 JP 2015005840 W JP2015005840 W JP 2015005840W WO 2016084366 A1 WO2016084366 A1 WO 2016084366A1
Authority
WO
WIPO (PCT)
Prior art keywords
cross
correlation
pressure wave
pressure
pipeline network
Prior art date
Application number
PCT/JP2015/005840
Other languages
English (en)
French (fr)
Inventor
孝寛 久村
宗一朗 高田
康広 佐々木
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2016561243A priority Critical patent/JPWO2016084366A1/ja
Priority to US15/529,003 priority patent/US20170328803A1/en
Priority to GB1707980.7A priority patent/GB2547383B/en
Publication of WO2016084366A1 publication Critical patent/WO2016084366A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L23/00Devices or apparatus for measuring or indicating or recording rapid changes, such as oscillations, in the pressure of steam, gas, or liquid; Indicators for determining work or energy of steam, internal-combustion, or other fluid-pressure engines from the condition of the working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/20Arrangements or systems of devices for influencing or altering dynamic characteristics of the systems, e.g. for damping pulsations caused by opening or closing of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D5/00Protection or supervision of installations
    • F17D5/02Preventing, monitoring, or locating loss
    • F17D5/06Preventing, monitoring, or locating loss using electric or acoustic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • G01M3/243Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes

Definitions

  • the present invention relates to a position estimation device, a position estimation system, a position estimation method, and a computer-readable recording medium.
  • a large pressure wave (hereinafter referred to as “excessive pressure wave”) is generated with a change in the flow rate of the fluid flowing through the inside, as compared with the case where the fluid flows constantly.
  • excessive pressure waves include, for example, rapid operation of pumps, valves, etc., rapid changes in water usage, abnormalities and ruptures of pipelines constituting the pipeline network.
  • An excessive pressure wave applies a load to the pipeline network, and thus causes deterioration of the pipeline network and abnormalities and rupture of the pipelines constituting the pipeline network. Therefore, it is possible to extend the life of the pipeline network by obtaining the position where the excessive pressure wave is generated and eliminating the factor that generates the excessive pressure wave at the position.
  • One of the methods for identifying the position where the excessive pressure wave has occurred is to install a number of pressure gauges along the pipelines that make up the pipeline network, and examine the pressure of the fluid flowing through the pipeline network in detail. .
  • installing a large number of pressure gauges in the pipeline network generally requires high costs. Therefore, a technique for estimating the position where an excessive pressure wave is generated with as few pressure gauges as possible has been developed.
  • Non-Patent Document 1 describes a technique for estimating a burst occurrence position using the wave characteristics of a single pipeline.
  • Non-Patent Document 2 describes a technique for estimating a burst occurrence position by analyzing a flow rate of a pipeline network immediately after the occurrence of a burst.
  • Non-Patent Document 3 describes a technique for dividing a pipeline network into several areas and estimating a fluid leakage area using an inconsistency in the flow of fluid into and out of the area as an index.
  • Non-Patent Document 4 describes a technique for estimating the epicenter of a pressure wave on the assumption that a pressure wave due to a pipe rupture spreads concentrically ignoring the piping network.
  • Non-Patent Document 5 describes a technique for estimating the pressure wave source as the point where the difference between the arrival time difference of the pressure wave by sensor measurement and the arrival time difference of the pressure wave by computer simulation is the smallest.
  • Non-Patent Document 6 the point where the difference between the arrival time difference of the pressure wave by sensor measurement and the propagation time difference of the pressure wave by computer simulation is the smallest is efficiently searched by graphical and hierarchical narrowing down. A technique for estimating a pressure wave source is described.
  • the technique described in Non-Patent Document 1 targets a single pipeline. That is, the technique described in Non-Patent Document 1 does not necessarily target a pipeline network in which a plurality of pipes are connected.
  • the technique described in Non-Patent Document 2 uses the flow rate of the fluid flowing through the pipeline when estimating the position where the burst has occurred. However, when an abnormality occurs in the pipe line, the change may appear characteristic in the pressure as compared with the flow rate. That is, in the method using the flow rate of the fluid flowing through the pipeline as described in Non-Patent Document 2, it may be difficult to capture a small-scale rupture or abnormality in the pipeline.
  • Non-Patent Documents 4 to 6 estimate the position of the pressure wave source based on the arrival time difference of the first wave of the pressure wave when the pressure wave is generated.
  • the arrival time of the first wave is affected by the determination criterion and noise, and may include an error.
  • the present invention has been made to solve the above-described problems, and has as its main object to provide a position estimation device and the like that accurately estimate the position where a pressure wave is generated.
  • the position estimation device derives a first cross-correlation related to a fluid pressure based on a measurement value obtained by measuring a pressure of a fluid flowing through the pipeline network in at least two locations of the pipeline network.
  • Cross-correlation deriving means for deriving a second cross-correlation related to the pressure of the fluid based on a calculated value obtained by calculating the pressure of the fluid in at least two places of the pipeline network;
  • Estimation means for estimating the generation position of the pressure wave based on the difference between the first cross-correlation and the second cross-correlation.
  • the position estimation method in one aspect of the present invention derives a first cross-correlation related to the measurement value based on measurement values obtained by measuring pressures of fluids flowing through the pipeline network in at least two places of the pipeline network, A second cross-correlation with respect to the calculated value is derived based on the calculated values obtained by calculating the pressure of the fluid in at least two places of the pipeline network, and the pressure wave is calculated based on the first cross-correlation and the second cross-correlation. Is estimated.
  • the computer-readable recording medium provides a computer with a first cross-correlation on a measurement value based on a measurement value obtained by measuring a pressure of a fluid flowing through the pipeline network in at least two places of the pipeline network.
  • a program for executing a process for estimating a generation position of a pressure wave based on the cross-correlation is stored temporarily.
  • each component of each device or system indicates a functional unit block. Part or all of each component of each device or system is realized by an arbitrary combination of an information processing device 1000 and a program as shown in FIG. 16, for example.
  • the information processing apparatus 1000 includes the following configuration as an example.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • a storage device 1005 that stores the program 1004
  • a drive device 1007 that reads and writes the recording medium 1006
  • a communication interface 1008 connected to the communication network 1009 -I / O interface 1010 for inputting / outputting data -Bus 1011 connecting each component
  • Each component of each device in each embodiment is realized by the CPU 1001 acquiring and executing a program 1004 that realizes these functions.
  • the program 1004 that realizes the function of each component of each device is stored in advance in the storage device 1005 or the RAM 1003, for example, and is read out by the CPU 1001 as necessary.
  • the program 1004 may be supplied to the CPU 1001 via the communication network 1009, or may be stored in the recording medium 1006 in advance, and the drive device 1007 may read the program and supply it to the CPU 1001.
  • each device may be realized by an arbitrary combination of an information processing device 1000 and a program that are different for each component.
  • a plurality of components included in each device may be realized by any combination of one information processing device 1000 and a program.
  • each device is realized by other general-purpose or dedicated circuits, processors, etc., or combinations thereof. These may be configured by a single chip or may be configured by a plurality of chips connected via a bus. Part or all of each component of each device may be realized by a combination of the above-described circuit and the like and a program.
  • each device When some or all of the constituent elements of each device are realized by a plurality of information processing devices and circuits, the plurality of information processing devices and circuits may be centrally arranged or distributedly arranged. Also good.
  • the information processing apparatus, the circuit, and the like may be realized as a form in which each is connected via a communication network, such as a client and server system and a cloud computing system.
  • FIG. 1A shows a state in which a pressure wave propagates in a single conduit 500.
  • a pressure wave is generated due to an abrupt fluid pressure change resulting from the rupture of the conduit 500.
  • This pressure wave propagates in both directions of the pipeline 500 from the location where the pressure wave is generated using the fluid flowing through the pipeline 500 and the pipeline 500 as a medium.
  • a pressure wave propagating through a fluid flowing through a pipe is less damped than a pressure wave propagating through a pipe wall made of iron or resin as a main material.
  • FIG. 1 (B) shows a state in which a pressure wave propagates in a pipeline network 50 configured by connecting a pipeline 500. Also in the example illustrated in FIG. 1B, it is assumed that a pressure wave is generated due to a sudden change in the pressure of the fluid caused by the rupture of the pipeline 500 constituting the pipeline network 50.
  • the position where the pressure wave as described above is generated is referred to as “pressure wave generation position in the pipeline network” or simply “pressure wave generation position”.
  • a pressure wave generated at a certain point of the pipeline network 50 is obtained by using the fluid flowing through the pipeline 500 constituting the pipeline network 50 and the pipeline 500 as a medium. Propagates to various parts of the network 50.
  • the pressure wave propagated to various places in the pipeline network 50 is measured by each of the pressure gauges 551 to 553 installed in the pipeline network 50.
  • those installed near the pressure wave generation position measure the pressure wave at an early time after the pipe line 500 is ruptured.
  • those installed at a position far from the position where the pressure wave is generated have passed a time corresponding to the distance from the position where the pressure wave is generated after the pipe line 500 is ruptured. A pressure wave is measured.
  • each of the pressure gauges 551 to 553 receives the first wave that reaches first among the pressure waves (hereinafter simply referred to as “first”
  • first The time at which “waves” are measured can be known. That is, the time difference at which the first wave is measured in each of the pressure gauges 551 to 553 can be measured. This time difference varies depending on the position where the pressure wave is generated.
  • each part of the pipe network 50 length, diameter, thickness, etc. of the pipe 500
  • the propagation speed of the pressure wave may be known in advance.
  • the arrival time of the first wave in each of the pressure gauges 551 to 553 and the difference between these times are calculated in a computer simulation or the like. Can be obtained.
  • the position where the pressure waves are generated can be estimated. It can.
  • the difference in the arrival time of the first wave obtained by measurement and the difference in the arrival time of the first wave obtained by calculation assuming that an arbitrary location is the pressure wave generation position satisfy a predetermined condition.
  • the arbitrary location can be estimated as the pressure wave generation position.
  • the predetermined condition there is, for example, the difference between the arrival times of the two first waves that is the same as the difference between the arrival times of the two first waves described above.
  • the arrival time of the first wave measured by each of the pressure gauges 551 to 553 may include an error. This is because the value measured with a pressure gauge generally includes noise, and the first wave may be a wave valley or a mountain, and it is easy to identify the first wave. This is because it may not be. Therefore, when the pressure wave generation position is estimated by the above-described method, the accuracy of the estimated pressure wave generation position may be low.
  • Another method for obtaining the difference in arrival time of pressure waves at a plurality of locations in the pipeline network is a method using a cross-correlation between two pressure waves.
  • the cross-correlation C [k] between the signal x1 [n] and the signal x2 [n] is expressed by the following equation (1). Note that k represents a time index in cross-correlation.
  • FIG. 2 is a diagram showing an example of the relationship between the arrival time difference between the pressure waves x1 and x2 measured at two locations on the pipeline network and the respective cross-correlations.
  • FIG. 2A shows an example of cross-correlation and pressure in the case where there is no difference in the time at which the pressure waves x1 and x2 arrive at the locations where the pressure waves x1 and x2 are measured (that is, when the pressure waves have reached at the same time).
  • the value of the cross-correlation becomes maximum when the time index k is 0.
  • FIG. 2B shows an example of cross-correlation and pressure when there is a difference in time at which the pressure waves x1 and x2 arrive at the locations where the pressure waves x1 and x2 are measured (that is, when the pressure waves have reached different times).
  • the value of the cross-correlation is maximized when the time index k is different from zero.
  • the cross-correlation between the pressure waves x1 and x2 is maximized when the time index k is +4. That is, in the example shown in FIG. 2B, the pressure wave x1 arrives with a delay of the time index 4 with respect to the pressure wave x2.
  • the arrival time difference of the pressure wave at a plurality of locations in the pipeline network can be obtained.
  • the rapid flow of the fluid flowing through the pipeline including the rupture of the pipeline is based on the fluid dynamics.
  • the state of propagation of the pressure wave caused by the pressure change can be obtained by calculation.
  • the configuration information of the pipeline network 50 includes, for example, the length, diameter, internal roughness coefficient, thickness, and pressure wave in the fluid flowing through the pipeline 500 constituting the pipeline network 50. Speed, etc.
  • the propagation state of the pressure wave is calculated by the following computer simulation.
  • the assumed position is referred to as “predicted pressure wave generation position”. To do).
  • the process of changing the pressure inside the pipe at the position where the pressure gauge is installed in the pipe network is simulated.
  • the calculated value of the pressure wave in the pipeline network obtained by such computer simulation is completely up to the amplitude and phase of the change in pressure compared with the measured pressure value in the pipeline network. May not match.
  • the calculated value of the pressure wave is obtained by calculation such as simulation, the calculated value of the pressure wave generated by the rupture of the pipe line at an arbitrary position of the pipe network can be calculated. Therefore, it is possible to obtain a cross-correlation for the calculated pressure wave at any two locations in the pipeline network.
  • FIG. 3 is a diagram illustrating the position estimation device according to the first embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a position estimation system according to the first embodiment of the present invention and a pipeline network that is a target for estimating a position where a pressure wave is generated using the position estimation system.
  • FIG. 5 is a diagram showing a local peak of cross-correlation used when the position where the pressure wave is generated is estimated by the position estimation device according to the first embodiment of the present invention.
  • FIG. 6 is a flowchart showing the operation of the position estimation apparatus according to the first embodiment of the present invention.
  • the position estimation apparatus 100 includes a first cross correlation deriving unit 110, a second cross correlation deriving unit 120, and an estimating unit 130.
  • the first cross-correlation deriving unit 110 derives a first cross-correlation related to the measurement value based on the measurement values obtained by measuring the pressure of the fluid flowing through the pipeline network in at least two places of the pipeline network.
  • the second cross-correlation deriving unit 120 derives a second cross-correlation related to the calculated value based on the calculated values obtained by calculating the pressure of the fluid at the at least two locations of the pipeline network.
  • the estimation unit 130 estimates the generation position of the pressure wave based on the first cross correlation and the second cross correlation.
  • the position estimation system 10 including the position estimation device 100 is configured.
  • FIG. 4 shows the position estimation system 10 in the first embodiment of the present invention.
  • the position estimation system 10 includes a position estimation device 100 and a plurality of pressure detection units 561 to 563.
  • a pipe network 51 that is a target for estimating the generation position of a pressure wave using the position estimation system 10 in the present embodiment includes a pipe 501, tanks 531 and 532, and pumps 541 and 542. Including.
  • Each of the plurality of pressure detection units 561 to 563 measures the pressure of the fluid flowing through the pipeline network 51.
  • any type of pressure gauge capable of measuring the pressure of the fluid flowing through the pipeline network 51 is used for each of the plurality of pressure detection units 561 to 563.
  • the number of the plurality of pressure detection units is three, but the number of pressure detection units is arbitrary and may not be three.
  • the number of the plurality of pressure detection units is appropriately changed according to the configuration of the pipeline network that is a target for estimating the generation position of the pressure wave.
  • the structure of the pipe network 51 shown in FIG. 4 is one example, and is not limited to this.
  • the position estimation system 10 according to the present embodiment can estimate the generation position of the pressure wave for a pipe network having an arbitrary configuration different from the pipe network 51.
  • the first cross-correlation deriving unit 110 derives the first cross-correlation related to the measurement value obtained by measuring the pressure of the fluid flowing through the pipeline network.
  • the measured value is obtained by any means such as a pressure gauge that is installed in the pipeline network and measures the pressure of the fluid flowing through the pipeline.
  • the first cross-correlation deriving unit 110 calculates the cross-correlation using the above-described equation (1).
  • the first cross-correlation deriving unit 110 includes, as an example, a first cross-correlation Cref (m) related to a combination of measurement values at two arbitrary points in a pressure waveform that is a measurement value measured at a plurality of locations in the pipeline network. [K] is derived.
  • m represents a combination number, and takes any value from 1 to the total number M of combinations (M is an integer of 1 or more).
  • 3 C 2 Three sets of first cross-correlations Cref (m) [k] are derived.
  • the combination of places in the pipeline network is (point 1, point 2), (point 1, point 3), (point 2, point 3).
  • 4 C 2 Six sets of first cross-correlations Cref (m) [k] are derived.
  • the combinations of places in the pipeline network are (point 1, point 2), (point 1, point 3), (point 1, point 4), (point 2, point 3), (point 2, point) 4) and (Point 3, Point 4).
  • the first cross-correlation deriving unit 110 may derive the first cross-correlation for all of the total number M of combinations, or obtain the first cross-correlation for some of the combinations included in the total number M of combinations. Good.
  • the number of the first cross-correlation obtained by the first cross-correlation deriving unit 110 depends on an estimation method used when estimating the position where the pressure wave is generated by the estimation unit 130 described later, accuracy required for estimation, and the like. It is determined accordingly.
  • the second cross-correlation deriving unit 120 derives the second cross-correlation related to the calculated value obtained by calculating the pressure of the fluid flowing through the pipeline network.
  • the calculated value is obtained by computer simulation or the like.
  • the second cross-correlation deriving unit 120 calculates the cross-correlation using the above-described equation (1), similarly to the first cross-correlation deriving unit 110.
  • the second cross-correlation deriving unit 120 sets, for example, an arbitrary point of the pipeline network as an expected generation position of the pressure wave, and calculated values obtained respectively for the pressure waves at arbitrary multiple points of the pipeline network different from this position A second cross-correlation Ccal (m) [k] for the combination of is derived.
  • the arbitrary several points of the pipe network mentioned above are the positions where the pressure gauge was installed in the pipe network 51, for example. That is, the second cross-correlation derived by the second cross-correlation deriving unit 120 was obtained by measuring a pressure wave generated at an appropriately generated expected position of the pressure wave with a pressure gauge installed in the pipeline network. It is a value that is expected to be obtained when this is assumed.
  • m represents a combination number, and takes any value from 1 to the total number M of combinations (M is an integer of 1 or more).
  • the second cross-correlation deriving unit 120 sets an arbitrary point of the pipeline network as an expected generation position of the pressure wave in accordance with the estimation process in the subsequent estimation unit 130 and sets the second cross-correlation Ccal (m) [k]. Can be derived.
  • the second cross-correlation deriving unit 120 may derive the second cross-correlation Ccal (m) [k] by setting an expected generation position of the pressure wave at an arbitrary point in the pipeline network.
  • the second cross-correlation deriving unit 120 may set any one of a plurality of different points on the pipeline network as expected pressure wave occurrence positions.
  • the second cross-correlation deriving unit 120 uses the second cross-correlation Ccal (m) when a pressure wave is generated at one of a plurality of different points in the pipeline network. [K] is derived for each point.
  • the second cross-correlation deriving unit 120 calculates the second cross-correlation Ccal (m) [k] whenever necessary when the value of the second cross-correlation Ccal (m) [k] is used. You may ask for it.
  • the second cross-correlation deriving unit 120 stores the value of the second cross-correlation Ccal (m) [k] obtained by calculation in advance in a storage unit (not shown) and stores the stored value as necessary. You may refer to it.
  • the estimation unit 130 estimates the generation position of the pressure wave in the pipeline network based on the first cross correlation and the second cross correlation. As an example, the estimation unit 130 estimates the generation position of the pressure wave based on the difference between the first cross-correlation and the second cross-correlation. That is, as the difference between the first cross-correlation and the second cross-correlation is smaller, the estimation unit 130 indicates that the position where the pressure wave is expected to be generated in the second cross-correlation is the pressure wave in the actual pipeline network. As it approaches the position where the pressure is generated, the pressure wave generation position in the pipeline network is estimated.
  • the estimation unit 130 includes a first cross-correlation Cref (m) [k] and a plurality of second cross-correlations Ccal (m) [ k] is estimated based on the difference from each of k]. That is, the estimation unit 130 calculates the predicted generation position of the pressure wave with respect to the second cross-correlation Ccal (m) [k] in which the difference (error) between the two cross-corresponds a predetermined condition, It is assumed that the pressure wave generation position at.
  • the predetermined condition is, for example, that the difference between the two cross-correlations is smaller than a predetermined magnitude, and that the difference between the two cross-correlations is the plurality of second cross-correlations Ccal (m) [k] described above. And so on.
  • the estimation part 130 can estimate the generation
  • a generalized expression for obtaining a difference (error) between the first cross-correlation Cref (m) [k] and the second cross-correlation Ccal (m) [k] is expressed as Expression (2).
  • the estimation unit 130 obtains the difference between the two cross correlations using the equation (2). However, the estimation unit 130 may obtain the difference e between the two cross-correlations by a different method.
  • a function g (x, y) represents a function for converting x and y into values for obtaining a difference.
  • K represents a value range that is a range of values that k can take.
  • the function g (x, y) and the range K are determined as follows, for example.
  • g (x, y) (xy) * (xy) (g1)
  • g (x, y) table reference (
  • the symbol “*” represents multiplication.
  • represents the absolute value of the expression defined therein.
  • the formula (g1) represents the square of the difference between x and y.
  • the expression (g2) represents the absolute value of the difference between x and y.
  • the expression (g3) represents a value that is referred to the table based on the value of the difference between x and y. That is, the expression (g3) returns the output value based on a table or the like that is predetermined for the correspondence between the input value and the output value.
  • the table used in the table reference in the formula (g3) can be in an arbitrary format, and may include an arbitrary mathematical formula, for example. By referring to a table as necessary, the expression (g3) makes it possible to convert a value exceeding a predetermined upper limit value or lower limit value into a predetermined value or to quantize an input value.
  • the table used in the equation (g3) is appropriately determined based on the state of the pipeline network, the magnitude of the generated pressure wave, the required accuracy of estimating the generation position of the pressure wave, and the like.
  • the value range K is defined as (k1) or (k2) below.
  • K [ ⁇ N + 1, N ⁇ 1] (k1)
  • K local Peaks (Cref (m)) (k2)
  • the range (k1) represents an integer in the specified range. That is, when the range K is represented as the range (k1), the estimation unit 130 calculates the first and second cross-correlation obtained from the pressure wave at the time index in the range represented by the equation (k1). Based on this, the generation position of the pressure wave is estimated.
  • the range (k2) represents a local peak of cross-correlation (Cref (m)).
  • a local peak shows the point from which the inclination of a curve becomes zero like the peak or trough of a waveform in the waveform showing a cross correlation.
  • the local peak is a point circled by the cross-correlation waveform shown in the figure.
  • the function localPeaks may be in a form that represents a local peak that satisfies a predetermined condition.
  • a predetermined condition among the local peaks, the absolute value of the amplitude of the local peak is 50% or more of the maximum absolute value of the amplitude in the cross-correlation. Is within three from the maximum value of the absolute value.
  • the first cross correlation deriving unit 110 derives a first cross correlation (step S101).
  • the first cross-correlation deriving unit 110 can use a measured value that is measured in advance and stored in a storage unit or the like, or a measured value that is measured when this step is executed.
  • the first cross-correlation deriving unit 110 always includes a pressure including an excessive pressure wave when an excessive pressure wave is measured in a pressure gauge that continuously measures the pressure of the pipeline network at regular intervals.
  • a first cross correlation may be determined for the waveform.
  • the second cross correlation deriving unit 120 derives a second cross correlation (step S102).
  • the second cross-correlation deriving unit 120 determines the position where the pressure wave is generated in the pipeline network so that the estimation of the pressure wave generation position in the pipeline network is facilitated in a later step. To derive the second cross-correlation.
  • step S101 and step S102 may be executed in an order different from this order. That is, the operation of step S102 may be performed prior to the operation of step S101, or the time when the operations of these two steps are performed may be overlapped, for example, step S101 and step S102 are performed simultaneously. .
  • the estimation unit 130 estimates the generation position of the pressure wave (step S103).
  • Information about the estimated pressure wave generation position may be stored in, for example, a storage device (not shown), or may be output to the outside via a communication network, a display unit, or the like (not shown).
  • the estimation unit 130 may indicate the position and range of the pipeline network estimated as the estimated position of the pressure wave as information on the position where the pressure wave is generated.
  • the estimation unit 130 may indicate whether or not a specific position or range of the pipeline network is estimated to be a pressure wave generation position as information regarding the generation position of the pressure wave.
  • the estimation unit 130 determines the generation position of the pressure wave based on the difference between the first cross-correlation and each of the plurality of second cross-correlations obtained by changing the predicted generation position of the pressure wave. May be estimated. In this case, as an example, the estimation unit 130 determines whether a difference between the first cross correlation and each of the plurality of second cross correlations satisfies a predetermined condition. And the estimation part 130 can make the generation
  • the position estimation device 100 may return to step S102 and repeat the processing.
  • the second cross-correlation deriving unit 120 sets a position different from the position set in the previous step as the predicted generation position of the pressure wave, and performs the second cross-correlation. To derive.
  • the position estimation apparatus 100 estimates the generation position of the pressure wave based on the first cross correlation and the second cross correlation described above.
  • the position estimation apparatus 100 according to the present embodiment estimates the generation position of the pressure wave based on the measured value and the calculated value related to the pressure wave arrival time difference. That is, the position estimation device 100 according to the present embodiment can estimate the generation position of the pressure wave based on the measurement values measured by a small number of pressure gauges.
  • the position estimation device 100 according to the present embodiment estimates the pressure wave generation position based on the cross-correlation between the measured value and the calculated value of the pressure wave.
  • the position estimation apparatus 100 can easily and accurately obtain the arrival time difference of the pressure wave in the pipeline network. As a result, it is possible to improve the estimation accuracy regarding the position where the pressure wave is generated by the position estimation apparatus 100. Therefore, the position estimation device 100 according to the first embodiment of the present invention can accurately estimate the generation position of the pressure wave.
  • the position estimation apparatus 100 may use an index other than pressure.
  • the position estimation apparatus 100 according to the present embodiment can also use information related to the vibration of the pipeline network detected by a vibration sensor or the like. In this case, for example, the position estimation apparatus 100 according to the present embodiment obtains a cross-correlation for each of pressure and vibration to estimate the generation position of the pressure wave, and finally, based on the two estimation results. The position estimated as the pressure wave generation position is obtained.
  • the position estimation device 100 includes configuration information (the length, the diameter, the internal roughness coefficient, the thickness, the pipe 500 of the pipe network that is an estimation target of the pressure wave generation position.
  • the pressure wave velocity in the fluid flowing inside may be used.
  • the second cross-correlation deriving unit 120 sets, for example, a position where the abnormality or rupture is likely to occur in the pipeline as the predicted pressure wave occurrence location based on the configuration information of the pipeline network described above. Deriving a second cross-correlation. For example, when a plurality of positions are estimated as pressure wave generation positions, the estimation unit 130 has a position where an abnormality or rupture is likely to occur in the pipe line based on the above-described configuration information of the pipe network. It can be estimated as the generation position of the pressure wave in the pipeline network.
  • the first cross-correlation deriving unit 110, the second cross-correlation deriving unit 120, and the estimating unit 130 may each be realized as individual devices.
  • the individual devices are connected by a wired or wireless communication network (not shown).
  • FIG. 7 is a diagram showing a position estimation device according to the second embodiment of the present invention.
  • FIG. 8 is a diagram illustrating an example in the case where the predicted position setting unit of the position estimation device according to the second embodiment of the present invention sets the predicted generation position of the pressure wave.
  • FIG. 9 is a diagram illustrating an example in the case of searching for an expected generation position of a pressure wave in the pipeline network by the position estimation device according to the second embodiment of the present invention.
  • FIG. 10 is a diagram illustrating an example of the operation of the predicted position setting unit of the position estimation device according to the second embodiment of the present invention.
  • the position estimation apparatus 200 includes a first cross-correlation deriving unit 110, a second cross-correlation deriving unit 120, an expected position setting unit 240, an estimation unit 130, Is provided.
  • the predicted position setting unit 240 repeatedly sets the predicted generation position of the pressure wave that is the calculation target of the fluid pressure in the second cross correlation deriving unit 120.
  • the position estimation device 200 according to the second embodiment of the present invention has the same configuration as the position estimation device 100 according to the first embodiment of the present invention.
  • the position estimation system 20 including the position estimation apparatus 200 in the present embodiment is configured in the same manner as the position estimation system 10 in the first embodiment of the present invention.
  • the second cross-correlation deriving unit 120 sets the predicted generation positions of pressure waves to a plurality of arbitrary positions in the pipeline network, and the second Cross correlation may be derived.
  • the predicted generation position of the pressure wave set by the second cross-correlation deriving unit 120 is changed a plurality of times by changing the position in the pipeline network so as to reduce the difference between the first and second cross-correlations. May be set repeatedly.
  • the predicted position setting unit 240 repeatedly sets the predicted generation position of the pressure wave in the second cross-correlation deriving unit 120. For example, the predicted position setting unit 240 repeatedly sets the predicted generation position of the pressure wave in the second cross-correlation deriving unit 120 based on the result estimated by the estimation unit 130, so that the generation position of the pressure wave in the pipeline network Is accurately estimated.
  • the predicted position setting unit 240 repeatedly sets the predicted generation position of the pressure wave when the second cross correlation deriving unit 120 derives the second cross correlation using any of various methods.
  • the iterative method used in this case include a hierarchical search, a gradient legal search, a graph theoretical optimal solution search method, and a random selective search method as a method for setting an expected generation position of a pressure wave.
  • the predicted position setting unit 240 sets at least one of a plurality of specific positions predetermined in the pipeline network as a predicted generation position of the pressure wave when the second cross-correlation is derived.
  • the specific position described above includes, for example, an intersection where a plurality of pipelines intersect in the management network.
  • FIG. 8 is a diagram illustrating an example in which the predicted position setting unit 240 sets the predicted generation position of the pressure wave by the hierarchical search described above.
  • the pipeline network 52 includes a plurality of pipelines 502, tanks 533 and 534, and pumps 543 and 544 shown by straight lines in the drawing.
  • the plurality of pipelines 502 are connected at a plurality of branch points 512 represented by black circles in the drawing.
  • the predicted position setting unit 240 sets the position where the pressure wave is generated as one of the plurality of branch points 512 as the specific position.
  • the predicted position setting unit 240 uses the second cross-correlation deriving unit 120 to calculate the intersections 571 to 574 of the pipelines indicated by asterisks in FIG. Is set as the expected generation position of the pressure wave when deriving.
  • the second cross-correlation deriving unit 120 derives the second cross-correlation with each of the intersection points 571 to 574 as the predicted occurrence position of the pressure wave.
  • each of the intersections 571 to 574 is set to an intersection where a plurality of pipelines intersect.
  • the estimating unit 130 is based on the first cross-correlation derived by the second cross-correlation deriving unit 110 and the second cross-correlation derived from the intersections 571 to 574 as the predicted occurrence positions of pressure waves. Estimate the location of pressure waves in the pipeline network. In this example, for example, the estimating unit 130 estimates that the intersection 573 is closest to the pressure wave generation position in the actual pipeline network.
  • the predicted position setting unit 240 calculates each of the intersections 575 to 578 of the pipelines indicated by asterisks in FIG. It is set as the expected generation position of the pressure wave when deriving.
  • the second cross-correlation deriving unit 120 derives the second cross-correlation with each of the intersections 575 to 578 as the predicted occurrence position of the pressure wave.
  • each of the intersections 575 to 578 is set to an intersection where a plurality of pipe lines intersect. Further, each of the intersection points 575 to 578 is set at a position closer to the pipeline network than each of the intersection points 571 to 574. Further, each of the intersection points 575 to 578 is set at a position close to the intersection point 573 estimated to be closest to the pressure wave generation position in the pipeline network in the first stage. Then, the estimating unit 130 is based on the first cross-correlation derived by the second cross-correlation deriving unit 110 and the second cross-correlation derived from the intersections 575 to 578 as the predicted occurrence positions of pressure waves, Estimate the location of pressure waves in the pipeline network.
  • the predicted position setting unit 240 repeatedly sets the predicted generation position of the pressure wave in the second cross correlation deriving unit 120 while changing the predicted generation position.
  • the position estimation apparatus 200 in the present embodiment can estimate the generation position of the pressure wave at high speed and with high accuracy.
  • the position estimation device 200 in the present embodiment derives the second cross-correlation for the specific position described above and estimates the generation position of the pressure wave
  • the position of the pressure wave generation is further determined. Details can be obtained.
  • the predicted position setting unit 240 further determines the predicted generation position of the pressure wave when deriving the second cross-correlation at a position different from the specific position described above based on the estimated generation position of the pressure wave. Set.
  • the predicted generation position of the pressure wave is set to a predetermined specific position by the predicted position setting unit 240. That is, the predicted generation position of the pressure wave is set at the intersection of a plurality of pipelines. In this case, the generation position of the pressure wave in the pipeline network estimated by the estimation unit 130 is the intersection of the set pipelines.
  • the predicted position setting unit 240 further searches whether the position where the pressure wave is actually generated in the pipeline network is in an extended pipeline different from the intersection. Then, the expected generation position of the pressure wave when deriving the second cross-correlation is set.
  • FIG. 9 is a diagram showing an example of searching for an expected generation position of the pressure wave in the pipeline network in this example.
  • a plurality of pipelines are connected by intersections including at least intersections P0 to P4.
  • the second cross-correlation deriving unit 120 derives the second cross-correlation with each of the intersections P0 to P4 as the predicted pressure wave generation position. Is assumed.
  • the difference between the first cross-correlation and the second cross-correlation is minimal at the intersection point P0, and the estimation unit 130 determines that the intersection point P0 is a pressure wave generation position in the pipeline network.
  • the estimation unit 130 determines that the intersection point P0 is a pressure wave generation position in the pipeline network.
  • the predicted position setting unit 240 generates pressure waves when the second cross-correlation deriving unit 120 derives the second cross-correlation at a position different from the specific position described above based on the position of the intersection point P0. Set the expected occurrence position.
  • the predicted position setting unit 240 applies pressure waves to the intersection point P0 and the pipelines between P1 to P4, which are intersection points between the pipeline connected to the intersection point P0 and another pipeline. Set the source position.
  • the second cross-correlation deriving unit 120 derives the second cross-correlation using the point set by the predicted position setting unit 240 as the predicted generation position of the pressure wave. Furthermore, the estimation part 130 estimates the generation
  • the predicted position setting unit 240 determines the above-described arbitrary point by various methods. For example, as shown in FIG. 9C, the predicted position setting unit 240 sets the predicted generation position of the pressure wave when the second cross correlation deriving unit 120 derives the second cross correlation.
  • the predicted position setting unit 240 is one set in the pipeline between the intersection point P0 and the surrounding intersection points P1 to P4.
  • the above new point is set as a predicted occurrence position of the pressure wave.
  • three new points represented by white circles in the figure are set between the intersection point P0 and each of the intersection points P1 to P4.
  • the second cross correlation deriving unit 120 derives a second cross correlation for these points.
  • the estimation part 130 estimates the generation
  • the predicted position setting unit 240 determines the ratio of the difference between the first and second cross-correlations with respect to the point P0 and each of the points P1 to P4. Accordingly, a new point set in the pipeline is set as an expected generation position of the pressure wave.
  • it is represented by a white circle in the figure according to the ratio of the difference between the first and second cross-correlations regarding the point P0 and each of P1 to P4. A new point has been set.
  • the second cross-correlation deriving unit 120 derives the second cross-correlation using these points as predicted occurrence positions of new pressure waves.
  • a pipe line between P0 and P4 A new point is set in the vicinity of the intersection P0 like the point set to.
  • the pipe line between P0 and P3 is set.
  • a new point is set at a location near the surrounding intersection.
  • the estimation unit 130 estimates the pressure wave generation position in the pipeline network based on the difference between the first cross-correlation and each of the second cross-correlations derived as described above. . Even in this case, the estimation unit 130 has the largest difference between the first cross-correlation and the second cross-correlation among the predicted generation positions of the pressure wave newly set when deriving the second cross-correlation. A small point is a point where a pressure wave is generated in the pipeline network.
  • the predicted position setting unit 240 sets the predicted generation position of the pressure wave when the second cross-correlation deriving unit 120 first derives the second cross-correlation as an initial search point.
  • a plurality of initial search points are set from a predetermined specific position.
  • the initial search point is set as follows, for example. -A predetermined point in the pipeline network is always selected as the initial search point. -Of the candidate points in the pipeline network, a point to be an initial search point is randomly selected as an initial search point. -An initial search point is determined based on the position of the pressure gauge that first detects the pressure wave that is the target of generation.
  • the generation position of the pressure wave in the pipeline network is estimated as the predicted generation position of the pressure wave when the second cross-correlation deriving unit 120 derives the second cross-correlation. Is done.
  • each component of the position estimation device 200 estimates the generation position of the pressure wave in the pipeline network in the same manner as the operation from step S101 to step S103 shown in FIG.
  • the predicted position setting unit 240 generates the pressure wave when the second cross-correlation deriving unit 120 derives the second cross-correlation.
  • a position is set (step S252).
  • the predicted position setting unit 240 sets the predicted generation position of the pressure wave by the various methods described above. Further, the predicted position setting unit 240 selects and sets the predicted generation position of the pressure wave from the specific position described above so that at least one position is different from the previously set predicted generation position of the plurality of pressure waves.
  • the predicted position setting unit 240 may perform step S252 only once as shown in FIG. 10 or may be performed repeatedly a plurality of times based on the estimation result regarding the position where the pressure wave is generated. Further, when the predicted generation position of the pressure wave at the time of deriving the second cross-correlation is set, each component of the position estimation device 200 appropriately estimates the generation position of the pressure wave in the pipeline network.
  • the predicted position setting unit 240 determines the predicted pressure wave generation position when the second cross-correlation deriving unit 120 derives the second cross-correlation.
  • the position is set to a position different from the specific position described above (step S253).
  • the predicted position setting unit 240 derives the second cross-correlation at a position different from the specific position described above based on the pressure wave generation position in the pipeline network estimated in the previous step. Set the position where the pressure wave is expected to be generated. Further, as described above, the predicted position setting unit 240 may set a plurality of points as positions different from the specific position described above.
  • the predicted position setting unit 240 repeats the predicted generation position of the pressure wave that is the calculation target of the fluid pressure in the second cross correlation deriving unit 120. Set. In the present embodiment, the predicted position setting unit 240 repeats the predicted generation position of the pressure wave when deriving the second cross-correlation based on the generation position of the pressure wave in the pipeline network estimated by the estimation unit 130. Set. Therefore, the position estimation apparatus 200 in the present embodiment can quickly estimate the generation position of the pressure wave in the pipeline network.
  • the predicted position setting unit 240 derives the second cross-correlation based on a position in the vicinity of a position where it is considered highly likely that a pressure wave has actually occurred in the pipeline network. Repeatedly set the expected occurrence position of the pressure wave. Therefore, the position estimation apparatus 200 in the present embodiment can accurately estimate the pressure wave generation position in the pipeline network. That is, the position estimation apparatus 200 in the present embodiment can estimate the generation position of the pressure wave at high speed and with high accuracy.
  • FIG. 11 is a diagram illustrating a configuration of a position estimation device 300 according to the third embodiment of the present invention.
  • FIG. 12 shows an example in which a difference occurs in the propagation speed of the pressure wave in the pipeline network.
  • FIG. 13 shows another example when a difference occurs in the propagation speed of the pressure wave generated in the pipeline network.
  • FIG. 14 shows an example of the cross-correlation for the combined wave of pressure waves with different propagation speeds.
  • FIG. 15 is a schematic diagram illustrating an example of operations of the first cross correlation deriving unit 110 and the correlation separating unit 350 in the third embodiment of the present invention.
  • the position estimation apparatus 300 includes a correlation separation unit 350, a first cross-correlation derivation unit 110, a second cross-correlation derivation unit 120, and an estimation unit 130.
  • the correlation separation unit 350 separates a predetermined component from the measurement value used for deriving at least one of the first or second cross-correlation.
  • the position estimation apparatus 300 according to the third embodiment of the present invention has the same configuration as the position estimation apparatus 100 according to the first embodiment of the present invention.
  • a position estimation system including the position estimation apparatus 300 in the present embodiment is configured in the same manner as the position estimation system 10 in the first embodiment of the present invention.
  • the correlation separation unit 350 separates predetermined components from the measurement values used for deriving at least one of the first or second cross-correlation.
  • the correlation separation unit 350 separates predetermined frequency components from the measurement values described above.
  • the correlation separation unit 350 may separate and extract only specific frequency components from the measurement values, or may separate the measurement values for each frequency component.
  • the correlation separation unit 350 may remove a component that becomes noise when the estimation unit 130 estimates the generation position of the pressure wave in the pipeline network.
  • the correlation separation unit 350 is realized by an arbitrary band pass filter that extracts a component having a desired propagation frequency.
  • the first cross-correlation deriving unit 110 and the second cross-correlation deriving unit 120 derive the first and cross-correlation for each component separated by the correlation separating unit 350, for example.
  • the first cross-correlation deriving unit 110 and the second cross-correlation deriving unit 120 respectively measure the pressure of the fluid flowing through the pipeline network in at least two locations of the pipeline network, as in the above-described embodiments. Based on the value, the first and second cross-correlations may be derived.
  • the propagation speed of the pressure wave may vary depending on the medium through which the pressure wave propagates and the type of pressure wave.
  • the pressure wave may be a combined wave of pressure waves having different propagation speeds.
  • FIG. 12 shows an example in the case where a difference occurs in the propagation speed of the pressure wave in the pipeline network.
  • the pressure wave generated in the pipeline network is a combined wave of pressure waves having different propagation velocities by propagating through two media having different inner walls and fluids in the pipeline.
  • the propagation speed of the pressure wave propagating through the inner wall of the pipe is V1
  • the propagation speed of the pressure wave propagating through the fluid in the pipe is V2
  • the relationship between the two speeds is V2 ⁇ V1. It becomes.
  • FIG. 13 shows another example in the case where a difference occurs in the propagation speed of the pressure wave generated in the pipeline network.
  • the pressure wave in the pipeline network is a combined wave of pressure waves having different propagation velocities due to the difference in the types of waves, ie, the density wave and the torsion wave.
  • the propagation speed of the dense wave is V1 and the propagation speed of the torsional wave is V2
  • the relationship between the two speeds is V2 ⁇ V1.
  • the first cross-correlation obtained by measuring the pressure waves is shown in FIG. 5 according to the propagation speed of the pressure waves.
  • the local peaks shown may strengthen or weaken each other.
  • FIG. 14 shows an example of a cross-correlation for a combined wave of pressure waves having different propagation speeds.
  • FIGS. 14A and 14B are examples of cross-correlation obtained from pressure waves propagating at different propagation velocities V1 or V2.
  • FIG. 14C is an example of a cross-correlation obtained from a combined wave of two pressure waves whose propagation speed is V1 or V2.
  • the period in which a local peak of cross-correlation appears is disturbed as compared with the examples in FIGS. 14A and 14B.
  • the use of such a synthesized wave may affect the estimation of the pressure wave generation position in the estimation unit 130 depending on the specific method of deriving the second cross-correlation.
  • the correlation separation unit 350 separates predetermined components so as to separate pressure waves having different propagation velocities. That is, the correlation separation unit 350 converts the first cross-correlation obtained from the combined pressure wave having different propagation speeds into components having the same propagation speed (or within a predetermined range in which the propagation speed can be treated as the same). To separate. By doing in this way, the influence of the pressure wave resulting from the pressure wave from which the first cross-correlation is derived includes pressure waves having different propagation velocities is reduced. Therefore, the position estimation apparatus 300 according to the present embodiment can estimate the pressure wave generation position in the estimation unit 130 with high accuracy.
  • the correlation separation unit 350 is realized by an arbitrary band pass filter that extracts a component having a desired propagation frequency as an example.
  • the correlation separation unit 350 can extract a component related to a desired propagation velocity from the first cross-correlation by appropriately extracting a necessary frequency component using the band pass filter.
  • FIG. 15 is a schematic diagram illustrating an example of operations of the first cross correlation deriving unit 110 and the correlation separating unit 350.
  • the correlation separator 350 includes at least bandpass filters BPF1 to BPF3.
  • the band-pass filters BPF1 to BPF3 pass different frequency components.
  • the correlation separation unit 350 may further include a band pass filter that allows different frequency components from the band pass filters BPF1 to BPF3 to pass.
  • the correlation separation unit 350 separates the frequency components corresponding to the different propagation speeds based on the time series signals x and y of the pressure measured in the pipeline network.
  • the first cross-correlation deriving unit 110 derives first cross-correlations R1 to R3 corresponding to frequency components corresponding to different propagation speeds.
  • the first cross-correlation deriving unit 110 derives the first cross-correlation R0 based on the pressure time series signals x and y measured in the pipeline network.
  • the second cross-correlation deriving unit 120 derives the second cross-correlation separated into the frequency components of the first cross-correlation R1 to R3 according to the operation of the correlation separating unit 350. Also good.
  • the estimation unit 130 estimates the pressure wave generation position based on the first cross-correlation and the second cross-correlation separated for each frequency component described above.
  • the second cross-correlation deriving unit 120 may derive the second cross-correlation without separating the pressure wave propagation speed and frequency components.
  • the correlation separation unit 350 may separate a predetermined component with respect to the second cross-correlation as needed, without being limited to the first cross-correlation.
  • the position estimation apparatus 300 includes the correlation separation unit 350.
  • the correlation separation unit 350 separates a predetermined component from the measurement value used when deriving at least one of the first and second cross correlations. Therefore, when the estimation unit 130 estimates the generation position of the pressure wave, even if the pressure wave is a combined wave of pressure waves having different propagation velocities, the influence due to the difference in propagation velocity is reduced. That is, the position estimation apparatus 300 in the present embodiment can estimate the generation position of the pressure wave with higher accuracy.
  • Position estimation system 100, 200, 300 Position estimation device 110 First cross-correlation deriving unit 120 Second cross-correlation deriving unit 130 Estimating unit 240 Predicted position setting unit 350 Correlation separating unit 50, 51, 52 Pipe network 500, 501 Pipe line 531, 532, 533, 534 Tank 541, 542, 543, 544 Pump 551, 552, 553 Pressure gauge 561, 562, 563 Pressure detection unit 571, 572, 573, 574, 575, 576, 575, 578 Intersection 1000 Information processing device 1001 CPU 1002 ROM 1003 RAM 1004 Program 1005 Storage device 1006 Recording medium 1007 Drive device 1008 Communication interface 1009 Communication network 1010 Input / output interface 1011 Bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Acoustics & Sound (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Pipeline Systems (AREA)

Abstract

 圧力波の発生位置を精度よく推定する位置推定装置等を提供する。 位置推定装置は、管路網の少なくとも2か所において管路網を流れる流体の圧力を計測した計測値に基づいて、流体の圧力に関する第1相互相関を導出する第1相互相関導出手段と、管路網の少なくとも2か所における流体の圧力を計算して求めた計算値に基づいて、流体の圧力に関する第2相互相関を導出する第2相互相関導出手段と、第1相互相関と第2相互相関との相違に基づいて圧力波の発生位置を推定する推定手段とを備える。

Description

位置推定装置、位置推定システム、位置推定方法及びコンピュータ読み取り可能記録媒体
 本発明は、位置推定装置、位置推定システム、位置推定方法及びコンピュータ読み取り可能記録媒体に関する。
 液体や気体等の流体が流れる管路網においては、内部を流れる流体の流量の変化に伴い、流体が定常的に流れる場合に対して大きな圧力波(以下「過大圧力波」とする)が生じる場合がある。過大圧力波が生じる原因には、例えば、ポンプやバルブ等の急激な操作、水使用量の急激な変化、管路網を構成する管路の異常や破裂等がある。
 過大圧力波は、管路網に負荷を与えることから、管路網の劣化や管路網を構成する管路の異常や破裂を引き起こす要因となる。そのため、過大圧力波が発生した位置を求め、当該位置における過大圧力波を発生させる要因を解消することによって、管路網の寿命を延ばすことができる可能性がある。
 過大圧力波が発生した位置を特定する手法の一つは、管路網を構成する管路に沿って多数の圧力計を設置して管路網を流れる流体の圧力を詳細に調べることである。しかしながら、管路網に多数の圧力計を設置することは、一般に高いコストを必要とする。したがって、できるだけ少ない数の圧力計にて過大圧力波の発生位置を推定する手法の開発が行われている。
 非特許文献1には、単管路の波動特性を利用してバースト発生位置を推定する技術が記載されている。非特許文献2には、バースト発生直後の管路網の流量等を解析することによってバースト発生位置を推定する技術が記載されている。非特許文献3には、管路網をいくつかのエリアに分割し、当該エリアへの流体の出入りの不整合を指標として流体漏れエリアを推定する技術が記載されている。非特許文献4には、管破裂による圧力波が配管網を無視して同心円状に広がると仮定して、圧力波の震源地を推定する技術が記載されている。非特許文献5には、センサ計測による圧力波の到達時間差と計算機シミュレーションによる圧力波の到達時間差との差分が最も小さい点を圧力波の波源と推定する技術が記載されている。非特許文献6には、センサ計測による圧力波の到達時間差と計算機シミュレーションによる圧力波の伝搬時間差との差分が最も小さい点をグラフ的及び階層的な絞り込みにより効率よく探索し、探索された点を圧力波の波源と推定する技術が記載されている。
福田豊生,進行波理論による送水管路の異常検知法,計測自動制御学会論文集,Vol.18,No.10,1982 築山誠,配水管網の異常発生区域推定法,計測自動制御学会論文集,Vol.23,No.6,1987 宮田真ほか, 仮想エリア分割による漏水検知手法の提案, EICA環境システム計測制御学会研究発表会論文集,Vol.17,No.2-3,2012 服部大ほか,上水道施設の省エネ・省コスト運用に貢献する技術,東芝レビュー,vol69,no5,2014 Seshan Srirangarajan,Wavelet-based Burst Event Detection and Localization in Water Distribution Systems, Journal of Signal Processing Systems,Vol.72,Issue 1,pp1-16,2013 W.J.Hampson, et al.,Transient source localization methodology and laboratory validation,International Conference on Computing and Control for the Water Industry(CCWI),Vol.70,pp.781-790,2013
 非特許文献1に記載の技術は、単一の管路を対象としている。すなわち、非特許文献1に記載の技術は、複数の配管が接続された管路網を必ずしも対象としていない。また、非特許文献2に記載の技術は、バーストが発生した位置の推定に際し、管路を流れる流体の流量を用いている。しかしながら、管路に異常が生じた場合には、その変化は、流量と比較して圧力に特徴的に現れる場合がある。すなわち、非特許文献2に記載されたような管路を流れる流体の流量を用いた手法では、管路における小規模な破裂や異常を捉えることが難しい場合がある。また、非特許文献4から6に記載の技術は、圧力波が生じた場合における当該圧力波の第一波の到達時間差に基づいて圧力波の波源の位置を推定する。しかしながら、当該第一波の到達時間は、判定基準や雑音の影響を受け、誤差を含む場合がある。
 すなわち、各非特許文献に記載の技術では、複数の配管が複雑に接続された管路網において、少ないセンサにて圧力波の発生位置を精度よく推定することは難しい場合がある。
 本発明は、上記課題を解決するためになされたものであって、圧力波の発生位置を精度よく推定する位置推定装置等を提供することを主たる目的とする。
 本発明の一態様における位置推定装置は、管路網の少なくとも2か所において管路網を流れる流体の圧力を計測した計測値に基づいて、流体の圧力に関する第1相互相関を導出する第1相互相関導出手段と、管路網の少なくとも2か所における流体の圧力を計算して求めた計算値に基づいて、流体の圧力に関する第2相互相関を導出する第2相互相関導出手段と、第1相互相関と第2相互相関との相違に基づいて圧力波の発生位置を推定する推定手段とを備える。
 本発明の一態様における位置推定方法は、管路網の少なくとも2か所において管路網を流れる流体の圧力をそれぞれ計測した計測値に基づいて、前記計測値に関する第1相互相関を導出し、管路網の少なくとも2か所における流体の圧力をそれぞれ計算して求めた計算値に基づいて、計算値に関する第2相互相関を導出し、第1相互相関及び第2相互相関に基づいて圧力波の発生位置を推定する。
 本発明の一態様におけるコンピュータ読み取り可能記録媒体は、コンピュータに、管路網の少なくとも2か所において管路網を流れる流体の圧力をそれぞれ計測した計測値に基づいて、計測値に関する第1相互相関を導出する処理と、管路網の少なくとも2か所における流体の圧力をそれぞれ計算して求めた計算値に基づいて、計算値に関する第2相互相関を導出する処理と、第1相互相関及び2相互相関に基づいて圧力波の発生位置を推定する処理とを実行させるプログラムを非一時的に格納する。
 本発明によると、圧力波の発生位置を精度よく推定する位置推定装置等を提供することができる。
管路網等を圧力波が伝搬する様子の一例を示す図である。 管路網を流れる流体に関する圧力波とその相互相関との関係を示す図である。 本発明の第1の実施形態における位置推定装置を示す図である。 本発明の第1の実施形態における位置推定システムを示す図である。 本発明の第1の実施形態における位置推定装置にて圧力波の発生位置を推定する場合に用いられる相互相関の局所ピークを示す図である。 本発明の第1の実施形態における位置推定装置の動作を示すフローチャートである。 本発明の第2の実施形態における位置推定装置を示す図である。 本発明の第2の実施形態における位置推定装置の予想位置設定部が圧力波の発生位置を設定する場合の例を示す図である。 本発明の第2の実施形態における位置推定装置によって管路網における圧力波の発生位置を探索する場合の一例を示す図である。 本発明の第2の実施形態における位置推定装置の予想位置設定部の動作の一例を示す図である。 本発明の第3の実施形態における位置推定装置を示す図である。 管路網における圧力波の伝搬速度に違いが生じる場合の一例を示す。 管路網において生じる圧力波の伝搬速度に違いが生じる場合の別の一例を示す。 管路網における伝搬速度が異なる圧力波の合成波に関する相互相関の例を示す。 本発明の第3の実施形態において第1相互相関導出部110及び相関分離部350の動作の一例を表す模式図である。 本発明の各実施形態における位置推定装置を実現する情報処理装置の一例を示す図である。
 本発明の各実施形態について、添付の図面を参照して説明する。最初に、本発明の各実施形態において用いられる圧力波の位置推定に関する原理等を説明し、その後、本発明の各実施形態について説明する。
 なお、本発明の各実施形態において、各装置又はシステムの各構成要素は、機能単位のブロックを示している。各装置又はシステムの各構成要素の一部又は全部は、例えば図16に示すような情報処理装置1000とプログラムとの任意の組み合わせにより実現される。情報処理装置1000は、一例として、以下のような構成を含む。
  ・CPU(Central Processing Unit)1001
  ・ROM(Read Only Memory)1002
  ・RAM(Random Access Memory)1003
  ・RAM1003にロードされるプログラム1004
  ・プログラム1004を格納する記憶装置1005
  ・記録媒体1006の読み書きを行うドライブ装置1007
  ・通信ネットワーク1009と接続する通信インターフェース1008
  ・データの入出力を行う入出力インターフェース1010
  ・各構成要素を接続するバス1011
 各実施形態における各装置の各構成要素は、これらの機能を実現するプログラム1004をCPU1001が取得して実行することで実現される。各装置の各構成要素の機能を実現するプログラム1004は、例えば、予め記憶装置1005やRAM1003に格納されており、必要に応じてCPU1001が読み出す。なお、プログラム1004は、通信ネットワーク1009を介してCPU1001に供給されてもよいし、予め記録媒体1006に格納されており、ドライブ装置1007が当該プログラムを読み出してCPU1001に供給してもよい。
 各装置の実現方法には、様々な変形例がある。例えば、各装置は、構成要素毎にそれぞれ別個の情報処理装置1000とプログラムとの任意の組み合わせにより実現されてもよい。また、各装置が備える複数の構成要素が、一つの情報処理装置1000とプログラムとの任意の組み合わせにより実現されてもよい。
 また、各装置の各構成要素の一部又は全部は、その他の汎用または専用の回路、プロセッサ等やこれらの組み合わせによって実現される。これらは、単一のチップによって構成されてもよいし、バスを介して接続される複数のチップによって構成されてもよい。各装置の各構成要素の一部又は全部は、上述した回路等とプログラムとの組み合わせによって実現されてもよい。
 各装置の各構成要素の一部又は全部が複数の情報処理装置や回路等により実現される場合には、複数の情報処理装置や回路等は、集中配置されてもよいし、分散配置されてもよい。例えば、情報処理装置や回路等は、クライアントアンドサーバシステム、クラウドコンピューティングシステム等、各々が通信ネットワークを介して接続される形態として実現されてもよい。
 まず、本発明の各実施形態において用いられる圧力波の位置推定に関する原理等を説明する。最初に、図1を用いて、管路等を圧力波が伝搬する様子に関して説明する。
 図1(A)は、単一の管路500において圧力波が伝搬する様子を示す。この例において、管路500の破裂に起因する急激な流体の圧力変化によって圧力波が生じた場合が想定される。この圧力波は、管路500を流れる流体及び管路500を媒質として、当該圧力波の発生個所から管路500の両方向へ伝搬する。一般に、鉄や樹脂を主な材料とする管路の管肉を伝搬する圧力波よりも、管路を流れる流体を伝搬する圧力波の方が減衰しにくいことが知られている。
 一方、図1(B)は、管路500が接続されて構成される管路網50において圧力波が伝搬する様子を示す。図1(B)に示す例においても、管路網50を構成する管路500の破裂に起因する急激な流体の圧力変化によって圧力波が生じた場合が想定される。なお、管路網50において、上述のような圧力波が発生した位置を、「管路網における圧力波の発生位置」又は単に「圧力波の発生位置」と呼ぶ。そして、図1(B)に示すように、管路網50のある一点にて発生した圧力波は、管路網50を構成する管路500を流れる流体及び管路500を媒質として、管路網50の各所へ伝搬する。管路網50の各所へ伝搬した圧力波は、管路網50に設置された圧力計551から553の各々にて計測される。圧力計551から553のうち、圧力波の発生位置から近い位置に設置されたものにおいては、管路500が破裂した後の早い時刻に圧力波が計測される。また、圧力計551から553のうち、圧力波の発生位置から遠い位置に設置されたものにおいては、管路500が破裂した後、圧力波の発生位置からの距離に応じた時間が経過してからに圧力波が計測される。
 図1(B)に示す例において、圧力波が発生した時刻が不明な場合においても、圧力計551から553の各々において、圧力波のうち最初に到達する第一波(以下、単に「第一波」とする)が計測される時刻は知ることができる。すなわち、圧力計551から553の各々において第一波が計測される時刻の差は測定可能である。この時刻の差は、圧力波が発生する位置に応じて変化する。
 一方、管路網50の各所の構造(管路500の長さ、径、肉厚等)及び圧力波の伝搬速度は、予め知ることができる場合がある。この場合には、これらの情報に基づいて、任意の位置にて発生する圧力波に関して、圧力計551から553の各々における第一波の到達時刻やこれらの時刻の差を計算機シミュレーション等の計算にて求めることが可能となる。
 そして、圧力計551から553の各々にて計測された第一波の到達時刻の差と、計算により得られた第一波の到達時刻に基づいて、圧力波が発生した位置を推定することができる。例えば、計測により得られた第一波の到達時刻の差と、任意の箇所を圧力波の発生位置と仮定して計算により得られた第一波の到達時刻の差とが所定の条件を満たす場合に、当該任意の箇所を圧力波の発生位置と推定することができる。所定の条件としては、上述した2つの第一波の到達時刻の差が一致する、2つの第一波の到達時刻の差の相違が最小となる、等がある。
 しかしながら、この例において、圧力計551から553の各々にて計測された第一波の到達時刻には、誤差が含まれる場合がある。これは、一般に圧力計にて計測される値には雑音が含まれていることや、第一波は、波の谷又は山のいずれの可能性もあり、第一波を特定することが容易でない場合があることが原因である。したがって、上述した方法にて圧力波の発生位置を推定する場合、推定された圧力波の発生位置の精度が低い場合がある。
 また、管路網の複数の箇所における圧力波の到達時刻差を求める別の手法として、2つの圧力波の相互相関を用いる手法がある。一例として、信号x1[n]と信号x2[n]との相互相関C[k]は、以下の(1)式にて表される。なお、kは相互相関における時刻インデックスを表す。 
Figure JPOXMLDOC01-appb-I000001
 図2は、管路網の2か所で計測された圧力波x1及びx2の到達時刻差と各々の相互相関との関係の一例を示す図である。図2(A)は、圧力波x1及びx2が各々を計測した個所に到達した時刻の差がない(すなわち、同時に到達した)場合における相互相関及び圧力の例を示す。図2(A)の例に示すように、圧力波の到達時刻に差がない場合には、相互相関の値は時刻インデックスkが0の場合に最大となる。
 また、図2(B)は、圧力波x1及びx2が各々を計測した個所に到達した時刻の差がある(すなわち、異なる時刻に到達した)場合における相互相関及び圧力の例を示す。このように、圧力波の到達時刻に差がある場合には、相互相関の値は、時刻インデックスkが0と異なる場合に最大となる。図2(B)に示す例においては、圧力波x1及びx2の相互相関は、時刻インデックスkが+4において最大になる。すなわち、図2(B)に示す例においては、圧力波x1は、圧力波x2に対して時刻インデックス4だけ遅れて到達している。このように、圧力波の相互相関を用いることによって、管路網の複数の箇所における圧力波の到達時刻差を求めることができる。
 また、上述のように、図1(B)に示すような管路網50の構成情報が分かる場合には、流体力学に基づいて、管路の破裂等を含む管路を流れる流体の急激な圧力の変化によって生じる圧力波の伝搬の様子は、計算によって求められる。管路網50の構成情報は、例えば、管路網50を構成する管路500の各々の長さ、径、内部の粗さ係数、肉厚、管路500の内部を流れる流体内の圧力波速度等である。
 この場合におけるより詳しい一例として、圧力波の伝搬の様子は、以下のような計算機シミュレーションにて算出される。すなわち、管路網における任意の位置において、管路を流れる流体にステップ状の圧力変化が発生することが仮定される(以下、このように仮定された位置を「圧力波の予想発生位置」とする)。そして、管路網において圧力計が設置されている位置における管路内部の圧力が変化する過程がシミュレーションされる。
 このような計算機シミュレーション等によって得られた管路網の圧力波の計算値は、管路網において計測された圧力の計測値と比較すると、その圧力の変化の様子である振幅や位相までが完全に一致しない場合がある。しかしながら、管路網の2か所における圧力波の到達時間差を解析する場合に必要となる精度にて圧力波の計算値を算出することは可能である。そのため、圧力波の計算値が算出されれば、管路網の2か所における圧力波の相互相関を求めることが可能である。また、圧力波の計算値は、シミュレーション等の計算により求められることから、管路網の任意の箇所における管路の破裂等にて生じる圧力波の計算値を算出することができる。したがって、管路網の任意の2か所における圧力波の計算値に関する相互相関を求めることが可能である。
 (第1の実施形態)
 続いて、本発明の第1の実施形態について説明する。図3は、本発明の第1の実施形態における位置推定装置を示す図である。図4は、本発明の第1の実施形態における位置推定システム及び当該位置推定システムを用いて圧力波の発生位置を推定する対象となる管路網を示す図である。図5は、本発明の第1の実施形態における位置推定装置にて圧力波の発生位置を推定する場合に用いられる相互相関の局所ピークを示す図である。図6は、本発明の第1の実施形態における位置推定装置の動作を示すフローチャートである。
 図3に示すとおり、本発明の第1の実施形態における位置推定装置100は、第1相互相関導出部110と、第2相互相関導出部120と、推定部130とを備える。第1相互相関導出部110は、管路網の少なくとも2か所において管路網を流れる流体の圧力をそれぞれ計測した計測値に基づいて、前記計測値に関する第1相互相関を導出する。第2相互相関導出部120は、前記管路網の前記少なくとも2か所における前記流体の圧力をそれぞれ計算して求めた計算値に基づいて、前記計算値に関する第2相互相関を導出する。推定部130は、前記第1相互相関及び前記第2相互相関に基づいて圧力波の発生位置を推定する。
 また、本実施形態においては、位置推定装置100を含む位置推定システム10が構成される。図4は、本発明の第1の実施形態における位置推定システム10を示す。位置推定システム10は、位置推定装置100と、複数の圧力検知部561から563を備える。また、本実施形態における位置推定システム10を用いて圧力波の発生位置を推定する対象となる管路網51は、一例として、管路501と、タンク531及び532と、ポンプ541及び542とを含む。複数の圧力検知部561から563の各々は、管路網51を流れる流体の圧力を計測する。複数の圧力検知部561から563の各々は、管路網51を流れる流体の圧力を計測できる例えば任意の種類の圧力計が用いられる。なお、図4においては、複数の圧力検知部の数は3つであるが、圧力検知部の数は任意であり、3つでなくてもよい。複数の圧力検知部の数は、圧力波の発生位置を推定する対象となる管路網の構成に応じて適宜変更される。また、図4に示す管路網51の構成は、一つの例であり、これに限定されない。本実施形態における位置推定システム10は、管路網51と異なる任意の構成の管路網について、圧力波の発生位置を推定することが可能である。
 最初に、本実施形態における位置推定装置100の各構成要素について説明する。第1相互相関導出部110は、上述のとおり、管路網を流れる流体の圧力を計測した計測値に関する第1相互相関を導出する。この計測値は、管路網に設置され、管路の内部を流れる流体の圧力を計測する圧力計等の任意の手段によって求められる。第1相互相関導出部110は、一例として、上述した(1)式を用いて相互相関を算出する。
 第1相互相関導出部110は、一例として、管路網の複数の箇所において計測される計測値である圧力波形のうち、任意の2地点の計測値の組み合わせに関する第1相互相関Cref(m)[k]を導出する。この場合において、mは組み合わせの番号を表し、1から組み合わせ総数M(Mは1以上の整数)までのいずれかの値を取る。
 例えば、第1相互相関導出部110は、管路網の3地点(地点1から3とする)において計測された圧力の計測値に基づいて第1相互相関を用いる場合には、=3組の第1相互相関Cref(m)[k]を導出する。この場合において、管路網の場所の組み合わせは、(地点1、地点2)、(地点1、地点3)、(地点2、地点3)となる。また、第1相互相関導出部110は、管路網の4地点(地点1から4とする)において計測された圧力の計測値に基づいて第1相互相関を用いる場合には、=6組の第1相互相関Cref(m)[k]を導出する。この場合において、管路網の場所の組み合わせは、(地点1、地点2)、(地点1、地点3)、(地点1、地点4)、(地点2、地点3)、(地点2、地点4)、(地点3、地点4)となる。
 なお、第1相互相関導出部110は、組み合わせの総数Mの全てについて第1相互相関を導出してもよいし、組み合わせの総数Mに含まれる一部の組について第1相互相関を求めてもよい。第1相互相関導出部110にて求められる第1相互相関の数は、後述する推定部130にて圧力波の発生位置を推定する際の推定方法や、推定にて必要とされる精度などに応じて適宜定められる。
 第2相互相関導出部120は、上述のとおり、管路網を流れる流体の圧力を計算して求めた計算値に関する第2相互相関を導出する。この計算値は、上記説明したとおり、計算機シミュレーション等によって求められる。第2相互相関導出部120は、一例として、第1相互相関導出部110と同様に、上述した(1)式を用いて相互相関を算出する。第2相互相関導出部120は、例えば、圧力波の予想発生位置として管路網の任意の地点を設定し、この位置と異なる管路網の任意の複数地点における圧力波をそれぞれ求めた計算値の組み合わせに関する第2相互相関Ccal(m)[k]を導出する。なお、上述した管路網の任意の複数地点は、例えば管路網51において圧力計が設置された位置である。すなわち、第2相互相関導出部120にて導出される第2相互相関は、適宜定めた圧力波の予想発生位置にて発生した圧力波を、管路網に設置された圧力計にて計測したことを想定した場合に求められることが予想される値である。この場合において、mは組み合わせの番号を表し、1から組み合わせ総数M(Mは1以上の整数)までのいずれかの値を取る。
 第2相互相関導出部120は、後の推定部130における推定処理に応じて、管路網の任意の地点を圧力波の予想発生位置として設定して第2相互相関Ccal(m)[k]を導出することができる。例えば、第2相互相関導出部120は、管路網の任意の一地点に圧力波の予想発生位置を設定して第2相互相関Ccal(m)[k]を導出してもよい。又は、第2相互相関導出部120は、管路網の任意の異なる複数の一地点を圧力波の予想発生位置として設定してもよい。この場合には、第2相互相関導出部120は、一例として、当該管路網の任意の異なる複数の一地点のうち一つの地点において圧力波が発生した場合における第2相互相関Ccal(m)[k]を、それぞれの地点について導出する。
 また、第2相互相関導出部120は、第2相互相関Ccal(m)[k]の値が用いられる場合に、必要に応じて都度第2相互相関Ccal(m)[k]を計算して求めてもよい。あるいは、第2相互相関導出部120は、予め計算して求めた第2相互相関Ccal(m)[k]の値を図示しない記憶手段等に記憶しておき、必要に応じて記憶した値を参照してもよい。
 推定部130は、前記第1相互相関及び前記第2相互相関に基づいて管路網における圧力波の発生位置を推定する。推定部130は、一例として、第1相互相関と第2相互相関との相違に基づいて、圧力波の発生位置を推定する。つまり、推定部130は、第1相互相関と第2相互相関との相違が小さいほど、第2相互相関にて圧力波の予想発生位置とした位置が、実際の管路網にて圧力波が発生した位置に近づくとして、管路網における圧力波の発生位置を推定する。
 具体的な推定方法の一例として、推定部130は、第1相互相関Cref(m)[k]と、圧力波の予想発生位置を変えて求められた複数の第2相互相関Ccal(m)[k]の各々との相違に基づいて、圧力波の発生位置を推定する。すなわち、推定部130は、2つの相互相関の相違(誤差)が所定の条件を満たす第2相互相関Ccal(m)[k]に関して設定された圧力波の予想発生位置を、現実の管路網における圧力波の発生位置であるとする。この場合において、所定の条件は、例えば、2つの相互相関の相違が予め定めた大きさより小さくなる、2つの相互相関の相違が、上述した複数の第2相互相関Ccal(m)[k]のにおいて最小となる、等がある。このようにすることで、推定部130は、管路網における圧力波の発生位置を推定することができる。
 第1相互相関Cref(m)[k]と、第2相互相関Ccal(m)[k]との相違(誤差)を求める一般化した式は、(2)式のように表される。推定部130は、(2)式を用いて2つの相互相関の相違を求める。しかしながら、推定部130は、これとは異なる方法で2つの相互相関の相違eを求めてもよい。
Figure JPOXMLDOC01-appb-I000002
 (2)式において、関数g(x、y)は、xとyとを相違を求めるための値に変換する関数を表す。また、(2)式において、Kは、kがとりうる値の範囲である値域を表す。関数g(x、y)及び値域Kは、例えば、以下のように定められる。
 関数g(x、y)としては、具体的には以下の(g1)から(g3)のような式が用いられる。
g(x,y)=(x-y)*(x-y)・・・(g1)
g(x,y)=|x-y|      ・・・(g2)
g(x、y)=表参照(|x-y|) ・・・(g3)
なお、これらの式において、“*”との記号は乗算を表す。また“||”との記号はその中にて規定された式の絶対値を表す。
 上述した式において、(g1)式は、xとyとの差の二乗を表す。また、(g2)式は、xとyとの差の絶対値を表す。(g3)式は、xとyとの差の値に基づいて表参照した値を表す。すなわち、(g3)式は、入力値と出力値との対応関係について予め定められた表等に基づいて出力値を返す。(g3)式における表参照にて用いられる表は任意の形式とすることが可能であり、例えば任意の数式を含んでいてもよい。必要に応じた表を参照することで(g3)式は、予め定めた上限値や下限値を超える値を所定の値に変換することや、入力値を量子化することを可能にする。(g3)式にて用いられる表は、管路網の状況や、発生した圧力波の大きさ、必要とされる圧力波の発生位置の推定精度等に基づいて適宜定められる。
 値域Kは、具体的には、以下の(k1)又は(k2)のように定められる。
K=[-N+1,N-1]         ・・・(k1)
K=localPeaks(Cref(m))・・・(k2)
 この式において、値域(k1)は、指定された範囲の整数を表す。すなわち、値域Kが値域(k1)のように表される場合、推定部130は、(k1)式にて表される範囲の時刻インデックスにおける圧力波より求められた第1及び第2相互相関に基づいて、圧力波の発生位置を推定する。また、値域(k2)は、相互相関(Cref(m))の局所ピークを表す。なお、局所ピークとは、相互相関を表す波形において、波形の山又は谷のように、曲線の傾きがゼロになる点を示す。図5に示すような波形x1とx2との相互相関においては、局所ピークは、図中で示す相互相関の波形にて丸で囲まれた点である。値域Kを値域(k2)のようにCref(m)の局所ピークに限ることで、推定部130は、第1及び第2の局所相関における特定の注目点に関する相違に基づいて、圧力波の発生位置を推定することとなる。
 なお、関数localPeaks(Cref(m))は、所定の条件を満たす局所ピークを表すような形式であってもよい。所定の条件の例として、局所ピークのうち、その振幅の絶対値が、相互相関における振幅の最大の絶対値に対して50%以上の大きさである、局所ピークのうち、その振幅の絶対値が当該絶対値の最大値から3つ以内である、等がある。
 次に、図6を用いて、本発明の第1の実施形態における位置推定装置100の動作を説明する。
 最初に、第1相互相関導出部110は、第1相互相関を導出する(ステップS101)。このステップにおいて、第1相互相関導出部110は、予め計測され、記憶手段等に記憶されている計測値や、このステップを実行する際に計測された計測値を用いることができる。また、第1相互相関導出部110は、常時、一定間隔毎など、連続的に管路網の圧力を計測する圧力計において、過大圧力波が計測された場合に、当該過大圧力波を含む圧力波形に関して第1相互相関を求めてもよい。
 続いて、第2相互相関導出部120は、第2相互相関を導出する(ステップS102)。この場合において、第2相互相関導出部120は、例えば後のステップにおいて管路網における圧力波の発生位置の推定が容易になるよう、圧力波の予想発生位置を管路網の必要となる個所に設定して第2相互相関を導出する。
 なお、ステップS101及びステップS102は、この順序と異なる順序にて実行されてもよい。すなわち、ステップS102の動作が、ステップS101の動作より先に行われてもよいし、ステップS101及びステップS102が同時に実行される等、この2つのステップの動作が行われる時期が重なっていてもよい。
 続いて、推定部130は、圧力波の発生位置を推定する(ステップS103)。推定された圧力波の発生位置に関する情報は、例えば、記憶装置(不図示)に記憶されてもよいし、通信ネットワークや表示手段等(不図示)を介して外部へ出力されてもよい。推定部130は、圧力波の発生位置に関する情報として、圧力波の推定位置として推定された管路網の位置や範囲を示してもよい。また、推定部130は、圧力波の発生位置に関する情報として、管路網の特定の位置や範囲が、圧力波の発生位置であると推定されたか否かを示してもよい。
 また、上述のように、推定部130は、第1相互相関と、圧力波の予想発生位置を変えて求められた複数の第2相互相関の各々との相違に基づいて、圧力波の発生位置を推定する場合がある。この場合には、一例として、推定部130は、第1相互相関と、複数の第2相互相関の各々との相違が所定の条件を満たすかを判定する。そして、推定部130は、上記の相違が当該所定の条件を満たす第2相互相関に関して設定された圧力波の予想発生位置を、管路網における圧力波の発生位置とすることができる。
 なお、推定部130が、複数の第2相互相関のいずれについても上記の相違が所定の条件を満たさないと判断した場合に、位置推定装置100は、ステップS102に戻り、処理を繰り返してもよい。この場合に、ステップS102においては、第2相互相関導出部120は、一例として、先のステップにて設定された位置と異なる位置を圧力波の予想発生位置として設定して、第2相互相関を導出する。
 以上のとおり、本発明の第1の実施形態における位置推定装置100は、上述した第1相互相関及び第2相互相関に基づいて、圧力波の発生位置を推定する。本実施形態における位置推定装置100は、圧力波の到達時間差に関する計測値と計算値とに基づいて、圧力波の発生位置を推定する。すなわち、本実施形態における位置推定装置100は、少数の圧力計にて計測された計測値に基づいて、圧力波の発生位置を推定することを可能とする。また、本実施形態における位置推定装置100は、圧力波の計測値及び計算値に関して、それぞれの相互相関に基づいて圧力波の発生位置を推定する。相互相関を用いることによって、位置推定装置100は、管路網における圧力波の到達時間差を容易に精度よく求めることが可能となる。その結果として、位置推定装置100による圧力波の発生位置に関する推定精度を高めることが可能となる。したがって、本発明の第1の実施形態における位置推定装置100は、圧力波の発生位置を精度よく推定することができる。
 (第1の実施形態の変形例)
 本実施形態における位置推定装置100は、種々の変形例が考えられる。例えば、本実施形態における位置推定装置100は、圧力以外の指標を併せて用いてもよい。一例として、本実施形態における位置推定装置100は、振動センサ等で検知された管路網の振動に関する情報を併せて用いることができる。この場合には、本実施形態における位置推定装置100は、例えば、圧力と振動の各々に関してそれぞれ相互相関を求めて圧力波の発生位置を推定し、当該2つの推定結果に基づいて、最終的に圧力波の発生位置として推定される位置を求める。
 また、本実施形態における位置推定装置100は、圧力波の発生位置の推定対象となる管路網の構成情報(管路の長さ、径、内部の粗さ係数、肉厚、管路500の内部を流れる流体内の圧力波速度等)を用いてもよい。
 この場合において、第2相互相関導出部120は、例えば、上述した管路網の構成情報に基づいて、管路に異常や破裂が生じる可能性が高い位置を圧力波の予想発生位置として設定し、第2相互相関を導出する。また、推定部130は、例えば圧力波の発生位置として複数の位置が推定される場合に、上述した管路網の構成情報に基づいて、管路に異常や破裂が生じる可能性が高い位置が管路網における圧力波の発生位置として推定することができる。
 また、本実施形態における位置推定装置100において、第1相互相関導出部110、第2相互相関導出部120及び推定部130は、それぞれ個別の装置として実現されてもよい。この場合には、その個別の装置は、それぞれ図示しない有線又は無線の通信ネットワークなどによって接続される。
 (第2の実施形態)
 続いて、本発明の第2の実施形態について説明する。図7は、本発明の第2の実施形態における位置推定装置を示す図である。
図8は、本発明の第2の実施形態における位置推定装置の予想位置設定部が圧力波の予想発生位置を設定する場合の例を示す図である。図9は、本発明の第2の実施形態における位置推定装置によって管路網における圧力波の予想発生位置を探索する場合の一例を示す図である。図10は、本発明の第2の実施形態における位置推定装置の予想位置設定部の動作の一例を示す図である。
 図7に示すとおり、本発明の第2の実施形態における位置推定装置200は、第1相互相関導出部110と、第2相互相関導出部120と、予想位置設定部240と、推定部130とを備える。予想位置設定部240は、第2相互相関導出部120において流体の圧力の計算対象となる圧力波の予想発生位置を繰り返し設定する。これ以外の点については、本発明の第2の実施形態における位置推定装置200は、本発明の第1の実施形態における位置推定装置100と同様の構成を備えている。
 なお、本発明の第1の実施形態における位置推定システム10と同様に、本実施形態における位置推定装置200を含む位置推定システム20が構成される。
 本発明の第1の実施形態における位置推定装置100の説明のとおり、第2相互相関導出部120は、圧力波の予想発生位置を管路網の任意の複数の位置に設定して、第2相互相関を導出する場合がある。この場合に、第2相互相関導出部120にて設定される圧力波の予想発生位置は、第1及び第2相互相関の相違を小さくするよう管路網における位置を変えて複数回に亘って繰り返し設定される場合がある。
 本実施形態の位置推定装置200では、予想位置設定部240は、第2相互相関導出部120における圧力波の予想発生位置を繰り返し設定する。例えば、予想位置設定部240が推定部130にて推定された結果に基づいて第2相互相関導出部120における圧力波の予想発生位置を繰り返し設定することで、管路網における圧力波の発生位置が精度よく推定される。
 (特定の位置への圧力波の予想発生位置の設定)
 予想位置設定部240は、第2相互相関導出部120において第2相互相関を導出する場合における圧力波の予想発生位置を、任意の様々な手法で繰り返し設定する。この場合に用いられる繰り返しの手法は、例えば、圧力波の予想発生位置の設定方法には、階層的探索、勾配法的探索、グラフ理論的な最適解探索手法、ランダム選択的探索手法がある。この場合の一例として、予想位置設定部240は、管路網において予め定めた複数の特定の位置の少なくとも一つを、第2相互相関を導出する際の圧力波の予想発生位置とする。また、上述した特定の位置は、例えば、管理網において複数の管路が交わる交点がある。
 図8は、上述した階層的探索によって、予想位置設定部240が圧力波の予想発生位置を設定する場合の例を示す図である。図8において、管路網52は、図中の直線にて示されている複数の管路502と、タンク533及び534と、ポンプ543及び544とを含む。また、複数の管路502は、それぞれ図中の黒丸にて表されている複数の分岐点512にて接続されている。この例にて示される階層的探索において、予想位置設定部240は、特定の位置として、圧力波の発生位置を複数の分岐点512のいずれかに設定する。
 この例において、予想位置設定部240は、第1段階として、図8(A)に星印にて示す管路の交点571から574のそれぞれを、第2相互相関導出部120において第2相互相関を導出する際の圧力波の予想発生位置として設定する。第2相互相関導出部120は、交点571から574のそれぞれを圧力波の予想発生位置として、第2相互相関を導出する。
 この段階において、交点571から574のそれぞれは、複数の管路が交わる交点に設定される。そして、推定部130は、第2相互相関導出部110にて導出された第1相互相関と、交点571から574のそれぞれを圧力波の予想発生位置として導出された第2相互相関に基づいて、管路網における圧力波の発生位置を推定する。この例において、例えば、推定部130は、交点573が、実際の管路網における圧力波の発生位置に最も近いと推定する。
 続いて、予想位置設定部240は、第2段階として、図8(B)に星印にて示す管路の交点575から578のそれぞれを、第2相互相関導出部120において第2相互相関を導出する際の圧力波の予想発生位置として設定する。第2相互相関導出部120は、交点575から578のそれぞれを圧力波の予想発生位置として、第2相互相関を導出する。
 この段階においても、交点575から578のそれぞれは、複数の管路が交わる交点に設定される。また、交点575から578のそれぞれは、交点571から574のそれぞれと比較して、管路網においてより近い位置に設定されている。また、交点575から578のそれぞれは、第1段階において管路網における圧力波の発生位置に最も近いと推定された交点573に近い位置に設定されている。そして、推定部130は、第2相互相関導出部110にて導出された第1相互相関と、交点575から578のそれぞれを圧力波の予想発生位置として導出された第2相互相関に基づいて、管路網における圧力波の発生位置を推定する。
 この例のように、予想位置設定部240は、第2相互相関導出部120における圧力波の予想発生位置を変更しながら繰り返し設定する。管路網において圧力波が発生したと推定される位置を絞り込みつつ繰り返し推定することで、本実施形態における位置推定装置200は、高速かつ高い精度で圧力波の発生位置を推定することができる。
 (特定の位置と異なる地点への圧力波の予想発生位置の設定)
 また、別の例として、本実施形態における位置推定装置200は、上述した特定の位置に関して第2相互相関を導出して圧力波の発生位置を推定した場合に、更にその圧力波の発生位置を詳細に求めることができる。この場合に、予想位置設定部240は、推定された圧力波の発生位置に基づいて、更に上述した特定の位置とは異なる位置に第2相互相関を導出する際の圧力波の予想発生位置を設定する。
 先の圧力波の予想発生位置の設定に関する例では、圧力波の予想発生位置は、予想位置設定部240によって、予め定めた特定の位置に設定される。すなわち、圧力波の予想発生位置は、複数の管路の交点に設定される。この場合に、推定部130にて推定される管路網における圧力波の発生位置は、当該設定された管路の交点である。
 しかしながら、実際の管路網においては、管路の異常や破裂は、管路の交点と異なる場所で生じる場合がある。すなわち、管路網における圧力波の発生位置は、管路の交点と異なる場所である可能性がある。このような場合において、この例において、予想位置設定部240は、更に、実際に管路網において圧力波が発生した位置が、交点と異なる延在する管路にあるか否かを探索するよう、第2相互相関を導出する際の圧力波の予想発生位置を設定する。
 図9は、この例において管路網における圧力波の予想発生位置を探索する場合の一例を示す図である。図9(A)に示す管路網では、少なくとも交点P0からP4を含む交点によって複数の管路が接続されている。また、少なくとも交点P0からP4が圧力波の発生位置の候補であるとして、第2相互相関導出部120によって交点P0からP4の各々を圧力波の予想発生位置として第2相互相関が導出された場合が想定されている。そして、図9(B)に示すように、交点P0において第1相互相関と第2相互相関との相違が最小であり、推定部130によって、交点P0が、管路網における圧力波の発生位置であると推定されたとする。すなわち、この例においては、交点P0又はその近傍に、実際に管路網において圧力波が発生した位置が存在する可能性が高いと考えられる。
 この場合において、予想位置設定部240は、交点P0の位置に基づいて、上述した特定の位置とは異なる位置に、第2相互相関導出部120において第2相互相関を導出する際の圧力波の予想発生位置を設定する。図9の例では、予想位置設定部240は、交点P0と、交点P0に接続される管路と別の管路との交点であるP1からP4のそれぞれとの間の管路に圧力波の発生位置を設定する。
 そして、第2相互相関導出部120は、予想位置設定部240によって設定された地点を圧力波の予想発生位置として第2相互相関を導出する。更に、推定部130は、当該任意の地点における第1及び第2相互相関の相違に基づいて、管路網における圧力波の発生位置を推定する。例えば、推定部130は、当該任意の地点における第1及び第2相互相関の相違が、交点P0における第1及び第2相互相関の相違と比べて小さい場合に、当該任意の地点を管路網における圧力波の発生位置とする。このようにすることで、この例における位置推定装置200は、より高い精度で圧力波の発生位置を推定することができる。
 この例において、予想位置設定部240は、上述した任意の地点を様々な方法で決定する。予想位置設定部240は、例えば、図9(C)に示すように、第2相互相関導出部120において第2相互相関を導出する際の圧力波の予想発生位置として設定する。
 この例では、図9(C)の(1)に示すように、予想位置設定部240は、交点P0と、その周囲の交点P1からP4の各々との間の管路に設定された一つ以上の新たな地点を圧力波の予想発生位置として設定する。図9(C)の(1)に示す例では、交点P0と、交点P1からP4の各々との間に、図中の白丸にて表される3つの新たな地点が設定されている。第2相互相関導出部120は、これらの地点に関する第2相互相関を導出する。
 そして、推定部130は、第1相互相関と、上述のように導出された第2相互相関の各々との相違に基づいて、管路網における圧力波の発生位置を推定する。この場合には、第2相互相関が設定された一つ以上の新たな地点のうち、推定部130は、第1相互相関と、第2相互相関の各々との相違が最も小さい地点を、管路網において圧力波が発生した地点とすることができる。
 また、図9(C)の(2)に示す例のように、予想位置設定部240は、交点P0と、交点P1からP4の各々との点に関する第1及び第2相互相関の相違の比に応じて管路に設定された新たな地点を圧力波の予想発生位置として設定する。図9(C)の(2)に示す例では、P0と、P1からP4のそれぞれとの点に関する第1及び第2相互相関の相違の比に応じて、図中の白丸にて表される新たな地点が設定されている。第2相互相関導出部120は、これらの地点を新たな圧力波の予想発生位置として、第2相互相関を導出する。
 この例では、交点P0と、その周囲の交点の各々とに関する第1及び第2相互相関の相違の比が大きい(相違の差が大きい)場合には、例えばP0とP4との間の管路に設定された地点のように、交点P0の近傍に新たな地点が設定される。交点P0と、その周囲の交点の各々とに関する第1及び第2相互相関の相違の比が小さい(相違の差が小さい)場合には、例えばP0とP3との間の管路に設定された地点のように、周囲の交点の近傍の場所に新たな地点が設定される。
 そして、推定部130は、この場合においても、第1相互相関と、上述のように導出された第2相互相関の各々との相違に基づいて、管路網における圧力波の発生位置を推定する。この場合においても、第2相互相関を導出する際に新たに設定された圧力波の予想発生位置のうち、推定部130は、第1相互相関と、第2相互相関の各々との相違が最も小さい地点を、管路網において圧力波が発生した地点とする。
 (2つの圧力波の予想発生位置に関する設定手法の組み合わせ)
 上述した本実施形態における位置推定装置200の動作例は、互いに組み合わせて用いられることが可能である。位置推定装置200を用いて管路網における圧力波の予想発生位置を求める際の予想位置設定部240の動作の一例は、例えば、図10のように表される。
 図10に示す動作の例では、まず、予想位置設定部240は、第2相互相関導出部120において最初に第2相互相関を導出する際の圧力波の予想発生位置を、初期探索点として設定する(ステップS251)。この場合において、予め定められた特定の位置から、複数の初期探索点が設定される。初期探索点は、例えば、以下のように設定される。
・管路網において予め定められた地点を常に初期探索点として選択する。
・管路網において候補となる地点のうち、初期探索点とする地点をランダムに初期探索点として選択する。
・発生位置の特定対象となる圧力波を最初に検知した圧力計の位置に基づいて初期探索点を定める。
 初期探索点が設定されると、当該初期探索点を第2相互相関導出部120において第2相互相関を導出する際の圧力波の予想発生位置として、管路網における圧力波の発生位置が推定される。この場合において、位置推定装置200の各構成要素は、図6に示したステップS101からステップS103の動作と同様に、管路網における圧力波の発生位置を推定する。
 続いて、先のステップS251にて推定された圧力波の発生位置に基づいて、予想位置設定部240は、第2相互相関導出部120において第2相互相関を導出する際の圧力波の予想発生位置を設定する(ステップS252)。この場合において、予想位置設定部240は、先に説明した種々の手法にて圧力波の予想発生位置を設定する。また、予想位置設定部240は、以前に設定した複数の圧力波の予想発生位置と少なくとも一つの位置が異なるように、上述した特定の位置から圧力波の予想発生位置を選択して設定する。第2相互相関導出部120において第2相互相関を導出する際の圧力波の予想発生位置が設定されると、位置推定装置200の各構成要素によって管路網における圧力波の発生位置が推定される。
 なお、予想位置設定部240は、このステップS252を、図10に示すように一度だけ行ってもよいし、圧力波の発生位置に関する推定結果に基づいて、繰り返して複数回行ってもよい。また、第2相互相関を導出する際の圧力波の予想発生位置が設定されると、位置推定装置200の各構成要素は、適宜管路網における圧力波の発生位置を推定する。
 次に、ステップS252にて推定された圧力波の発生位置に基づいて、予想位置設定部240は、第2相互相関導出部120において第2相互相関を導出する際の圧力波の予想発生位置を、上述した特定の位置と異なる位置に設定する(ステップS253)。
 この場合には、予想位置設定部240は、先のステップにて推定された管路網における圧力波の発生位置に基づいて、上述した特定の位置とは異なる位置に、第2相互相関を導出する際の圧力波の予想発生位置を設定する。また、上述のように、予想位置設定部240は、上述した特定の位置とは異なる位置として、複数の地点を設定してもよい。
 以上のとおり、本発明の第2の実施形態における位置推定装置200は、予想位置設定部240が、第2相互相関導出部120において流体の圧力の計算対象となる圧力波の予想発生位置を繰り返し設定する。本実施形態においては、予想位置設定部240が、推定部130によって推定された管路網における圧力波の発生位置に基づいて、第2相互相関を導出する際の圧力波の予想発生位置を繰り返し設定する。そのため、本実施形態における位置推定装置200は、管路網における圧力波の発生位置を迅速に推定することができる。また、本実施形態においては、予想位置設定部240は、実際に管路網において圧力波が発生した可能性が高いと考えられる位置の近傍の位置に基づいて、第2相互相関を導出する際の圧力波の予想発生位置を繰り返し設定する。そのため、本実施形態における位置推定装置200は、管路網における圧力波の発生位置を精度よく推定することができる。すなわち、本実施形態における位置推定装置200は、高速かつ高い精度で圧力波の発生位置を推定することができる。
 なお、本実施形態における位置推定装置200に示す構成は、必要に応じて第1の実施形態における位置推定装置100の変形例と互いに組み合わせることができる。
 (第3の実施形態)
 続いて、本発明の第3の実施形態について説明する。図11は、本発明の第3の実施形態における位置推定装置300の構成を示す図である。図12は、管路網における圧力波の伝搬速度に違いが生じる場合の一例を示す。図13は、管路網において生じる圧力波の伝搬速度に違いが生じる場合の別の一例を示す。図14は、伝搬速度が異なる圧力波の合成波に関する相互相関の例を示す。図15は、本発明の第3の実施形態において第1相互相関導出部110及び相関分離部350の動作の一例を表す模式図である。
 図11に示すとおり、本発明の第3の実施形態における位置推定装置300は、相関分離部350と、第1相互相関導出部110と、第2相互相関導出部120と、推定部130とを備える。相関分離部350は、第1又は第2相互相関の少なくとも一方の導出に用いられる計測値から所定の成分を分離する。これ以外の点については、本発明の第3の実施形態における位置推定装置300は、本発明の第1の実施形態における位置推定装置100と同様の構成を備えている。
 なお、本発明の第1の実施形態における位置推定システム10等と同様に、本実施形態における位置推定装置300を含む位置推定システムが構成される。
 本実施形態において、相関分離部350は、上述のように、第1又は第2相互相関の少なくとも一方の導出に用いられる計測値からそれぞれ所定の成分を分離する。一例として、相関分離部350は、上述した計測値から、それぞれ所定の周波数成分を分離する。この場合において、相関分離部350は、計測値から、それぞれ特定の周波数成分のみを分離して取り出してもよいし、計測値を、周波数成分毎に分離してもよい。また、相関分離部350は、推定部130にて管路網における圧力波の発生位置を推定する際に雑音となる成分を取り除いてもよい。相関分離部350は、所望の伝搬周波数を持つ成分を抽出する任意の帯域通過フィルタにて実現される。そして、第1相互相関導出部110及び第2相互相関導出部120は、例えば相関分離部350にて分離された成分毎にそれぞれ第1及び相互相関を導出する。なお、第1相互相関導出部110及び第2相互相関導出部120は、上述した各実施形態と同様に、管路網の少なくとも2か所において管路網を流れる流体の圧力をそれぞれ計測した計測値に基づいて、第1及び第2相互相関を導出してもよい。
 圧力波の伝搬速度は、当該圧力波が伝搬する媒質や、圧力波の種類に応じて異なる場合がある。管路網において、管路の異常や破裂に起因して圧力波が生じる場合には、当該圧力波は伝搬速度が異なる圧力波の合成波である場合がある。
 図12は、管路網における圧力波の伝搬速度に違いが生じる場合の一例を示す。図12に示す例では、管路の内壁及び管路内の流体の異なる2つの媒質を伝搬することで、管路網において生じる圧力波は伝搬速度が異なる圧力波の合成波となる。図12に示す例において、管路の内壁を伝搬する圧力波の伝搬速度をV1、管路内の流体を伝搬する圧力波の伝搬速度をV2とすると、2つの速度の関係は、V2<V1となる。
 また、図13は、管路網において生じる圧力波の伝搬速度に違いが生じる場合の別の一例を示す。図13に示す例では、疎密波とねじり波という波の種類の違いによって、管路網における圧力波は伝搬速度が異なる圧力波の合成波となる。図12に示す例において、疎密波の伝搬速度をV1、ねじり波の伝搬速度をV2とすると、2つの速度の関係は、V2<V1となる。
 管路網における圧力波が伝搬速度の異なる圧力波の合成波である場合には、当該圧力波を計測して求められる第1相互相関には、圧力波の伝搬速度に応じて、図5に示す局所ピークが互いに強め合ったり弱め合ったりする場合がある。
 図14は、伝搬速度が異なる圧力波の合成波に関する相互相関の例を示す。図14(A)及び図14(B)は、それぞれ異なる伝搬速度V1又はV2にて伝搬する圧力波から求められた相互相関の例である。一方、図14(C)は、伝搬速度がV1又はV2である2つの圧力波の合成波から求められた相互相関の例である。図14(C)に示す例では、図14(A)や(B)の例と比較して、相互相関の局所ピークが現れる周期が乱れている。このような合成波を用いることは、第2相互相関の具体的な導出方法によっては、推定部130における圧力波の発生位置の推定に影響を及ぼす可能性がある。
 そこで、本実施形態においては、相関分離部350は、異なる伝搬速度の圧力波を分離するように、所定の成分を分離する。すなわち、相関分離部350は、伝搬速度の異なる圧力波の合成波から求められる第1相互相関を、伝搬速度が同じ(又は、伝搬速度が同じと扱うことができる所定の範囲にある)成分に分離する。このようにすることで、第1相互相関を導出する対象となる圧力波に伝搬速度が異なる圧力波が含まれることに起因する圧力波の影響が軽減される。そのため、本実施形態における位置推定装置300は、推定部130における圧力波の発生位置の推定を高い精度で行うことができる。
 相関分離部350は、上述のように、一例として、所望の伝搬周波数を持つ成分を抽出する任意の帯域通過フィルタにて実現される。圧力波は、一般に、伝搬速度が異なる場合には、圧力波自体やその相互相関の周波数が異なる。したがって、帯域通過フィルタを用いて必要となる周波数成分を適宜取り出すことによって、相関分離部350は、第1相互相関から所望の伝搬速度に関する成分を取り出すことが可能となる。
 図15は、第1相互相関導出部110及び相関分離部350の動作の一例を表す模式図である。図15に示す例では、相関分離部350は、少なくとも帯域通過フィルタBPF1からBPF3を内部に有する。帯域通過フィルタBPF1からBPF3は、それぞれ異なる周波数成分を通過させる。相関分離部350は、更に、帯域通過フィルタBPF1からBPF3のそれぞれと異なる周波数成分を通過させる帯域通過フィルタを有していてもよい。
 この例では、相関分離部350は、管路網において計測された圧力の時系列信号x及びyに基づいて、それぞれ異なる伝搬速度に対応する周波数成分に分離する。そして、第1相互相関導出部110それぞれ異なる伝搬速度に対応する周波数成分に相当する第1相互相関R1からR3を導出する。また、第1相互相関導出部110は、管路網において計測された圧力の時系列信号x及びyに基づいて、第1相互相関R0を導出する。
 また、本実施形態において、第2相互相関導出部120は、相関分離部350の動作に応じて、第1相互相関R1からR3のそれぞれの周波数成分に分離された第2相互相関を導出してもよい。この場合には、推定部130は、上述した周波数成分毎に分離された第1相互相関及び第2相互相関に基づいて、圧力波の発生位置を推定する。
 なお、本実施形態において、第2相互相関導出部120は、圧力波の伝搬速度や周波数成分毎に分離することなく第2相互相関を導出してもよい。この場合に、相関分離部350は、必要に応じて、第1相互相関に限らず、第2相互相関に関して所定の成分を分離してもよい。
 以上のとおり、本発明の第3の実施形態における位置推定装置300は、相関分離部350を備える。相関分離部350は、第1及び第2相互相関の少なくとも一方を導出する際に用いられる計測値から所定の成分を分離する。そのため、推定部130において圧力波の発生位置を推定する場合に、圧力波が伝搬速度の異なる圧力波の合成波であっても、伝搬速度の違いに起因する影響が小さくなる。すなわち、本実施形態における位置推定装置300は、より高い精度で圧力波の発生位置を推定することができる。
 なお、本実施形態における位置推定装置300に示す構成は、必要に応じて第1の実施形態における位置推定装置100の変形例又は第2の実施形態における位置推定装置200と互いに組み合わせることができる。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることが可能である。また、各実施形態における構成は、本発明のスコープを逸脱しない限りにおいて、互いに組み合わせることが可能である。
 この出願は、2014年11月25日に出願された日本出願特願2014-238050を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 10、20、30  位置推定システム
 100、200、300  位置推定装置
 110  第1相互相関導出部
 120  第2相互相関導出部
 130  推定部
 240  予想位置設定部
 350  相関分離部
 50、51、52  管路網
 500、501  管路
 531、532、533、534  タンク
 541、542、543、544  ポンプ
 551、552、553  圧力計
 561、562、563  圧力検知部
 571、572、573、574、575、576、577、578  交点
 1000  情報処理装置
 1001  CPU
 1002  ROM
 1003  RAM
 1004  プログラム
 1005  記憶装置
 1006  記録媒体
 1007  ドライブ装置
 1008  通信インターフェース
 1009  通信ネットワーク
 1010  入出力インターフェース
 1011  バス

Claims (14)

  1.  管路網の少なくとも2か所においてそれぞれ計測された前記管路網を流れる流体の圧力を表す計測値に基づいて、前記計測値に関する第1相互相関を導出する第1相互相関導出手段と、
     前記管路網の前記少なくとも2か所における前記流体の圧力をそれぞれ計算して求めた計算値に基づいて、前記計算値に関する第2相互相関を導出する第2相互相関導出手段と、
     前記第1相互相関及び前記第2相互相関に基づいて前記管路網における圧力波の発生位置を推定する推定手段とを備える、位置推定装置。
  2.  前記推定手段は、前記第1相互相関と前記第2相互相関との相違に基づいて前記圧力波の発生位置を推定する、請求項1に記載の位置推定装置。
  3.  前記第2相互相関導出手段は、前記管路網において圧力波の予想発生位置を設定し、前記圧力波の予想発生位置にて圧力波が発生した場合における前記第2相互相関を導出する、請求項1又は2に記載の位置推定装置。
  4.  前記推定手段は、前記第1相互相関と前記第2相互相関との相違が所定の条件を満たす場合に、前記第2相互相関導出手段において前記第2相互相関を導出する場合に用いられた前記圧力波の予想発生位置を前記管路網における圧力波の発生位置として推定する、請求項3に記載の位置推定装置。
  5.  前記第2相互相関導出手段において流体の圧力の計算対象となる前記圧力波の予想発生位置を繰り返し設定する予想位置設定手段を備える、請求項3又は4に記載の位置推定装置。
  6.  前記予想位置設定手段は、予め定められた前記管路網における複数の位置から少なくとも一つの位置を選択して前記圧力波の予想発生位置として設定する、請求項5に記載の位置推定装置。
  7.  前記予想位置設定手段は、前記設定された前記圧力波の発生位置において第1相互相関と前記第2相互相関との相違が前記所定の条件を満たす場合に、前記所定の条件を満たす前記圧力波の発生位置に基づいて、前記予め定められた前記管路網における複数の位置から少なくとも一つの位置を選択して前記圧力波の予想発生位置として設定する、請求項6に記載の位置推定装置。
  8.  前記予想位置設定手段は、前記所定の複数の位置の少なくとも一つにおいて、前記第1相互相関と前記第2相互相関との相違が前記所定の条件を満たす場合に、前記予め定められた前記管路網における複数の位置と異なる位置に圧力波の予想発生位置を設定する、請求項6又は7に記載の位置推定装置。
  9.  前記第1及び第2相互相関の少なくとも一方から所定の成分を分離する相関分離手段を備える、請求項1から8のいずれか一項に記載の位置推定装置。
  10.  前記相関分離手段は、前記第1及び第2相互相関からそれぞれ所定の周波数成分を分離し、
     前記推定手段は、前記第1及び第2相互相関の前記所定の周波数成分に基づいて、前記圧力波の発生位置を推定する、請求項9に記載の位置推定装置。
  11.  前記相関分離手段は、前記第1及び第2相互相関を、複数の前記所定の周波数成分に分離し、
     前記推定手段は、前記第1及び第2相互相関の前記複数の所定の周波数成分の各々の相違に基づいて、前記圧力波の発生位置を推定する、請求項10に記載の位置推定装置。
  12.  請求項1から11のいずれか一項に記載の位置推定装置と、
     前記管路網を流れる流体の圧力を計測する複数の圧力検知手段とを備える、位置推定システム。
  13.  管路網の少なくとも2か所において前記管路網を流れる流体の圧力をそれぞれ計測した計測値に基づいて、前記計測値に関する第1相互相関を導出し、
     前記管路網の前記少なくとも2か所における前記流体の圧力をそれぞれ計算して求めた計算値に基づいて、前記計算値に関する第2相互相関を導出し、
     前記第1相互相関及び前記第2相互相関に基づいて圧力波の発生位置を推定する、位置推定方法。
  14.  コンピュータに、
     管路網の少なくとも2か所においてそれぞれ計測された前記管路網を流れる流体の圧力を表す計測値に基づいて、前記計測値に関する第1相互相関を導出する処理と、
     前記管路網の前記少なくとも2か所における前記流体の圧力をそれぞれ計算して求めた計算値に基づいて、前記計算値に関する第2相互相関を導出する処理と、
     前記第1相互相関及び前記第2相互相関に基づいて圧力波の発生位置を推定する処理とを実行させるプログラムを格納した、コンピュータ読み取り可能記録媒体。
PCT/JP2015/005840 2014-11-25 2015-11-24 位置推定装置、位置推定システム、位置推定方法及びコンピュータ読み取り可能記録媒体 WO2016084366A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016561243A JPWO2016084366A1 (ja) 2014-11-25 2015-11-24 位置推定装置、位置推定システム、位置推定方法及びコンピュータ読み取り可能記録媒体
US15/529,003 US20170328803A1 (en) 2014-11-25 2015-11-24 Position estimation device, position estimation system, position estimation method, and computer-readable recording medium
GB1707980.7A GB2547383B (en) 2014-11-25 2015-11-24 Position estimation device, position estimation system, position estimation method, and computer-readable recording medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-238050 2014-11-25
JP2014238050 2014-11-25

Publications (1)

Publication Number Publication Date
WO2016084366A1 true WO2016084366A1 (ja) 2016-06-02

Family

ID=56073955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005840 WO2016084366A1 (ja) 2014-11-25 2015-11-24 位置推定装置、位置推定システム、位置推定方法及びコンピュータ読み取り可能記録媒体

Country Status (4)

Country Link
US (1) US20170328803A1 (ja)
JP (1) JPWO2016084366A1 (ja)
GB (1) GB2547383B (ja)
WO (1) WO2016084366A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108758357A (zh) * 2018-06-01 2018-11-06 浙江大学 一种基于供水管网压力变化值分析的爆管定位方法
JP2018173284A (ja) * 2017-03-31 2018-11-08 日本電気株式会社 分析装置、分析システム、分析方法及びプログラム
WO2019021991A1 (ja) * 2017-07-26 2019-01-31 日本電気株式会社 分析装置、分析方法及び記憶媒体
JP2020003247A (ja) * 2018-06-26 2020-01-09 公益財団法人鉄道総合技術研究所 波形データの高精度位置補正方法及びシステム

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7095743B2 (ja) * 2018-09-19 2022-07-05 日本電気株式会社 流体漏洩診断装置、流体漏洩診断システム、流体漏洩診断方法、及び、流体漏洩診断プログラム
GB2597763A (en) * 2020-08-04 2022-02-09 Syrinix Ltd Transient pressure event detection system and method
CN113883422B (zh) * 2021-09-10 2023-06-02 江苏禹治流域管理技术研究院有限公司 一种城市供水管网漏损在线监测系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673331A (en) * 1979-10-30 1981-06-18 Us Government Method of detecting leaking location of buried pipe
JPS62297741A (ja) * 1986-06-17 1987-12-24 Kensaku Imaichi 管路系流体の漏洩場所検出方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5673331A (en) * 1979-10-30 1981-06-18 Us Government Method of detecting leaking location of buried pipe
JPS62297741A (ja) * 1986-06-17 1987-12-24 Kensaku Imaichi 管路系流体の漏洩場所検出方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018173284A (ja) * 2017-03-31 2018-11-08 日本電気株式会社 分析装置、分析システム、分析方法及びプログラム
WO2019021991A1 (ja) * 2017-07-26 2019-01-31 日本電気株式会社 分析装置、分析方法及び記憶媒体
JPWO2019021991A1 (ja) * 2017-07-26 2020-04-16 日本電気株式会社 分析装置、分析方法及び記憶媒体
CN108758357A (zh) * 2018-06-01 2018-11-06 浙江大学 一种基于供水管网压力变化值分析的爆管定位方法
JP2020003247A (ja) * 2018-06-26 2020-01-09 公益財団法人鉄道総合技術研究所 波形データの高精度位置補正方法及びシステム
JP2023022130A (ja) * 2018-06-26 2023-02-14 公益財団法人鉄道総合技術研究所 波形データの高精度位置補正方法及びシステム
JP7446698B2 (ja) 2018-06-26 2024-03-11 公益財団法人鉄道総合技術研究所 波形データの高精度位置補正方法及びシステム

Also Published As

Publication number Publication date
JPWO2016084366A1 (ja) 2017-10-12
GB201707980D0 (en) 2017-07-05
US20170328803A1 (en) 2017-11-16
GB2547383B (en) 2020-06-24
GB2547383A (en) 2017-08-16

Similar Documents

Publication Publication Date Title
WO2016084366A1 (ja) 位置推定装置、位置推定システム、位置推定方法及びコンピュータ読み取り可能記録媒体
US10077873B2 (en) Determining fluid leakage volume in pipelines
Srirangarajan et al. Wavelet-based burst event detection and localization in water distribution systems
Yang et al. A new method of leak location for the natural gas pipeline based on wavelet analysis
Duan et al. Extended blockage detection in pipelines by using the system frequency response analysis
Liu et al. Experimental study on a de-noising system for gas and oil pipelines based on an acoustic leak detection and location method
Sun et al. Integrated-signal-based leak location method for liquid pipelines
Doshmanziari et al. Gas pipeline leakage detection based on sensor fusion under model-based fault detection framework
Sekhavati et al. Computational methods for pipeline leakage detection and localization: A review and comparative study
Ayati et al. Statistical review of major standpoints in hydraulic transient-based leak detection
US9243971B2 (en) Monitoring fluid flow in a conduit
US11454354B2 (en) Pipe diagnosis apparatus, asset management apparatus, pipe diagnosis method, and computer-readable recording medium
Huang et al. An optimization approach to leak detection in pipe networks using simulated annealing
JP6652054B2 (ja) 位置決定装置、漏洩検知システム、位置決定方法及びコンピュータ読み取り可能記録媒体
Adeleke et al. Blockage detection and characterization in natural gas pipelines by transient pressure-wave reflection analysis
Shi et al. Hydraulic transient wave separation algorithm using a dual-sensor with applications to pipeline condition assessment
Pan et al. Efficient Pipe Burst Detection in Tree‐Shape Water Distribution Networks Using Forward‐Backward Transient Analysis
JPWO2017188074A1 (ja) 漏洩箇所分析システム、漏洩箇所分析方法、漏洩箇所分析装置及びコンピュータプログラム
Li et al. Investigation on leakage detection and localization in gas-liquid stratified flow pipelines based on acoustic method
Daneti A model based approach for pipeline monitoring and leak locating
Kowalczuk et al. Analytical steady-state model of the pipeline flow process
Kumar et al. Simple graphical method for detection of a partial blockage or leak in a single pipeline
Srour et al. Pipeline blockage detection
Witkowski Comparison of compressible and incompressible CFD methods for the acoustic analysis of flow induced noise in confined flows
Georgantopoulou et al. Numerical simulation in pipes with leakages

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862386

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561243

Country of ref document: JP

Kind code of ref document: A

Ref document number: 201707980

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20151124

WWE Wipo information: entry into national phase

Ref document number: 15529003

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15862386

Country of ref document: EP

Kind code of ref document: A1